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Abstract 
 

Video sensor networks (VSNe) are basically application related setups. These 

platforms have their own requirements and constraints. But, all these applications have 

one common problem of bandwidth requirement. Each node within a sensor network 

has to transmit its finding to a central receiver. Each terminal's information is important 

and carries a significant part of final results that must be transmitted to get best results. 

Bandwidth of the link is limited and it is a great problem to transmit all nodes findings 

within this available link capacity. Multimedia applications have huge textual as well as 

visual data. They, mostly comprise of repetitive patterns. Current video coding 

standards eliminate such data redundancy by exploiting spatial redundancy (within a 

video frame) as well as temporal redundancy (among video frames). These video codec 

standards are deployed on each sensor node that does not save the bandwidth 

requirement up to an optimum limit, since it does not exploit inter-sensor redundancy.  

Same video codec standards like MPEG can be deployed in a multi-terminal network by 

extending the transform coding of motion compensated coefficients among different 

sensor at a regular pattern. Deploying a standard video codec in this fashion exploits the 

inter-sensor redundancy, thus yields a great saving in required bandwidth for the 

resultant piece of information coming out of a wireless sensor network. This research 

work is an extension of MPEG, a video compression standard for a multi-camera setup.  

Basically, in this research study camera sensor nodes of a wireless network are 

allowed to communicate in two strategies, strategy one allows minimum 

communication. While sensor nodes are allowed to communicate a bit more in strategy 

two. In both communication strategies, system has been designed to work in two 

working-modes: named as Scenario A and Scenario-B. Scenario A takes more 

processing time but gives large PSNR values while system in Scenario B can be 

deployed in a situation where quick system response is required provided degraded 

video quality can be compromised. Results in tabular as well as graphical forms have 

been formulated to evaluate the system performance in both working modes under both 

communication strategies. Overall system shows optimum performance at low bitrates. 
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Chapter 1 
 

INTRODUCTION 
 

In this chapter, the overview of the thesis is presented. This chapter holds, its 

importance providing the basis for research. It includes motivation, problem definition, 

objectives and goals of research. 

 

1.1      Motivation  
Multimedia applications constitute a major part of today’s world of computing. 

These applications are designed to carry huge-sized visual and audio information that 

involves major issues concerning this data format transmission and storage. Since this 

information carries the repetitive patterns, there has always been a requirement for some 

standard to modify this data in some format carrying the information which is the most 

meaningful and important for the end-user. 

A number of video compression techniques and standards have been developed to 

cater this problem; these comprise essential steps like applying various transforms and 

different coding techniques, each participating to enhance the resultant quality as well as 

removing the ambiguities and repetitions. Deploying this multimedia information on a 

wireless network is a great issue once again. Because the available link capacity is too short 

to carry this huge load. And then moving one step forward is consideration of multi-

terminal scenarios, where we have to send the findings and measurements of each and every 

node of the network to a common link. Here this problem becomes more serious and very 

difficult to tackle. 

1.2      Problem Definition  
Since different sensors in a camera sensor network are capturing the same visual 

information from different angles so there is a great degree of correlation among these 

observations, known as inter-sequence statistical redundancy. Besides, this is the 

repetition of patterns in different frames of individual video sequence, called temporal 

correlation and then a high level of correlation also exists within a frame, called spatial 

redundancy. 

Finally, for multi-camera sensor network, there should be some standard to cater 

all these three kinds of redundancies. Since each node in multi-camera scenario is 

equipped with standard video compression algorithm such as MPEG1, MPEG2, 
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MPEG4, H261, H263, these all rely on efficient transform coding of motion-

compensated frames. These standards eliminate temporal and spatial redundancies with 

in an individual video sequence. But these standards neglect the great degree of 

repetition that exists in resultant transmission stream due to inter-sequence correlation. 

There should be some mechanism to exploit this redundancy to save the final required 

bandwidth up to a greater extent. 

 

1.3      Objectives and Goals  
This research has mainly focused to exploit this correlation in a distributed 

fashion, keeping the communication among the sensors at minimum. A video 

compression standard, MPEG has been extended for a multi-camera environment in 

such a way to minimize the size of resultant bit-stream for transmission. Two 

communication strategies have been proposed for camera sensor nodes to communicate 

with one another. Moreover, system is capable of switching between two working 

modes. Since both the working modes reconstruct the output video sequences with 

different performance metrics. So each working mode can be deployed in a particular 

situation with different set of requirements. We proposed an architecture and 

methodology for improvement of compression ratio. As well as to keep the PSNR of 

reconstructed video sequence frames as high as possible. 

Evaluation criteria for the results of proposed scheme will be: 

a) Compression Ratio 

b) Compression Percentage. 

c) PSNR 

d) Distortion (MSE) 

Results for both communication strategies as well as for both working modes 

have been formulated. System performance has been evaluated and analyzed using 

MATLAB 7.0.  And formulated results have been shown in tabular and graphical forms. 

 



4 
 

 

 

 

Chapter 2 
 

BACKGROUND 
 

This chapter covers the background of this research work. The chapter starts with 

introduction to digital video, along with, its formats and video quality is discussed. Next 

section covers the compression and video compression importance and finally video 

compression standards are discussed. At the end working mechanism of multi camera setup 

is provided. 

 

2.1      Digital Video 
A digital video is actually a sequence of frames, which are normally presented at 

regular time intervals. A digital image is obtained by quantizing a continuous image both 

spatially and in amplitude. Digitization of the spatial coordinates is called image sampling, 

while digitization of the amplitude is called gray-level quantization. Suppose that a 

continuous image is denoted by g(x,y), where the amplitude or value of g at the point (x,y) 

is the intensity or brightness of an image at that point. The transformation of a continuous 

image to a digital image can then be expressed as: 

f(m,n,t)  = Q[g(x0 + m delta x,y0 + n delta y)], 

where Q is a quantization operator, x0 and y0 are the origin of image plane, m and n 

are the discrete values 0,1,2,….,and delta x and delta y are the sampling intervals in the 

horizontal and vertical directions, respectively. If this sampling process is extended to a 

third temporal direction, a sequence, f(m,n,t), is obtained. 

f(m,n,t)  = Q[g(x0 + m delta x,y0 + n delta y, t0 + t delta t)], 

Where t is the values 0, 1, 2, ….And delta t is the time interval. Each basic element 

of the image is called as a pixel or pel. Each individual image is called a frame. The frames 

are normally presented at a regular interval so that eye cans perceive fluid motion. For 

example, the NTSC (National Television System Committee) specified a temporal sampling 

rate of 30 frames/second and interlace 2 to 1.therefore, as a result of this spatio-temporal 
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sampling, the digital signal exhibits high spatial and temporal correlation, just as the analog 

signals did before video data compression. 

 

2.1.1 Digital video formats 

In practical applications, most video signals are color signals. A color signal can be 

seen as a summation of light intensities of three primary wavelength bands. There are 

several color representations such as YCbCr, RGB and others. The YcbCr color 

representation is used for most video coding standards in compliance with the CCIR601 

(International Radio Consultative Committee), common intermediate format (CIF), and SIF 

formats. The Y component specifies the luminance information and the Cb and Cr 

components specify the color information. 

Progressive and Interlaced 

Currently, most video signals that are generated by a TV camera are interlaced. 

These video signals are represented at 30 frames/second for an NTSC system. Each frame 

consists of two fields, the top field and bottom field, which are 1/60 of a second apart. In 

the display of an interlaced, the top field is scanned first and the bottom field is scanned 

next. The top and bottom fields are composed of alternating lines of the interlaced frame. 

Progressive video does not consist of fields, only frames. In an NTSC system, these frames 

are spaced 1/30 seconds apart. In contrast to interlaced video, every line within the frame is 

successively scanned. 

CCIR 

According to CCIR601 (CCIR is now known as ITU-R International 

Telecommunication Union-R), a color video source has three components: a luminance 

component (Y) and two color difference or chrominance components (Cb and Cr). The 

CCIR format has two options, I for the NTSC TV system and another for PAL TV system; 

both are interlaced. The NTSC format uses 525 lines/frame at 30 frames/second. The 

luminance frames of this format have 720 x 420 active pixels. The chrominance frames 

have two kinds of formats, one has 360 x 480 active pixels and is referred as the 4:2:2 

format, while the other has 360 x 240 active pixels and is referred as the 4:2:0 format. The 

PAL format uses 625 lines/frame at 25 frames/second. Its luminance frame has 720 x 576 

active pixels/frame and the chrominance frame has 360 x 576 active pixels /frame for the 

4:2:2 format at 360x 288 pixels/frame for the 4:2:0 format, both at 25 frames/second. 

SIF (source input format) 

SIF has luminance resolution of 360x240 pixels/frame at 30 frames/second or 

360x288 pixels/frame at 25 frames/second. For both cases, the resolution of the 
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chrominance component is half of the luminance resolution in both horizontal and vertical 

dimensions. SIF can easily be obtained from a CCIR format using an appropriate anti-

aliasing filter followed by sub sampling. 

CIF (common intermediate format) 

CIF is a non-interlaced format. Its luminance resolution has 352x288 pixels/frame 

at 30 frames/second and the chrominance has half the luminance resolution in both vertical 

and horizontal dimensions. Since its line value, 288,represents half the active lines in a PAL 

television signal, and its picture rate 30 frames/second, is the same as the NTSC television 

signal, it is a common intermediate format for both PAL and PAL-like systems and NTSC 

systems. In the NTSC systems, only a line number conversion is needed, while in the PAL 

and PAL-like systems only a picture rate conversion is needed. For low-bit-rate 

applications, the quarter-SIF (QSIF) or quarter-CIF (QCIF) formats may be used since these 

formats have only a quarter the number of pixels of SIF and CIF formats, respectively. 

ATSC (Advanced Television Standard Committee) DTV (digital television) 

format 

The concept of DTV consists of SDTV (standard-definition television) and HDTV 

(high definition television). Recently, in U.S., the FCC (federal communication 

commission) approved the ATSC-recommended DTV standard (ATSC, 1995). The DTV 

format is not included in the standard due to the divergent opinions of TV and computer 

manufactures. Rather, it has been agreed that the picture format will be decided by the 

future market. The ATSC-recommended DTV format including two kinds of formats: 

SDTV and HDTV. The ATSC DTV standard includes the following 18 formats: 

For HDTV: 1920x1080 pixels at 23.976/24 Hz, and 59.94/60 Hz progressive scan. 

For SDTV: 704x480 pixels with 4:3 aspect ratio at 23.976/24 Hz, 29.97/30 Hz, 

59.94/60 Hz progressive scan; 704x480 pixels with 16:9 aspect ratio at 23.976/24 Hz, 

29.97/30 Hz, 59.94/60 Hz progressive scan; and 640x480 with 4:3 aspect ratio at 23.976/24 

Hz, 29.97/30 Hz, 59.94/60 Hz progressive scan. 

It is noted that all HDTV formats use square pixels and only part of SDTV format 

uses square pixels. The number of pixels/line vs. the number of line/frame is known as the 

aspect ratio. 

 

2.2      Video Compression 
Video is basically a three-dimensional array of color pixels. Two dimensions serve 

as spatial (horizontal and vertical) directions of the moving pictures, and one dimension 

represents the time domain. A data frame is a set of all pixels that correspond to a single 
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time moment. Basically, a frame is the same as a picture. Video data contains spatial and 

temporal redundancy. Similarities can thus be encoded by merely registering differences 

within a frame (spatial), and/or between frames (temporal). Spatial encoding is performed 

by taking advantage of the fact that the human eye is unable to distinguish small differences 

in color as easily as it can perceive changes in brightness, so that very similar areas of color 

can be averaged out in a similar way to jpeg images. With temporal compression only the 

changes from one frame to the next are encoded as often a large number of the pixels will 

be the same on a series of frames. At the basic level, compression is performed when an 

input video stream is analyzed and information that is not useful to the viewer is discarded. 

Each event is then assigned a code - commonly occurring events are assigned few bits and 

rare events will have codes more bits. These steps are commonly called signal analysis, 

quantization and variable length encoding respectively. 

Video compression is a tradeoff between disk space, video quality, and the cost of 

hardware required to decompress the video in a reasonable time. There are four methods for 

compression; discrete cosine transforms (DCT), vector quantization (VQ), fractal 

compression, and discrete wavelet transform (DWT).  
Discrete Cosine Transform (DCT) 

Discrete cosine transform, a lossy compression algorithm that samples an image at 

regular intervals, analyzes the frequency components present in the sample, and discards 

those frequencies which do not affect the image as the human eye perceives it. DCT is the 

basis of standards such as JPEG, MPEG, H.261, and H.263.  

Vector Quantization (VQ) 

Vector quantization is a lossy compression that takes an array of data, instead of 

individual values. It then generalizes all data, compressing redundant data, while at the 

same time retaining the desired object or data streams original intent. 

Fractal Compression (FC) 

Fractal compression is a form of VQ and is also a lossy compression. Compression 

is performed by locating self-similar sections of an image, then using a fractal algorithm to 

generate the sections.  

Discrete Wavelet Transform (DWT) 

Like DCT, discrete wavelet transform mathematically transforms an image into 

frequency components. The process is performed on the entire image, which differs 

from the other methods (DCT) that work on smaller pieces of the desired data. The 

result is a hierarchical representation of an image, where each layer represents a 

frequency band.  
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2.2.1    Why Compression? 

Data/ image transmission and storage costs money. The more information being 

dealt with, the more it costs. In spite of this, most digital data are not stored in the most 

compact form. Rather, they are stored in any way which makes them easiest to use, such as: 

ASCII text form word processor, binary code that can be executed on a computer, 

individual samples from a data acquisition system, etc. typically, these easy-to-use encoding 

methods require data files about twice as large as actually needed to represent the 

information. Data compression is the general term for various algorithms and programs 

developed to address this problem. Likewise, an uncompressing program returns the 

information to its original form. Moreover, in today’s world of computing, it is hardly 

possible to do without graphics, images and sound. Just by looking at the applications 

around us, the internet, development of video CDs (compact disks), video conferencing, and 

much more, all these applications use graphics and sound intensively. Uncompressed 

graphics, audio and video data consumes large amount of physical storage which for the 

case of uncompressed video, even present CD technology is unable to handle. Take for 

instance, if we want to display a TV-quality full motion video, how much of physical 

storage will be required? TV-quality video requires 720 kilobytes/frame (kbpf) displayed at 

30 frames/second (fps). To obtain a full-motion effect, which means that one second of 

digitized video consumes approximately 22 MB (megabytes) of storage. A standard CD-

ROM dick with 648 MB capacity and data transfer rate of 150 kbps could only provide a 

total of 30 seconds of video and would take 5 seconds to display a single frame. It is 

obviously just not acceptable. Transmission of uncompressed graphics, audio and video is a 

problem too. Expensive cables with high bandwidth are required to achieve satisfactory 

result, which is not feasible for the general market. 

Thus, to provide feasible and cost effective solutions, most multimedia systems use 

compression techniques to handle graphics, audio and video data streams. 

 

2.2.2    Video Compression Standards 

 MPEG is an ISO/IEC working group, established in 1988 to develop 

standards for digital audio and video formats. There are five MPEG standards being used or 

in development. Each compression standard was designed with a specific application and 

bit rate in mind, although MPEG compression scales well with increased bit rates. They 

include: 
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MPEG-1 

It is designed for up to 1.5 Mbit/sec, a standard for the compression of moving pictures and 

audio. This was based on CD-ROM video applications, and is a popular standard for video 

on the Internet, transmitted as .mpg files. In addition, level 3 of MPEG-1 is the most 

popular standard for digital compression of audio--known as MP3. MPEG-1 is the standard 

of compression for Video CD, it is the most popular video distribution format. 

MPEG-2 

It has been designed for range between 1.5 and 15 Mbit/sec, a standard on which Digital 

Television set top boxes and DVD compression is based. It is based on MPEG-1, but 

designed for the compression and transmission of digital broadcast television. The most 

significant enhancement from MPEG-1 is its ability to efficiently compress interlaced 

video. MPEG-2 scales well to HDTV resolution and bit rates, obviating the need for an 

MPEG-3. 

MPEG-4 

This is a standard for multimedia and Web compression. MPEG-4 is based on object-based 

compression, similar in nature to the Virtual Reality Modeling Language. Individual objects 

within a scene are tracked separately and compressed together to create an MPEG4 file. 

This results in very efficient compression that is very scalable; from low bit rates to very 

high. It also allows developers to control objects independently in a scene, and therefore 

introduce interactivity. DivX is a software application that uses the MPEG-4 standard to 

compress digital video, so it can be downloaded over a DSL/cable modem connection in a 

relatively short time with no reduced visual quality. The latest version of the codec, DivX 

4.0, is being developed jointly by DivX Networks and the open source community. DivX 

works on Windows 98, ME, 2000, CE, Mac and Linux.  

MPEG-7  

This standard, currently under development, is also called the Multimedia Content 

Description Interface. When released, the group hopes the standard will provide a 

framework for multimedia content that will include information on content manipulation, 

filtering and personalization, as well as the integrity and security of the content. Contrary to 

the previous MPEG standards, which described actual content, MPEG-7 will represent 

information about the content. 

MPEG-21  

The work on this standard, also called the Multimedia Framework, has just begun. 

MPEG-21 will attempt to describe the elements needed to build an infrastructure for the 

delivery and consumption of multimedia content, and how they will relate to each other. 
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DV is a high-resolution digital video format used with video cameras and 

camcorders. The standard uses DCT to compress the pixel data and is a form of lossy 

compression. The resulting video stream is transferred from the recording device via 

FireWire (IEEE 1394), a high-speed serial bus capable of transferring data up to 50 MB/sec.  

H.261  

It is an ITU standard designed for two-way communication over ISDN lines (video 

conferencing) and supports data rates which are multiples of 64Kbit/s. The algorithm is 

based on DCT and can be implemented in hardware or software and uses intraframe and 

interframe compression. H.261 supports CIF and QCIF resolutions.  

H.263, H.263 Version 2 (H.263+), H.263++ and H.261 

 The H.263 video coding standard is specifically designed for very low bit 

rate applications such as video conferencing. Its technical content was completed in late 

1995 and the standard was approved in early 1996. It is based on the H.261 standard with 

several added features: unrestricted motion vectors, syntax based-arithmetic coding, 

advanced prediction and P-B frames. The H.263 version 2 video coding standards, also 

known as “H.263+”, was approved in January 1998 by the ITU-T. H.263+ includes a 

number of optional features based on the H.263. These new optional features are added to 

provide improved coding efficiency, a flexible video format, scalability and backward 

compatible supplemental enhancement information. H.263++ is the extension of H.263+ 

and is currently scheduled to be completed in the year 2000. H.26L is along term project 

which is looking for more efficient video coding algorithms. 

 

2.3    Multi-Terminal Video Coding (MTVC) 
A wireless sensor network consists of many tiny, low-power and cheap wireless 

sensors. Unlike personal computers or the Internet, which are designed to support all types 

of applications, sensor networks are usually mission-driven and application specific e.g. 

designed for the detection of biological agents and toxic chemicals; environmental 

measurement of temperature, pressure and vibration; or real-time area video surveillance. 

Sensor nodes in this network must operate under a set of unique constraints and 

requirements. 

Unlike many other wireless devices (e.g., cellular phones, PDAs, and laptops), in 

which energy can be recharged from time to time, the energy provisioned for a wireless 

sensor node is not expected to be renewed throughout its mission. The limited amount of 

energy available to wireless sensors has a significant impact on all aspects of a wireless 

sensor network, from the amount of information that the node can process, to the volume of 
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wireless communication it can carry across large distances. Realizing the great promise of 

sensor networks requires more than a mere advance in individual technologies; it relies on 

many components working together in an efficient, unattended, comprehensible, and 

trustworthy manner.  

2.3.1 Distributed Source Coding (DSC) 

One of the enabling technologies for sensor networks is Distributed Source Coding 

(DSC), which refers to the compression of multiple correlated sensors outputs 

independently that do not communicate with each other, these sensors send their 

compressed outputs to a central point (e.g., the base station) for joint decoding. 

For DSC, consider a wireless video sensor network consisting of clusters of low 

cost Video Sensor Nodes (VSNs), an Aggregation Node (AN) for each cluster and a base 

station for surveillance applications. The lower tier VSNs are used for data acquisition and 

processing; the upper tier ANs are used for data fusion and transmitting information out of 

the network. This type of network is expected to operate unattended over an extended 

period of time.VSN and AN in this setup power consumption cause severe system 

constraints; in addition to this is traditional video processing applied to sophisticated video 

encoders will not be suitable for use on a VSN. This is because, under the traditional 

broadcast paradigm the video encoder is the computational workhorse of the video codec; 

consequently, computational complexity is dominated by the motion estimation operation. 

The decoder, on the other hand, is a relatively lightweight device operating in a “slave” 

mode to the encoder. The severe power constraints at VSNs thus bring about the following 

basic requirements:  

a) An extremely low-power and low-complexity wireless video encoder, 

which is critical to prolonging the lifetime of a wireless video sensor node. 

b) A high ratio of compression efficiency, since bit rate directly impacts 

transmission power consumption at a node. 

DSC allows a many-to-one video coding paradigm that effectively swaps encoder-

decoder complexity with respect to conventional (one-to-many) video coding, thereby 

representing a fundamental conceptual shift in video processing. Under this paradigm, the 

encoder at each VSN is designed as simply and efficiently as possible, while the decoder at 

the base station is powerful enough to perform joint decoding. 

Furthermore, each VSN can operate independently of its neighbors; consequently, a 

receiver is not needed for video processing at a VSN, which enables the system to save a 

substantial amount of hardware cost and communication (i.e., receiver) power. But 

practically depending also on the nature of the sensor network, the VSN might still need a 
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receiver to take care of other operations, such as routing, control, and synchronization, but 

such a receiver will be significantly less sophisticated. 

Under this new DSC paradigm, a challenging problem is to achieve the same 

efficiency (e.g., joint entropy of correlated sources) as traditional video coding, while not 

requiring sensors to communicate with each other. This seems possible because correlation 

exists among readings from closely-placed neighboring sensors and the decoder can exploit 

such correlation with DSC – this is done at the encoder with traditional video coding. As an 

example, suppose we have two correlated 8-bit grayscale images X and Y. The correlation 

of x and y is characterized as x assumes only eight different values around y. So joint 

coding of x would take three bits. But in DSC, we simply take modulo of pixel value x with 

respect to eight, which also reduces the required bits to three. For example, if x = 121 and y 

= 119. Instead of transmitting both x and y at 8 b/p without loss, we transmit y = 119 and x0 

= x (mod 8) = 1 in distributed coding. Consequently, x0 indexes the set that x belongs to, 

i.e. 

x 2 f 1; 8 + 1; 16 + 1; : : : ; 248 + 1 g , 

And the joint decoder picks the element x = 120 + 1 closest to y = 119. 

DSC is only one of the communication layers in a network, and its interaction with 

the lower communication layers, such as the transport, the network, the medium access 

control (MAC), and the physical layers, which is the focus of this special issue, is crucial 

for exploiting the promised gains of DSC. DSC cannot be used without proper 

synchronization between the nodes of a sensor network, i.e., several assumptions are made 

for the routing and scheduling algorithms and their connection to the utilized DSC scheme. 

 

2.3.2  Applications of DSC in Sensor Networks 

Two information theories Wyner-Ziv theorem and Slepian-wolf theorem proposed 

in 1970s, provided theoretical basis of DSC in wireless sensor networks. Slepian-Wolf 

theorem addresses the lossless case of DSC while Wyner-Ziv coding is for lossy DSC case. 

(a) Wyner-Ziv Theorem 

 In sensor network applications, dealing with continuous sources; problem of 

rate distortion with side information at the decoder arises. The question to ask is how many 

bits are needed to encode X under the constraint that the average distortion between X and 

the coded version is E f d(X; ) g · D, assuming the side information Y is available at 

the decoder but not at the encoder. This problem, first considered by Wyner and Ziv, is one 

instance of DSC with Y available uuencoded as side information at the decoder. It 

generalizes the setup that coding of discrete X is with respect to a fidelity criterion rather 
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than lossless. For both discrete and continuous alphabet cases and general distortion 

metrics, Wyner and Ziv gave the rate-distortion function R¤ WZ (D) for this problem. 

Wyner-Ziv coding generalizes the setup of Slepian-Wolf coding in that coding of X is with 

respect to a fidelity criterion rather than lossless.  

 

 
Figure 2.1: Wyner-Ziv coding 

 

(b) Slepian-Wolf Theorem 

 

 
  

Figure 2.2 (a): Joint encoding of X and Y                              Figure 2.2 (b): Distributed encoding of 

X  and  Y 

 

Slepian wolf coding is referred to as lossless distributed source coding since it 

considers that the two statistically dependent sequences are perfectly reconstructed at a joint 

decoder (neglecting the arbitrarily small probability of decoding error),thus approaching the 

lossless case. They theoretically showed that separate encoding at each independent encoder 

with increased complexity at the joint decoder is as efficient as joint encoding for lossless 

compression. The Slepian-Wolf theorem addresses the case where two statistically 

dependent discrete random sequences, independently and identically distributed, X and Y, 

are independently encoded, and thus not jointly encoded as in the largely deployed 

predictive coding solution. The Slepian–Wolf theorem states that the minimum rate to 

encode the two (correlated) sources is the same as the minimum rate for joint encoding, 

with an arbitrarily small error probability.  

Let f (Xi; Yi) g 1 i=1 be a sequence of independent and identically distributed 

drawings of a pair of correlated discrete random variables X and Y. For lossless 

compression with  and after decompression, from Shannon’s source coding 

theory that a rate given by the joint entropy H(X; Y) of X and Y is sufficient if we are 

encoding them together from Figure 2.2(a). For example, Y can be compressed into H(Y ) 
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bits per sample, and based on the complete knowledge of Y at both the encoder and the 

decoder, X can be compressed into H(X j Y ) bits per sample. One simple way is to do 

separate coding of X and Y with rate R = H(X) + H(Y), which is greater than H(X; Y) when 

X and Y are correlated. In their research paper, Slepian and Wolf showed that R = H(X; Y) 

is sufficient even for separate encoding of correlated sources as from Figure 2.2(b). 

Specifically, the Slepian-Wolf theorem says that the achievable region of DSC for discrete 

sources X and Y is given by R1 ¸ H(X j Y ); R2 ¸ H(Y j X) and R1 + R2 ¸ H(X; Y ), as 

shown in Figure 2.3. The proof of the Slepian-Wolf theorem is based on random binning. 

Binning is a key concept in DSC and refers to as partitioning the space of all possible 

outcomes of a random source into disjoint subsets or bins.  

 
Figure 2.3: The Slepian-Wolf rate region 

 

2.4 Summary 
In this chapter, the background knowledge of the research has been presented. The 

basis of digital video has been described, along with various video compression standards 

and the concept of multi-terminal video coding. The next chapter will provide detail of 

MPEG and its working steps. 
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Chapter 3 
 

Moving Picture Expert Group (MPEG) 
 

This chapter covers Moving Picture Expert Group (MPEG), a video compression 

standard in details. It includes basic feature introduction and technical details of codec 

(encoder/decoder) architecture. 

 

3.1      Introduction 
MPEG stands for the Moving Picture Experts Group. MPEG is an ISO/IEC working 

group, established in 1988 to develop standards for digital audio and video formats. There 

are five MPEG standards being used or developed. Each compression standard was 

designed with a specific application and bit rate. 

MPEG is the standard for coding of moving pictures and associated audio for digital 

storage media at up to about 1.5 Mbps. To support a wide range of application profiles the 

user can specify a set of input parameters including flexible picture size and frame rate. 

MPEG-1 was developed for multimedia CD-ROM applications. Important features 

provided by MPEG-1 include frame based random access of video, fast forward/fast reverse 

search through compressed bit streams reserve playback of video and edit ability of 

compressed bit streams. 

The algorithm employed by MPEG-1 doesn’t provide a lossless coding scheme. 

However the standard can support a variety of input formats and be applied to a wide range 

of applications. The main purpose of MPEG-1 video is to code moving image sequences or 

video signals. To achieve a high compression ratio, both intraframe redundancy and 

interframe redundancy should be exploited. To satisfy the requirement of random access, 

intraframe coding is also implemented time to time (for I frames). Therefore the MPEG-1 

video algorithm is mainly based on discrete cosine transform (DCT) coding and interframe 

motion compensation. The DCT coding is used to remove the intraframe redundancy and 

motion compensation is used to remove the interframe redundancy. With regard to input 

picture format, MPEG-1 allows progressive pictures only but offers great flexibility in size 

up to 4095 x 4095 pixels. 
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3.2      History 
The convener of the MPEG group is Leonardo Chiariglione, aka the father of 

MPEG, who founded the group in January 1988 with the first meeting consisting of about 

15 experts on compression technology. Modeled on the successful collaborative approach 

and the compression technologies developed by the Joint Photographic Experts Group and 

CCITT's Experts Group on Telephony (creators of the JPEG image compression standard 

and the H.261 standard for video conferencing respectively) the Moving Picture Experts 

Group (MPEG) working group was established in January 1988. MPEG was formed to 

address the need for standard video and audio formats, and build on H.261 to get better 

quality through the use of more complex encoding methods. Development of the MPEG-1 

standard began in May 1988. 14 video and 14 audio codec proposals were submitted by 

individual companies and institutions for evaluation. The codecs were extensively tested for 

computational complexity and subjective (human perceived) quality, at data rates of 1.5 

Mbit/s. This specific bit rate was chosen for transmission over T-1/E-1 lines and as the 

approximate data rate of audio CDs. The codecs that excelled in this testing were utilized as 

the basis for the standard and refined further, with additional features and other 

improvements being incorporated in the process. After 20 meetings of the full group in 

various cities around the world, and 4½ years of development and testing, the final standard 

(for parts 1-3) was approved in early November 1992 and published a few months later. A 

largely complete draft standard was produced in September 1990, and from that point on, 

only minor changes was introduced. The standard was finished with the 6 November 1992 

meeting. The Berkeley Plateau Multimedia Research Group developed a MPEG-1 decoder 

in November 1992. In July 1990, before the first draft of the MPEG-1 standard had even 

been written, work began on a second standard, MPEG-2, intended to extend MPEG-1 

technology to provide full broadcast-quality video (as per CCIR 601) at high bitrates (3 - 15 

Mbit/s), and support for interlaced video. Due in part to the similarity between the two 

codecs, the MPEG-2 standard includes full backwards compatibility with MPEG-1 video, 

so any MPEG-2 decoder can play MPEG-1 videos.  

 

3.3     Features 
3.3.1  Resolution/Bitrate 

MPEG-1 supports resolutions up to 4095×4095 (12-bits), and bitrates up to 100 

Mbit/s. MPEG-1 videos are most commonly seen using Source Input Format (SIF) 

resolution: 352x240, 352x288, or 320x240. These low resolutions, combined with a bit rate 

less than 1.5 Mbit/s, make up a Constrained Parameters Bit stream (CPB), later renamed the 
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"Low Level" (LL) profile in MPEG-2. This is the minimum video specifications any 

decoder should be able to handle, to be considered MPEG-1 compliant. This was selected to 

provide a good balance between quality and performance, allowing the use of reasonably 

inexpensive hardware of the time. 

 

3.3.2 Layered Structure Based on Group of Pictures 

The MPEG coding algorithm is a full-motion-compensated DCT and DPCM hybrid 

coding algorithm. In MPEG coding, the video sequence is first divided into groups of 

pictures (GOP). Each GOP may include three types of pictures: Intracoded (I) pictures, 

Predictive-coded (P) and Bidirectional predictive-coded (B) pictures. These picture types 

serve different purposes. The most important are I-frames. 

I-frames 

I-frame is an abbreviation for Intra-frame, since they can be decoded independently 

of any other frames. They are also known as I-pictures, or key frames. I-frames can be 

considered effectively identical to baseline JPEG images. High-speed seeking through an 

MPEG-1 video is only possible to the nearest I-frame. When cutting a video it is not 

possible to start playback of a segment of video before the first I-frame in the segment.  

P-frames 

P-frames may also be called forward-predicted frames, or inter-frames. P-frames 

exist to improve compression by exploiting the temporal (over time) redundancy in a video. 

P-frames store only the difference in image from the frame (either an I-frame or P-frame) 

immediately preceding it (this reference frame is also called the anchor frame). The 

difference between a P-frame and its anchor frame is calculated using motion vectors on 

each macro block of the frame. Such motion vector data will be embedded in the P-frame 

for use by the decoder. A P-frame can contain any number of intra-coded blocks, in 

addition to any forward-predicted blocks.  

B-frames 

B-frames may also be known as backwards-predicted frames. B-frames are quite 

similar to P-frames; except they can make predictions using both the previous and future 

frames (i.e. two anchor frames). 

It is therefore necessary for the player to first decode the next I- or P- anchor frame 

sequentially after the B-frame, before the B-frame can be decoded and displayed. This 

makes B-frames very computationally complex, requires larger data buffers, and causes an 

increased delay on decoding and during encoding. No other frames are predicted from a B-

frame. Because of this, a very low bit rate B-frame can be inserted, where needed, to help 
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control the bit rate. If this was done with a P-frame, future P-frames would be predicted 

from it and would lower the quality of the entire sequence. However, similarly, the future P-

frame must still encode all the changes between it and the previous I- or P- anchor frame (a 

second time) in addition to much of the changes being coded in the B-frame. B-frames can 

also be beneficial in videos where the background behind an object is being revealed over 

several frames, or in fading transitions, such as scene changes. A B-frame can contain any 

number of intra-coded blocks and forward-predicted blocks, in addition to backwards-

predicted, or bidirectional predicted blocks. 

The distance between two nearest I-frames is denoted by N, which is the size of 

GOP. The distance between two nearest anchor frames is denoted by M. MPEG-1 most 

commonly uses a GOP size of 15-18. i.e. 1 I-frame for every 14-17 non-I-frames. With 

more intelligent encoders, GOP size is dynamically chosen, up to some pre-selected 

maximum limit. Limits are placed on the maximum number of frames between I-frames due 

to decoding complexity, decoder buffer size, recovery time after data errors, and seeking 

ability, but large values of M and N may cause error propagation. The structure of MPEG 

implies that if an error occurs within I-frame data, it will be propagated through all frames 

in the GOP. Similarly, an error in a P-frame will affect the related P and B-frames, while B-

frames error will be isolated. 

Figure 3.1: A GOP of video sequence. 
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3.3.3 Intraframe and Interframe Coding 

One of the most powerful techniques for compressing video is interframe 

compression. Interframe compression uses one or more earlier or later frames in a sequence 

to compress the current frame, while intraframe compression uses only the current frame, 

which is the approach used in image compression. 

The interframe coding method works by comparing each frame in the video with the 

previous one. If the frame contains areas where nothing has moved, the encoder simply 

issues a short command that copies that part of the previous frame, bit-for-bit, into the next 

one. If sections of the frame move in a simple manner, the encoder emits a (slightly longer) 

command that tells the decoder to shift, rotate, lighten, or darken the copy. Interframe 

compression works well for programs that will simply be played back by the viewer, but 

can cause problems if the video sequence needs to be edited. The MPEG video uses the 

macroblock structure for motion compensation; i.e., for each 16 x 16 macroblock only one 

or sometimes two motion vectors are transmitted. The motion vectors for any block are 

found within a search window that can be up to 512 pixels in each direction. Also the 

matching can be done at half-pixel accuracy, where the half-pixel values are computed by 

averaging the full-pixel values. For interframe coding, the prediction differences or error 

images are coded and transmitted with motion information.  

Since interframe compression copies data from one frame to another, if the original 

frame is simply cut out or lost in transmission, the following frames cannot be reconstructed 

properly.  

 

3.3.4 Motion Estimation and Compensation 

In interframe coding, motion estimation and compensation have become powerful 

techniques to eliminate the temporal redundancy due to high correlation between 

consecutive frames. 

Most of the motion estimation algorithms make the following assumptions:  

1. Objects move in translation in a plane that is parallel to the camera plane, 

i.e., the effects of camera zoom, and object rotations are not considered.  

2. Illumination is spatially and temporally uniform.  

3. Occlusion of one object by another, and uncovered background are 

neglected.  

There are two mainstream techniques of motion estimation:  

a) Pel-Recursive Algorithm (PRA)  

b) Block-Matching Algorithm (BMA) 
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 PRAs are iterative refining of motion estimation for individual pels by gradient 

methods. BMAs assume that all the pels within a block have the same motion activity. 

BMAs estimate motion on the basis of macro blocks (rectangular block) and produce one 

motion vector for each block. PRAs involve more computational complexity and less 

regularity, so they are difficult to realize in hardware. In general, BMAs are more suitable 

for a simple hardware realization because of their regularity and simplicity. 

Figure 3.2 illustrates a process of block-matching algorithm. In a typical BMA, each 

frame is divided into blocks, each of which consists of luminance and chrominance blocks. 

Usually, for coding efficiency, motion estimation is performed only on the luminance 

block. Each luminance block in the present frame is matched against candidate blocks in a 

search area on the reference frame. These candidate blocks are just the displaced versions of 

original block. The best (lowest distortion, i.e., most matched) candidate block is found and 

its displacement (motion vector) is recorded. In a typical interframe coder, the input frame 

is subtracted from the prediction of the reference frame. Consequently the motion vector 

and the resulting error can be transmitted instead of the original luminance block; thus 

interframe redundancy is removed and data compression is achieved. At receiver end, the 

decoder builds the frame difference signal from the received data and adds it to the 

reconstructed reference frames. The summation gives an exact replica of the current frame. 

The better the prediction the smaller the error signal and hence the transmission bit rate. 
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Figure 3.2: Block matching 

 
 

3.3.5  Block Matching Algorithms (BMA) 

Interframe predictive coding is used to eliminate the large amount of temporal and 

spatial redundancy that exists in video sequences and helps in compressing them. The use 

of the knowledge of the displacement of an object in successive frames is called Motion 

Compensation. There are a large number of motion compensation algorithms for interframe 

predictive coding, a class of which is called the Block Matching Algorithms. These 

algorithms estimate the amount of motion on a block by block basis, i.e. for each block in 

the current frame, a block from the previous frame is found, that is said to match this block 

based on a certain criterion.  

Search Criteria 

Different kinds of algorithms use different criteria for comparison of blocks. There 

are a number of criteria to evaluate the level of a match and some of them are: 

a) Cross Correlation Function (CCF) 

b) Pel Difference Classification (PDC) 

c) Mean Absolute Difference (MAD) 
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d) Mean Squared Difference (MSD) 

e) Integral Projection (IP) 

Search Strategy 

The searching strategy is another important issue to deal with in block matching; 

there are several search strategies as: 

a) Full Search (FS) 

b) Three Step Search (TSS)   

c) Two Dimensional Logarithmic Search (TDL)  

d) Four Step Search (FSS)  

e) Orthogonal Search Algorithm (OSA)  

f) One at a Time Algorithm (OTA)  

g) Cross Search Algorithm (CSA)  

h) Spiral Search (SS)  

i) Hierarchical Search Block Matching Algorithms (HSBMA) 

j) Binary Search (BS)  

Binary Search Algorithm 

    This is also one of the algorithms that are very popular for motion estimation and 

in fact it is used for motion estimation by MPEG-Tool. The basic idea behind this algorithm 

is to divide the search window into a number of regions and do a full search only in one of 

these regions. It may be described as: 

 Step 1: The MAD is evaluated on a grid of 9 pixels that include the centre, the four 

corners of the search window and four pels at the boundaries. The search window is divided 

into regions based on these points.  

Step 2: A full search is performed in the region corresponding to the point with the 

smallest MAD.  

    The convergence of the algorithm may be viewed in Figure 3.3. The pels that lie 

between the dashed lines are never considered. Hence, although the Binary search requires 

fewer comparisons (the worst case scenario for this search window is 33 comparisons), its 

performance is not very good because of this zone of pixels that are never considered.  
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Figure 3.3:  Example path for convergence of Binary Search 

  

3.3.6 Codec Architecture 

Encoding Process: 
The typical MPEG-1 video encoder structure is shown in Figure 3.4.Since the 

encoding order is different from the display order, the input sequence has to be reordered 

for encoding for example, if we choose the GOP size (N) to be 12, and the distance between 

two nearest anchor fames (M) to be 3, the display order and encoding order are as shown in 

Table 3.1. 
Table 3.1: Display order and encoding order of a GOP 

 
 

It should be noted that in the encoding order or in the bit stream the first frame in a 

GOP is always an I-picture. In the display order the first frame can be either in I-picture or 

the first B-picture of he consecutive series of B-picture which immediately precedes the 

first I-picture, and the last picture in the GOP is an anchor picture, either an I- or P-picture. 

The first GOP always starts with an I-picture and, as a consequence, this GOP will have 

fewer B- pictures than the other GOPs.  
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Figure 3.4:  MPEG Encoder Structure 
 

DCT Transform 

 The image to be coded is first partitioned into 8x8 blocks. Each 8x8 block is 

encoded by applying a Forward Discrete Cosine Transform (FDCT), The FDCT process (by 

itself) is theoretically lossless, and can be reversed by applying an Inverse DCT (IDCT) to 

reproduce the original values. 

The FDCT process converts this 8x8 block of uncompressed pixel values into an 

8x8 indexed array of frequency coefficient values. This is frequency domain representation 

of the block as shown in Figure 3.5. The goal of the transformation is to decorrelate the 

block data so that the resulting transform coefficients can be coded more efficiently.  One of 

these coefficients is the (statistically high in variance) DC coefficient, which represents the 

average value of the entire 8x8 block. The other 63 coefficients are the statistically smaller 

AC coefficients, which are positive or negative values each representing sinusoidal 

deviations from the flat block value represented by the DC coefficient. Since the DC 

coefficient value is statistically correlated from one block to the next, it is compressed using 

DPCM encoding. Only the smaller amount of difference between each DC value and the 

value of the DC coefficient in the block to its left needs to be represented in the final bit 

stream. This frequency conversion performed by applying the DCT provides a statistical 

decorrelation function to efficiently concentrate the signal into fewer high-amplitude values 

prior to applying quantization. These transform coefficients are then quantized.  
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Figure 3.5: Example of 8 x 8 DCT 

 

Quantization 

Quantization of digital data is the process of reducing the accuracy of a signal, by 

dividing it into some larger step size as finding the nearest multiple, and discarding the 

remainder/modulus. A quantization matrix is a string of 64-numbers (0-255) which tells 

the encoder how relatively important or unimportant each piece of visual information is. 

Each number in the matrix corresponds to a certain frequency component of the video 

image. The function of quantization matrix is to quantize high frequencies with coarser 

quantization steps that will suppress high frequencies with no subjective degradation, thus 

taking advantage of human visual perception characteristics. Quantization is performed by 

taking each of the 64 frequency values of the DCT block, dividing them by the frame-level 

quantizer, and then dividing them by their corresponding values in the quantization matrix. 

Finally, the result is rounded down. This significantly reduces, or completely eliminates, the 

information in some frequency components of the picture. Typically, high frequency 

information is less visually important, and so high frequencies are much more strongly 

quantized (highly reduced).  The bits saved for coding high frequencies are used for lower 

frequencies to obtain better subjective coded images. There are two quantizer weighting 

matrices in Test Model (TM5) and intraquantizer weighting matrix and a nonintraquantizer 

weighting matrix; the latter is flatter since the energy of coefficients in interframe coding is 

more uniformly distributed than in intraframe coding. Quantization eliminates a large 

amount of data, and is the main lossy processing step in MPEG-1 video encoding. 
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Figure 3.6: Quantization matrices 

Zig-zag Scan 

The coefficients are processed in zig-zag order since the most energy is usually 

concentrated in the lower-order coefficients. The DCT block tends to have the most 

important frequencies towards the top left corner. The coefficients tend to zero towards the 

bottom-right. Maximum compression can be achieved by a Zig-zag scanning of the DCT 

block starting from the top left. 

 
Figure 3.7:  Zigzag scans to get pairs of zero-runs and value. 

 

Run-Length Encoder 

 The Zig-zag ordering of elements in an 8x8 matrix allows for a more efficient run-

length coder. This is illustrated in Figure 3.7; with the Zig-zag order the run-length coder 

converts the quantized frequency coefficients to pairs of zero runs and nonzero coefficients. 

34 0 1 0 –1 1 0 0 0 0 0 0 –1 0 0 0 0……. 

After parsing, the pairs of zero runs and values are obtained: 

34 | 0 1 | 0 –1 | 1 | 0 0 0 0 0 0 –1 | 0 0 0 0……. 

These pairs of runs and values are then coded by a Huffman-type entropy coder for 

example for the above run/value pairs can be shown as in Table 3.2: 

 
 

 

 

Table 3.2: Huffman- type entropy encoder 
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Run/Values 

34 

1, 1 

1,-1 

0,1 

6,-1 

End of block 

VLC(Variable Length Code) 

0110 

0111 

110 

0001011 

10 

 

Huffman Coding 

This is a very popular method of entropy coding, and used in MPEG-1 video to 

reduce the data size. The data is analyzed to find strings that repeat often. Those strings are 

then put into a special table; with the most frequently repeating data assigned the shortest 

code. This keeps the data as small as possible with this form of compression. Once the table 

is constructed, those strings in the data are replaced with their (much smaller) codes, which 

reference the appropriate entry in the table. The decoder simply reverses this process to 

produce the original data. 

 

Decoding Process: 
The decoding process is an inverse procedure of encoding. The block diagram of a 

typical decoder is shown in Figure 3.8. 

The variable-length decoder (VLD) first decodes the coded data or video bit stream. 

This process yields the quantized DCT coefficients and motion vector data for each 

macroblock. The coefficients are inversely scanned and dequantized. The decoded DCT 

coefficients are then inverse-transformed to obtain the spatial-domain pixels. If the 

macroblock was intracoded, these pixels represent the reconstructed values without any 

further processing. However, if the macroblock is intercoded, then motion compensation is 

performed to add the prediction from the corresponding reference frame or frames.  

 

 



28 
 

 
Figure 3.8:  MPEG Video Decoder 

 

3.4 Summary 
This chapter has provided an overview of MPEG, video compression standard with 

detail of all codec steps and their effect on final bit stream. The next chapter will provide 

the literature survey that has been carried out for this research work. 
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Chapter 4 
 

Literature Survey 
 

This chapter will give an overview of the previous work done in the domain of 

this research work. In the past, different approaches have been proposed to address 

major features and issues related to a camera sensor network; these are briefly discussed 

in this chapter.  

4.1      Related Work 
A multi-camera sensor network consists of tiny fully equipped computer 

systems each capturing the scene from a particular angle. All these nodes have to 

transmit their findings to a central or common receiver. The available link capacity is 

not sufficient to carry this huge load. On the other hand each node’s findings are 

important and play a significant role in formulation of results. So there should be some 

compression algorithm that should exploit spatial and temporal redundancies with in 

each video sequence as well as inter-sequence statistical redundancy should also be 

removed to acquire best compression ratio.  

Researchers have worked for creating number of algorithms to get rid of this 

data repetition. Power and energy are the major constraints for a multi-sensor network. 

To preserve a sensor node energy and power and to save the available link capacity and 

to enhance node ability, inter-node communication is normally minimized. Numbers of 

ideas have been presented to cater these issues of a multi-terminal scenario. Some 

techniques allow minimum inter-node communication and some do not. Number of 

techniques has been implemented to get inter-node correlation. Like the concept of 

epipolar geometry, which has been used to explore video cameras geometry and some 

techniques even don’t bother to remove such inter-camera sequence redundancy. 

Anshul Sehgal, Ashish Jagmohan, and Narendra Ahuja, fellow IEEE in their 

paper titled as “Whyner-Ziv Coding of Video: An Error-Resilient Compression 

Framework” have used the concept of DSC [1]. This and similar papers [2],[3] have 

explained the work on the same line as utilizing the concept of DSC only for the 

exploitation of temporal correlation in a single video stream, but not exploiting the 
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inter-sequence redundancy. Their approach leads to a low complexity encoder and 

better error resilience. They have focused on prevention of error propagation which is 

achieved by periodically transmitting a small amount of additional information termed 

as coset information to the decoder. They have defined “peg frames” and their 

associated epochs in a similar way to the corresponding quantities. A block diagram of 

proposed coset encoding algorithm is depicted in Figure 4.1. 

 

 
Figure 4.1:  Block diagram of proposed video. 

 

 

Video frame q(Ip) is obtained by applying the H.26L, forward transform to each 

4x4 block of Ip. The resultant transform domain coefficients are quantized using the 

H.26L dead-zone quantizer. Coset information for the peg frame Ip is generated by 

applying LDPC coset codes to the transform-domain coefficients of the required peg 

frame q(Ip). During the decoding process all nonpeg-frames are reconstructed using a 

H.26L decoder. The decoder reconstructs the peg frames Ip by adding the displaced-

frame difference Pp to Ip-1. 

Nicolas Gehrig and Pier Luigi Dragotti from Communications and Signal 

Processing Group, Electrical and Electronic Engineering Department Imperial College  

London, presented a paper titled as “DIFFERENT - Distributed and Fully 

Flexible Image Encoders for Camera Sensor Networks.” They have developed a 
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distributed image coding technique for a multi-camera setup [4]. Certain assumptions 

were assumed about the camera location like placement of cameras in a horizontal line, 

and the objects are in a certain known range from the cameras. Their camera sensor 

network scenario is shown in Figure 4.2. 

 
Figure 4.2: Camera sensor network scenario 

 

They derived a lower bound on the minimum number of cameras required to 

perfectly reconstruct a scene. In this approach image encoder based on tree-structured 

algorithm can be modified. Generally correlation in the visual information is exploited 

using some geometrical information. 

Yang Yang,Vladimir Stankovi ´c, Wei Zhao, and Zixiang Xiong from Dept 

of Electrical and Computer Engineering, Texas A&M University, in their paper titled as 

“Multiterminal Video Coding”, addresses the concept of multi-terminal video coding in 

its most simple sense [5].This approach examines multi-terminal source coding of two 

correlated video sequences to save the sum rate over independent coding. Specifically, 

the first video sequence is coded by H.264 and used at the joint decoder to facilitate 

Wyner-Ziv coding of the second video sequence. The first I-frame of the right sequence 

is successively coded by H.264 and Slepian-Wolf coding. An efficient stereo matching 

algorithm is then adopted at the decoder to produce pixel-level disparity maps between 

the corresponding frames of the two decoded video sequences. Based on the disparity 

maps, side information for both motion vectors and motion-compensated residual 

frames of the second sequence are generated at the decoder before Wyner-Ziv encoding. 

Technique used for finding corresponding points require computationally involved 

depth estimation where beside horizontal disparities, vertical disparities among video 
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frames are also exploited. Multi-terminal video encoder-decoder architecture for right I-

frame is shown in Figure 4.3. 

 
Figure 4.3:  Multi-terminal video encoder-decoder (right I-frame) 

 

 

 Bi Song, Eterm Tuncel, Amit K. Roy-Chowdhury from Department of 

Electrical Engineering, University of California, Riverside have proposed a paper titled 

as “Towards A Multi-Terminal Video Compression Algorithm By Integrating 

Distributed Source Coding With Geometrical Constraints.” They have presented the 

approach of epipolar lines between two frames macroblocks [6]. Their algorithm 

comprises two parts, one part depicts motion estimation in distributed fashion which 

yields corresponding macroblocks in two provided images or two sequence frames, and 

other part is for distributed coding of these corresponding macroblocks. While the 

portion of the two video frames carrying non-overlapping macroblocks is coded by 

conventional video coding method. This lossy compression scheme was actually about 

integration of video analysis tool with concept of distributed source coding. The 

working mechanism of distributed motion estimation part is shown in Figure 4.4. 

The epipolar geometry toolbox has also been developed in MATLAB that works 

for both panoramic and pinhole cameras [7]. This toolbox has been created to provide 

MATLAB user with an extensible framework for the creation and visualization of 
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multi-camera scenario as well as for the manipulation of the visual information and the 

geometry between them. Functions provided for vision sensors include camera 

placement and visualization, computation, estimation of epipolar geometry entities and 

many others. 

 
Figure 4.4: Pictorial description of the proposed correspondence tracking 

algorithm.  (The numbers in circles indicate the steps of the algorithm.) 

 

 

Two similar papers by the same authors have also been recently proposed. One 

is the just similar approach that is implementation of DSC in multi-camera environment 

using epipolar geometry [8]. And the other one includes model based tracking as: 

 

Bi Song, Eterm Tuncel, Amit K. Roy-Chowdhury in their paper titled as “A 

Multi-Terminal Model-Based video Compression Algorithm.” present a novel 3D 

model-based distributed video coding algorithm [9]. It is based on independent, model-

based tracking of multiple sources and distributed coding of the tracked feature points. 

The model-based tracking scheme provides correspondence between the overlapping set 

of features that are visible in the different views. While the motion estimates obtained 

from the tracking algorithm remove temporal redundancy and the 3D model accounts 

for removing spatial redundancy, distributed coding is used to eliminate inter-sensor 

redundancy. Model-based tracking algorithm comprises the following steps: 

 

Step E1: Estimate the motion from It to It+1 using the tracking algorithm. Render 

the image, Īt+1, using the estimated motion and 3D model. 
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Step E2: Compute the residual δ It+1 = It+1- Īt+1.  

If the residual is above a certain threshold, go to Intra-frame coding. 

Else proceed to next step. 

Step E3: Quantize the result from Step E2. 

Step E4: Transmit the quantized residuals, along with the quantized rotation and 

translation vectors. 

The following are the steps taken by the decoders. 

Step D1: Dequantize the 3D motion estimates and illumination parameters. 

Step D2: Dequantize the residuals, and denote it as δ . 

Step D3: Using the 3D motion estimates and the 3D model, synthesize an 

estimate of the rendered image . 

Step D4: Obtain the reconstructed image as = + δ  

 

Markus Flierl and Bernd Girod from Max Planck Center for Visual 

Computing and Communication Stanford University, California, in their paper titled as 

“Coding of Multi-View Image Sequences with Video Sensors.” have used the concept 

of side information at decoder [10].  They have arranged the video sensors in an array to 

view the same scene from different angles. These video sensors process highly 

correlated information; such correlation is exploited by centralized disparity 

compensation at the decoder. The central decoder is designed to perform disparity 

estimation on previously decoded images of the multi-view image sequences. Basic 

architecture of disparity compensation at central decoder is shown in Figure 4.5. 
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Figure 4.5:  Distributed coding scheme with disparity compensation at 

the central decoder. 

 

 

N multi-view image sequences are represented by u(k) ^ n with k = 1,2 …,K 

temporally successive frames of n = 1,2,…,N views. The encoding scheme comprises N 

encoders that operate independently as well as one central decoder. The latter is made 

up of N-1 “Wyner-Ziv” decoder n=2,…,N that are dependent on decoder 1. The side 

information for decoder n with n=2,….N can be improved by performing disparity 

compensation. As the video signals are not stationary, decoder n with n=2,….,N is 

decoding with feed-back. 

 

4.2      Summary 
This research work is an extension of a video compression standard (MPEG), 

which has been designed to cater various issues in a camera sensor network as well as 

keeping the communication among the sensors at minimum. This chapter has focused 

on various technologies and techniques that have been developed to address 

requirement issues of a multi camera setup. Next chapter will focus on implementation 

details of proposed scheme to make it more understandable. 
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Chapter 5 

Proposed Methodology 
This chapter gives the details of proposed system architecture and its work 

methodology. The chapter explains inter-node communication strategies, followed by 

system architecture and system flow chart. Additionally snapshots of system Graphical 

User Interface have also been provided for better understanding. 

5.1 Proposed Scheme  
The proposed scheme is a lossy compression scheme for a camera-sensor 

network removing spatial and temporal redundancies (with in each video sequence), and 

inter-sequence statistical redundancy (among video sequences) as well as keeping 

communication among the sensor nodes at minimum. Our proposed multi-camera setup 

consists of number of camera sensor nodes arbitrarily located in space, capturing the 

same scene from different angles depending upon their locations. All cameras are 

calibrated with some initial time t = 0. Algorithm is initiated by picking randomly any 

node. Camera sensor nodes are allowed to communicate in two different ways, termed 

as Strategy-1 and Strategy-2. Strategy-1 is shown in Figure 5.1. 

 

 
Figure 5.1: Frame Construction Strategy-1 
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In this strategy, after random selection of first camera nodes, its GOP is 

generated and first frame of that node video sequence is taken as reference I-frame and 

is intracoded.  

As well as this first I-reference frame is used to encode the whole GOP 

(generated previously) of this camera node. Afterwards, this I-reference frame is to be 

passed to a nearest neighbor node and now the first frame of this next node video 

sequence is to be passed to next neighbor and the whole process is repeated for this 

node too. After generating the video sequence, first frame of this video sequence 

undergoes motion compensation using previous node I-reference frame while remaining 

frames of this node are intercoded using this first and then following P-frames of the 

video sequence. After doing some pre-processing, each encoder encodes its GOP (5-6 

frames) using MPEG encoder and yields a compressed bit stream. Second strategy for 

camera nodes communication is shown in Figure 5.2. 

 

 
Figure 5.2:  Frame Construction Strategy-2 

 

In this strategy, after random selection of the camera node, its GOP is generated 

and first I-reference frame is intracoded as well as used for encoding of its whole GOP, 

and it is passed to the nearest neighbor. Now the condition is a little bit different, this 

time this I-frame is used just to do motion estimation and compensation for the first 

frame of this second camera node GOP, and remaining frames of the GOP are encoded 

using their previous neighbor parallel P-frames. As P22 (node-2 P2-frame) is 
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compensated using P2 (node-1 P2 frame) frame and vise versa. For both the strategies, 

each sensor node is deployed with its own encoding algorithm provided that I-frame is 

to be transmitted periodically from one node to the next one to keep the algorithm in 

flow. 

System decoder is a joint decoder carrying all sensor nodes video bit streams. 

Decoding is done by exploiting individual motion vector sets and respective decoded I-

frame. After implementing standard MPEG decoding steps, individual video sequences 

are reconstructed. Depending upon number of camera nodes, for one I-frame, number of 

P-frames in resultant GOP is derived as: 

Total Number of P-frames = number of sensor nodes * 6 frames (for each sensor 

node) 

For example for 3 camera sensor nodes network overall GOP consists of 17 P-

frames and one I-frame, so saving the resultant required bandwidth for this bit stream 

transmission up to a greater extent. This above approach is designed to remove inter-

sequence statistical redundancy; while idea of motion-compensation is implemented on 

each individual node using that one I-frame, removes the temporal redundancy in each 

individual video sequence. And standard encoding steps like application of discrete 

cosine transform is sufficient to remove spatial redundancy with in each individual 

video frame.  

In both the communication strategies, system is capable of switching in two 

working modes, termed as Scenario- A and Scenario-B. In Scenario-A system 

reconstructs the videos with comparatively better values of PSNR, while less 

compression ratio and compression percentage. While for Scenario-B, system response 

time is less compression ratio as well as compression percentage saving is better but 

decoded video quality is comparatively degraded. Both working modes can be 

implemented in different environments with different set of requirements. 

A MATLAB toolbox has been developed for MPEG extension in multi-camera 

scenario. This toolbox consists of number of m-files. Each m-file is specialized for a 

specific step of encoding-decoding process. Moreover, a user interface has been 

designed for flexible user interaction with the execution of a particular multi-camera 

scenario, and analysis of results in two working modes of the system under two 

different communication strategies. 
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5.2 Proposed Scheme Architecture 
Proposed scheme can be defined architecturally as in Figure 5.3. 

 
Figure 5.3: Proposed Scheme Architecture 

 

Architecture components can be defined as: 

5.2.1 Random Selector 

This module is designed to randomly pick any sensor node with in the camera 

sensor network for the initiation of proposed algorithm. Then encoding process starts in 

that sensor node using standard MPEG encoding steps. Finally this node transmits its I-

frame as reference frame to its nearest neighbor for continuity of algorithm execution. 

 

5.2.2 Encoder Layer 

Encoder layer comprises a number of encoders depending upon number of 

camera sensor nodes. Each encoder has its own encoding algorithm implemented. 

Through out the encoder layer, reference I-frames are transmitted from one node to the 

next one. Finally compressed bit streams are sent to channel for transmission. 
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5.2.3 Joint Decoder 

Since all encoders send their compressed findings to a central decoder. Here 

standard MPEG decoding process takes place and video sequence frames are the output. 

 

5.2.4 Post-processor 

Each video sequence pictures are finally fed to post-processor which is logically 

designed to construct the individual video sequences. 

 

5.2.5 Analyzer 

Analyzer is a module which runs in parallel to this algorithm and specialized for 

capturing certain resultant parameters that are used for result analysis. 

Multi-camera scenario is implemented by implanting two digital cameras 

capturing two side views of an object. Video sequences are being captured by these two 

sensors. Encoding is carried out after implementation of motion compensation between 

I-reference frames of the two video sequences. Then the two video sequences are 

encoded independently using standard MPEG encoding procedure. 

 

5.3 System Flow Chart 

 

Figure 5.4: System Flow Chart (Abstract) 

 

In next diagram, modules Strategy-1_Processing and Strategy-2_Processing are 

explained as: 
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Figure 5.5: Strategy-1 Description 
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Figure 5.6: Strategy-2 Description 
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Figure 5.7: System Flow Chart (Full) 

 

 

5.4 User Interfaces 
A user interface has been designed for easy and flexible user interaction with 

proposed system.  First GUI (Graphical User Interface) is provided with options of two 

communication strategies. User can select any of system working mode and a particular 

movie-set as well. Then user can see compression results for any of the communication 
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strategy. Original and decoded frames of the respective movie set are displayed along 

with the values of performance parameters as Peak Signal to Noise Ratio (PSNR), 

Compression Ratio (CR) and Compression Percentage (CP). 

 

 
Figure 5.8: First System GUI 

 

For any of the communication strategies selected, user can see the results 

comparison for both system working modes by clicking on ‘Comparison’ button. Next GUI 

frame is again provided with three buttons for CR, CP and PSNR comparison for selected 

movie set as shown in Figure 5.9(a), (b) and(c) respectively.  
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Figure 5.9(a): Results Comparison GUI showing CR Comparison 

 
Figure 5.9(b):  Results Comparison GUI showing CP Comparison 
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Figure 5.9(c): Results Comparison GUI showing PSNR Comparison 

 

 

5.5 Summary 
In this chapter, system implementation has been discussed with the help of 

respective figures. Different steps involved in algorithm execution and results evaluation 

have been shown through the designed user interface. The next chapter is about system 

performance evaluation and results discussion. 
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Chapter 6 

Performance Evaluation and Results 

Analysis 
In this chapter the results and evaluations of the proposed scheme have been 

discussed in detail.  
Table 6.1:  System specifications 

System Requirement 
RAM 1GB
Processor 1.37 Dual Core

Software Requirement 
Operating System Windows XP
Tool Box MATLAB 7.0 
Other Software Packages Video Convert Master-

K-Lite full Codec
 

 

6.1 Criteria for evaluations  
Like any compression system, in this proposed research study the compression ratio 

and frame/video quality are of main concern.  Various metrics can be used to measure the 

performance of a compression system. Following objective performance metrics have been 

analyzed to measure attained compression ratio and quality of a reconstructed video frames: 

(a) Peak Signal to Noise Ratio (PSNR) 

(b) Compression Ratio (CR) 

(c) Compression Percentage (CP) 

(d) Mean Squared Error (MSE) 

 

6.1.1 Peak Signal to Noise Ratio (PSNR) 

This objective metric is used to measure the quality of reconstructed video 

frame. More value of PSNR indicates better quality. It is most easily defined using the 

term MSE for two mxn video frames f and f′. Where f is considered as original and f’ is 

reconstructed or approximation of the other. MSE is defined by the following formula 

as: 
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And the mathematical formula to find PSNR is given as: 

 

PSNR = 10 log10 (255*255/MSE) 

 

6.1.2 Compression Ratio (CR) 

This performance metric measures the compression achieved by compression 

system. 

CR = f′ / f 

Where f′ and f are compressed frame bytes and original frame bytes 

respectively. Compression ratio i.e. 5 specifies that for every 1 unit in the compressed 

data set, there are 5 information carry units in original frame. 

 

6.1.3 Compression Percentage (CP) 

 Percent compression achieved by the compression system can be calculated by 

using following formula: 

CP = 100 – (f′ / f) X 100 

Again f′ is compressed frame bytes and f is original frame bytes.  

6.1.4 Distortion (MSE) 

The mean square error or MSE of a reconstructed video frame is a way to 

quantify the difference between it and the original video frame being reconstructed. 

MSE corresponds to the average of this difference, and is given by the formula: 

 
Where f′ is the reconstructed video frame and f is the original video frame. 

 

 

6.2 System Performance Evaluation 
The two proposed communication strategies allow different level of 

communication among camera sensor nodes in a multi-camera network. There are 

certain aspects of system performance since it is capable of switching among different 

working modes depending upon a particular scenario and its requirements. When 

camera sensor nodes in a wireless network, are allowed to exchange their findings time 

to time then the quality of resultant decoded video frames will be different. And entirely 
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different results are obtained in situation where communication among camera sensors 

nodes is kept at minimum. This camera sensor node communication and video quality 

trade off can be shown as following: 

 

6.2.1 Camera Node Communication and Video Quality 

This can be shown from the results of different movie sets, which are encoded 

using both the strategies. And results can be analyzed using different performance 

metrics like CR, CP and PSNR. Graphical and tabular results are shown as below. 

 

Table 6.2: Comparison of Compression Ratio (CR) achieved in both strategies 

 

Frames in a GOP CR-Strategy-1 

 

CR-Strategy-2 

I1 0.032768 0.032768 

P2 0.02386 0.02386 

P3 0.020317  0.020317 

P4 0.020836 0.020836 

P5 0.020958 0.020958 

P6 0.022171 0.022171 

P21 0.029778 0.029778 

P22 0.01799 0.029015 

P23 0.015564 0.027832 

P24 0.014809  0.029465 

P25 0.016739 0.02887 

P26 0.01519 0.029709 

 

 

Above are the tabular representations of compression results of only one GOP of 

a movie set, following is the compression ratio plot of the two movie frames.  
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Figure 6.1: CR Comparison of both strategies 

Next are the PSNR results of the two movie-set frames shown in graphical as 

well as tabular forms. 

 

Table 6.3: Comparison of Peak Signal to Noise Ratio (PSNR) in both strategies 

 

Frames in a GOP PSNR-Strategy-1 

 

PSNR-Strategy-2 

I1 29.634  29.634 

P2 30.024 30.024 

P3 29.14 29.14 

P4 28.577 28.577 

P5 28.325 28.325 

P6 27.882 27.882 

P21 36.805 36.805 

P22 37.768  37.324 

P23 37.997 36.595 

P24 37.996 35.641 

P25 37.84 34.422 
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P26 37.932  34.095 

 

 

 
 

Figure 6.2: PSNR Comparison of both strategies 

Next are the compression percentage (CP) results of the two movie-set frames 

shown in graphical as well as tabular forms. 

 

Table 6.4: Comparison of Compression Percentage (CP) achieved in both 

strategies 

 

Frames in a GOP CP-Strategy-1 

 

CP-Strategy-2 

I1 95.338 95.338 

P2 96.571 96.571 

P3 96.496  96.496 

P4 96.484 96.484 

P5 96.391 96.391 

P6 96.346 96.346 

P21 95.801 95.801 
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P22 97.312  95.908 

P23 97.619 95.972 

P24 97.711 95.782 

P25 97.505 95.797 

P26 97.691 95.772 

 

 
Figure 6.3: CP Comparison of both strategies 

According to Figures 6.1, 6.2 and 6.3, it is clear that both the strategies start 

from the same points and give exactly same results up till movie-1. But with the 

beginning of second movie different results are obtained for all the three compression 

metrics like PSNR, CR and CP. strategy-1 gives good results on the basis of video 

quality i.e. good PSNR and strategy-2 gives good results on the basis of saving ratio. 

 

6.2.2 System Working Mode Comparison 

Critical results analysis highlights another system performance aspect that 

changing the response time of the system will strongly effects resultant video frame 

quality. This relationship can be clarified by system working modes comparison. 

System working mode-A (Scenario-A) can be applicable in the situation where its 

response time is not an issue but only better quality or fine information details are 

required. Like wise, when information results are required at some broader level (like 
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for detection purposes) as well as quick system response is required, then it can switch 

in working mode-B (Scenario-B). In both the scenarios, system performance can be 

analyzed on the basis of values of compression metrics. 
 

Table 6.5: Comparison of Compression Ratio (CR) achieved in both Scenarios 

 

Frames in a GOP CR-Scenario-A 

 

CR-Scenario-B 

I1 0.068283  0.032768 

P2 0.048103 0.020386 

P3 0.048752 0.020317 

P4 0.049103 0.020836 

P5 0.050217 0.020958 

P6 0.050545 0.022171 

P21 0.066353 0.029778 

P22 0.038795  0.01799 

P23 0.032616 0.015564 

P24 0.026367 0.014809 

P25 0.035172 0.016739 

P26 0.030167 0.01519 

 

 

Above are the tabular representations of compression results of only one GOP of 

a movie set, following is the compression ratio plot of the two movie frames.  
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Figure 6.4: CR Comparison for Scenario A and B 

Next is the PSNR comparison of two system working modes, shown in 

graphical as well as tabular forms. 

 

Table 6.6: Comparison of Peak Signal to Noise Ratio (PSNR) in both strategies 

 

Frames in a GOP PSNR-Scenario-A 

 

PSNR-Scenario-B 

I1 32.769 29.634 

P2 31.808  30.024 

P3 30.701 29.14 

P4 29.568 28.577 

P5 29.375 28.325 

P6 29.096  27.882 

P21 38.153 36.805 

P22 38.963 37.768 

P23 39.372  37.997 

P24 39.436 37.996 

P25 39.012 37.84 
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P26 39.099  37.932 

 

 

 
 

Figure 6.5: PSNR Comparison for Scenario A and B 

 

Next is the CP comparison of two system working modes, shown in graphical as 

well as tabular forms. 

 

Table 6.7: Comparison of Compression Percentage (CP) achieved in both 

strategies 

 

Frames in a GOP CP-Scenario-A 

 

CP-Scenario-B 

I1 93.172 95.338 

P2 95.19 96.571 

P3 95.125 96.496 

P4 95.09  96.484 

P5 94.978 96.391 

P6 94.946 96.346 
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P21 93.365  95.801 

P22 96.12 97.312 

P23 96.738 97.619 

P24 97.363 97.711 

P25 96.483 97.505 

P26 96.983 97.691 

 

 

 
Figure 6.6: CP Comparison for Scenario A and B 

 

According to Figures 6.4, 6.5 and 6.6 same point is a bit more clarified that, 

Scenario-A is better in terms of PSNR values but at the same time takes more 

processing time as well as give results with comparatively less saving ratio. While 

Scenario-B is good in terms of processing time and saving ratio but gives results with 

low PSNR.   
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6.2.3 System Performance against Various Compression 

Parameters 

Moreover, to check system response at various bitrates in terms of different 

compression parameters, results are analyzed (Figures 6.7-6.12). System response is 

examined in both strategies under both working modes separately. 

 PSNR vs. Bitrate 

 
Figure 6.7: PSNR vs. Bitrates for Strategy-1 and 2 (Scenario-A) 

 

This Figure shows that with the progress in number of movie frames for both the 

strategies, there is a fall in PSNR value as bitrate increases, as good PSNR is achieved 

at lower bitrates. Both the strategies start from the same point but with the beginning of 

movie-2 data, both the graphs are separated as strategy-1 ends at PSNR 20 dB with 

bitrate of 420 kbps. While strategy-2 ends with PSNR value 17 dB at bitrate 490 kbps. 

So for both the strategies quality of decoded video frame is found at lower bitrates for 

Scenario-A. Same relationship can be observed for Scenario-B as shown in Figure 6.8. 

One major difference for both the scenarios is that scenario-B ends at comparatively 

low bit rates as for scenario-B strategy-1 ends at 150 kbps with PSNR value of 18.3 dB. 

And strategy-2 ends at 185 kbps with same PSNR value. 
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Figure 6.8: PSNR vs. Bitrate for Strategy-1 and 2 (Scenario-B) 

 

 Saving ratio obtained at various bitrates: 

 
Figure 6.9: Saving ratio vs. Bitrates strategies comparison for Scenario-A 

 

From Analysis of the saving ratio at various bitrates, it is clear that both the scenarios 

show the same relationship. A prominent decline can be seen in saving ratio with an 

increase in the bitrates (Figures 6.9 and 6.10). For scenario-A, saving ratio is decreased 

from 93.5% to 89.5% as the bitrate increases from 265 to 360 kbps for strategy-1. And 
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for stargey-2 this decline is from 93.5% to 88% as the bitrate increases from 265 to 435 

kbps. Like wise, for scenario-B there is a fall in saving ratio with the increase in bitrates 

for both the strategies but comparatively at lower bitrates, as shown in Figure 6.10. 
 

 
Figure 6.10: Saving ratio vs. Bitrates strategies comparison for Scenario-B 
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 Distortion vs. Bitrates 

 

 
Figure 6.11: Distortion vs. Bitrates strategies comparison for Scenario-A 

 

Analyzing the distortion achieved at various bitrates, Figure 6.11shows that 

more gain(less distortion) is obtained at lower bit rates while video frames start 

distorting as the bitrate increases. Figure 6.12 shows the same relationship between 

distortion and bitrate for scenario-B. According to Figure 6.12 both the strategies have 

less distortion at lower bitrates, but with an increase in bitrates distortion gradually 

increases and reaches its maximum value near 800. 

The only difference between the two strategies is that this increase in distortion reaches 

early for strategy-1 as near bitrate of 145kbps while for strategy-2 it is on 190 kbps. 
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Figure 6.12: Distortion vs. Bitrates strategies comparison for Scenario-B 

 

 

6.3 Comparison with other techniques 
Comparing this MPEG approach with other approaches yields the following 

results as: 

6.3.1 Comparison with Epipolar approach 

One approach that has been discussed in literature survey chapter is 

implementation of epipolar geometry in mutli-terminal scenario. Comparing my MPEG 

technique with this technique shows that for both the techniques saving ratio starts 

decreasing with an increase in the bitrates. Results of the epipolar approach were 

formulated at various angles of the camera B from camera A, while my research work is 

compared on the basis of communication strategies with their respective working 

modes. 
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Table 6.8: Results Comparison of Epipolar Approach and Proposed MPEG 

Approach 

Compression 

Parameters 

MPEG Approach Epipolar Approach 

Saving ratio vs. 

Bitrate  

A-

st1 

A-

st2 

B-

st1 

B-

st2 

Angle=

5 

Angle=1

5 

Angle=2

5 

Angle 

=35 

Saving ratio-

start (%) 

93.

2 

93.

2 

95.

7 

95.

7 

69 65 60 57 

Saving ratio-

end (%) 

89.

5 

88.

3 

93.

4 

92.

7 

22 21 20 18 

Bitrate-start 

(kbps) 

267 267 105 105 100 90 85 80 

Bitrate-end 

(kbps) 

366 429 135 165 620 620 620 610 

 
6.3.2 Comparison with Model-based approach 

Another approach that has been discussed in literature survey chapter is model-

based approach in mutli-terminal scenario. Comparing the results of both techniques for 

P-frames shows the following trend. 

 

Table 6.9: Results Comparison of Model-based Approach and Proposed MPEG 

Approach
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6.4 Summary 
In this chapter, system performance has been analyzed and evaluated from 

different aspects of its functioning. Relationship of different parameters has also been 

shown graphically. Conclusively, it is stated that system gives good performance at 

lower bit rates for both the strategies under both working modes. Moreover, some 

system working setups give more gain and good PSNR as compared to other modes but 

all shows optimum results at lower bitrates. 
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Chapter 7 

Conclusion and Future Work 

 

7.1      Discussion  
Wireless sensor networks are multi camera setups containing power and energy 

constrained camera nodes. Each node carries the significant part of information which plays 

vital role in final output formulation. A single link is available to carry this huge load 

coming out of each and every camera sensor node. For a wireless sensor network where 

terminals are equipped with cameras and capturing the multimedia data, carrying this 

resultant load in available link capacity becomes a very serious problem. 

Multimedia information is huge form of visual as well as audio and textual data. 

Additionally, this class of data comprises repetitive patterns and ambiguities. Capturing the 

video sequences from different terminals which are placed in space with some particular 

angle from the reference object results in some extra weight age of redundancy. Since each 

camera node is capturing the same scene from some different angle, there is a great degree 

of inter-node statistical redundancy among camera nodes findings. Likewise in an 

individual video sequence this repetition of patterns gives rise to another form of 

redundancy called temporal redundancy. And then in a single video frame, pixel values are 

highly correlated that result in spatial redundancy. 

Usually these camera sensor nodes are deployed with video compression standards 

which tend to remove spatial and temporal redundancies that exist in each node video 

sequence. But when all nodes transmit their findings to a common link, there is still a great 

degree of repetition in the final data load due to inter-node statistical redundancy. 

So for a wireless camera sensor network there has always been an emerging 

need for some standard that exploits these three kinds of redundancies. Beside this it 

must also provide good quality reconstructed video, as well as keeping the saving ratio 

at maximum. And finally, this all should be achieved keeping the communication 

among the camera sensor nodes at minimum. 

7.2      Contribution of Project 
Keeping all these requirements of a wireless sensor network in mind, an 

algorithm has been designed which is an extension of MPEG, a video compression 

standard for multi-terminal scenario. Camera nodes are allowed to communicate in two 

ways called communication strategy-1 and strategy-2. And in each scenario system is 

capable of working in two different modes or scenarios. Each working mode has its 
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benefits and can be deployed in different environments with different set of 

requirements. Results have been computed for each working mode for both strategies. 

Both tabular as well as graphical results show that system performance highest gains are 

obtained at lower bit rates and there is a prominent distortion in video quality with 

increase in bitrates. 

 

7.3 Future Directions  
Since two communication strategies have been proposed in this research work. 

Overall out of the two communication strategies, strategy-1 should be adopted to get 

correspondence among video camera frames keeping the communication among the 

sensor nodes at minimum. Stargey-1 with working mode-1 gives good results. 

So this combination should be exploited in future with more advanced and 

sophisticated compression techniques. Additionally, one drawback in working mode-1, 

that it takes too much processing time, should also be removed.  
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APPENDIX – A 
 

1.Work Mode-1 Code 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%GOP Generator 
for i=1:+6:215 
[I1,p2,p3,p4,p5,p6,p21,p22,p23,p24,p25,p26]=GOP(i,m_name1,m_name2); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%Working with Movie-1 
 
[bufferI1,I_STREAM,idict]=IFrmProc(I1,array); 
  XX(1)=length(I_STREAM); 

BB(1)=length(idict); 
bufferI1=double(bufferI1); 
 I1d=IFrmDeco(I_STREAM,idict,array); 
 

[bufferP2,motionVect,pstream,pdict]=encod_p(bufferI1,p2,mbsize,p,array); 
XX(2)=length(pstream); 
BB(2)=length(pdict); 
EE(2)=length(motionVect); 
P2d=PFrmDeco(pstream,pdict,I1d,array,motionVect,mbsize);  

 
[bufferP3,motionVect,pstream,pdict]=encod_p(bufferP2,p3,mbsize,p,array); 

XX(3)=length(pstream); 
BB(3)=length(pdict); 
EE(3)=length(motionVect); 
P3d=PFrmDeco(pstream,pdict,P2d,array,motionVect,mbsize); %  

 
[bufferP4,motionVect,pstream,pdict]=encod_p(bufferP3,p4,mbsize,p,array); 

XX(4)=length(pstream); 
BB(4)=length(pdict); 
EE(4)=length(motionVect); 
P4d=PFrmDeco(pstream,pdict,P3d,array,motionVect,mbsize);  

 
[bufferP5,motionVect,pstream,pdict]=encod_p(bufferP4,p5,mbsize,p,array); 

XX(5)=length(pstream); 
BB(5)=length(pdict); 
EE(5)=length(motionVect); 
P5d=PFrmDeco(pstream,pdict,P4d,array,motionVect,mbsize); %  

 
[bufferP6,motionVect,pstream,pdict]=encod_p(bufferP5,p6,mbsize,p,array); 

XX(6)=length(pstream); 
BB(6)=length(pdict); 
EE(6)=length(motionVect); 



69 
 

P6d=PFrmDeco(pstream,pdict,P5d,array,motionVect,mbsize);  
 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%Working with Movie-2 
 
[bufferP21,I_STREAM,idict]=IFrmProc(p21,array); 

 XX1(1)=length(I_STREAM); 
 BB1(1)=length(idict); 
 bufferP21=double(bufferP21); 
P21d=IFrmDeco(I_STREAM,idict,array); 

 
[bufferP22,motionVect,pstream,pdict]=encod_p(bufferP21,p22,mbsize,p,array); 

XX1(2)=length(pstream); 
BB1(2)=length(pdict); 
EE1(2)=length(motionVect); 
P22d=PFrmDeco(pstream,pdict,P21d,array,motionVect,mbsize); %  

 
[bufferP23,motionVect,pstream,pdict]=encod_p(bufferP22,p23,mbsize,p,array); 

XX1(3)=length(pstream); 
BB1(3)=length(pdict); 
EE1(3)=length(motionVect); 
P23d=PFrmDeco(pstream,pdict,P22d,array,motionVect,mbsize);  

 
[bufferP24,motionVect,pstream,pdict]=encod_p(bufferP23,p24,mbsize,p,array); 

XX1(4)=length(pstream); 
BB1(4)=length(pdict); 
EE1(4)=length(motionVect); 
P24d=PFrmDeco(pstream,pdict,P23d,array,motionVect,mbsize); %  

 
[bufferP25,motionVect,pstream,pdict]=encod_p(bufferP24,p25,mbsize,p,array); 

XX1(5)=length(pstream); 
BB1(5)=length(pdict); 
EE1(5)=length(motionVect); 
P25d=PFrmDeco(pstream,pdict,P24d,array,motionVect,mbsize);  

 
[bufferP26,motionVect,pstream,pdict]=encod_p(bufferP25,p26,mbsize,p,array); 

XX1(6)=length(pstream); 
BB1(6)=length(pdict); 
EE1(6)=length(motionVect); 
P26d=PFrmDeco(pstream,pdict,P25d,array,motionVect,mbsize); 

end 
 

4 Work Mode-2 Code 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%Preparing First I-buffer 
 

framedata=aviread(m_name2,1); 
I1=frame2im(framedata); 
I1=imresize(I1,[128 128]); 
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I1=double(I1); 
I1=I1(:,:,1); 
[bufferI1,X,B,E]=encod_proc(I1,array_inter); 
bufferI1=double(bufferI1); 
XX(1)=length(X); 
BB(1)=length(B); 
EE(1)=length(E); 
id=1; 
decoder1(X,B,E,motionVect,id,array_inter); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%GOP Generator 
 
for i=2:+6:36 
[p2,p3,p4,p5,p6,I7,p22,p23,p24,p25,p26,I27]=GOP(i,m_name1,m_name2); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%Working with Movie-1 
 
[bufferP2,motionVect,X,B,E]=PFrmProc(bufferI1,p2,mbsize,p,array_inter); 
XX(2)=length(X); 
BB(2)=length(B); 
EE(2)=length(E); 
id=2; 
decoder1(X,B,E,motionVect,id,array_inter); 
 
[bufferP3,motionVect,X,B,E]=PFrmProc(bufferP2,p3,mbsize,p,array_inter); 
XX(3)=length(X); 
BB(3)=length(B); 
EE(3)=length(E); 
id=3; 
decoder1(X,B,E,motionVect,id,array_inter); 
 
[bufferP4,motionVect,X,B,E]=PFrmProc(bufferP3,p4,mbsize,p,array_inter); 
XX(4)=length(X); 
BB(4)=length(B); 
EE(4)=length(E); 
id=4; 
decoder1(X,B,E,motionVect,id,array_inter); 
 
[bufferP5,motionVect,X,B,E]=PFrmProc(bufferP4,p5,mbsize,p,array_inter); 
XX(5)=length(X); 
BB(5)=length(B); 
EE(5)=length(E); 
id=5; 
decoder1(X,B,E,motionVect,id,array_inter); 
 
[bufferP6,motionVect,X,B,E]=PFrmProc(bufferP5,p6,mbsize,p,array_inter); 
XX(6)=length(X); 
BB(6)=length(B); 
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EE(6)=length(E); 
id=6; 
decoder1(X,B,E,motionVect,id,array_inter); 
 
[bufferI7,X,B,E]=encod_proc(I7,array_inter); 
bufferI7=double(bufferI7); 
XX(7)=length(X); 
BB(7)=length(B); 
EE(7)=length(E); 
id=7; 
decoder1(X,B,E,motionVect,id,array_inter); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%Working with Movie-2 
 
[bufferI2,motionVect,X,B,E]=PFrmProc(bufferI1,I2,mbsize,p,array_inter); 
XX1(1)=length(X); 
BB1(1)=length(B); 
EE1(1)=length(E); 
id=8; 
decoder1(X,B,E,motionVect,id,array_inter); 
 
[bufferP22,motionVect,X,B,E]=PFrmProc(bufferI2,p22,mbsize,p,array_inter); 
XX1(2)=length(X); 
BB1(2)=length(B); 
EE1(2)=length(E); 
id=9; 
decoder1(X,B,E,motionVect,id,array_inter); 
 
[bufferP23,motionVect,X,B,E]=PFrmProc(bufferP22,p23,mbsize,p,array_inter); 
XX1(3)=length(X); 
BB1(3)=length(B); 
EE1(3)=length(E); 
id=10; 
decoder1(X,B,E,motionVect,id,array_inter); 
 
[bufferP24,motionVect,X,B,E]=PFrmProc(bufferP23,p24,mbsize,p,array_inter); 
XX1(4)=length(X); 
BB1(4)=length(B); 
EE1(4)=length(E); 
id=11; 
decoder1(X,B,E,motionVect,id,array_inter); 
 
[bufferP25,motionVect,X,B,E]=PFrmProc(bufferP24,p25,mbsize,p,array_inter); 
XX1(5)=length(X); 
BB1(5)=length(B); 
EE1(5)=length(E); 
id=12; 
decoder1(X,B,E,motionVect,id,array_inter); 
 
[bufferP26,motionVect,X,B,E]=PFrmProc(bufferP25,p26,mbsize,p,array_inter); 
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XX1(6)=length(X); 
BB1(6)=length(B); 
EE1(6)=length(E); 
id=13; 
decoder1(X,B,E,motionVect,id,array_inter); 
 
[bufferI27,X,B,E]=encod_proc(I27,array_inter); 
bufferI27=double(bufferI27); 
XX1(7)=length(X); 
BB1(7)=length(B); 
EE1(7)=length(E); 
id=14; 
decoder1(X,B,E,motionVect,id,array_inter); 
 
%%%%%%%%%%%%%%%%%%%%%%%%% 

I1=I7; 
             bufferI1=bufferI7; 
            I1d=I7d; 
            I2=I27; 
                bufferI2=bufferI27; 
                I2d=I27d; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
end 


