
Dynamic Web Services Integration and Execution

A dissertation Presented by

Farhan Hassan Khan

(2007-NUST-MS PhD-CSE(E)-27)

Submitted to the Department of Computer Engineering in partial fulfillment of the
requirements for the degree of

Master of Science

in

Computer Software Engineering

Advisor

Brig. Dr. Muhammad Younus Javed

College of Electrical & Mechanical Engineering

National University of Sciences and Technology

2010

ii Dynamic Web Services Integration and Execution (MS Dissertation)

THE COMMITTEE

Dynamic Web Services Integration and Execution

A dissertation Presented by

Farhan Hassan Khan

Approved as to style and content by:

Dr. Muhammad Younus Javed , Supervisor

Dr. Farooq-e-Azam, Member

Dr. Rasheed Ahmed, Member

Dr. Aasia Khanam, Member

Dr. Muhammad Younis Javeed

Department Chair, Computer Engineering

iii Dynamic Web Services Integration and Execution (MS Dissertation)

DEDICATIONS

Dedicated to my parents, teachers, friends and family

Acknowledgments

iv Dynamic Web Services Integration and Execution (MS Dissertation)

ACKNOWLEDGEMENTS

Nothing worthwhile was ever achieved in isolation. I can not claim to have written this

thesis without the significant influence of others. I would like to thank my supervisor Brig. Dr.

Muhammad Younus Javed. It was invaluable to have the benefit of his decades of experience

in the field of Information Technology standing behind his advising of me. I am most grateful

that he allowed me to work with him for this thesis. I would like to thank Dr. Farooq e Azam

Khan, Dr. Rasheed Ahmed and Dr. Aasia Khanam for serving on my committee.

I thank my parents and family for standing by me in times of crisis and for being patient

with my endless years of study.

Abstract

v Dynamic Web Services Integration and Execution (MS Dissertation)

ABSTRACT

Dynamic Web Service Integration and Execution

The use of web services has dominated software industry. Existing technologies of web

services are extended to give value added customized services to customers through

composition.

Automated web service integration is a very challenging task. This research presents the

solution of existing problems and proposes a technique by combination of interface based and

functionality based rules. The framework also solves the issues related to unavailability of

updated information and inaccessibility of web services from repository/databases due to any

fault/failure. It provides updated information by adding aging factor in repository/WSDB (Web

Services Database) and inaccessibility is solved by replication of WSDB. We discuss data

distribution techniques and propose our framework by using one of these strategies.

Finally, the framework eliminates the dynamic service integration and execution issues,

supports efficient data retrieval and updation, fast service distribution and fault tolerance.

vi Dynamic Web Services Integration and Execution (MS Dissertation)

Table of Contents

Dynamic Web Services Integration and Execution ... i

THE COMMITTEE ... ii

Dynamic Web Services Integration and Execution .. ii

DEDICATIONS ... iii

ACKNOWLEDGEMENTS ... iv

ABSTRACT .. v

Dynamic Web Service Integration and Execution .. v

List of Abbreviations .. x

Chapter 1 .. 1

1 Introduction .. 1

1.1 Overview of Web Services .. 1

1.2 Web Services Composition ... 2

1.3 Dynamic Web Services Composition .. 4

1.3.1 Presentation of single service ... 5

1.3.2 Translation of Languages .. 6

1.3.3 Generation of composition process model ... 6

1.3.4 Evaluation of Composite Service .. 6

1.3.5 Execution of Composite Service .. 7

1.4 Problem Statement ... 7

1.5 Existing Approaches .. 8

1.6 Contribution .. 10

1.7 Organization .. 10

Chapter 2 .. 12

2 Related work ... 12

Chapter 3 .. 21

vii Dynamic Web Services Integration and Execution (MS Dissertation)

3 Proposed Approach ... 21

3.1 Problem Statement .. 21

3.2 Suggested improvements .. 21

3.3 Proposed Framework .. 22

3.3.1 Service Provider .. 22

3.3.2 Service Requester ... 22

3.3.3 Web Server .. 24

3.3.4 Translator .. 25

3.3.5 Evaluator ... 25

3.3.6 Composer .. 26

3.3.7 Matching Engine ... 26

3.3.8 Service Repository/WSDB ... 26

3.4 Working ... 27

3.4.1 Service Registration .. 27

3.4.2 Service Request: .. 28

3.4.3 Translation .. 29

3.4.4 Web Server: ... 29

3.4.5 Service Composition ... 32

3.4.6 Service Repository/WSDB: .. 32

3.4.7 Web ... 33

3.5 Methodology ... 33

Chapter 4 .. 35

4 SYSTEM DESIGN .. 35

4.1 Data Flow Diagram: .. 35

4.2 Sequence Diagram .. 36

4.3 Use Cases: ... 37

4.3.1 General Use cases for Interface .. 37

4.3.2 Extended Use cases for Interface .. 39

Chapter 5 .. 54

viii Dynamic Web Services Integration and Execution (MS Dissertation)

5 Implementation ... 54

5.1 Apache jUDDI .. 54

5.1.1 jUDDI Features ... 54

5.1.2 jUDDIv3 ... 54

5.1.3 jUDDIv2 ... 55

5.1.4 jUDDI Architecture: ... 55

5.1.5 Persistence (jUDDI DataStore) ... 55

5.2 RUDDI .. 57

5.2.1 Ruddi Characteristics: ... 57

5.2.2 Ruddi Usage .. 59

5.2.3 Various Ruddi™ API examples: .. 60

5.3 JAXR ... 61

5.3.1 JAXR Goals .. 62

5.3.2 JAXR architecture ... 63

5.4 WSDL4J .. 65

5.5 WSIF .. 66

5.5.1 Overview ... 66

5.5.2 WSIF Structure .. 68

5.5.3 Reason for using WSIF ... 69

Chapter 6 .. 71

6 Results and Discussion.. 71

6.1 Precision .. 71

6.2 Recall ... 71

6.3 Fall‐Out .. 72

6.4 Dataset .. 73

6.5 Performance Evaluation .. 73

6.5.1 Average Precision .. 74

6.5.2 Average Recall ... 76

6.5.3 Average Fall‐out .. 79

6.5.4 Evaluation Time of Services .. 81

ix Dynamic Web Services Integration and Execution (MS Dissertation)

6.5.5 Execution Time for Web Service Composition .. 82

6.6 Comparison of Various Factors ... 84

6.7 Comparison with Other Factors .. 86

Chapter 7 ... 88

7 Summary and Conclusion ... 88

7.1 Overview of Research ... 88

7.2 Achievements .. 88

7.3 Limitations ... 89

7.4 Future Work .. 89

8 APPENDIX A ... 92

9 References ... 100

x Dynamic Web Services Integration and Execution (MS Dissertation)

List of Abbreviations

AI Artificial Intelligence

API Application Programming Interface

BPEL4WS Business Process Execution Language for Web Services

CSP Constraint Satisfaction Problem

DNS Domain Name System

ebXML Electronic based XML

HTML Hyper Text Markup Language

HTTP Hyper Text Transfer Protocol

JAXR Java API for XML based Registries

JUDDI Java implementation of UDDI

OWL-S Ontology Web Language Semantic

QoS Quality of Service

SOAP Simple Object Access Protocol

UDDI Universal Description Discovery and Integration

URI Uniform Resource Identifier

VSDL Value based Service Description Language

WS Web Service

WSCI Web Service Choreography Interface

xi Dynamic Web Services Integration and Execution (MS Dissertation)

WSDB Web Service DataBase

WSDL Web Service Description Language

WSDL4J Web Service Description Language for Java

WSIF Web Service Invocation Framework

WSIL Web Service Inspection Language

1 Dynamic Web Services Integration and Execution (MS Dissertation)

Chapter 1

1 Introduction

1.1 Overview of Web Services

Web services are software components designed to support interoperable machine to machine

interaction over network. They have a standardized way of integrating web applications using

XML, SOAP, WSDL and UDDI over internet backbone. XML is used to code and decode data,

SOAP is used for transfer of data, WSDL is used to describe the available services and UDDI is

used for listing which services are available. Web services allow organizations to communicate

with each other and with clients without intimate knowledge of each other’s IT systems behind

the firewall.

Unlike traditional client/server models, web services do not provide the user with a GUI.

Instead they share business logic, data and processes through programmatic interface across

the network. Web services can be added to a GUI (such as a web page) to offer specific

functionality to users. Web services allow different applications from different sources to

communicate with time consuming and custom coding because all communication is in XML

format. They do not require any specific language or operating system. For example Java can

communicate with Perl, Windows application can talk with UNIX applications, etc.

Web services have two types of uses:

2 Dynamic Web Services Integration and Execution (MS Dissertation)

1. Reusable application components

2. Connect existing softwares

Web services offer application components like: currency conversion, weather reports, or even

language translation as services. They also solve interoperability problems by providing a way

to different applications to link their data. Data can be exchanged between different

applications with different platforms.

Nowadays, an increasing amount of companies and organizations only implement their core

business and outsource other application services over Internet. Thus, the ability to efficiently

and effectively select and integrate inter‐organizational and heterogeneous services on the

Web at runtime is an important step towards the development of the Web service applications.

In particular, if no single Web service can satisfy the functionality required by the user, there

should be a possibility to combine existing services together in order to fulfill the request. This

trend has triggered a considerable number of research efforts on the composition of Web

services both in academia and in industry.

1.2 Web Services Composition

Web service composition lets developers create applications on top of service‐oriented

computing's native description, discovery, and communication capabilities. Such applications

are rapidly deployable and offer developers reuse possibilities and user's seamless access to a

3 Dynamic Web Services Integration and Execution (MS Dissertation)

variety of complex services. There are many existing approaches to service composition,

ranging from abstract methods to those aiming to be industry standards.

Despite all these efforts, the Web service composition still is a highly complex task, and it is

already beyond the human capability to deal with the whole process manually. The complexity,

in general, comes from the following sources. First, the number of services available over the

Web increases dramatically during the recent years, and one can expect to have a huge Web

service repository to be searched. Second, Web services can be created and updated on the fly,

thus the composition system needs to detect the updating at runtime and the decision should

be made based on the up to date information. Third, Web services can be developed by

different organizations, which use different concept models to describe the services, however,

there is no unique language to define and evaluate the Web services in an identical means.

For business to business and enterprise level application integration, Composition of web

services plays an important role. Sometimes a single web service does not fulfill the user’s

desired requirements and different web services are combined through composition method in

order to achieve a specific goal. Service compositions reduce the development time to create

new applications.

Web services can be categorized in following two ways on the basis of their functionality:

1) Semantic annotation describes what the web service does and

2) Functional annotation describes how it performs its functionality.

4 Dynamic Web Services Integration and Execution (MS Dissertation)

WSDL is a description language that is used for specification of messages that are used for

communication between service providers and requesters.

There are two methods for web services composition. One is static web service composition

and other is automated/dynamic web service composition. In static web service composition,

integration of web services is performed manually, that is each web service is executed one by

one in order to achieve the desired goal/requirement. It is a time consuming task which

requires a lot of effort. In automated web service composition, agents are used to select a web

service that may be composed of multiple web services but from user’s viewpoint, it is

considered as a single service.

1.3 Dynamic Web Services Composition

The automated/dynamic web service composition methods generate the request/response

automatically through agents. Most of these methods are based on AI planning. In automated

web services composition, request is given to the agent and agent performs the composition

steps. First request goes to Translator which performs translation from external language to a

language used by system, then the services are selected from repository that meet user criteria

and goes to Process Generator which compose these services. If there are multiple composite

services that meet user criteria then Evaluator evaluates them, selects and returns the best

service to Execution Engine through which results are returned to clients (Requester). There

5 Dynamic Web Services Integration and Execution (MS Dissertation)

should be well defined methods and interfaces through which clients interact with the system

and get the response. The generalized dynamic web services composition framework is shown

in Fig 1.

Fig 1: Generalized framework for dynamic web services composition

More precisely Dynamic web services composition include the following phases:

1.3.1 Presentation of single service

Web service providers advertise atomic web services on web. There are several languages

used for advertising for example, UDDI and DAML‐S service profile. The essential features

for advertising a web service include signature, states and non‐functional values. Signature

is represented by service inputs, outputs and exceptions. It provides the information about

data transformation during service execution. States describe the transformation from one

6 Dynamic Web Services Integration and Execution (MS Dissertation)

state to another. Non‐functional values are used for evaluating the web services, such as

cost, quality of service issues, etc.

1.3.2 Translation of Languages

Translator performs the translation of the user’s request in order to search for a particular

service. It translates the external language used by requester/provider into language used

by system.

1.3.3 Generation of composition process model

Service requester can also request the service in service specification language. Process

generator then compose the atomic services advertised by service providers. Process

generator usually takes the functionality as input and presents a composed web service as

output. Process model contains set of web services, control flow and data flow of these

services.

1.3.4 Evaluation of Composite Service

It may be possible that planer generates more then one composite web services that fulfill

the requirements. In that case, composite web services are evaluated based on non‐

functional attributes. The most commonly used is utility function. Requester specifies

weights to each attributes and the best web service is one which is ranked on top.

7 Dynamic Web Services Integration and Execution (MS Dissertation)

1.3.5 Execution of Composite Service

Execution of web service includes the sequence of message passing according to process

model. The dataflow of composite service is defined as the actions output data of a former

executed service transfers to the input of a later executed atomic service.

1.4 Problem Statement

The main interest of web service compositions is to give value‐added services to existing web

services and introduce automated web services. Also they provide flexibility and agility. There

are few problems in dynamic web service composition are:

• First, the numbers of web services are increasing with time and it is difficult to search the

whole repository for desired service in order to use it for the fulfillment of specific goal.

• Second, Web services are dynamically created and updated so the decision should be taken

at execution time and based on recent information.

• Third, Different web service providers use different conceptual models and there is a need

of one structure so that web services easily access each other without any technical effort.

• Forth, only authorized persons can access few of these web services.

8 Dynamic Web Services Integration and Execution (MS Dissertation)

1.5 Existing Approaches

This section provides the overview of some recent methods that provide automation to Web

service composition. The automation means that either the method can generate the process

model automatically, or locate the correct services if an abstract process model is given.

The two approaches in web services composition are:

1) Centralized dataflow

2) Decentralized dataflow

Both of these approaches have advantages and some limitations. The limitation of centralized

dataflow is that all component services must pass through a composite service. This results in

the bottleneck problem which causes the decrease in throughput and increase the response

time. The disadvantage of decentralized dataflow is that each web service directly shares data

with web servers. This results in increasing the load at each node and delay in response time

and throughput. The decentralized dataflow is very efficient in case of dynamic web services

composition as it reduce the tight coupling between clients and servers by adding a middleware

(UDDI, WS coordination or WS transaction etc).

Mostly automated composition techniques are:

1) Interface based and

2) Functionality based

9 Dynamic Web Services Integration and Execution (MS Dissertation)

In interface based composition, users get composite services on the basis of inputs and outputs

through interfaces and after composition desired results are achieved. The drawback of this

approach is that functionality is not guaranteed, whereas in functionality based composition,

with inputs and outputs user provides the formula that gives logic into interface information.

Polymorphic process model (PPM) uses a method that combines the static and dynamic web

services composition. Static settings are based on processes that consist of abstract sub‐

processes i.e. sub‐processes that have functionality description but lack in implementation.

Abstract sub‐processes are implemented by services and bound at run time. The dynamic part

is based on service based processes. Service is described by a state machine that includes the

possible states and transitions of a service. In the setting, the dynamic service composition is

enabled by the reasoning based on state machine.

AI Planning based web services composition is another way to tackle dynamic web services

composition problems. DAML‐S (also called OWL‐S) is the only language that has direct

connection with AI planning. The state change during web service execution is specified

through per‐condition and effect properties in Service Profile in DAML‐S. Golog is a logic

programming language built on top of situation calculus. Golog programs can be customized by

incorporating the service requester’s constraints. For example, the service requester can use

the nondeterministic choice to present which action is selected in a given situation, or use the

sequence construct to enforce the execution order between two actions.

10 Dynamic Web Services Integration and Execution (MS Dissertation)

Theorem proving is an idea for web services composition proposed by Weldinger. It is based on

automated deduction and program synthesis. Initially web services and user requirements are

described in first order language and then structive proofs are generated with SNARK theorem

prover. Finally, service composition descriptions are extracted from particular proofs.

1.6 Contribution

The major contribution of this thesis is that it presents a method for automated and

dynamic web service composition by combination of interface based and functionality based

approaches. It focuses on the data distribution issues, QoS issues and defines how execution

problems can be avoided. This research also resolves the problems of decentralized dataflow

and provides a framework that has minimum latency, maximum throughput and response time.

This thesis proposed a solution for researchers who are facing the problems of web service

composition due to constant changes in input/output parameters, networking issues and

independent nature of different web services. We have given generic implementation of

proposed model to prove the correctness of algorithm.

1.7 Organization

11 Dynamic Web Services Integration and Execution (MS Dissertation)

This chapter comprises of an overview of Web Services, Dynamic Web Services composition

and Web services composition approaches with brief explanation. Also the Problem statement

and contributions to our work are briefly stated.

Chapter 2 This chapter describes the related research papers.

Chapter 3 This chapter is about the Methodology and Techniques used.

Chapter 4 This chapter presents the implementation of proposed algorithm.

Chapter 5 This chapter is concerned with analysis and Results.

Chapter 6 This chapter includes the summary and conclusion.

12 Dynamic Web Services Integration and Execution (MS Dissertation)

Chapter 2

2 Related work

Literature Review

[1] Incheon Paik, Daisuke Maruyama et al. “Automatic Web Services Composition Using

Combining HTN and CSP “ proposes a framework for automated web services composition

through AI planning technique by combining logical combination (HTN) and physical

composition (CSP). This paper discusses the real life problems on the web that is related to

planning and scheduling and provides task ordering to reach at desired goal. OWL-S and

BPEL4WS are used for composition which removes the limitations of HTN that are lack of

interactive environment for web services, lack of autonomy etc. Then the proposed model is

compared with HTN according to web services invocation. It tackles the following given

problems faced by planner alone, that are, it does not deal with various web users requests for

information; second, it is inefficient for automated finding of solutions in given state space.

Third, its maintenance is weak due to frequent user requests. The proposed framework gives

intelligent web services for web users due to CSP which provides problem space for planning,

scheduling and to automate the desired tasks.

[2] Faisal Mustafa, T. L. McCluskey et al. “Dynamic Web Services Composition” outlined the

main challenges faced by automated web services composition that are related to distributed,

dynamic and uncertain nature of web. The proposed model is semi-automatic static composition

model and fixes some issues of dynamic web services composition that are listed as follows.

13 Dynamic Web Services Integration and Execution (MS Dissertation)

First, Repository has large number of web services and it is not possible to analyze and integrate

them from repository. Second, updated web service information is required from repository when

it is selected to fulfill the specific task. Third, Multiple services are written in different languages

and there is a need of conceptual model to describe them in a single service. The proposed

technique has a drawback that if a server goes down then input/output issues arises. Second, new

uploaded information is not available in repository as it does not update its contents. The

framework is shown in Fig.

Fig 2.1: Composition framework by Faisal & McClusky

14 Dynamic Web Services Integration and Execution (MS Dissertation)

[3] Pat. P. W. Chan and Michael R. Lyu et al. “Dynamic Web Service Composition: A New

Approach in Building Reliable Web Service” proposed the dynamic web service composition

technique by using N- version programming technique which improves the reliability of system

for scheduling among web services. If one server fails, other web servers provide the required

services. Web services are described by WSDL and their interaction with other web services is

described by WSCI (web services choreography interface). The composed web services are

deadlock free and reduce average composition time. Also the proposed system is dynamic, as it

works with updated versions without rewriting the specifications. The reliability of system has

been improved by replication. At the end experimental evaluation and results are presented to

verify the correctness of algorithm. The framework is shown in Fig 2.2

Fig 2.2: Best Route finding system architecture

15 Dynamic Web Services Integration and Execution (MS Dissertation)

[4] LIU AnFeng, CHEN ZhiGang, HE Hui, GUI WeiHua et al. “Treenet: A Web Services

Composition Model Based on Spanning Tree” presents the technique based on web services

interfaces and peer to peer ontology. It provides an overlay network (WSCON) with peer to peer

technologies and provides a model for web services composition. The web services composition

is based on domain ontology and Distributed Hash Table (DHT) is used for discovery and

composition. The analyses shows that it is easy to understand because of loosely coupled due to

the separation of interfaces from underlying details. The proposed model is based on ontology

and service composition interface and the process is fault tolerant. The advantages of proposed

model are: it provides web services composition based on QoS, fast composition rate, fault

tolerant, efficient for dynamic discovery and composition. The framework is shown in Fig 2.3

Fig 2.3: Probe broadcasting in forming web services composition paths

16 Dynamic Web Services Integration and Execution (MS Dissertation)

[5] Kazuto Nakamura, Mikio Aoyama et al. “Value-Based Dynamic Composition of Web

Services” proposed a technique for dynamic web service composition that is value based and

provide composed web services based on QoS. Value meta-model and it’s representation

language VSDL is presented. Values are used to define quality of web services. Value added

service broker architecture is proposed to dynamically compose the web services and value-meta

model to define relationship among values. Value models are stored into value repositories in

value added service broker which provides value based service composition and evaluated the

results through three dictionary services. Service brokers provide dynamic composition of web

services and returned them to requesters. The results explained that resultant composite services

can provide more values of quality of contents as compared to previous discovered web services.

Although a number of dynamic web services composition techniques have been introduced, there

is a need of dynamic approach to handle the large number of increasing web services and their

updation in repositories. This paper provides an automated, fault tolerant and dynamic web

services composition framework. The framework is shown in Fig

Fig 2.4: Value based dynamic composition

17 Dynamic Web Services Integration and Execution (MS Dissertation)

[6] Jinghai Rao and Xiaomeng Su et al. “A Survey of Automated Web Services Composition

Methods” presents the overview of research efforts of automatic web service composition both

from the workflow and AI planning research community. First it proposed the five step model

for web services composition process. The composition model comprises of Presentation,

Translation, process generation, evaluation and execution. Each step is based on different

languages, platforms and methods. This method is enabled either by workflow research or AI

planning. The workflow methods are usually used in situation when request is already defined in

process model but automatic program is required to find atomic services to fulfill the

requirements. The AI methods are used when requester has no process model but has a set of

constraints and preferences. Hence process model can be automatically generated by the

program. The author also concludes that although different automatic web services composition

techniques are available, it is not true that higher automation is better. The web services

environment is highly complex and it is not good to generate everything automatically. Usually,

the highly automated methods are suitable for generating the implementation skeletons that can

be refined into formal specification. The framework is shown in Fig 2.5

Fig 2.5: A framework of service composition system

18 Dynamic Web Services Integration and Execution (MS Dissertation)

[7] Biplav Srivastava, Jana Koehler et al. “Web Service composition: Current Solutions and

Open Problems” explored the web services composition problems and compared the two major

approaches to this problem. The industrial approach and Semantic web approach, with each

other. The industrial approach is primarily syntactical and is based on XML standards which are

used for web services specification. This approach is used for several Businesses to Business and

enterprise applications integration. On the other hand Semantic web approach is based on

semantic description of preconditions and effects by focusing on reasoning about web resources.

For the composition of web services, they draw on the goal oriented inferencing from planning.

Both approaches are developed independently from each other. Several sub problems are

identified related to AI planning perspective. It is concluded that it is not possible to directly

apply AI planning technology to them.

[8] Junmei Sun, Huaikou Miao et al.”A Formal Architecture Supporting Dynamic Composition

of Web Services” proposed formal description to web services architecture using formal

specification notation Z which is different from workflow technology. The specification was

written in Z environment and checked which validates the complete process of composition.

Then it is explained with an example which depends on proposed architecture. The architecture

decompose the system in components, direct and validate the composition level at high abstract

level and provides a top down reusing way based on components. Composition behavior is

divided into two phases, A matching phase and an interaction phase. Connections for interactions

are established after matching phase. Service provider, service requester and registry are used as

components. Service provider can also play the role of service requester and vice versa. SOAP

messages are used for remote procedure calls. Ports are abstract access points to component

19 Dynamic Web Services Integration and Execution (MS Dissertation)

services. The advantage of this approach is precise and concise description of web services

discovery and composition.

[9] Jun Fang, Songlin Hu, Yanbo Han et al.”A Service Interoperability Assessment Model for

Service Composition” present service interoperability assessment model for service composition.

The model helps users to invoke properly their required composite services. The interoperability

between autonomous services is evaluated in open and large scale distributed environment. The

assessment model describes whether the interaction between two services is correct or to choose

most suitable services from candidate. The paper also considers the measure quantity about

interoperability will be more attractive and concrete than simple judgment, i.e. yes or no. By

using proposed model, the cost of computation time is small. There is no scalability problem in

proposed model as query space is smaller in comparison with service space. The advantage of

this approach is that assessment model is multifactor decision problem, depends on separate

evaluation of multiple levels. The framework usage is shown in Fig 2.6

Fig 2.6: First use pattern Example

20 Dynamic Web Services Integration and Execution (MS Dissertation)

[10] Jiamao Liu, Juntao Cui, Ning Gu et al. “Composing Web Services Dynamically and

Semantically”. In proposed approach, web services are based on some rules whose head and

bodied are semantic ontology related which eliminates the conflicts in composition process. The

algorithm is non-back-trace backward chaining that is used to compose the existing web services

in an efficient way. By giving inputs and outputs, the approach automatically performs the

composition process and converts it into BPEL4WS that can be executed and returns results. The

advantage of this approach is that whole composition process can be done dynamically and

automatically. The proposed framework is shown in Fig 2.7

Fig 2.7: Composition framework

21 Dynamic Web Services Integration and Execution (MS Dissertation)

Chapter 3

3 Proposed Approach

3.1 Problem Statement

The main interest of web service compositions is to give value-added services to existing

web services and introduce automated web services. Also they provide flexibility and agility.

There are few problems in existing approaches of dynamic web service composition.

• First, the numbers of web services are increasing with time and it is difficult to search the

whole repository for desired service in order to use it for the fulfillment of specific goal.

• Second, Web services are dynamically created and updated so the decision should be taken

at execution time and based on recent information.

• Third, Different web service providers use different conceptual models and there is a need of

one structure so that web services easily access each other without any technical effort.

• Forth, only authorized persons can access few of these web services

3.2 Suggested improvements

Following improvements are suggested in proposed dynamic web services composition

framework.

22 Dynamic Web Services Integration and Execution (MS Dissertation)

3.3 Proposed Framework

Proposed framework of web services composition includes the following components

3.3.1 Service Provider

The purpose of a Web service is to provide some functionality on behalf of its owner -- a person

or organization, such as a business or an individual. The provider entity is the person or

organization that provides an appropriate agent to implement a particular service.

Service providers register their web services in registries and make it accessible to clients. New

services are registered in registry through service registration process. There are several

registries that different companies (service providers) maintained and all of them are

synchronized after regular interval.

3.3.2 Service Requester

A requester entity is a person or organization that wishes to make use of a provider entity's Web

service. It will use a requester agent to exchange messages with the provider entity's provider

agent.

23 Dynamic Web Services Integration and Execution (MS Dissertation)

Clients that need a particular service send request through service request module. Service

requester requests the service from registry and if desired service is found, it accesses that

service through its service provider.

 In most cases, the requester agent is the one to initiate this message exchange, though not

always. Nonetheless, for consistency we still use the term "requester agent" for the agent that

interacts with the provider agent, even in cases when the provider agent actually initiates the

exchange.

Fig 3.1: Proposed Framework for dynamic web services composition

24 Dynamic Web Services Integration and Execution (MS Dissertation)

3.3.3 Web Server

Web server is a computer program that accepts the user requests through http request and

responds them back by http response which has data Contents. In proposed framework, service

requester requests the desired service through web server; web server locates the desired service

from different repositories and returns the address of service provider of desired service.

The primary function of a web server is to deliver web pages (HTML documents) and associated

content (e.g. images, style sheets, JavaScripts) to clients. A client, commonly a web browser or

web crawler, makes a request for a specific resource using HTTP and, if all goes well, the server

responds with the content of that resource. The resource is typically a real file on the server's

secondary memory, but this is not necessarily the case and depends on how the web server is

implemented.

While the primary function is to serve content, a full implementation of HTTP also includes a

way of receiving content from clients. This feature is used for submitting web forms, including

uploading of files.

Many generic web servers also support server-side scripting (e.g. Apache HTTP Server and

PHP). This means that a script can be executed by the server when a client requests it. Usually,

this functionality is used to create HTML documents on-the-fly as opposed to return fixed

documents. This is referred to as dynamic and static content respectively.

25 Dynamic Web Services Integration and Execution (MS Dissertation)

Highly riched web servers can be found in devices such as printers and routers in order to ease

administration using a familiar user interface in the form of a web page.

3.3.4 Translator

The purpose of translator is to translate request/response from one language to another. We use

translator so that all of the services are registered from external language to a language used by

system and vice versa.

Translation is a pretty simple job, and can be broken down into the following subtasks:

1. Get text for translation and encode it into a HTTP POST request

2. Send the data to the web server.

3. Read the response back into a big string

4. Remove all the HTML and formatting and send the raw translated string back to the

client.

Translation Web Services will work with other standards by providing them with the means of

transferring content.

3.3.5 Evaluator

The evaluator evaluates selected web services on the basis of interface base and functionality

base rules and returns the best selected service based on specified criteria.

26 Dynamic Web Services Integration and Execution (MS Dissertation)

3.3.6 Composer

The composer composes the selected component services in order to make a single desired web

service.

3.3.7 Matching Engine

The purpose of matching engine is to match the user’s request from the web services database. If

match is found, it returns results back to web server. If not then select the web services from

web, store/update them in database and then return results back to requested composer.

3.3.8 Service Repository/WSDB

The service registry and Web services database are used to register the web services by web

service providers. Also they are used to request the user’s desired web services.

Service repository build a customized, scalable and automated environment, enabling you to

manage, trust and secure services, while eliminating costly redundancies, lowering maintenance

costs and maximizing your existing IT investments.

• Ensure awareness of available applications, services and documents throughout the

organization by publishing and finding them quickly, reliably and flexibly.

27 Dynamic Web Services Integration and Execution (MS Dissertation)

• Minimize critical outages and inefficiencies by helping manage and automate service

upgrades and service level expectations.

• Quickly align business goals with IT and implement recommended practices by enabling

consistent enforcement of operational and lifecycle governance policies.

• Reduce complexity and lower costs of securing services and applications with a scalable,

standards-based solution.

• Help achieve and maintain industry/regulatory compliance with robust data protection,

policy enforcement, and auditing capabilities to demonstrate compliance.

3.4 Working

The proposed framework includes the following phases:

3.4.1 Service Registration

Service registration is the process of registering new web services in database and service

repository. The service providers register their web services in order to make it accessible for

clients. It is the process of specification of web services to the system. New services are

registered in registry through service registration process. There are several registries that

different companies (service providers) maintained and all of them are synchronized after regular

interval.

Service registry is a catalogue of services which helps in service definition, service selection and

in enforcing service policies. Service repository consists of various artifacts/assets about the

28 Dynamic Web Services Integration and Execution (MS Dissertation)

services including functional specs, user and other documentation and various other service

artifacts including SLAs that define transaction capacity, maximum throughput, downtime etc.

While service registry is normally used to accommodate run-time assets service repository is

used both for design time and run-time assets.

Following steps are used for web services registration:

1. Define the service's interface. This is done with WSDL

2. Implement the service. This is done with Java.

3. Define the deployment parameters.

4. Compile everything and generate a JAR file.

5. Deploy service.

To make a newly deployed Web service known to the community, the service producer should

register it with an online Web service directory. Currently, several such directories are available,

including www.xmethods.com and www.webservices.org. Service registration at these portals is

accomplished by completing and submitting an online registration form. For example,

www.xmethods.com registration form is available from www.xmethods.com/service. It requires

the registrant to provide certain information, including service description, SOAP endpoint URL,

method names, and WSDL URL. In the future, when UDDI becomes standardized and widely

deployed, new Web service listings will be entered into UDDI registries via a standard process.

3.4.2 Service Request:

29 Dynamic Web Services Integration and Execution (MS Dissertation)

Through Service request procedure, clients request for desired web services either from

repository or database.

Fig 3.2: Composition module

3.4.3 Translation

It translates the user’s request in order to search for a particular service. It translates the external

form used by requester/provider into form used by system.

3.4.4 Web Server:

In the proposed model Web server is a software application which looks for a particular service

from repository in order to fulfill user’s request. It also passes the request to composition module

if it does not find the particular service in its repository.

2 3

1

30 Dynamic Web Services Integration and Execution (MS Dissertation)

A Web Server does not function independently. It stores data and exchanges with other

machines. Thus minimum two participants are required to exchange information. A client would

request for the information and the server will have the information stored on it.

Each side needs software for exchanging the data. As far as the client is concerned, he has to use

a Web browser like Internet explorer, Mozilla, Netscape, etc. On the server side, a variety of

softwares are available. What type of server software you are able to run depends on the

Operating System chosen for the server.

For example, Microsoft Internet Information Server is a popular choice for Windows NT, while

those who prefer Unix choose Apache Web server.

The communication between the client machine and the Web server transpires as follows:

1. The client’s browser divides the URL into different parts including address, path name and

protocol.

2. The Domain Name Server translates the domain name into the corresponding IP address. This

numeric combination represents the site’s true address on the Internet.

3. The browser now decides which protocol should be used. A protocol, in common parlance, is

a language which the client’s machine uses to communicate with the server. FTP, HTTP, etc. are

some such protocols.

31 Dynamic Web Services Integration and Execution (MS Dissertation)

4. The server sends a GET request to the Web Server to retrieve the address it has been given. It

verifies that the given address exists, finds the necessary files, runs the appropriate scripts,

exchanges cookies if necessary, and returns the results back to the browser.

5. The browser now converts the data into HTML and displays the results to the user. If the

server cannot locate the file, the server sends an error message to the browser and eventually to

the client.

This process continues for every request sent by the browser until the client leaves the site.

Besides this the Web server also has an additional number of responsibilities. Whereas a Web

browser simply translates and displays data it is fed, a Web server has to distinguish between

various error and data types.

A Web Server must, for example, designate the proper code for any sort of internal error and

send that back to the browser immediately after it occurs. It also has to distinguish between

various elements or file types on a Web page (such as GIFs, JPEGS, live audio or video files,

etc.) so that the browser knows which files are saved in which format.

Depending on the site’s function, a Web server may also have numerous additional tasks to

handle, including logging statistics, handling security and encryption, serving images for other

sites (for banners, pictures, etc), generating dynamic content, or managing e-commerce

functions.

32 Dynamic Web Services Integration and Execution (MS Dissertation)

Web servers are responsible for storing and exchanging information with other machines/servers.

So because of this, at least 2 participants are required for each exchange of information: a client,

which requests the information, and a server, which stores it. Each side also requires a piece of

software to negotiate the exchange of data; in the case of the client, a browser like Netscape or

Internet Explorer is used. On the server side, however, things are not very simple. There is a

myriad of software options available, but they all have a similar task: to negotiate data transfers

between clients and servers via HTTP, the communication protocol of the Web. What type of

server software you are able to run depends on the Operating System installed on the server. For

example, Microsoft Internet Information Server is a popular choice for Windows NT, while

many Linux fans choose Apache Web server.

3.4.5 Service Composition

This module has three sub modules that are Composer, Evaluator and Matching Engine.

Composer composes the individual web services found from databases, Evaluator evaluate the

selected web selected on the bases of its functionality and interfaces and Matching Engine

match the requests against selected web services and return results back to web server.

3.4.6 Service Repository/WSDB:

33 Dynamic Web Services Integration and Execution (MS Dissertation)

 The service repository and Web services database are used to register web services. Web server

locates the requested service from Service repository, if it finds the service from repository, it

returns result back. If not then it sends request to composition module which search the requested

web services from WSDBs.

3.4.7 Web

In proposed framework, web is World Wide Web network where all service providers register

their web services in UDDI registries. If desired web services are not found in repository or

database then matching engine will search them from UDDI registries and save it in database for

current and future use.

3.5 Methodology

The methodology followed of proposed model is given as:

1. The web services are registered in service repository.

2. Translator converts the query into language used by internal system, if it is required.

3. The request arrives at web server, which checks for the requested service from its service

repository. If it finds the desired interface base service composition then it sends results back to

requester.

34 Dynamic Web Services Integration and Execution (MS Dissertation)

4. Multiple repositories are used in which there is replication of data. The purpose of replicated

repositories is, if one goes down or corrupted due to any failure/fault, then web server can

locate services from other repository.

5. If server does not found requested service composition from repository then it send request to

composition module.

6. In composition module matching engine select the desired services from web services

database, Evaluator evaluates these web services in two steps. In first step it evaluates the web

services on the basis of interface based search, whereas in second step it performs the

evaluation on basis of functionality based rule. After evaluation it sends selected services to

composer. The purpose of composer is to compose these component web services. Multiple

WSDB’s are introduced, so that if one goes down then we can make use of other DB’s.

7. A timestamp (aging) is maintained with each URI in WSDB. If the request arrives before the

expiration of that time then it look for the service in WSDB, otherwise request goes to the Web

and from there it search the web services from multiple repositories and save them in WSDB.

Also if matching engine does not finds the requested service from WSDB’s then it sends

request on the web for difference UDDI registries. The purpose of aging is also that it

maintains the updated information about web services as the contents are refreshed each time

when aging time expires.

8. The addresses of composed web services are sent back to composition requestor through

matching engine.

9. Web server maintains a copy of these composed services in its WSDB for future use and

returns the results back to client.

35 Dynamic Web Services Integration and Execution (MS Dissertation)

Chapter 4

4 SYSTEM DESIGN

4.1 Data Flow Diagram:

Fig 4.1: Web services composition DFD

36 Dynamic Web Services Integration and Execution (MS Dissertation)

This data flow diagram shows the flow of data for web services composition. The flow begins by

entering the user request and then searching the desired services. The services are then composed

in order to fulfill the desired request. The desired service is then discovered and composed. The

composed service is returned to service requestor through translator. The complete flow is shown

in figure.

4.2 Sequence Diagram

Fig 4.2: Sequence diagram of proposed framework

A sequence diagram shows, as parallel vertical lines (lifelines), different processes or objects that

live simultaneously, and, as horizontal arrows, the messages exchanged between them, in the

37 Dynamic Web Services Integration and Execution (MS Dissertation)

order in which they occur. The given sequence diagram shows the complete sequence of steps

starting from service request to web service composition. Matching engine searches the

requested service and Execution engine executes the discovered service. Evaluator evaluates the

discovered services on the basis of interface based and functionality based approaches. Finally

composer composes and returned the desired service to Matching Engine.

4.3 Use Cases:

Design for Dynamic web services composition Application:

4.3.1 General Use cases for Interface

Use Case:

This use case diagram illustrates a set of use cases for the system, the actor APPLICATION

USER and the relationship between actor and the use cases. In this use case diagram, following

use cases have been shown: List available UDDIs, Create new UDDI, Delete UDDI, Edit UDDI,

List available Businesses, List available Services, Compose Web Services and Available

Composed Services.

38 Dynamic Web Services Integration and Execution (MS Dissertation)

Fig 4.3: Web Services Composition Use Case Diagram

39 Dynamic Web Services Integration and Execution (MS Dissertation)

4.3.2 Extended Use cases for Interface

4.3.2.1 List available UDDIs:

Use case: List available UDDIs

Actors: APPLICATION USER

Pre Condition: APPLICATION USER views available UDDIs.

Post Condition: UDDIs are listed.

Description: APPLICATION USER lists UDDIs from application interface by clicking

on list available UDDIs option.

 Typical Course of Events

 Alternative courses

Line 2: No UDDI is available, indicate an error.

ACTIONS: SYSTEM RESPONSE:

1. This use case begins when

APPLICATION USER clicks

on list UDDI option.

 2. System shows the available UDDIs and

its related information.

40 Dynamic Web Services Integration and Execution (MS Dissertation)

4.3.2.2 Create new UDDI:

Use case: Create new UDDI

Actors: APPLICATION USER

Pre Condition: APPLICATION USER adds new UDDI.

Post Condition: New UDDI added in database.

Description: APPLICATION USER adds new UDDI from application interface by

adding its relevant information.

 Typical Course of Events

ACTIONS: SYSTEM RESPONSE:

1. This use case begins when

APPLICATION USER clicks

on add new UDDI option.

 2. System shows the new form

asking relative information.

3. User enters details about

UDDI that he wants to add.

 4. New UDDI added in database

 5. System shows the enable UDDI

option.

6. User checks Enable UDDI.

41 Dynamic Web Services Integration and Execution (MS Dissertation)

 Alternative courses

Line 2: USER enters Invalid information about the UDDI, indicate an error.

4.3.2.3 Edit UDDI:

Use case: Edit UDDI

Actors: APPLICATION USER

Pre Condition: APPLICATION USER edits UDDI.

Post Condition: UDDI information changed.

Description: APPLICATION USER edits UDDI related information from application

interface by changing the relevant information in fields.

 Typical Course of Events

 7. UDDI Enabled

ACTIONS: SYSTEM RESPONSE:

1. This use case begins when

APPLICATION USER clicks

on edit UDDI option.

 2. System shows the relevant form,

listing all UDDIs.

3. USER than changes the UDDI

related information by

42 Dynamic Web Services Integration and Execution (MS Dissertation)

Alternative courses

Line 2: USER enters Invalid information about the UDDI, indicate an error.

4.3.2.4 Delete UDDI:

Use case: Delete UDDI

Actors: APPLICATION USER

Pre Condition: APPLICATION USER deletes UDDI.

Post Condition: UDDI removed.

Description: APPLICATION USER deletes UDDI from application interface by

selecting the particular UDDI and clicking on delete option.

selecting particular UDDI.

 4. System updates the UDDI details.

 5. System shows Enable UDDI

option.

6. User Checks the Enable

option.

 7. UDDI Enabled.

43 Dynamic Web Services Integration and Execution (MS Dissertation)

 Typical Course of Events

 Alternative courses

Line 2: USER deletes the wrong UDDI.

4.3.2.5 List available Businesses:

Use case: List available Businesses

Actors: APPLICATION USER

Pre Condition: APPLICATION USER lists the Business.

Post Condition: Businesses Listed from UDDI database.

ACTIONS: SYSTEM RESPONSE:

1. This use case begins when

APPLICATION USER clicks

on delete UDDI option.

2. USER than select the

particular UDDI to be deleted.

 3. UDDI is selected.

4. User click on delete option.

 5. UDDI deleted from database.

44 Dynamic Web Services Integration and Execution (MS Dissertation)

Description: APPLICATION USER views all the Businesses stored in database by

clicking on list option.

 Typical Course of Events

 Alternative courses

Line 2: No Business is added in database, indicate an error.

4.3.2.6 List available Services:

Use case: List available Services

Actors: APPLICATION USER

ACTIONS: SYSTEM RESPONSE:

1. This use case begins when

PUBLISHER clicks on list

Business option.

 2. System asks for selecting UDDI

from drop down list.

3. User selects particular UDDI.

4. User Clicks on show list

button.

 5. System makes available all the

Businesses that are stored in

selected UDDI database.

45 Dynamic Web Services Integration and Execution (MS Dissertation)

Pre Condition: APPLICATION USER lists the Services.

Post Condition: Services Listed from UDDI database.

Description: APPLICATION USER views all the Services stored in database.

 Typical Course of Events

 Alternative courses

Line 2: No Service is added in database, indicate an error.

4.3.2.7 List available Services:

Use case: List available Services

ACTIONS: SYSTEM RESPONSE:

1. This use case begins when

USER clicks on list available

Services option.

 2. System asks for selecting UDDI.

3. User selects particular UDDI.

4. User Clicks on show list

button.

 5. System makes available all the Services that

are stored in selected UDDI database.

46 Dynamic Web Services Integration and Execution (MS Dissertation)

Actors: APPLICATION USER

Pre Condition: APPLICATION USER lists the Services.

Post Condition: Services Listed from UDDI database.

Description: APPLICATION USER views all the Services stored in database.

 Typical Course of Events

 Alternative courses

Line 2: No Service is added in database, indicate an error.

ACTIONS: SYSTEM RESPONSE:

6. This use case begins when

USER clicks on list available

Services option.

 7. System asks for selecting UDDI and Selecting

Business from drop down lists.

8. User selects particular UDDI.

9. Now User selects Business

from list.

10. User Clicks on show list

button.

 11. System makes available all the Services that are

stored in selected UDDI database.

47 Dynamic Web Services Integration and Execution (MS Dissertation)

4.3.2.8 Compose Web Services:

Use case: Search Services

Actors: APPLICATION USER

Pre Condition: APPLICATION USER searches the composed service.

Post Condition: Composed service is searched.

Description: APPLICATION USER wants the composed service and searches the

components services to make available the composed service.

 Typical Course of Events

ACTIONS: SYSTEM RESPONSE:

1. This use case begins when

USER clicks on compose web

services option.

 2. System shows the search services

tab.

 3. System asks the Service name.

4. User enter service name he

wants to search.

5. User Clicks on search button.

 6. System makes available all the

relevant Services stored in

database.

48 Dynamic Web Services Integration and Execution (MS Dissertation)

Alternative courses

Line 2: No Service is added in database, indicate an error.

4.3.2.9 Compose Web Services:

Use case: Service Invocation

Actors: APPLICATION USER

Pre Condition: APPLICATION USER searches the composed service.

Post Condition: Composed service is searched.

Description: APPLICATION USER wants the composed service and searches the

components services to make available the composed service.

 Typical Course of Events

7. User selects the service from

available list.

8. User clicks on “add to

composition list” button.

 9. System shows the complete detail

of selected service.

ACTIONS: SYSTEM RESPONSE:

1. This use case begins when

USER clicks on compose web

49 Dynamic Web Services Integration and Execution (MS Dissertation)

Alternative courses

Line 2: No Service WSDL URL displayed, indicate an error.

4.3.2.10 Compose Web Services:

Use case: Compose Services

Actors: APPLICATION USER

services option.

 2. System shows the service invocation tab.

 3. System shows the selected service WSDL

URL, selected in previous use case.

4. User Clicks on “Get info”

button.

 5. System makes available all the methods

available or that particular service.

6. User selects the method from

list.

7. User enters arguments for

selected method.

8. User clicks on “Invoke”

button.

 9. System shows the result.

50 Dynamic Web Services Integration and Execution (MS Dissertation)

Pre Condition: APPLICATION USER searches the composed service.

Post Condition: Composed service is searched.

Description: APPLICATION USER wants the composed service and searches the

components services to make available the composed service.

 Typical Course of Events

Alternative courses

Line 2: No Service is added in database, indicate an error.

4.3.2.11 List Composed Services:

ACTIONS: SYSTEM RESPONSE:

1. This use case begins when

USER clicks on compose web

services option.

 2. System shows the compose

services tab.

 3. System shows the list of services

available for composition.

4. User enters service name and

its method name.

5. User enters input arguments.

6. User clicks on “compose”

button.

 7. System shows the composed

service.

51 Dynamic Web Services Integration and Execution (MS Dissertation)

Use case: List Composed Services

Actors: APPLICATION USER

Pre Condition: APPLICATION USER lists the Services.

Post Condition: Services Listed from UDDI database.

Description: APPLICATION USER views all the Services stored in database by clicking

on list option.

 Typical Course of Events

 Alternative courses

Line 2: No Service is added in database, indicate an error.

ACTIONS: SYSTEM RESPONSE:

1. This use case begins when

USER clicks on list Service

option.

2. USER views all the added

Services.

 3. System makes available all the

Services that are stored in UDDI

database.

52 Dynamic Web Services Integration and Execution (MS Dissertation)

4.3.2.12 Clear Log:

Use case: Clear Log

Actors: APPLICATION USER

Pre Condition: APPLICATION USER clears log.

Post Condition: Log is cleared.

Description: APPLICATION USER wants the Log detail to clear and log is cleared by

clicking on clear log button.

 Typical Course of Events

Alternative courses

Line 2: User wants to clear the Log that is already cleared, indicate an error.

4.3.2.13 Application Exit:

Use case: Application Exit

ACTIONS: SYSTEM RESPONSE:

1. This use case begins when

USER clicks on clear Log

button on main screen.

 2. System removes all Log detail

and log is cleared.

53 Dynamic Web Services Integration and Execution (MS Dissertation)

Actors: APPLICATION USER

Pre Condition: APPLICATION USER wants to exit from Application.

Post Condition: Application closed.

Description: APPLICATION USER wants the exit from application and clicks on exit

button. As a result application closed.

 Typical Course of Events

Alternative courses

Line 2: User double clicks on exit button, indicate an error.

ACTIONS: SYSTEM RESPONSE:

3. This use case begins when

USER clicks on “exit” button

on main screen.

 4. Application close.

54 Dynamic Web Services Integration and Execution (MS Dissertation)

Chapter 5

5 Implementation

5.1 Apache jUDDI

jUDDI is an open source Java implementation of the Universal Description, Discovery, and

Integration (UDDI v3) specification for Web Services.

5.1.1 jUDDI Features

• Open Source

• Platform Independent

• Use with any relational database that supports ANSI standard SQL (MySQL, Oracle,

DB2, Sybase, Derby etc.)

• Deployable on any Java application server that supports the Servlet 2.3 specification

• jUDDI registry supports a clustered deployment configuration.

• Easy integration with existing authentication systems

• Supports InVM embeddable mode

5.1.2 jUDDIv3

• UDDI Specification version 3.0 compliant

• JDK 1.6 Recommended, but supports for JDK 1.5 and later

• Build on JAXB and JAX-WS standards, tested on CXF

55 Dynamic Web Services Integration and Execution (MS Dissertation)

• Build on JPA standard, tested with OpenJPA and Hibernate

• Pre-configured bundle deployed to Tomcat

• UDDI portlets

• Pre-configured portal bundle download

• User and Developer Documentation

5.1.3 jUDDIv2

• UDDI version 2.0 compliant

• Supports for JDK 1.3.1 and later

5.1.4 jUDDI Architecture:

jUDDI consist of a core request processor that un-marshals incoming UDDI requests, invoking

the appropriate UDDI function and marshalling UDDI responses (marshalling and un-

marshalling is the process of converting XML data to/from Java objects).

To invoke a UDDI function jUDDI employs the services of three configurable sub-components

or modules that handle persistence (the DataStore), authentication (the Authenticator) and the

generation of UUID's (the UUIDGen). jUDDI is bundled and pre-configured to use default

implementations of each of these modules to help the registry up and running quickly.

5.1.5 Persistence (jUDDI DataStore)

jUDDI needs a place to store it's registry data so jUDDI is pre-configured to use JDBC and any

one of several different DBMSs to do this.

56 Dynamic Web Services Integration and Execution (MS Dissertation)

jUDDI is Apache's Java implementation of the Universal Description, Discovery, and Integration

(UDDI v3) specification for web services. It's integration with Managed Method's JaxView is a

significant enhancement that was requested by the customers themselves. jUDDI registry

integration is especially helpful to smaller companies with a limited budget for managing their

SOA or cloud architecture.

Fig 5.1: JaxView

JaxView now provides closed loop policy publishing (security, routing, etc.) to jUDDI as WS-

Policy attachments, and it provedes closed loop governance with the jUDDI registry and

repository. Service status reports and enforcement results can be attached to the jUDDI service

asset. SLA policies can be modified by pushing them down to JaxView from jUDDI or pushing

modified SLA policies into jUDDI. The integration also allows JaxView to read new policies

from the jUDDI repository and automatically enforce them at runtime.

57 Dynamic Web Services Integration and Execution (MS Dissertation)

jUDDI is built on JAXB, JAX-WS, and JPA standards. The UDDI is a major component of web

architectures that allows organizations and applications to quickly find and use web services.

UDDI also supports the maintenance of operational registries. JaxView adds more capabilities

with jUDDI and other governance solutions including IBM, Oracle, and Software AG.

JaxView includes tools for monitoring and managing standards-based (SOAP) and REST web

services. It enables proxy, patent pending agent-less, and agent based deployments for managing

cloud or SOA environments. JaxView is built on a thin-client, server-based application

architecture that is accessible through a web browser.

5.2 RUDDI

5.2.1 Ruddi Characteristics:

Ruddi is UDDI client library

UDDI client library implemented by Ruddi™ currently has the following characteristics:

• Ruddi™ provides access to UDDI registries using an expressive pure Java API. No

specific knowledge of XML, SOAP or UDDI messaging is required.

• Ruddi™ fully implements the publishing and inquiry UDDI APIs of UDDI V3, V2 and

V1.

• Ruddi™ has a tested interoperability with the public Microsoft, SAP and IBM UDDI

Business Registries (UDDI V2 and V1 only, as far as V3 is not currently implemented by

the public nodes).

58 Dynamic Web Services Integration and Execution (MS Dissertation)

• Ruddi™ transparently manages UDDI V3, V2 and V1 messaging. The runtime uses

either UDDI V3, V2 or V1 messaging to communicate with a UDDI registry depending

on a user-defined profile. As a result, it is possible to write applications that can

alternatively interrogate UDDI V3, V2 or V1 registries with no code change.

• Ruddi™ has UDDI-specific collections library allowing writing expressive, strongly

typed UDDI applications.

• Ruddi™ has a validation library allowing validating all UDDI data structures according

to either the UDDI V2 or V1 specification (V3 under development). For example, a

business entity name of 150 characters will be detected as “too long” if the library is

configured for validation again the UDDI V1 specification but will be considered valid if

the library is configured for validation against the V2 specification.

• Ruddi™ internally automates low-level UDDI interactions. For example, an

authentication token will automatically be fetched using the appropriate information

defined in a profile whenever a method of the publishing API is invoked.

• Ruddi™ has an extended query API providing a level of interaction equivalent to what

JAXR proposes.

• Ruddi™ allows accessing UDDI registry replies as streams that can be used for example

as an input to an XSLT processor (for XML => HTML scenarios, for example).

• Ruddi™’s message transport can be managed internally or be delegated to the Apache

Axis V1 SOAP engine.

• Ruddi™ has a logging facility allowing monitoring the XML conversation between the

UDDI client and the UDDI registry. System.out logging, as well as a Log4J-based and an

experimental XML-based logging are supported.

59 Dynamic Web Services Integration and Execution (MS Dissertation)

• Ruddi™ is easy to install. Get up to speed in less than 5 minutes. Learn by example with

the about 20 examples provided with the library.

• Ruddi™ has extensive documentation.

5.2.2 Ruddi Usage

The following examples demonstrate the most common uses of Ruddi™ to connect to UDDI

registries.

1. Querying an UDDI registry

2. Saving and updating information in an UDDI registry

3. Suppressing information from an UDDI registry

4. Various Ruddi™ API examples

1. Querying an UDDI registry

• Finds a business entity by name.

• Finds a business service by name.

• Finds the technical models of a business entity.

• Finds the binding details of a business service.

• Gets detailed information on a business entity.

• Searches for business entities belonging to a given NAICS category.

• Finds a business entity by name using the Axis 1.0 SOAP implementation.

60 Dynamic Web Services Integration and Execution (MS Dissertation)

2. Saving and updating information in an UDDI registry:

• Saves a business entity.

• Saves a business service.

• Saves a binding template.

• Saves a technical model.

• Saves a business entity.

3. Suppressing information from an UDDI registry:

• Deletes a business entity.

• Deletes a business service.

• Deletes a technical model.

• Deletes a binding template.

5.2.3 Various Ruddi™ API examples:

• Shows how to use the Ruddi™ collections API.

• Shows how to enable and disable logging.

• Shows the validation capabilities of Ruddi™.

• Shows the capabilities of Ruddi™ with regard to keys.

• Shows how Ruddi™ UDDI structures serializers can be used.

• Shows how Ruddi™ can be used to convert V2 structures to V3 structures

61 Dynamic Web Services Integration and Execution (MS Dissertation)

5.3 JAXR

The Java API for XML Registries (JAXR) provides a uniform and standard Java API for

accessing different kinds of XML Registries. An XML registry is an enabling infrastructure for

building, deploying, and discovering Web services.

JAXR enables Java software programmers to use a single, easy-to-use abstraction API to access

a variety of XML registries. Simplicity and ease of use are facilitated within JAXR by a unified

JAXR information model, which describes content and metadata within XML registries.

 Current implementations of JAXR support ebXML Registry version 2.0, and UDDI version 2.0.

More such registries could be defined in the future. JAXR provides an API for the clients to

interact with XML registries and a service provider interface (SPI) for the registry providers so

they can plug in their registry implementations. The JAXR API insulates application code from

the underlying registry mechanism. When writing a JAXR based client to browse or populate a

registry, the code does not have to change if the registry changes, for instance from UDDI to

ebXML.

JAXR provides rich metadata capabilities for classification and association, as well as rich query

capabilities. As an abstraction-based API, JAXR gives developers the ability to write registry

client programs that are portable across different target registries. This is consistent with the Java

philosophy of "Write Once, Run Anywhere." Similarly, JAXR also enables value-added

capabilities beyond those of the underlying registries.

62 Dynamic Web Services Integration and Execution (MS Dissertation)

The current version of the JAXR specification includes detailed bindings between the JAXR

information model and both the ebXML Registry and the UDDI Registry v2.0 specifications.

JAXR works in synergy with related Java APIs for XML, such as Java API for XML Processing

(JAXP), Java Architecture for XML Binding (JAXB), Java API for XML-based RPC (JAX-

RPC), and SOAP with Attachments API for Java (SAAJ), to enable Web services within the Java

2 Platform, Enterprise Edition (J2EE).

5.3.1 JAXR Goals

Following functionalities are supported by JAXR API.

1. Support for industry-standard XML registry functionality

2. Support for registration of member organizations and enterprises

3. Support for submission and storing of arbitrary registry content

4. Support for lifecycle management of XML and non-XML registry content

5. Support for user-defined associations between registry content

6. Support for user-defined multi-level classification of registry content along multiple user

defined facets

7. Support for registry content querying based on defined classification schemes

8. Support for registry content querying based on complex ad hoc queries

9. Support for registry content querying based on keyword based search

10. Support for sharing of Web services

11. Support for sharing of business process between partners

12. Support for sharing of schemas between partners

63 Dynamic Web Services Integration and Execution (MS Dissertation)

13. Support for sharing of business documents between partners

14. Support for trading partner agreement assembly and negotiation

15. Support for schema assembly

16. Support for heterogeneous distributed registries

17. Support for enabling publish/subscribe XML Messaging between parties

JAXR is expected to support not only UDDI, but other similar registry standards (such as

ebXML) as well.

5.3.2 JAXR architecture

The JAXR architecture defines three important architectural roles:

• A registry provider implements an existing registry standard, such as the OASIS

(Organization for the Advancement of Structured Information)/ebXML Registry Services

Specification 2.0.

• A JAXR provider offers an implementation of the JAXR specification approved by the

Java Community Process (JCP) in May 2002. Currently, the JAXR reference implementation

1.0 offers a JAXR UDDI provider implementation.

• A JAXR client is a Java program that uses JAXR to access the registry provider via a

JAXR provider. A JAXR client can be either a standalone J2SE (Java 2 Platform, Standard

Edition) application or J2EE components, such as EJBs (Enterprise JavaBeans), Java Servlets,

64 Dynamic Web Services Integration and Execution (MS Dissertation)

or JSPs (JavaServer Pages). The JAXR reference implementation also supplies one form of a

JAXR client, a Swing-based registry browser application.

Figure 1 illustrates how diverse JAXR clients interoperate with diverse registries using JAXR.

Architecturally, JAXR clients use the API to perform registry operations, while JAXR providers

implement the API. Since JAXR offers a standard API for accessing diverse registry providers

and a unified information model to describe registry contents, JAXR clients, whether HTML

browsers, J2EE components, or standalone J2SE applications, can uniformly perform registry

operations over various registry providers.

Figure 2 shows a high-level view of the JAXR architecture. The JAXR provider shown is a

JAXR pluggable provider with underlying implementations of a UDDI-specific JAXR provider

and an ebXML-specific provider. The JAXR provider exposes capability-specific methods to the

65 Dynamic Web Services Integration and Execution (MS Dissertation)

JAXR client via the RegistryService interface. The JAXR client queries the RegistryService and

discovers the provider capability level via the CapabilityProfile interface.

5.4 WSDL4J

The Web Services Description Language for Java Toolkit (WSDL4J) allows the creation,

representation, and manipulation of WSDL documents. Is the reference implementation for

JSR110 'JWSDL' (jcp.org).

The IBM reference implementation of JSR-110 (Java APIs for WSDL), Web Services

Description Language for Java Toolkit (WSDL4J) allows the creation, representation, and

manipulation of WSDL documents.

66 Dynamic Web Services Integration and Execution (MS Dissertation)

5.5 WSIF

The Web Services Invocation Framework (WSIF) is a simple Java API for invoking Web

services, no matter how or where the services are provided. Please refer to the release

notes before you proceed with using WSIF.

WSIF enables developers to interact with abstract representations of Web services through their

WSDL descriptions instead of working directly with the Simple Object Access Protocol (SOAP)

APIs, which is the usual programming model. With WSIF, developers can work with the same

programming model regardless of how the Web service is implemented and accessed.

WSIF allows stubless or completely dynamic invocation of a Web service, based upon

examination of the meta-data about the service at runtime. It also allows updated

implementations of a binding to be plugged into WSIF at runtime, and it allows the calling

service to defer choosing a binding until runtime.

Finally, WSIF is closely based upon WSDL, so it can invoke any service that can be described in

WSDL.

5.5.1 Overview

WSIF stands for the Web Services Invocation Framework. It supports a simple Java API for

invoking Web services, no matter how or where the services are provided. The framework allows

maximum flexibility for the invocation of any WSDL-described service.

67 Dynamic Web Services Integration and Execution (MS Dissertation)

In the WSDL specification, Web service binding descriptions are extensions to the specification.

So the SOAP binding, for example, is one way to expose the abstract functionality (and there

could be others). Since WSIF mirrors WSDL very closely, it also views SOAP as just one of

several ways you might wish to expose your software's functionality. WSDL thus becomes a

normalized description of software, and WSIF is the natural client programming model.

The WSIF API allows clients to invoke services focusing on the abstract service description - the

portion of WSDL that covers the port types, operations and message exchanges without referring

to real protocols. The abstract invocations work because they are backed up by protocol-specific

pieces of code called providers. A provider is what conducts the actual message exchanges

according to the specifics of a particular protocol - for example, the SOAP provider that is

packaged with WSIF uses a specific SOAP engine like Axis to do the real work.

The decoupling of the abstract invocation from the real provider that does the work results in a

flexible programming model that allows dynamic invocation, late binding, clients being unaware

of large scale changes to services - such as service migration, change of protocols, etc. WSIF

also allows new providers to be registered dynamically, so you could enhance your client's

capability without ever having to recompile its code or redeploy it.

Using WSIF, WSDL can become the centerpiece of an integration framework for accessing

software running on diverse platforms and using widely varying protocols. The only

precondition is that you need to describe your software using WSDL, and include in its

description a binding that your client's WSIF framework has a provider for. WSIF defines and

comes packaged with providers for local java, EJB, JMS, and JCA protocols. That means you

68 Dynamic Web Services Integration and Execution (MS Dissertation)

can define an EJB or a JMS-accessible service directly as a WSDL binding and access it

transparently using WSIF, using the same API you would for a SOAP service or even a local

java class.

5.5.2 WSIF Structure

In WSDL a binding defines how to map between the abstract PortType and a real service format

and protocol. For example, the SOAP binding defines the encoding style, the SOAPAction

header, the namespace of the body (the targetURI), and so forth.

WSDL allows there to be multiple implementations for a Web Service, and multiple Ports that

share the same PortType. In other words, WSDL allows the same interface to have bindings to

for example, SOAP and IIOP.

WSIF provides an API to allow the same client code to access any available binding. As the

client code can then be written to the PortType it can be a deployment or configuration setting

(or a code choice) which port and binding it uses.

WSIF uses 'providers' to support these multiple WSDL bindings. A provider is a piece of code

that supports a WSDL extension and allows invocation of the service through that particular

implementation. WSIF providers use the J2SE JAR service provider specification making them

discoverable at runtime.

Clients can then utilize any new implementations and can delegate the choice of port to the

infrastructure and runtime, which allows the implementation to be chosen on the basis of quality

of service characteristics or business policy.

69 Dynamic Web Services Integration and Execution (MS Dissertation)

5.5.3 Reason for using WSIF

Imagine complicated Enterprise software system consisting of various pieces of software,

developed over a period of tens of years - EJBs, legacy apps accessed using Java's connector

architecture, SOAP services hosted on external servers, old code accessed through messaging

middleware. You need to write software applications that use all these pieces to do useful things;

yet the differences in protocols, mobility of software, etc. comes in the way.

The software you use moves to a different server, so your code breaks. The SOAP libraries you

use change - say for example you moved from using Apache SOAP to Apache Axis - so your

code breaks since it uses a now deprecated SOAP API. Something that was previously accessible

as an EJB is now available through messaging middleware via JMS - again, you need to fix the

code that uses the software. Or lets suppose you have an EJB which is offered as a SOAP service

to external clients. Using SOAP obviously results in a performance penalty as compared to

accessing the EJB directly. Of course, SOAP is a great baseline protocol for platform and

language independence, but shouldn't java clients be able to take advantage of the fact that the

software they are accessing is really an EJB? So your java customers pay a performance penalty

since you have to use SOAP for to accommodate you non-java clients.

WSIF fixes these problems by letting you use WSDL as a normalized description of disparate

software, and allows you to access this software in a manner that is independent of protocol or

location. So whether it is SOAP, an EJB, JMS (or potentially .NET and other software

frameworks), you have an API centered around WSDL which you use to access the functionality.

This lets you write code that adapts to changes easily. The separation of the API from the actual

70 Dynamic Web Services Integration and Execution (MS Dissertation)

protocol also means you have flexibility - you can switch protocols, location, etc. without having

to even recompile your client code. So if your an externally available SOAP service becomes

available as an EJB, you can switch to using RMI/IIOP by just changing the service description

(the WSDL), without having to make any modification in applications that use the service. You

can exploit WSDL's extensibility, its capability to offer multiple bindings for the same service,

deciding on a binding at runtime, etc.

71 Dynamic Web Services Integration and Execution (MS Dissertation)

Chapter 6

6 Results and Discussion

Measuring the performance of web service composition and execution framework is non-trivial.

Generally a framework is evaluated by implementing the framework and then using a dataset to

test the web services discovery, composition and execution based on calculating Precision,

Recall and Fallout. The fundamental factors for web service quality evaluation can be largely

divided into static, dynamic and statistical factors. Static factors do not change as long as no

changes occur within the service since they are dependent to the service in concern. Meanwhile,

dynamic factors represent quality information that changes according to certain situations such as

network traffic. Statistical factors are evaluated based on the statistical data of the service. The

hardware environment used is Intel Pentium IV 2.0GHz Core2Duo CPU with 4GB RAM and

Windows Vista Home Premium operating system.

6.1 Precision

Precision is the proportion of services that satisfies users’ request in all the discovered services.

6.2 Recall

Recall is the fraction of the web services, which are relevant to the request, that are successfully

retrieved.

72 Dynamic Web Services Integration and Execution (MS Dissertation)

6.3 Fall­Out

The proportion of non-relevant web services that are retrieved out of all non-relevant services

available.

Table 6.1 Static Evaluation Factors for Web Service

Factor Description

Regulatory What is the standard that the web service follows?

Security Does the service abide by security factors such as WS-Security?

Table 6.2 Dynamic Factors for Evaluation of Web Service

Factor Description

Service Availability Is the service working properly?

Network Availability How fast is the service dynamic network speed?

Execution Duration How long does it take to receive a reply after requesting the service?

Table 6.3 Statistical Factors for Evaluation of Web Service

Factor Description

Service Reliability How stable is the operation of the service?

73 Dynamic Web Services Integration and Execution (MS Dissertation)

Network Reliability How stable was the service network?

Execution Reliability How frequently is the reply sent back within a standard period of

time?

Reputation How good is the reputation of the service compared with other

services of the same type?

6.4 Dataset

The framework is implemented in Java 6 using Netbeans integrated development environment.

Apache JUDDI v3 is used to setup UDDIs. Apache JUDDI is an open source universal

description discovery and integration. Apache Tomcat 6 is used to host the JUDDI. RUDDI API

is used to access JUDDI from Java. WSDL4J (Web Service Description Language for Java) is

used to parse the WSDL files that are used to describe the web service choreography and

orchestration interfaces. WSIF (Web Service Invocation Framework) is used to invoke and

execute the discovered services after composition. For the evaluation of our framework, we have

setup 50 UDDIs, on which 500 businesses are registered with a total of around 4500 web

services WSDL references present. The actual services are hosted by the service providers on

their web servers.

6.5 Performance Evaluation

The performance of the proposed approach is evaluated using all of the factors discussed above.

We test the framework for web service discovery and log the values for Precision, Recall and

74 Dynamic Web Services Integration and Execution (MS Dissertation)

Fall-Out. Also, we compare these values with the existing frameworks and show where our

framework has improved the discovery, composition and execution. After discovery, the

services are available for evaluation. We log the timings for different type of services having

various number of methods exposed. Later, we log the composition time depending on the

number of services being composed and the size of the service space. At the end, we present

comparison with an existing technique to present the improvements of our framework.

6.5.1 Average Precision

We take various sets of services and for each set we make 25 readings and then compute an

average for that set. We start with a service set of 1000 web services and then keep on

increasing the number of web services to 1500, 2000, 2500, and finally 3000. Following is the

average precision of our framework.

Fig 6.1: Average Precision

75 Dynamic Web Services Integration and Execution (MS Dissertation)

We compare our framework with couple of other techniques. First technique “A Web service

discovery algorithm based on dynamic composition” is proposed by Fu Zhi Zhang et al. The

other technique “A Software Framework for Matchmaking Based on Semantic Web

Technology” is proposed by Lei Li and Ian Horricks. The analysis of the results clearly shows

that our technique has greatly improved the precision.

Figure 6.2: Comparison of Precision with Other Techniques

76 Dynamic Web Services Integration and Execution (MS Dissertation)

6.5.2 Average Recall

We take various sets of services and for each set we make 25 readings and then compute an

average for that set. We start with a service set of 1000 web services and then keep on

increasing the number of web services to 1500, 2000, 2500, and finally 3000.

77 Dynamic Web Services Integration and Execution (MS Dissertation)

Fig 6.3: Average Recall

Similar to the precision, we compare our framework with the other two techniques.

78 Dynamic Web Services Integration and Execution (MS Dissertation)

Fig 6.4: Comparison of Recall with Other Techniques

The analysis of the results clearly shows that our technique has greatly improved the recall.

79 Dynamic Web Services Integration and Execution (MS Dissertation)

6.5.3 Average Fall­out

We take various sets of services and for each set we make 25 readings and then compute an

average for that set. We start with a service set of 1000 web services and then keep on

increasing the number of web services to 1500, 2000, 2500, and finally 3000.

Figure 6.5: Average Fall-out

We also compare these values with the other two techniques.

80 Dynamic Web Services Integration and Execution (MS Dissertation)

Figure 6.6: Comparison of Average Fall-out with Other Techniques

81 Dynamic Web Services Integration and Execution (MS Dissertation)

6.5.4 Evaluation Time of Services

WSDL4J is used to parse the WSDL file of the web service. Once the service is discovered, we

must know the methods that it presents to be used from outside world. We log the evaluation

time of web service for various number of methods exposed by the web service. Once again we

randomly evaluate the web service and then log the timings. Following is the analysis of the

evaluation time.

Fig 6.7: Evaluation Time of Web Service

82 Dynamic Web Services Integration and Execution (MS Dissertation)

6.5.5 Execution Time for Web Service Composition

Web Service Invocation Framework (WSIF) is used to invoke the method of web service after

discovery and evaluation. We randomly compose web services to get fruitful output. Then, we

note the time for the execution of composite web service. We log the times for web services

composed of 2, 4, 6 and 8 services. Following is the graphical analysis of execution time of web

service composition.

83 Dynamic Web Services Integration and Execution (MS Dissertation)

Fig 6.8: Execution Time for Web Service Composition

84 Dynamic Web Services Integration and Execution (MS Dissertation)

6.6 Comparison of Various Factors
We compare our framework results with those of the framework described by Faisal Mustafa et

al. in “Dynamic Web Service Composition”.

85 Dynamic Web Services Integration and Execution (MS Dissertation)

Fig 6.9: Composition Time Comparison with Other Technique

We use the static, dynamic and statistical factors to make a detailed comparison.

Table 6.4 Comparison of Static Factors
Factor Our Framework Proposed by Faisal et al.

Regulatory UDDIv2, UDDIv3, SOAP, AXIS UDDI v2, SOAP

Security Yes Yes

Table 6.5 Comparison of Dynamic Factors
Factor Our Framework Proposed by Faisal et al.

Service Availability

Service may be hosted on

multiple servers to improve

service reliability

Service may be hosted on

multiple servers to improve

service reliability

86 Dynamic Web Services Integration and Execution (MS Dissertation)

Network Availability

Multiple paths available which

allows efficient network

utilization

Only one path available. If this is

congested, then the system fails.

Execution Duration Normal Normal

Table 6.6 Comparison of Statistical Factors
Factor Our Framework Proposed by Faisal et al.

Service Reliability

Service may be hosted on

multiple servers to improve

service reliability

Service may be hosted on

multiple servers to improve

service reliability

Network Reliability

Multiple registries make it

possible to reach the service

from multiple paths which

increases network reliability

Only one path available, if it fails,

network reliability cannot be

guaranteed.

Execution Reliability Normal Normal

Reputation Average Average

6.7 Comparison with Other Factors
There are a few other factors that are of interest. Following is the comparison based on those

factors.

Table 6.7 Comparison with Other Factors
Factor Our Framework Proposed by Faisal et al.

87 Dynamic Web Services Integration and Execution (MS Dissertation)

Decentralized Approach

Multiple web servers are

available. If one fails, the

framework is still active using

some other web server.

Single web server is present

which presents a centralized

approach. If this fails, the system

collapses.

Multiple Databases

Database replication allows the

system to keep operating even if

a database crashes

Single database. The system fails

if it crashes.

New Services
Having a timestamp allows to use

new services

No technique to use new

services.

88 Dynamic Web Services Integration and Execution (MS Dissertation)

Chapter 7

7 Summary and Conclusion

7.1 Overview of Research

The research lies in the field of dynamic web services composition selection. At this stage,

automated dynamic web service composition development process is still under development,

although some automated tools and proposals are available. The full automation of this dynamic

process is still an ongoing research activity. In this thesis, we have discussed the main problems

faced by dynamic web services composition, such as execute ability, data distribution and its

effect on QoS. We also tried to elaborate the main differences and advantages of web services

over distributed application development. Based on an analysis of current problems, we have

introduced a model of dynamic services. In the proposed model we try to fix current issues for

dynamic composition. In last chapter, we have provided the implementation of proposed

algorithm and compare the performance with existing approaches and presented the results. The

analysis shows that proposed approach has better results then existing ones.

7.2 Achievements

In this thesis we have proposed the dynamic web services composition algorithm to solve the

composition issues related to data distribution, reliability, availability and QOS. A framework is

proposed by combination of interface based and functionality based rules. The proposed

89 Dynamic Web Services Integration and Execution (MS Dissertation)

framework solves the issues related to unavailability of updated information and inaccessibility

of web services from repository/databases due to any fault/failure. In proposed framework,

multiple repositories and WSDB’s have been introduced in order to make system more reliable

and ensure data availability. By using multiple registries, data availability is guaranteed whereas

by using aging factor user’s can retrieve up to date information. It solves unavailability of

updated information problem by adding aging factor in repository/WSDB(Web Services

Database).Finally, our algorithm eliminates the dynamic service composition and execution

issues, supports web service composition considering QOS(Quality of Services), efficient data

retrieval and updation, fast service distribution and fault tolerance. The proposed system is fault

tolerant, reliable, performs fast data retrieval and Quality of services based.

7.3 Limitations

In this short paper our discussion is around distributed technologies, execute ability issues, data

distribution, QoS issues and how to avoid problems with execute ability issues. At this stage,

automated dynamic web service composition development process is still under development,

although some automated tools and proposals are available. The full automation of this dynamic

process is still an ongoing research activity.

7.4 Future Work

90 Dynamic Web Services Integration and Execution (MS Dissertation)

Nothing is perfect in this world and no work is ever perfect, there is always room for

improvement. Similarly, in this, although we did a lot of hard work but still it can be further

optimized and improved providing more functionality. This step opens the path for others to

march on. In future, the framework can be extended by Crawling the web for searching web

services instead of querying the UDDI registries. We will also be looking into deeper details of

every component of the framework to ensure better and efficient composition.

Recent advancement in web services plays an important role in business to business and

business to consumer interaction. In order to find a suitable service, discovery mechanism is

used. Through discovery mechanism collaboration between service providers and consumers

becomes possible by using standard protocols. A static web service discovery mechanism is not

only time consuming but requires continuous human interaction. This paper presents a

framework for automatic, dynamic web services discovery and utilization. The framework is

flexible, scalable and new services can easily be inserted/updated in local cache and UDDI

registries. Through the proposed approach requester always retrieve up to date services

because a timestamp is attached with each repository and when it expires, services are

updated. Also through local cache there is fast retrieval of services as requester doesn’t need to

go to web each time for discovery of services. If they are present in local repositories then in

less time services can easily be discovered. Interoperability between service providers and

requesters is achieved through Translator. CSP solver selects the service satisfied specified

constraints, which is a part of matching engine. Thus the proposed algorithm fix current issues

of dynamic web services discovery. At last, we have provided the implementation of proposed

91 Dynamic Web Services Integration and Execution (MS Dissertation)

framework and the results shows greater performance and accuracy in dynamic discovery

mechanism of web services resolving the existing issues of flexibility, scalability, based on

quality of services, and discovers updated and most relevant services with ease of usage.

92 Dynamic Web Services Integration and Execution (MS Dissertation)

8 APPENDIX A

User Manual

Main Screen

Double click the executable jar file to run the application. The main page of the application

appears as seen below. Left side of the main page shows the menu with different available

options. The right part of the screen shows the detail panel where about page is displayed at start.

On the bottom of the main page, we have a log panel that displays the logs about the current

system events happening. There are also buttons to Clear the Log panel and Exit the application.

93 Dynamic Web Services Integration and Execution (MS Dissertation)

Add New UDDI

We can add a new UDDI to the system. We have to provide the name, inquiry, publish and

security URLs with username/password (if applicable). We also have to set a unique priority for

this UDDI. There is also an option to enable/disable this UDDI. After entering all these values,

click on Add UDDI buttons which saves this UDDI information to the database.

94 Dynamic Web Services Integration and Execution (MS Dissertation)

Edit / Delete UDDI

We can edit the UDDIs that have been added to the system. We are also able to delete as

required. When we click on “Edit UDDI” in the main menu, the detail panel displays the list of

available UDDIs. To select a UDDI, we click on any row in the table being displayed. We can

change any or all of the values for this UDDI and then press Update. Or we can also delete this

UDDI by pressing the Delete button.

95 Dynamic Web Services Integration and Execution (MS Dissertation)

List Available Business

All the UDDIs which have been enabled are shown in the drop down. We can select any of the

UDDI and then press the Show List button which displays all the available businesses in the

table below.

96 Dynamic Web Services Integration and Execution (MS Dissertation)

List Available Services

All the UDDIs which have been enabled are shown in the drop down. We can select any of the

UDDI, list of businesses registered on that UDDI are populated in the business dropdown. We

can either select a business name or select All option to display the related services. Then press

the Show List button which displays all the available services in the table below.

97 Dynamic Web Services Integration and Execution (MS Dissertation)

Compose Web Services

We can search the UDDIs or in other words discover web services by name. We can type the

service name to be searched in the search box and then press Search button which displays all the

found services in the associated table. When we click on any of the services found, it displays the

list of methods exposed by that web service. We can select any method and then press “Add to

Composition List” button by which these services and methods become available for

composition. We also have a button for “Clear Composition List” which is self explanatory.

98 Dynamic Web Services Integration and Execution (MS Dissertation)

Service Invocation

We can dynamically invoke a web service by providing its WSDL address. We specify the

WSDL URL and then press Get Info button which displays the methods exposed by the web

service. We can select any method and then provide comma separated arguments and click

Invoke button. The web service is dynamically invoked and executed and the results are

displayed in the Result section.

99 Dynamic Web Services Integration and Execution (MS Dissertation)

Compose Services

List of services available for composition are displayed. We can add the services to be composed

in comma separated order and then provide the input arguments. When Compose button is

pressed the services are executed in the order specified and the results are displayed in the results

section. We can also save this composed service in the database by providing a name and press

Save. This composed service is available for execution when needed later.

100 Dynamic Web Services Integration and Execution (MS Dissertation)

9 References

[1] http://en.wikipedia.org/wiki/Web_service

[2] Incheon Paik*, Daisuke Maruyama* “Automatic Web Services Composition Using

Combining HTN and CSP” Seventh International Conference on Computer and

Information Technology

[3] Biplav Srivastava, Jana Koehler “Web Service Composition - Current Solutions and Open

Problems”

[4] Yilan Gu and Mikhail Soutchanski. “ A Logic For Decidable Reasoning About Services”

2006

[5] Annapaola Marconi, Marco Pistore and Paolo Traverso. “Implicit vs. Explicit Data-Flow

Requirements in Web Services Composition Goals”.

[6] Michael Hu, Howard Foster “Using a Rigorous Approach for Engineering Web Services

Compositions: A Case Study”.

[7] Daniela Barreirs clars “selecting web services for optimal composition” 2006.

[8] Jinghai Rao and Xiaomeng Su “A Survey of Automated Web Service Composition

Methods”

[9] Faisal Mustafa, T. L. McCluskey “Dynamic Web Service Composition” 2009 International

Conference on Computer Engineering and Technology

[10] Pat. P. W. Chan and Michael R. Lyu “Dynamic Web Service Composition: A New

Approach in Building Reliable WebService” 22nd International Conference on Advanced

Information Networking and Applications

101 Dynamic Web Services Integration and Execution (MS Dissertation)

[11] LIU AnFeng, CHEN ZhiGang, HE Hui, GUI WeiHua “Treenet:A Web Services

Composition Model Based on Spanning tree” IEEE 2007

[12] Kazuto Nakamura Mikio Aoyama “Value-Based Dynamic Composition of Web Services”

XIII ASIA PACIFIC SOFTWARE ENGINEERING CONFERENCE (APSEC'06)

