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Abstract

An efficient and productive IoT application may ease some real-time tasks however,

it is at risk of cyber-attack. Intrusion Detection Systems (IDS) are of significant

importance for the security measures of IoT applications. Anomaly-based intru-

sion detection systems perform more efficaciously than other methods. IoT/IIoT

devices that deal with large data volumes are at risk of malicious attacks and

as a result, anomaly-based IDS are developed. But, the question that arises is

whether the performance of models meets the required standards and accuracy.

For research the Telemetry data of IoT/IIoT services from the ToN_IoT dataset

collected at UNSW Canberra Cyber IoT lab, SEIT (Australia), is used. It in-

cludes data about seven IoT/IIoT sensors. Federated Learning based on Deep

auto-encoder is adopted to efficiently identifying attacks while solvingthe issue of

data leakage and the privacy of users . Federated models handle the non-IID data

efficiently. Hybrid models use Machines and Deep Learning algorithms for efficient

model design with increased detection rates. The algorithms used for the Hybrid

model are Random Forest, Decision Tree and XGBoost. The XGBoost algorithm

improves the accuracy of the Hybrid model with better predictions. Both Feder-

ated and Hybrid model ensures efficient pre-processing and feature selection. The

results of the Federated model are dependent on device datasets while the Hybrid

model outperforms on the same data.

Keywords: Internet of Things (IoT), Industrial Internet of Things (IIoT), cyber-

security, intrusion detection systems (IDSs),Machine Learning, Federated Learn-

ing, XGBoost
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Chapter 1

Introduction

In the advanced era of development, IoT devices are widely used to improve dif-

ferent tasks and aid humans in daily practices. These wireless IOT devices work

with a connection to the internet and are managed remotely for real-time decision-

making and providing information dissemination.[1] These IoT devices are helpful

in daily life in every domain such as industrial control applications, health care

and for environment monitoring like weather updates. [2] Every device senses

its environment and records events and enables communication between machines

without human intervention. [3] The resources of IoT sensors are limited and they

are vulnerable to security attacks which is a major challenge in the current era. [4]

IoT devices are vulnerable to different types of attacks and the reasons for them

are viruses, malicious software and hackers. These attacks aim to breach privacy

and data integrity.[5]As a result security measures requires more attention and for

the stated purpose Intrusion Detection Systems are designed to examine data and

identification of anomalous attacks.

The intrusion detection systems monitor the network traffic and scan it for ma-

licious activities continuously and record it for further processing and adminis-

tration. The recorded data is analyzed using signs and patterns for abnormal

behavior. Then it is compared with some predefined rules for identifying the at-

tack and notifying the administrator to take required preventions. Thus IDS pre-
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vents IoT devices from unauthorized access. Intrusion detection systems belongs

to cryptography domains but require machine learning for their working as high

cryptographic computational capabilities ar not applicable on Iot/IioT dataset.

Intrusion detection systems work using two methods i.e. signature-based model

and anomaly-based model. In the signature-based method, the IDS detects ma-

licious activities based on patterns of bytes in the network traffic.[6] These IDS

also uses the sequences that are known before hands for intrusion detection which

are called signatures. Using this system the signatures which are already in the

system can be easily detected but detection of new anomalous activities is very

difficult in it.

Therefore, anomaly-based intrusion detection systemsw
¯
ere introduced for unknown

malicious attack detection. Machine learning models are used for anomaly-based

attack detection. All the data is compared with the model and if it is not found

then it is identified as attacked one. Anomaly-based IDS are better than signature-

based because they are trained and designed in accordance with application and

hardware.[7]

In general traditional IT-based system uses different tools like firewalls and crypto-

graphic solution but IoT and IioT devices require comprehensive security measures

because of their lightweight communication protocols and low storage capacity.

For these devices, it is required to design specific intrusion detection systems in

case of cyber attacks.[8]

The research thesis is based on an anomaly-based IDS. The dataset is classified

into normal and anomalous one and then the unusual pattern is identified as

anomalous. In recent research, different anomaly-based systems are designed to

improve the efficiency of systems. The principle of all anomaly-based intrusion

detection systems are:

i) defining parameters,

ii) training of system on given data and

iii) detecting anomalies.

2
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The system is designed by defining the baseline behaviour of data for training

purposes and then analyzing test data. Deep Auto-encoder and KitNET are fa-

mous anomaly-based intrusion detection algorithms. Both algorithms first extract

features and then accurately identify anomalies from the dataset by training the

dataset using an auto-encoder[9]. In research thesis for intrusion detection Fed-

erated Learning and Hybrid models are used for model development. Federated

Learning is used in previous studies for intrusion detection in an efficient way.

Federated learning plays an efficient role to support applications which are sensi-

tive to privacy. Earlier Federated Learning is applied on various fields and some

of its application are stated for background knowledge. Smartphones are used

for learning user behavior using statistical model for applications for next word

prediction. Users’ privacy is a major concern as they are not willing to share their

personal details. Other concern of users is to save their phones battery power and

bandwidth. Federated learning enables predictions of words on mobile phones and

different applications without affecting the user experience and preserving privacy

[10].

Organizations like hospitals use federated learning to record patients’ data to pre-

dict health care in accordance with preserving privacy of patients as they may have

to face consequence legally and ethically. Federated learning is a solution for this

type of problem where privacy policies are needed to be maintained while learning

process [11]. Nowadays Internet of things: wearable devices, smart vehicles and

homes have sensors for data collection and processing in real time. Autonomous

vehicles require data real time traffic data which is difficult as it requires con-

nectivity with each device. Federated Learning also help in this type of model

training with efficiency to adapt change maintaining user privacy.

3
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Figure 1.1: Federated Learning Text Predictive Model

Decisions Tree Random Forest and XGBoost are supervised machine learning al-

gorithms. They are used for classification and segregation problems for regression

or numerical output. Classification is a predictive modeling task where the goal

of model is to assign input data values to predefined categories. Regression is

another type of predictive modeling task where the aim of model is to predict a

continuous numeric value or a quantity based on input features.

4



Chapter 1: Introduction

Figure 1.2: Federated Learning in Hospitals and Organizations

1.1 Research Problem

1.1.1 Problem statement

IoT devices are heterogeneous and relatively weak in terms of security, Machine

Learning algorithms are widely used for intrusion detection. Federated learning is

used with the advantage of a secured model. The main research problem is that

how use of Federated learning and machine learning based Hybrid models enhance

the performance of intrusion detection system. The designed models are evaluated

and analyzed by accuracy, F1 score, precision and recall. Another question for the

stated problem is that what are the limitations and challenges of both models over

each other?

5
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1.1.2 Proposed Solution

An architecture for the problem’s solution is proposed, which implements Fed-

erated Learning based on Deep Auto-Encoder and Hybrid Model using Random

Forest, Decision Tree and XGBoost. Hybrid approach is applied with efficient pre-

processing and feature selection to get optimal IDS model while Federated model

solves the issues of non-IID for real time usage.

1.1.3 Research Objective

Nowadays Internet of things: wearable devices, smart vehicles and homes have

sensors for data collection and processing in real-time. These sensors reads data

in real-time that is difficult to process as it requires connectivity with each de-

vice for its proper working. This real-time data is a source of collecting data in

huge volume. Machine learning algorithms are designed to handle this type of

data. Data collection is an easy task in comparison to data handling as many

organizations and individuals are not comfortable sharing their private data be-

cause of privacy concerns, government and trade secrets. Privacy concerns hinder

researchers to carry out their research as they do not have complete data access

only due to data leakage.Intrusion detection systems (IDS) are essential for net-

work usability. The challenges while developing IDS are large amounts of data

and sophisticated attackers. In machine learning, Federated Learning is a method

that makes sure data security by uploading local model parameters to different

clients and building up a digital model. The study involves two parts one using

the federated learning for IoT/IIoT devices using the Deep encoder model. The

second part of the research involves the evaluation of the Dataset using Hybrid

Models.
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Literature Review

In past, many researches have tried to resolve the issue of anomaly detection.

Anomalies are major hindrance for experts to perform their tasks in the computer

science and IT field. The behavior of anomalies are needed to be detected ef-

ficiently to take adequate measures. In previous years, different techniques and

measures are proposed with efficacy to identify intrusions and prevent them. In

our research, we discuss use of machine learning algorithms and federated learning

based anomaly detection methods. Machine learning algorithms have high clas-

sification accuracy to detect intrusions so they have gained great momentum in

recent years. However, federated learning preserves privacy of users and provide

data security.

2.1 Application of Federated learning for IDS:

Federated learning is a decentralized technique to ensure security and privacy. The

methodology trains the model locally and parameters are send to the the central-

ized server for aggregation and then server transfer back the aggregated parameters

to iterate the training process [12]. The challenges of FL are false alarms, high

latency and poisoning attacks. These challenges are examined for future research.

The study also presents solutions for federated learning based challenges like IDS
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handling, FL heterogeneity and interoperability to build efficient models.

In research, federated learning based technique to ensure privacy is proposed with

local training of model on IoT. The benefit of proposed study is that devices

take advantage of aggregated results of others and in result the anomaly detection

model is improved [13]. The dataset used in this study is NSL-KDD. The accuracy

of centralized model that trained over the entire dataset is 83.09%. A comparison

between FL based model and self-learning in which model updates are not shared

is done. The results of FL model outperforms the self-learning model.

In the study of wireless edge networks and their intrusion detection, the Fed-

erated Learning-based model is designed using Attention Gated Recurrent Unit

(FedAGRU). The FedAGRU updates on the universal learning method while the

centralized learning model updates on raw data shared among edge devices and

the central server. The proposed methodology efficiently reduces the communi-

cation overhead with an assurance of converged learning. The datasets used for

research are KDD CUP 99, CICIDS2017 and the WSN-DS [14]. The results of

the model show that the accuracy is increased by 8% with the use of FedAGRU

than the centralized learning algorithms, and the model is also 70% cost-effective

in comparison to different federated learning methodologies. The accuracy of the

FedAGRU model on IID data is 99.28% and on non-IID data, it is 98.82%.

A multi-classifier approach is used for developing FL based IDS model to evaluate

the CIC-ToN-IoT dataset [15]. To model the IDS system three different settings

are adopted by dataset partitioning relative to IP address and malacious attack

types. These data partitioning types are basic, balanced and mixed. Basic data

partitioning contains data about the network traffic of each IoT device. Balanced

data contains portions of data from each IoT device with the same number of

samples while mixed data is a tradeoff of basic and balanced data in which a

balanced number of samples are taken but each IoT device maintains them. The

model aggregation is carried out using FedAvg and Fed+ aggregating functions

and the IBMFL framework. The study also discusses the challenges of efficacious

FL implementation. The results of Fed+ are better than FedAvg on mixed data

8



Chapter 2: Literature Review

or balanced data.

The research of Davy Preuveneers gives a solution to the challenge where an ad-

versary may poison the ML models with malicious samples of training. For the

solution of the problem, "a block-chain-based federated learning model" is designed

to detect intrusions on the CICIDS2017 dataset with a chained distributor ledger

[16]. The proposed methodology audits the models without centralized data train-

ing. The accuracy of the model according to results is 97% for both training and

validation data. The study reveals that while the use of auto-encoder with feder-

ated learning, has an inauspicious impact on the performance of the model differs

between 5-15% but it provides transparency in distributed training of the model.

The model can be generalized and applied to similar use cases.

In research Liu et al. proposed an anomaly detection method in which training of

given model is carried out using "FL framework and Attention Mechanism-based

Convolutional Neural Network Long Short-Term Memory (AMCNN-LSTM)"[17].

The efficiency of the model is improved by implementing a gradient compres-

sion mechanism. Application of all ML techniques gives an accuracy of 92% on

power demand, ECG, space shuttle and engine. The Root Mean Squared Er-

ror (RMSE) is comparatively lower than state-of-the-art methodologies: CNN-

LSTM[18], Stacked Autoencoders [19], GRUs [20] and LSTM[21]. Lin et al., in

their research on the dataset provided by Virustotal, implement a combination

of FL with LSTM and SVM for malware classification and achieve an accuracy

of 91.67% [22]. Mothukuri et al. in their research for intrusion detection system

introduce FL with an ensembler to detect anomaly applying a decentralized model

on the Modbus network dataset [23]. The accuracy achieved using implemented

model is 90.25%.

In a study for anomaly detection in IoT devices, an autonomous FL-based self-

learning distributed system named DIOT is presented by Nguyen et al.. The model

also makes use of Gated Recurrent Units (GRU). The dataset was generated by

collecting network activity in a lab using Kali Linux and Hostapd to develop a

gateway for WiFi and Ethernet to connect IoT devices [24]. The model utilizes

9
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federated learning for efficient aggregation of behaviour profiles. The designed

model is capable of identifying unknown attacks. The accuracy rate of the system

is 95.6%.

Qin et al. in their study, develop anomaly-based IDS using real-time high-dimensional

time series and NSL-KDD dataset [25]. The model is designed for resource-limited

embedded systems by implementing "Sequential Extreme Learning Machine(OS-

ELM)" to get "on-device sequential learning neural network (ONLAD)". For threat

detection, OS-ELM is used with an auto-encoder. For the dimensions of the

dataset greedy algorithm is used to select features. Federated averaging algo-

rithms help in grouping similar target attacks but it has a disadvantage in that

it only selects devices with the same data features while developing the global

model. The designed model has many input and output layers according to se-

lected features and 64 neurons as hidden layers. The accuracy achieved using

feature selection is 70.4% and the worst is 25.7% when features are not selected.

The study [26] addresses the heterogeneity challenge of IoT devices for anomaly

detection and uses federated learning on the LSTM model on simulated datasets

of general electric current smart buildings . For model training, the federated av-

eraging algorithm is used in iterations until completion of defined training rounds

and the model is converged. The accuracy achieved by the proposed model is 90%.

A resource-efficient approach for anomaly detection in IoT is proposed by imple-

menting Federated aggregation-based BIRCH K-means to develop site-invariant

IoT µS models [27]. The dataset is collected by 7 different VSL service types.

The behaviour of the model is evaluated on common IoT attacks. The accuracy

achieved by the designed model is 99% on the test dataset.

Schneble et al. [28] implement Federated Learning for efficient communication

and reduce the cost of the machine learning model. The MIMIC patient dataset

is used for identification of attacks. The model achieves an accuracy of 99%. An

advantage of research is that it handles the uneven distribution of data scaled up

for mobile devices for security.

10



Chapter 2: Literature Review

Zhao et al. [29] in their research for intrusion detection, proposed "a federated

learning-based multi-task deep neural network(MT-DNN-FL)". Their research is

on VPN traffic recognition and classification tasks on CICIDS2017, ISCXTor2016

and ISCXVPN2016 datasets. The achieved accuracy is 97.97% which is better

than the centralized training architecture. In a study on generated IIoT device

dataset for intrusion detection a blockchain-based federated learning approach

is proposed by Zhang, Lu, et al.[30]. For model designing "centroid distance

weighted federated averaging (CDW FedAvg)" is used to resolve data heterogeneity

issues and distinguish positive and negative classes in the dataset. The proposed

approach is efficient and feasible with an accuracy of 89%.

Authors in their research applied "Convolutional Neural Networks (CNN) along

with federated learning" to develop efficient intrusion detection systems. Fan et

al. [31]make use of Federated parameter aggregation on CICIDS2017, NSL-KDD

and self-generated datasets. The proposed model achieves an accuracy of 91%.

Sun, Ochiai, et al. [32]also develop a model using the same ML techniques on the

network dataset LAN-Security Monitoring Project with an accuracy of 87.10%.

Li, Zhou, et al. [33] model based on CNN and federated Homomorphic parameter

addition has an accuracy of 81% on self-generated terrestrial and satellite network

datasets.

In the classification-based research of Al-Marri et al. [34], Artificial Neural Net-

work is applied using a federated averaging algorithm on the NSL-KDD dataset

and attains an accuracy of 98.12%. Popoola et al. [35] secures an accuracy of

99.39% by implementing the same ML algorithms to evaluate Bot-IoT and N-

BaIoT datasets.

An architecture is proposed for network intrusion detection using unsupervised

stacked federated learning. The Federated learning flower framework evaluates

the network datasets: Bot-IoT, TON-IoT, UNSW-NB15 and CSE-CIC-IDS-2018

[36]. The results of the model are remarkable on non-IID data. The model reaches

an accuracy of 93% on Bot-IoT, 74% on TON-IoT, 97% on UNSW-NB15 and 98%

on CSE-CIC-IDS-2018. With the help of research, federated learning is considered

11
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a promising approach to generalising diverse networks.

2.2 Hybrid Approach for IDS:

IoT systems capture real-time data continuously to process it and transfer infor-

mation to a global server. Hackers are ready to spot weak systems and attack

them. So, intrusion detection systems are vital for identification and security of

attacks. A model is designed by Souza et al. [37]using a fog computation layer to

identify data as attacked or benign to take countermeasures. An efficient Hybrid

classification approach using DNN-kNN is implemented to design an IDS system.

The model is applied to NSL-KDD and CICIDS2017 datasets for evaluation. The

selection of attributes from the dataset is carried out using the rate of information

gain. The designed model has less operational cost and memory usage with an

accuracy of 99.77% on NSL-KDD and 99.85% on CICIDS2017 datasets.

In research, Rashid et al. [38]designed an anomaly-based intrusion detection sys-

tem by incorporating self-learning classification algorithms along with feature se-

lection and ranking. The ML algorithms used for Hybrid architecture design are

Neural Network, DNN, SVM, Naïve Bayes along with Deep Auto-encoder. To

evaluate the designed model, authors selects NSL-KDD and CIDDS-001 datasets.

To evaluate model results, performance metrics: Accuracy, F1 Score, Precision

and Recall are used. k-NN, SVM, NN and DNN algorithms are applied on the

NSL-KDD dataset and attain 100% accuracy and CIDDS-001 has approximately

99% accuracy rate by applying k-NN and Naïve Bayes algorithms.

In research by Ding et al. [39], three datasets are used for evaluating their net-

work intrusion system. The research focus is on balancing sample data using KNN

for under-sampling in an efficient way. TACGAN- IDS framework is applied for

iterative training of data. TACGAN is derived from ACGAN and has properties

of three types of networks which are conditional generative adversarial network

(CGAN), semi-supervised generative adversarial network (SGAN) and informa-
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tion maximizing generative adversarial network (infoGAN). The datasets used for

training and testing of the model are KDDCUP99, CICIDS2017 and UNSW-NB15

datasets. The model achieves 93.53% accuracy on the KDDCUP99 while accuracy

score on CICIDS2017 is 95.86% and the UNSW-NB15 dataset has an accuracy of

92.39%.

Machine learning algorithms are applied mostly for intrusion detection but in the

study, Parsaei et al. [40] applied a data mining approach to the NSL-KDD dataset.

They work to detect R2L and U2R classes from imbalanced data using the Hybrid

model by applying the "synthetic minority oversampling technique (SMOTE) and

cluster centre and nearest neighbour (CANN)". The accuracy of the designed

model for detecting low-frequency attack U2R is improved by 94% and R2L by

50%. In base research by Lin et al. [41] the accuracy achieved using combining

Cluster Centers and Nearest Neighbors (CANN) on KDD-Cup 99 dataset for U2R

is 28.7% and for R2L 61.92%.

Gautam et al.[42]proposed a Hybrid model using the CICIDS2017 dataset. The

model architecture is based on "Bidirectional Recurrent Neural Network using

Long Short-Term Memory and Gated Recurrent Unit". The results of the model

predict attacks with an accuracy score of 99.13%. The performance of the model

is improved because instructions flow in bi-direction and concatination is applied

to combine sequence.

Hybrid learning for intrusion detection is considered an innovative perspective. In

research by Emec et al. [43], a BGH Hybrid model is constructed and compared

with BLSTM-GRU algorithms. The evaluation of the model is carried out using

CIC-IDS-2018 and BoT-IoT datasets to detect intrusions. To use the datasets

comprehensive feature selection is needed and for it, seven ML algorithms are

used to get two types of feature variants: Full and ten best features. The BGH

model outperforms the given datasets with an accuracy of 98.78% on CIC-IDS-

2018 and 99.99% on BoT-IoT datasets.

Research by Ethala et al. [44] proposed a new model by combining "Spider Mon-
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key Optimization (SMO) and Hierarchical Particle Swarm Optimization (HPSO)".

The dataset used for intrusion detection is NSL-KDD and UNSW-NB 15 datasets.

Optimal and important feature selection is carried out by using the Rosenbrock

function. The score of accuracy using these datasets are 99.175% and 99.18%

respectively.

A hybrid intrusion detection system is designed using "Support Vector Machine

(SVM) and combined with Adaptive Neuro-Fuzzy System (ANFIS)" to deal with

imprecise information [45]. The fuzzy model is like ANN and detects R2U, U2R,

and DDOS attacks. 99.3% accuracy is achieved after applying Fine Gaussian SVM

(FGSVM) algorithm on projected NSLKDD dataset.

Jadhav et al.[46], in their research on Hybrid modelling of anomaly-based IDS, uses

KDDCUP99 and NSLKDD datasets. The architecture of the model is designed

by applying RNN-LSTM machine learning algorithms which outperform other

algorithms SVM, RF, J48 and Naive Bayes. The accuracy result of the model on

the projected dataset is 96%. From the beginning of intrusion detection to the

current research many efficient IDS are available but, there is always room available

to improve them. Recurrent neural networks (RNNs) based Hybrid model is used

to evaluate on IoT-23 dataset and the UNSW-NB15 dataset [47]. Optimal features

from the dataset are selected using Harris Hawk optimization. LSTM and GRU

algorithms are used to detect attacks from the dataset along with RNN. Testing

of modelshow that its accuracy on the IoT-23 and UNSW-NB15 datasets are

98.12% and 99.98% respectively. Hence, from accuracy score of the model on both

projected datasets reveals its efficacious behaviour. The proposed architecture of

IDS is capable of detecting known and unknown attacks.

Machine Learning algorithms Logistic Regression (LR), KNN, Random Forest

(RF), Linear Discriminant Analysis (LDA), Classification and Regression Tree

(CART), SVM AND LSTM are projected on the ToN_IoT dataset for evaluation.

The results of Machine Learning algorithms on the ToN_IoT dataset are shown

in the table below depicting minimum and maximum accuracy [48].
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Dataset Minimun Accuracy Maximum Accuracy

Garage Door - 100% Accuracy of all algorithms

Weather LR 58% CART 87%

Motion Light KNN 54% LSTM 59%

Thermostat CART 59% Others 66%

KNN 60%

GPS Tracker CART and NB 84% KNN 88%

Modbus NB, SVM, LR, LDA 67% CART 98%

Fridge NB 50% LSTM 100%

Table 2.1: Performance summary of ML Algorithms on ToN_IoT Dataset

The minimum accuracy of binary classification on the combined dataset when

evaluated using Logistic Regression (LR) and SVM is 61% and its maximum is

88% by using CART. The minimum accuracy of multi-class classification on a

combined dataset when evaluated using NB is 54% and its maximum is 77% by

using (CART).
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Sr No Authers Year Dataset Algorithm Accuracy

1 [13] 2020 NSL-KDD FL 77.79%

2 [14] 2020 KDD CUP 99, FedAGRU 99.28%

CICIDS2017

and WSN-DS

3 [15] 2022 CIC-ToN-IoT IBMFL Above 80%

4 [16] 2018 CICIDS2017 Centralized Auto-encoder 97%

FL based Auto-encoder

and FL based Blockchain vary 5-15%

5 [17] 2021 Power demand, FL based 92%

ECG, space shuttle AMCNN-LSTM

and engine

6 [22] 2020 Virustotal’S dataset FL with LSTM 91.67%

and SVM

7 [23] 2021 Modbus Network FL with an 90.25%

Dataset ensembler

8 [24] 2019 Network Traffic GRU and FL 95.6%

9 [25] 2021 NSL-KDD FL based OS-ELM 70.4%

10 [26] 2021 electric current FL on LSTM 90%

smart buildings

Table 2.2: Performance summary of proposed works in literature review
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Sr No Authers Year Dataset Algorithm Accuracy

11 [27] 2018 Generated FL based 99%

BIRCH K-means

12 [28] 2019 MIMIC FL 99%

13 [29] 2020 CICIDS2017 FL based DNN 97.97%

ISCXTor2016

and ISCXVPN2016

14 [30] 2020 Generated CDW FedAvg 89%

15 [31] 2020 CICIDS2017, CNN and FL 91%

NSL-KDD parameter aggregation

and Generated

16 [32] 2020 LAN-Security CNN and FL 87.10%

Monitoring Project parameter aggregation

17 [33] 2020 Generated CNN and Homomorphic 81%

parameter addition

18 [34] 2020 NSL-KDD FL based ANN 99.12%

19 [35] 2020 Bot-IoT and N-BaIoT FL based ANN 99.39%

20 [36] 2023 Bot-IoT FL Flower 93%

TON-IoT Framework 74%

UNSW-NB15 97%

CSE-CIC-IDS-2018 98%
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Sr No Authers Year Dataset Algorithm Accuracy

21 [37] 2020 NSL-KDD DNN-kNN 99.77%

CICIDS2017 99.85%

22 [38] 2020 NSL-KDD k-NN, SVM, NN,DNN 100%

CIDDS-001 NB and AutoEncoder 99%

23 [39] 2022 KDDCUP99 TACGAN-IDS 93.53%

CICIDS2017 framework 95.86%

UNSW-NB15 92.39%

24 [40] 2016 NSL-KDD to SMOTE U2R 94%

identify U2R and R2L and CANN R2L 50%

25 [42] 2022 CICIDS2017 Bidirectional RNN 99.13%

(LSTM + GRU)

26 [43] 2022 CIC-IDS-2018 BGH Model 98.78%

BoT-IoT using BLSTM-GRU 99.99%

27 [44] 2022 NSL-KDD SMO 99.175%

UNSW-NB 15 and HPSO 99.18%

28 [45] 2022 NSL-KDD FGSVM and ANFIS 99.3%

29 [46] 2023 NSL-KDD RNN-LSTM 96%

30 [47] 2023 UNSW-NB15 RNN based 99.98%

LSTM-GRU
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System Architecture

3.1 Dataset Description

The TON_IoT dataset is comprised of Internet of Things (IoT) and Industrial

IoT (IIoT) datasets to evaluate the efficiency and accuracy of cybersecurity-based

IoT devices using Artificial Intelligence. The ToN_IoT dataset is based on data

collected from different heterogeneous data sources. This dataset includes Internet

of Things (IoT) and Industrial Internet of Things (IIoT) Telemetry datasets, Net-

work Traffic datasets, Windows datasets and Linux Datasets. The IoT and IIoT

dataset from main ToN_IoT contains data about IoT devices; Fridge, Garage

Door, Weather, GPS Tracker, Modbus, Motion Light and Thermostat. The

ToN_IoT Linux dataset is about Ubuntu 14 and 18 TLS. The Windows dataset

is about Windows 7 and 10. The source of data collection was a large-scale realis-

tic network at UNSW Canberra Cyber IoT lab in the School of Engineering and

Information Technology (SEIT). The data about normal and cyber attacks were

collected from the network using parallel processing and the testbed was devel-

oped by connecting physical systems, fog and cloud platforms, virtual machines

and hacking applications. IoT and IoT sensors were also used for industrial IoT in

a testbed to impersonate the complexity and scalability. For research on defined

architectures Processed and Train-Test IoT and IIoT devices, dataset is selected.
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DoS, DDoS and ransomware data hacking techniques were used for computers,

web applications and IoT gateways for normal and anomalous data collection.

3.2 Imprtance of ToN_IoT Dataset

In comparison to previous datasets, the sensors readings of IoT are not included

in it like in UNSW-IoT and Bot-IoT. But, the ToN_IoT dataset has the sensors

readings. It includes both normal and anomalous data. The architecture of testbed

is real with IoT communicating layers i.e. Edge, Fog and Cloud layers. The

Testbed includes hetrogeneous data sources.

3.3 Processed Dataset

The data collected from different sensors is processed and saved in CSV format.

Data is processed to filter and convert it into standard features and labels. The

processed data is considerably large and its total count is given below.

Dataset Total Records Count

Garage Door 571205

Weather 650238

Motion Light 452263

Thermostat 442229

GPS Tracker 595687

Modbus 287195

Fridge 587077

Table 3.1: Record Count of Processed Dataset.
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3.4 Train_Test_datasets

Train_Test dataset of Iot and IIoT stores information in CSV format. This dataset

is used to evaluate accuracy and efficiency of Cybersecurity based IoT devices using

Artificial Intelligence. Listed below is the count of data records.

Dataset Total Records Count

Garage Door 59588

Weather 59261

Motion Light 59489

Thermostat 52775

GPS Tracker 58961

Modbus 51107

Fridge 59945

Table 3.2: Record Count of Train_Test_Dataset

3.5 Types of Attacks in Dataset

3.5.1 DoS/DDoS Attacks:

Daniel of the system (DoS) and Distributed Daniel of the system (DDoS) is a

system flooding in which network and service overcome enormous traffic access,

making it unavailable to the authorized user and diverting their attention from

other malicious activities[49]. It is launched using bots and botnets. The storage

and memory capacity of IoT/IIoT devices is very low so these devices become easy

and weak victims of DDoS attacks. For dataset generation, IoT/IIoT devices are

attacked by using a Python script coded with the help of the Scapy package and

UFONet toolkit. Different IP addresses of offensive Kali Linux are used for the

purpose and are listed below:

1. For DoS:
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a) 192.168.1.30

b) 192.168.1.31

c) 192.168.1.39

2. For DDoS:

a) 192.168.1.30

b) 192.168.1.31

c) 192.168.1.34

d) 192.168.1.35

e) 192.168.1.36

f) 192.168.1.37

g) 192.168.1.38

3.5.2 Password attack:

They are types of intrusions which intervene and focus on attaining unauthorized

access to a system, network, or account of IoT/IIoT device through weaknesses in

password utilization[50]. The IoT/IIoT devices are attacked by dictionary attacks

and brute force attacks using the IP method Common password attack is Brute

and phishing force attack. Bash scripts for attacks are coded using the CeWL

toolkit and the Hydra toolkit and Hydra toolkit for dictionary and brute force

attacks respectively. The IP addresses for Password cracking using offensive Kali

Linux are listed below:

a) 192.168.1.30

b) 192.168.1.31

c) 192.168.1.3

d) 192.168.1.35 and

e) 192.168.1.38
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3.5.3 Ransomware Attack:

A ransomware attack is a type of cyber attack in which an attacker infiltrates a

system or device or network and encrypts the data, making it inaccessible. Then

ransomware is adopted by an attacker, generally in cryptocurrency, which gives

the key to decode encrypted files. Ransomware attacks have become soared, which

have a significant threat to businesses, individuals, organizations and for smart

devices. Ransomware detection and prevention is critical to save the organization

from data loss, financial detriment and potential operational intrusion[51][52]. In

the case of IoT/IIoT ransomware deny access. For dataset generation, the Metas-

ploitable3 framework is used to attack the designed system as a ransomware attack.

The IP addresses for ransomware attacks using offensive Kali Linux are listed be-

low:

a) 192.168.1.33

b) 192.168.1.37

IDS intrusion detection systems can play a major role for IoT/IIoT in diagnosing

ransomware attacks early and respond timely

3.5.4 Injection Attacks:

These are types of cyber attacks in which the involvement of malicious and vul-

nerable data or code is inserted into an application, database or smart device[53].

These attacks utilize software vulnerabilities that allow input of the user to be

executed without any proper validation with serious harmful results. Injection

attacks can pose unauthorized access, theft of data, manipulation of data and

even whole system compromise. For telemetry data bash codes are written using

vulnerable public PHP and DVWA web applications. The IP addresses for an

attack using offensive Kali Linux are listed below:

a) 192.168.1.30

b) 192.168.1.31

c) 192.168.1.33

23



Chapter 3: System Architecture

d) 192.168.1.35

e) 192.168.1.36

f) 192.168.1.38

3.5.5 Cross-Site Scripting (XSS):

It is a type of vulnerability of web security that occurs when a malicious script

(usually Java Script) is inserted by an attacker into web pages viewed by other

users[53]. When an application fails to validate properly data provided by the

user before rendering it back to other users can lead to Cross-site scripting XSS.

Attacks of XSS are considered as most common web application security threats

and can have serious consequences which includes data theft, hijacking of session

and unauthorized access to user account. HTML and Javascript codes are used to

inject malicious data on web pages for authentication between the web server and

IoT device. The IP addresses for an attack using offensive Kali Linux are listed

below:

a) 192.168.1.32

b) 192.168.1.35

c) 192.168.1.36

d) 192.168.1.39

3.5.6 Backdoor Attack:

A backdoor attack is a type of threat to cyber security in which an unauthorized

and hidden access point is intentionally inserted by an attacker in a computer sys-

tem, network and application[53]. The main theme of this attack is to grant nor-

mal authentication and security mechanisms, which allows the attacker to achieve

unauthorized access or control over a system without being diagnosed easily. For

dataset generation, the Metasploitable3 framework[] is used to attack the designed

system as a ransomware attack. The IP addresses for ransomware attacks using

offensive Kali Linux are listed below:
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a) 192.168.1.33

b) 192.168.1.37

3.5.7 Scanning Attack

A scanning attack is a cyber security attack in which systematic scanning of a

network, system or application is carried out by an attacker for vulnerabilities,

weaknesses or for open ports that can be used to attain unauthorized access or

incept further attacks. The first step in the cyber attack process is scanning at-

tacks which allow attackers to recognize potential targets and weaknesses before

initiation of more targeted and focused attacks Scanning attacks can be autho-

rized and malicious both, scanning activities which are performed by authorized

professionals to recognize vulnerabilities fixing before exploitation by malicious

attackers often include ethical hacking or penetration testing.

3.6 Dataset Statistics

3.6.1 IoT Garage Door

3.6.1.1Features of IoT Garage Door

1. date: Date

It is the logging Date of IoT telemetry data.

2. time: Time

It is the time logging of IoT telemetry data.

3. door_state: Boolean

This feature represent the state of door which is linked with designed network

using a sensor to check either the door is open or closed.
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4. sphone_signal: Boolean

This feature represent the signals received on phone which are either true or false.

5. label: Number

It is a tag for identifying normal and attack records. For identification 0 is for

normal and 1 specify attacked record.

6. type: String

The "type" feature enlists the tags of attacks. Attacks are divided into categories,

like normal, DoS, DDoS, password and backdoor attacks.

Listed Below is the count of attacks on the IoT Garage Door dataset.

Labels Train-Test Dataset Processed Dataset

normal 35000 495201

ddos 5000 35568

backdoor 5000 19287

injection 5000 10230

password 5000 6331

ransomware 2902 2902

xss 1156 1156

Scanning 529 529

Table 3.3: Statistics of IoT Garage Door
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Figure 3.1: Statistics of IoT Garage Door

Important Features of IoT Garage Door Dataset

Figure 3.2: Important Features of Garage Door

3.6.2 IoT Weather

3.6.2.1Features of IoT Weather

1. date: Date

It is the logging Date of IoT telemetry data.

2. time: Time

It is the time logging of IoT telemetry data.
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3. temperature: Number

This feature is numeric recording of weather temperature using sensor connected

with the network.

4. pressure: Number This feature is reading pressure value of weather using

sensor connected with the network.

5. humidity: Number This feature has data about humidity of weather recorded

using sensor connected with the network. Humidity readings of a weather sensor

linked to the network

6. label: Number

It is a tag for identifying normal and attack records. For identification 0 is for

normal and 1 specify attacked record.

7. type: String The "type" feature enlists the tags of attacks. Attacks are divided

into categories, like normal, DoS, DDoS, password and backdoor attacks.

Listed Below is the count of attacks on the IoT Weather dataset.

Labels Train-Test Dataset Processed Dataset

normal 35000 559718

ddos 5000 35641

backdoor 5000 25715

injection 5000 15182

password 5000 9726

ransomware 2865 2865

xss 866 866

Scanning 529 529

Table 3.4: Statistics of IoT Weather
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Figure 3.3: Statistics of IoT Weather

Important Features of IoT Weather

Figure 3.4: Important Features of Weather

3.6.3 IoT Motion Light

1. date: Date

It is the logging Date of IoT telemetry data.

2. time: Time

It is the time logging of IoT telemetry data.

3. motion_status: Number

This feature represents the motion sensor status which is either on (1) or off (0).
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4. light_status: Boolean

This feature represents the motion sensor status which is either on or off.

5 label: Number

It is a tag for identifying normal and attack records. For identification 0 is for

normal and 1 specify attacked record.

6. type: String

The "type" feature enlists the tags of attacks. Attacks are divided into categories,

like normal, DoS, DDoS, password and backdoor attacks.

Listed Below is the count of attacks on the IoT Motion Light dataset.

Labels Train-Test Dataset Processed Dataset

normal 35000 388328

ddos 5000 8121

backdoor 5000 28209

injection 5000 5595

password 5000 17521

ransomware 2264 2264

xss 449 449

Scanning 1775 1775

Table 3.5: Statistics of IoT Motion Light

Figure 3.5: Statistics of IoT Motion Light
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Important Features of IoT Motion Light

Figure 3.6: Important Features of Motion Light

3.6.4 IoT Thermostat

3.6.4.1Features of IoT Thermostat

1. date: Date

It is the logging Date of IoT telemetry data.

2. time: Time

It is the time logging of IoT telemetry data.

3. current_temperature: Number

This feature is for reading sensor current temperature of thermostat connected

with the network.

4.thermostat_status: Boolean

This feature represents the thermostat sensor status which is either on or off.

5. label: Number

It is a tag for identifying normal and attack records. For identification 0 is for

normal and 1 specify attacked record.
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6 type: String The "type" feature enlists the tags of attacks. Attacks are divided

into categories, like normal, DoS, DDoS, password and backdoor attacks.

Listed Below is the count of attacks on the IoT Thermostat dataset.

Labels Train-Test Dataset Processed Dataset

normal 35000 385953

ddos - -

backdoor 5000 35568

injection 5000 9498

password 5000 8435

ransomware 2264 2264

xss 449 449

Scanning 61 61

Table 3.6: Statistics of IoT Thermostat

Figure 3.7: Statistics of IoT Thermostat
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Important Features of IoT Thermostat

Figure 3.8: Important Features of Thermostat

3.6.5 IoT GPS Tracker

3.6.5.1Features of IoT GPS Tracker

1. date: Date

It is the logging Date of IoT telemetry data.

2. time: Time

It is the time logging of IoT telemetry data.

3. latitude: Number

It is the measured Latitude value of GPS sensor attached with network.

4. longitude: Number

It is the measured Longitude value of GPS sensor attached with network.

5. label:

It is a tag for identifying normal and attack records. For identification 0 is for
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normal and 1 specify attacked record.

6. type: String

The "type" feature enlists the tags of attacks. Attacks are divided into categories,

like normal, DoS, DDoS, password and backdoor attacks. Listed Below is the

count of attacks on the IoT GPS Tracker dataset.

Labels Train-Test Dataset Processed Dataset

Normal 35000 513849

DDos 5000 10226

Backdoor 5000 35571

Injection 5000 6904

Password 5000 25176

Ransomware 2833 2833

XXS 577 577

Scanning 550 550

Table 3.7: Statistics of IoT GPS Tracker

Figure 3.9: Statistics of IoT GPS Tracker
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Important Features of IoT GPS Tracker

Figure 3.10: Important Features of GPS Tracker

3.6.6 IoT Modbus

3.6.6.1Features of IoT Modbus

1. date: Date

It is the logging Date of IoT telemetry data.

2. time:Time

It is the time logging of IoT telemetry data.

3. FC1_Read_Input_Register: Number

This feature is for reading an input register of Modbus function code.

4.FC2_Read_Discrete_Value: Number

This feature is for reading a discrete value of Modbus function code.

5. FC3_Read_Holding_Register: Number

This feature is for reading a holding register value of Modbus function code.

6. FC4_Read_Coil: Number Modbus function code that is responsible for
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reading a coil

7. label: Number

It is a tag for identifying normal and attack records. For identification 0 is for

normal and 1 specify attacked record.

8. type String The "type" feature enlists the tags of attacks. Attacks are divided

into categories, like normal, DoS, DDoS, password and backdoor attacks.

Listed Below is the count of attacks on the IoT Modbus dataset.

Labels Train-Test Dataset Processed Dataset

Normal 35000 222855

DDOS - -

Backdoor 5000 40011

Injection 5000 5186

Password 5000 18115

Ransomware - -

XXS 577 498

Scanning 529 529

Table 3.8: Statistics of IoT Modbus

Figure 3.11: Statistics of IoT Modbus
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Important Features of IoT Modbus

Figure 3.12: Important Features of Modbus

3.6.7 IoT Fridge

3.6.7.1IoT Fridge Features

1. date: Date it is the logging Date of IoT telemetry data.

2. time: Time it is the time logging of IoT telemetry data.

3. fridge_temperature: Number It is the Numeric value for measuring tem-

perature with linked sensor of IoT Fridge to the network.

4. temp_condition: String The data type of this feature is string. It is for

measuring temperature with linked sensor of IoT Fridge to the network. The

temperature is set to high of low based and threshold value is predefined.

5. label: Number

It is a tag for identifying normal and attack records. For identification 0 is for
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normal and 1 specify attacked record.

6. type: String The "type| feature enlists the tags of attacks. Attacks are divided

into categories, like normal, DoS, DDoS, password and backdoor attacks.

Listed Below is the count of attacks on the IoT Fridge dataset.

Labels Train-Test Dataset Processed Dataset

Normal 35000 500827

DDOS 5000 35568

Backdoor 5000 28425

Injection 5000 10233

Password 5000 7079

Ransomware 2902 2902

XSS 2042 2042

Table 3.9: Statistics of IoT Fridge

Figure 3.13: Statistics of IoT Fridge
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Important Features of IoT Fridge

Figure 3.14: Important Features of Fridge

3.7 EXPERIMENTAL METHODOLOGY

In machine learning, it is a good practice to prepare and clean data to have an

efficient model with good accuracy. The data preparation involves discarding data

features that are not important and adversely affect the model performance. In

data preparation missing values are also replaced or these data elements are also

removed and non-numerical features of data into numerical ones. Data preparation

is carried out by pre-processing and normalisation of data.

3.7.1 Required Resources

Listed below are the resources and libraries required for implementation of research

models:

1. Lenovo Ideapad 320

2. Google Colab

3. Python
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4. Pandas

5. Numpy

6. Seaborn

7. Matplotlib

8. Sklearn

9. Pytorch

3.7.2 Data Pre-processing

In data pre-processing, some features of data that are in string data type are

converted into numeric values for applying the machine learning Hybrid Model

algorithms. For instance, all the ’high’ and ’low’ or ’on’ and ’off’ values are con-

verted into ’0’ and ’1’. The second step of data pre-processing involves the omission

of labels ’date’, ’time’ and ’timestamp’. These features are omitted because they

are the root cause of data over-fitting. Important features are selected for Hybrid

Model using Random Forest classifier and depicted in figures in dataset description

section.

Figure 3.15: Pre-Processing of Data
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In data pre-processing for Federated Learning Based Deep Auto-encoder, the

dataset is divided into two parts based on the "type" label used for identifying

normal and attacked data. All the normal data and anomalous data are sepa-

rated. The normal data i.e. not affected by any kind of attack is divided into

three parts one for deep auto-encoder training to extract essential information

from it, the second, is used as an input to the trained model along with the mean

square error of auto-encoder for computing the threshold to detect the anoma-

lous data. The third one is combined with anomalous data and named mix_data

for testing purposes. The loss values from the mix_data are compared with the

threshold, if the loss is higher then it is detected as attacked and vice versa.

3.7.3 Federated Learning Based Deep Auto-Encoder Model

From the literature review, we came to know that different anomaly detection tech-

niques are used. In this research, the federated learning-based deep auto-encoder

model is used for intrusion detection. The characteristic of a Deep Autoencoder

is that it learns all features and observations with different layers and neurons

3.7.4 Federated learning

Federated learning is a machine learning algorithm for training of highly central-

ized model trained over distributed clients that are connected with unreliable and

relatively slow network. This learning algorithm have rounds where clients com-

putes independently on local data to update the current model. The updated data

is communicated to the central server for aggregation of client-side updated model

to get a global model. In most of the cases clients are mobile phones or concerning

applications where communication efficiency is necessary [54]. Steps followed by

federated learning process are:

The basic infrastructure of Federated learning algorithm is based on two ap-

proaches of either asynchronous or synchronous training algorithms. Asynchronous
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Figure 3.16: Steps of federated learning algorithm

online federated learning training has working principle where the edge nodes

streams local data continuously with online learning and the central server is as-

signed with the task to aggregate parameters of model from client [55]. Recent

research has trends to implement synchronous training of large batch at even data

center [56, 57]. The McMahan’s Federated learning algorithm has similar approach

[58]. Research of Sin Kit Lo contributed in collection of architectural patterns for

designing and development of real-world federated learning system [59].

In case of synchronized Federated learning algorithm, a round has following steps

[54]:

1. A subset of existing clients downloads the current model.

2. Every client device performs computations on local data to train the model.

3. eights from trained model are communicated from the selected clients to the

server.

4. The task of server is to aggregate the weights comes from communication

round by averaging and send back the updated weights for next iteration and

construction of an improved version of model.
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3.7.4.1Working of Deep Auto-encoder

Hinton and Zemel are the first developers of auto-encoder. The proposed model of

auto-encoder is unsupervised which uses recognition weights for compressing input

vectors into code vectors. The model uses generative weights to generate output by

reconstructing the input vector[60]. Deep auto-encoder can work on linear feature

compression [61]. The deep auto-encoder is used for detecting anomalous activities

from the ToN-IoT dataset for IoT/IIoT devices . The Deep Auto-encoder model

used in the research is illustrated in Figure. It works on three main layers named

as encoder layer, the hidden layer and the decoder layer. Deep auto-encoder has

the same size of target values and input values because it helps it in learning the

representation of input data. The training of deep auto-encoder is carried out

using the normal traffic data from the dataset to learn the features and essential

characteristics. FromMedian et al [9] the reconstructed error is used for identifying

the attacked data.

Figure 3.17: Working of Deep Auto-encoder Model
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Like other Neural Networks, the Output of the encoding layer is input to the hid-

den layer and the output from the hidden layer is input to the decoder layer. Deep

auto-encoder, in its training on normal data, uses the four convolutional neural

network layers for input i.e. 75%, 50%, 33% and 25%. Due to the symmetrical

nature of the Deep auto-encoder model, the decoder decodes it layer by layer after

final compression as 25%, 33%, 50%, and 75%. The decompression is done through

linear layers starting from the lowest encoding layer for data reconstruction [62].

3.7.4.2Threshold Calculation

The threshold value is calculated for the purpose to identify the anomalous data.

It is calculated after training of model and computing the mean square error.

The threshold value is the summation of the mean square error and its standard

deviation that comes from the training of the model on normal data. The instance

when compared with the threshold value is less than it is normal data but if it is

greater then the instance is identified as anomalous data. The equation below is

for computing Threshold

tr = MSE normal_tr + std(MSE normal_tr )

3.7.4.3 Working of Federated Learning based Deep Auto-

Encoder

Federated learning along with Deep Auto-encoder is used to achieve project goals.

As mentioned in the literature Review, the algorithm of Federated Learning is

helpful when training is performed on a large number of devices and solves the

issues of privacy concerns. The primary advantage of training a model on federated

Learning is that it does not share and store personal or sensitive information to

global servers and hence results in ensuring privacy issues.

In the training process "clients" are the IoT/IIoT devices. The pre-processing of
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data is defined above where normal data is divided into three parts. The training

of Federated Learning is carried out on all devices at the same time. The global

server receives the weights of all devices that are the output of the Deep Auto-

encoder. These weights are processed through the federated aggregation function.

The Deep Auto-encoder receives the updated aggregated weights shared by the

global server and proceeds with its training process.

Figure 3.18: Federated Deep Auto-encoder Model for Anomaly Detection

The main process of the Federated communication round is a feed-forward process

in which weights are sent to the global server after aggregation and the updated

weights are propagated back. The count of communication rounds updates the

weights for improving model performance. In the model, retraining is carried

out for handling real-world scenarios and Independent and Identically Distributed

data. In the retraining process, shown in fig 3.16, the client model from the Deep

Auto-encoder is trained again on the random training data before it is sent to the

global server for aggregation of weights [62].

The performance of the model is enhanced by partially selecting the clients. In

partial selection, the federated training model randomly chooses the devices among

all for its communication round. The trained federated model is useful for devices
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involved in the training process and any new one.

3.7.4.4Criteria for client selection

The ToN-IoT devices dataset used in the research is heterogeneous and its dis-

tribution is non-Identical Independent in short non-IID. The federated model is

data sensitive and dependent on features and classes of client devices data. The

efficiency of the model is improved by client selection in comparison to using all

clients. The client selection method minimizes the impact of non-IID data. If

the model is trained on randomly selected five devices then from these five two

devices are selected for training the global model. In each communication round,

the global weights are assigned to these selected devices.

3.7.4.5Retraining of Model

The retraining of the model is carried out to further improve the federated model

performance. It also aids in resolving the usage of Non-IID data for real-time

usage. For retraining of the model, 1000 random instances are used from the

normal_train data. The global server aggregates the weights from communication

rounds and weights from retaining round. These eights from the global server are

then assigned to the local model to proceed with the training process and after

completion of model training, it is used for testing to detect anomaly[62].

3.7.4.6Momentum-based Federated Averaging Algorithm

The Federated averaging algorithm based on Momentum is used in this research.

The algotithm is inspired by Hsu et al. [63]. The study elaborates that the

performance and efficiency of the model are improved by around 35% to 75%

when the averaging algorithm with momentum is used on the server side.
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Momentum-based federated algorithm is the same as the federated averaging al-

gorithm but momentum is used on top of it.

Figure 3.19: Federated Averaging Algorithm

Simple federated averaging uses the stochastic gradient descent (SGD) with the

properties listed below:

1. it is used for efficiently solving federated problems by calculating the single

batch gradient in every communication round.

2. It improves the algorithm as it is computationally efficient.

3. For achieving a good federated model, a large number of training rounds are

required.

The working of federated learning is based on selecting a fraction of clients ac-

cording to global batch size for computing the gradient of the loss on every com-

munication round. Traditionally one client is selected for implementing it with a

fixed learning rate. Weights are updated by averaging the gradients of the local
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model with momentum vector on stochastic gradient descent on the global server

side. The steps of gradient descent are in the way that every client takes one

step locally on the local model and the server is responsible for taking the av-

erage weights of the resulting model with the addition of the momentum vector.

The process iterates for local updates by adding computations on each client for

multiple times before calculating federated averaging. The computations for local

updates are dependent on the fraction of clients, the batch size for client updates

and training passes for clients in every communication round. It is seen that if

data is non-IID then simple federated averaging algorithms diverge empirically.

But in the case of momentum based federated Averaging the results show that

it converges to the directions of curvatures with efficiency and efficient learning.

According to the literature review, the momentum value is set as 0.9 because with

this value convergence of accuracy and loss function soared up.

3.7.5 Hybrid Model Using Deep Learning Algorithms

For developing an efficient model for the stated issue, the hybrid approach is

applied to the dataset to get optimal results. The hybrid approach first pre-

processes the data then train the model and tests it. The algorithms used for

hybrid modelling are Decision Tree, Random Forest and XGBoost.

3.7.5.1Random Forest (RF)

The Random Forest algorithm is an ensemble of decision trees that enhances the

accuracy of the model by averaging all trees. It builds multiple decision trees on

different subsets of the training data and combines their predictions through voting

or averaging. Random forests reduce over-fitting and improve generalization by

introducing randomness into the tree-building process. Every tree and class of the

RF algorithm computes a class that the majority of trees forecast about and results

in the prediction of the model. The algorithm generates multiple independent trees

from the training data and combines them for developing a single model by voting
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process.

3.7.5.2Decision Tree (DT)

Decision trees are simple yet powerful models that partition the data based on

the values of different features to make predictions. They are easy to interpret

and can handle both numerical and categorical data. DT are applicable in image

processing, machine learning models and pattern recognition. It is widely used for

grouping data. Data mining uses a decision tree for the classification model. It

is also used for regression tasks. The main components of Decision trees are the

root node i.e. the whole dataset, branches that define the features of the dataset

and leaf nodes are outputs for possible outcomes of the dataset. DT has a broad

range of applications because it applies to all data types with precision and its

analysis is easy.

3.7.5.3XGBoost Algorithm

Extreme Gradient Boost (XGBoost) is an optimized algorithm for scalable model

training. The learning algorithm combines predictions of multiple weak models to

generate a strong one. It is considered as state of the art algorithm for classification

and regression on large datasets. It efficiently handles the missing values from the

dataset. It has the feature of parallel processing to train large datasets in a

short period. It is widely used in recommendation systems and for fine-tuning

parameters to get the efficient performance of the resultant model. For model

training requirements adjust hyper-parameters, such as the learning rate, number

of trees, or maximum depth, to optimize the model.

Models of each algorithm is designed to check their particular accuracy on every

device dataset of ToN_IoT dataset and afterwards Hybrid Model is implemented.

49



Chapter 3: System Architecture

3.7.5.4Hybrid Approach

Figure 3.20: Hybrid Model for Anomaly Detection
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Listed below are the steps to implement the Deep learning-based Hybrid approach

for intrusion detection.

1. Process the datasets to remove missing values, scale numerical features and

encode categorical features.

2. Important Features are selected on the bases of class labels and less correlated

are excluded. A Random Forest classifier is applied to the dataset for feature

selection.

3. Dataset is split into two parts for training and Testing.

4. On the mentioned machine learning algorithms, the dataset is trained using the

training data. The trained model is tested to get predictions using testing data.

5. Any two algorithms are selected. Instead of using the original input features,

append the predictions from the first algorithm as additional features to the train-

ing data. Then, train using the second algorithm on this augmented dataset. The

trained model will learn to utilize both the original features and the predictions

from the first model. For instance, append the predictions from the decision tree

model as additional features to the training data and train the random forest on

this augmented dataset. The random forest will learn original features and the

decision tree predictions.

6. To make predictions using the hybrid model, pass the test data through the first

model to get its predictions. Append these predictions as features to the test data

and use the trained model of the second algorithm to make the final predictions.

A hybrid model helps in interpretability and yields an efficient predictive model

using either algorithm where a single one is not able to capture complex relation-

ships in the data.

51



Chapter 4

Results

4.1 Evaluation Metrics

In this section of research, the performance measures of all algorithms are dis-

cussed according to the listed parameters and used in literature for first-hand

evaluation and analysis of federated learning-based deep auto-encoder and hybrid

models for intrusion detection on the Ton-IoT dataset. Both models are evaluated

using Accuracy, F1-score, Precision and Recall. These measures are performance

analyzing metrics. The terms used for the purpose are:

True Positive (TP): It is the count of occurrences through which we accurately

identify attacks from dataset.

True Negative (TN): It is the count of occurrences through which we accu-

rately identify normal data.

False Positive (FP): It is the count of occurrences in which normal instances

are classified as attacks.

False Negative (FN): It is the count of occurrences in which attacked instances

are classified as normal.

52



Chapter 4: Results

4.1.0.1Performance Metrics

1. Accuracy

Accuracy is defined as the proportional detection of accurately identified instances

to total count of instances.

Accuracy = TP + TN

(TP + FP + FN + TN)

2. F1-Score

F1 Score is representation of the Harmonic mean between Precision and Recall.

F1score = TP

TP + 1
2(FP + FN)

3. Precision

Precision is defined as the proportion of True Positives to overall positively pre-

dicted results.

Precision = TP

(FP + TP )

4. Recall

It corresponds to the percentage of predicted positive instances out of the total

positive instances. It is also known as True Positive Rate (TPR).

Recall/TPR = TP

(FN + TP )

5. False Positive Rate

The False Positive Rate (FPR) is defined as the percentage of incorrect detection
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of positive instances to the actual number of negative instances. It is also called

False Alarm Rate.

FPR = FP

(FP + TN)

Mean Square Error (MSE)

In machine learning MSE is used to measure the error rate on average squared

difference between the actual values and the predicted values of a model. Per-

formance of a regression model is measured using MSE and its goal is to predict

continuous numerical values.

The formula for calculating Mean Square Error is:

MSE = 1
n

∗
∑

(actual − predicted)2

where:

n is the total sample count of dataset.

actual also known as ground truth is the actual target value.

predicted is the count of target variable which are predicted by using regression

model.

4.2 Federated learning-based deep auto-encoder

model results

According to the method discussed in the methodology section, the experiment is

set up to test Federated Learning Performance using a Deep auto-encoder. The

test setup includes FedAvg for aggregation of global and client model results. To

evaluate the model results on the Ton-Iot datasets for seven IoT devices, the

accuracy, F1 score, precision, recall, TPR and FPR were compared.
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The Hyper-Parameters used for experimental setup are given below:

Parameters Values Meaning

lr 0.012 Learning rate

No_of_clients 7 Number of all clients

Selected_no 7 Number of clients used

for training purpose

Batch size 128 It is the size of data

for each iteration of training

Baseline_no 1000 This indicates the selected

data from trained one in order to

retrain the already trained model

No_of_rounds 6 Number of rounds for

training the global model

No_of_Epochs 5 Total number for training

the clients.

No_of_retraining_Epochs 12 Total number for global

server retraining after

weights are assigned

Table 4.1: Parameters for Federated Learning Model
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4.3 Results of Train-Test datasets

Dataset Devices Accuracy % F1 score % Precision Recall TPR FPR

Garage Door 96.916 97.777 0.957 1.000 1.00000 0.09583

Weather 51.418 50.853 0.800 0.371 0.37370 0.19371

Motion Light 87.852 91.770 0.848 1.000 1.000 0.37645

Thermostat 41.259 18.386 0.570 0.110 0.10960 0.12582

GPS Tracker 50.119 46.865 0.826 0.327 0.32709 0.14125

Modbus 55.342 48.405 0.733 0.361 0.36123 0.18128

Fridge 53.410 52.539 0.859 0.378 0.37849 0.13320

Table 4.2: Result Table for Train-test datasets

4.4 Results of Processed Datasets

Dataset Devices Accuracy % F1 score % Precision Recall TPR FPR

Garage Door 53.531 11.881 0.148 0.099 0.09936 0.26397

Weather 70.694 45.734 0.579 0.378 0.37801 0.13347

Motion Light 54.142 35.033 0.329 0.374 0.37396 0.37586

Thermostat 67.969 40.552 0.466 0.359 0.35901 0.18003

GPS Tracker 44.129 0.162 0.002 0.001 0.00140 0.34853

Modbus 64.989 54.005 0.692 0.443 0.44286 0.17079

Fridge 68.585 49.417 0.547 0.450 0.45048 0.19254

Table 4.3: Result Table for Processed Datasets
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4.5 Results of Single ML Algorithm

Dataset DT RF XGBoost

Garage Door 100 100 100

Weather 58 84 69

Motion Light 59 58 88

Thermostat 59 66 66

GPS Tracker 84 85 86

Modbus 67 97 77

Fridge 57 97 81

Table 4.4: Accuracy Table of Hybrid Model

4.6 Result for hybrid Model

In order to evaluate the performance of dataset the achieved accuracy of Hybrid

Model on all devices is depicted in the Table 4.4 and Table 4.5 is for Precision,

Recall and F1 Score while Average Training Time, Prediction Time, Validation

Score and Mean Square Error are represented in Table 4.6.

Dataset DT + XGBoost RF + XGBoost RF + DT

Garage Door 99.99 99.98 99.98

Weather 100 100 100

Motion Light 99.99 99.99 99.99

Thermostat 99.99 99.99 99.99

GPS Tracker 99.99 99.99 99.99

Modbus 99.99 99.99 99.99

Fridge 100 100 100

Table 4.5: Accuracy Table of Hybrid Model

57



Chapter 4: Results

Dataset Hybrid Model Precision Recall F1 Score

Garage

Door

DT + XGBoost 0.9994 0.999 0.9992

RF + XGBoost 0.9994 0.999 0.9992

RF + DT 0.9994 0.999 0.9992

Weather

DT + XGBoost 1 1 1

RF + XGBoost 1 1 1

RF + DT 1 1 1

Motion Light DT + XGBoost 0.9996 0.998 0.9997

RF + XGBoost 0.9996 0.9998 0.9997

RF + DT 0.9996 0.9998 0.9997

Thermostat DT + XGBoost 0.857 0.8571 0.8571

RF + XGBoost 0.857 0.8571 0.8571

RF + DT 0.857 0.8571 0.8571

GPS Tracker DT + XGBoost 0.9999 0.9997 0.9998

RF + XGBoost 0.9999 0.9997 0.9998

RF + DT 0.9999 0.9997 0.9998

Modbus DT + XGBoost 0.9996 0.9848 0.9918

RF + XGBoost 0.9996 0.9848 0.9918

RF + DT 0.9996 0.9848 0.9918

Fridge DT + XGBoost 1 1 1

RF + XGBoost 1 1 1

RF + DT 1 1 1

Table 4.6: Table for Precision, Recall and F1 Score of Hybrid Model
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Dataset Hybrid Model Training Time Prediction Time Validation Score MSE

Garage

Door

DT + XGBoost 1.5662 0.0161 0.9998 0.0006

RF + XGBoost 1.5383 0.0157 0.9998 0.0006

RF + DT 0.4844 0.1162 0.9998 0.0006

Weather

DT + XGBoost 2.8387 0.0334 0.9999 0

RF + XGBoost 2.8547 0.0262 0.9999 0

RF + DT 0.6535 0.0314 0.9999 0

Motion

Light

DT + XGBoost 1.2238 0.0296 0.9997 0.0004

RF + XGBoost 3.8281 0.0277 0.9997 0.0004

RF + DT 0.3829 0.0198 0.9997 0.0004

Thermo

-stat

DT + XGBoost 1.1324 0.0229 1 0.0011

RF + XGBoost 1.1018 0.0167 1 0.0011

RF + DT 0.3709 0.0132 1 0.0011

GPS

Tracker

DT + XGBoost 2.0926 0.0177 0.9998 0

RF + XGBoost 2.1066 0.0188 0.9998 0

RF + DT 0.5258 0.0157 0.9998 0

Modbus

DT + XGBoost 0.9795 0.0091 0.9998 0.0006

RF + XGBoost 0.9679 0.0116 0.9998 0.0006

RF + DT 0.2662 0.0114 0.9998 0.0006

Fridge

DT + XGBoost 0.9469 0.0134 0.9999 0

RF + XGBoost 0.9514 0.0183 0.9999 0

RF + DT 0.3388 0.012 0.9999 0

Table 4.7: Table for Training Time, Prediction Time, Mean Validation Score and Mean

Square Error
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Discussion

5.1 Discussion on Federated Learning-based Deep

Auto-encoder Model

5.1.1 Comparative Results of Both Datasets

5.1.1.1Accuracy and F1 score

For evaluating the Federated Learning using the Deep Auto-encoder model, the

Accuracy and F1 score of all devices are computed. From all processed datasets

of IoT devices, the accuracy of the IoT_Weather dataset is good among all which

is 70.694% while the F1 score is 45.734%. IoT_Modbus dataset has the F1 score

of 54.005 with an accuracy of model 64.989. From the train-test dataset, the

accuracy of the Garage Door dataset is good among all that is 96.916% with the

highest F1-score of 97.777%. The graphs below represent the relation between

accuracy and F1 Score of all devices of the Ton_IoT dataset.
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Figure 5.1: Comparison of Accuracy and F1 score on Train_Test and Processed

Dataset

5.1.1.2Precision and Recall

For evaluating the Federated Learning using Deep Auto-encoder model, precision

and recall of all devices are computed. The graph below represents the relation

between precision and recall of all devices of Ton_IoT dataset.

Figure 5.2: Comparison of Precision and Recall on Train_Test and Processed Dataset

5.1.1.3TPR and FPR

For more detailed evaluation the TPR and FPR values computed from designed

Federated Learning based Deep Auto-encoder model are computed and fig below
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show the Performance of all Ton_IoT devices.

Figure 5.3: Comparison of TPR and FPR on Train_Test and Processed Dataset

5.1.1.4Loss of Model

The fig show the global loss graph of Federated Learning based Deep Auto-encoder

model. From the graph it is inferred that the loss of trained model is constant i.e.

0.68 for both Train-Test IoT dataset and Processed IoT dataset.

Figure 5.4: Training Loss of Models on Both Datasets
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5.2 Discussion on Result of Single ML Algorithm

The performance of single ML algorithm i.e. Decision Tree, Random Forest and

XGBoost is not satisfactory on the Ton_IOT Dataset. So, to improve the perfor-

mance and to improve the intrusion detection Hybrid model is designed.

5.3 Discussion on Result of Hybrid Model

The combine effect of two ML algorithms improves the learning rate of designed

model. In order to evaluate the performance of dataset using the hybrid models

the accuracy and F1 score of all devices are compared. The highest accuracy is

100% for IoT Weather and IoT Fridge Dataset. The minimum accuracy among

all devices is 99.98%.

Figure 5.5: Accuracy Graph of Hybrid Model
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5.3.1 Precision, Recall and F1 score of Hybrid Model

To evaluate the performance hybrid Models on datasets the precision, recall and F1

score is also computed and compared. The dataset of Iot weather and IoT Fridge

has higher values of mentioned measures. The table below shows the performance

measures of precision, recall and F1 score. The Fig 4.6 below illustrates the

performance measure of Precision, Recall and F1 Score of Hybrid Model

Figure 5.6: Performance Measure of Precision, Recall and F1 Score of Hybrid Model

5.4 Different Performance Measures of Hybrid

Model

Hybrid Model is evaluated on different performance measures which are training

time, prediction time, mean validation score and mean square error. Decision

Tree + XG Boost and Random Forest + XG Boost models takes more training

time on IoT Weather and IoT GPS Tracker dataset. The Validation Score of IoT
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Thermostat is highest among all IoT Devices. Mean square error of IoT Weather,

GPS Tracker and Fridge is zero. The Mean Square Error of ToN_IoT devices

dataset is illustrated in Fig 4.7.

Figure 5.7: Mean Square Error of Hybrid Model on IoT Devices
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5.5 Limitations

In the research under progress, some limitation exists which need some improve-

ment in future and most of which are due to the time and resource constraint of

the project.

5.5.1 Sample size

Traditionally, enormous devices for training and testing were used by federated

learning in previous literature. However, only seven devices are included in the

TON_IoT dataset which is used in this report. Hence, the sample size may be

too small to achieve a whole performance of federated learning.

5.5.2 Dataset Quality

Attacked and normal data distribution was uneven. Many devices had a large

number of normal data and attacked traffic is less in comparison. Such uneven

distribution may lead to less accuracy of devices while model training except for

Garage Door and Motion Light.

5.5.3 Auto-encoder model in previous literature

Literature results displayed that Auto-encoder has the best performance, hence,

the data selection process and threshold calculation methods from previous litera-

ture are used. Methodology from previous literature limits us due to the require-

ment of different percentages of training and testing data to accumulate the best

threshold figures for the auto-encoder model.
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5.5.4 Design Challenges of Federated Learning

The federated learning model is very sensitive to Non-IID data properties of local

clients; hence it is not very stable. We adopted the easy way of FedAvg based on

Momentum for the aggregation of algorithms. Other literature exists that focuses

on the solution to resolve the issue of Non-IID in Federating Learning.

In comparison to the concept of centralized machine learning, federated learning

had advantage to deal with issues of data privacy and lack of training data but

architectural challenge arises because of large scale distributed nature of feder-

ated learning while managing data of central server and client devices. There are

four main challenges Expensive communication, Systems heterogeneity, Statistical

heterogeneity, Privacy concerns while implementation of federated learning [64].

Some of the design challenges by Sin Kit Lo in his research are listed below [59]:

1. Global models have low accuracy and they lack in generality in case when

client devices generate non-IID data. In conventional machine learning algorithm

centralizing and randomizing techniques are used for data heterogeneity issue but

federated learning has privacy preserving nature that renders mentioned tech-

niques inappropriate.

2. High quality models require high communication cost because they need to

adhere concept drift, they also require multiple rounds to exchange updates of

local updates.

3. The model quality is affected by the limitation of resources required in model

training and in data communication.

4. In federated learning process coordination is difficult because of many client

devices participate that also affect the security and reliability of system.

5.5.5 Tuning of Hyper-parameter

It has been exercised on batch set, however, F1 score and accuracy have no dif-

ference while hyper-parameter tuning.
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5.5.6 Platform Constraints

Google Colab is used to run codes for all models. Momentum-based federated

averaging requires many training rounds (minimum 300 rounds) to formulate a

good model. But it is time taking and results in Colab crashing.
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Conclusion

6.1 Conclusion

The purpose of the study is to enhance the efficiency of Intrusion Detection Sys-

tems. To achieve this TON_IoT dataset for IoT and IIoT devices is used to

evaluate the performance of cybersecurity-based IoT devices using Artificial Intel-

ligence. ToN_IoT dataset is comprised of data collected from different heteroge-

neous data sources about Fridge, Garage Door, Weather, GPS Tracker, Modbus,

Motion Light and Thermostats. Processed and Train-Test IoT and IIoT devices

dataset was the main target to analyses the intrusion detection using federated

learning-based deep auto-encoder and Hybrid Models. The IoT/IIoT dataset is

evaluated in terms of measuring accuracy, F1 score, precision, Recall, TRP and

FRP.

On the Processed dataset the accuracy score of Deep auto-encoder based on feder-

ated learning is very low for all of the seven IoT devices. One of the main reasons

for the cause can be that data is not uniformly distributed. The total count of

normal data is very large in comparison to the anomalous one in the dataset.

The second reason is that the traditional federated learning models uses a very

large no of clients for their training purpose. So, from this fact, it is inferred

that if the number of clients or IoT devices is large in number then the federated
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learning-based deep auto-encoder model works efficiently. While on the Train-Test

Ton-IoT dataset, the federated model gives 96.9% and 87.8% accuracy on the IoT

Garage Door and IoT Motion Light dataset. From these results, it is analyzed that

most features of these two datasets are in binary form except “type” which is for

identifying the normal or attacked data (DDoS, ransomware, password, injection

etc). The boolean features of Garage Door are door_state, sphone_signal and

label while the binary features of Motion Light are motion_status, light_status

and label. Other IoT devices datasets have different features and their accuracy

can be enhanced by converting features into the same binary format but it is not

possible because of their working nature.

The hybrid model for intrusion detection performs excellently on ToN-IoT datasets.

Result of model out performs for all devices. The main reason for this is that the

XGBoost algorithm combines all weak classifiers into strong ones for providing

better efficiency. The learning rate of XGBoost is more than other algorithms so

it performs well in case when combined with Random Forest and Decision Tree.

The performance of Hybrid Random Forest and Decision Tree is outstanding and

the risk of overfitting is reduced with their combined effect.

6.1.1 Future Work

In the future, federated learning techniques should be explored more for defining

a state of art model with large and balanced IoT/IIoT dataset. The future work

may include use of Machine Learning Algorithms along with Federated Learning

or FL Frameworks for efficient intrusion detection on the ToN_IoT Dataset.
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