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Abstract

Quantum image representations are the models that are used to represent dig-
ital images on to the quantum computers. They also allow to perform various
image processing operations on these images and to store on to the quantum
system. For storing images on to the quantum computers, QIR models use
qubits. The FRQI and NEQR are well-known models used for capturing and
processing quantum images. But these models have some weaknesses espe-
cially they suffer from time and space complexity respectively. Therefore, in
this research, we establish that the complexity of image preparation in FRQI
model is O(n22n), which is linear in the size of image. Moreover, by analyzing
the FRQI and NEQR models, we propose an improved flexible representa-
tion of quantum images (IFRQI) which takes p qubits to encode gray-scale
values of pixels of a 2p-bit-deep image. The gray-scale values are encoded by
employing rotation matrices corresponding to chosen values of angles which
assist in accurate retrieval of original image information through projective
measurements. The quantum image compression algorithm and basic image
processing operations are discussed in detail to establish the effectiveness of
IFRQI model. The performance analysis in respect of time and space com-
plexity exhibits that the IFRQI model is comparable to FRQI and NEQR
models.
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Chapter 1

Introduction

1.1 Background and motivation

Quantum computation is an exciting field [19], which is an overlap of physics,
mathematics and computer science. It has achieved widespread interest in
research community due to the remarkable characteristics of quantum physics
like superposition phenomena and entanglement principle. It is considered
that quantum computation will overcome the boundaries of classical compu-
tation due to the phenomenon of inherent quantum parallelism [5]. Starting
with Richard Feynman [6], who first proposed the idea of quantum com-
puter and attained considerable attention within the research community.
Quantum computing has received much attention after Shor [23] proposal of
integer numbers factorization in polynomial time and closely following that
Grover [8] presented an algorithm for searching on quantum system, which
exhibits quadratic swiftness when compared to its traditional counterparts
used for the unsorted databases.

The astounding characteristics of quantum mechanics led to the emer-
gence of many fields such as quantum based cryptography, quantum based
steganography and quantum based image processing, to name a few. The
classical image processing involves various complex algorithms used for the
analysis and manipulation of digitized images and as the quantity and size
of images is increasing rapidly due to the image sensing systems, it brings
out the requirement of efficient and fast image-processing algorithms. Con-
sequently, quantum image processing is developed to cope with the short-
comings in the area of classical image processing.

2
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Figure 1.1: Quantum information and quantum computation

1.2 Brief overview of prior state of art

Recently, many quantum image representation (QIR) models for digital im-
ages are presented in the literature. Among these, the most well-known
models are Qubit Lattice [28], Real Ket [14], Entangled Images [27], a flexi-
ble representation of quantum images (FRQI) [15], RGB MC representation
for digital images (MCQI) [25], a novel enhanced quantum representation for
digital images [33], and NQR of log-polar images [34]. In addition, various
quantum digital image processing algorithms established on discrete cosine
transforms, quantum wavelet transforms and geometric transforms are also
presented in the literature which confirms the efficiency of these QIR mod-
els [3, 4, 7, 13].

1.3 Limitations of existing models

As compared to all existing QIR models, the FRQI and NEQR are seemed
to be well-founded fundamental QIR models. In both models, a normalized
quantum state represents the essential information about gray-scale and cor-
responding pixel’s position of every pixel of digital image. An important
aspect of these models is that unitary transforms can be applied at the same
time on all pixels of the image by taking the advantage of superposition phe-
nomenon of quantum mechanics. A limitation of the FRQI model is that it
utilizes a single qubit for storing the gray-scale information of the image’s
pixels. As a result, the number of measurements required to accurately re-
trieve an image is very large. However, NEQR model addresses this problem
of FRQI by storing the color information in a basis state of 2p-qubits in a
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2p-bit-deep image. This approach ensures the accurate retrieval of image
information, but, it suffers from the space complexity as it does not utilize
the superposition principal in color qubit sequence.

1.4 Problem statement and proposed solu-

tion

The problem statement is as follows: Even though FRQI and NEQR are
well-known existing models used for storing and processing quantum images.
But these models have some weaknesses especially they suffer from time and
space complexity respectively. Therefore the need is to have some efficient
model that have advantages of both existing models and improves the existing
model FRQI.

This motivated to propose a QIR model that efficiently utilizes the super-
position principle in the color qubit sequence and also ensures the accurate
retrieval of image information in response to small number of measurements.
The purpose of this work is twofold. Firstly, we establish that for an image
of size 2n × 2n with gray range 22p, the complexity of image preparation in
FRQI model is O(n22n) which is linear. Secondly, we propose an improved
flexible representation of quantum images (IFRQI) model that takes p qubits
to captures gray-scale information of each pixel of a 2p-bit-deep image. The
color information is encoded by employing rotation matrices corresponding
to chosen values of angles which assist in accurate retrieval of original image
information. The quantum image compression algorithm and basic image
processing operations are discussed in detail in order to establish the effec-
tiveness of IFRQI model. The performance analysis in respect of time and
space complexity exhibits that the IFRQI model is comparable to FRQI and
NEQR models.

1.5 Contributions

This research will primarily contribute to:

• Decrease the time complexity of famous FRQI model.

• Decrease the space complexity of NEQR model.

• Enhance the performance of existing models by presenting a new model
IFRQI.
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• Provides an efficient model for storing and retrieving digital images
into quantum computer.

• Provides an efficient model for processing images into quantum com-
puter.

Furthermore there are some secondary contributions as well, which are
listed below.

• It can be used as a base framework for storing images in quantum image
encryption strategies like [11,16–18,20,26,29,30,35–37].

• It can be used as a QIR model in quantum image steganography [9,12].

• It can also be used in quantum image watermarking strategies like
[22,24,32].

• It can be used in image scrambling [10,38].

1.6 Organization of thesis

This thesis is divided into five chapters as described below. All the chapters
provide the mandatory knowledge related to the proposed model and presents
a complete aspect of the research.

Chapter 1. Introduction

This chapter provides the overview of background related to quantum in-
formation and quantum computation leading towards the quantum image
processing. Following the background and motivation, the prior state of art
is explained briefly along with the limitations of famous models NEQR and
FRQI. From the limitation of existing famous models , we identified the
problems and stated the problem statements accordingly. And then we have
given the proposed solution in the same section of problem statements. The
next section of this chapter gives the contributions of the proposed model.
The contributions are classified into two types, primary contributions and
secondary contributions and each one is elaborated briefly. And thesis orga-
nization is given at the end of this chapter.
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Chapter 2. Background knowledge

This chapter presents the fundamental knowledge required for the under-
standing of proposed QIR model. Starting with basic concepts and defini-
tions we cover almost all background knowledge related to quantum image
representations in this chapter. Furthermore, some important mathematical
knowledge required to understand the proposed research is also explained
along with definitions and examples. The second half of chapter presents
the strength or the power of quantum computer by stating the entanglement
principle and four postulates of quantum mechanics.

Chapter 3. Literature review

This chapter gives a brief overview of the whole literature related to quantum
image representation models. Moreover the famous QIR models (NEQR and
FRQI) are explained in detail. The mathematical expression and an example
image of these models are also discussed in this chapter.

Chapter 4. Methodology

This chapter has two main sections. The first section presents the analysis
of FRQI and the second section describes the new model IFRQI in detail.
Furthermore the basic image processing operations and quantum image com-
pression are also given in the second section of this chapter.

Chapter 5. Conclusion

This chapter summarizes the main points of research that has been carried
out in the thesis. And highlight the contributions of the proposed model in
different fields of quantum image processing. The last section presents the
potential future research work directions.



Chapter 2

Background knowledge

This chapter contains some basic notions and terminologies related to quan-
tum computation and quantum information which are necessary for the un-
derstanding of this dissertation. The chapter consists of two sections: In first
section, we discuss basic mathematical knowledge, while the entanglement
principle and four postulates of quantum theory are discussed in the second
section.

2.1 Basic mathematical knowledge

This section covers basic mathematical concepts such as complex field, vector
space, inner product, Hilbert space, tensor product, qubit and Bra-Ket nota-
tion, and basic quantum operators. Also, the matrix representation of basic
quantum operators and their circuit diagrams are discussed in this section.

Complex field

z = a + ib defines the complex number, where a and b represents the real
part and i represents the imaginary part, satisfying the condition i2 = −1.
C denotes the set of all complex numbers and defined as C = a+ ib. If
n = a0 + b0i, m = a1 + b1i represents two complex numbers then these
numbers can be added as, n+m = (a0 + a1) + (b0 + b1)i, and multiplication
of n = a0+b0i, m = a1+b1i is defined as n ·m = (a0a1−b0b1)+(a0b1+a1b0)i.
The set of complex numbers C has certain properties with respect to addition
and multiplication, listed in Table 2.1, which make it a field. z shows the
complex conjugate of z, which is a complex number and it is of the form
z = a− bi. While |z| denotes its magnitude and is given by

√
a2 + b2.

7
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Table 2.1: Properties of complex numbers

Property Addition Multiplication

Commutative n+m = m+ n n ·m = m · n
Associative (n+m) + p = n+ (m+ p) (n ·m) · p = n · (m · p)
Identity element n+ 0 = n 1 · n = n = n · 1
Inverse element n+ (−n) = 0 = (−n) + n n · n−1 = 1 = n−1 · n
Left distribution n · (m+ p) = n ·m+ n · p
Right distribution (n+m) · p = n · p+m · p, ∀n,m, p ∈ C

Vector space (complex), its basis and dimension

Let Vc be a nonempty set with addition operation defined on it, and C be
the complex field. Then Vc is called a complex vector space if,

1. All elements of Vc satisfy commutative, associative, identity element
and inverse element axioms w.r.t addition.

2. If there exists a mapping · : C×Vc → C, known as scalar multiplication,
which satisfy

a) 1 · v0 = v0,
b) c0 · (v0 + v1) = c0 · v0 + c0 · v1 and,
c) (c0 + c1)v0 = c0v0 + c1v0, for all c0, c1 ∈ C and v0, v1 ∈ Vc.

The elements of C are known as scalars whereas the elements of Vc are
known as vectors. c0v0 + c1v1 + ... + cnvn represents the linear combination
of v0, v1, ..., vn, where v0, v1, ..., vn are known as vectors and c0, c1, ..., cn are
called scalars. A subset B = {v0, v1, ...vn} of a vector’s space Vc said to a
spanning (generating) set of Vc if every vector of Vc can be presented as a
sum of elements of B. If B is smallest (in respect of cardinality) spanning
set of Vc, then it is called a basis of Vc and its cardinality (order) is called
the dimension of Vc. In this dissertation, we shall deal only with finite
d-dimensional complex vector spaces Cd. The set {e1 = (1, 0, ..., 0), e2 =
(0, 1, ..., 0), ..., ed = (0, 0, ..., 1)} forms a basis of Cd, and known as standard
basis of Cd. Each vector v of Cd has a representation as a d-tuple of the form
(α0, α1, ..., αd), where each αi is a complex number.

Inner product, orthonormal basis and hilbert space

If Vc represents complex vector space, then inner product is defined by the
mapping 〈·|·〉 : Vc × Vc → C , a generalization of dot product of real vectors,
if it obeys the following four axioms:
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1. 〈v0 + v1|v2〉 = 〈v0|v2〉+ 〈v1|v2〉

2. 〈αv0|v1〉 = α〈v0|v1〉

3. 〈v0|v1〉 = 〈v1|v0〉

4. 〈v0|v0〉 ≥ 0 and 〈v0|v0〉 = 0 ⇔ v0 = 0, for all v0, v1, v2 ∈ Vc and α ∈ C.

The existence of the inner product on Vc enables one to define norm (length)
of each vector of Vc as follows:

‖vc‖ =
√
〈vc|vc〉. (2.1)

Note that ‖vc‖ ≥ 0 and ‖vc‖ = 0↔ vc = 0. A vector vc is called a normalized
or unit vector if ‖v‖ = 1. Two vectors vc and wc are said to be orthogonal if
〈vc|wc〉 = 0. B is an orthonormal basis of Vc, if vectors of B are orthogonal
to each other and each element of B has norm 1. The standard basis of
complex vector field Cd defined previously is orthonormal basis. A finite
dimensional space of vectors, if inner product defined on it, is known as a
finite dimensional Hilbert space. However, infinite dimensional Hilbert spaces
satisfy additional technical axiom which is not related to the work presented
in this dissertation.

Qubit, bra-ket representation and tensor product spaces

Qubit stands for quantum bit and it is the fundamental unit of information
about two-state (or two-level) physical systems of a single quantum particle.
The spin of the electron and polarization of the photon are examples of two-
state quantum physical systems. The spin up and spin down are taken as
two states for the electron, while horizontal polarization and vertical polar-
ization are taken as two-states for the photon. According to mathematical
formulation, qubit can be represented as a vector in a two dimensional com-
plex vector space C2. In classical computers a bit can have only one state
at a time either 0 or 1. Whereas, in quantum systems a qubit can have a
coherent superposition (linear combination) of all possible states simultane-
ously, a property which is fundamental to quantum mechanics and quantum
computing. We will use the term standard basis vectors interchangeably with
computational basis states. A qubit state has the standard representation |ψ〉
used in the field of quantum mechanics, which is known as ket. The |.〉 nota-
tion represents a vector and ψ is just a label. The computational basis states

of C2 has ket representation as |0〉 =

[
1
0

]
and |1〉 =

[
0
1

]
. A pure state of

qubit is represented as c1|0〉+ c2|1〉, where c1 and c2 are complex amplitudes
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of basis states |0〉 and |1〉 resp., and satisfy the condition |c1|2 + |c22| = 1.
The dual vector or dual state corresponding to state |ψ〉 is defined as the
transpose of the complex cojugate of |ψ〉 and is denoted by 〈ψ|. Such that

|ψ〉
t

= 〈ψ| = |ψ〉† The row vector 〈ψ| is known as bra. The mathematical
structure used to study the quantum mechanics of multiparticle systems is
knwon as Tensor product Spaces. Now we give the definition of a tensor
product space. Assume that Uh and Vh are finite dimensional Hilbert spaces,
with dimensions m and n respectively. Then Uh⊗ Vh(readUhtensorV ′h) is an
mn dimensional vector space defined as:

Uh ⊗ Vh = {α1 |u1〉 ⊗ |v1〉+ ...+ αs |us〉 ⊗ |vs〉 : αt ∈ C, |ut〉 ∈ Uh, |vt〉 ∈ Vh}(2.2)

An element α1 |u1〉 ⊗ |v1〉+ ...+ αs |us〉 ⊗ |vs〉 of Uh ⊗ Vh is actually a linear
combination of ‘tensor products ’ |ut〉 ⊗ |vt〉, where α′ts are scalars. In par-
ticular, if BU = {|i〉 : i = 0, 1, 2, ...,m − 1} is the computational basis of
Uh and BV = {|j〉 : j = 0, 1, 2, ..., n − 1} is the computational basis of V ,
then BUh⊗Vh = {|i〉 ⊗ |j〉} is the computational basis of Uh ⊗ Vh. We often
use the abbrivated notations |u〉 |v〉 or |uv〉 for the tensor product |u〉 ⊗ |v〉.
For example, if V = C2 with basis vectors |0〉 and |1〉. Then the four vectors
|00〉 , |01〉 , |10〉 , |11〉 are the computational basis vectors of Vh⊗Vh = C2⊗C2.
And, C2⊗C2 = {c00 |00〉+ c01 |01〉+ c10 |10〉+ c11 |11〉 : c00, c01, c10, c11 ∈ C}.
It is important to mention that the elements of C2 ⊗C2 represents the joint
states of two qubits. The elements of tensor product space Uh ⊗ Vh satisfy
the following axioms.

1. For scalar c ∈ C and vectors u0 ∈ Uh, v0 ∈ Vh,

c(|u0〉 ⊗ |v0〉) = (c |uh〉)⊗ |vh〉 = |uh〉 ⊗ (c |vh〉). (2.3)

2. For vectors u0, u1 ∈ Uh and v0 ∈ Vh,

(|u0〉+ |u1〉)⊗ |v0〉 = |u0〉 ⊗ |v0〉+ |u1〉 ⊗ |v0〉 . (2.4)

3. For vectors u0 ∈ Uh and v0, v1 ∈ Vh,

|u0〉 ⊗ (|v0〉+ |v1〉) = |u0〉 ⊗ |v0〉+ |u0〉 ⊗ |v1〉 (2.5)

Linear operators, hermitian and unitary operators

Suppose Uh and Vh are two vector spaces. A function Fl : Uh → Vh is said
to be a linear operator if it holds addition of vectors and multiplication of
scalars, as given below.
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1. For addition of vectors |u0〉 , |u1〉 ∈ Uh,

Fl |u0 + u1〉 = Fl |u0〉+ L |u1〉 . (2.6)

2. For scalar c, and vector u0 ∈ Uh,

Fl |cu0〉 = cFl |u0〉 . (2.7)

We say Fl is a linear operator on Vh if Fl : Vh → Vh. As an example, the
identity function on Vh is a linear function denoted by IV and defined as
IV |v〉 = |v〉 ,∀ |v〉 ∈ Vh. The zero operator on Vh denoted and defined as
0 |v0〉 = 0,∀ |v0〉 ∈ Vh, is also a linear function. Linear operators between
finite dimensional vector spaces has a simple and convenitent matrix repre-
sentation. If Fl is a linear function from m-dimension Uh (Hilbert space) to
n-dimension Vh (Hilbert space), and BU = {|i〉 : i = 0, 1, 2, ...,m− 1}, BV =
{|j〉 : j = 0, 1, 2, ..., n− 1} are computational basis of Uh and Vh respectively.
Then, the matrix representation of Fl is [Fji]n×m, where Fji = 〈j|F |i〉 (inner
product between |j〉 and L |i〉) is the entry at jth row and ith column of
matrix [Fji]n×m. Moreover, each matrix is a linear operator. And the iden-
tity matrix represents the associated identity operator on vector space Vh.

A matrix Uh is known as Hermitian matrix if Uh
t

= Uh = U †h, that is, the
transpose of complex conjugate of Uh is equal to Uh. And, a mtrix Uh is called
unitary if UhU

†
h = U †hUh = I, that is, the inverse of Uh is U †h. Similarly, a

linear operator is called Hermitian (unitary) operator between Hilbert spaces
Uh and Vh if the associated matrix is a Hermitian (unitary) matrix. If Q and
R are linear operators on Uh and Vh resp., then Q ⊗ R, defined as in Eq.
()., is a linear operator on Uh ⊗ Vh. And, if Q,R are Hermitian (unitary)
operators then so is Q⊗R.

Q =


q11 q12 · · · q1m
q21 q22 · · · q2m
...

...
. . .

...
qm1 qm2 · · · qmm

 , R =


r11 r12 · · · r1n
r21 r22 · · · r2n
...

...
. . .

...
rn1 rn2 · · · rnn

 (2.8)

Q⊗R =


q11R q12R · · · q1mR
q21R q22R · · · q2mR

...
...

. . .
...

qm1R qm2R · · · qmmR

where qijR are submatrices. (2.9)
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Outer product operator, completeness relation, projection opera-
tor

Suppose Vh is an n-dimension Hilbert space and |ψ〉 = [ α1 α2 ... αn ]t

is a vector of V . The outer product operator |ψ〉 〈ψ| : V → V is a linear
operator defined as,

(|ψ〉 〈ψ|)(|v〉) ≡ |ψ〉 〈ψ|v〉 = 〈ψ|v〉 |ψ〉 ,∀ |v〉 ∈ V. (2.10)

The matrix representation of outer product operator |ψ〉 〈ψ| is given as in
Eq. (2.11).

|ψ〉 〈ψ| =


α1

α2
...
αn

 [ α1 α2 · · · αn
]

=


α1α1 α1α2 · · · α1αn
α2α1 α2α2 · · · α2αn

...
...

. . .
...

αnα1 αnα2 · · · α1αn


(2.11)

Suppose B = {|v1〉 , |v2〉 , ..., |vn〉} is an orthonormaol basis of Vh. Then, every
arbitrary vector v in Vh can be expreseed as, v = c0v0 + c1v1 + ...+ cn−1vn−1,
for some scalars c0, c1, ..., cn−1. Using the fact that 〈v0|v〉 = c0, ..., 〈vn−1|v〉 =
cn−1, we have,(

n−1∑
i=0

|vi〉 〈vi|

)
|v〉 =

n−1∑
i=0

〈vi|v〉 |vi〉 =
n−1∑
i=0

ai |vi〉 = |v〉 ,∀v ∈ Vh. (2.12)

Consequently we have the completeness relation given as in Eq. (2.13).

n−1∑
i=0

|vi〉 〈vi| = IV . (2.13)

For each i = 0, 2, ...n− 1, the linear operator |vi〉 〈vi| is known as projection
operator. The process of applying a projection operator on a quantum state
is known as projective measurement. Note that for the computational basis
{|i〉} of Vh, |i〉 〈i| denotes the projection operators, and completeness relation
takes the form as

∑n−1
i=0 |i〉 〈i| = I.

Basic quantum gates, their matrix representation and circuit dia-
grams

We conclude this section with listing some basic quantum gates, their circuit
diagrams and matrix representations as in Fig. 2.1.
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Gate Circuit diagram Matrix representation

NOT X

[
0 1
1 0

]
Hadamard H

1√
2

[
1 1
1 −1

]
Phase S

[
1 0
0 i

]

Controlloed-NOT
•


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


Swap ×

×


1 0 0 0
0 0 1 0
0 1 0 0
0 0 1 1



Toffoli

•

•



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0


Rotation Ry(2θ)

[
cos θ − sin θ
sin θ cos θ

]
meter Projection onto |0〉 and |1〉
qubit wire carrying a single qubit

n qubits /n wire carrying n qubits

Figure 2.1: Basis quantum gate, their circuit diagrams and matrix represen-
tations
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2.2 Strength of quantum computer

The strength of quantum computation is the superposition principal. Super-
position principal states a qubit can exist in all possible states following the
normalization constraint. Like a qubit can have a state 0 or 1 and both 0 and
1 at the same time. A classical bit can store only single piece of information
whereas a quantum bit can store unlimited information.

Classical computations are irreversible while quantum computations are
reversible. It means in classical computations looking to output we cannot
predict what inputs were whereas in quantum looking to the output we can
predict what the inputs were. Because quantum computations are based on
quantum gates and quantum gates are unitary in nature. This makes the
quantum computers more powerful.

2.2.1 Entanglement

Entanglement is the property that is defined by an entangled state. If a
composite quantum system is in such a state that it cannot be split into the
tensor product of component systems then it is called an entangled state.

2.2.2 Quantum mechanics’s postulates

Four quantum mechanics’s postulates are as follows:

1. Any physical quantum system lies in a complex space of vectors with
inner product is called the state space of that quantum system. A
physical system can be presented in the form of its state vector of state
space.

2. The development of a quantum system which is closed is delineated by
the unitary transforms.

3. The probability of measurement of a quantum system having a sure
result is ascertained by the complex amplitude of its basis vectors. Once
the measurement is done, superposition collapses and system remains
in the measured state.

4. The vector space of a composite system of quantum can be shown by
the tensor product of its component systems’ vector spaces.



Chapter 3

Literature Review

In recent years, quantum image processing has gained widespread interest
in research community due to the remarkable characteristics such as entan-
glement and superposition of quantum mechanics. The quantum image pro-
cessing is a technique, which utilizes methods based on quantum mechanics
to improve the classical image processing.

Quantum image representations are the models that are used to store
digital images on to the quantum systems. The QIR models are broadly
classified in two types as listed below.

1. QIR for grey-scale images

2. QIR models for color images

We primarily deal with grey-scale images thats why we will see it in depth
but before that a brief overview of color images is also presented.

3.1 QIR models for color images

In this section we briefly review some famous quantum image representation
(QIR) models for color images, their features and mathematical expressions.
Some famous QIR models for color images are

MCQI RGB multi-channel representation for images [25]

QMCR Red green blue multi-channel quantum representations of digital
images [1]

NCQI A novel quantum representation of color digital images [21]

QRCI A new quantum representation model of color images [31]

15
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3.1.1 The MCQI Representation

The MCQI model [25] encodes the color and their pixels’s positions of an
image in 2n + 3 normalized qubits. The Mathematical expression of the
model is shown in

|Imcqi〉 =
1

2m + 1

22m−1∑
i=0

|CRGBi〉|i〉. (3.1)

The above expression has two parts. The first part is used to encode color
information of three angels θRiθGiθBi where the second part captures the
corresponding position values of pixels.

3.1.2 The QMCR model

In this model the digital color images are stored in a two entangled sequences
of qubits. The first qubit sequence stores the Red-Green-Blue color informa-
tion of pixels while the second sequence is used to store position information.
The mathematical representation of image is given below.

|I〉 =
1

2n

22n−1∑
i=0

|CRGBi〉|i〉. (3.2)

where |CRGBi〉 is used to store RGB color information and |CRGBi〉 =
|CRi〉|CGi〉|CBi〉. And i stores the position information of pixels of image.

3.1.3 The NCQI representation

A novel quantum representation of color digital images [21] is presented in
2016. This model captures the RGB color values into the basis state of color
qubits. The formula of NCQI is presented in

|Incqi〉 =
1

2n

22n−1∑
j=0

|C(j)〉|j〉. (3.3)

where C(j) stores the color information of pixels at position i.

3.1.4 The QRCI representation

Following the NCQI, a new quantum representation model of color digital
images captures the essential information of colors into the basis states of
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2n + 6 qubits for an image of size 2n × 2n. The QRCI image is represented
as

|I〉 =
1√

22n+ 3

23−1∑
L=0

22n−1∑
i=0

|CL(i)〉|Li〉. (3.4)

where |CL(i)〉 = |RLiGLiBLi〉.

3.2 QIR models for grey-scale images

Some famous quantum image representation (QIR) models their features and
mathematical expressions are presented in this section. For the gray-scale
images the famous QIR models are

• Qubit lattice

• Entangled image

• Real ket

• FRQI

• NEQR

3.2.1 Qubit lattice

Venegas Andraca and Bose [28] presented qubit lattice a quantum image
model for the first time. They [28] defined a machine that detects and
records electromagnetic waves of different frequencies, and produces initial-
ized qubits. In this way, color is stored in a qubit by detecting different
frequencies, and translating them to different quantum states. Every pixel
of image takes single qubit for storage and the entire image is encoded in the
form of a qubit matrix.

3.2.2 Real ket

After the two years of Qubit Lattice, Latorre [14] proposed a new quantum
representation model for quantum images named as Real Ket. In Real Ket,
color value of every pixel is represented in coefficients of basis state, which
are qubit sequences of four-dimensions.



CHAPTER 3. LITERATURE REVIEW 18

Figure 3.1: An example image with its FRQI state

3.2.3 Entangled image

In 2009, Venegas-Andraca [27] proposed Entangled Image model for pro-
cessing images in a quantum system using the peculiar property (i.e., en-
tanglement) of quantum mechanics.This model is similar to previous QIR
model (Qubit lattice) of Venegas-Andraca in addition, it takes advantage of
entanglement property of quantum mechanics for representing relationship
between pixels so that the image retrieval is possible without any use of
additional information.

3.2.4 FRQI

Le et al. [15] took a new look at quantum image processing and proposed a
flexible representation of quantum images (FRQI). The mathematical state
of FRQI for a 2n × 2n image is presented as:

|Ifrqi〉 =
1

2m

22m−1∑
j=0

(cos θj|0〉+ sin θj|1〉)⊗ |j〉. (3.5)

FRQI captures gray-scale color values and their corresponding positions of
pixels, and store them in a normalized state. For each pixel, FRQI model
stores its gray-scale information into a single qubit by using an angle θ and
its position information into a 2n-dimensional qubit sequence. Color qubit
of FRQI is entangled with 2n-dimensional qubit sequence which stores posi-
tional information. The example of FRQI image is shown in Fig. 3.1. The
FRQI representation can also be expressed as in (3.6):

|I〉 =
1

2m

22m−1∑
j=0

(αj|0〉+ βj|1〉)⊗ |j〉. (3.6)

where αj = cos θj and βj = sin θj, for all 0 ≤ j ≤ 22m − 1.
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Figure 3.2: A 2× 2 image and its NEQR state

3.2.5 NEQR

More recently, Z, Yi and Lu. [33] proposed a novel enhanced quantum repre-
sentation of digital images. It takes q+ 2n qubits to store 2m× 2m quantum
image for gray intensities 2q, and represented as:

|I〉 =
1

2m

22m−1∑
j=0

|(f(j)〉|j〉). (3.7)

The NEQR takes two sequences of entangled qubits, for storing gray-scale
information and pixel’s position of the image, and it stores positions as well
as colors of all pixels of an image into the basis states. The example NEQR
image is shown in Figure 3.2.

As mentioned by Zhang, Yi and Lu [33], Entangled Image and Qubit lat-
tice is quantum counterpart of classical image representation models, without
any significant performance improvement than all other image representa-
tion models. Whereas the Real Ket, FRQI, and NEQR are based on the
phenomenon of superposition thus they can process quantum operations for
full image simultaneously. So far, compared to all existing models FRQI and
NEQR exhibit more performance improvement, and considered to be useful
quantum image representation models. But these approaches also have some
limitations. A drawback of FRQI is that it uses only one qubit for storing the
color information of each pixel. As a result, the number of measurements re-
quired to accurately retrieve an image are very large. However, NEQR model
addresses this problem of FRQI by storing the color information in a basis
state of 2p-qubits in a 2p-bit-deep image. This approach ensures the accurate
retrieval of image information, but, it suffers from the space complexity as it
does not utilize the superposition principle in color qubit sequence. This mo-
tivated us to propose a QIR model that efficiently utilizes the superposition
principle in the color qubit sequence and also ensures the accurate retrieval
of image information in response to small number of measurements.



Chapter 4

Methodology

In this chapter, first of all we present analysis of FRQI model and after
that we discuss the proposed QIR model improved flexible representation of
quantum images (IFRQI) in detail. In Analysis of FRQI, we discuss the time
complexity of famous QIR model FRQI and how to reduce it with the help
of ancillary qubits. In the next main section the IFRQI, image processing
operators and quantum image compression algorithm is presented.

4.1 Analysis of FRQI

In [15], Le et al. established that the time complexity - the number of basic
operations required to turn the initialized state to FRQI state - for the FRQI
model is O(24n) for an image of size 2n × 2n. This is quadratic in the size of
image. However, in this section we prove that the complexity of FRQI model
can be significantly reduced to be linear in the size of an image.

To begin with introducing some basic notations and concepts. A matrix
whose inverse is same as its Hermitian conjugate or its adjoint is called a
unitary matrix. Each quantum transformation has representation as unitary
matrix. For this reason, quantum transformations are often called unitary
transformations. For a unitary matrix

U =

[
u00 u01
u10 u11

]
where m ∈ {0, 1, 2, ...} and set the (m+ 1)bit transformation Cm(U) as,

Cm(U)(|c1, ..., cm, d〉) =

{
u0d |c1, ..., cm, 0〉+ u1d |c1, ..., cm, 1〉 if ∧mk=1 ck = 1

|c1, ..., cm, d〉 if ∧mk=1 ck = 0

20
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Controlled rotation
gate

•

Ry(2θ)


1 0 0 0
0 1 0 0
0 0 cos θ − sin θ
0 0 sin θ cos θ


Figure 4.1: Controlled rotation gate C1(Ry(2θ)).

for all c1, c2, ..., cm, d ∈ {0, 1} and ∧mk=1ck = 1 denotes the AND of the Boolean
variables {ck}. The transformation Cm(U) is called a generalized-Toffoli

gate and family of all C0(U) together with C1(X), where X =

[
0 1
1 0

]
,

is called family of basic operations or basic gates [2]. The Hadamard gate

is as H = 1√
2

[
1 1
1 −1

]
. The gate notation and matrix representation of

controlled rotation gate C1(Ry(2θ)), is shown in Fig. 4.1. A 2 × 2 matrix
U is called special unitary if its determinant is 1. The SU(2) represents
the special unitary matrices’s set of the size 2 × 2 . The following Lemma
determines the complexity of C1(W ), where W ∈ SU(2).

Lemma 1 ( [2], Lemma 5.1) For a special unitary 2×2 matrix W , a quan-
tum operation C1(W ), can be applied by a circuit of the type

• • •
=

W A1 A2 A3

where A1, A2, andA3 ∈ SU(2),⇔ W ∈ SU(2).

Remark 1 The time complexity of quantum operation C1(Ry(2θ)) is at most
5.

The following result gives the complexity of C2(U), which is a unitary matrix.

Lemma 2 ( [2]) For a unitary 2× 2 matrix U, a quantum operation C2(U)
can be decomposed into at most sixteen basic operations: eight 1-bit operations
(C0) and eight CNOT operations (C1(X)).

The following result gives the complexity of Cm(U), where U represents a
unitary matrix of size 2× 2 and m ≥ 3.
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q5 U U U

q4 • • •
q3 • • • • •
q2 • • • • •
q1 • = • •
q0 • • •
a1 • • • •

a2 • • • •

a3 • •

Figure 4.2: The decomposed quantum circuit for C5(U); q0 to q5 are operating
qubits, while a1 to a3 are supporting qubits

Lemma 3 Given m ∈ {3, 4, ...}. The quantum operation Cm(U) can be de-
composed, into 4m−10 quantum operations C2(X) and 2 quantum operations
C2(U), provided that m− 2 ancillary qubits are present.

The above Lemma is a generalization of Lemma 7.2 in [2]. Figure 4.2 shows
an example of decomposition of quantum operation C5(U) with the help of
three supporting qubits.

Corollary 1 The time complexity of Cm(Ry(2θ)) is O(m), provided that
enough ancillary qubits are present.

Proof 1 From the Lemma 2 and Lemma 3, the result follows.

The Lemma 1 in [15] provides the existence of a unitary transformation
P = R ◦ H, that changes the initialized state to final state of FRQI. The
components H and R, of P are given in Eq. (4.1).

H = I ⊗H⊗2n, R =
22n−1∏
i=0

Ri (4.1)

In Eq. (4.1), I is identity matrix, H is the Hadamard matrix and Ri is the
controlled rotation matrix defined as in Eq. (4.2), for each i in {0, 1, ..., 22n−
1}.

Ri =

(
I ⊗

22n−1∑
j=0,j 6=i

|j〉 〈j|
)

+Ry(2θi)⊗ |i〉 〈i| (4.2)
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We conclude the analysis with the following theorem on the complexity of
image preparation phase of FRQI, subject to the assumption that there are
sufficient supporting qubits available.

Theorem 1 The complexity of preparing FRQI state of a 2n× 2n gray-scale
image, is O(n22n).

Proof 2 As the unitary transform P = H ◦ R decomposes into H and R
given in (4.1), the time complexity of H is 2n. By using Lemma 2 and
Lemma 3, and the fact that the quantum transform R is a product of 22n

controlled rotations Ri (i.e., C2n(Ry(2θi))), it follows that the time complexity
of R is at most 22n(128n− 128). Thus, the time complexity of P is at most
22n(128n− 128) + 2n, or equivalently O(n22n). This concludes the proof of
the theorem.

4.2 An improved flexible representation of quan-

tum images

Through the analysis of FRQI and NEQR image models, it is evident that
the main advantage of these models results from utilization of superposition
principal in qubits that represents position information of whole image’s pix-
els, due to which all pixels can be operated at the same time. On the other
hand, the major limitation of FRQI is the use of just one qubit to represent
the color values of all pixels. While the NEQR takes 2p qubits to encode the
color values of a pixel with 2p-bit depth and hence do not incorporate the
advantage of superposition principal in this part. To completely incorporate
the benefit of superposition principal, proposed IFRQI model takes two qubit
sequences which are entangled, to store the entire image in the superposition.
In IFRQI model, the first sequence comprising of p qubits are employed to
capture the color (gray-scale) values of each pixel of 2p-bit depth, while the
second sequence of qubits is used to store position information of each pixel.

If the intensity of image is 22p, and f(i) = P 2p−1
i P 2p−2

i ...P 1
i P

0
i is the color

information of the corresponding pixel at the ith position where P j
i ∈ {0, 1}

for all j ∈ {0, 1, ..., 2p−1}. The ordering of pixels positions of a 4×4 image is
given in Fig. 4.3. By encoding the 2−bit information P 2k+1

i P 2k
i via the angle

θk, chosen by the rule given in Table 4.1, we obtain the qubit αi,k |0〉+βi,k |1〉,
where αi,k = cos θk and βi,k = sin θk for all 0 ≤ k ≤ p− 1. Therefore, the

joint state of p qubits,
⊗k=p−1

k=0 (αi,k |0〉 + βi,k |1〉), represents the gray-scale
information f(i), in IFRQI state, of the its pixel at ith position. The IFRQI
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Figure 4.3: The ordering of pixels positions of a 4× 4 image

Figure 4.4: Quantum image preparation process of IFRQI model

state of digital image Ic is

|Iq〉 =
1

2n

22n−1∑
i=0

⊗k=p−1k=0 (αi,k |0〉+ βi,k |1〉)⊗ |i〉. (4.3)

Where αi,k = cos θk , βi,k = sin θk for all 0 ≤ k ≤ p− 1.

Table 4.1: Proposed method for encoding 2-bit information

P 2k+1
i P 2k

i 00 01 10 11
θk 0 π

5
π
2
− π

5
π
2

4.2.1 Quantum image preparation

The process of image preparation of proposed scheme is given in Fig. 4.4. The
process starts with preparing initialized quantum states. Then, these states
are transformed to desired quantum states using unitary transformations.
For this purpose, we consider a classical image Ic of size 2n × 2n with gray
range 22p, which has its IFRQI state Iq of p+ 2n qubits.

We start with preparing and initializing p + 2n qubits. The preliminary
state is shown as in (4.4):

|I〉0 = |0〉⊗(p+2n) . (4.4)
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From state |I〉0, the IFRQI state Iq can be obtained by dividing the quantum
image preparation phase mainly into two steps.

Step 1:

In this step, we apply the quantum operation U1, given in (4.5), on prelimi-
nary state |I〉0 and obtain the state |I〉1, given in (4.6).

U1 = I⊗p ⊗H⊗2n (4.5)

U1(|I〉0) = (I⊗p ⊗H⊗2n)(|0〉⊗(p+2n))

=
1

2n
(I|0〉)⊗p ⊗ (H|0〉)⊗2n

|I〉1 =
1

2n
|0〉⊗p ⊗

22n−1∑
i=0

|i〉 (4.6)

Step 2:

In this step, we apply 22n quantum sub-operations to encode pixel’s color
information. Particularly, the quantum sub-operation Ri, given in (4.7), is
used to set the color value for the pixel at ith position.

Ri =

(
I⊗p ⊗

22n−1∑
j=0,j 6=i

|j〉 〈j|
)

+ Li ⊗ |i〉 〈i| (4.7)

where Li is a quantum operation as given in (4.8):

Li = ⊗p−1k=0L
k
i (4.8)

Since p qubits represent the color information in IFRQI, therefore, Li is
decomposed into p number of operations presented in (4.9):

Lki = Ry(2θk) (4.9)

where Ry(2θk) is the unitary matrix representing the rotation about ŷ axis
by the angle θk.
From (4.9), if θk 6= 0, then Lki is a generalized-controlled rotation C2n(Ry(2θk)),
as a component in (4.7). Otherwise, it is identity matrix whose application
has no effect on the quantum state. Accordingly, the operation Li stores
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color information for the pixel at ith position. Application of Ri on the
intermediate state |I〉1 yields (4.10):

Ri |I〉1 = Ri

(
1

2n

22n−1∑
j=0

|0〉⊗p |j〉
)

=

(
I⊗p ⊗

22n−1∑
j=0,j 6=i

|j〉 〈j|+ Li ⊗ |i〉 〈i|
)(

1

2n

22n−1∑
j=0

|0〉⊗p |j〉
)

=
1

2n

[(
I⊗p ⊗

22n−1∑
j=0,j 6=i

|j〉 〈j|
)( 22n−1∑

j=0

|0〉⊗p |j〉
)

+

(
Li ⊗ |i〉 〈i|

)( 22n−1∑
j=0

|0〉⊗p |j〉
)]

=
1

2n

[ 22n−1∑
j=0,j 6=i

|0〉⊗p |j〉+ Li |0〉⊗p ⊗ |i〉
]

=
1

2n

[ 22n−1∑
j=0,j 6=i

|0〉⊗p |j〉+ (⊗k=p−1k=0 Lki )(|0〉
⊗p)⊗ |i〉

]

=
1

2n

[ 22n−1∑
j=0,j 6=i

|0〉⊗p |j〉+
(
⊗k=p−1k=0 (αi,k|0〉+ βi,k|1〉)

)
⊗ |i〉

]
(4.10)

Since i ranges from 0 to 22n − 1, therefore, the application of composite

transform U2 =
∏22n−1

i=0 Ri on |I〉1 produces the IFRQI state, given in Eq.
(4.11).

|Iq〉 =
1

2n

22n−1∑
i=0

(

p−1⊗
k=0

(αi,k|0〉+ βi,k|1〉))⊗ |i〉 (4.11)

Now, we discuss the time complexity of the image preparation phase. As
described above, the image preparation phase consists of two steps. From
(4.5), it is clear that the complexity of the first step is O(p+ 2n). And, the
second step in image preparation phase is the composition of 22n operations
Ri, where i = 0, 1, ..., 22n−1. In order to determine the complexity of second
step, the complexity of the operation Ri is first discussed. The following
Lemma summarises the complexity of Ri.

Lemma 4 The time complexity of the transformation Ri, given in (4.7), is
O(pn) provided that enough supporting qubits are present.



CHAPTER 4. METHODOLOGY 27

Proof 3 The transformation Ri sets the gray-scale information of the pixel
at ith position in the first sequence of p qubits of quantum state |I〉1. And,
color information setting constituent Li in Ri performs p sub-operations Lki
for each k ∈ {0, 1, 2, ..., p − 1}, where each Lki is a rotation Ry(2θk) about ŷ
axis by the angle θk. Thus, the transformation Ri can be represented as in
(4.12)

Ri =

p−1∏
k=0

C2n(Ry(2θk)) (4.12)

If P 2k+1
i P 2k

i = 00 for k ∈ {0, 1, 2, ..., p − 1}, then θk = 0. Thus, Lki =
Ry(2θk) = Ry(0) = I is the identity operation, and the corresponding con-
stituent C2n(Ry(2θk)) in (4.12) is also the identity operation. On the other
hand, if, P 2k+1

i P 2k
i 6= 00 for k ∈ {0, 1, 2, ..., p− 1}, then θk 6= 0 and its value

is chosen from Table 1. Thus, Lki = Ry(2θk) is a rotation about ŷ axis by
the angle θk and the corresponding constituent C2n(Ry(2θk)) in (4.12) is a
generalized 2n-controlled rotation. From Corollary 1 and the fact that there
are at most p generalized 2n-controlled rotations in (4.12), it follows that the
complexity of Ri is O(pn) with the help of enough supporting qubits. This
concludes the proof of the theorem.

Corollary 2 The time complexity of U2, given in (??), is O(pn22n) provided
that enough supporting qubits are available in the working environment of U2.

Proof 4 The transformation U2 is a composition of 22n transformation Ri,
and from Lemma 4, Ri has complexity O(pn) with the help of sufficient sup-
porting qubits. Thus, the time complexity of U2 is O(pn22n).

Theorem 2 The time complexity of preparation phase in IFRQI model is
O(pn22n).

Proof 5 In IFRQI model, the complexity of Step1 in the preparation phase
is O(p+ 2n). And, from corollary 2, complexity of Step2 is O(pn22n). Thus,
the time complexity of preparation phase in IFRQI model is O(pn22n).

4.2.2 IFRQI storage and its retrieval

The storage of IFRQI model is achieved by employing unitary transforms pro-
posed in Sect. 4.2.1. On the other hand, the process of retrieving information
from a given quantum state involves projective measurements. The projec-
tive measurements are performed on identical quantum states which results
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in a probability distribution of all possible outcomes in the given set of basis
vectors [15]. Each projective measurement has an associated self-adjoint op-
erator, M , mapping state space (Hilbert space of all possible quantum states
of the system under consideration) into itself. The measurement operator M
has a decomposition M =

∑
m Pm. In it Pm is the projection operator and

m are the eigenvalues.
The eignenvalues are the possible outcomes of projective measurements.

The probability of getting output m in response of measuring the state |ψ〉
is 〈ψ|Pm |ψ〉. In the case where {|m〉} form the computational basis of state
space, the projector Pm is |m〉 〈m|, for each m. And, the result of applica-
tion of measurement operator M =

∑
m |m〉 〈m| on basis state |ψ〉 = |m〉

is m with certainty. On the other hand, if |ψ〉 is not a basis state then
projective measurements on identical copies of |ψ〉 yields a probability distri-
bution. If we restrict the state space to only those quantum states ψ that are
evolved under rotation gates Ry(2θ) (0 ≤ θ ≤ π

2
) as |0〉 → Ry(2θ) |0〉, then,

probability distributions associated to these states are distinct. Thus, the
information about quantum state ψ can be retrieved from the information of
probability distribution associated to it. Since FRQI model uses only single
qubit to store the gray-scale information of each pixel in the image state
and in the 2p-bit-deep images (normally value of p is 4), 2p classical bits are
used for each pixel to represent its intensity, therefore, 22p different values,
i.e., pixel’s possible intensities, are encoded in amplitudes of a single qubit
quantum state. This implies that there is a least difference in probability
distributions, obtained through projective measurements on identical states,
corresponding to pixels with small difference in their intensities. Thus, the
accuracy of retrieving the information in FRQI model is low.

To enhance the retrievability of the image information, we encoded the
classical 2-bit information in one qubit as shown in Table 4.2. Also, It is
evident from the fourth and fifth column of Table 4.2 that there is a significant
difference in probability distributions corresponding to quantum states in
third column of Table 4.2. As described in Sect. 4.2.1, we use quantum state
of p qubits to encode the gray-scale information of pixels with 2p-bits depth
according to the rule given in Table 4.1. It follows that there is a significant
difference in probability distributions of quantum states of p qubits obtained
by unitary operations defined in Sect. 4.2.1. Thus, in IFRQI model, more
accurate information can be retrieved from IFRQI state through projective
measurements on few identical IFRQI states.
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Table 4.2: Quantum states for the proposed encoding scheme and their prob-
ability distributions

Two bits Encoding angle Quantum state
Probability of measuring

information θ output 0 output 1

00 0 |0〉 1 0

01 π
5

cos π
5
|0〉+ sin π

5
|1〉 0.6545 0.3455

10 π
2
− π

5
cos(3π

10
)|0〉+ sin(3π

10
)|1〉 0.3455 0.6545

11 π
2

|1〉 0 1

4.2.3 Image processing operations

In this subsection, we discuss the basic image processing operators for the
proposed model. These operators can be divided into three groups in quite
similar way to those presented in [15]. The three group are,

G1 = ⊗p−1k=0Ui ⊗ I
⊗2n

G2 = ⊗p−1k=0Vi ⊗ C + I⊗p ⊗ C (4.13)

G3 = I⊗p ⊗W

where, Ui and Vi are single qubit matrices for each i ∈ {0, 1, 2, ..., p − 1},
W is 2n-qubit operator, I is the identity operator, C and C are operators
considering eligibility and ineligibility of positions, and 2n is the number
of qubits encoding positions. The quantum circuits for these groups are
presented in Fig. 4.5. The operators in group G1 has effect only on color
qubits of IFRQI state, and the operators in groupG2 has effect on color qubits
against specified positions of IFRQI state, while, the operators in group G3

has effect on both color and position qubits of IFRQI state. Note that each
operator in group G1 is a product of p single qubit operators, hence, its
complexity is O(p). The operator in G2 involves controlled rotations.Thus,
complexity of operators in the group G2 is O(N).The time complexity of
operators in group G3 is O(log2(N)) [15].
Now, we illustrate the effects on IFRQI state corresponding to operators
chosen from each of the above groups. The application of an operator in
group G1 on the IFRQI state |Iq〉, transforms it into the quantum state as
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αi,1 |0〉+ βi,1 |1〉 U0 αi,1U0 |0〉+ βi,1U0 |1〉

αi,1 |0〉+ βi,1 |1〉 U1 αi,1U1 |0〉+ βi,1U1 |1〉
...

...
αi,p−1 |0〉+ βi,p−1 |1〉 Up−1 αi,p−1Up−1 |0〉+ βi,p−1Up−1 |1〉

|i〉 /2n
(a)

αi,0 |0〉+ βi,0 |1〉 V0

αi,1 |0〉+ βi,1 |1〉 V1
...

. . .
αi,p−1 |0〉+ βi,p−1 |1〉 Vp−1

|i〉 /2n • • •
(b)

⊗p−1k=0(αi,0 |0〉+ βi,0 |1〉)
P∑22n−1

i=0 |i〉 /2n W
(c)

.

Figure 4.5: (a) Quantum circuit for G1; (b) Quantum circuit for G2; (c)
Quantum circuit for G3

in (4.14).

G1|Iq〉 = (⊗p−1k=0Uk ⊗ I
⊗2n)(

1

2n

22n−1∑
i=0

(

p−1⊗
k=0

(αi,k|0〉+ βi,k|1〉))⊗ |i〉)

= (
1

2n

22n−1∑
i=0

(

p−1⊗
k=0

(αi,kUk|0〉+ βi,kUk|1〉))⊗ |i〉) (4.14)

In particular, if Uk = X for each k ∈ {0, 1, ..., p− 1}, where X =

(
0 1
1 0

)
,

then (4.14) implies the quantum state (4.15).

G1|Iq〉 = (X⊗p ⊗ I⊗2n)(
1

2n

22n−1∑
i=0

(

p−1⊗
k=0

(αi,k|0〉+ βi,k|1〉))⊗ |i〉)

= (
1

2n

22n−1∑
i=0

(

p−1⊗
k=0

(βi,k|0〉+ αi,k|1〉))⊗ |i〉) (4.15)

The quantum state (4.15) is the IFRQI representation of the image, which
is obtained by inverting all qubits in the color qubit sequence of |Iq〉. Fur-
thermore, the operator G1 = X ⊗ I⊗p−1 ⊗ I⊗2n transforms the IFRQI state
|Iq〉 into (4.16), which represents the result image state obtained by inverting
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two most significant bits of original image.

G1|Iq〉 = (X ⊗ I⊗p−1+2n)(
1

2n

22n−1∑
i=0

(

p−1⊗
k=0

(αi,k|0〉+ βi,k|1〉))⊗ |i〉)

= (
1

2n

22n−1∑
i=0

(

p−1⊗
k=0

(α0
i,k|0〉+ α1

i,k|1〉))⊗ |i〉) (4.16)

where, α0
i,0 = βi,0, α

1
i,0 = αi,0, α

0
i,k = αi,k, α

1
i,k = βi,k, for each k > 0 and 0 ≤

i ≤ 22n − 1.

The operators in the group G2 change color value of pixels at specific
positions, determined by the controlled matrix C. For instance, the operator
(4.17) changes the color value of each pixel corresponding to first 22n−1 po-
sitions in the IFRQI state |Iq〉 while the transformed state is given in (4.18).

G2 = (⊗p−1k=0Vk ⊗
22n−1−1∑
i=0

|i〉〈i|+ I⊗p ⊗
22n−1∑
i=22n−1

|i〉〈i|) (4.17)

G2|Iq〉 = (⊗p−1k=0Vk ⊗
22n−1−1∑
i=0

|i〉〈i|+ I⊗p ⊗
22n−1∑
i=22n−1

|i〉〈i|)

(
1

2n

22n−1∑
i=0

(

p−1⊗
k=0

(αi,k|0〉+ βi,k|1〉))⊗ |i〉)

=
1

2n
(
22n−1−1∑
i=0

(

p−1⊗
k=0

(αi,kVk|0〉+ βi,kVk|1〉))⊗ |i〉

+
22n−1∑
i=22n−1

(

p−1⊗
k=0

(αi,k|0〉+ βi,k|1〉))⊗ |i〉) (4.18)

A special case of (4.17), with Vk = X for each k ∈ {0, 1, ..., p−1}, transforms
the quantum image state |Iq〉 into the image state (4.19).

G2|Iq〉 =
1

2n
(
22n−1−1∑
i=0

(

p−1⊗
k=0

(βi,k|0〉+ αi,k|1〉))⊗ |i〉

+
22n−1∑
i=22n−1

(

p−1⊗
k=0

(αi,k|0〉+ βi,k|1〉))⊗ |i〉) (4.19)
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The quantum image state (4.19) is obtained by inverting every qubit, of color
qubit sequence in |Iq〉, corresponding to first 22n−1 positions.
The operators in the group G3, change both color and position information.
Since, each qubit of qubit sequence of color information involves αi,k = cosθk
and βi,k = sinθk, therefore, the quantum Fourier transform (QFT) and quan-
tum wavelet transform belongs to the group G3. The application of QFT
on IFRQI state is analogous to that of FRQI state [15]. The quantum state
(4.20) represents the output image state obtained by the action of QFT on
|Iq〉.

QFT (|Iq〉) =
1

2n
(
22n−1∑
i=0

(

p−1⊗
k=0

(αi,k|0〉+ βi,k|1〉))⊗QFT |i〉)

=
1

2n
[ 22n−1∑
m=0

(

p−1⊗
k=0

(cm,k|0〉+ sm,k|1〉))⊗ |m〉
]
(4.20)

where, cm,k =
1

2n

[ 22n−1∑
i=0

e2πjim/2
2n

αi,k

]
, sm,k =

1

2n

[ 22n−1∑
i=0

e2πjim/2
2n

βi,k

]
m = 0, 1, 2, ..., 22n − 1.

4.2.4 IFRQI compression

In classical image processing, image compression algorithms are used to min-
imize the number of resources required for construction of an image. In
quantum image processing, the computational resources are quantum circuits
used in the construction process of quantum image. It is a well-established
approach to use minimization of boolean expression algorithms to decrease
the complexity of quantum circuits, required for quantum image preparation.

As discussed earlier the time complexity of the first step of IFRQI prepara-
tion is O(p+2n), which is already acceptable. And the second step of IFRQI
preparation is the composition of 22n quantum operations Ri , which can be
decreased to simplify the quantum circuits. The complexity of preparation
of quantum image is primarily based on the number of controlled rotations
Ri and its sub-operations Lki = Ry(2θk) , which are applied on color qubits .
Therefore, the main focus of this section is to reduce the number of controlled
rotation gates required in the second step of image preparation.
The all requisite operation of second step are

Φ =
22n−1⋃
i=0

p−1⋃
k=0

φki , φki = C2n(Ry(2θk)). (4.21)
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In Eq. (4.21), it is clear that p controlled rotations are used for every pixel in
the image. To start with compression phase, the quantum operations given
in (4.21) are divided into p groups expressed as in Eq. (4.22). Each group
consists of all controlled rotations for the same qubit in the sequence of color
qubits.

Φ =
22n−1⋃
i=0

p−1⋃
k=0

φki =

p−1⋃
k=0

( 22n−1⋃
i=0

φki

)
=

p−1⋃
k=0

Φk (4.22)

Then each group is further categorises into 4 types of quantum sub oper-
ations. The category of quantum sub operation is determined by the value
of P 2k+1

i P 2k
i as mentioned in the Table 4.1, if P 2k+1

i P 2k
i = 00, angle θk is zero

and the quantum sub operation becomes identity gate, which can be ignored.
Therefore each group is mainly considered for 3 categories only as given in
Eq. (4.23). Quantum operation in each category is a controlled rotation,
which is controlled by a binary string. And then each category is compressed
individually based on the value of rotation angle θk.

Φk =
22n−1⋃
i=0

φki

=

( 22n−1⋃
i=0,θk=π/5

Lki

)
∪
( 22n−1⋃
i=0,θk=π/2−π/5

Lki

)
∪
( 22n−1⋃
i=0,θk=π/2

Lki

)
(4.23)

where Lki = C2n(Ry(2θk)).

The next step is to transform the all positional information of each cat-
egory to boolean minterms. We can make minterms simply by converting
each position’s binary string to a boolean variable, and then converting each
Boolean variable to a minterm. Then Espresso logic minimizer takes con-
trolled information, which are integration of all minterms as an input and
produces reduced controlled information, which is then utilized to reconstruct
reduced quantum circuits of a quantum image construction. Finally, after
minimizing the boolean expression for each category, we can reconstruct the
quantum image with fewer quantum gates. The step by step procedure of
IFRQI compression is presented in Fig. 4.6.
The first step is to divide the IFRQI image into p groups, and each group
is categorized in step 2. In third step, for each category boolean minterms
are formed. Next step is to use logic minimizer to reduce the quantum gates
and in the last step, reconstruct IFRQI image with fewer number of quantum
operations.
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Figure 4.6: Flow chart of the
IFRQI compression procedure Start

Construct p num-
ber of groups

Divide each group
into four categories

Make minterms
for all categories

Apply Espresso
logic minimizer

Reconstruct quantum
image with reduced

quantum gates

End
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(a)

102 255 170 255 204 255 238 255

102 255 170 255 204 255 238 255

102 255 170 255 204 255 238 255

102 255 170 255 204 255 238 255

102 255 170 255 204 255 238 255

102 255 170 255 204 255 238 255

102 255 170 255 204 255 238 255

102 255 170 255 204 255 238 255

(b)

01 11 10 11 11 11 11 11

01 11 10 11 11 11 11 11

01 11 10 11 11 11 11 11

01 11 10 11 11 11 11 11

01 11 10 11 11 11 11 11

01 11 10 11 11 11 11 11

01 11 10 11 11 11 11 11

01 11 10 11 11 11 11 11

10 11 10 11 00 11 10 11

10 11 10 11 00 11 10 11

10 11 10 11 00 11 10 11

10 11 10 11 00 11 10 11

10 11 10 11 00 11 10 11

10 11 10 11 00 11 10 11

10 11 10 11 00 11 10 11

10 11 10 11 00 11 10 11

01 11 10 11 11 11 11 11

01 11 10 11 11 11 11 11

01 11 10 11 11 11 11 11

01 11 10 11 11 11 11 11

01 11 10 11 11 11 11 11

01 11 10 11 11 11 11 11

01 11 10 11 11 11 11 11

01 11 10 11 11 11 11 11

10 11 10 11 00 11 10 11

10 11 10 11 00 11 10 11

10 11 10 11 00 11 10 11

10 11 10 11 00 11 10 11

10 11 10 11 00 11 10 11

10 11 10 11 00 11 10 11

10 11 10 11 00 11 10 11

10 11 10 11 00 11 10 11

(c)

Figure 4.7: (a) an example of 8 × 8 image; (b) the gray-scale color value of
pixel at each position; (c) p groups of quantum operation

We take the same image given in [33], for comparing the compression
performance of NEQR and IFRQI. The image and its gray-scale values of
all pixels are shown in Fig. 4.7. Figure 4.2.4 represents the 8 × 8 gray
scale image with gray range of 256. Figure 4.2.4 shows the corresponding
gray scale values of all pixels. If NEQR is used to construct the image, it
would require 400 quantum gates before compression and 20 quantum gates
after compression as mentioned in [33]. When IFRQI is used to store the
same image it will require 240 quantum gates before compression and only
14 quantum gates after compression as shown below.

To illustrate the IFRQI compression procedure, we divide the image into
p groups as shown in Figure 4.2.4, because gray range is 256 , therefore the
value of p is 4 in this example. Then we further divided each group into
three categories 01, 10, 11 and then compressed each category individually.
The reduced quantum operations for the four groups are represented as in .

The preparation of NEQR state of this image requires 400 quantum gates
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Table 4.3: Reduced quantum operations for the four groups of Figure 4.2.4

Group 1 Group 2 Group 3 Group 4

C
at

eg
or

y
1 Minimized

expression
x0x1x2 - x0x1x2 -

Controlled

rotation
C3(π/5) - C3(π/5) -

C
at

eg
or

y
2 Minimized

expression
x0x1x2 x0x1x2, x1x2 x0x1x2 x0x1x2, x1x2

Controlled

rotation
C3(π/2− π/5)

C3(π/2− π/5),

C2(π/2− π/5)
C3(π/2− π/5)

C3(π/2− π/5),

C2(π/2− π/5)

C
at

eg
or

y
3 Minimized

expression
x2 and x0 x2 x2 and x0 x2

Controlled

rotation

C1(π/2),

C1(π/2)
C1(π/2)

C1(π/2),

C1(π/2)
C1(π/2)

before compression and 20 quantum gates after compression [33], whereas the
preparation of IFRQI state of this image requires 240 quantum gates before
compression and only 14 quantum gates after compression. To illustrate the
IFRQI compression procedure for, we divide the image into p groups shown
in Figure 4.2.4, because gray range is 256, therefore the value of p is 4. Then
we further divided each group into three categories corresponding to 01, 10,
11 ,and then compressed each category individually. The reduced quantum
operations for the four groups are represented as Table (4.2.4).

Following the procedure of IFRQI compression, the six example images
presented in Fig. 4.8 are taken from [33]. To see the differences in com-
pression performance of three image models, the number of gates before and
after compression for each sample image is shown in Fig. 4.9. These results
show that IFRQI is comparable with FRQI and NEQR.
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Figure 4.8: Example images with gray-scale distributions
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(a) Before compression (b) After compression

Figure 4.9: Comparison of number of gates used in quantum circuits of dif-
ferent image representation models



Chapter 5

Discussion, Conclusion and
Future Directions

This chapter summarizes the main points of research that has been carried
out in the thesis. And highlight the contributions of the proposed model in
different fields of quantum image processing. The last section presents the
potential future research work directions.

5.1 Discussion and conclusion

Section 4.1 shows that the complexity of image preparation in FRQI model
is linear in the size of image. For an image of size 2n×2n with gray range 2q,
it is proved that the time complexity of FRQI model is O(n22n), whereas the
complexity of NEQR model for the same image is O(qn22n). Thus, the time
complexity of image preparation in FRQI model is lower than that in NEQR
model. Also, by analyzing the FRQI and NEQR models, a new model IFRQI
is proposed. The IFRQI uses two entangled qubit sequences to store color
and position information of each pixel. An efficient method of encoding the
classical 2-bit information in amplitudes of one qubit is given, which helps
significantly in the accurate retrieval of original information from the proba-
bility distribution obtained through projective measurements. For an image
of size 2n× 2n with gray range 22p, it is established that the time complexity
of image preparation phase of proposed model is O(pn22n), which is higher
than that of FRQI but is comparable to NEQR. In addition, FRQI uses one
qubit to store color information, and NEQR uses 2p qubits, whereas IFRQI
uses p qubits. Accordingly, the space complexity issue is addressed in the
proposed model with reference to the NEQR model. The quantum image
processing operations for the proposed model are also discussed in detail.

39
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The quantum image compression algorithm based on minimized boolean ex-
pression is presented and applied on example images. It is shown that the
number of simple gates required, before compression and after compression,
for IFRQI are comparable to those required for FRQI and NEQR.

5.2 Contributions

This research can contribute towards many fields such as quantum image
steganography, quantum watermarking and quantum image encryption. Quan-
tum image steganography is the practice of hiding secret information or mes-
sage within some other non-secret carrier image. Hence the proposed model
IFRQI can be used as a base framework for representing carrier image in
quantum image steganography. Quantum water marking is the method of
embedding owner’s information into some carrier quantum image. And in
quantum water marking technique, watermarked image can be represented in
IFRQI form. Quantum image encryption is the art of transforming the mean-
ingful image to meaning less image using some key. Therefore the IFRQI can
provide a better way to represent quantum images for encryption strategies.
Furthermore IFRQI can also be used in image scrambling techniques and
grey codes.

5.3 Future research directions

This research provides many directions for future work in the world of quan-
tum image processing. First of all the IFRQI model will be extended for
storing, representing and processing color images. And some quantum im-
age processing operators will be taken under considerations in detail, for
future work. Furthermore, the research will be carried out to improve the
compression algorithm of QIR models by exploring the different compression
techniques.
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