
 i

Security against Compromised Servers:

Verifiable DB Queries

By

Muhammad Waheed Akram

2015-NUST-MS-IS8-119153

Supervisor

Dr. Shahzad Saleem

Department of Information Security

School of Electrical Engineering and Computer Science,

National University of Sciences and Technology (NUST), Islamabad,

Pakistan.

 ii

Dedication

To my parents, my wife, daughter, my friends and my supervisor who has always

been supportive.

 iii

Approval

It is certified that the contents and form of the thesis entitled “Security against

Compromised Servers: Verifiable DB Queries” submitted by Muhammad Waheed

Akram have been found satisfactory for the requirement of the degree.

Advisor: Dr. Shahzad Saleem

Signature: _________________

Date: _____________________

Committee Member 1: Dr. Abdul Ghafoor Abbasi

Signature: _________________

Date: _____________________

Committee Member 2: Madam Haleemah Zia

Signature: _________________

Date: _____________________

Committee Member 3: Dr. Naveed Ahmed

Signature: _________________

Date: _____________________

 iv

Certificate of Originality

I hereby declare that this submission is my own work and to the best of my knowledge

it contains no materials previously published or written by another person, nor

material which to a substantial extent has been accepted for the award of any degree

or diploma at National University of Sciences & Technology (NUST) School of

Electrical Engineering & Computer Science (SEECS) or at any other educational

institute, except where due acknowledgement has been made in the thesis. Any

contribution made to the research by others, with whom I have worked at NUST

SEECS or elsewhere, is explicitly acknowledged in the thesis.

I also declare that the intellectual content of this thesis is the product of my own

work, except for the assistance from others in the project’s design and conception or

in style, presentation and linguistics which has been acknowledged.

Author Name: Muhammad Waheed Akram

Signature: ________________

 v

Acknowledgements

I am extremely thankful to Allah Almighty. I would be thankful to my family and

friends who encouraged me and supported me. I express my enormous gratitude to

my supervisor Dr. Shahzad Saleem and my GEC members. I was very lucky that I

could work on my thesis in Applied Information Security Lab (AIS) at SEECS-NUST.

I want to thank Dr. Shahzad Saleem on his generosity in sharing precious thoughts

and knowledge with me.

Last but not least, I want to thank Dr. Naveed Ahmed at SEECS-NUST for sharing

his valuable experiences regarding the web & network security with me.

 vi

Abstract

In this modern age, we are marching towards automation, data centralization in

every field of life. We are dependent on databases for storage of data from applications

like medical, banking, and stock exchange. Integrity of data is dependent on the

security of the server hosting databases. Security of servers cannot be guaranteed

because of sophisticated hacking tools, advance malwares, viruses and widespread

vulnerabilities in software. So, there is a need to build secure web based framework

that can ensure the integrity of data in fully compromised environment. In fully

compromised environment an attacker has full access to the server and can change

data in databases. User of an application cannot detect that data coming from server

is not corrupted. So, solution for this problem is verifiable queries, which means that

user can verify with cryptographic proof at web browser end that the data coming

from database against his query is correct. This solution is implemented to provide

data integrity in fully compromised environment. In this implementation, proof is

calculated at the time of write operation to the database. Write operations consist of

insert, update and delete functions. This proof is stored on blockchain. Later on, when

a user performs read operation (i.e. read, find, and sum) from databases, user gets

results along with some proof helpers. User can verify the integrity of result at

browser end by calculating proof from proof helper and comparing with proof from

blockchain. Properties of integrity correctness, completeness, and freshness are

ensured in our solution. Our solution can be integrated with all web applications with

high integrity requirements. However, as a proof of concept, we have integrated this

solution with a medical application. The performance evaluation of our solution

shows that both proof calculation and verification is efficient in terms of memory

requirements and latency.

 vii

Table of Contents

Table of Contents ..vii

List of Figures ... xi

List of Tables ... xiv

List of Equations .. xv

Chapter 1 .. 1

1 Introduction ... 1

1.1. Motivation .. 3

1.2. Problem Statement .. 3

1.3. Objectives and Research Goals .. 4

1.4. Thesis Organization ... 5

2 Background Information ... 7

2.1. Query Verification in Commercial Databases .. 7

2.2. Authenticated Data Structure (ADS) ... 8

2.3. Merkle Hash Tree .. 9

2.4. Cryptographic Hashes .. 11

3 Literature Review .. 13

3.1. Databases Integrity .. 13

3.2. Query Verification .. 16

3.3. Web Application Integrity .. 19

4 Research Methodology ... 22

 viii

4.1. Problem Overview .. 22

4.2. Proposed Solution ... 22

4.3. Design and Architecture .. 23

4.3.1. User... 23

4.3.2. Client Web Page ... 24

4.3.3. Query Verification Client ... 24

4.3.4. Databases ... 25

4.3.5. Application Server .. 25

4.3.6. Query Verification Server .. 25

4.3.7. Proposed Solution-1: .. 30

4.3.8. Proposed Solution-2: .. 32

4.3.9. Blockchain .. 33

4.4. Attacker Model ... 34

4.5. Communication between Client, Server and Block Chain 34

4.5.1. Write Operation ... 34

4.5.2. Read Operation .. 36

5 Prototype Implementation ... 39

5.1. System Overview .. 39

5.2. Implementation Tools .. 40

5.3. Medical Web Application .. 41

5.3.1. Collection: Users .. 43

5.3.2. Collection: Records ... 43

 ix

5.3.3. Collection: Users_MHT .. 44

5.3.4. Collection: Users_MHTAggr .. 45

5.3.5. Collection: Users_MHT2 .. 46

5.4. Query Verification Solution Implementation ... 47

5.4.1. Proposed Solution-1 Implementation: ... 48

5.4.2. Proposed Solution-2 Implementation: ... 50

5.4.3. Implementation of Proof Verification for Queries: 51

5.4.4. Implemented Medical Web Application .. 54

Chapter 6 .. 60

6 Evaluation of Research Work .. 60

6.1. Performance Analysis .. 60

6.1.1. Latency ... 60

6.1.2. Throughput ... 68

6.1.3. Storage Overhead ... 77

6.1.4. Proof Size .. 81

6.2. Comparison of Proposed Solutions ... 82

6.3. Comparison with existing solutions ... 83

6.4. Cost Analysis .. 84

Chapter 7 .. 86

7 Conclusion and Future Work ... 86

7.1. Conclusion .. 86

7.2. Future Work ... 87

 x

8 Bibliography .. 89

 xi

List of Figures

Figure 1-1 Research model .. 5

Figure 1-2 Thesis Organization .. 6

Figure 2-1 Merkle Hash Tree .. 10

Figure 2-2 Merkle Hash Tree Proof .. 11

Figure 3-1 solution for untrusted databases [28] .. 14

Figure 3-2 Implementation of IntegriDB [29] .. 15

Figure 3-3 vSQL [33] ... 17

Figure 3-4 Query Integrity for outsourced databases [35] ... 18

Figure 3-5 Static Web Application Security [39] .. 19

Figure 3-6 Verena Framework [3]... 20

Figure 4-1 Database Query verification architecture .. 23

Figure 4-2 Forest of Merkle hash trees .. 26

Figure 4-3 Add leaf in Merkle hash tree ... 28

Figure 4-4 Merkle hash tree with four leafs ... 29

Figure 4-5 Proposed Tree for Simple Queries .. 31

Figure 4-6 Proposed Tree for Aggregated Queries ... 31

Figure 4-7 Proposed solution-2 ... 32

Figure 4-8 Proof helpers from Merkle hash tree in solution-2 33

Figure 4-9 Communication for Write Query... 35

Figure 4-10 Pseudo code of Write Operation for Query verification Client 35

Figure 4-11 Pseudo code of Write Operation for Query verification Server 36

Figure 4-12 Communication for Read Query.. 37

Figure 4-13 Pseudo code of Read Operation for Query verification Client 37

Figure 4-14 Pseudo code of Read Operation for Query verification server 38

Figure 5-1 System Overview ... 39

file:///C:/Waheed/Study/Semester-Spring-2016/Thesis/Write%20up/Thesis%20Muhammad%20Waheed%20Akram%20finalv1.docx%23_Toc13701355

 xii

Figure 5-2 Patient Register ... 54

Figure 5-3 Pseudo code for patient ... 55

Figure 5-4 Physician Register ... 56

Figure 5-5 Patient View .. 56

Figure 5-6 Physician View ... 57

Figure 5-7 Pseudo code for physician .. 57

Figure 5-8 Patient records view for Physician ... 58

Figure 5-9 Verification of patient’s searched data ... 58

Figure 5-10 Verification Status with Aggregation results ... 59

Figure 5-11 Aggregate results after verification status ... 59

Figure 6-1 Latency Comparison Chart ... 63

Figure 6-2 HAR View of Solution-2 ... 65

Figure 6-3 PhantomJS Test for Solution-2 ... 66

Figure 6-4 HAR View of Solution-1 ... 67

Figure 6-5 PhantomJS Test for Solution-1 ... 67

Figure 6-6 Badboy Recording for JMeter .. 69

Figure 6-7 JMeter performance testing .. 69

Figure 6-8 Throughput Comparison Chart... 70

Figure 6-9 Read/Write Operation Solution-2.. 71

Figure 6-10 Read/Write Operation Sol-2 .. 71

Figure 6-11 Read/Write Operation Solution-1 .. 72

Figure 6-12 Read/Write Operation Solution-1 .. 72

Figure 6-13 Write Operation Solution-2 ... 73

Figure 6-14 Write Operation Solution-2 ... 73

Figure 6-15 Write Operation Solution-1 ... 74

Figure 6-16 Write Operation Solution-1 ... 74

Figure 6-17 Read Operation Solution-2 .. 75

 xiii

Figure 6-18 Read Operation Solution-2 ... 75

Figure 6-19 Read Operation Solution-1 .. 76

Figure 6-20 Read Operation Solution-1 .. 76

Figure 6-21 Users_MHT stats ... 78

Figure 6-22 Users_MHTAggr stats ... 79

Figure 6-23 Users_MHT2 Stats .. 80

Figure 6-24 Storage Size Comparison Chart .. 81

 xiv

List of Tables

Table 4-1 Database Query Read operations ... 27

Table 4-2 Database Query Write operations .. 27

Table 4-3 Database Aggregate Queries .. 28

Table 4-4 Sample Data Values .. 30

Table 5-1 Databases Collections ... 42

Table 5-2 Collection Fields .. 43

Table 6-1 Latency .. 61

Table 6-2 Load Time .. 64

Table 6-3 Throughput .. 70

Table 6-4 Storage Size Comparison .. 80

Table 6-5 Proof Size Comparison .. 82

Table 6-6 Proof Size Comparison .. 82

Table 6-7 Comparison with Verena .. 84

 xv

List of Equations

Equation 4-1 Root Hash Calculation .. 33

Equation 5-1 Sum on different ranges in solution-1 .. 53

Equation 5-2 Sum on different ranges in solution-2 .. 54

Equation 6-1 Size of Perfect Merkle hash tree ... 77

Equation 6-2 Total Storage size in solution-1 .. 77

Equation 6-3 Size of Users_MHT and Users_MHTAggr ... 78

Equation 6-4 Size of Merkle hash tree .. 79

Equation 6-5 Total Storage Size in Solution-2 ... 80

Equation 6-6 Proof size for Solution-1 .. 81

Equation 6-7 Proof size for solution-2 ... 81

 1

Chapter 1

1 Introduction

Databases are used to store users’ data. The security of that databases is

always dependent on the security of that server where databases reside. For

security of that server all type of security controls (i.e. firewall, IPS/IDS) are

implemented. During the development phase of these application, security

of application is also ensured to avoid common vulnerabilities for example

SQL injection, XSS, and CSRF [1]. Communication channel between server

and client is also encrypted and secure using TLS/SSL. But according to

study conducted by university of Maryland, that attacker on average attacks

after 39 seconds which means that there are more chances for attackers to

get access of servers [2]. Growth rate of cyber-attacks is increasing every

year due to increase in vulnerabilities in software and availability of more

advanced and sophisticated hacking tools. These hacking tools can attack

and get access of the server. Once attacker gets control of server, he can

change the data on databases server. Compromised data can result into

erroneous decisions. For a remote user, it is very difficult to ensure the

integrity of the response data which he is getting from a database server.

Such a scenario can lead to severe consequences in environments with high

integrity requirements.

In this thesis, we will talk about data Integrity. So, it is defined as data

protection against from illicit change in data. It holds these three properties

of integrity: completeness, correctness, and freshness [3]. We will now try to

define and explain these properties with the help of an example.

Completeness is an absolute truth which means information provided is

completed, no related information is missed [4]. We can understand with

 2

the help of an example; a traveler requests a flight booking site to list all

flights from Islamabad to Dubai. For completeness, he needs assurance that

the result set for flights from Islamabad to Dubai is complete and there is

not any other flight between these two points on the said date.

Correctness is defined as accuracy which means information provided is

accurate [5]. For correctness, the traveler will ensure that all the listed

flights from Islamabad to Dubai were accurate with respect to all the

attributes like flight number, departure time, arrival time, source,

destination and operator.

Freshness is defined as up-to-date information which means that

information is not replayed [6]. For freshness, he will ensure all the listed

flights are up-to-data, means query result is obtained from the latest data

and all the rescheduling till the time of query have been accommodated.

In medical web application, patients’ data is very important for physicians.

If an attacker changes patient’s data then physician can prescribe wrong

medicine. This may cause harm to health of the patient. Every year many

patients are misdiagnosed, and sometime this also leads to death [7].

According to a study in USA from 2013 to 2017, 363 security hacking

incidents affected server based electronic records of 13 million patients [8].

So, if server is fully compromised then physician should have some facility

to verify patients’ data before making correct decision.

In medical application, a query is executed by physician for particular

patient and database returns data of that patient. Now physician wants to

ensure integrity of query result. If some cryptographic proof is provided for

verification of integrity of result then physician can trust the results of query

completely. This solution is required in similar cases where databases are

outsourced to third party, or data sender is trusted and server is untrusted.

 3

So, if the end client can verify integrity of query results, then he can trust

on the data (from query result) on compromised server.

1.1. Motivation

In internet environment, servers remain vulnerable to many types of attack.

Many critical applications (i.e. remote medical application, financial

application, stock exchange application) where data tampering by an

attacker can cause very serious impact on end clients and data owners. The

end user trusts on the server after verifying the results of queries executed

on the databases with some cryptographic proof. So, there should be some

real world solution for query verification that enables the end user to verify

the queries result at the client’s browser end in real time with minimum

overhead. It should help to user to take decisions on the data with full

confidence in a fully compromised environment. It should also work with

minimal overhead and can be integrated with any new and old web

applications.

1.2. Problem Statement

Security of all web applications and databases depends upon the security of

the server. Security of these servers cannot be ensured. In case of outsourced

databases, the client is not trusting on third party databases. The attacker

can corrupt the data on the server in fully compromised environment, so the

end client gets wrong query results by executing a query on corrupted

databases. The client can take wrong decisions depending upon wrong data

results which can cause damage to clients. If the databases are untrusted,

then it very difficult for client to trust on query results.

It is a challenge for the client to detect the integrity of data is preserved or

not. There should be some mechanism of query verification which helps the

client to integrity of data is preserved. This also enables the clients to check

that the server is compromised or not, and result of query is not corrupted.

 4

So verifiable database queries provide verification of results at browser end

with the help of cryptographic proof in compromised environment. It should

have minimum overhead which may not affect the performance of web

applications and databases in real time.

1.3. Objectives and Research Goals

Research goals of this thesis are to propose and implement the solution for

database query verification in fully compromised environment where the

client is not trusting the data results from the server. The client can ensure

integrity with its properties i.e. completeness, correctness, and freshness of

the query data result at browser end.

The query verification solution should be implemented so that it can be used

in real time with minimum overhead and performance of web applications

do not suffer too much. Solution should be flexible, so it can be integrated

with new web applications in development phase and also with already

developed web applications with minimal changes. Solution should also be

expressive so it can support most common and widely used simple and

aggregated database queries. These following main objectives of this

research are shown in figure 1-1:

 Goal-1: Implement query verification using authenticated data

structures

 Goal-2: Integrate solution with test web application i.e. Medical

application

 Goal-3: Proof creation and verification mechanism

 Goal-4: An extensive performance evaluation of proposed solutions

 5

Figure 1-1 Research model

1.4. Thesis Organization

In chapter 2, background information related to this research problem is

discussed and explained. This is helpful for understanding of design of

solution. Chapter 3 includes literature review of all existing and related

solutions to this research problem. There methodology and issues are

discussed in details. Chapter 4 is about the purposed solution and

methodology which is used to solve this research problem. Proposed

solutions and complete design are also explained. In chapter 5,

implementation of proposed solutions is discussed. It also includes

integration of query verification solution with test medical web application.

Chapter 6 is related to extensive performance evaluation of the solution with

respect to latency, and throughput. Performance and cost analysis are

discussed with details in this chapter. Conclusion and future work are

described in chapter 7. Thesis organization as described above is also shown

in figure 1-2.

Goal-1
• Implementation of Database Query

Verification

Goal-2 • Integration with Web Application

Goal-3 • Proof Calculation Mechanaism

Goal-4 • Performace Evaluation of Solution

 6

 Figure 1-2 Thesis Organization

T
h

e
si

s
O

rg
a

n
iz

a
ti

o
n

Literature
Review

Chapter 1

Chapter 2

Chapter 3

Research Work

Chapter 4

Chapter 5

Chapter 6

Chapter 7

 7

Chapter 2

2 Background Information

In this chapter, background information which is required for

understanding of this thesis is given. This includes background information

regarding integrity in databases, authenticated data structures and hashing

functions.

2.1. Query Verification in Commercial Databases

According to databases journal, following are five top databases for 2019 [9]:

1. Oracle Database

2. MySQL

3. Microsoft SQL Server

4. PostgreSQL

5. MongoDB

Now, we have discussed the integrity protection of each top five databases.

Oracle is a SQL (rational) database, and first commercially available

databases. Oracle has introduced many features with each release [10].

They have introduced data encryption using AES and also provide the data

integrity feature using SHA-x. But there is an additional cost of encryption

and integrity. It also results in increase in finical cost and degradation of

performance [10]. If attacker can get access of databases then he can also

change the transaction and manipulate results.

MySQL has two versions one is free and other is enterprise. MySQL provides

support of encryption of databases and data integrity. Data integrity is

independent of encryption but in MySQL, it uses the hash checksum during

encryption process. In MySQL, the user has to pay money to buy licenses of

security features [11].

 8

Microsoft SQL server is the third commercial solution. It also provides

encryption and integrity. Like Oracle and MySQL it also has addition cost

for these security features [12].

PostgreSQL is open source and powerful database. It is community-based

database. It also has features of encryption and data integrity. But many

security issues of this database are reported which are being patched on

regular basis against the reported vulnerabilities [13].

MongoDB become popular in very short time. It is no-SQL, and used in many

famous web and modern applications. It has security features like TLS/SSL,

encryption at rest. [14].

There are also other databases which are not discussed here. All databases

have security features like encryption of data (AES 256) and integrity of

data (SHA-1). These inbuilt security features may be utilized depending

upon the criticality of the application data which is being stored in

databases. These security features add some addition financial cost and also

overhead on the processing of the server. Encryption, decryption and

hashing are functions which increase latency.

In case of compromised environment, servers do not provide information to

the client to check integrity of that the data generated as a result of a query.

So, results of queries in all databases are not providing proof to the client to

verify the results against integrity requirements.

2.2. Authenticated Data Structure (ADS)

Authenticated data structure (ADS) is type of data structure which has two

roles to perform operations. One is prover and other is verifier. Prover

calculates proofs when data is written. Proofs are provided to verifier when

he needs to verify the data.

Authenticated data structures are almost thirty years old concept in

cryptography. Authenticated data structures are widely used in applications

 9

to ensure authenticity. Authenticated data structures are implemented in

various forms and each implementation has different performance.

Andrew Miller, Michael Hicks, Jonathan Katz, and Elaine Shi [15] have

discussed, implemented and presented “λ•”, the first programming

language for Authenticated data structures implementation. They use it for

different Authenticated data structures like Merkle hash tree, Red black

tree, and skip lists.

Authenticated data structures provide more efficient method for

verification. Authenticated data structures are used in some previously

proposed integrity solution [16], [17]. Authenticated data structures can be

implemented in multiple ways to keep the correctness and completeness

property intact.

In server client model, the end client verifies the data which is stored on

server. Server use Authenticated data structures to make proof and send to

the client to verify the data. The end client uses the proof sent by server and

verify correctness of the data. Authenticated data structures have very

common use in peer to peer communication where anonymity and integrity

is required. ADS are also implemented for client server model with

centralized and distributed approach [18].

2.3. Merkle Hash Tree

Merkle hash tree [19], [20] is the most common method to verify any type of

data. It reduces proof size and makes one root hash. Root hash is built on

the hashes of all the data in the tree. Merkle Hash tree uses cryptographic

hash functions like Secure Hash Algorithms [21](i.e. SHA-1, SHA-2 and

SHA-3) [22] to build the tree.

Secure hash algorithm (SHA) series are the most common and trusted hash

functions. Merkle hash tree is a tree of hashes, with top hash or root hash

 10

at root of the tree. This scheme is used in many famous applications like

bitcoin, blockchain and other applications. Merkle hash tree is graphically

represented in figure 2-1.

There are 8 leaves from L1, L2, L3, L4, L5, L6, L7 and L8. H1 is hash of L1

and similarly H2 for L2 and so on. H12 is the hash of H1 and H2 and H34 is

the hash of H3 and H4. H14 is hash of H12 and H34. Similarly, this tree is

built up in hierarchy, and Root hash of Merkle tree is calculated. Any hash

function can be used with any number of resultant hash bits i.e. SHA-1,

SHA-2, SHA-3. If any value changes from L1 to L8, then corresponding hash

is changed. All dependent hashes are calculated again and new Merkle root

hash is calculated. Root hash is the output that come from all node hashes

of the tree and it can be used to verify the integrity of data at all the leaves

of the tree.

Figure 2-1 Merkle Hash Tree

In case of verification, the client wants to verify that L4 is changed or not as

shown in Figure 2-2. Then H3, H12 and H58 is sent as proof helpers to the

end client. Proof helpers mean all those relevant hash nodes which are

 11

required to build Merkle root hash. In this case, H3, H12 and H58 are proof

helpers. The end client calculates H4 from L4, H34 from H3 and H4. Then

H14 is calculated using H12 and H34. Finally Root hash is calculated from

H14 and H58.

 Figure 2-2 Merkle Hash Tree Proof

Newly calculated Merkle root hash is compared with previously calculated

Merkle root hash. If newly calculated Merkle root hash is same as previously

calculated Merkle root hash then it means data has not been changed or

corrupted at leaves. The end client trusts the data in this case. If newly

calculated Merkle root hash does not match with previously calculated root

hash of tree then it means that data used in hashes at leaves are changed

or corrupted. In this case, the end client knows that the requested data has

been changed. So, Merkle hash tree provides efficient mechanism to protect

the integrity of data.

2.4. Cryptographic Hashes

Hash functions are used to associate the fixed size of data to every input

data of different lengths and is subsequently used to prove integrity. In

 12

cryptography, output of the hash function (the fixed size of data) must fulfill

some properties. The hash functions have following properties: Pre-Image

Resistance, Second Pre-Image Resistance, and Collision Resistance [23].

Some of these hash functions are weak candidate for usage for example

SHA-1 [24].

National Institute of Standards and Technology (NIST) has also presented

hash algorithm series which is compliant with FIPS [25]. This series is

famous as secure hash algorithm (SHA), and variants of this series are SHA-

0, SHA-1, SHA-2 and SHA-3 [26], [27] SHA-0 and SHA-1 has output length

of 160 bits but they are vulnerable to collision. SHA-2 has six different

variants which have 224, 256, 384 and 512 bits output. Similarly, SHA-3

has also six different variants which have 224, 256, 384, 512, and arbitrary

“d” bits output [22] to protect the integrity.

In Merkle hash tree, SHA-x can used for hash calculation of all nodes. Hard

disk integrity checks also use the cryptographic hash functions, and save

output for a given data. At verification time, hash of data is calculated again.

If both results are matched then it means data has not changed. Many

software, files and documents on internet use this technique, so the end

client can trust on these files.

Passwords are saved as output of cryptographic hash functions. During

verification, when the user enters the password, its hash is taken and

compared with already stored hash. As clear text passwords are very much

vulnerable, if system gets compromised. Hashing is also used in source code

management tools.

 13

Chapter 3

3 Literature Review

In this chapter, we have done a review of all research related to databases

integrity, query verification and web application integrity. People have

already explored the areas like database integrity and query verification

and subsequently proposed different solutions. Some known issues and

shortcomings exist in those techniques which are discussed in this chapter.

3.1. Databases Integrity

Databases are collections of information which are hosted on the servers.

They can handle all type of data i.e. personal information, pictures, files and

related data. Different vendors provide databases and the most common

used are Oracle databases, MySQL, and MongoDB. Databases integrity

means that data should not be changed by the attacker or any third party.

These days many application are hosted on clouds, so databases are also

migrated to clouds. In some cases databases are also outsourced to a third

party. In all these scenarios, trust on database service providers is a big

question. Similarly, if you have deployed your own databases server, then

there are also chances attacker can hack your server. The end client using

databases does not get idea that data is verified or not.

HweeHwa Pang, Arpit Jain, Krithi Ramamritham, and Kian-Lee Tan [28]

implemented the solution for untrusted databases as shown in Figure 3-1

[28]. The solution was implemented in such a way that the end user can

verify the results getting from databases. He can also verify completeness

and authenticity of data. As already discussed, three properties of the

integrity verification of data are completeness, correctness and freshness.

 14

But their solution was not ensuring completeness and freshness. Data result

of query can be old or replayed, as it can fulfill correctness property. For

authenticity of data, digital signatures were used. The use of digital

signatures were also increasing the size of data, which was stored on

outsourced or untrusted databases. Computational cost of signature

verification was also additional overhead. Attacker can also change query

results and proofs (which is used in verification) in fully compromised

environment. So, the end user cannot detect that results of queries were

corrupted. Implementation was only supported with SQL database.

Figure 3-1 Solution for untrusted databases [28]

Yupeng Zhang, Jonathan Katz, and Charalampos Papamanthou [29]

implemented the IntegriDB. It was also used to ensure integrity of

untrusted databases. In this model, data owners were keeping the records.

In many applications data owner cannot keep all the records on its local

databases. For example, medical devices (remote blood pressure measuring

device, pacemaker) of patient are sending data to medical web application.

Data owner is patient, and he cannot save all of its data for verification.

Even in remote medical devices like pacemaker, cannot store too much data.

 15

At verification time, communication channel between data owner and the

end client is not always available in web applications. For example,

pacemaker cannot be online when physician needs to verify the data.

IntegriDB had client-server model. IntegriDB client was used to verify

query results with proofs which were stored on the databases. IntegriDB

setup time was also very high. This solution was providing only correctness

and completeness of resultant data. Freshness was not provided. Proof and

result were returned in the response of IntegriDB query from IntegriDB

server.

One serious issue with IntegriDB was, if the server was compromised, then

client could not able to verify the query results. IntegriDB does not work in

fully compromised environment. If attacker has full access, he can send

wrong data with wrong proof. For example, if end user has requested value

blood pressure of patient at time 9pm then attacker has ability to return the

value at 10 pm which can be verified from data owner too. IntegriDB was

also only supporting for rational databases (SQL). We can see the flow of

IntegriDB, as shown in figure 3-2 [29].

Figure 3-2 Implementation of IntegriDB [29]

 16

CryptDB [30] was presented to solve the security issues of the databases. It

was implemented to solve the confidentially issues of database. According to

the published result, it was found to be quite real time. It was not providing

the integrity protection of databases for databases queries results.

Palazzi Bernardo, Pizzonia Maurizio and Pucacco Stefano [31] proposed the

solution for only completeness of resultant data from databases. They were

using skip list as authenticated data structures to provide completeness of

data results. It was implemented on the SQL based databases. It was also

supporting only basic databases queries and provides only completeness.

This solution was not covering correctness and freshness of SQL queries. In

compromised environment, it does not provide completeness feature of

integrity.

3.2. Query Verification

Data is stored in databases, where the end user interaction with database

is depend upon the databases queries. There are mainly two type of

operations on data: read and write. Read queries interact with database and

get data from database. Example of read queries are project, sum, average,

max, min, count as given in table 4-1. Write queries enable user to write

some new data, update or delete existing data from databases. Write queries

are insert, update and remove/delete as given in table 4-2 [32]. Format of

these queries may vary from one database to another database. This is

dependent upon the vendor or the type of databases (SQL or NO-SQL).

Any application integrated with the database uses these queries to perform

operations on databases. The end user cannot trust on the results of queries

in case untrusted databases. Attacker or third party (managing database)

can corrupt the results of read and write queries.

 17

Figure 3-3 vSQL [33]

Yupeng Zhang, Daniel Genkin, Jonathan Katz, Dimitrios Papadopoulos and

Charalampos Papamanthou [33] presented the paper on vSQL, which was

providing SQL queries verification in case of untrusted databases on cloud.

They introduced verification of SQL queries when databases were on cloud

or on third party’s untrusted servers as shown in figure 3-2. Their solution

was less efficient, because it had very large setup time. According to given

results, it was more expressive but less efficient than the solutions based on

authenticated data structures. Proof calculation was on the cloud server

which would require the client to purchase more resources for complex

cryptographic operations and thus increasing the cost and overhead.

Moreover, the end user had to maintain local database which was additional

cost for him.

Hweehwa Pang and Kian-Lee Tan [34] discussed the solution for

completeness of database queries using authenticated data structures. This

solution was only providing completeness of query result. It was built for

relational databases and it was supporting only limited number of queries.

This solution was not verifying query results when the database server was

compromised. This solution was also for SQL.

 18

 Qingji Zheng, Shouhuai Xu, and Giuseppe Ateniese [35] proposed efficient

solution for query integrity for databases in outsourced environment. As in

figure 3-4 [35], DB querier was communicating with cloud databases for

proof. Their solution was supporting selection, projection and only few

aggregated queries of the databases. The proposed solution was for only SQL

databases.

Figure 3-4 Query Integrity for outsourced databases [35]

Solution for authenticity and integrity [36] was proposed for SQL based

databases in outsourced environment. There were multiple issues with

assumptions and final design. The end client was getting proof from

outsourced databases and from data owner. Usually, the end clients do not

communicate with the data owners. Data owner may not have enough

storage to keep the copy of data and proof with themselves.

Grisha Weintraub and Ehud Gudes [37] proposed solution for No-SQL

databases on clouds using probabilistic approach to provide correctness and

completeness only. Freshness is an important part of the integrity and it

was not ensured by them in their solution.

In outsource databases, the end user sometime prefers to store encrypted

data. When client executes query on database, he gets encrypted results

 19

which are decrypted at the client end. To handle this scenario solution [38]

was proposed and implemented with proxy re-encryption. Proof was also

stored on the cloud database. This solution did not provide freshness of

results. If the cloud database is compromised then proof can also be changed

by intruder. Similarly, untrusted third party can also change data and proof.

The end user cannot detect the change in this case.

3.3. Web Application Integrity

Web applications are of two types: static and dynamic. In static web

applications content of web pages is remain same every time. Integrity

protection of such web pages is very easy. Just store hash of each web page

using cryptographic hash functions [22]. The end user accesses these pages

in browser. He calculates the hash of web pages. He has to match hash with

already stored hash. If both hashes are same, there are no change is web

pages and the integrity of web application preserves.

Pedro Fortuna, Nuno Pereira and Ismail Butun [39] proposed the solution

for web applications integrity. In their solution, it was comparing web

 Figure 3-5 Static Web Application Security [39]

 20

application code on the server and on the client side as shown in figure 3-5

[39]. This solution was only for the static web applications.

Figure 3-6 Verena Framework [3]

In the second case we have dynamic web applications, where web pages are

not static, they change every time when the end user accesses the pages of

web application. These pages get data from databases and display on web

pages. Now integrity protection in dynamic web application becomes more

challenging. The end user should have some proof from the server which he

can use to verify the data.

Nikolaos Karapanos, Alexandros, Filios, Raluca Ada Popa, Srdjan Capkun

[3] presented the solution. In their solution, they proposed protection of

integrity in fully compromised environment. They had introduced a new

server which used to store the proof (hash) of each user as shown in figure

3-6 [3]. They had used authenticated data structures to build proofs from

data. Red black binary Merkle hash tree was used to calculate proof for data.

Root of each tree was saved on the hash server. Main advantage of hash

server was, if main server was compromised then the end user could also

detect the integrity of data from proofs from main server and hash server.

This model was not very much expressive in term of databases queries.

Aggregation queries did not have proof for its results, for proof verification

 21

it was dependent upon the result of simple queries. In this solution, there

was an issue that client (who is operating at browser end) had to

communicate with hash server via main server. In case of compromised

server, attacker can return wrong hash against user-id to the end client. As

it was already mentioned in the vSQL [33] that authenticated data

structures are more efficient, but it supports limited number of database

queries.

 22

Chapter 4

4 Research Methodology

In this chapter, we have discussed the methodology of database query

verification solution in fully compromised environment.

4.1. Problem Overview

Security of web applications and databases is always dependent on the

security of servers. Once server is compromised, the end user using web

application cannot detect at browser end that he is getting verified data. For

this, database query verification is required. In the worst case, when

attacker has full access to server, this solution should detect that server is

compromised. If the end user sends a query for execution, attacker can

return wrong data or data of another user. This wrong result can have

serious impact on the end client. This problem is widely faced in many

applications in which data sender is trusted but server (storing data) is not

trusted. So, there should be database query verification, so the end user can

verify results in fully compromised environment.

4.2. Proposed Solution

In our solution, we have used Merkle Hash tree based Authenticated data

structures, which are used for construction of proof (in write operation) and

proof verification (in read operation). In Chapter 2, section 2.3 Merkle hash

tree is explained in detailed. During database write operation Merkle hash

tree is processed and root hash of tree is updated after write operation. This

root hash is sent to blockchain for storage. For database read operation

Merkle hash tree is used for verification of the end user’s data which is

returned from databases after executing the query. Query result with proof

 23

helpers (Chapter 2, Section 2.2) are sent to the end client. The end user

verifies the result with help of proof helpers, data return from query and

root hash from blockchain. Root hash is calculated by the end user from data

and proof helpers, and it is compared with root hash from blockchain. Our

customized implementation of Merkle hash tree helps us to verify

aggregates queries efficiently.

4.3. Design and Architecture

Figure 4-1 shows the architecture of verifiable database query solution.

Figure 4-1 Database Query verification architecture

Now, we discuss each component of the solution in detail.

4.3.1. User

The user is end client who is using web application. He can view, modify and

delete his data which is stored on database. Users can have different roles

like one user can not view data of another user, or one user can view data of

 24

another user but cannot delete it. User roles are implemented in web

applications according to requirements. Like in the medical web

applications, physician can view patient data to prescribe medicines. A

patient cannot view, update data of another patient.

4.3.2. Client Web Page

Client web page is the simple HTML page which is used to display client

information with help of CSS, JavaScript, Ajax and jQuery in web browser.

These web pages are generated by server-side application. This application

can be implemented in any technology like PHP, java servlets, ASP .Net,

node.js. Web pages can be static or dynamic web pages generated by web

application server. The end user can interact with databases with help of

client web pages in his web browser. He can request data by sending query

to databases however interface data query is dependent on the

implementation of application. Client web pages are generated by web

server and sent to the end client for view.

4.3.3. Query Verification Client

This is main component on the end user side, which communicates with

application server and blockchain for proof verification of query results (sent

by the database). Query is executed on database server, and result is

returned to the query verification client with proof helpers (Chapter 2,

Section 2.2). The proof helpers from untrusted server are verified with the

help of the proof resides on the blockchain. Query verification client

constructs Merkle hash tree using data (query result) and proof helpers, so

root hash is calculated and matched with root hash which is coming from

blockchain. Blockchain ensures two basic properties of integrity i.e.

freshness and correctness. So, if blockchain proof is verified with proof

helpers from untrusted server then it means that the resultant data is

verified.

 25

4.3.4. Databases

Web applications use databases to store data on it. Databases can be of any

vendor depending upon the requirements of application. Databases may

reside on same server where web application is running. It can also be

outsourced to third party [40]. In our architecture, database is residing on

same server where web application is deployed. Our design is independent

of location of database, but it should be accessible to web application server

over the network. Web application can communicate with database server.

Popular databases are already discussed in chapter 2, section 2.1. The end

user requests any data from database. Dynamic web pages are built using

the results of query (executed on database) and displayed to the end user in

his web browser.

4.3.5. Application Server

Web application is deployed on web application server. It communicates

with databases to access the stored data. All requests by client are

entertained by the application server. It returns requested web pages for the

end client. Dynamic web pages are generated by web application server

using data from databases. It is sent to browser of the end client where he

can view these web pages. There are many types of web application servers.

It depends upon the requirements of application for choosing web

application server. Most common web servers are Apache HTTP Server,

Ngixn, and Microsoft IIS. [41]. Server end of any web application can be

developed using any programming language. These servers provide

TLS/SSL based encrypted communication cannel with the end client.

4.3.6. Query Verification Server

This is the most important component in architecture of query verification.

This query verification server is used for proof creation, proof updation and

 26

proof helpers (Chapter 2, Section 2.2) calculation for verification of database

query. In verification process, this component is used to calculate and send

proof helpers to the end client. Authenticated data structures are used for

proof verification and creation process. Authenticated data structures are

used in our design are based on Merkle hash tree.

In section 2.2 of chapter 2, it is explained that Merkle hash tree is built on

the hashes of data on leaves. For every end user, who needs query

verification solution, Merkle hash tree is built for that end user. So, there is

forest of trees on main server. For four users, forest of Merkle hash tree is

shown in figure 4-2.

Figure 4-2 Forest of Merkle hash trees

There are two types of queries: simple and aggregated. Simple queries are

those in which the user gets data at particular matching field of data

collection in databases i.e. “find record of user at 9pm, 10th January 2018”.

Aggregated queries are those in which the end user get data on specified

 27

range field i.e. “find sum of values for a user from morning time to evening”.

Aggregated queries are listed in table 4-3.

In databases, there are two types of operation write and read. Write

operation means when the data is changed in databases, it may be insert,

update or delete. Some example write operation in databases are given table

4-2. In read operation, user can get data from database. Common read

operation for database are given in table 4-1

Table 4-1 Database Query Read operations

Read Query Detail Operation

Find Get value from no-SQL database

Select Get value from SQL database

Sum Get sum on range

Average Get Average on range

Max Maximum value on range

Min Minimum value on range

Count Number of values on range

Write operation on databases are given in table 4-2

Table 4-2 Database Query Write operations

Write Query Detail Operation

Insert Add new value in database

Update/Modify Update existing value in databases

Delete Delete existing value from database

We explain the design of proof creation, which is used in write operation. If

the end user performs a write operation, (insert something in database) then

data of the end user is also sent to query verification server. In query

verification, Merkle root hash tree is checked for the end user in the

 28

databases. If tree already exists, then data is hashed and added as new leaf

in existing tree.

Table 4-3 Database Aggregate Queries

Aggregate Query Detail Operation

Sum Get sum on range

Count Number of values on range

Average Get Average on range

Max Maximum value on range

Min Minimum value on range

In this process new root hash of Merkle hash tree is calculated. This root

hash is sent to blockchain. If user is performing write operation, then new

Merkle hash tree is created. To ensure completeness, two leafs are added in

Merkle tree one is starting leaf which is “0000” and end leaf is “FFFF”. After

creating new Merkle hash tree, new data is added as leaf as shown in figure

4-3 and 4-4.

Figure 4-3 Add leaf in Merkle hash tree

 29

New root hash is calculated that is sent to blockchain. If the end user wants

to update a value, then tree of user is traversed to find the value which is

going to update.

Figure 4-4 Merkle hash tree with four leafs

The existing leaf hash is replaced with new hash of updated data, root hash

of Merkle tree is also updated. This updated Merkle root hash is also sent to

blockchain. Similarly, if the end user wants to run some delete query, then

relevant hash value is searched in Merkle hash tree of the end user. The leaf

containing deleted hash value is removed as leaf. So, Merkle root hash is

calculated again and this is updated on blockchain.

Now come to verification part of the data, if the end user performs a read

operation, then query verification server calculates proof helpers (Chapter

2, Section 2.2) against required the data. These proof helpers are hash

values in adjacent leaf and nodes on upper order of tree. If the total number

of leaves are “n” then “log2 (n)” is the numbers of proof helpers. This is the

benefit of Merkle hash tree that number of nodes in proof helpers are less

as compare to the total number of leaves. So, these leaves are sent to query

verification client (at browser of the end user) with the resultant data from

 30

databases. Now query verification client constructs root hash with help of

proofs as explain in section 4.3.3.

To provide the integrity for aggregated queries, we have proposed two types

of the solutions to solve this problem. So, the best solution is recommended

after performance evaluation of solutions.

4.3.7. Proposed Solution-1:

 In 1st solution, the end user has two Merkle hash trees, one tree for simple

queries and another tree for aggregated queries. Both trees are updated on

insert. In 1st Merkle hash tree only one value gets hash and added as leaf in

the tree. In 2nd Merkle hash tree (for aggregated queries), sum, average,

min, max and count is taken with using pervious data. These values are

hashed together, and added as leaf in the tree (Merkle hash tree for

aggregated queries). Both trees have their root hashes. These are sent on

the blockchain. Theoretically, the benefit of this design is aggregated and

simple trees have separated proofs which provide more trust on query

result. For example, we have table of “user1” value is store against key as

shown in table 4-4:

Table 4-4 Sample Data Values

Key Value

1 X

2 Y

In 1st solution we have two Merkle hash trees as shown in figure 4-5. Key

and value is hashed, and this hashed valued is added in leaf of 1st Merkle

hash tree (implemented for simple queries. This tree grows as the data of

user is increased. This tree is saved in databases on main server for better

performance. Root hash of tree is sent to blockchain as proof, which is used

in verification step.

 31

Figure 4-5 Proposed Tree for Simple Queries

2nd Merkle hash tree is used for query verification of aggregated queries. 2nd

tree is shown in figure 4-6.

Figure 4-6 Proposed Tree for Aggregated Queries

In this tree, we have shown sum, count, average, maximum and minimum.

These result are pre-calculated using current data and pervious data. This

tree grows as data is increased. This tree is also stored in database. Tree is

loaded, when proof helpers (Chapter 2, Section 2.2) are required for query

verification client. Root hash of this tree is also sent to blockchain.

In this solution, we have to maintain two tree for each user. We have two

root hashes on the blockchain for each user. Query verification client

requests root hash depending upon the type of query. If user sends simple

query for execution, then query verification client requests root hash of 1st

Merkle hash tree which is used simple queries.

 32

4.3.8. Proposed Solution-2:

Our proposed solution-2 is designed with only one Merkle has tree, to

provide proofs for simple and aggregated queries in our query verification

solution. In this case, only Merkle root hash, which is used for verification

of both simple and aggregated queries. We calculate sum, average, min, max

and count on the end user data with pervious data of same end user. This is

aggregated data is concatenated with the data from the end user and

hashed. This hash value is added as leaf in Merkle hash tree (for aggregated

queries). We have constructed Merkle hash tree for “User1” using data in

table 4-4. Tree of “User1” is shown in figure 4-7:

Figure 4-7 Proposed solution-2

This tree also grows when data increases. This solution provides verification

of database queries for simple as well as aggregated queries. If aggregated

query has ranges that is not matched with exact value in leaves, then this

query is parsed into subparts for verification of data.

Query verification server provides proof helpers (Chapter 2, Section 2.2)

when client needs to verify the result of database query. In case of solution-

2, for any type of query (simple or aggregated) only one tree is used. For

example, “User1” wants to verify the result where key is “2”. In this case,

query verification client asks for root hash of user from blockchain, and also

 33

proof helpers from query verification server. Query verification server

returns H3, H4 and H12 as proof helpers as shown in figure 4-8.

 Figure 4-8 Proof helpers from Merkle hash tree in solution-2

Query verification client calculates root using query data, H4 and H12.

𝑅𝑜𝑜𝑡 ℎ𝑎𝑠ℎ = 𝐻𝑎𝑠ℎ (𝐻12 + 𝐻𝑎𝑠ℎ (𝐻3 + 𝐻4))

Equation 4-1 Root Hash Calculation

This root hash is compared with root hash from blockchain. If both are

matched then result is verified. We match the result from database with

result stored in tree. If aggregated query range is not matched exactly with

the tree, then we split the query in sub queries. Proof helpers (Chapter 2,

Section 2.2) are found from tree for those sub queries. If these sub queries

are verified, then main query is also verified.

4.3.9. Blockchain

Blockchain is used in our design to store Merkle root hashes of each end

user. When the end user generates Merkle root hash after each write

operation, new root hash is calculated and sent to blockchain. Query

verification client access root hashes of each end user from blockchain to

verify the poof helpers that are returned from query verification server.

Blockchain ensures freshness and correctness of the proof.

 34

4.4. Attacker Model

Our solution works in very strong attacker model for the main application

server. Main server is untrusted and attacker can access it completely.

Attacker can return wrong queries result to the end user. It can manipulate

the data in databases. In real world, attacker may hack the main server

where databases and web applications reside. Databases are outsourced to

third party that cannot be trusted by the end user. As we already discuss

that blockchain are used to verify queries at client end. Blockchain is

trusted, as integrity of the data on blockchain is ensured. So, root hashes on

blockchain are trusted. If they are changed by some attacker, then it can be

detected easily. In this attacker model, adversary has full control of main

server. Main server is treated as untrusted and block chain are treated as

trusted.

4.5. Communication between Client, Server and Block Chain

The end user is defined as client, he is user of the web application. He

communicates with main server where databases and web applications are

deployed. Client also communicates with blockchain to get root hashes

stored on it. Server also communicates with blockchain to write the root

hash after every write operation. Sequence of communication for write and

read operation is explained.

4.5.1. Write Operation

When there is write operation, client sends data to server, server writes that

data in databases. Flow of communication between web browser, server and

blockchain for write operation is shown in figure 4-9.

 35

Figure 4-9 Communication for Write Query

Query verification client checks the query first, if write query, then it

forwards query with nonce to query verification server. Query verification

server identifies relevant Merkle hash tree (ADS) for that client. It performs

update, delete or insert operation on the tree. So, new Merkle root hash is

calculated after every write operation. This new root hash is sent to

blockchain where it is shared among nodes on blockchain. Pseudo code for

Query verification client is given in figure 4-10. CheckQuery is method

which identifies the type of query operation (read or write). WriteStatus

Okay means write operation is completed by query verification server.

 Figure 4-10 Pseudo code of Write Operation for Query verification Client

 36

Figure 4-11 Pseudo code of Write Operation for Query verification Server

Pseudo code for Query verification server is given in figure 4-11. When a

user performs insert, update and delete operation, ADS are updated

accordingly. SendtoBlockChain is used to send root hash of user to block

chain against his user_id. Write status is send to user, which indicates to

user that write operation is performed successfully.

4.5.2. Read Operation

For read operation, client sends query for the data from databases. Query

verification client checks query and forwards to query verification server. It

also request blockchain to send root hash of the client.

Query verification server calculates proof helpers (Chapter 2, Section 2.2)

which explained in section 4.3.6. This proof helpers, and data from query

results are returned to query verification client. Query verification client

receives requested root hash from block chain, the data (query result), and

the proof helpers from main server. It performs calculation with help of proof

helpers and data and calculates the new root hash. This new root hash is

compared with root hash returned from blockchain. If both are matched then

message is displayed on web page that “data is verified successfully”

 37

otherwise error message is shown to user. The complete communication is

shown in figure 4-12.

Figure 4-12 Communication for Read Query

Pseudo code of read operation for query verification client is shown in figure

4-13. CheckQuery detects read or write operation.

 Figure 4-13 Pseudo code of Read Operation for Query verification Client

Pseudo code of read operation for query verification server is shown in figure

4-14. GetProofHelper is a method which is describing the mechanism of get

proof helpers from the ADS. If for aggregated queries range parameters are

 38

not matched with stored in ADS, then query verification server splits the

query in sub queries. These sub queries are verified using proof helpers from

ADS. Main query is said to be verified, if it all sub queries are verified.

 Figure 4-14 Pseudo code of Read Operation for Query verification server

 39

Chapter 5

5 Prototype Implementation

In this chapter, we have discussed the implementations of our proposed

solutions for databases query verification and its, integration with medical

web application.

5.1. System Overview

We have discussed the building blocks of our solution in chapter 2 and

chapter 4. Medical web application is used to integrate with our query

verification solution. Medical web application has two clients, one is the

patient and second is the physician. In this test medical web application, we

have patients’ categorization according to their disease. Physician can view

data of each patient of his specialty, for example only cardiac physician can

view heart patients. Server end of medical web application is integrated

with databases. This is dynamic web application, where web pages depend

upon the databases queries result.

Figure 5-1 System Overview

 40

Data of patient is added by some remote measuring devices like pace maker,

blood pressure measuring devices [42]. It is stored in databases. The remote

monitoring is more useful in medical for both physicians and patients.

Authenticated data structures (Merkle Hash Tree) is built when data is

added, when physician gets the data of patient, also gets proof helpers for

that patient. These proof helpers and data are used for verification of

executed query in medical web application. If some adversary changed the

data of patient, then physician is notified. Figure 5-

1 shows that the patient send data to web server where it is stored in

databases. Physician can query on data of patient via graphical interface of

medical web application.

5.2. Implementation Tools

Medical web application is developed in Node.js [43] using Meteor

framework [44]. MongoDB [45] is used for data storage. Meteor [44] uses

Node.js on server-side of medical web application. Meteor is modern

platform to develop modern web applications. MongoDB is NO-SQL

database which is used in many famous web applications. MongoDB is

document oriented database. It uses JSON (JavaScript Object Notation). It

is more useful when some integration with JSON based API is required [46],

[47]. Meteor builds web pages on HTML, CSS and JavaScript. JavaScript is

a scripting language which is used in Node.js.

Node.js has node package manager (npm), which has already developed

packages that are free to use. It is used globally by around 11,000,000 [48]

JavaScript developers and it has around 60,000 [49] packages available,

which can be used anyone by importing it in his application. We have used

“Atom” [50] source code editor for development of medical web application.

Atom is open source utility, it has support for Node.js as well many other

programming languages. We have used SJCL library [51] For cryptographic

 41

hash functions (like SHA-1, SHA-256). SJCL is developed using JavaScript

by the Emily Stark, Mike Hamburg and Dan Boneh in Stanford University

[51]. BlazeJs [52] is used for development of web interface of medical web

application. We have created reactive HTML templates with help of this

library. It also manipulates and merges these templates.

We have implemented authenticated data structures as Merkle Hash tree.

Merkle-tools [53] is the npm package for Merkle hash tree which is used in

this medical web application. It has methods to create Merkle hash tree,

proofs and verification of proofs. We have stored authenticated data

structures in MongoDB for better performance [54]. Merkle-tools provides

methods for adding leaf, get leaf, get proof, and validate proof. Blockchain

are used to have root hash of each user. When query verification client needs

root hash for verification, client can get from blockchain. Blockchain has

different implementations, we are using private blockchain implemented

HyperLadger [55].

5.3. Medical Web Application

Medical web application has two roles, patient and physician. Patient and

physician are registered by using on registration web page of medical web

application. In web medical application, patients are registered using their

email address, password and disease group. In test medical web application,

disease groups are classified into three type, heart, diabetic and blood

pressure.

Physicians can also register using their email address, password and his

specialty i.e. heart, diabetic and blood pressure. Physician of same specialty

can view patients of only same category, like heart specialist can see only

heart patient. Patient can add reading (of heart rate, sugar level, blood

pressure) against the timestamp. These readings are added by patient itself

or remote reading devices (pacemaker, blood pressure measuring devices)

 42

can send data to medical web application. When a physician logs on to

medical web application, he can search a patient records and add remarks

to it. He can execute aggregated queries like, sum, average on medical record

of patient for different range of timestamp. Medical web application returns

the resultant data from databases.

To provide verifiable database queries, we have integrated query

verification client at the client end of this application, and query verification

server is at server end of this application. Medical web application is

designed with two collections in MongoDB. These collections names are

“Users” and “Records”. We have created two more collections named

“Users_MHT” and “Users_MHTAggr” to implement proposed solution-1.

But we have created only one collection named “Users_MHT2” for

implementation of the proposed solution-2. Three collections are created

which are used in implementation of query verification. Details of all

collections is given in table 5-1.

Table 5-1 Databases Collections

Collection Name Details

Users Two type of users i.e. Physician and Patient

Records This collection contains records of patients

Users_MHT It contains Merkle hash tree of users for simple

queries (proposed solution-1)

Users_MHTAggr It contains Merkle hash tree of users for

aggregation queries (proposed solution-1)

Users_MHT2 It contains Merkle hash tree of users for both simple

ad aggregated queries (proposed solution-2)

Every collection has fields which are used to store different values which are

used in query verification solution. We have discussed each collection and

its fields in detail as given in table 5-2.

 43

Table 5-2 Collection Fields

Collection Name Collection Fields

Users (user_id(email), CreatedAt, password, login_token,

profile{account_type, disease_group})

Records (user_id, disease_group, reading, remarks,

timestamp)

Users_MHT (user_id, patient_MHT, timestamp)

Users_MHTAggr (user_id, Agr_Array , Agr_Node_Hash, timestamp)

Users_MHT2 (user_id, data_Array , MHT_Node_Hash,

timestamp)

5.3.1. Collection: Users

This collection contains the information of users which may be physician or

patient. User_id is unique id of user which is email address. CreatedAt is

time at which user is created. This time can be used for user verification

time. Password is used to store the password of the user and it is saved in

database as encrypted data. Login_token is implemented to save session of

user. In Profile, account_type field is used to classify the patient and

physician, and disease_group is saving types of the diseases (heart, diabetic

or blood pressure). This collection grows as number of patients or physician

increased in medical web application.

5.3.2. Collection: Records

This collection is used to store patients’ reading. User_id is id of the patient

which is linked from collection: Users. Disease_group defines the categories

of disease. Reading is the measurement value which is coming from remote

medical devices or patient can add it. Remarks is used to save comments

entered by the physician for a patient. Timestamp is used to save

measurement time of the reading. This collection is also growing, as

 44

patients’ readings are increased. Patient can only update reading,

timestamp fields. Physician can only update the remarks against reading of

patient. Physician can view data of patient by searching data in this

collection in medical web application.

5.3.3. Collection: Users_MHT

This collection is used to store the authenticated data structures which are

implemented as Merkle hash tree of every patient for simple queries in

proposed solution-1. Merkle hash tree is serialized before storing in the

database. When Merkle hash tree is loaded from database, we have to un-

serialized tree first. Number of rows in collection is equal to number of

patients. One patient has only one Merkle has tree in database. We store

tree of the patient in field patient_MHT against it user_id.

When patient enters new record, same row of patient is updated in

Users_MHT. When a new reading is entered by patient against user_id in

collection: Records, we check Users_MHT that it contains tree for that

user_id or not. If user_id is exists, then we read patient_MHT against that

user_id. This tree is un-serialized and loaded in memory. New leaf is added

in this loaded tree, and new root hash of the tree is calculated by query

verification server. New root hash is sent to blockchain and this new Merkle

hash tree is serialized again and updated in Users_MHT. This process is

also repeat for updating any reading for patient in Records collection.

When patient delete reading in records, corresponding leaf of Merkle hash

tree is deleted by query verification server and new updated Merkle hash

tree is updated in Users_MHT. Patient’s loaded tree is traversed, relevant

leaf is identified and removed, and new root hash is calculated. This root

hash is updated on blockchain and tree is updated in Users_MHT.

For each patient, if number of readings are increasing, row for that patient

remains one in this collection, but size of patient_MHT is also growing. This

 45

collection is used for query verification server to calculation of proof helpers

for simple query. When query verification server receive simple read query,

it loads the relevant tree from this collection. It finds relevant proof helpers

as explained in chapter 2, section 2.2.

5.3.4. Collection: Users_MHTAggr

This collection is used to store Merkle hash tree which is built for aggregated

queries. This collection has user id (user_id), array of aggregation

(Agr_Array) which contains sum, average, maximum, minimum, and count,

and hash of array of aggregation (Agr_Node_Hash). We have stored

timestamp in this collection, which is used in range queries. This collection

is used to provide proof for aggregation queries. This collection grows as

Records collection grow for each patient. If a reading is inserted in records,

then aggregated array is calculated by new reading with last entry of same

patient in Users_MHTAggr. New reading is added in sum, count is

incremented, and average is calculated on new sum and new count.

Maximum and minimum are also calculated by comparing new reading with

pervious maximum and minimum. This newly calculated aggregated array,

hash of this aggregated array and timestamp are also inserted in this

collection with patient’s user_id.

When some reading is updated in records against some timestamp, we find

the already existing row from this collection against timestamp and user_id.

Updated reading is used to find new updated aggregated array for that

timestamp, and we calculate hash of updated aggregated array, then these

new values are updated in this collection. We have to update the all next

Agr_Array from timestamp. These are updating using pervious reading and

new updated reading. For example, new sum is calculated by minus the old

reading from sum and then adding new updated reading. Hashes are also

calculated again.

 46

When a patient deletes some reading, particular row at that timestamp is

deleted and values at next timestamp are updated, and new hash is taken

of updated aggregated array, which is stored in database. This collection is

used in proposed solution-1 for aggregated queries and this is used by query

verification server to calculate proof for aggregated queries.

5.3.5. Collection: Users_MHT2

This collection is used to store leaves nodes of Merkle hash tree for each

patient. This is growing collection, number of rows increase as readings of

patient increase in Records collection. This collection has these fields:

user_id, data_Array, MHT_Node_Hash, and timestamp. Field user_id has

id of each patient which is used to find the data of each patient. Field

data_Array contains, reading (reading from Records collection), sum,

average, count, maximum and minimum. Sum, average, maximum and

minimum are calculated till that timestamp using pervious value of

data_Array. Sum is calculated using new reading and pervious sum from

data_Array. MHT_Node_Hash is hash of data_Array, and this is leaf of

Merkle hash tree of that patient. Timestamp is used for time at which

reading of patient is measured.

This collection is used for proposed solution-2. In our solution-2, we build

only for Merkle hash tree for both simple and aggregated databases queries.

If new reading value is inserted in Records collection, then a new record is

also inserted in Users_MHT2. At that timestamp, we calculate sum,

average, count, maximum and minimum, and update in data_Array. This

sum is calculated by using data_Array at pervious timestamp. Hash of

data_Array is taken and stored in MHT_Node_Hash. These all values are

inserted in this collection. On update and delete operation, row in collection

at that timestamp is deleted or replaced with updated reading. This

collection is used by query verification server. Query verification server uses

this collection for calculation of proof helpers for simple and aggregated

 47

queries. These proofs are sent to query verification client, where physician

verify query results with these proof helpers.

5.4. Query Verification Solution Implementation

We have integrated queries verification solution with this medical web

application. Query verification client is integrated at web browser and

Query verification server is integrated at the server end. Both query

verification client and server are developed in node.js. When a patient is

registered, Merkle hash tree is created for it with two leaves one is 0000

(starting leaf) and other FFFF (end leaf). These values are used for checking

the completeness of data. It helps physician to verify that result returned

from database is complete. When a new record is inserted by patient, new

leaf is added between 0000 and FFFF as explained in chapter 4.

Root hash is sent to blockchain using its API. SHA-256 bit is used for

hashing of data for leaves of Merkle hash tree. When patient logs out then

Merkle hash tree is saved in database in serialized form. When a patient

logs in medical web application, patient is authenticated, and Merkle hash

tree is loaded for that patient from database by query verification server.

Process of tree loading is very simple. In database, Merkle hash tree is in

serialization form. This Merkle hash tree is un-serialized, assigned to

Merkle hash tree object. So that new leaf can be inserted, updated or

deleted.

Patient inserts, updates or deletes some reading, loaded Merkle hash is

updated accordingly. For update of record against timestamp, leaf node of

Merkle hash tree is searched and updated with new hash of updated record,

and root hash of tree is also updated on blockchain. If delete query is sent

by patient, then query verification server also deletes the leaf after

searching the leaf in Merkle hash tree for which delete is called. New root

hash is calculated and stored on blockchain. Patient logouts from medical

 48

web application its tree is also saved in database after serialization. This is

generic flow of implementation for proposed solution-1 and solution-2.

5.4.1. Proposed Solution-1 Implementation:

We have explained generic flow in section 5.4. Now we are explaining

solution-1 implementation and its flow. There are two Merkle hash trees

for each patient. In proposed solution-1, query verification server uses two

database collections (Users_MHT and Users_MHTAggr) for proof

calculation and verification.

Patient registers in medical web application, and patient’s two Merkle

hashes are created with 0000 and FFFF leaves. When he logs in, it’s both

trees are loaded from databases. Patient inserts a new reading in medical

web application. Reading is stored in records collection of medical

application using insert query. Query verification server takes reading,

timestamp and user_id (patient id). Hash of reading is calculated and added

in the Merkle hash tree as new leaf. New Merkle root hash tree is calculated.

Root hash is pushed to blockchain.

If patient wants to update or delete reading at any timestamp, then

delete/update is perform on Records collection. Due to delete or update,

Merkle hash tree (1st for simple queries) is also updated. It is traversed and

leaf is identified, and leaf is updated with new hash of updated reading or

leaf is deleted when reading is delete. Merkle hash tree calculates its new

root hash, which is updated on block chain.

Merkle hash tree is serialized and stored in Users_MHT as patient_MHT

against user_id and timestamp (at which it is updated). As discussed earlier

in section 5.3 Users_MHT is used to provide proof helpers (explained in

Chapter 2 and pseudo code in Chapter 4 section 4.5.4) for simple queries. At

same time, Users_MHTAggr is used to provide proof helpers for aggregated

queries. To provide proof helpers for aggregated queries, we have used a

 49

different Merkle hash tree. When a new reading is entered,

Users_MHTAggr is also updated with Agr_Array, Agr_Node_Hash,

timestamp and user_id. Agr_Array contains sum, average, count, maximum,

and minimum of reading at that timestamp. Query verification server gets

previously inserted Agr_Array at last timestamp, it calculates new

Agr_array using new reading as:

 Agr_Array.Sum = Agr_Array.Sum (pervious) + reading;

 Agr_Array.Count = Agr_Array.Count (pervious) + 1;

 Agr_Array.Average = Agr_Array.Sum/Agr_Array .Count;

 if (reading > Agr_Array (pervious).Maximum) {Agr_Array.Maximum=reading;}

 if (reading < Agr_Array (pervious).Minimum) {Agr_Array.Minimum=reading;}

This newly calculated array is hashed with SHA-256 and result hash is

assigned to Agr_Node_Hash. This hash is also added to already existing 2nd

Merkle hash tree (aggregated tree) of patient and it is stored on

Users_MHTAggr. New Merkle root hash is calculated and stored on

blockchain. This root hash is used in verification of aggregated queries.

In case of updated reading, 2nd Merkle hash tree (aggregated tree) is

updated with new Agr_Array at that timestamp, and all next Agr_Array

against timestamps also updated. In case of delete, Agr_Array at that

timestamp is deleted, and all next Agr_Array against timestamps are

calculated again. So tree is updated, and new root hash is calculated. Which

is updated on blockchain.

For verification part of our solution-1, Physician requests some readings of

patient from medical web application. Query verification client checks type

of the query, is it a simple? Or aggregated? If it’s simple query, then query

verification client gets Merkle root hash for that patient from the block

chain. Query verification server returns proof helpers from Merkle hash tree

of patient loaded from Users_MHT. If query is aggregated, then query

 50

verification client gets aggregated Merkle root hash of patient from

blockchain. Query verification gets proof helpers from Merkle hash tree

loaded from Users_MHTAggr.

Query verification client uses the proof helpers, and data to calculate root

hash of tree. This newly calculated root hash is compared with root hash

returned from blockchain. If both are matched, verification status is shown

to the physician.

5.4.2. Proposed Solution-2 Implementation:

We have used only one Merkle hash tree in proposed solution-2.

Users_MHT2 is the collection which is used for storage of leaves of Merkle

hash tree for each patient. In this solution, we have implemented Merkle

hash tree in such a way that it can provide proof helpers for simple as well

as aggregated queries. We have used technique for completeness of data

which is similar to our proposed solution-1. Merkle hash tree has two leaves

with 0000 and FFFF. Tree is created when a patient registers on medical

web application. When a patient logs in, it is loaded from database collection

Users_MHT2. Data_Array is calculated after new reading, it depends upon

the pervious reading and new reading. It is very similar to Agr_Array of

solution-1, but Data_Array contains reading of patient too. Query

verification server calculates Data_Array as:

 Data_Array.reading = reading;

 Data_Array.Sum = Data_Array.Sum (pervious) + reading;

 Data_Array.Count = Data_Array.Count (pervious) + 1;

 Data_Array.Average = Data_Array.Sum/ Data_Array.Count;

 if(reading > Data_Array (pervious).Maximum) { Data_Array.Maximum=reading;}

 if(reading < Data_Array (pervious).Minimum) { Data_Array.Minimum=reading;}

MHT_Node_Hash is hash of Data_Array, and it is added to leaf of Merkle

hash tree. New Merkle root hash is calculated and it is pushed to blockchain.

 51

In case of updated reading, Merkle hash is updated with new Data_Array

at that timestamp, and all next Data_Array against timestamps also

updated.

In case of delete, Data_Array at that timestamp is deleted, and all next

Data_Array against timestamps are calculated again. So tree is updated,

and new root hash is calculated. These updated leaves of Merkle hash tree

are also updated in Users_MHT2. New root hash is updated on blockchain.

At the time of verification in solution-2, query verification client gets root

hash for that patient from blockchain. Query verification server sends proof

helpers (from loaded Merkle hash tree of patient if not loaded load from

Users_MHT2) to query verification client.

5.4.3. Implementation of Proof Verification for Queries:

When physician logs in, he is verified from databases. He sends a query for

a patient, query verification client send request to blockchain for root hash

of that patient. Query is forwarded to main server, where query is executed

on databases and data is taken against that query. Query verification server

checks the Merkle hash tree of that patient and get proof helpers (explained

in chapter 2), if Merkle hash tree is not loaded, query verification server

loads it from Users_MHT (simple query) and Users_MHTAggr (if

aggregated query) for solution-1. For solution-2 Merkle hash tree is loaded

from Users_MHT2 by query verification server.

Proof helpers are sent by query verification server. Proof helpers are hashes

from different nodes of Merkle hash tree (explained in chapter 2, Section

2.2). These proof helpers, and data is returned to query verification client.

Query verification client calculates new root hash with help of poof helpers

and data. New root hash is compared with root hash of patient from

blockchain. If both are matched, then a message is displayed to physician

 52

that requested record is verified. If it is not matched, then physician is

notified that data is corrupted.

Physician enter “from” and “to” values of timestamp for aggregated queries

on range. Query verification server checks the ranges of timestamp entered

by physician. For example, he wants to aggregate patient data from start to

particular time “x”.

5.4.3.1. Proof Verification in Solution-1:

In our proposed solution-1, query verification server get Agr_Array,

Agr_Node_Hash from Users_MHTAggr collection where timestamp is

matched with “x”. Agr_Array contains all aggregated results from start to

timestamp “x”. Proof helpers against Agr_Array is calculated from Merkle

hash tree loaded from Users_MHTAggr. Query verification server sends

proof helpers, Agr_Array, Agr_Node_Hash and query result from database

to query verification client.

Query verification client matches root hash (from block chain) with root

hash constructed from proof helpers and data. Aggregated query result from

database is also compared with Agr_Array. If both results (query result and

Agr_Array) are matched and root hashes (root hash from proof helpers and

root hash from blockchain) are matched, then aggregated query result are

verified.

If physician wants to find the reading from timestamp “x” to timestamp “y”.

Database returns the result of aggregate at that time range after executing

the query. In solution-1, query verification server splits this query into two

queries for proof helpers. Instead of “x”, “x-1” is used because at “x” we have

sum from start to value “x” and at “y” we have sum from start to “y”, now

sum between “x” and “y” is calculated by subtracting sum at “x-1” from sum

at “y”. It gets Agr_Array, Agr_Node_Hash at timestamp at “x-1” and gets

 53

proof helpers from Merkle hash tree loaded from Users_MHTAggr in

solution-1 and similar for timestamp “y”.

Now query verification client gets proof helpers at timestamp “x-1” and

timestamp “y”. Agr_Array(x), Agr_Node_Hash(x-1) and Proof helpers(x-1) and

Agr_Array(y), Agr_Node_Hash(y) and Proof helpers(y) is sent to query

verification client. Query verification client verify Merkle root hash from

blockchain with Merkle root hash from proof helpers. If root hash from block

chain and new root hash from proof helpers are verified for “x-1” and “y”,

then integrity of data is preserved. But we also check the aggregate query

result to match with result calculated from Agr_Array of “x-1” and “y”.

 𝑆𝑢𝑚 𝑓𝑟𝑜𝑚 𝑥 𝑡𝑜 𝑦 = 𝐴𝑔𝑟_𝐴𝑟𝑟𝑎𝑦. 𝑆𝑢𝑚 (𝑦) − 𝐴𝑔𝑟_𝐴𝑟𝑟𝑎𝑦. 𝑆𝑢𝑚 (𝑥 − 1);

Equation 5-1 Sum on different ranges in solution-1

We have described the calculation of sum using “y” and “x-1” in equation 5-

1. So, Merkle root hash and this sum both can guarantee the integrity for

aggregate query results for solution-1.

5.4.3.2. Proof Verification in Solution-2:

In our proposed solution-2, query verification server gets Data_Array,

MHT_Node_Hash from Users_MHT2 collection with timestamp is matched

with “x”. Data_Array contains all aggregated results from start to

timestamp “x”. Proof helpers against required Data_Array are calculated

from Merkle hash tree which is loaded from Users_MHT2. Proof helpers,

Data_Array, MHT_Node_Hash and query result from database are sent to

query verification client. Query verification client uses root hash from block

chain and new root hash which is constructed from proof helpers and query

result. Aggregated result of database is also compared with Data_Array. If

results (query result and Data_Array) are matched and root hashes (root

hash from proof helpers and root hash from blockchain) are matched, then

aggregated query result are verified and physician is notified.

 54

If physician wants to find the reading from timestamp “x” to timestamp “y”.

Database returns the result of aggregate at that time range after executing

the query. We use the same technique mentioned in solution-1 to implement

for solution-2. Proof for “x-1” and “y” is got from Merkle tree, which is loaded

from Users_MHT2. It is sent to query verification client. At query

verification client, Merkle root hash (from blockchain) is matched with new

Merkle root hash (calculated from proof helpers). If root hashes for “x-1” and

“y” are verified, then integrity of data is preserved. We are ensuring it more

with comparing result from database with result calculated from

Data_Array of “x-1” and “y”.

 𝑆𝑢𝑚 𝑓𝑟𝑜𝑚 𝑥 𝑡𝑜 𝑦 = 𝐷𝑎𝑡𝑎_𝐴𝑟𝑟𝑎𝑦. 𝑆𝑢𝑚 (𝑦) − 𝐷𝑎𝑡𝑎_𝐴𝑟𝑟𝑎𝑦. 𝑆𝑢𝑚 (𝑥 − 1);

Equation 5-2 Sum on different ranges in solution-2

If sum from query result and sum from Data_Array are same, and also

Merkle root hash from proof helpers and root from blockchain are same, then

query verification client shows the message to physician that query is

verified. If hash root is verified for “x-1” but not for “y”, then physician is

notified that data is corrupted.

5.4.4. Implemented Medical Web Application

Medical web application was developed and query verification solutions

were integrated with it. Patient and physician create their account as shown

in figure 5-2 and 5-4.

Figure 5-2 Patient Register

 55

Patient needs email address (user_id), password and disease group for

registering in medical web application. Pseudo code for patient is given in

figure 5-3. Patient does not have type of visibility to query verification

solution. Query verification client and server work in background.

Figure 5-3 Pseudo code for patient

 56

Figure 5-4 Physician Register

When patient logs in, he can add, delete and update the reading against the

timestamp as shown in figure 5-5. When add, delete or update is performed

by patient, Merkle hash tree gets update and root hash is calculated which

is sent to blockchain.

Figure 5-5 Patient View

When physician gets data of patient, query verification client performs

verification process with help of query result, and proof helpers (sent by

query verification server). New root hash is calculated and matched with

Merkle root of patient from blockchain.

 57

Figure 5-6 Physician View

Figure 5-7 Pseudo code for physician

Physician can select patients according to his specialty, he can search

records of patient at particular timestamp, range or can get all data. If he

 58

enters only patient id with empty “from” and “to” timestamp field then, he

gets all records of selected patient. Integrity of all record is also be ensured.

Physician needs email address (user_id), password and disease group for

registering in medical web application. Pseudo code for physician is given in

figure 5-7.

Figure 5-8 Patient records view for Physician

If he enters same “from” and “to” timestamp field with patient id, then he

gets value of the record at that particular timestamp as shown in figure 5-

8. It also returns aggregation from start to this timestamp as shown in

figure 5-9.

Figure 5-9 Verification of patient’s searched data

Verification status informs physician that data is verified or not. If

verification status is false, it means that data stored is not preserving

integrity. It is changed by some other malicious entity. If user enters “from”

 59

and “to” timestamp, then he gets result with verification status as shown in

figure 5-10.

Figure 5-10 Verification Status with Aggregation results

After pressing OK, he gets given range data on web page as shown in figure

5-11.

Figure 5-11 Aggregate results after verification status

Verification solution 1 and 2 both have same front end medical web

application, just backend implementation varies.

 60

Chapter 6

6 Evaluation of Research Work

In this chapter, we have discussed the performance evaluation of

implemented prototype of query verification solution. Performance

comparison is also done with some pervious solution. Implemented

prototype is tested and evaluated according to cost and performance. In

performance analysis we have measured performance of test web

application without and with query verification solutions. In cost analysis,

we have discussed that how much addition cost is required to meet with

query verification solution.

6.1. Performance Analysis

We have calculated end to end latency, throughput, storage overhead of

Merkle hash tree, and proof size send to blockchain for solution-1 and

solution-2 in performance analysis of prototype implementation of query

verification solutions. We have also compared the results for the read and

write operation with and without applying database query verification

solution. Main server was deployed on Lenovo laptop with core i5 2.60GHz

processor, 4.0 GB RAM and with hard drive of 1TB. Query verification

server was also integrated with application on same machine. Web pages

were accessed via Google chrome browser on another laptop of same

specification. Blockchain node was installed on another Dell machine

OptiPlex. These machines were communicating via LAN network.

6.1.1. Latency

Latency is time delay to access data in read or write operation. We have

evaluated the query verification for multiple records for single patient. So,

 61

one Merkle hash tree was added, updated and deleted. We have performed

some read operation i.e. find one reading of patient, find reading on range

with “from” and “to” timestamps, and also aggregate queries like sum, count,

average, max and min. We have calculated the performance of these

operations over 1000 iteration of records for single patient. We have

compared results for solution-1 and solution-2.

We have used PhantomJS [56] which is headless browser to send multiple

request. Netsniff.js[57] is utility of PhantomJS which is used to test the load

time of web pages and response time of all imports in the web pages. It

exports the results in HAR format. HAR viewer [58] is used to visualize the

results of network activity from Netsniff.js.

Table 6-1 Latency

Operation Without Query

Verification

(ms)

Latency

Solution-1 (ms)

Latency

Solution-2 (ms)

Insert 20 30 27

Update 25 80 70

Delete 24 87 75

Find (single value) 20 38 40

Find (range) 32 49 51

Sum 35 50 52

Average 34 48 50

Count 30 45 48

Maximum 32 47 51

Min 33 46 50

In figure 6-1 we have shown the graph of these operations with number of

records 1000 and results are also given table 6-1. Average latency access of

 62

solution-2 is better than solution-1 of all operations. But in solution-1 we

have two separate Merkle hash trees, that’s why performance of aggregation

is better than solution-2. Node.js function “performane.now()” was also used

for these results. We conclude the results of each query.

For insert operation, solution-1 takes 10% more time than without query

verification. Solution-2 takes 7% more time than without query verification

solution. Solution-1 takes 3% more time than solution-2.

For update operation, solution-1 takes 55% more time than without query

verification. Solution-2 takes 45% more time than without query verification

solution. Solution-1 takes 10% more time than solution-2.

For delete operation, solution-1 takes 63% more time than without query

verification. Solution-2 takes 51% more time than without query verification

solution. Solution-1 takes 12% more time than solution-2.

For find (single value), solution-1 takes 18% more time than without query

verification. Solution-2 takes 20% more time than without query verification

solution. Solution-1 takes 2% less time than solution-2.

For find (range), solution-1 takes 17% more time than without query

verification. Solution-2 takes 19% more time than without query verification

solution. Solution-1 takes 2% less time than solution-2.

For sum query, solution-1 takes 15% more time than without query

verification. Solution-2 takes 17% more time than without query verification

solution. Solution-1 takes 2% less time than solution-2.

For average query, solution-1 takes 14% more time than without query

verification. Solution-2 takes 16% more time than without query verification

solution. Solution-1 takes 2% less time than solution-2.

 63

For count query, solution-1 takes 15% more time than without query

verification. Solution-2 takes 18% more time than without query verification

solution. Solution-1 takes 3% less time than solution-2.

For max query, solution-1 takes 15% more time than without query

verification. Solution-2 takes 19% more time than without query verification

solution. Solution-1 takes 4% less time than solution-2.

For min query, solution-1 takes 13% more time than without query

verification. Solution-2 takes 17% more time than without query verification

solution. Solution-1 takes 4% less time than solution-2.

Figure 6-1 Latency Comparison Chart

Delete and update operation in both solutions take more times because

Agr_Node_Hash (as explained in chapter 5) in both solution depends upon

the reading, sum, max and min. If reading a reading is deleted at timestamp,

then all next nodes are updated. Same happen in update operation,

Agr_Node_Hash gets update form current update to next all records.

20
25 24

20

32 35 34
30 32 3330

80
87

38

49 50 48 45 47 46

27

70
75

40

51 52 50 48 51 50

0

10

20

30

40

50

60

70

80

90

100

T
im

e
 (

m
s)

Query Operations

Latency
Without Query

Verification

Solution-1

Solution-2

 64

We have measured the result of load time of registration of patient, login

view, add, delete, and update view of patient. We have measured physician

data view for physician. Query verification solution creates Merkle hash tree

for each patient at time of registration, so delay is added in registration

process of patient. Similarly, when patient logs on, Merkle hash tree is

loaded at that time from databases. Table 6-2 describes load time of our

solution-1 and solution-2 for our medical web application.

Table 6-2 Load Time

Application View Load Time (ms)

without solution

Load Time (ms)

with solution-1

Load Time

(ms)

with

solution-2

Patient

Registration

10 17 12

Patient login 12 19 16

Patient record 20 34 29

Physician view 25 40 36

Patient Registration, solution-1 takes 7% more time than without query

verification. Solution-2 takes 2% more time than without query verification

solution. Solution-1 takes 5% more time than solution-2. Patient login,

solution-1 takes 7% more time than without query verification. Solution-2

takes 4% more time than without query verification solution. Solution-1

takes 3% more time than solution-2.

Patient record, solution-1 takes 14% more time than without query

verification. Solution-2 takes 9% more time than without query verification

solution. Solution-1 takes 5% more time than solution-2. Physician view,

solution-1 takes 15% more time than without query verification. Solution-2

 65

takes 9% more time than without query verification solution. Solution-1

takes 4% more time than solution-2.

Figure 6-2 shows the HAR (HTTP Archive) [58] view of access time of web

pages of medical web application with query integration solution-2 This data

was generated using PhantomJS. Figure 6-4 shows the HAR view of access

time of web pages of medical web application with query integration

solution-1. These results for 1000 records of readings for a patient and load

time is complete time to load all data and all imported files like CSS and JS,

and jQuery.

Figure 6-2 HAR View of Solution-2

In figure 6-4, we can see the load time of web application which is hosted at

local server and accessed with http://192.168.8.70:3000/, page size 9.6KB

http://192.168.8.70:3000/

 66

and response time is 29ms. Other GET requests are for loading other

imports and required JavaScript in meteor. Figure 6-3 shows testing of load

speed of medical web application. This test was run four time with

PhantomJS using loadspeed.js script. Every time result was different from

other. So average value was taken for multiple iterations. Netsniff.js was

used to create logs which can be viewed from HAR viewer as shown in figure

6-2. Output of netsniff.js for web application was given as input to HAR

viewer. There are many HAR viewer [58][59] which are used to show the

graphical representation of network logs. Some of them are available as

google chrome extensions [60].

Figure 6-3 PhantomJS Test for Solution-2

In figure 6-4, HAR view of logs from solution-1. Response time was 34ms for

web application page. Overall page load time was 651ms for solution-2 and

682 ms for solution-1. Figure 6-5 shows load time testing of medical web

application with query verification solution-1 using PhantomJS. In table 6-

2 results were measured by take difference between times from start of page

till that end of page. These results show load time of solution-2 is less than

solution-1.

Solution-1 has two Merkle hash trees which takes more time than solution-

2. In solution-1 is faster than solution-2 without aggregation queries,

because solution-1 without aggregation does not have pre-hash calculations

 67

like aggregate. For aggregation in solution-1, it has pre-hash calculation

which make it expensive than solution-2.

Figure 6-4 HAR View of Solution-1

Figure 6-5 PhantomJS Test for Solution-1

 68

6.1.2. Throughput

We have measured throughput of query verification solution for both

implemented prototypes, and it was compared without query verification

solution. Throughput is also dependent upon the specification of server

machine where application is deployed. If server has very good processing

specification then application has good throughput. We have already

explained that our application is deployed on laptop with core i5 processor.

Throughput was measured by using Apache JMeter [61] and Gatling [62].

Gatling is tool use to record the flow of web applications and then simulate

it and produce the results. Recording was done for write (insert, update,

delete), read (find (single value), find range, sum, count, average, maximum

and minimum) and read/write both for query verification solution-1 and

solution-2. These recordings were simulated by Gatling, it produced reports

on all requests simulated by it and generated report in HTML.

Apache JMeter is open source which is used for performance testing of web

applications. Throughput (requests/seconds) are measured from it. It has

also different testing parameters too. We were required to configure all test

scenario on JMeter and also guided it about the flow of web application. This

process could be done manually and automatically. Badboy Software [63] is

used to record the web application flow, which is used in Apache JMeter.

Process of recording to web application flow is shown in figure 6-6. After

recording the flow, there was option of export to JMeter, which was used to

export the script of recording for JMeter. Apache JMeter run the flows that

were recorded. It also has options to simulate recording against multiple

users and can iterate each test case multiple time. Figure 6-7 shows JMeter

performance testing. It has ability to iterate the simulation multiple times

and results is as average of these iterations.

 69

Figure 6-6 Badboy Recording for JMeter

 Figure 6-7 JMeter performance testing

Table 6-3 shows the throughput for both implemented solutions and without

query verification solution. Throughput of solution-2 is more than solution-

1. In read operation, solution-2 has 18% more throughput than solution-1.

In write operation, solution-2 has 36% more throughput than solution-1.

 70

Table 6-3 Throughput

Operation Throughput

Without sol

(Request/sec)

Throughput

Solution-1

(Request/sec)

Throughput

Solution-2

(Request/sec)

Read 800 172 190

Write 1200 220 256

Read & Write 600 187 223

The graph of comparison without query verification and with solution-1 and

solution-2 is shown in figure 6-8.

Figure 6-8 Throughput Comparison Chart

In read/write operation, solution-2 has also 36% more throughput than

solution-1. These results are generated by Apache JMeter. Solution-2 has

more throughput than solution-1. Now, we conclude the results of medical

web application without applying any solution with solution-2. Throughput

is degraded around 4 times, when we apply query verification solution-2.

Results produced from Gatling are HTML reports. We had recorded read,

write and read/write mix operation with Gatling recorder for both query

800

1200

600

172
220 187190

256 223

0

200

400

600

800

1000

1200

1400

Read Write Read & Write

R
e
q

u
e
st

s
\

S
e
co

n
d

s

Query Operations

Throughput

Without Query Verification Solution-1 Solution-2

 71

verification solution-1 and solution-2. These recordings were simulated and

results were produced. HTML reports were containing details of all requests

simulated by it and response time. It had generated different types of graphs

in HTML reports. It had categorized results on the base of request response

time.

Figure 6-9 Read/Write Operation Solution-2

Figure 6-10 Read/Write Operation Sol-2

For query verification solution-2, results for read, write, and read/write

mixed are shown in figure 6-9, 6-13 and 6-17. Results were showing the

mean response time with standard deviation and indicators of request time.

Results were showing that write took more time than read operation. We

 72

had created some read and write mix queries at specific value and range.

KO requests were those which were not responded by web application server

and they were marked as failed.

Read/Write operation of solution-2 shows that all request’s response time

was less than 800ms and mean time was 68ms. 150 requests were handled

at 0.773 request/seconds as shown in figure 6-9.

Figure 6-11 Read/Write Operation Solution-1

Figure 6-12 Read/Write Operation Solution-1

 73

Figure 6-11 and 6-12 simulation results for read/write operations for query

verification solution-1. Mean response time was 88ms and requests were

handled at 0.41 requests/second. We conclude from both results that

solution-2 handles more requests than solution-1. Throughput of Solution-2

is 36% more than solution-1 for read/write operation.

Write operation of solution-2, response time was less than 800ms and mean

response time was 72ms, and 104 requests were handled at 0.717

requests/seconds as shown in figure 6-13 and 6-14.

Figure 6-13 Write Operation Solution-2

Figure 6-14 Write Operation Solution-2

 74

Figure 6-15 and 6-16 show the results after simulation by Gatling for write

operation with solution-1 of query verification. Mean time for write

operation was 137ms. Response time of all requests was under 800ms except

one which was great than 1200ms. Request/seconds for this test was 0.33.

Figure 6-15 Write Operation Solution-1

Figure 6-16 Write Operation Solution-1

Results of solution-1 also depict that write operations are more expensive as

compare to read operation when data from query result is verified for every

 75

ready operation. We conclude from results that throughput of write

operation for solution-2 is 38% more than solution-1.

Read operation for solution-2, response time was less than 800ms for all

requests with mean response time was 31ms. For 172 requests, web

application was handling 0.501 request/seconds as shown in figure 6-17 and

6-18.

Figure 6-17 Read Operation Solution-2

Figure 6-18 Read Operation Solution-2

 76

Figure 6-19 and 6-20 show results of read operation on solution-1. Response

time of all 138 read requests were less than 800ms mean response time was

31ms and requests were handled at 0.515 requests/seconds.

Figure 6-19 Read Operation Solution-1

Figure 6-20 Read Operation Solution-1

Throughput of solution-1 is slightly greater than solution-2.

Requests/second of solution-1 is 1.4% more than solution-2. We conclude

 77

from these results that throughput for read operation in solution-1 is more

than solution-2.

We have compare all results of read/write, write and read operation.

Solution-2 has more throughput than solution-1 in read/write and write, but

it is slightly less than solution-1 in read operation.

6.1.3. Storage Overhead

In solution-1, we have two collections Users_MHT and Users_MHTAggr

which are used to save the two Merkle hash trees of the user for simple and

aggregate queries. We have inserted thousands reading to check the storage

overhead of Merkle hash trees. We have serialized the Merkle hash trees to

save in MongoDB. For each user, there was only one row in Users_MHT

collection. We have used SHA-256 for hashing. Each node in Merkle hash

tree was of 256 bits. For a perfect Merkle hash tree, for L leaves, it has 2L-

1 number of nodes.

𝑆𝑖𝑧𝑒 𝑜𝑓 𝑝𝑒𝑟𝑓𝑒𝑐𝑡 𝑀𝑒𝑟𝑘𝑙𝑒 ℎ𝑎𝑠ℎ 𝑡𝑟𝑒𝑒 = (2𝐿 − 1) ∗ 256 𝑏𝑖𝑡𝑠

Equation 6-1 Size of Perfect Merkle hash tree

For 1000 records size of Merkle hash tree is:

𝑆𝑖𝑧𝑒 = (2 ∗ 1000 − 1) ∗ 256 = 511,744 𝑏𝑖𝑡𝑠 = 63.968 𝐾𝑏𝑦𝑡𝑒𝑠

This was the size of Merkle tree for 1000 records, but we had serialized the

Merkle hash tree in such a way that we had used only L*256 bits space.

𝐼𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑒𝑑 𝑠𝑖𝑧𝑒 = 𝐿 ∗ 256 𝑏𝑖𝑡𝑠 = 1000 ∗ 256 = 256,000 𝑏𝑖𝑡𝑠 = 32 𝐾𝑏𝑦𝑡𝑒𝑠

So total size storage overhead for solution-1 is the sum of both size of

Users_MHT and size of Users_MHTAggr.

𝑇𝑜𝑡𝑎𝑙 𝑠𝑖𝑧𝑒 = 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑈𝑠𝑒𝑟𝑠_𝑀𝐻𝑇 + 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑈𝑠𝑒𝑟𝑠_𝑀𝐻𝑇𝐴𝑔𝑔𝑟

Equation 6-2 Total Storage size in solution-1

Users_MHT size for one user was equal to data in that row of the user.

 78

Size of Users_MHT = Size of the auto index + Size of user_id + Size of patient_MHT + Size of

timestamp

Size of Users_MHTAggr = (Size of the auto index + Size of user_id + Size of Agr_Array + Size of

Agr_Node_Hash +Size of timestamp) * no of records

Equation 6-3 Size of Users_MHT and Users_MHTAggr

For 103 records of a user:

𝑆𝑖𝑧𝑒 𝑜𝑓 𝑈𝑠𝑒𝑟𝑠_𝑀𝐻𝑇 𝑓𝑜𝑟 𝑠𝑖𝑛𝑔𝑙𝑒 𝑢𝑠𝑒𝑟 = 40 + 40 + 73 ∗ 1002 + 728 + 40 = 73994 𝑏𝑦𝑡𝑒𝑠

= 0.074𝑀𝐵

𝑆𝑖𝑧𝑒 𝑜𝑓 𝑈𝑠𝑒𝑟𝑠_𝑀𝐻𝑇𝐴𝑔𝑔𝑟 𝑓𝑜𝑟 𝑠𝑖𝑛𝑔𝑙𝑒 𝑢𝑠𝑒𝑟 = (27 + 20 + 89 + 32 + 22) ∗ 1000

= 0.16 𝑀𝑏𝑦𝑡𝑒𝑠

For 103 records,

 𝑇𝑜𝑡𝑎𝑙 𝑠𝑖𝑧𝑒 𝑖𝑠 = 0.074 + 0.16 = 0.234 𝑀𝑏𝑦𝑡𝑒𝑠

As this was verified from MongoDB command, “db.Users_MHT.stats()”.

Result of command is shown in figure 6-21.

Figure 6-21 Users_MHT stats

Size was 73994 bytes (0.073994 MB) in Users_MHT collection for 1000

records of single user. Count one means only one user was in Users_MHT.

We can see stats for Users_MHTAggr in figure 6-22

 79

Figure 6-22 Users_MHTAggr stats

Result of the stats command was 165253 bytes (0.165MB) in

Users_MHTAggr collection for 1000 records of each user. All calculation

were proved by MongoDB commands of collection stats as shown in figure

6-21 and 6-22.

We have calculated the storage overhead for solution-2. In solution-2, we

have only Users_MHT2 table which was used to store the single Merkle

hash tree. This single tree was used for both aggregation and simple queries

verification. In this solution, we have also used SHA-256 for hashing. For a

perfect Merkle hash tree, for L leaves, it has 2L-1 number of nodes.

𝑆𝑖𝑧𝑒 𝑜𝑓 𝑝𝑒𝑟𝑓𝑒𝑐𝑡 𝑀𝑒𝑟𝑘𝑙𝑒 ℎ𝑎𝑠ℎ 𝑡𝑟𝑒𝑒 = (2𝐿 − 1) ∗ 256 𝑏𝑖𝑡𝑠

Equation 6-4 Size of Merkle hash tree

For 1000 records, size of Merkle hash tree:

𝑆𝑖𝑧𝑒 = (2 ∗ 1000 − 1) ∗ 256 = 511,744 𝑏𝑖𝑡𝑠 = 63.968 𝐾𝑏𝑦𝑡𝑒𝑠

This is the size of Merkle tree for 1000 records, but we have serialized the

Merkle hash tree in such way that we need only L*256 bits space.

𝐼𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑒𝑑 𝑠𝑖𝑧𝑒 = 𝐿 ∗ 256 𝑏𝑖𝑡𝑠 = 1000 ∗ 256 = 256,000 𝑏𝑖𝑡𝑠 = 32 𝐾𝑏𝑦𝑡𝑒𝑠

 80

𝑇𝑜𝑡𝑎𝑙 𝑠𝑖𝑧𝑒 = 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑈𝑠𝑒𝑟𝑠_𝑀𝐻𝑇2

Size of Users_MHT2 = (Size of the auto index + Size of user_id + Size of Agr_Array + Size of

Agr_Node_Hash +Size of timestamp) * no of records

Equation 6-5 Total Storage Size in Solution-2

For 103 records,

 𝑇𝑜𝑡𝑎𝑙 𝑠𝑖𝑧𝑒 𝑖𝑠 = (27 + 25 + 89 + 32 + 22) ∗ 1000 = 0.163 𝑀𝑏𝑦𝑡𝑒𝑠

This result was verified from MongoDB command collection stat as shown

in figure 6-23.

Figure 6-23 Users_MHT2 Stats

Table shows the storage size of solution-1 and solution-2:

Table 6-4 Storage Size Comparison

Number of Records Storage Size Solution-1 Storage SizeSolution-2

103 0.234 MB 0.165 MB

104 2.34 MB 1.65 MB

105 23.4 MB 16.5 MB

106 234 MB 165 MB

So results of storage size showed that solution-2 was using less space as

compare to solution-1. Solution-1 takes 1.42 times more storage than

 81

solution-2. The comparison graph for solution-1 and solution-2 is shown in

figure 6-24.

Figure 6-24 Storage Size Comparison Chart

6.1.4. Proof Size

Proof size is the size of data which is used to send to block chain and get

from blockchain at time of verification. Proof size is independent of the

number of records because root hash of Merkle hash tree is always 256 bits.

The data sent to blockchain was Merkle root hash which was of 256 bits

because of SHA-256. Root hash was sent with user id, and timestamp at

which it was calculated. In solution-1, two Merkle root hashes were sent to

blockchain, so proof size in solution-1 is:

𝑃𝑟𝑜𝑜𝑓 𝑆𝑖𝑧𝑒 𝑆𝑜𝑙 − 1 = 𝑅𝑜𝑜𝑡 ℎ𝑎𝑠ℎ 𝑜𝑓 𝑈𝑠𝑒𝑟𝑠_𝑀𝐻𝑇 + 𝑅𝑜𝑜𝑡 𝐻𝑎𝑠ℎ 𝑜𝑓 𝑈𝑠𝑒𝑟𝑠_𝑀𝐻𝑇𝐴𝑔𝑔𝑟

Equation 6-6 Proof size for Solution-1

Proof size in solution-2 was size of only one Merkle root hash. So proof size

in solution-2 is:

𝑃𝑟𝑜𝑜𝑓 𝑆𝑖𝑧𝑒 𝑆𝑜𝑙 − 2 = 𝑅𝑜𝑜𝑡 ℎ𝑎𝑠ℎ 𝑜𝑓 𝑈𝑠𝑒𝑟𝑠_𝑀𝐻𝑇2

Equation 6-7 Proof size for solution-2

0

50

100

150

200

250

Records 1000 Records 10000 Records 100000 Records 1000000

S
iz

e
 (

M
B

)

No of Records

Storage Size of Merkle Hash tree

Solution-1 Solution-2

 82

By comparing proof size of both solutions, solution-2 gets advantage over

solution-1. Proof size of the solution-2 is half of proof size of solution-1.

Table 6-5 Proof Size Comparison

Number of Records Proof Size Solution-1 Proof

SizeSolution-2

For any numbers of records 512 bits 256 bits

6.2. Comparison of Proposed Solutions

We have compared the proposed solution-1 and solution-2 with respect to all

parameters discussed above. Latency comparison shows that solution-1 is

faster than the solution-2. Throughput comparison shows that solution-2

can handle more requests per second as compare to solution-1. Storage

overhead of solution-2 is less than solution-1. Proof size of solution-2 is also

less than solution-1. Solution-1 is faster in term of verification latency due

to two different authenticated data structures but solution-2 causes less

overhead with respect to storage size and proof size.

Table 6-6 shows the recommended solution to use according its performance

parameters.

Table 6-6 Proof Size Comparison

Performance

Parameters

Solution-1 Solution-2 Recommendation

Latency (Read) Fast Slow Solution-1

Latency (Write) slow Fast Solution-2

 83

Load speed

(Verification)

Slow Fast Solution-2

Latency (Simple

query)

Fast Slow Solution-1

Latency (Aggregated

Query)

Fast Slow Solution-1

Throughput (Read) Slow Fast Solution-2

Throughput (Write) Slow Fast Solution-2

Throughput (Mix) Slow Fast Solution-2

Storage Overhead 2.3 MB 1.65 MB Solution-2

Proof Size 512 bit 256 bit Solution-2

6.3. Comparison with existing solutions

In Verena [3], latency, throughput, and storage overhead are measured for

their medical web application. As they have deployed their application on

different specification machine, still our results are better than their

solution. Storage overhead is calculated and compared with Verena, our

results are very good. Table 6-7 shows the comparison.

 84

In our solution-2 only one Merkle hash tree is used for both aggregate and

simple queries. Throughput, latency is also improved from Verena, but for

actual comparison of latency and throughput testing should be done at same

machine with same resources. As their code is not publicly available to test

and evaluate. We have compared our results of storage size with results in

the paper [3].

Table 6-7 Comparison with Verena

Number of

Records

Query type

Verena [3] Storage Size

Solution-1

Storage Size

Solution-2

104 Simple 1.64 MB 0.74 MB 1.65 MB

(One tree is

used for both)
104 Aggregate 1.95 MB 1.60 MB

Total Size 3.59 MB 2.34 MB 1.65 MB

For 104 records of a user, query verification solution-1 has total 2.34MB

storage size. Query verification solution-2 has total 1.65MB, to provide

verification of simple and aggregated queries. Verena [3] has 2.2 times more

storage size than our query verification solution-2. Verena has 1.5 times

more storage size than our query verification solution-1. So, solution-1 and

solution-2 have less storage size than Verena. It means that our solutions

are more practical to use with real world web applications to provide

verifiable databases queries.

6.4. Cost Analysis

In cost analysis, we have discussed how much addition cost is added to the

existing solution. Cost is analyzed in term of the addition requirement for

query verification solution. As we have seen storage overhead of query

verification solution is very minimal. We do not need to buy any additional

database for storage of Merkle hash tree. In proposed solutions, client need

 85

to communicate with blockchain for proof verification. So, in the internet

environment, we need static IP address so that the end client can

communicate with blockchain for proof verification. Blockchain service. We

have used blockchain to store root hashes of the end users, so there is cost

of blockchain service provider.

 86

Chapter 7

7 Conclusion and Future Work

7.1. Conclusion

Database query verification is very important in all those scenarios where

databases and web applications are residing on untrusted third party server

or the attacker has full access of the server. This is the most common case

in cloud based applications where databases are provided as application as

service. In case of internet of things (IoT), databases are not hosted

privately, due to high maintenance and licensing cost. The proposed solution

covers all type of these cases, and provides query verification with bearable

overhead. Our proposed solution enables the end user of web application to

verify easily the result of queries which are executed on database. It also

enables the end user to verify even main server (web application and

databases) is complete compromised. Performance and cost analysis of

query verification solution-2 show that it can be implemented with integrity

sensitive web applications in real time. In our query verification solution, it

is very practical to implement the solution very existing or newly developing

web applications.

Database query verification solution enables the end user to make decisions

on data with full confidence. It also helps the end user to trust on result of

queries (simple and aggregated). In worst case, when an attacker changes

the data in databases, it can easily be detected. Similarly, if result is

incomplete and not fresh, it is also detected and notified to the end user. Our

solution guarantees integrity with all its properties i.e. correctness,

completeness and freshness. Authenticated data structures used in our

solution are based on Merkle hash tree. It is more efficient, and gives log2(n)

 87

number of proof helpers (Chapter 2, section 2.2) to verify any leave from

total n numbers of leaves. Blockchain is very useful tool for keeping proof on

it because it ensures the data on it is not changed and fresh (up to date). It

also has traces of data changes with respect to time. Our solution is

practical, fast. It is easy to integrate with existing web applications. New

web applications can also integrate with query verification solution during

development phase. This research on database query verification provides

solution to all integrity sensitive web applications and databases in fully

compromised environment.

7.2. Future Work

Our research in database query verification for fully compromised

environment, opens many directions of modern technology research. Our

research gives idea for development of new web servers (Apache, Microsoft

IIS) which support authenticated data structures as its inbuilt feature. This

web server can enable database query verification via its configuration file.

This web server has different implementations of authenticated data

structure like Merkle hash tree and skip lists. So, application owner can

decide what type of authenticated data structure he wants to use according

to his requirements in his web application. This should be independent of

databases vendor and type (SQL or No-SQL).

In blockchain, there should be development required for authenticated data

structure which can be stored on blockchain easily even they have very large

numbers of data hashes. This research gives direction for open source

database for development of authenticated data structures as its inbuilt

feature. So, it can save authenticated data structures most efficiently. This

helps the user to implement query verification solution with improvement

in performance.

 88

Trusted hardware modules (for example TPM 1.2) [64] which are used for

secure computations. It is possible to use that hardware for database query

verification. Main component of our solution on main server is query

verification server which is used for proofs calculation and verification of

queries. This query verification server should use trusted hardware on main

server. It is idea to implement authenticated data structures on trusted

hardware. It already provides cryptographic functions like hash (SHA-256,

SHA-1), and signatures [65]. This isolates query verification server from

main server logically on a compromised server. This trusted hardware

module is secured against attacker, and very hard to extract data from it. In

term of performance, specialized trusted hardware module has better

performance than software base modules.

As this solution is for query verification means ensuring integrity of

database, but for confidentiality it can be integrated with Mylar [66]. It can

be easily integrated using Node.js. It can also be integrated with other

frameworks which provide database encryption.

 89

8 Bibliography

[1] D. Wichers, “Owasp top-10 2013,” OWASP Found. Febr., 2013.

[2] M. Cukier, “Study: Hackers Attack Every 39 Seconds | A. James Clark

School of Engineering, University of Maryland.” [Online]. Available:

https://eng.umd.edu/news/story/study-hackers-attack-every-39-

seconds.

[3] N. Karapanos, A. Filios, R. Popa, and S. Capkun, “Verena: End-to-End

Integrity Protection for Web Applications,” in 2016 IEEE Symposium

on Security and Privacy (SP), 2016, pp. 895–913.

[4] A. Motro, “Integrity = validity + completeness,” ACM Trans. Database

Syst., vol. 14, no. 4, pp. 480–502, 1989.

[5] G. Weintraub and E. Gudes, “Data Integrity Verification in Column-

Oriented NoSQL Databases BT - Data and Applications Security and

Privacy XXXII,” 2018, pp. 165–181.

[6] C. Braghin, A. Cortesi, and R. Focardi, Freshness Analysis in Security

Protocols. 2003.

[7] J. H. Fisher, “The Dangers Of Misdiagnosis Can Sometimes Lead To

Death - John H. Fisher, P.C.,” 2019. [Online]. Available:

https://protectingpatientrights.com/blog/the-dangers-of-misdiagnosis-

can-sometimes-lead-to-death/.

[8] J. G. Ronquillo, J. Erik Winterholler, K. Cwikla, R. Szymanski, and C.

Levy, “Health IT, hacking, and cybersecurity: national trends in data

breaches of protected health information,” JAMIA Open, vol. 1, no. 1,

pp. 15–19, 2018.

[9] H. DuPreez, “Top 10 Databases for 2019 — DatabaseJournal.com,”

 90

2019. [Online]. Available:

https://www.databasejournal.com/features/oracle/slideshows/top-10-

2019-databases.html.

[10] Oracle, “Introducing Oracle Database Security.” [Online]. Available:

https://docs.oracle.com/cd/B28359_01/network.111/b28531/intro.htm#

DBSEG001.

[11] MySql, “MySQL  :: MySQL Enterprise Encryption.” [Online].

Available:

https://www.mysql.com/products/enterprise/encryption.html.

[12] Microsoft, “SQL Server Security | Microsoft Docs.” [Online].

Available: https://docs.microsoft.com/en-

us/dotnet/framework/data/adonet/sql/sql-server-security.

[13] Joshua Otwell, “Top PostgreSQL Security Threats | Severalnines.”

[Online]. Available: https://severalnines.com/blog/top-postgresql-

security-threats.

[14] Mongodb, “Encryption at Rest — MongoDB Manual.” [Online].

Available: https://docs.mongodb.com/manual/core/security-

encryption-at-rest/#encryption-at-rest.

[15] A. Miller et al., “Authenticated data structures, generically,” in

Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages - POPL ’14, 2014, vol. 49, no. 1,

pp. 411–423.

[16] F. Li, M. Hadjieleftheriou, G. Kollios, and L. Reyzin, “Dynamic

authenticated index structures for outsourced databases,” in

Proceedings of the 2006 ACM SIGMOD international conference on

Management of data - SIGMOD ’06, 2006, p. 121.

[17] M. T. Goodrich, R. Tamassia, and A. Schwerin, “Implementation of an

 91

authenticated dictionary with skip lists and commutative hashing,”

Proc. - DARPA Inf. Surviv. Conf. Expo. II, DISCEX 2001, vol. 2, pp.

68–82, 2001.

[18] J. Xu, F. Zhou, M. Yang, F. Li, and Z. Zhu, “Hierarchical Hash list for

distributed query authentication,” Jisuanji Yanjiu yu

Fazhan/Computer Res. Dev., vol. 49, pp. 1533–1544, 2012.

[19] G. Becker, “Merkle Signature Schemes, Merkle Trees and Their

Cryptanalysis,” 2019.

[20] R. C. Merkle, “A Certified Digital Signature,” in Proceedings on

Advances in Cryptology, 1989, pp. 218–238.

[21] B. Preneel and Bart, “The State of Hash Functions and the NIST SHA-

3 Competition,” in Information Security and Cryptology, Springer-

Verlag, 2009, pp. 1–11.

[22] H. Handschuh, “SHA Family (Secure Hash Algorithm),” in

Encyclopedia of Cryptography and Security, H. C. A. van Tilborg, Ed.

Boston, MA: Springer US, 2005, pp. 565–567.

[23] R. Sprugnoli, “Perfect Hashing Functions: A Single Probe Retrieving

Method for Static Sets,” Commun. ACM, vol. 20, no. 11, pp. 841–850,

Nov. 1977.

[24] V. Rijmen and E. Oswald, “Update on SHA-1,” in Proceedings of the

2005 International Conference on Topics in Cryptology, 2005, pp. 58–

71.

[25] Q. H. Dang, “Secure Hash Standard,” Gaithersburg, MD, Jul. 2015.

[26] M. J. Dworkin, “SHA-3 Standard: Permutation-Based Hash and

Extendable-Output Functions,” Gaithersburg, MD, Jul. 2015.

[27] M. Dworkin, “Hash Functions | CSRC,” 2017. [Online]. Available:

 92

https://csrc.nist.gov/projects/hash-functions.

[28] H. Pang, A. Jain, K. Ramamritham, and K.-L. Tan, “Verifying

completeness of relational query results in data publishing,” p. 407,

2005.

[29] Y. Zhang, J. Katz, and C. Papamanthou, “IntegriDB: Verifiable SQL

for Outsourced Databases,” in Proceedings of the 22Nd ACM SIGSAC

Conference on Computer and Communications Security, 2015, pp.

1480–1491.

[30] R. A. Popa, C. M. S. Redfield, N. Zeldovich, and H. Balakrishnan,

“CryptDB: Protecting Confidentiality with Encrypted Query

Processing,” in Proceedings of the Twenty-Third ACM Symposium on

Operating Systems Principles, 2011, pp. 85–100.

[31] B. Palazzi, M. Pizzonia, and S. Pucacco, “Query Racing: Fast

Completeness Certification of Query Results,” in Data and

Applications Security and Privacy XXIV, 2010, pp. 177–192.

[32] M. Jarke and Y. Vassiliou, “A Framework for Choosing a Database

Query Language,” ACM Comput. Surv., vol. 17, no. 3, pp. 313–340,

Sep. 1985.

[33] Y. Zhang, D. Genkin, J. Katz, D. Papadopoulos, and C. Papamanthou,

“vSQL: Verifying Arbitrary SQL Queries over Dynamic Outsourced

Databases,” in 2017 IEEE Symposium on Security and Privacy (SP),

2017, pp. 863–880.

[34] H. Pang and K.-L. Tan, “Verifying Completeness of Relational Query

Answers from Online Servers,” ACM Trans. Inf. Syst. Secur., vol. 11,

no. 2, pp. 5:1--5:50, May 2008.

[35] Q. Zheng, S. Xu, and G. Ateniese, “Efficient Query Integrity for

Outsourced Dynamic Databases,” in Proceedings of the 2012 ACM

 93

Workshop on Cloud Computing Security Workshop, 2012, pp. 71–82.

[36] E. Mykletun, M. Narasimha, and G. Tsudik, “Authentication and

Integrity in Outsourced Databases,” Trans. Storage, vol. 2, no. 2, pp.

107–138, May 2006.

[37] G. Weintraub and E. Gudes, “Data Integrity Verification in Column-

Oriented NoSQL Databases: 32nd Annual IFIP WG 11.3 Conference,

DBSec 2018, Bergamo, Italy, July 16–18, 2018, Proceedings,” 2018, pp.

165–181.

[38] Z. Gao, B. Wang, H. Liu, K. Lu, and Y. Zhan, “Verifiable Auditing

Protocol with Proxy Re-Encryption for Outsourced Databases in

Cloud,” Wuhan Univ. J. Nat. Sci., vol. 23, no. 2, pp. 120–128, Apr.

2018.

[39] P. Fortuna, N. Pereira, and I. Butun, “A Framework for Web

Application Integrity,” in Proceedings of the 4th International

Conference on Information Systems Security and Privacy, 2018, pp.

487–493.

[40] H. Schuldt, “Application Server,” in Encyclopedia of Database

Systems, L. LIU and M. T. ÖZSU, Eds. Boston, MA: Springer US,

2009, p. 104.

[41] B. Samatha, “List of Top 5 Most Popular Open Source Web Servers.”

[Online]. Available: https://www.technotification.com/2019/01/open-

source-web-servers.html.

[42] P. Kortum and S. C. Peres, “Evaluation of Home Health Care Devices:

Remote Usability Assessment.,” JMIR Hum. factors, vol. 2, no. 1, p.

e10, Jun. 2015.

[43] Nodejs, “Node.js.” [Online]. Available: https://nodejs.org/en/.

 94

[44] Meteor, “Build Apps with JavaScript | Meteor.” [Online]. Available:

https://www.meteor.com/.

[45] Mongodb, “The most popular database for modern apps | MongoDB.”

[Online]. Available: https://www.mongodb.com/.

[46] D. Warnock, MongoDB: Learn MongoDB in a Simple Way! USA:

CreateSpace Independent Publishing Platform, 2016.

[47] K. Chodorow, MongoDB: The Definitive Guide. O’Reilly Media, Inc.,

2013.

[48] Npm, “npm | build amazing things.” [Online]. Available:

https://www.npmjs.com/.

[49] R. Abdalkareem, O. Nourry, S. Wehaibi, S. Mujahid, and E. Shihab,

“Why Do Developers Use Trivial Packages? An Empirical Case Study

on Npm,” in Proceedings of the 2017 11th Joint Meeting on

Foundations of Software Engineering, 2017, pp. 385–395.

[50] Atom, “Atom.” [Online]. Available: https://atom.io/.

[51] M. H. and D. B. Emily Stark, “SJCL: a Javascript crypto library.”

[Online]. Available: https://crypto.stanford.edu/sjcl/.

[52] Blazjs, “Blaze | BlazeJS.” [Online]. Available:

http://blazejs.org/api/blaze.html.

[53] J. Bukowski, “merkle-tools - npm.” [Online]. Available:

https://www.npmjs.com/package/merkle-tools.

[54] M. S. Niaz and G. Saake, “Merkle hash tree based techniques for data

integrity of outsourced data,” CEUR Workshop Proc., vol. 1366, pp.

66–71, 2015.

[55] Hyperledger, “Hyperledger – Open Source Blockchain Technologies.”

[Online]. Available: https://www.hyperledger.org/.

 95

[56] A. Hidayat, “PhantomJS - Scriptable Headless Browser.” [Online].

Available: http://phantomjs.org/.

[57] A. Hidayat, “Network Monitoring with PhantomJS.” [Online].

Available: http://phantomjs.org/network-monitoring.html.

[58] J. Odvarko, “HTTP Archive Viewer 2.0.17.” [Online]. Available:

http://www.softwareishard.com/har/viewer/.

[59] Google, “HAR Analyzer | GSuite Toolbox.” [Online]. Available:

https://toolbox.googleapps.com/apps/har_analyzer/.

[60] E. J. Duran, “Chrome HAR Viewer.” [Online]. Available:

https://ericduran.github.io/chromeHAR/.

[61] Apache, “Apache JMeterTM.” [Online]. Available:

https://jmeter.apache.org/.

[62] Gatling, “Gatling Open-Source Load Testing.” [Online]. Available:

https://gatling.io/.

[63] badboy, “Badboy Software.” [Online]. Available:

https://www.badboy.com.au/.

[64] W. Arthur and D. Challener, A Practical Guide to TPM 2.0: Using the

Trusted Platform Module in the New Age of Security, 1st ed. Berkely,

CA, USA: Apress, 2015.

[65] M. Hell, L. Karlsson, B. Smeets, and J. Mirosavljevic, “Using TPM

Secure Storage in Trusted High Availability Systems,” in Revised

Selected Papers of the 6th International Conference on Trusted

Systems - Volume 9473, 2015, pp. 243–258.

[66] R. A. Popa et al., “Building Web Applications on Top of Encrypted Data

Using Mylar,” in Proceedings of the 11th USENIX Conference on

Networked Systems Design and Implementation, 2014, pp. 157–172.

