
Using machine learning techniques for
censorship-resistant communication

By
Zil-e-Huma

206493

Supervisor
Dr. Syed Taha Ali

Department of Electrical Engineering

A thesis submitted in partial fulfillment of the requirements for the degree
of Masters of Science in Computer Science (MSCS)

In
School of Electrical Engineering and Computer Science,

National University of Sciences and Technology (NUST),
Islamabad, Pakistan.

(August, 2021)



Approval 

 

 

 

 

 

Signature: ______________________ 

Date: __________________________ 

 

 

Signature: ______________________ 

Date: _________________________ 

 

 

Signature: ______________________ 

Date: _________________________ 

 

 

Signature: ______________________ 

Date: _________________________ 

 

 

Online Printing Date & Time: Wednesday, 11 August 2021 08:21:57

It  is  certified  that  the  contents  and form of  the  thesis  entitled  "Using  machine  learning
techniques for censorship-resistant communication" submitted by ZIL E HUMA BAJWA
have been found satisfactory for the requirement of the degree

Advisor : Dr. Syed Taha Ali

26-Jul-2021

Committee Member 1:Dr. Wajahat Hussain

26-Jul-2021

Committee Member 2:Dr. Arsalan Ahmad

26-Jul-2021

Committee Member 3:Mr. Muhammad Imran
Abeel

26-Jul-2021

Publish Date & Time: Tuesday, 27 July 2021 , 09:51:19PDF4NET evaluation version 4.7.0.0

PDF4NET evaluation version 4.7.0.0

FreeText
i



Dedication

”For everything i am today, My mother’s love showed me the
way”

ii

FreeText
ii



Certificate of Originality 

 

 

 

 

 

 

 

 

 

 

 

 

Student Signature: ______________ 

 

 

Online Printing Date & Time: Wednesday, 11 August 2021 08:22:32

I  hereby  declare  that  this  submission  titled  "Using  machine  learning  techniques  for

censorship-resistant  communication"  is  my  own  work.  To  the  best  of  my  knowledge  it

contains  no  materials  previously  published  or  written  by  another  person,  nor  material

which to a substantial extent has been accepted for the award of any degree or diploma at

NUST SEECS or at any other educational institute, except where due acknowledgement

has been made in the thesis. Any contribution made to the research by others, with whom

I have worked at  NUST SEECS or  elsewhere,  is  explicitly  acknowledged in  the thesis.  I

also  declare  that  the  intellectual  content  of  this  thesis  is  the  product  of  my  own  work,

except  for  the  assistance  from others  in  the  project’s  design  and  conception  or  in  style,

presentation and linguistics, which has been acknowledged. I also verified the originality of

contents through plagiarism software.

Student Name:ZIL E HUMA BAJWA

Publish Date & Time: Tuesday, 27 July 2021 , 09:51:19PDF4NET evaluation version 4.7.0.0

PDF4NET evaluation version 4.7.0.0

FreeText
iii



Acknowledgment

I am grateful to Allah for blessing me with countless bounties, for giving me

a life full of loving and supporting people. After Almighty, i would like to

thank my mother, for her endless support and encouragement.

I would like to extend my gratitude to Dr. Syed Taha Ali, Assistant Pro-

fessor, Department of Computing, SEECS NUST, for his constant guidance,

devotion and motivation.

My heart-felt gratitude to my Friends who have been a constant source of

love and support throughout my Masters. Without you, this would not have

been possible. Thank you for always standing next to me and for being

my strength. A special thanks to my husband for his constant nagging and

taunts, which have made the completion of this document possible.

Zil-e-Huma

iv



Table of Contents

List of Figures vii

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Objectives and Research Goals . . . . . . . . . . . . . . . . . . 2
1.4 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Background Information 4
2.1 Introduction to Censors . . . . . . . . . . . . . . . . . . . . . 4
2.2 Censorship circumvention . . . . . . . . . . . . . . . . . . . . 5
2.3 Machine Learning based Censor Models . . . . . . . . . . . . . 6
2.4 Generative Adversarial Network . . . . . . . . . . . . . . . . . 7

3 Related Work 8
3.1 Protocol Tunneling . . . . . . . . . . . . . . . . . . . . . . . . 8

3.1.1 Through Relay Servers . . . . . . . . . . . . . . . . . . 8
3.1.2 Using Multimedia Applications . . . . . . . . . . . . . 10

3.2 Generative Adversarial Network . . . . . . . . . . . . . . . . . 14

4 Proposed Methodology 16
4.1 Design of Censor . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.1.1 Machine Learning Censor Models . . . . . . . . . . . . 16
4.1.2 Training of ML models . . . . . . . . . . . . . . . . . . 18

4.2 Proposed design of Multimedia Traffic Generator . . . . . . . 18
4.2.1 Generative Adversarial Network . . . . . . . . . . . . . 18
4.2.2 Network Traffic Generator - NTG . . . . . . . . . . . . 18
4.2.3 pcap Generator . . . . . . . . . . . . . . . . . . . . . . 19
4.2.4 Feature Extraction . . . . . . . . . . . . . . . . . . . . 19

4.3 Implementation flow chart . . . . . . . . . . . . . . . . . . . . 20
4.4 Final Objective . . . . . . . . . . . . . . . . . . . . . . . . . . 20

v



5 Implementation 21
5.1 Machine Learning based Censors . . . . . . . . . . . . . . . . 21

5.1.1 Choice of Machine Learning Models . . . . . . . . . . . 21
5.1.2 Datasets used . . . . . . . . . . . . . . . . . . . . . . . 21
5.1.3 Feature Extraction . . . . . . . . . . . . . . . . . . . . 22
5.1.4 Implementation of Machine Learning Models . . . . . . 22

5.2 Developing Traffic Generator . . . . . . . . . . . . . . . . . . . 23
5.2.1 GAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6 Results and Discussion 27
6.1 Background Information . . . . . . . . . . . . . . . . . . . . . 27

6.1.1 Model Accuracy . . . . . . . . . . . . . . . . . . . . . . 27
6.1.2 AUC - ROC Curve . . . . . . . . . . . . . . . . . . . . 27

6.2 Evaluation of CensorModels . . . . . . . . . . . . . . . . . . . 27
6.2.1 Decision Trees . . . . . . . . . . . . . . . . . . . . . . . 27
6.2.2 XGBoost . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.2.3 AdaBoost . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.2.4 Random Forests . . . . . . . . . . . . . . . . . . . . . . 30

6.3 Discussion of Results . . . . . . . . . . . . . . . . . . . . . . . 31
6.4 Passing GAN Traffic through Censor Models . . . . . . . . . . 32

7 Conclusion and Future Work 33
7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

vi



List of Figures

1.1 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . 3

4.1 High Level Layout of Proposed Methodology . . . . . . . . . . 20

5.1 Censor List of Features taken from [1] . . . . . . . . . . . . . . 26

6.1 Decision Tree- ROC Curve . . . . . . . . . . . . . . . . . . . . 28
6.2 XGBoost - ROC Curve . . . . . . . . . . . . . . . . . . . . . . 29
6.3 AdaBoost - ROC Curve . . . . . . . . . . . . . . . . . . . . . 30
6.4 Random Forests - ROC Curve . . . . . . . . . . . . . . . . . . 31

vii



List of Tables

5.1 GAN’s list of features . . . . . . . . . . . . . . . . . . . . . . . 25

6.1 Our GAN traffic through Censors . . . . . . . . . . . . . . . . 32

viii



Abstract

To prevent citizens from accessing unfiltered information over the internet,

repressive governments usually deploy national level censorship. To counter

these censors, a number of systems have been introduced that make use of

various allowed applications as covert channels and tunneling data through

them. However, a drawback of these covert channels is their failure to main-

tain un-observability. The censors these days are capable enough to identify

covert traffic amongst the stream of regular traffic. With censors getting

more rigorous, some new ways of hiding blocked content in legitimate data

streams have been introduced. These systems have very closely fooled the

similarity based censors. However, Machine learning systems were still un-

beaten. A recent study showed that some state-of-the-art Machine learning

systems have been able to identify covert traffic, deeming the censorship-

resistant models useless. In this thesis, we have used the strongest known

Censorship-resistant system till date, to show that the system can be tweaked

to defeat a machine learning based anomaly detection system. We have made

use of adversarial machine learning techniques to beat some well-known clas-

sification techniques. Our results show that Adversarial examples can not

only be used to hide blocked content in an application data stream but can

also remain undetected

ix



Chapter 1

Introduction

Internet censorship circumvention is a major problem with the ever grow-
ing restriction over data. This thesis studies the use of Deltashaper, the
best known circumvention system, to establish a covert channel which is un-
observable by state-of-the-art censorship systems. The idea of using various
applications to establish a covert channel have been broadly studied over
the last few years. However, till date, none of these systems have been able
to beat the efficient Machine learning based censors. This thesis therefore
presents a way to effectively bypass these censors and enable covert communi-
cation while preserving the characteristics of a regular traffic stream. Aim is
to use Adversarial examples to design a data stream that can be transparent
to the censor.

1.1 Motivation

Repressive regimes usually take control over the type of data users can access
by deploying large scale surveillance systems. These systems violate people
of their basic rights of data access. Data monitoring over the internet can
be controlled at national level by, for example, blocking a particular site, or
limiting access to a certain resource. [2]. However, luckily, even these restric-
tions can’t completely block all external communications. For example, It
is known that many countries allow skype communication but block access
to several sites [3]. With these blockages, major circumvention systems have
been introduced. One of the most common ways to hide behind a fake IP
address is to use a trusted proxy to access blocked information. But even
by using very refined systems like Tor [4], without proper obfuscation, the
traffic can be easily recognized.
To hide traffic under any application, the covert traffic should mimic the reg-
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ular traffic perfectly. But to mimic a protocol perfectly is almost impossible,
particularly because of the complexities involved. With un-observability al-
most impossible, censors are hard to beat. The aim of this thesis is to preserve
un-observability of a circumvention system, DeltaShaper [5], by generating
adversarial examples similar to the original traffic and using them to reshape
the obfuscated stream. This unobervability claim previously made by the
author have been proven false by the same author in [1]

1.2 Problem Statement

Our goal is to develop a covert channel that can go undetected by various
state-of-the-art Machine learning based censor models. To demonstrate this,
several well known machine learning models will be trained on both regular
and non-regular traffic. Our generated traffic stream will be able to beat all
these systems by evading detection.

1.3 Objectives and Research Goals

The goal of this research is to propose and implement a traffic generator
that makes use of Machine learning to masquerade its traffic as benign and
goes undetected by modern machine learning censors . The highlights of the
research work are as follows:

• Implementation of state-of-the-art machine learning censors.

• Training and testing the efficiency of these censors.

• Using GAN to generate features for Regular traffic dataset

• Implementation of a traffic generator that generates two-way traffic

• Bypassing detection of Deltashaper traffic

1.4 Thesis Organization

The presented thesis has been organized into different chapters in which each
chapter gives certain aspects of our research, depicted in figure 1.1. Following
is the brief description of all the thesis chapters.

• Introduction: A description of context, problem statement and scope.

2



Figure 1.1: Thesis Organization

• Background Information: A discussion on the theoretical and tech-
nological background that this thesis is based upon.

• Related Work: A summary of related research that demonstrates the
motivation to solve the problem statements.

• Proposed Methodology: A structured overview of proposed strate-
gies that contribute to solving the problem statement.

• Implementation: A review of the implementation and code to achieve
the objectives and goals.

• Results and Discussion: A discussion about results of the work and
an assessment of the achievements.

• Conclusion and Future Work: A summary of the work that was
done and contributions made to this project.
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Chapter 2

Background Information

An introduction of some important concepts prerequisite to this research have
been elaborated in this chapter. These concepts will help establish a back-
ground understanding of the underlying technology discussed in subsequent
chapters

2.1 Introduction to Censors

Censorship as a broad term is known as the suppression of information based
on some reasoning. State-level censorship is technically designed to ensure
that only the white-listed information or resource is allowed to pass through,
everything objectionable is suppressed. What’s deemed objectionable is usu-
ally relative to either the government, nation or situation. ’The Great Fire-
wall Of China’ [6] is the perfect example of a state-level censorship which
has created more than sixty restrictions till 2019. These restrictions have
at times been imposed due to certain political changes in the country, like
elections.
However, due to economic and social pressure, even censors can’t just block
anything and everything. This leaves room for a lot of circumvention tech-
niques. A good censor has to identify banned traffic amongst the allowed
traffic very efficiently. There are several ways censorship can be imposed:

• Traffic analysis

• Software level censorship

• Service Hindrance

• Promote domestic Servers
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In the next chapter, various censorship models and their ways of circumven-
tion will be discussed in detail

2.2 Censorship circumvention

Censorship circumvention follows two very important key concepts:
1. If a censorship circumvention technique can be identified by the censor

correctly, it lacks the key criteria of the perfect censorship circumvention
system, un-observability

2. A system is deemed unblockable if the censor cannot completely or
partially block it without affecting actual traffic.

Following are some of the commonly known censorship techniques and
their counter circumvention models:

• Content With-holding

Various internet services openly entertains government’s request to ei-
ther block the service or limit it in a particular area. This is especially
done during times of Political instability. For example, twitter has been
on/off withholding contents for certain countries during election cam-
paigns. Many a times, certain accounts are suspended or blocked upon
federal request, for avoid any civil disturbance situation.

To counter this censorship, various stegnographic [7] techniques have
been used, where a hidden message/blocked content is concealed un-
der normal traffic. Stegnography is a technique of hi dding a mes-
sage,file,image under another. The technique has been used widely in
image processing as well

• End-point Blocking

The simplest strategy a censor uses to block access to a particular
resource is by blocking that end point altogether. For example, if the
source of the content to be blocked is known, e.g its IP address or
host-name, a simple block-list or white-list can be established to get
the desired result by the censor.

However, as simple as the technique it, its circumvention is even sim-
pler. Using various proxy rerouting software, one can reroute the traffic
to a middle proxy server which can then further directs the traffic to
the destination. This proxy server does not reside in the censorship
area. Some very famous example of such proxies are wingate, tinyproxy,
freeproxy and ultrasurf.
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• Blocking publicly distributed proxies

A censor can very easily block traffic every through the proxies, by
blocking famous, publicly available proxies. For example, any con-
nection made towards the ultrasurf proxy can be easily detected and
blocked by the censor

As a counteract, traffic morphing technique has been established. It
obfuscate the intended traffic and transforms and encrypts it in such
a way that i cannot be identified as any particular stream. Instead, it
comes as a random traffic and hence cannot be identified by statistical
approaches. Tor browser is a famous example of this technique.

• Protocol Randomization

Protocol randomization is an example of traffic morphing where the
generated traffic is changed so it doesn’t belong to any known protocol
and seems random. Censors having protocol level checks fail to iden-
tify such traffics as anomalies. However, with every growing detection
efficiency of censors, this technique can be identified easily. A counter
technique that has been deployed by many is Traffic mimicking, where
instead of randomizing the traffic, traffic parameters are changed to
mimic any unblocked protocol. Examples of such systems are Skype-
Morph and CensorSpoofer.

• Protocol tunneling

A technique where data is embedded in a cover protocol so that perfect
mimicking of any particular protocol is not required. This is an excel-
lent technique for hiding data under as a tunnelling channel because
mimicking any particular protocol exactly is almost impossible. How-
ever, embedding covert data in a legit traffic may hinder the network
parameter like packet length or size. Such changes can be identified by
the censors

2.3 Machine Learning based Censor Models

Machine learning is the gist of Artificial Intelligence, where, as the name im-
plies, machines are made to ’learn’ through various statistical models. Once
the learning or as widely called, the training part has been completed, such
machines are able to perform their defined task with an accuracy dependant
on the machine’s learning ability.

Machine learning can be Supervised, unsupervised or sometimes semi-
supervised
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• Supervised Machine Learning Supervised Machine learning involved
training algorithms on labelled data sets. Labelled datasets not only
help the algorithm to learn the input data more accurately, but also
helps in better problem solving. Supervised machine learning problems
are further grouped into two types: Regression: Where the output is a
real value Classification: Where the out is a category

• Unsupervised Machine Learning Unsupervised Machine Learning, train-
ing of algorithm is done through unlabelled data. This means that the
algorithm itself has to make sense out of the data. unsupervised ML
problems are further grouped into Clustering: Finding groups in a data
Association: defining rules to cover major chunk of data

• Semi-supervised Machine Learning A branch of Ml where, training data
contains both labelled and unlabelled data.

2.4 Generative Adversarial Network

Generative Adversarial Network or GAN [8] is a branch of machine learning
where two neural networks work in competition with each other to win. The
main idea behind this approach is to train the GAN through the discrimina-
tor model. This unsupervised learning of the generator is done to fool the
discriminator rather then to get trained itself.

• Generative Model The Generative Model is supposed to generate new
data examples after learning the pattern of the input data.

• discriminator model The discriminator model is basically a check to see
if the example generated by the generative model is close to the input
data or not. The difference in the generated data and the real data is
fed back to the generative model where it relearns from the feedback.
In this way, generative model is trained to produce dataset similar to
the input data. The model may be said to reach an equilibrium when
the discriminator is finally beaten.

7



Chapter 3

Related Work

This chapter reviews the relevant state of the related researches and their
comparison with the proposed scheme.

3.1 Protocol Tunneling

Protocol tunneling has been used widely in the past to establish various
covert systems. Some renowned ones are discussed below:

3.1.1 Through Relay Servers

To hide covert data, many systems introduced in the past have established a
relay server which entertains client requests, coverts the data under a protocol
and then forwards it to the destination

• SWEET [9]

’Serving the Web by Exploiting Email Tunnels’ or SWEET is a proto-
col tunnelling system which makes use of email communication to hide
data. Methodology: Sweet methodology is pretty simple. A Client
sends out an email message which is directed towards the SWEET
server. The server has the ability to open the email message, extract
the hidden data or requested resource, fetch the request and reply back
to the email with the requested content. The server is specifically de-
signed to entertain requested resources through an indirect path.

The advantage of this approach is that since SWEET makes use of
email communication, which is an important mode of communication
in today’s world, it is highly unlikely to be fully blocked by the censors.
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Especially when famous email clients or services are used, blocking be-
comes extremely tricky.

The disadvantage and the weakness of this approach lies in the fact
that any email message crafted with hidden data can be discriminated
from a normal email message through network traffic analysis. Network
parameters of such a traffic may differ far enough to be recognized as
anomalous. Moreover, normal email communication takes place over a
time span and may take hours or days to get a reply. SWEET server’s
instant and continuous emails can also look fishy to an intelligent sen-
sor model

• CloudTransport [10]

CloudTransport makes use of cloud services to transfer covert data.
The idea is to make use of a famous cloud service, setup an account
and exchanges the credentials between the client and cloudtransport
bridges.

Methodology involves generating a request through a CloudTransport
client onto the cloud. The CloudTransport bridge periodically checks
the cloud to see if any new request has been initiated. If so, it acts as
a server and fetched the requested content and writes it back to the
cloud from where the client can read it back.

The advantage of this approach is also similar to SWEET. Being a
commonly used service, censor cannot possibly block client access to
the cloud. The limitation of this approach lies again in traffic analysis.
Moreover, a suspicious censor may redirect the traffic being generated
by the cloudTransport client towards its own bridge and block the traf-
fic altogether.

• CASTLE [11]

Castle makes use of RTS games to transfer covert data through spe-
cific commands. The system uses automation to give specific game
commands in order to request/hide data. These commands have to be
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decided after mutual understanding of the client and destination since
it is important for the receiving end to understand and be able to read
the covert data sent through system commands.

The advantage of this system is that censors are usually not monitoring
game traffics. Moreover, since game traffic is already diverse, detection
through traffic analysis might be harder than previously discussed sys-
tems.

The limitation of this system is overall throughput that can cause se-
vere performance issues.

• meek [12]

meek is an intelligent tunneling system which makes use of domain
fronting. It acts by having different domain names in different network
layers and hiding the actual destination address in HTTPs traffic re-
quest. For example, the blocked domain is written in HTTPs header
whereas the DNS or other packets correctly contain an allowed domain.
When such a request reaches a frontend server, it decrypts the packets
and redirects it to the intended domain.

This is an excellent idea and cannot be detected by normal sensors
easily.

However, the limitation is again in traffic analysis where the normal
TLS traffic may differ from meek traffic. Moreover, the latency and lag
observed in packet transmission for meek is more than usual and may
be suspicious.

3.1.2 Using Multimedia Applications

Apart from separate relay servers, some systems make use of common oblivi-
ous servers of various multimedia applications, to transfer covert data. Such
systems have been discussed below. Our proposed idea is also a part of such
system

• FreeWave [13]

Freewave works by modulating data generated from client into acoustic
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signals and send it over a Voice over IP system. This data is sent to a
freewave server which is able to extract and demodulate the covert data
and give further access to the client. The system is specially designed to
ensure unobservability through modulation. The idea has been proven
using skype audio call. Data is modulated into skype audio call and is
directly sent to freewave server. The server demodulates the data and
entertains further request.
The advantage of this approach is that freewave cannot be fully blocked
by censors as it makes use of some renowned VoIP systems. The disad-
vantage is the issue of packet length that may vary considerably from
the normal skype voice call.

• CovertCast [14]

Covertcast makes use of images to send blocked data across. Any re-
quested site or resource is scraped into images and modulated into the
live video streaming channel. In this way the blocked content is trans-
mitted further towards the receiver end. The receiver needs to know
the url of the live video streaming channel where the covert data is
being transmitted via images. the transfer rate is such that the data
appears to be a video to the receiver.
The advantage of such a scheme is somewhat unobservability. How-
ever, modern day censors are able to detect covercast traffic easily.
The main disadvantage and a known limitaion of covertcast is that its
unidirectional.

• Facet [15]

Facet is somewhat similar to covercast but instead of sending images,
facet works by sending video data. A facet client sends its request to
Facet server through an instant message. The server gets the url from
the message, downloads the requested content and initiates a video call
to the source client. The requested content is shared through this video
call. Although a good approach but is limited to video transmission
only.

• DeltaShaper [5]

DeltaShaper is a system designed to enable resistance against the cen-
sorship over the Skype streams. This is done by enabling the TCP/IP
tunnelling over the video calls in the Skype communication. The
TCP/IP packets containing the covert information are encoded and
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transmitted over the video streams of original Skype streams. Thus,
DeltaShaper ensures that the encoding of TCP/IP packets is performed
such that they remain unobservable and unrecognizable in the Skype
stream.

DeltaShaper is useful for the client who connects to a censored ISP
and want to communicate covert data to another user beyond this cen-
sored network using a covert TCP/IP connection.

At the sending side, the transmitter receives the data as payload. This
data is encoded in a video stream which is sent to Skype using a camera
interface. This video is transmitted to the remote Skype instance.
At the receiving end, the Skype stream received is captured using the
Skype video buffer. The receiver can decode the video stream and
extract the payload. This payload is delivered then to the receiving
application.
Both these setups are implemented at both ends of the communication
supporting a bi-directional channel. Additionally, to support general-
ization, upper layers have been given access to data-link layer protocol
so that IP-packet can be manipulated remotely. This enables the sys-
tem to support TCP/IP application with high latency and low through
puts links.

Preserving unobservability
The estimation of the features of the traffic of an encoded video stream
becomes a difficult task to accomplish due to the complexity of the opti-
mization achieved by the algorithms as the video is encoded/decoded.
This adds to the difficulty in generating a Skype stream containing
modulated covert data which is similar to the “normal” Skype stream.
Thus, DeltaShaper is used to help generation of the covert videos which
shows same features as “normal” Skype stream as it encodes a large
sized payload data. Thus, it becomes important to first study how a
“normal” Skype stream looks like and then use this information for de-
velopment of a technique which can modulate the covert streams which
shows similar patterns.
A regular Skype stream was categorized as the one which forms form a
legitimate video call between the Skype users and it has no covert in-
formation encoded in it. For a normal Skype call, where user is sitting
in front of the camera moving rarely, the traffic follows a specific pat-
tern. While, the traffic patterns of any action movie transmitted using
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Skype are very different resulting in large number of lengthy frames. A
stream is considered to be irregular if it is different to a regular Skype
stream more than a pre-set threshold,
Feature function detects some quantitative attributes from the packet
traces. The feature distribution of packet length () as a valuable at-
tribute to identify a pattern in Skype stream. depends on the input
video and the compression applied by Skype. Thus, combining the pay-
load frames with the carrier frames directly effects the packet length
distributions. Such a differentiation scheme has been successful in dis-
tinguishing between Skype and Tor [25] streams. In [22], to differenti-
ate between Skype and YouTube streams, a function based on 2-gram
distribution of packet lengths has been presented. When studied with
DeltaShaper, the results are similar to those obtained for .

DeltaShaper must be fed with experimentally chosen encoding selec-
tors. DeltaShaper can select one of these encoding selectors which
delivers the greatest throughput. Providing diverse options to the
DeltaShaper as encoding selector can help generalize their selection
mechanisms, independent of any specific video applications.

The advantage of deltashaper is that its highly unobservable for even
many complex systems. However, this system has also been beaten by
state of the art machine Learning models that can distinguish between
Skype traffic and deltashaper traffic with great precision. This has
been discussed in [1]

All the above multimedia systems shared above have been beaten by state
of the art Machine learning systems as stated in [1]. In [1], Accuracy of Cov-
erCast, Facet and Deltashaper has been compared and their unobservability
have been questioned.

The main findings of the publications are as follow: Unobservability
claims of all three systems are wrong. Similarity based classifiers are able to
detect Facet traffic with very high accuracy as discussed below; Performance
of X2 has been rated good with 74.3 accuracy, when Facet s=50 traffic is
detected. KL and EMD supports optimistic support to the unobservability
of Facet s=50 by showing results to accuracy of random guessing. In classify-
ing the DeltaShaper and Facet traffic, X2 results in large false positive rates.
While detecting the Facet and DeltaShaper traffic, Performance of X2 has
been considered as fair in distinguishing the covert channels (e.g., AUC=0.83
for Facet s=50, AUC=0.74 for DeltaShaper). CovertCast results in failure to
present unobservability. Classifier is able to discriminate CovertCast streams
with only 2 FPR,
For decision Tree based models:
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A combination of Random Forest/ XGBoost with the summary statistics
negates the unobservability claims of the multimedia protocol tunneling sys-
tems. The detection of the Facet and DeltaShaper traffic using the summary
statistic features A set of limited number of false positives can be used to
flag most of the covert channels.

A recent study on censorship circumvention done by Diogo et al in [16]
introduces a tool names Protozoa. It is a tunnelling tool that introduces a
covert channel which has a good performance and is undetectable by state
level censors. The idea is to make a video call to an uncensored party through
a third party tool to establish a channel using a WebRTC streaming service.
This is done by replacing the encoded video data with IP packet, which
ensuring that the statistical properties of the stream remains genuine.

3.2 Generative Adversarial Network

Generative Adversarial Networks by Goodfellow et al was introduced in 2014.
Since then, the machine learning field has seen drastic advancement and
it has been termed as the most exciting field of recent times owing to its
applications in almost all fields of life.

GAN is basically a contest or a competition between two neural networks,
where both try to beat the other by being more accurate in their own pre-
dictions.The two neural networks that make up GAN are called Generator
and discriminator. The generator tries to generate fake output data that
looks similar to real data, whereas the discriminator distinguishes between
real and fake data example. The most promising use of GAns have been
seen in data imaging where the generator model is usually a convolutional
network and the discriminator is a deconvolutional network. A well known
image-to-image translation done by GAN is where sketches and real photos
can be generated through one another. Similarly, totally new set of features
and faces have also been derived through GAN [17] Generative adversarial

In [18], stacked GAN was introduced to generate realistic images based
on text description. GAN have various applications in computer vision as
well. However, its applications are not restricted to just imaging. GAN has
been used widely for Captcha solver in [19] since its accuracy and efficiency
is unbeatable.

In [20], medical applications of GAN have been discussed. GAN can
be used to generate multicontrast MRI images for better picture quality and
hence better diagnosis. Various other applications of GAN ans its limitations
have been discussed in [21]. Where GAn has numerous application, it has its
own shortcomings as well. Real Images generated by GAN can be misleading
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and can result in social discomfort at numerous levels. However, like every
new tool, the mode of usage of GAN determines whether its a blessing or a
curse.

In security domain, GAN has great contributions in stegnography as was
proposed in [22]. The architecture of this GAN had one generative and
two discriminative models to hide information effectively. The work most
relevant to our implementation was done by Maria et al in [23] where they
used a GAN to beat network traffic classification. They used a total of 6
network traffic features to mimic Facebook chat network traffic by learning
on it.
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Chapter 4

Proposed Methodology

This chapter provides a high-level overview of the proposed methodology
that will address the problem statement. As discussed in previous chapter,
Deltashaper, the best known covert system has been beaten by the state-
of-the-art Machine learning models in [1]. In this chapter, we propose a
methodology whereby our covert deltashaper traffic will go undetected by
the same censor models.

4.1 Design of Censor

4.1.1 Machine Learning Censor Models

We propose using well-known state-of-the-art ML models to act as our cen-
sors. We will work with multiple censor models to ensure our system is
robust and the claim of unobservability in our system is properly presented.
We propose usage of all the Decision-tree based ML models that have been
discussed in [1]. These models are best known for their accuracy and hence
fooling them, will pretty much beat all known machine learning censors.
Since these models were able to correctly beat deltashaper traffic, we will
use the same models and beat those models through our covert tunnelling.
Following Machine learning models have been used:

4.1.1.1 Decision trees [24]

The network traffic generator aims takes the featureset produced y Gan as
input, and generates a packet with these features and transmit it over to a
peer receiver. This is a two way communication system, where, the sender not
only sends the covert data encapsulated in a packet with generated network
features, but also shares the destination point features with the destination
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system. The next packet generated by the destination system holds the
parameters it received in the sender packet. In this way, a communication
is established to ensure both clients use the parameters generated by GAN
to ensure two way traffic. A branch is split by the decision node using an
attribute, which is chosen according to the information gain (i.e. a probable
reduced entropy due to choice of the splitting attribute). Analysis of the
tree structure can help in identifying the significance of each attribute, which
reveals that nodes near the root are more importance as compared to the ones
down the tree. Decision trees can still result in cumbersome ungeneralized
models or unstable models due to greater number of correlated features.
Decision tree ensemble scan be used to address this problem.

4.1.1.2 Random Forests

Random Forests [25] considers the outcome from multiple decision trees to
predict a label as its an ensemble learning technique. Bootstrap aggregation
is used by Random Forest to incorporate variance in the model to avoid over-
fitting. This is done to ensure that each tree is trained using random sample
of data. Also, feature bagging is used by Random Forest to ensure that fea-
ture selection is random to build each tree. An average of the information
gain among all the trees in the ensemble can be caluclated to appreciate the
significance of an attribute.

4.1.1.3 XGBoost

eXtreme Gradient Boosting (XGBoost) [26] builds a model considering the
ensemble of a decision trees through the use of gradient tree boosting. In
XGBoost, a shallow decision tree is build. KGBoost builts a new tree in the
earlier steps reflecting towards positive predictions. XGBoost controls over-
fitting through recolutionarized model formalization. Similar to the Random
Forest, significance of the individual attributes can be evaluated. Consid-
ering large number of classification algorithms, XGBoost shows promising
outcomes. Recently, XGBoost has been in solutions which won different
data mining competitions covering diverse fields including KDD cup 2016
[12, 44]. Logistic Regression [27] model (or logit model) is a widely used
machine learning model. It is one of the basic models and is the first one to
be taught. It uses cost functions and a logistic function to model a binary
dependent variable.

It is basically a statistical model, but by applying a cutoff value, one can
classify the inputs with probability greater than the cutoff as one class, and
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below the cutoff as the other.

4.1.2 Training of ML models

We will train our machine learning models on the dataset that was used by
authors in [1]. The dataset includes a set of two way communication of pcaps
for skype traffic and for deltashaper traffic. The goal is to train each ML
model exactly how it was trained by the authors and beat these models.

4.2 Proposed design of Multimedia Traffic Gen-

erator

4.2.1 Generative Adversarial Network

For Generative model, or for generating adversarial examples, we propose
using LSTM [28] Neural network for multimedia examples. LSTM is a type
of RNN [29] with memory. It has been observed, that with LSTM used
as the model function, the parameters generated by GAN are way more
accurate and close to the original traffic. The activation layer or a neural
network decides how to transform the weighted sum of input into the output.
commonly known activation layer functions include tanh and sigmoid. For
generative model, we have used Tanh function due to its ability to produce
better discrete results. In our methodology, Skype normal traffic is given as
the input to GAN. GAN uses features from this traffic to generate similar
dataset. GAN outputs a set of network parameters, that when adopted,
will generate a traffic similar to skype normal traffic. Idea is to use these
generated parameters to shape our own network traffic with covert data.

4.2.2 Network Traffic Generator - NTG

The network traffic generator aims to take the feature set produced by Gan
as input, and generates a packet with these features and transmit it over
to a peer receiver. This is a two way communication system, where, the
sender not only sends the covert data encapsulated in a packet with gen-
erated network features, but also shares the destination point features with
the destination system. The next packet generated by the destination system
holds the parameters it received in the sender packet.
In this way, a communication is established to ensure both clients use the
parameters generated by GAN to ensure two way traffic.
For traffic generation through this generator, One host and one guest machine
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was setup. Both were connected via bridged networking. One DeltaClient
was run on the host machine and the other on the guest machine. To ensure
that both machines communicate perfectly, both were assigned an Ip in the
same network and a ping request was sent from both to the other. Upon
successful connection, the traffic generation was started. A UDP packet con-
taining all info extracted from Gan was sent from the client to the guest. To
ensure smooth two way traffic, immediately after reception a reply packet is
sent, although no delay has been added. To ensure that the traffic was going
smoothly, a text message was displayed by each client upon message recep-
tion. The communication continued, untill total packets had been reached.

4.2.3 pcap Generator

A small model in NTG has been integrated for pcap generation.So the traf-
fic generator not only establishes udp connection between clients, but also
captures the traffic being generated. It outputs each session in a pcap file.

4.2.4 Feature Extraction

An extremely important part of our research was to extract 160+ features
from a network pcap and use them as an input to several Ml model. Feature
extractor has been written in python where dpkt library is used to read a
pcap file and extract several network parameters from it. Further features
are derived through these parameters.
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4.3 Implementation flow chart

Figure 4.1: High Level Layout of Proposed Methodology

4.4 Final Objective

The final goal is to use NTG to generate a traffic based on features generated
by GAN Ideally, this traffic should be marked as a normal skype traffic by
ML based censors. And can be used to embed DeltaShaper payload in it.
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Chapter 5

Implementation

This chapter explains the implementation of the proposed solution for the
problem statement. The implementation has been divided into two main
parts, the Machine Learning based censor models and traffic generator using
GAN input. The two sections will be discussed in detail below.

5.1 Machine Learning based Censors

5.1.1 Choice of Machine Learning Models

We have chosen all the well known ML models in order to cover wide range of
censor implementations. The models also include the one’s mentioned in [1]
The list of them are given below:

• Decision Tree

• XGBoost

• AdaBoost

• Random Forests

5.1.2 Datasets used

300 pcaps of normal and deltashaper traffic have been used to train our
classifiers and GAN.
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5.1.3 Feature Extraction

For feature extraction we used the dpkt library of python. The library was
used to read each pcap packet wise. Packet size, times, length, burst and
several other features are extracted. From them, Statistical indicators of
these features are calculated as was done by [1]

All extracted and derived features have been used to train the censor models.
However, feature reduction have been done in order to generate traffic from
GAN as we’ve seen that not all features are needed for making a complete
picture of network traffic.

A set of 160 features are chosen which are given taken from [1]. These
features ensure the highest accuracy for the classifiers.

5.1.4 Implementation of Machine Learning Models

All ML models are implemeted in Python 2.7 virtual environment using the
scikit library. This library contains readymade ML model functions that can
be directly called over a preprocessed dataset
A single classifier function has been written which is called for each classifier
model from main

dif __name__ == "__main__":

cfgs = [

["RegularTraffic",

"DeltaShaperTraffic_320"],

["RegularTraffic",

"DeltaShaperTraffic_160"]]

if not os.path.exists(’xgBoost’):

os.makedirs(’xgBoost’)

classifiers = [

[DecisionTreeClassifier(), "DecisionTree"],

[RandomForestClassifier(n_estimators=100,

max_features=’auto’,n_jobs=1), "RandomForest"],

[XGBClassifier(),"XGBoost"],

[MLPClassifier(),"NN"],

[KNeighborsClassifier(),"KNN"]

]

feature_set = ’Stats_60’
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data_folder = ’FeatureSets/’ + feature_set + ’/’

if not os.path.exists(’xgBoost/’ + feature_set):

os.makedirs(’xgBoost/’ + feature_set)

for cfg in cfgs:

for classifier in classifiers:

print "Running classifiers for " + cfg[0] + " and " +

cfg[1]

runClassification_CV(data_folder, feature_set, cfg,

classifier)

As can be seen in the above python code, each ML classifier model is fed
to the classification function, in which training and testing of the classifier
takes place. Moreover, all performance metrics are also calculated in that
one function. ROC curves [30] are also generated and saved in a separate
file.

5.2 Developing Traffic Generator

Traffic Generator has also been implemented in python 2.7. A UDP packet
with all essential information, including payload and network parameters are
sent by the DeltaClient1 to client2. Packet has been designed via sock. The
traffic generator has been coded so that it can generate both tcp and udp
packets, although we only generate udp packets through it. As can be seen
in the below code snippet, teh input data is read from the file generated
by GAN and it is fed to the traffic generator. The Proto in out case has
been fixed as udp although, it can be changed to tcp for any other kind of
application usage. Other features generated by GAN like total packets or
totals bytes have been read from the file and given as input.

It is important to note that not all features are generated through GAN.
Since GAn works has generating dataset that following a particular statistical
distribution, it is hard to generate dependant data through GAN. For exam-
ple, for our testing , we require Total packets, ingress packets and outgress
packets. However when all three features are generated through GAN, they
don’t add up as they should. Total packets should be a sum of incoming and
outgoing packets, which is not.

Therefore, in our scenario, we have totally avoided derived features gener-
ation through GAN. Instead, we’ve generated total packets and total source
packets, and then extracted destination packets ourself by subtracting both.
Similar practice has been done for Total bytes as well.
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for line in data:

features = line.split(’,’)

Proto = "udp"

Sport = 53771

Dport = 43969

TotPkts = abs(int(float(features[0])))

TotBytes = abs(int(float(features[2])))

SrcPkts = abs(int(float(features[1])))

SrcBytes = abs(int(float(features[3])))

sTtl = 64

dTtl = 64

SIntPkt = abs(int(float(features[5])))

DIntPkt = abs(int(float(features[4])))

DstPkts = TotPkts - SrcPkts

DstBytes = TotBytes - SrcBytes

delim = ’,’

message = str(DstPkts) + delim + str(DstBytes) + delim +

str(dTtl) + delim + str(DIntPkt)

print message

protocol_str = ’GET / HTTP/1.0’

byteperpkt = SrcBytes/SrcPkts

byteperpkt -= 56

byteperpkt -= len(message)

if byteperpkt > 1250:

byteperpkt = 1250

SrcPkts = SrcBytes/1250

message = message + ’-’ + ’*’*byteperpkt

tcp_pkt = False

if Proto == ’tcp’: tcp_pkt = True

if tcp_pkt: sock = tcp(DstAddr, Dport, SrcAddr, Sport, 1,

1, SrcWin, sTtl, protocol_str+delim+message)

else: sock = udp(DstAddr, Dport, SrcAddr, Sport, sTtl,

protocol_str+delim+message)

for i in range(1,SrcPkts):

if tcp_pkt: sock = tcp(DstAddr, Dport, SrcAddr, Sport,

0, i+1, SrcWin, sTtl, message)

else: sock = udp(DstAddr, Dport, SrcAddr, Sport, sTtl,

message)

time.sleep(SIntPkt)

time.sleep(2)
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5.2.1 GAN

GAN ensures that our deltashaper traffic is marked as normal traffic by all
Machine learning algorithm models.Therefore GAN is the most crucial part
of our implementation. The generative model is LSTM based with tanh as its
activation function.The implementation has been done in python 2.7 using
tensorflow.
The discriminative model has sigmoid as its activation functions. GAN is
trained on Normal Skype Traffic dataset. After this traffic, GAN produces a
set of features that mimic skype traffic.
The batch size for training and number of epochs have been fixed after hit
and trial. For any dataset, finding the best value of epoch is important to
avoid overfitting and underfitting both.

Table 5.1: GAN’s list of features

The list of features that are used to train GAN are different from the
one’s used to train classifiers.

For classifier models, all 160+ features have been used for training. However,
for generative purposes, only a small subset of network features have been
used. These features were selected based on the feature importance study
done in [1]. The features on which classifiers were trained are mentioned
below. As can be seen in below figure, the main features are around seven
to eight. However, their mean statistics have been derived to get 6-7 sub-
features from a single feature. Feature extraction has been done through a
specialized script.
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Figure 5.1: Censor List of Features taken from [1]
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Chapter 6

Results and Discussion

This chapter shows the results of the implementation and its evaluation

6.1 Background Information

Following are some of the terms that need explanation in order to comprehend
the results properly

6.1.1 Model Accuracy

Ratio of correctly predicted to the total. Accuracy = (TP+TN)/(TP+FP+FN+TN)

6.1.2 AUC - ROC Curve

AUC-ROC curve is the representation of how accurate the model is at at
predicting the classes of any set of input data correctly. The higher the
AUC, the better the model

6.2 Evaluation of CensorModels

6.2.1 Decision Trees

Training Time: 0.06677s
Testing Time: 0.00811s
Accuracy: 97.743%
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Figure 6.1: Decision Tree- ROC Curve

6.2.2 XGBoost

Training Time: 0.6385s
Testing Time: 0.09771s
Accuracy: 94.99%
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Figure 6.2: XGBoost - ROC Curve

6.2.3 AdaBoost

Training Time: 0.5744s
Testing Time: 0.013995s
Accuracy: 97.9644%
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Figure 6.3: AdaBoost - ROC Curve

6.2.4 Random Forests

Training Time: 0.5785s
Testing Time: 0.018771s
Accuracy: 98.9936%
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Figure 6.4: Random Forests - ROC Curve

6.3 Discussion of Results

All the ML censor models show remarkable performance. All the models
have been trained with high accuracy. After being trained efficiently, the
models have been beaten by testing them with GAN generated dataset. All
models recognize the derived traffic of GAN as normal traffic. This was the
main goal of this reseaerch, to fool the classifier into thinking that the GAN
generated traffic is infact normal skype traffic.

The training and testing times for each model has been calculated. As can be
seen, Adaboost and Random forest took around half a second to get trained
over the given dataset. Training time for Decision tree is the fastest. The
time for trainign and testing depends on the size of the dataset. The more
the dataset, the more the time taken for mdoel training.

Accuracy of all the models was above 95%, Random forest showed high-
est accuracy. However, this accuracy can be further enhanced to 98-99% by
simply increasing the training dataset. Although this will further increase
the training time, but it would result in more accurate results.

The hardest model to beat still remains to be the Asaoost model. How-
ever, as mentioned above, the model can be beaten with more efficiency if
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the dataset is enhanced. Training an ML censor with 300 training examples
is not enough.

6.4 Passing GAN Traffic through Censor Mod-

els

Once the ML censor models had been implemented and trained accurately,
the nezt step was to test the GAN generated traffic and have the Models
mark them as Normal traffic. This was done by extracting features from the
pcaps generated by our traffic generator.

The models classified the 300 flows given to it as either class and the per-
centage classified as each class is given below

Table 6.1: Our GAN traffic through Censors

As seen in the table, almost all of our traffic went through without being
detected.

These results show that indeed, a censor model can be beaten if The traffic
is modelled in a way that it appears as normal traffic. This modelling can
be excelled using Generative Adversarial Networks.
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Chapter 7

Conclusion and Future Work

This chapter concludes and summarizes the thesis and discusses the future
prospect of this research.

7.1 Conclusion

The rising trend of censorship in the world is a direct attack on the right
of every individual of unbarred information access. With machine learning
at its peak of research and implementation, defying these censorship models
has become difficult.

This research work has not only proved that Protocol tunneling can be suc-
cessfully implemented by deploying machine learning and Generative adver-
sarial networks, but it has also shown the censor models the loopholes in
their implementation. Using GAN, we have not only implemented some best
known censor models, but also beaten them by exploiting their detection
strategies

We have also designed a traffic generator, which can be used to generate
network multimedia packets through the features proposed by GAN. We
tested 300 gan generated flows and passed them through our censor models.
All censor models detected it as normal skype traffic with great efficiency.

7.2 Future Work

Our thesis can be extended in a number of directions. Following are some
areas that can be explored further:
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• Developing ML-based censorship models that can distinguish GAN-
generated traffic from original traffic

• Build a multimedia communication network using the above implemen-
tation and send payload for commercial purposes

• Using more datasets to enhance the accuracy of Censor Models and of
GAN

• using Packet-length based feature models to beat ML censor models

Since GAN and protocol tunneling is a growing field, there is always
room for improvement. Unless a practical system reaches an accuracy
of 100, the system can be improved further by better training and
testing. There is no end to it. With Machine learning, sky is the limit.

.
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