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Abstract

The increasing world population is generating higher food demand that needs effective

cultivation methodologies to meet them, especially for the developing countries that

have a higher dependence on the agricultural sector. Crop type classification is part

of crop monitoring which can help to plan crops effectively and meet the demand-

supply chain. Our study had mainly two objectives, acquisition of a dataset for crop

type classification and building effective models for Pakistan-specific regions that can

have comparatively better outcomes for the region. The dataset was acquired from

different regions of Pakistan via local surveys and later on perform post-cleaning to

get an optimized model especially for LSTM where data was converted into a time-

series dataset which provided us comparatively more accurate results. The dataset had

sentinel-2 images ranging from 2016 to 2021 for mainly 5 crops and a no-data class

capturing both Kharif and Rabi seasons of the area. We used high temporal and spatial

resolution images to train TempCNN, Light GBM, and LSTM where we achieve a model

having an accuracy of 94%. The LSTM model on time-series data outperformed where

the spatial and temporal pixel of each location was converted to a time dimension. The

developed methodology can be used to forecast the supply of different crops as well as

the models can be trained on more crop types. The acquired dataset can be used to try

different methodologies for developing optimized models.

Keywords: Dataset Acquisition, LSTM, Light GBM, TempCNN

(xiv)



Chapter 1

Introduction

1.1 Remote Sensing

Remote sensing (RS) is the process of measuring or acquiring data or information about

some object or phenomena by a sensing device that is not in intimate or direct physical

contact with the thing or phenomena under study. This acquisition of data or informa-

tion is not limited to satellites or far away scanners; any data obtained without direct

contact with the object is remote sensing. The acquired data can be any input type like

temperature, pressure, force, images, or any sensible attribute. However, in a broader

sense of the term “remote sensing”, things like a sonogram, medical imaging, or even

simple x-rays can also be categorized as remote sensing because data and information

are gathered without physical contact with objects.

For the scope of this study, we are focusing on the acquisition of data using satellite

imagery, commonly known as satellite remote sensing. In satellite remote sensing, we

have sensors placed on board satellites that are orbiting the earth. These sensors in-

clude multi-spectrum cameras and scanners that continuously scan the planet acquiring

images of not only the surface of the planet but also drilling deep down into the surface.

RGB images aren’t the only type of images that can be acquired from the satellite we

chose for our study; instead, this study uses high spatial resolution optical images from

the Sentinel-2 satellite. These images had a spatial resolution of 12-bands. These im-

ages correspond to rural areas of Pakistan where crop cultivation is one of the primary

professions.

For this study, we are mainly focused on classifying the crops grown from time to time
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Chapter 1: Introduction

in Pakistan. This classification will further yield predictions and thereby contribute to

planning the country’s total food requirements. Remote sensing provides the benefit of

non-reliance on traditional data gathering techniques that are time-consuming, costly,

and unreliable.

1.1.1 Active Remote Sensing

When the sensor embodies within itself the source of illumination/energy, for example,

we had cameras that used to have a built-in flash on them, so the moment someone clicks

the picture, the flash would fire the light and it would get reflected from the object and

the camera would record a picture. In this case, the camera is also carrying the source

of illumination.

Figure 1.1: Remote Sensing.

Active remote sensing can be understood as in radar because when a satellite is equipped

with a radar transponder, it’s sending out radar waves or radio waves which bounce off

from the earth’s surface, the time required for the waves to hit the earth’s surface and

we recorded by sensors on the satellite is what utilized for making an image, this type

of sensing comes under active remote sensing.

1.1.2 Passive Remote Sensing

Passive remote sensing comes into play when the sensor itself does not have a source

of illuminating the ground surface or the object which it is imaging and capturing
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Chapter 1: Introduction

information. Figure 2- Passive Remote Sensing For example, the sun illuminates the

earth, and reflectance from the earth’s surface is collected by the sensor on the satellite.

It is passive because the sensor itself does not carry its own source of energy.

1.2 Satellite Images

Images captured by satellites that are operated by different organizations are used for

various purposes including earth observations (EO) which is our primary focus here.

From these images, we can forecast the change in atmosphere as they provide us an

accurate representation of how the atmosphere is changing. Satellites provide us the

accurate data as there are comparatively fewer chances of error in satellite imaging.

EO images provide us a representation of what is happening on earth. Generally, we

have five types of resolutions in satellite imagery while working with remote sensing

i.e spectral, temporal, radiometric, geometric. The spectral resolution is identified by

wavelength. Temporal resolution refers to the time interval between the different image

collection periods, Radiometric resolutions captures the different level of brightness and

the Geometric resolution express the ability of satellite to image a portion of the earth

in a single pixel. There are many EO satellites used for earth observation missions

however our primary focus is Sentinel-2A and Sentinel-2B. Sentinel-2A captures the

high-resolution image of earth from 10 m to 60 m over land having 13 bands (spatial

resolution) in short wave infrared, near-infrared and visible part of the spectrum and it

revisits the same place every 10 days with the same viewing angle however with revisit

time was reduced to 5 days after 2nd launch of the satellite. The aforementioned EO

images can be used to observe change on earth, different plant indices can be monitored,

observations over soil and other changes can be effective to forecast events.

1.3 Crop Classification

In classification, the dataset is normally categorized into different classes where the

input data relates to a specific class. Classification can be performed on both structured

and unstructured data and the accuracy of classification depends on model training

along with the quality of input data. Once the training of the classifier is completed,

the classifier determines the class of new incoming data. The classification is part of

3



Chapter 1: Introduction

supervised learning that have data with class label attached to it and used in model

training. The model can be of different types i.e. artificial neural network, convolutional

neural network, Recurrent Neural network, decision tree, support vector machine, etc

and we select the model with respect to the available dataset. For example, decision

trees work well with non-linear data, CNN works better on images, and RNN or LSTM

is normally used for time-series datasets.

When it comes to crop classification, the dataset is usually compressed of images ex-

tracted from different sources including but not limited to satellite images. In the case

of satellite images, we can extract NDVI values, soil moisturizer, and other parame-

ters that can be used as features for modeling. A trained model later can classify any

provided crop imaging to its crop type without any extra effort.

1.4 Motivation

According to a published study [3], the demand for the food will be doubled by 2050 and

we would have to extract more yield using the existing resources/crop area. The main

motivation of the research is to contribute to agriculture in order to meet the extensive

demand for food by improving the monitoring process of agricultural land and crops.

Computer vision and machine learning models are mature enough to provide high-level

insights where the first task is to classify the crops. The contribution to the improvement

of crop type classification via remote sensing can lead to the efficient development of

different other application i.e. yield prediction and health monitoring of crops.

1.5 Objectives

Cultivation practices, soil, weather, and irrigation techniques vary for different areas. A

model developed on the Data of the U.S or Ukraine may not provide promising results

on Pakistan’s agricultural land. The main objective is to gather data from Pakistan and

design/develop an effective machine learning model that should be able to perform crop

type classification using gathered data from various cities of Pakistan.
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Chapter 1: Introduction

1.6 Summary of the contribution

There were mainly two parts of the thesis, one to perform ground surveys to collect data

for groud truth which was required for the machine learning / deep learning models

where the focus was on Pakistan’s agricultural sites. A model trained on Pakistan’s

data can provide comparatively promising results when compared to a model trained on

other country’s data. The summary is that the model improvement was the aim of the

thesis. The other contribution we aimed was data, that can be used for further research

purposes and analysis.

1.7 Thesis organization

The thesis work was divided into 5 parts named in thesis as chapters, where the first

chapter introduced the reader to the domain and provide a basic understanding of the

remote sensing and crop type classification. The second chapter provides an in-depth

and detailed literature review of the domain, previous work, and different methodologies

on machine learning, deep learning, and modeling are explained. Chapter 3 is dedicated

to the study are where the data gather process and area is explained. That chapter

also explains and discus gathered data, issues with the data and how did we handle

them. Modeling procedures and developed models are discussed in chapter 4 where the

modeling procedures, models themselves, and other related limitations are discussed.

Chapter 5 contains the information about how the experiments were performed, what

were the results of the models, the performance analysis of the models, and comparisons

of the models in terms of accuracy. Last but not least chapter 6 have the crux of the

thesis where the thesis was concluded along with future work and recommendations.
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Chapter 2

Literature Review

Initially the information about the crops and plants was acquired by statistical sampling

and field surveys. With recent technological advancements, remote sensing is also being

employed for this data acquisition. Remote sensing is a more efficient way of collecting

information about land as it provides up to date large earth surface coverage at once

and at relatively low cost [4, 5]. Recently many high-resolution images like Geofeng-

1, Sentinel-2, Landsat-8 etc. has become available and being utilized as main source

to obtain the information about the crop area [6–11]. Numerous methods and their

variants are devised to perform the crop classification. We can divide them into four

broad categories: Maximum likelihood classification (MLC), Support Vector Machine

(SVM), (RF), Artificial Neural Network (ANN), Deep Learning (DL). Brief description

of these is given below:

2.1 Maximum likelihood classification

It is one of the earliest and most commonly used classifiers to perform the classification

of remotely sensed data. It is based on Bayes theorem. In this method a pixel is classified

into a specific class on the basis of the Maximum Likelihood (ML). The likelihood is the

posterior probability of the pixel belonging to some specific class. Murthy et al. [12]

proposed a Maximum Likelihood based wheat crop classification method using different

strategies.

Multi-temporal data obtained by Indian Remote Sensing satellite (IRS)-1B is used for

classification. The strategies include Iterative MLC, MLC with Principal Component

6



Chapter 2: Literature Review

Figure 2.1: Maximum Likelihood Classification. Source [1]

Analysis and sequential MLC. The performance of iterative MLC is better in terms

of classifying wheat crop. Asli et al. examines the efficacy of Maximum Likelihood

classifier through parcel based and pixel based techniques for crop classification. They

used SPOT 5 multispectral images for experimental work.

2.2 Support Vector Machine

It is a supervised predictive analysis data classification, machine learning technique.

Support Vector Machine (SVM) model learns from a set of labeled data examples pro-

vided against each category and then assigns new elements to one of these labeled cate-

gories. It can also be used for regression analysis but mostly it is used for classification

problems. Numerous researchers have presented SVM based classification techniques

for text, objects and face etc. Likewise, many research works propose the use of SVM

for crop type classification. Mingmin et al. [13], proposed a hyperspectral image based

alternative implementation method in primal formulation for SVM for land cover clas-

sification.

Evaluation of the proposed approached is carried out with the help benchmark datasets.

In [14] Chang et al. presented a SVM based library named as LIBSVM. The goal of

7
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Figure 2.2: Support Vector Machine

this package is easy utilization of SVM. They also presented multiple tasks of classifi-

cation and regression; this library package supports. Tan et al. [15], proposed a novel

hybrid classification approach based on entropy decomposition and SVM. They call it

EDSVM. This technique incorporates the features of both methods such as entropy de-

composition’s desired parameters and the statistical learning approach from SVM, to

create optimal boundary line between the different categories of crops in high dimen-

sional space. P. Kumar et al. [16] used SVM for various crop classification and assessed

its performance by comparing the accuracies with two other approaches. They used

LISS IV satellite data for evaluation and comparison.

SVM algorithm is an extensively used technique for remote sensing based crop type

classification but it is not suitable for large data samples.

Evaluation of the proposed approached is carried out with the help benchmark datasets.

In [14] Chang et al. presented a SVM based library named as LIBSVM. The goal of

this package is easy utilization of SVM. They also presented multiple tasks of classifi-

cation and regression; this library package supports. Tan et al. [15], proposed a novel

hybrid classification approach based on entropy decomposition and SVM. They call it

EDSVM. This technique incorporates the features of both methods such as entropy de-

composition’s desired parameters and the statistical learning approach from SVM, to

8
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create optimal boundary line between the different categories of crops in high dimen-

sional space. P. Kumar et al. [16] used SVM for various crop classification and assessed

its performance by comparing the accuracies with two other approaches. They used

LISS IV satellite data for evaluation and comparison. SVM algorithm is an extensively

used technique for remote sensing based crop type classification but it is not suitable

for large data samples.

2.3 Random Forest

Random Forest (RF) is a supervised machine learning technique, used for classification

and regression. This algorithm uses several decision trees for prediction. At the end, re-

sult of all trees are merged and with the help of majority voting final output is predicted.

In simple words it is based on ensemble of multiple decision trees.

Figure 2.3: Random Forrest.

Several researchers have presented different techniques based on RF for land cover clas-

sification. In [17] Rodriguez-Galiano et al. presented the use of random forest for land

cover mapping. Landset-5 data is used for experimental work and the efficiency of RF

classifier is evaluated on the basis of classification accuracy, effect of sample size and

noise in the data. Asli et al. [18], evaluated the performance of random forest for crop

classification using parcel based and pixel based techniques. SPOT 5 multi-spectral

9
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images are used for experiments. They compared the results with MLC variants but

overall, the efficiency of parcel base RF is much better than others. Lebourgeois et al.

[19] evaluated and enhanced the efficacy of Random Forest by combining it with OBIA

classifier. For experimental work they used Sentinel-2 data combined with DEM, VHRS

and HRS data to analyze the significance of each data source and their contribution

in classification accuracy. RF based classifier provides an efficient way to measure the

significance of each feature on the final output and also it helps in avoiding overfitting.

2.4 Artificial Neural Network

Artificial Neural Network (ANN) is generally known as Neural Network. It a compu-

tational model inspired by a biological neural network that is found in human brains.

It consists of connected nodes or units simply called artificial neurons. These artificial

neurons are connected with each other with the help of a link called edge and this carries

signal from one neuron to another and each neuron upon receiving signal, process it and

pass it the next connected neuron. These networks learn the features from the data

provided in order to minimize the overload of the task relevant and explicit rule-based

programming. A generic ANN have an input layer, a hidden layer and an output layer.

Input layer takes input/data, hidden layer performs the learning and decision is provided

at output layer. ANN is a supervised learning technique that is generally employed in

classification and regression tasks.

ANN have been used in domain of agriculture for various purposes such as crop yield pre-

diction [20][21][22] [23] [24], water management [25][26][27] , soil management [28][29][30]

, fruit quality assessment [31] [32] [33], and plant disease detection [34] [35] [36] etc.

Similarly, many researchers have used ANN for crop classification as well. P. Murthy et

al. [12] present the used of backpropagation Artificial Neural Network for wheat crop

classification. For the evaluation of proposed approach, they used multi-temporal data

obtained by Indian Remote sensing satellite. They compared the performance of ANN

model with different variants of ML classifier and ANN with backpropagation performed

well in all cases. Kumar et al. [37] examined the proficiency of artificial neural network

for different crop classification by employing various learning parameters. They used

Landsat 8 and LISS IV satellite images for classification and evaluation. In[16] Kumar
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Figure 2.4: Artificial Neural Network.

et al. also used ANN for crop classification and compared its results with two other

techniques by using the data captured by resoourcecast-2 satellite. CC Yang et al. [38]

proposed the use of ANN with backpropagation for differentiating the corn crop from

weeds. They have used a small dataset for training but still achieve accuracy of 80%.

In [39] Kumar et al. proposed another ANN based model for crop classification using

the C-band RISAT-1temporal satellite images. Madhusmita et al. in [40] proposed a

backpropagation based neural network for classifying Iris plant. ANN based methods

often suffers from the problem of overfitting and have high computational burden.

2.4.1 Deep Learning

Deep Learning (DL) models are in fact the deeper version of ANNs. They generally con-

sist of more than two hidden layers. The deeper architecture helps model to learn more

complex feature representations from input than the features obtained by other means

in an end to end manner without human intervention [41]. DL models are able to solve

more complex problems in relatively less time due the complex and deeper architecture

that leads to more parallelization [42]. Deep learning has been widely studied and ap-

plied in image processing domain to perform various tasks such as pattern recognition

[43] [44], image restoration [45] [46], image dehazing [47] [48], super resolution [49][50],

pansharpening [51][52][53] and image classification [54][55][56] etc. The benefits of DL

11
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algorithms have also been examined and applied in the agriculture domain specially for

crop classification. Most prominently of these algorithms are Convolutional Neural Net-

work, Recurrent Neural Network and Generative Adversarial Network. Following is the

brief description these algorithms along with some prominent work for crop classification

using these.

2.4.2 Convolutional Neural Network

Convolutional Neural Network (CNN) is a most prominent DL framework to process the

image data in the form of multi-dimensional arrays. The powerful feature of CNN is,

efficiently estimating the complex nonlinear relationships. Numerous CNN based crop

classification methods have devised so far. In [57] Kussul et al. presented a new CNN

based crop classification approach, consisting of two different CNNs, one 2D CNN for

learning the spatial details and other 1D CNN for learning spectral details. Empirical

processing is then performed to create the final output by combining the learned details

of both CNNs. Shunping et al. proposed a first 3D CNN based approach for crop

classification [58]. This framework uses spatio-temporal images and fully automatic in

terms of feature learning. A special 3D kernel and a fine-tuning step aids model to learn

the most discriminative features from the training samples.

Figure 2.5: Convolutional Neural Network

Kwak et al. proposed another CNN based crop classification model [59] . The presented

crop classification approach along CNN takes advantage of Bidirectional LSTM to effi-

ciently extract and combine temporal and spatial features. For spatial features 2D CNN

is employed and then extracted features are fed to BLSTM as input for learning the

temporal features. Lingjia et al. in [60] presented the use of CNN for crop classification

using multi-temporal and multi-source satellite imagery such as Sentinel-1, Sentinel-2

and C-band GF-3. In [61] Bhosle et al. examined the use of CNN for crop classification
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and compared the accuracy of model with CNN based autoencoder and Deep Neural

Network. They have used Indian pines and EO1 hyperion dataset for experimental work.

Overall, the performance of CNN is much better than other two models. Krishna et al.

also proposed a joint CNN and LSTM based framework for efficient crop classification

that exploits the spectral and spatial features at the same time [62].

2.4.3 Recurrent Neural Network

R ecurrent Neural Network (RNN) is another type of Neural Network (NN). RNN have

some internal memory to retain information over a period of time and to handle arbitrary

sequence input data. Contrasting to CNN, RNN emphasizes on the temporal structure

of the image and is appropriate for working with sequential data.

Figure 2.6: Recurrent Neural Network.

These were initially used for text and speech data handling but recently many researchers

have presented RNN based crop classification models as well. Mazzia et al. proposed

a novel hybrid pixel based deep learning architecture combining the features of RNN

and CNN for crop classification using sentinel-2 satellite imagery captured over Italy

[63]. The proposed approach is compared with some traditional approaches and it

outperformed all of them, providing an efficient way for performing multi-temporal clas-

sification over time series data. In [64] Nando et al. proposed the use of RNN for crop

classification in combinations with neural ordinary differential equation. This joint ven-

ture helps in classifying the image sequences that are irregularly sampled. The proposed
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approach also performed well in such cases where only few data samples exists due to

frequent cloud coverage. Garnot et al. in [65] examined RNN with some other deep

learning models to evaluate the importance of temporal and spatial dimensions of time

series data. They have used Sentinel-2 dataset for experimental work.

2.4.4 Generative Adversarial Network

Generative Adversarial Network (GAN) is another type of Neural Network having two

different networks that compete with each other as an adversarial game to create a new

synthetic data sample that is similar to training set. One network is called generator;

its task is to generate a data instance close to those in the training data and second

network is called discriminator; it compares the generated instance to the real data.

The process continues until discriminator gets fooled by the data created by generator,

thinking it as a real data sample. GANs have been employed in many image processing

applications similarly it is also considered for remote sensing based crop classification.

Hamideh et al. in [66] proposed a pixel-based classification approach for multispectral

images using GAN to distinguish crop from weed. The have used weedNet dataset for

evaluation.

Figure 2.7: Generative Adversarial Network. Source [2]

2.5 Others

Apart from the categories discussed above numerous other models have also been de-

vised for crop classification. Siachalou et al. proposed an approach for crop classification
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using phenological models along with the theory of Markov chains [67]. In the proposed

technique remote sensing images having different resolutions are incorporated to moni-

tor the continuous change in the ecological process. Time series RapidEye and Landsat

ETM+ images are used for experimental work. In [68] Gaertner et al. proposed two dif-

ferent approaches using maximum likelihood and Object Based Image Analysis (OBIA)

method, to classify Coffea arabica crop. Images of WorldView-2 satellite are used for

experimental analysis. Qingting et al. proposed another OBIA based crop classifier

using time series enhanced Landsat-MODIS data [69].
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Chapter 3

Study Area and Data Acquisition

3.1 Study Area

The area of interest for this case is selected from Pakistan considering agriculture’s

contribution to Pakistan’s GDP which is considerably high. The selected area is from

Punjab province where most of the area is used for the purpose and has a developed

irrigation system. Furthermore, the districts Bahawalpur, Sahiwal, and Pakpattan were

selected. All of the selected areas are one of the highest producers of wheat, cotton, and

corn which is the core reason for the selection.

Figure 3.1: Study Area
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3.2 Data Acquisition

Ground surveys were conducted to acquire the ground truth’s data from the study

area. An android application was developed to extract the coordinates of the polygons.

Another application named

Figure 3.2: Polygons of AoI

as "GPS Logger" was also used to record the coordinates of polygons which provides

comparatively better and accurate results. The main workflow for the data acquisition

included visits agricultural sites of the study area and then acquire coordinates for AOI

(Area of Interest) and then the farmer provides the information about crops, i.e. crop

type, sowing data, and harvesting dates. The ground survey includes the information

associated with each polygon, as sample data is shown in the table. Total 9.52M square
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feet area was captured with crop type label where 3.4M belongs to wheat, 3.1M to cotton

and remaining data have corn, potatoes, and rice crop.

Crop Name Sowing Harvest Area (Sq. m) District Season

Cotton 01/06/2017 01/06/2017 696960 Bahawalpur Kharif

Cotton 01/06/2018 01/06/2018 43560 Bahawalpur Kharif

Cotton 01/06/2018 01/06/2018 43560 Bahawalpur Kharif

Cotton 01/06/2018 01/06/2018 43560 Bahawalpur Kharif

Table 3.1: Ground Survey Data

Figure 3.3: Data by Crop Type

In the selected study area, there are two seasons in agriculture refer by Kharif and

Rabi. The Kharif season begins with sowing in the April of each year and then harvest

in October that can last to December. The second principal crop season is known as

Rabi that usually starts with the sowing of the crop in the Month of November to

December of each year and ends with the harvesting between April-May each year. The

track of season is available in the gathered data for analysis and modeling.

The distribution of the data over seasons can be seen in the figure 10; where 55% of

the gathered data belongs to Kharif season and remaining 45% is of Rabi. While the

distribution of the data over city can be seen in the figure 11; where about 67% of the

data was gathered from Bahawalpur region, 32% from Sahiwal and only 1% is from

Pakpattan.

Sentinal-hub was used to extract Sentinal images after creating an account and gen-
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Figure 3.4: Data by Seasons

erating API tokens, where each image had a spatial resolution of 10 and a temporal

resolution of 15. Sub grids of 3x3 were further extracted from the images and assigned

corresponding crop lables where each grid had 3x3x10 size and single samples had 15

temporal resolutions ending up with 15x3x3x10 dimensions. The original dataset had

165, 313, 90, 49, 339 samples of Corn, Cotton, Potato, Rice, and Wheat respectively.

Class Sqr ft Sqr m Pixels Samples (3x3)

Corn 1633500 151755.85 1515 165

Cotton 3103650 288336.12 2877 313

Potato 892980 82959.87 828 90

Rice 500940 46538.46 463 49

Wheat 3386790 314640.47 3137 339

No Data 2613600 242809.36 2428 269

Total 12131460 1127040.134 11248 1225

Table 3.2: Original Data set
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Figure 3.5: Area by City

Another dataset was extracted for multiple crops and random areas including residential

areas without any label to cater to no-data class during the classification process. The

primary objective behind the no-data class was this, if we provide data of any crop that

does not belong to the training set, the model should be able to assign it a no-class label

which means given data do not belong to any class from data on which it was orignally

trained. A total of 2.6 million square feet area was captured for no-class data that ended

up creating 269 samples of 3x3 grids.
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Crop Type Classification

Modeling

4.1 Dataset Partition

The gathered data sets had high variation in terms of the number of samples among

crop types which could lead to biases and overfitting models on certain types of classes

where the dataset had a higher number of training samples. In order to normalize the

data, a split was performed on the dataset. Cotton and Corn was combined into one

dataset and named as Dataset-1. On the other hand, remaining crops were into another

dataset named as Dataset-2. Crops in dataset 1 had a greater number of samples so we

perform an 80-20 split to generated training and test sets. We had a total 313 number

of training samples for cotton and a total 339 number of samples for wheat, after an

80-20 split, the training data had a total 521 number of samples and 131 samples were

left for testing purposes. Dataset 2 had crops where the number of samples is less as

well as the variation is high. Potatoes had almost double samples than Rice and Corn

is approximately double than Potatoes. Considering this variation and to normalize the

training, the 80-20 split was not performed on this dataset, rather an equal number of

training samples (40 from each class) were selected for training, and the remaining were

put to the test set.

Another dataset was developed from the original data where each sample grid was

converted into 9 samples points. as a single-pixel had a spatial resolution of 10 and a

temporal resolution of 15, each pixel from spatial dimensions was converted into series
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Crop Type Samples Training (80%) Test (20%)

Cotton 313 250 63

Wheat 339 271 68

No Data 269 219 50

Table 4.1: Dataset 1

Crop Type Samples Training (80%) Test (20%)

Corn 165 40 63

Potato 90 40 50

Rice 49 40 9

No Data 60 40 20

Table 4.2: Dataset 2

and appended temporal set to form a time series dataset. After conversion, each sample

point had 150 points in series (10 spatial *15 temporal) along with an increased number

of training points. The final dataset consisted of Cotton, Wheat, Corn, Potato, Rice,

and No Data having 2817, 3051, 1485, 810, 441, 2421 samples respectively. The complete

samples space was divided into training and testing sets using an 80-20 split.

Figure 4.1: Area by City
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Crop Type Samples Samples Series Training Test

Cotton 313 2817 2250 567

Wheat 339 3051 2439 612

Corn 165 1485 1188 297

Potato 90 810 648 162

Rice 49 441 360 81

No Data 269 2421 1971 450

Total 1225 11025 8856 2169

Table 4.3: Dataset 3

4.2 Light Gradient Boosting Machine (LightGBM)

LightGBM is a variant of GBM which is faster, efficient at distributing and leveraging

the resources along with high performance backed by decision tree algorithm similar

to XGBoost or even random forest. LightGBM is based on a concept to split the tree

on the basis of leaf rather than tree wise or level wise. The overfitting problem in

the LightGBM can be handled by appropriately defining the depth of splitting. Light

Gradient Boosting Machine took the inspiration from Extra Boosting Machine where we

have more or less the same algorithm with few improvements. Normally decision trees

work very well with nonlinear data but the problem is that a single decision tree can

very easily overfit provided data set and if we built a deep decision tree it’s very prone to

outlying observations so usually people deal with this problem by building ensembles and

also by using multiple trees one of the ensembles is gradient boosting. In naïve gradient

boosting, we take the data and feed weak learners like a shallow decision tree which ends

up with a model having some error call them residuals, after that we take another model

and fit to the residuals, and it’s repeated many times but in the gradient boosting on

decision trees, we usually do not use entropy instead use particular gain for the modeling.

Light GBM is the library that comes from Microsoft that aims to make the Gradient

boosting on decision trees faster and they achieve that by checking all of the splits while

you basically want to create new leaves, it check only some of them so before they are

built a tree, so before they built a tree they sort all of the attributes and then bucket the

observations they create bins here and when they want to split a leaf in the tree they

do not iterate over all of the leaves but overall of the buckets so there is a much smaller
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number of splits considered each time. it’s actually called histogram implementation by

the authors you can very easily improve your optimization techniques. In our case, we

select multical model having mostly default parameters where the number of leaves was

31, the optimization metric was multi_logloss, boosting was GBDT (Gradient Boosting

Decision Tree) with a 0.1 learning rate and 100 iterations.

4.3 Temporal Convolutional Neural Network (TempCNN)

Artificial Neural networks (ANN) lies under the umbrella of machine learning. ANN

contain node layers, having input layer, one or more hidden layer and an output layer

where each node has a connection with other nodes and has weights and thresholds.

There are different types of neural networks like RNN, ANN, etc. but CNN is widely

used in image classification and computer vision-based tasks. Before CNN, traditional

feature extraction methods were used which were very time-consuming. CNN is like a

multi-layer perceptron having hidden layers called convolutional layers. Convolutional

layers get the input, detect edges and transform that input after that it outputs the

transformed input to the next layer. Convolutional layers detect patterns for example

shapes, circles, etc. and we specify the number of filters for a specific layer. If a filter

detects a pattern of edges, then this filter is called an edge detector. Some filters may

detect corners some filters may detect circles or shaps. The deeper the network builds,

the more sophisticated these filters become so in later layers. For example in later stages,

our filter may be able to detect specific objects, and even deeper layers the filters can

detect even more sophisticated objects.

In our dataset, we have a high spatial and temporal resolution of the images. Single

samples have images at 15 different time-stamps from sowing to harvesting and are

recognized as temporal resolution. We use that temporal resolution for building temp

CNN which applies filters on temporal pixels to detect the change over time. Overall

three Conv layers were used each having kernel size of 5, filters parameter to 15 along

with relu activation function and 0.5 dropouts. As the dense layers have relu activation

functions and the last layer had softmax activation. The adam optimizer was used, we

passed the data in batches instead of all of the training data at once having 32 batch

size and trainined in 50 epochs.
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4.4 Long Short-Term Memory (LSTM)

Conventional RNN face the difficulty to learn and preserve information over many time

steps especially when working on larger datasets thus causing a higher risk of vanishing

gradient issue. While training the stacked neural network certain activation functions

(e.g.: gradient or derivatives) are added to neural network, the gradient decreases sig-

nificantly, causing the network hard to train and is referred to as vanishing gradient

problem. The problem is, in few cases, the gradients become smaller and smaller, func-

tionally stopping the gradient to change its value. In the worst case/ it may completely

cause the network from stop learning and no real learning is done. The vanishing gra-

dient problem is a common issue in deep neural networking, so to overcome this issue

long short-term memory is used.

The magnitude of gradients are effected by two things, the weights and the derivatives

through which the gradients passes, while LSTMs help to solve this issue by storing the

processed information of longer dataset.
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Experiments and Results

5.1 Light GBM

LightGBM was trained on both datasets where it gives 83.98 accuracies on dataset 1.

The F1 score, recall, and precision for the no-data class were higher than other classes

for the dataset. The F1 score, Recall, and precision for no-data class in D1 were 87.76,

86, and 89.58 respectively, on the other hand, cotton had 82.81 F1 Score, 84.13 recall,

81.57 precision, and Wheat had 82.35 F1 scores, 82.35 recall, and 82.35 precision. When

we look at the confusion matrix, false-negative values are 12 for the wheat class where

9 of them were misclassified as cotton, and 3 were wrongly predicted as no-data. The

cotton class was second in terms of false-negative with 10 containing 8 misclassified as

Wheat and 2 misclassified as no-data. The no-data class had comparatively lower false-

negative cases where 3 of no-data samples were predicted as cotton and 4 of them were

wrongly predicted as Wheat.

LightGBM had lower accuracy when comparing the result to D1 where it had 83.98

percent accuracy. To further drill down the performance, F1 score, recall and precision

were calculated which gives better results on corn where we had a higher number of

test sets. The F1, recall, and precision for corn was 82.05, 76.8, and 88.07 respectively.

For the remaining dataset, the potato had 74.29 F1, 78 recall which is more than corn,

70.91 precision, rice had lowes F1 score of 38.71, lowest recall 66.67, and lowest precision

27.27, and at the last no-data class had 73.17 F1, 75 recall, and 71.43 precision. The

confusion matrix showed that corn had a higher number of misclassified samples which

are 29 having 14 misclassified to potato, 10 to rice, and 5 samples were wrongly assigned
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Figure 5.1: D1 - Confusion matrix

Figure 5.2: Performance of Models on D1

to the no-data class. The corn class had a comparatively high number of test samples

which is the main reason. Potato class had 11 misclassification where 7 of them belongs

to potato, 3 to rice, and 1 to no-data class. The rice class had lowes test samples due

to which it had the lowest misclassification which is 3 and all belong to the corn class

and show a bit resemblance to the corn class. The last no-data class had a total of

5 false-negative samples, 3 were predicted to cron and 2 of them were misclassified to

potato class. The overall performance of LightGBM on dataset 2 was not good enough

and the results are comparatively low when compare to the performance of same model

on dataset 1. The main reason behind this is the lower number of training samples

for these classes which were not enough to accutate optimize the model and converge.

Increasing number of samples might help to improve the performance of the same model.
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5.2 TempCNN

The tempCNN was used to train both dataset 1 (D1) and dataset 2 (D2) for cop type

classification which gives overall better performance than LightGBM. The first data

had 2 crops and 1 no-data class which were trained by the tempCNN model. The

mode provided overall 87.29 percent accuracy which is higher than both of LightGBM

models. In further performance analysis, the model showed 86.36 F1 scores, 90.48 recall,

and 82.61 precision for the cotton class. The F1 score, Recall, and precision were 84.88,

85.29, 90.63 respectively for the Wheat class. The no-data class had an 87.76 F1 score,

86 recall, and 89.58 precision. The confusion matrix of the actual and predicted results

shows that the wheat class had a higher number of false-positive values that is 10 where

7 belongs to cotton and 3 to no-data class. Cotton had the lowest 6 misclassifications

where 4 were classified to Wheat and 2 categorized to no-data class. The final no-data

class had 7 misclassifications out of them 5 were cotton and 2 belong to the Wheat class.

The results showed that cotton and wheat had a slightly higher correlation compare to

no-data.

Figure 5.3: D2 - Confusion matrix

Temp CNN was also trained on dataset 2 (D2) where it showed 80.88 percent accuracy

which is lower than tempCNN’s accuracy on D1 however it is higher than the Light-

GBM’s performance on the same dataset. The confusion matrix shows corn had the

highest number of misclassification due to the higher number of test samples where 10
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Figure 5.4: Performance of Models on D2

were misclassified to potato, 4 to rice, and 9 to no-data class. The potato class had

11 false-negative values, out of them, 8 were misclassified to corn, 2 to rice and one

samples point was wrongly predicted to no-data class. 3 of the rice class test records

were false-negative out of them, 1 was predicted as corn, and 2 to potato class as the

rice class had a total of 9 test records. Last but not least no-data class seems to fit

comparatively better as we had only 2 misclassifications one for corn and the other one

predicted as rice. The performance of the model was also analyzed by F1, recall, and

precision values where corn had 86.08, 81.6, 91.07 scores respectively. Potato class had

77.23 F1 scores, 78 recall, 76.47 precision, rice had 54.55 F1, 66.67 recall, 46.15 preci-

sion, and the no-data class had 75 F1 scores, 90 recall, and 64.29 precision. The overall

performance was lower than TempCNN’s performance on the D1 dataset.

Conclusion to the results is that TempCNN can provide more promising results on a

bigger dataset where we could be able to train the model for a long run as the D1 had a

higher number of training samples which ultimately provided better accuracy and other

performance indicators. The higher variation in the test samples for dataset 2 provides

a higher variation in the F1 score, recall, and precision.

5.3 LSTM

A time-series model LSTM was trained on dataset 3 where we have converted spatial and

temporal pixels of the samples in a series and 3x3 grid was converted to 9 samples points

that increased the training and test set which was helpful especially for those classes

where we were facing low samples set issue i.e. rice class. The other major reason was to

build a dataset having sequential data in order to train the models. LSTM outperformed
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all of the previously trained models having an accuracy of 94.08 percent that is pretty

good for deployment in real-time.

Figure 5.5: D3 - LSTM Confusion matrix

There were 8856 time-series-based training samples for LSTM and the model was tested

on 2169 test samples. The Cotton, Wheat, corn, potato, rice, and no-data class had

96.34, 96.86, 93.51, 87.57, 73.68, 94.33 F1 score respectively. The recall for cotton was

95.06, Wheat had 95.75, 94.61 for potato, 77.78 for rice, and 94.22 for no-data class.

The Precision was 97.64, 97.99, 92.43, 84.09, 70, 94.43 for Cotton, Wheat, Corn, Potato,

Rice, and no-data class. When we look at the confusion matrix for the model, cotton

had 539 true-positive, 13 false-positive, 28 false-negative, Wheat had 586 true-positive,

12 false-positive, 26 false-negatives, Corn had 281 true-positive, 23 false-positive, 16

false-negatives, the potato had 148 true positives, 28 false-positive, 14 false-negative,

rice had 63 true positives, 27 false-positive, 18 false-negative, and no-data class had 424
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Figure 5.6: LSTM Performance on D3

true positives, 25 false-positive, 26 false-negative. F1, recall, and precision was above 90

for almost all of the classes except rice where we had significantly lower training samples

but overall results were pretty good.
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Conclusion

In this research, we gathered data from agricultural sites of Pakistan and designed

mainly three models for the data. The original data was divided into three datasets,

Dataset 1 had samples of only two crops that had a higher number of samples and the

remaining crops were placed in dataset 2. Another dataset for no-class was collected

and placed in both datasets where the purpose was to classify those samples which do

not belong to any of the crops.

The collected data did not have an equal number of samples instead there was a very high

variance between the number of samples of each class which could lead to overfitting

of models on a certain class. Originally two models were developed LightGBM and

TempCNN for the classification task and we provide both datasets to the aforementioned

models. TempCNN gives better performance compared to LightGBM on both datasets,

however, the accuracy on dataset 2 was reasonably low because of low training samples.

To analyze the performance of models, accuracy was not the only measure, F1 score,

recall, and precision was also included. Then we build a slightly different dataset in

order to increase the performance for which dataset 3 was developed where we bring

time-series data in real terms. The dataset was developed to train a model which could

perform better on the sequential dataset. A variant of RNN named LSTM was used for

this purpose. After some feature engineering steps, the overall training samples were

increased on which LSTM was trained. The final model LSTM outperformed LightGBM

and TempCNN. LSTM performed comparatively better even on those datasets where

we had fewer number of training samples. The overall accuracy for the LSTM was

94.08% and other performance indicators also provide promising results. This research
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provides a comparison of models along with the comparison of results for different types

of datasets. The key to improving the performance of a model is not only model design

but the dataset’s transformation and feature engineering play a significant role.

6.1 Future Work

The research we carried out had a broader future requirement and opens to multiple

branches of research. Taking the example of the dataset, we had few crops where the

number of training samples was fewer compared to others and the results also show that

the increased number of training samples can lead to mode effective training of existing

models. Apart from that, data can also capture from more diverse agricultural sites.

A higher number of samples from different areas can have more prominent features for

training and classification. The number of cop types can also increase by gathering data

of targeted crops. When it comes to modeling on existing captured datasets, we do have

a wider room for research as we can try different modeling techniques. The temporal

data can be used to train other variants of RNN and compare results to the existing

ones. There are other features that can be used for modeling i.e. plasma content, soil

moisturizer by extracting data a few days prior to sowing or in early days of sowing,

greens effect and other vegetation-related feature along with these existing attributes

can help to optimize the modeling strategy.

Apart from that, this research can help to extract estimated land cover by particular

crop in the given country where the planning of planation can help to increase the

production of more value and required crops. There is room for yield prediction along

with this study which ultimately gives us an idea of possible yield estimation of a crop

in a given time. This technique can also help us to identify areas with high yield and

low yield. The practices from high yield areas can be communicated to low yield sites

in order to increase the overall outcomes. Areas with comparatively better outcomes

on certain crops can be identified that can help to grow the right crop on the right

agricultural site.
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