
An HLA Based Framework for
Simulation of Geographically

Distributed Data Centers

By
Bukhtawar Elahi

2016-NUST-MS-IT-00000170964

Supervisor
Dr. Muazzam Ali Khan Khattak

Department of Computing

A thesis submitted in partial fulfillment of the requirements for the degree
of Masters of Science in Information Technology (MS IT)

In
School of Electrical Engineering and Computer Science

(SEECS),
National University of Sciences and Technology (NUST),

Islamabad, Pakistan.

(May 2019)

Thesis Acceptance Certificate

It is certified that final copy of MS/MPhil thesis written by Ms. Bukhtawar
Elahi, (Registration No. 00000170964), of School of Electrical Engineer-
ing and Computer Science (SEECS) has been vetted by undersigned, found
complete in all respects as per NUST Statutes/Regulations, is free of pla-
giarism, errors and mistakes and is accepted as partial fulfillment for award
of MS/M Phil degree. It is further certified that necessary amendments as
pointed out by GEC members of the scholar have also been incorporated in
the said thesis.

Advisor: Dr. Muazzam Ali Khan Khattak

Signature:
Date:

Signature (HOD):
Date:

Signature (Dean/Principal):
Date:

i

Approval

It is certified that the contents and form of the thesis entitled “An HLA
Based Framework for Simulation of Geographically Distributed
Data Centers” submitted by Bukhtawar Elahi have been found satis-
factory for the requirement of the degree.

Advisor: Dr. Muazzam Ali Khan Khattak

Signature:

Date:

Committee Member 1: Dr. Asad Waqar Malik

Signature:
Date:

Committee Member 2: Dr. Muhammad Shahzad

Signature:
Date:

Committee Member 3: Dr. Safdar Abbas Khan

Signature:
Date:

ii

Abstract

Usually, the existing simulators provide limited scalability. Therefore, re-

searchers can simulate their protocols and algorithms to a certain extent.

In cloud simulators such as CloudNetSim++ and CloudSim are two most

commonly used simulators are designed for geographically distributed data

centers; however, the simulators cannot support execution on distributed

systems. Thus, scalability is also an issue for such simulators which are de-

signed on distributed scalability model. In this thesis, we have proposed a

distributed simulation framework that allows simulator instances to execute

on a different system. Thus, the framework provides the scalability across

simulators. The proposed framework is based on High-Level Architecture,

thus, provide interoperability across simulators, tool, and technologies.

iii

Dedicated to my beloved parents and adored siblings, Their
tremendous support and cooperation led me to this wonderful

accomplishment.

iv

Certificate of Originality

I hereby declare that this submission is my own work and to the best of my
knowledge it contains no materials previously published or written by another
person, nor material which to a substantial extent has been accepted for the
award of any degree or diploma at NUST SEECS or at any other educational
institute, except where due acknowledgement has been made in the thesis.
Any contribution made to the research by others, with whom I have worked
at NUST SEECS or elsewhere, is explicitly acknowledged in the thesis.

I also declare that the intellectual content of this thesis is the product
of my own work, except for the assistance from others in the project’s de-
sign and conception or in style, presentation and linguistics which has been
acknowledged.

Author Name: Bukhtawar Elahi

Signature:

v

Acknowledgment

All Praises to Almighty ALLAH, Who is the source of all knowledge. Who

guides us from darkness to the light and helps us in difficulties. Who enabled

me to complete this work and bestowed the wisdom and strength to make

material contribution to already existing ocean of knowledge.

I would like to express my heartfelt gratitude to Dr. Asad Waqar Malik for

his encouragement, guidance, and confidence on my capability to accomplish

this research voyage under his profoundly professional assistance.

I am greatly obliged to my family, for their unconditional love, endless

support, encouragement and prayers in all my endeavours.

I would also like to pay special thanks to my committee members for their

support and cooperation. Finally, I would like to express my gratitude to all

the individuals who have rendered valuable assistance to my study.

vi

Table of Contents

List of Tables ix

List of Figures x

List of Abbreviations xi

List of Symbols xii

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Definition . 2
1.3 Objectives and Research Goals 2
1.4 Thesis Organization . 3

2 Background Information 5
2.1 Cloud Computing . 5
2.2 CloudSim . 6
2.3 High-level architecture . 7

2.3.1 Run-time Infrastructure 9

3 Literature Review 11
3.1 Cloud Simulation Frameworks 11
3.2 Distributed Simulation Frameworks Based on HLA 17

4 Methodology 19
4.1 System Model . 19
4.2 Implementation . 20

4.2.1 Publish/Subscribe Design 20
4.2.2 Communication Among Federates 23
4.2.3 Framework Functionality 24
4.2.4 Framework Modules 24

4.2.4.1 Broker . 25

vii

TABLE OF CONTENTS viii

4.2.4.2 Data center 26
4.2.4.3 Cloud Information Service 27

5 Results 30
5.1 Service Time . 30
5.2 Queuing Delay . 32
5.3 Network Delay . 33
5.4 Resource Usage . 35
5.5 Summary and Discussion . 36

6 Future Work & Conclusion 41
6.1 Future Work . 41
6.2 Conclusion . 41

References 42

List of Tables

3.1 Comparison between existing Cloud Simulators 17

5.1 Simulation parameters and system specification 31

ix

List of Figures

1.1 Thesis Organization . 3

2.1 Layered CloudSim architecture. 7
2.2 HLA-RTI conceptual diagram 9
2.3 Communication between Federate and RTI. 10

4.1 Architecture Diagram . 22
4.2 Publish and Subscribe(P/S) pattern in Framework 23
4.3 Federation simulation flow. 24
4.4 Broker, data center, and CIS interaction through HLA-RTI. . 26

5.1 Average service time of cloudlets 32
5.2 Average queuing delay of cloudlets 33
5.3 Network Delay. 34
5.4 CPU usage at broker federate 35
5.5 CPU usage at data center federate. 36
5.6 CPU usage at CloudSim. 37
5.7 Memory usage at broker federate. 38
5.8 Memory usage at datacenter federate. 39
5.9 Memory usage at CloudSim. 40

x

List of Abbreviations

BIM Broker Interaction Mnager

BW Bandwidth

CIS Cloud Information Service

CRC Central RTI Component

DC Data center

DcIM Data center Interaction Manager

LRC Local RTI Component

RTI Run Time Infrastructure

MI Million Instructions

MIPS Million Instructions Per Second

VM Virtual Machine

xi

List of Symbols

α Task Computation Time

β Network Delay

B Broker

C Cloudlet Set

γ Step Size

φ Data center

ρ Queuing delay

Texec Execution Time

Ttotal Total Time

xii

Chapter 1

Introduction

This chapter of thesis elaborates the overview of basic concepts, significance
and history of research work. This chapter is directed to be the road-map
for our thesis and briefly highlights the further organization and structure
of the thesis. The brief history of cloud simulation frameworks is explained
here. The chapter also explains the main motivation for carrying out the
research work. We have tried to give a compendium idea about the vital
contributions, scope of the work and key objectives. Eventually the chapter
highlights the goals of each following chapter to represent the overall thesis
organization.

1.1 Motivation

Cloud computing has been proved as the best solution for large scale dis-
tributed resource management. Cloud service providers and the academia
are trying their best to yield algorithms, frameworks, and protocols to utilize
the resources in an efficient way [1]. A number of simulation frameworks have
been developed particularly for cloud which includes Amazon AWS1, Google
cloud platform2, Oracle cloud 3, IBM cloud solutions4 and many more [2].

Cloud Computing provides services which are subscription based services,
There are three types of cloud services; Infrastructure as a Service (IaaS),
Platform as a Service (PaaS), Software as a Service (SaaS). With IaaS, users
can rent IT infrastructure servers on a pay-as-you-go basis. IT infrastructure
includes storage, networks ,virtual machines (VMs). Clouds can be classified

1https://aws.amazon.com/
2https://cloud.google.com/
3https://cloud.oracle.com
4https://www.ibm.com/cloud/

1

2

as Public, Community, Private, and Hybrid.
In the most recent years diverse ventures supported by the administration

offices addresses the issue of demonstrating and reenactment of complex basic
frameworks.Complex basic frameworks can not be considered as independent
frameworks, but rather, because of the framework inter dependencies, must
be considered as a huge complex framework made out of other connected
and dependent frameworks. One of the principle approaches used to mimic
complex basic frameworks is to create federation of already present frame-
works [3] [4]. So the main thing in the creation of simulated federations is to
create a network simulation that is High Level Architecture (HLA) compli-
ant.

HLA is a generalize architecture that aims at providing ease for the de-
velopment and execution of large scale simulation applications and provides
a design through which these simulators can interconnect and intercommu-
nicate with each other thus provides re-usability and interoperability [5].

1.2 Problem Definition

Simulators for geographically distributed data centers do not support execu-
tion on distributed systems; scalability is also an issue for such simulators
which are designed on distributed scalability model. Simulating a large scale
simulation on a single system is difficult and is a limitation. Existing sim-
ulators run on a single system and do not provide support connectivity to
other simulators.

1.3 Objectives and Research Goals

The goal of this research work is to provide and implement a scalable and
interoperable simulation framework. In cloudSim the simulation is run on a
single system but in our framework datacenters and broker can run on differ-
ent machines. Our proposed framework provides extensive environment to
simulate cloud applications. This framework allows users to perform simu-
lations on different machines. Thus proposed framework provides scalability
and interoperability across simulators. This framework is built on top of
CloudSim and HLA has been used for communication among the broker and
data center. HLA std 1516 has been used for providing simulation scalability
and interoperability. HLA has been used for communicating among these dis-
tributed simulator instances. We have also designed a communication layer
that receives and sends the HLA run-time infrastructure messages from and

3

to HLA and translates it into respective request for broker and data center.
At the end a simulator is presented/designed that provides scalability across
the systems and provides interoperability across different simulators.

Thesis Roadmap

Introduction and Literature Research Contribution

Chapter 1 Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6

Figure 1.1: Thesis Organization

1.4 Thesis Organization

The presented thesis has been organized into different chapters in which each
chapter gives certain aspects of our research, depicted in figure . Following
is the brief description of all the chapters that are included in the thesis.
Chapter 1 - Introduction elaborates the main motivation be- hind the
presented thesis. Furthermore, the chapter gives details about aims, scope
and major contributions of the thesis.

Chapter 2 - Background Information covers the covers the detailed
background information about the CloudSim and High-level architecture
(HLA).

Chapter 3- Literature Review gives details of literature survey which
has been conducted throughout the research phase.

Chapter 4 - Methodology explains the research approach and method-
ology followed for the implementation of architecture proposed in this thesis.

Chapter 5 - Results Discussion explains the details of experimental
setup, and discussion about the results obtained.

4

Chapter 6 - Future Work & Conclusion concludes the thesis and
highlights the potential future prospects of our research work..

Chapter 2

Background Information

This chapter covers a brief overview of the background knowledge related
to this research work. Almost all related theoretical and conceptual points
have been covered. First of all, cloud computing has been briefly explained in
section 2.1. Which is followed by a brief overview of of CloudSim architecture
in section 2.2. And lastly the underneath High-level architecture has been
briefly explained in section 2.3.

2.1 Cloud Computing

Cloud computing is a sort of information processing that depends on shared
processing resources instead of having localized server machines or individual
gadgets to deal with applications. So in cloud computing instead of storing,
processing and accessing data on computer’s hard drive its over the internet.

Cloud computing is one of the major approach for delivering of delivering
reliable, secure, risk-tolerant and scalable computational services. Subse-
quently convenient, repeatable, and controllable techniques for performance
measurement of new cloud applications and strategies are required before
their before actual deployment is done. Cloud computing provides many
advantages to researchers. Instead of using real test-beds organizations can
simulate their large scale applications before the actual deployment, they can
also simulate different types of models/devices. Cloud computing has been
proved as the best solution for large scale distributed resource management.

There are some constituent elements that are required for cloud comput-
ing and are referred to as cloud computing architecture components.These
components are basically front-end client, back-end and servers/storage plat-
forms, a cloud based transportation and a network.Cloud Computing pro-
vides services to the clients as subscription based that includes infrastructure-

5

6

as-a Service (IaaS), platform-as-a service (PaaS), software-as-a-service (SaaS).

2.2 CloudSim

Buyya et al. Proposed CloudSim which is a generalized framework and can
beeasily extended. The framework allows modelling and simulation of var-
ious application services and cloud computing infrastructures [6]. This was
the project of CLOUDS (a cloud computing and simulation lab) at UOM
(University of melbourne, Australia). Current release of CloudSim Toolkit
3.0 was released on Jan 13, 2012.

CloudSim is extremely generalized framework that supports several func-
tionalities of cloud computing infrastructures. CloudSim has support for
core functionalities as creation of CloudSim entities (Broker, Datacenter, CIS
etc), processing and queuing of events in datacenters, correspondence among
those entities and the administration and handling of the clock in simulation.
CloudSim incorporate essential classes for determining data-cenetrs, hosts,
virtual machines, applications, clients, computational assets, and policies
and approaches for scheduling and provisioning of these resources. Figure
2.1 shows the layered architecture diagram of CloudSim.

• CloudSim supports modeling and simulation of broker, data centers
and multiple virtualized hosts.

• The provisioning policies in CloudSim are generally implemented and
can be easily extend as needed by the user and new algorithms can also
be implemented and tested easily.

• Provisioning polocy for allocating host resources to VMs can be cus-
tomized easily.

• Entities can be added dynamically in CloudSim.

• Users can also implement their own host to VM allocation policies for
allocation host resources to VM.

• Different data center network topologies can also be implemented in
the CloudSim.

CloudSim does not allow dynamic creation of Cloudlets at runtime; Once
the simulation is start it does not allow creating new cloudlets and submit
it to the broker without requiring creation of Datacenter Brokers at run-
time, also it does not allow dynamic creation of virtual machines (creation
of VM’s) on-demand according to the arrived cloudlets. CloudSim also has
no Graphical User Interface (GUI).

7

Figure 2.1: Layered CloudSim architecture.

2.3 High-level architecture

High level architecture is a generalize architecture that aims at providing
ease for the development and execution of large scale distributed simulation
applications and provides a design through which these distributed simu-
lation applications can interconnect and intercommunicate with each other
thus provides re-usability and interoperability. HLA 1516 standard - known
as HLA Evolved (IEEE 1516-2010) has been used to provide interoperability
across simulators.

In simulation, run-time infrastructure (RTI) is a middleware that is
fundamental component of HLA. Its a software layer provides services to the
federates to coordinate and interact with other federates. A Federate is a
process identified by the single interface that is capable of participating in a

8

simulation through the runtime infrastructure (RTI). This process can be a
library, or an entire simulator. It’s identified by the single interface [7] [8] [9].
Multiple federates that are communicating with each other through the RTI
comprise the federation.

HLA standard defines federation rules, HLA interface specification (IS),
object model template [10]. Federation rules must be followed by simulation
federates during federation execution in order to achieve proper functioning
and interaction among federates [11]. Object Model Template presents the
conventional method for specifying HLA data model information. All the
communication among HLA federates and the information that will be re-
ceived and produced by the federates participating in federation execution
will be according to OMT. [11].

OMT consists of federation object model (FOM) and simulation object
model documents. FOM outlines all shared data (objects and their attributes
and interactions among them) for the whole federation. FOM is one per
federation. SOM describes the salient characteristics of federate, presents
shared object, attributes and interactions which can be used externally. SOM
is used for a single federate (One per federate) and focuses on the federate’s
internal operation.

How HLA based federates interact with the RTI is defined by Interface
Specification. There are six different level service groups in which inter-
face specification is divided. These service groups are : Federation manage-
ment, Declaration management, Object management, Ownership manage-
ment, Time management, Data Distribution management, Support services.

Core functionalities such as creation and execution of a federation and its
destruction are handled by federation management. It also provides services
to federates to to join a specific federation, achieve synchronization among
federates and save their states during federation execution and also resign
from it. Services for publishing and subscription of object classes, interaction
classes and control updates are provided by Declaration management. Own-
ership management provides services related to transferring object attribute
ownership. Time management provides services to federates related to time
handling during federation execution. To efficiently distribute data and to
route data among federates during federation execution is responsibility of
Data distribution management. Support Services is responsible for providing
services related to RTI start up and shutdown, setting advisory switches,
manipulating regions. It also provides services related to name-to-handle
change and handle-to-name change.

9

HLA RTI

Federation
Management

Object Management

Ownership
Management

Data Distribution
ManagementObject Management

Time Management

Declaration
Management

HLA Interface

Federate A Federate B

HLA Interface

Figure 2.2: HLA-RTI conceptual diagram

2.3.1 Run-time Infrastructure

Run-time Infrastructure (RTI) act as a middle ware between broker, data
center and CIS federate. Provides services to the federates for communi-
cating with other federates through the RTI. In our framework broker, data
center and CIS federates can not communicate directly. These federates
communicate with each other thorough RTI. RTI has two components cen-
tral RTI (CRC) and local RTI component (LRC). Each CRC and LRC can
reside on a same machine and can communicate directly with each other but
federates cannot communicate directly with CRC instead the communication
is done through the LRC. LRC provides an interface RTI Ambassador to the
federate. Similarly, CRC also cannot communicate directly to the federates,
communication is done through LRC only. LRC has Federate Ambassador
and RTI Ambassador for sending and receiving of interactions and objects to
other federates. So, federates communicate with the CRC through the RTI
Ambassador interface provided by the LRC and the communication from
CRC to federate is handled by LRC and is translated by Federate Ambas-
sador interface on the federate. Figure 2.3 shows the communication between
Federate and HLA RTI.

In order to make our Simulation HLA compliant and to make commu-
nication messages to pass through RTI we have to implement LRC so that
calls from CRC to LRC can be translated and respected action can be per-
formed. Federates send messages through the RTI Ambassador and the calls
or messages response that are received from RTI are handled by the federate

10

Figure 2.3: Communication between Federate and RTI.

ambassador interface.

Chapter 3

Literature Review

Cloud computing simulation tools provides many advantages to researchers.
Researchers can simulate different complex algorithms and procedures be-
fore the actual deployment, they can also simulate different types of mod-
els/devices. By testing the algorithms on simulation before actual deploy-
ment lowers chances of failure and reduces cost, simulation models can be
altered and they have a better performance estimation.

This chapter discuss state of art literature review. First of all, current
existing cloud simulation frameworks are discussed in section 3.1. Which is
followed by an overview of existing cloud simulation frameworks based on
HLA in section 3.2.

3.1 Cloud Simulation Frameworks

This section covers an overview of existing cloud simulation frameworks and
then comparison between those existing cloud simulators is shown in tabular
form.

Buyya et al. [12] proposed CloudAnalyst. CloudAnalyst, is a graphical
user interface based simulator extended from CloudSim. CloudAnalyst has
extended some properties and abilities of CloudSim. Motivation behind de-
velopment of CloudAnalyst is to simulate huge scale Cloud applications with
the reason for examining the conduct of such applications under different
distribution arrangements. This simulator underpins the analysis of infor-
mal organization devices in line by the topographical dispersion of clients
and server farms. It tends to be connected to decide the conduct of substan-
tial scale Internet applications in the cloud, and furthermore empowers a
modeler for circling simulations and to perform a sequence of mockups with
minimal varieties in parameters. For the deployment of real-time datacenetrs

11

12

CloudAnalyst is viewed as an incredible simulation framework for checking
load adjusting, the sending continuous server farms and, cloud group ob-
serving and server farm information stream progressively. In CloudAnalyst
simulation configuration can be saved as EXtensible Markup Language files
and live data results can also be exported in PDF format. It has exception-
ally appealing GUI and gigantic adaptability to arrange any land disperse
framework, for example, setting equipment parameters (stockpiling, primary
memory, transfer speed limit, organize delays and so on.) of a virtual ma-
chine or server farm. New broker policy approach can be included effortlessly
that manage the clients of any geographical area dependent on tasks accom-
plished by which Data Center at a specific time. Simulation examination
should be possible over and again and the user and system statistics that
are generated during the simulation time can be summarizes in tabular and
chart form. CloudAnalyst main features are

• Easy-to-use Graphical user interface for setting and reviewing outcomes
of a wide range of distributed computing tests.

• CloudAnalyst have modelers that have a high level of command over
the analysis by demonstrating elements, for example virtual machines,
data-centers, memory, storage capacity and data transfer capacity.

• Simulation scenarios can be saved in the CloudAnalyst and their out-
come can be saved as XML documents and even as PDF files.

• Results of simulation can be provided in geographical form as as tables
and diagrams, aside from a lot of factual information.

GreenCloud simulator was created by Dzmitry Kliazovich [13]. This test
system is utilized to create novel arrangements in observing, , resource alloca-
tion, work planning also as communication protocols, improvement and net-
work infrastructure.Energy consumed by the equipment’s(processing servers,
switches) of data-centers can be finely modeled by the GreenCloud. Green-
Cloud is a packet-level simulator that has been created by extending NS-2.
This simulator distinguishes and recognizes different energy resource utiliza-
tion components. Simulator is structured with the goal that it can ascertain
energy utilization at a specific data-center segment, for example, connect,
switch, portal and so on and also correspondence between the packet lev-
els. Further, it offers to know the remaining task at hand circulation in the
framework. GreenCloud test system is produced as an augmentation of the
Ns2. The outcome of object interaction captured in GreenCloud considerably
reduces the simulation time thus improves scalability.

The most recent variant of GreenCloud is 2.1.2. Its main features are as:

13

• mainly focus on the communication and transmission within a cloud

• It is a packet level simulator

• Main focus of this system is to be monitor the energy consumption in
cloud computing networks

• Packet level communication between energy aware cloud data-centers
can be computed by GreenCloud

• Simulation of system and network resources within data-centers is sup-
ported by the GreenCloud

• Has an easy to understand GUI and is open source

To reduce the resources usage during job selection by considering the task
load and correspondence capacity of data-centers [14] [15] scheduler is uti-
lized . One of the disadvantages of this simulator is that it requires a large
amount of time for simulation of a model and also consumes huge amount
of energy [16]. Because of the large amount of time taken for simulation by
this framework it has limited scalability and its adaptability is just limited
to small data-centers. This test system is valuable with just the business
related to computing energy calculation in the cloud.

Buyya et al. [17] proposed NetworkCloudSim by extending CloudSim.
CloudSim and GreenCloud are essentially worked for single server design and
wind up deficient for genuine cloud models. In MDCsim no one but applica-
tions can impart among one another [16]. To defeat above downside Network-
CloudSim provides correspondence between the application component and
different system components. Scheduling is done at two levels in Network-
CloudSim, at Host level and at VM level. Along these lines, VM scheduler
is accounts correspondence and computational phases of every application
stages. NetworkCloudSim has support for genuine cloud application, for ex-
ample, web based business, HPC and genuine work process. For simulation of
any network protocol withing the cloud architecture NetworkCloudSim can
be used. Underlying platform for NetworkCloudSim is CloudSim. Its a open
source and implemented in java.It has cost modeling module and support for
energy modeling. NetworkCloudSim supports modelling of different network
topologies and wide variety application models.

Kimet al. [18] proposed MR-CloudSim an extension of CloudSim that
supports processing of work that contain large amount of data that uses
MapReduce protocols. Cloud Simulators that are discussed above does not
provide support for big data processing techniques. This simulator is suitable

14

for the processing of the tasks that are related to to big data and use MapRe-
duce Protocol. MR-CloudSim eases the ways to test MapReduce model in a
data-centre. MR-CloudSim provides support from energy and cost modeling
in distributed cloud computing data-centers.

Rodrigo et al. [19] proposed EMUSIM, an integrated emulation and sim-
ulation framework. This framework is a combination of two very important
tools CloudSim and Automated Emulation famework (AEF). This was the
project of CLOUDS (a cloud computing and simulation lab) at UOM (Uni-
versity of melbourne, Australia). The framework divides the overall work
into stages. In first stages is extract application behaviour information, and
in second stage it combine the results of first stage to develop a simulation
model. This framework is best solution in case when user and researcher
has no idea that how it will work in different environment e.g. in parallel
and different environments. The deployment cost can be reduced by using
EMUSIM because no need to deploy real equipment’s. Here network scenario
can be simulation and performance can be evaluated prior to equipment de-
ployments. Another main advantage of using this framework is that it is
totally open-sourced with latest release 1.3 in Aug 2010. EMUSIM provides
not only simulation environment but also emulation environment for cloud
computing. The main purpose of EMUSIM framework is to emulate and
simulate SaaS (software as a service) in cloud computing by simulating very
expensive resources. These resource are very extensive in computing sense
and can have very high computing performance. Emulation environment
helps to test the performance in a realistic way instead of simply simulating
the resources. Users can emulate without renting the cloud resources.

Son et al. [20] designed CloudSimSDN which is a CloudSim expansion
for Software Defined Networking (SDN) empowered cloud conditions. This
is a lightweight and adaptable simulation framework environment for the
purpose of evaluation of network allocation policies. Resource management
policies can be evaluated by using CloudSimSDN. It provides support for
simulating cloud computing and network entities for measuring the energy
consumption in software defined networks and ensuring quality of service. It
additionally provides a GUI to to streamlining the simulation configuration.
This simulator provides scalability thus different network allocation policies
can be analyzed.

Higashino et al. [21] developed CEPSim simulator that is build on top
of CloudSim. CEPSim simulator provides support for cloud-based Complex
Event Processing (CEP) and Stream Processing (SP) systems related to big
data. User queries are transformed into directed acyclic graph.It provides
support for modeling of different type of clouds including public, private
and hybrid cloud and multi-cloud environments. It also provides support for

15

simulating client defined queries.
Alves et al. [22] proposed the CMCloudSimulator build on top of CloudSim.

This simulator provides support for simulating applications with different
deployment configurations. It also provides support for cost modeling and
brings about the cost that would be required when it is executed as indi-
cated by the cost model of that service provider. Using extensible Markup
Language (XML) these cost models can be defined in the CMCloudSim.

Sá et al. [23] proposed CloudReports for the simulation of distributed
cloud computing environments. CloudReports is graphical tool and it pro-
vides different aspects for researcher to play role of service providers and
users. CloudReports provides simulation for different broker and virtual ma-
chine provisioning policies and schedulers. It has been designed for energy
aware cloud computing distributed data-centers thus supports power con-
sumption and energy utilization models.

Tian et al. [24] proposed CloudSched emulator. Which is for scheduling
of Cloud resources. It can be used for the performance evaluation purposes
in order to compare different scheduling procedures.CloudSched takes into
consideration different cloud resources such as memory, VM’s and network
bandwidth for scheduling and provisioning algorithms so CloudSched per-
forms better as compare to CloudAnaylst and CloudSim. CloudSched is a
leight weight, high extensible emulator thus provide scalability and its main
focus is on IaaS.

CloudExp is a modeling and simulation environment developed by Jarar-
weh et al. This simulator is designed specifically for the simulation of mobile
cloud computing environments thus provides different mobile devices mo-
bility scenarios.It has an easy to use GUI , by using this clients can build
their own infrastructures. It also provides support for communication cost
modeling between clients and cloud [25].

DCSim is developed by Tighe et al. [26] to simulate a virtual data center
deployed in Iaas model. DCSim is an event driven simulator that provides
support for executing and performing techniques and algorithms related to
data-center management [27]. DCSim supports simulation of multiple hosts
that can intercommunicate with each other .It also provides support for vir-
tual machine migration between hosts and allows sharing of tasks among
VM’s. Each host in DCSim has its own resource provisioning policy and own
CPU scheduler. Drawback of this simulator is that it ignores the network
topology.

iFogSim was proposed by Harshit et al. [28]. It is developed in Java and
is an extension to CloudSim. iFogSim proposed the resource management
techniques’ impact in term of cost, congestion, and latency. There are some
limitations in iFogSim. First limitation is that it is java based and core

16

network characteristics are not supported or ignored.
Ostermann et al. [29] deveoloped GroudSim which is an event-based sim-

ulator developed using Java.It was designed to support cloud and grid com-
puting environment. It only requires one simulation thread.It is an event
base simulator. GroudSim is mostly used for IaaS but can also be extended
for SaaS or PaaS services of cloud.

DynamicCloudSim proposed by Leser et al. [30] is an extension of CloudSim.
Due to cloud computing environment heterogeneity some instabilities arise
DynamicCloudSim was developed to simulate such kind of instabilities. Dy-
namicCloudSim simulaotr supports cost modeling and communication mod-
eling but it doennot provide support for energy modeling. It can be used to
simulate Iaas in cloudComputing.

Nnnez et al. [31] proposed iCanCloud simulation framework that is build
on top of OMNeT++ and is designed for large cloud simulations. It also
compute the cost of using compute resources. icanCloud supports IaaS cloud
service and SaaS(HPC) but it does not support PaaS cloud service, feder-
ation policy. It provides modeling of public cloud provider Amazon EC2.
iCanCloud supports cost modeling (cost of using compute resources) and
communication modeling but it does not provide support for simulating en-
ergy modeling, designed for large cloud simulations. It provides support for
Amazon EC2 and hypervisor that can be used to compare different policies.

Malik et al. [32] developed CloudNetSim++, a packet-level simulator.
This simulator is for distributed data centers. CloudNetSim++ is designed
on the top of OMNeT++ and utilized the features of INET framework. It
provides support for cost and energy consumption modeling but has limited
support for communication modeling. It provides a rich graphic user inter-
face, and communication among different nodes is attained through packets.
This framework allows its users to define their own VM migration policies
and analyze usage cost.

FogNetSim++ is developed by buid on top of omnet++. This simulator
provides a general procedure to perform handover. Users can easily develop
and test their resource provisioning and scheduling algorithms using it. It
supports measuring of network characteristics like delay, packet loss and also
has support for energy modeling [33].

Shiraz et al. [34] developed SmartSim framework used for mobile cloud
computing.This is developed to simulate applications for Mobile Cloud Com-
puting running in Smart Mobile Devices (SMDs) .

Sotiriadis et al. [35] proposed SimIC. SimIC is aiming to accomplishing in-
teroperability, adaptability and transporter flexibility while in the meantime
presenting the idea of heterogeneity of more than one cloud setups.

Rehman et al. [36] developed secCloudSim that on top of iCanCloud

17

simulator. Some of the security features (authentication and authorization)
which are not supported by iCanCloud are provided by SecCloudsim. How-
ever, advanced security features(privacy, integrity and encryption of VMs)
are not supported by this simulator.

Li et al. [37] developed DartCSim+ which is an extension of CloudSim.
The main feature of DartSim++ is that the developers integrated power
and network models in this simulator thus making network and scheduling
algorithms power-aware,mechanism for solving the problem of distortion is
also added in this. It has easy to use GUI for researchers to test their
experiments.

Table 3.1 shows the comparison between existing cloud simulators.

Table 3.1: Comparison between existing Cloud Simulators

Simulation Platform Underlying Platform Development Language Simulator Type Graphic User Interface Cloud Service Support
ClouSim SimJava Java Event Based No IaaS

CloudAnalyst CloudSim Java Event Based Yes Iaas
NetworkCloudSim CloudSim Java Packet Level No Iaas

MR-CloudSim CloudSim Java N/A No N/A
EMUSIM CloudSim, Xen Java Event Based Yes Iaas

CloudSimSDN CloudSim Java Packet Level Yes IaaS
CEPSIM CloudSim Java Event Based Yes IaaS

CMCloudSimulator CloudSim Java N/A No N/A
CloudReports CloudSim Java Event Based Yes IaaS, SaaS
CloudSched - Java Event Based Yes IaaS
CloudExp CloudSim Java Event Based Yes IaaS, SaaS, PaaS

DCSim - Java Event Based No IaaS, PaaS
iFogSim CloudSim Java N/A Yes N/A

DynamicCloudSim CloudSim Java Event Based No IaaS
iCanCloud Inet, Omnet++ C++ Event Based Yes Iaas ,SaaS(HPC)

CloudNetSim++ Inet, Omnet++ C++ Packet Level Yes IaaS
FogNetSim++ Inet, Omnet++ C++ Packet Level Yes N/A

SmartSim CloudSim Java Event Based No IaaS
SimIC SimJava Java Event Based No No

secCloudSim iCanCloud C++ Event Based Yes IaaS, SaaS(HPC)
DartCSim++ CloudSim Java Packet Level Yes IaaS

3.2 Distributed Simulation Frameworks Based

on HLA

This section covers an overview of distributed simulation frameworks based
on HLA.

Falcone et al. [38] proposed HLA Development kit Framework that helps
in making design and development of HLA federation easier. They proposed a
new layer and functionalities are provided through a set of API’s. The main
benefit of DKF is that it provides portability that allows the researchers
to write program once and run anywhere. It is platform independent. It
also provides usability. The code generated by using this DKF is easier
to main and is more compact. DKF increases the Federate reliability as
the core functionalities are managed by the DKF itself. DKF has some

18

disadvantages.Event Based simulations are not supported by the DKF while
it partially supports Synchronization Point mechanism. It also does not
provide support to Data Distribution Management (DDM).

Sung et al. [39] proposed a framework for simulation of hybrid systems.
Hybrid system is a blend of continuous systems and discrete events. So inter
operation between existing hybrid systems simulators is achieved by HLA.
They have used adaptor based approach for for inter-operation of frameworks.
Framework adaptor comprises of an HLA interface, algorithms applied for
synchronization of the different simulators and data conversion. The frame-
work was experimented using water level simulation. This framework has
low scalability as it only provides the interoperation for two Models of Com-
putation (MoC) i.e: Discrete Event and Continuous Time and it does not
deals with the possibility of expanding the simulation to other MoC, This
issue is catered by using Ptolemy instead of Matlab [40].

Guan et al. [41] proposed high level architecture based cloud toolkit.
This toolkit enables the modeling and allow simulating the behaviour of
Cloud computing infrastructure in which different resource scheduling poli-
cies can be implemented and evaluated. They proposed HLA based simula-
tion scheduling scheme in order to enhance simulation efficiency by distribut-
ing simulation components. For handling the configuration and maintenance
issues resource management model is also proposed .

Gervais et al. [42] proposed an architecture and developed a flight sim-
ulator. They have used the HLA for developing and interconnecting flight
simulator. This flexible architecture allows to change the version of existing
federate by another.

Malik et al. [43] proposed an high level architecture compliant network en-
abled distributed modeling and simulation infrastructure.Which is designed
for simulating large scale distributed systems which in turn can be used to
to simulate satellite communication and tracking systems. They used this
infrastructure for simulating a radar system consisting of many radars(static
radars) acting as federates.

Galli et al. [44]proposed an HLA compliant network simulator that is
HLA-Omnet++. This simulator can be used to simulate existing omnet++
network simulation model and new network models can also designed and
used.

Lu T et al. [45] proposed the HLA based 3D war-gaming simulation .
To support the distributed multi-server domain they have combined the java
remote method invocation with HLA run-time infrastructure and also provide
multi-player implementation with client-server architecture.

Chapter 4

Methodology

4.1 System Model

The proposed system can support DC federated datacenters, a single feder-
ated broker Br. Each data center has h hosts which in turn manage manage
the several virtual machines (VMs). Allocation of VM to a host is managed
by the VM provisioning controller based on the policy defined by the user.
VM provisioning policy that we have implemented for the allocation of VM
to a host is on First Com First Serve basis (FCFS). Assigning of CPU core
to VM is based on Space-Shared Policy. Policy applied to Cloudlets(tasks)
is also Space shared.

By applying the space shared policy, task computation time α of a cloudlet
c ∈ C submitted to a host H and assigned VM , the service time α for the
cloudlet can be computed as,

α =
sc
cap

(4.1)

where sc is the size of the cloudlet (the instructions) that will be needed by the
cloudlets to run on a processing machine and cap is the computation power
of VM . The network delay βt encountered by the cloudlet from sending end
to receiving end is given as,

βc =
sc
BW

(4.2)

where BW is network bandwidth. The average queuing delay ρ of cloudlets
is computed as,

ρ =
1

|C|

(
α

2
· γ(γ − 1) +

∑
c∈C

βc

)
(4.3)

where |C| is size of cloudlet set C and the γ is the customized parameter
that represents the steps required to compute the batch of cloudlets, γ is

19

20

computed as,

γ =

∑
c∈C sc∑

v∈VMs capv
(4.4)

Further, the broker B, CIS and data center Φ communicate with each
other to perform the desired functionality. First, B sneds an interacts call
to Φ to get the data center features. In response, Φ sends an interaction
call in response containing list of hosts and their respective attribures, that
is Φ = η1 ∪ η2 ∪ · · · ηk where η represents a host. Each host is defined as
ηi = (ω1, ω2, · · · , ωl). Here, ω is the characteristics set of each host.

Completion time of all the cloudlets assigned to a Φi can be calculated by
function TexecEf (Φ). x = |T | represents the total number of cloudlets and r
represents the VMs per host, it can be written as 1 ≤ i ≤ x, 1 ≤ j ≤ k. Now
the objective function mentioned above can be defined as, TexecEf (Φi) =∑

i ωik;Ef (i) = k where Ef is the cloudlet mapping function to Φ such that
TexecEf (i) = j represents that the clouldet i is allocated to a VM r at node
j.

Total time taken while allocating a task to an available and suitable
VM of a host k is represented by Ttotal. Ttotal is computed as, Ttotal =∑

i

∑
k ωik;Ef (i) = k and Ef (j) 6= k Thus, the total completioncost of all

the cloudlets on k hosts located in datacenter Φi is computed as, Tt =
Ttotal + TexecEfΦ

During the cloudlets submission from broker to datacenter the designed
framework introduces a realistic network delay which can produce the more
realistic results.

4.2 Implementation

This framework is build as an extension to the CloudSim. Our proposed solu-
tion aims at integrating homogeneous(CloudSim) simulators connected to the
same local area network through RTI. The existing simulators are not scal-
able and also not able to support interoperability across simulator. Hence,
this is the motivation for designing this framework. Due to flexible designed
architecture, multiple data centers can be executed on different physical sys-
tems. Broker,datacenter and CIS interact with each other through HLA/RTI
as shown in Figure 4.1

4.2.1 Publish/Subscribe Design

In the publish and subscribe pattern sending and receiving federates spec-
ify to the run-time infrastructure the information they need to receive and

21

Algorithm 4.1 Federated broker
Input
LDCF : List of data center federates
LVM : List of virtual machines
QC : Cloudlet queue
Output
Tc: Cloudlet outcome

1: Tc = [] . Output buffer
2: while QC 6= {φ} do
3: c← dequeue(QC) . Get cloudlet from queue
4: ρ ← false
5: for each x in LDCF & !ρ do
6: for each y in LVM & !ρ do
7: if vmxy AVAILABLE then
8: send rti interaction(c, vmxy)
9: T xy

c ← recv rti interaction() . Receive cloudlet outcome
10: ρ ← true
11: end if
12: end for
13: end for
14: end while
15: wait all()

22

Physical Node 1

HLA Wrapper

HLA­RTI (Pitch/Portico/Mak)

LRC

Communication
Module

Broker

VM Management

Task
Distribution

Scheduling
Algorithm

Communication
Management

CloudSim Federate

Physical Node n

HLA Wrapper

LRC

Communication
Module

Broker

VM Management

Task
Distribution

Scheduling
Algorithm

Communication
Management

CloudSim Federate

. . .

Figure 4.1: Architecture Diagram

what information the are providing to other federates in federation execu-
tion. During federation execution process for federates to communicate with
other federates, they must Publish and Subscribe their interests which in
turn forms a communication model used by the federates. Publishing of an
object or interaction implies eagerness to give information that the federate
is able send or update. Subscribing certain objects and interactions means
the federate declare its interest in receiving certain type of information.

RTI routes data dynamically from the publishing federate to the subscrib-
ing federate. At runtime, broker and datacenter federates declare to the RTI
the objects and interactions they can ssend (publish) and a set of interaction
and data they are willing to receive (subscribe), according to the Federation
Execution Details (FED) for HLA 1.3 federations. By following data decla-
ration in FED files, federates can create or register for an object or can send
an interaction, which they published. Afterward, the RTI search for the fed-
erates who subscribed to that particular information (object or interaction)
and then routes the object/interaction to the subscribing federates.

23

res_char_req_
interaction

res_char_
interaction

VM_create_
interaction

cloudlet_submit_
interaction

cloudlet_ret_
interaction

VM_create_res_
interaction

res_char_req_
interaction

res_char_
interaction

VM_create_
interaction

cloudlet_submit_
interaction

cloudlet_ret_
interaction

VM_create_
res_interaction

B
ro
ke
r
Fe
de
ra
te

H
L
A
 R
T
I

D
at
ac
en
te
r
Fe
de
ra
te

Figure 4.2: Publish and Subscribe(P/S) pattern in Framework

4.2.2 Communication Among Federates

Figure 4.3 shows the flow of communication among federated simulation.
At first the broker, data centers and CIS join the federation. After joining
of federation; broker, data centers and CIS federates now can communicate
with one another through the RTI.

Each DC federate after joining the federation send a request through
the RTI to CIS for registering itself to CIS. After registration CIS sends an
acknowledgment to the DC; Now the CIS has the list of available DC.

Broker Federate requests to the CIS Federate for the list of available
DC. The CIS Federate in response sends a RTI message containing a list of
available DC that are registered to the CIS up till now.

Broker sends the request to the DC for its characteristics inquiry. DC
sends a response back through RTI to the broker federate containing its
characteristics. After knowing the characteristics of the datacenter the broker
needs to send the cloudlets (s) to data center by assigning a particular VM
to each cloudlet. Data center after processing the cloudlets sends its results
back to the broker federate.

24

Figure 4.3: Federation simulation flow.

4.2.3 Framework Functionality

Broker, Data center and CIS have a local RTI component associated with
them and they are intercommunicating through the central RTI component.
Messages and data are sent through the RTI and their response is also re-
ceived from the RTI. Every resource which is associated for the purpose of
execution is residing in the data center. Each data center entity that aims
to model a true Data center must encapsulates a list of hosts and a list of
storage devices each with defined hardware specifications. Our framework
supports server virtualization therefore every host can run multiple VMs.
VM allocation policies are defined to assign a VM to a specific host accord-
ing to that policy. More allocation of resources to virtual machines from
host is managed by the policy defined in virtual machine scheduler. The
Cloudlets processing is managed by the virtual machines according to the
cloudlet schedular policy defined for that particular VM. A Cloudlet repre-
sents the task that is submitted by the user to the broker. The Broker act as
a middle layer between the user and the data center. The tasks submitted
to the broker are then sent to the datacenter by the broker through RTI.

4.2.4 Framework Modules

Main modules in our designed simulator are as follows

25

4.2.4.1 Broker

Broker is the core module of our simulator. Broker is responsible for com-
municating with the Cloud Information Service entity. Data center and CIS
establish a connection with broker using HLA/RTI, broker is managing a
table with all active user nodes. User send task to the broker through pub-
lish interaction. Tasks are sent from user to the broker. Broker has broker
interaction manager and broker manager module.

Broker Interaction Manager All the messages/interaction that are
received and sent from the broker are handled by the broker interaction
manager (BIM). Whenever broker needs to send a request or data to data
center or CIS it sends the message containing that data to BIM. BIM in
turn converts that message to a particular interaction and then sends that
interaction to the destination. All the communication of the broker to other
modules that are performed through HLA-RTI are handled by this mod-
ule. The interactions received to the broker are handled by BIM and it
sends the received interaction message to the respective handler/module for
further processing. BIM Communicate with data centers and handles the
interactions published and subscribed by broker manager and VM handler.
BIM registers interactions, publishes the interactions that it wants send and
subscribe for interaction that interested to receive.

VM handler interacts with the datacenter through BIM to create VM
in datacenter. VM handler handles interactions that are related to VM that
is create and destroy VM in datacenter. VM hanler also store with it a list
of available VMs across all available data centers.

Broker Manager (BM) module sends an interaction to the broker inter-
action manager (BIM) and interact with a VM manager module of the data
center to create available VMs for cloudlets distribution. In the framework
data centers are managed by a single broker federate.If needed multiple in-
stances of broker federate can be used. First of all broker manager interacts
with the CIS for data centers information and sends a message to the broker
interaction manager to get list of available data centers from CIS through
resource characteristics request interaction. BIM then sends that interaction
to the CIS. After receiving the response interaction from CIS, BIM sends
that response interaction containing list of available data center federates to
BM. Interaction between different components is shown in Figure 4.4

After that the tasks are submitted to the BM by the task scheduler. Once
the cloudlets are submitted to BM, these cloudlets are allocated a VM from a
list of available VMs by the VM handler and are forwarded to the respective
data center through HLA-RTI by BIM.

26

Data center federateBroker federate

Data center manager

Data center interaction
manager/LRC

VM manager

V
M
_c
re
at
e_
re
s_
in
te
ra
ct
io
n

create VM

Task manager

RAM
provisioner

Storage
provisioner

Storage
provisioner

Bandwidth
provisioner

VM schedular

Task repository Task schedular

VM handler

Virtual machines

V
M
_c
re
at
e_
in
te
ra
ct
io
n

V
M
_d
es
_i
nt
er
ac
tio
n

V
M
_d
es
_a
ck
_i
nt
er
ac
tio
n

R
es
_c
ha
r_
re
s_
in
te
ra
ct
io
n

R
eg
_r
es
_i
nt
er
ac
tio
n

R
es
_c
ha
r_
in
te
ra
ct
io
n

Get characteristics

cloudlet_res_interaction

send interaction
receive interaction

Repository

CIS interaction
manager/LRC

CIS manager

Broker interaction
manager/LRC

Broker manager

R
es
_c
ha
r_
re
q_
in
te
ra
ct
io
n

R
es
_c
ha
r_
re
q_
in
te
ra
ct
io
n

R
es
_c
ha
r_
in
te
ra
ct
io
n

R
es
_c
ha
r_
re
s_
in
te
ra
ct
io
n

Submit task

VM_create_interaction
VM_create_res_interaction

VM create ack

cl
ou
dl
et
_s
ub
m
it/
re
su
lt
in
te
ra
ct
io
n

send interaction
receive interaction

send interaction

receive interaction

Cloud information service federate

H
L
A
 R
T
I

Res_char_req_interaction
Reg_res_interaction

avail_res_interaction

Figure 4.4: Broker, data center, and CIS interaction through HLA-RTI.

4.2.4.2 Data center

Another core module of our simulation framework is data center. Data center
comprises of multiple hosts, VMs are allocated to a particular host by data
center. Our proposed framework is an extension to CloudSim basic modules
and modification have been introduced in them to provide interoperability
and scalability across simulators. So now multiple data center instances
can be initiated at different physical systems connected through local area
network.

Data center interaction Manager All the messages/interaction that
are received and sent from the data center to broker or CIS are handled by
the data center interaction manager (DcIM). Whenever datacenter needs to
send a request/data to broker or CIS it sends the message containing that
data to it. Which is then converted into the respective and that interaction
is send to the destination. All the communication of the datacenter to other
modules is handled by this module. The interactions intended for data center
are handled by DcIM and it sends the received interaction message to the
respective handler/module for further processing. DcIM Communicate with
broker and handles the interactions published and subscribed by data center
manager and VM manager. DcIM also registers interactions, publishes the
interactions that it wants send and subscribe for interaction that interested
to receive.

VM Manager module in datacenter manages the VM related interac-
tions that are to receive create and destroy VM request interaction from data
center interaction manager and then create or destroy VM. VM manager as-

27

sociates a VM to an available host and also handles VMs policy management.
Data center Manager processes the events related to the core datacen-

ter functionalities. It sends the data center characteristics related interaction
to the DCIM so that DC characteristic interaction can be sent to BIM from
DcIM through HLA RTI. DcM also also define the VM allocation policy for
allocating a host a VM.

Task Manager handles the cloudlet related interactions, process the
cloudlets that are submitted to the data center, updates the cloudlets that
are processed and check for the completion of cloudlets and return their
results.

4.2.4.3 Cloud Information Service

Every resource that can be used for the reservation of some particular cloudlet
is to be registered with CIS. CIS entity is mainly accountable for resource
registration, classification and discovery.

CIS interaction Manger is responsible for managing all the interac-
tions that CIS intends to publish or subscribed for which includes resource
registration interaction, request resource interaction and available resources
interaction.

CIS manager handles the interactions received by CIS interaction man-
ager and process them, perform the discover services and stores lists of avail-
able resources.

28

Algorithm 4.2 Federated data center
Input
c: cloudlet
Output
Tc: cloudlet outcome

1: send rti interaction(dc,REG RESOURCE) . Data center registers with
CIS

2: while true do
3: sender ← recv rti interaction()
4: if sender = φ then break
5: end if
6: params ← sender.get params() . Get sender information from

received interaction
7: cls ← sender.get class() . Get interaction class from received

interaction
8: send rti interaction(b, c)
9: if cls IS CHAR REQUEST then

10: char ← itr.get char() . Get data center characteristics
11: send rti interaction(itr, REQ CHAR) . return data center

characteristics
12: else
13: if cls IS VM CREATE then
14: process vm create() . create VM; allocate PE and memory

for new VM on node
15: send rti interaction(VM CREATE)
16: else if cls IS CLOUDLET SUBMIT then
17: process cloudlet()
18: Tc ← send rti interaction(CLOUDLET RET)
19: else if cls IS DESTROY VM then
20: vm destroy() . Process VM destroy request
21: end if
22: end if
23: end while

29

Algorithm 4.3 Federated CIS
Input
Mreq: Request message
Output
LCRF : List of available cloud resources on (data center) federates

1: LCRF ← {φ}
2: Mreq ← {φ}
3: while true do
4: sender ← recv rti interaction(Mreq) . Get sender information from

received interaction
5: if sender = φ then break
6: end if
7: cls ← sender.get class() . Get interaction class from received

interaction
8: if cls IS REG RESOURCE then
9: LCRF .add(sender) . Add resource to list of available cloud

resources
10: else
11: if cls IS REQ RESOURCE LIST then
12: LCRF ← send rti interaction(s,LCRF) . Returns list of

available cloud resources (data centers)
13: end if
14: end if
15: end while

Chapter 5

Results

This chapter present the simulation results of our proposed framework. The
simulation environment consists of a data centre with 1000 hosts. Each host
was exhibited to have a CPU core of 1000 MIPS, 2TB of storage and 1 GB
of RAM memory. Space-shared provisioning strategy was used for VM’s
that allow only one VM to be dynamic in a host at particular time. We
designed the end-client (through the Broker) to ask for creating and instan-
tiating VMs that had the accompanying limitations: 1000 MB of physical
memory, single CPU core. The number of VMs range from 50,100,150 and
200. For our experiment we have taken 1000 to 20,000 task units. Length of
tasks/cloudlets is taken randomly from 400 million instructions(MI) to 1200
MI. The simulation parameters and system specifications are mentioned in
Table 5.1

5.1 Service Time

Service time is computed as the time the datacenter federate takes to receive
the cloudlet and process that cloudlets. After creation of VMs in host by
data center, cloudlets are submitted in form of group. In case when we have
50 VMs available the tasks are submitted initially as a group of 50. The
number of tasks are varied from 1000 to 30,000 and their average service
time is computed. At first, the VMs are kept 50 and then the average service
time is calculated for cloudlets from 1000 to 30000. Space shared scheduling
policy was followed for VM’s so only one VM can run in a host at a given time
instance. The number of available virtual machines are then changed from
50 to 100, 150 and 200 and then the average service time is computed for
tasks/cloudlets (from 1000 to 30000). It can be clearly noted as the number of
available VMs are more the more tasks are executed so average response time

30

31

Table 5.1: Simulation parameters and system specification

32

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

2

4

6

8

10

12

14

16

18

20

22

24

No. of cloudlets(K)

A
v
g.

se
rv

ic
e

ti
m

e
(m

s)
.

50 VMs
100 VMs
150 VMs
200 VMs

Figure 5.1: Average service time of cloudlets

is improved. As there are more number of VMs available so more cloudlets
are executed at once. Figure 5.1 we have calculated the average service time
of cloudlets in datacenter while varying the number of virtual machines.

5.2 Queuing Delay

Figure 5.2 shows the average queuing delay of cloudlets at the broker federate
side. All the received cloudlets from the task scheduler are kept in a queue
by broker. As there are more number of available VMs more tasks/cloudlets
can be served in parallel, so the queuing delay of cloudlets decreases, thus
decreasing average queuing delay as the number of VMs increases. Average
queuing delay is more when we have 50 VMs; the tasks are submitted in a
small group of 50 (in case of 50 VMs), the remaining tasks will wait for time
until the result of any task/cloudlet is returned the next task in the queue
is submitted to the available VM. As we have more VMs the more number
of cloudlets can be executed in at same time, so the average queuing delay

33

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

500

1,000

1,500

2,000

2,500

3,000

No. of cloudlets (K)

A
v
g.

q
u
eu

in
g

d
el

ay
(m

s)

50 VMs
100 VMs
150 VMs
200 VMs

Figure 5.2: Average queuing delay of cloudlets

time decreases as the number of available VMs increases.

5.3 Network Delay

Figure 5.3 shows the average network delay encountered when cloudlets
were sent from broker federate to the datacenter federate. It can be clearly
observed that the network delay increases as the number of cloudlets that are
submitted from broker to datacenter increases. In start when broker have
small number of a cloudlets to send there is a minimal network delay. As
the same network is used by other applications so the increase in network
delay is also observed. Moreover, increasing the batch sizes also incurs an
additional delay due to the increase in packet sizes.

34

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

50

100

150

200

250

300

350

400

450

500

No. of cloudlets (K)

N
et

w
or

k
d
el

ay
(m

s)

Figure 5.3: Network Delay.

35

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

2

4

6

8

10

12

14

16

18

No. of cloudlets (K)

C
P

U
u
sa

ge
(%

)

Figure 5.4: CPU usage at broker federate

5.4 Resource Usage

Due to resource limitations of a system its a challenging task to simulate a
large number nodes of that system. This limitation is tackled by our proposed
framework decoupled design.

Figure 5.4, 5.5, 5.6 shows the percentage of CPU usage at the broker fed-
erate, data center federate and ClouSim respectively. In comparison to the
CPU usage of traditional CloudSim the CPU usage for the broker federate
and data center federate is low. Moreover, the execution of modules on sep-
arate systems can lead to lower resource usage, extending scalability of the
cloud computing framework. A similar trend is observed for memory con-
sumption in broker federate, data center federate and traditional CloudSim
as shown in Figure 5.7, 5.8, 5.9 respectively.

36

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

1

2

3

4

5

6

7

8

9

10

No. of cloudlets (K)

C
P

U
u
sa

ge
(%

)

Figure 5.5: CPU usage at data center federate.

5.5 Summary and Discussion

In our proposed framework multiple data centers can be integrated to a
broker. Thus, making it possible to simulate a large number of nodes. The
service time and queuing delay decreases as increase in number of VMs.
We have also compared the CPU and memory usage of proposed framework
with traditional CloudSim. As CloudSim has tightly coupled environment,
so CPU and memory usage are higher compared to the proposed framework
where data center and broker are executing on different physical systems.
Thus, resources limitation are no longer the rigid constraint in.

37

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

5

10

15

20

25

30

No. of cloudlets (K)

C
P

U
u
sa

ge
(%

)

Figure 5.6: CPU usage at CloudSim.

38

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

50

100

150

200

250

300

350

400

No. of cloudlets (K)

M
em

or
y

(M
B

s)

Figure 5.7: Memory usage at broker federate.

39

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

20

40

60

80

100

120

140

160

180

200

220

240

No. of cloudlets (K)

M
em

or
y

(M
B

s)

Figure 5.8: Memory usage at datacenter federate.

40

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

100

200

300

400

500

600

700

No. of cloudlets (K)

M
em

or
y

(M
B

s)

Figure 5.9: Memory usage at CloudSim.

Chapter 6

Future Work & Conclusion

This chapter concludes the presented research work and highlights potential
future research directions.The first section of the chapter 6.1 presents the
future research work directions, whereas second section section 6.2 gives a
brief conclusion of three major research contributions.

6.1 Future Work

Our thesis work can be extended in different directions where further research
can be carried out. In the future, we are interested in integrating it with
IoT and vehicular network simulators which will open new directions and
challenges for researchers.

6.2 Conclusion

Main focus of existing cloud simulation frameworks are on scheduling algo-
rithms, SDN-based networking, VM migrations and towards energy efficiency.
However, scalability of existing simulators is field less worked on. Most of ex-
isting cloud simulation frameworks supports few thousands of nodes, making
it difficult for researches to simulate realistic data center models. We have
proposed a CloudSim based simulator that allows simulator instances to ex-
ecute on a different system. Thus, the framework provides scalability across
simulators and to make communication possible among individual modules
a separate layer of HLA-RTI is implemented. Furthermore, this framework
allows the integration of various simulators for simulating scenarios based on
more complexity.

41

Bibliography

[1] F. Teng, “Ressource allocation and schelduling models for cloud com-
puting,” Ph.D. dissertation, Ecole Centrale Paris, 2011.

[2] B. Jerry, Discrete event system simulation. Pearson Education India,
2005.

[3] E. Casalicchio and E. Galli, “Metrics for quantifying interdependen-
cies,” in International Conference on Critical Infrastructure Protection.
Springer, 2008, pp. 215–227.

[4] D. D. Dudenhoeffer, M. R. Permann, and M. Manic, “Cims: A frame-
work for infrastructure interdependency modeling and analysis,” in Pro-
ceedings of the 38th conference on Winter simulation. Winter Simula-
tion Conference, 2006, pp. 478–485.

[5] J. S. Dahmann, “The high level architecture and beyond: technology
challenges,” in Proceedings of the thirteenth workshop on Parallel and
distributed simulation. IEEE Computer Society, 1999, pp. 64–70.

[6] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. De Rose, and R. Buyya,
“Cloudsim: a toolkit for modeling and simulation of cloud computing
environments and evaluation of resource provisioning algorithms,” Soft-
ware: Practice and experience, vol. 41, no. 1, pp. 23–50, 2011.

[7] I. S. Association et al., “1516–2010-ieee standard for modeling and sim-
ulation (m&s) high level architecture (hla),” 2010.

[8] “Ieee standard for modeling and simulation (m amp;amp;s) high level
architecture (hla)– object model template (omt) specification - redline,”
IEEE Std 1516.2-2010 (Revision of IEEE Std 1516.2-2000) - Redline,
pp. 1–112, Aug 2010.

[9] S. I. S. Committee et al., “of the ieee computer society. ieee standard
for modeling and simulation (m&s) high level architecture (hla)-ieee std

42

BIBLIOGRAPHY 43

1516-2000, 1516.1-2000, 1516.2-2000. new york: Institute of electrical
and electronics engineers,” Inc., New York, 2000.

[10] H. Wang, G. Tang, and Y. Lei, “The framework of distributed interac-
tive simulation for space projects,” in AIAA Modeling and Simulation
Technologies Conference and Exhibit, 2003, p. 5608.

[11] “Ieee standard for modeling and simulation (m amp;amp;s) high level
architecture (hla)– federate interface specification - redline,” IEEE Std
1516.1-2010 (Revision of IEEE Std 1516.1-2000) - Redline, pp. 1–378,
Aug 2010.

[12] B. Wickremasinghe, R. N. Calheiros, and R. Buyya, “Cloudanalyst: A
cloudsim-based visual modeller for analysing cloud computing environ-
ments and applications,” in Advanced Information Networking and Ap-
plications (AINA), 2010 24th IEEE International Conference on. IEEE,
2010, pp. 446–452.

[13] D. Kliazovich, P. Bouvry, and S. U. Khan, “Greencloud: a packet-level
simulator of energy-aware cloud computing data centers,” The Journal
of Supercomputing, vol. 62, no. 3, pp. 1263–1283, 2012.

[14] ——, “Simulating communication processes in energy-efficient cloud
computing systems,” CLOUDNET, pp. 2015–2017, 2012.

[15] ——, “Dens: data center energy-efficient network-aware scheduling,”
Cluster computing, vol. 16, no. 1, pp. 65–75, 2013.

[16] S.-H. Lim, B. Sharma, G. Nam, E.-K. Kim, and C. R. Das, “Mdcsim:
A multi-tier data center simulation, platform.” in CLUSTER, vol. 31,
2009, pp. 1–9.

[17] S. Garg and R. Buyya, “Networkcloudsim: Modelling parallel applica-
tions in cloud simulations,” 12 2011, pp. 105–113.

[18] J. Jung and H. Kim, “Mr-cloudsim: Designing and implementing mapre-
duce computing model on cloudsim,” in ICT Convergence (ICTC), 2012
International Conference on. IEEE, 2012, pp. 504–509.

[19] R. N. Calheiros, M. A. Netto, C. A. De Rose, and R. Buyya, “Emusim:
an integrated emulation and simulation environment for modeling, eval-
uation, and validation of performance of cloud computing applications,”
Software: Practice and Experience, vol. 43, no. 5, pp. 595–612, 2013.

BIBLIOGRAPHY 44

[20] J. Son, A. V. Dastjerdi, R. N. Calheiros, X. Ji, Y. Yoon, and R. Buyya,
“Cloudsimsdn: Modeling and simulation of software-defined cloud data
centers,” in Cluster, Cloud and Grid Computing (CCGrid), 2015 15th
IEEE/ACM International Symposium on. IEEE, 2015, pp. 475–484.

[21] W. A. Higashino, M. A. Capretz, and L. F. Bittencourt, “Cepsim: Mod-
elling and simulation of complex event processing systems in cloud envi-
ronments,” Future Generation Computer Systems, vol. 65, pp. 122–139,
2016.

[22] D. C. Alves, B. G. Batista, D. M. Leite Filho, M. L. Peixoto, S. Reiff-
Marganiec, and B. T. Kuehne, “Cm cloud simulator: A cost model
simulator module for cloudsim,” in Services (SERVICES), 2016 IEEE
World Congress on. IEEE, 2016, pp. 99–102.

[23] T. T. Sá, R. N. Calheiros, and D. G. Gomes, “Cloudreports: an exten-
sible simulation tool for energy-aware cloud computing environments,”
in cloud computing. Springer, 2014, pp. 127–142.

[24] W. Tian, Y. Zhao, M. Xu, Y. Zhong, and X. Sun, “A toolkit for modeling
and simulation of real-time virtual machine allocation in a cloud data
center,” IEEE Transactions on Automation Science and Engineering,
vol. 12, no. 1, pp. 153–161, 2015.

[25] Y. Jararweh, M. Jarrah, Z. Alshara, M. N. Alsaleh, M. Al-Ayyoub et al.,
“Cloudexp: A comprehensive cloud computing experimental frame-
work,” Simulation Modelling Practice and Theory, vol. 49, pp. 180–192,
2014.

[26] G. Keller, M. Tighe, H. Lutfiyya, and M. Bauer, “An analysis of first fit
heuristics for the virtual machine relocation problem,” in Network and
service management (cnsm), 2012 8th international conference and 2012
workshop on systems virtualiztion management (svm). IEEE, 2012, pp.
406–413.

[27] M. Tighe, G. Keller, M. Bauer, and H. Lutfiyya, “Dcsim: A data cen-
tre simulation tool for evaluating dynamic virtualized resource manage-
ment,” in Network and service management (cnsm), 2012 8th interna-
tional conference and 2012 workshop on systems virtualiztion manage-
ment (svm). IEEE, 2012, pp. 385–392.

[28] H. Gupta, A. Vahid Dastjerdi, S. K. Ghosh, and R. Buyya, “ifogsim:
A toolkit for modeling and simulation of resource management tech-

BIBLIOGRAPHY 45

niques in the internet of things, edge and fog computing environments,”
Software: Practice and Experience, vol. 47, no. 9, pp. 1275–1296, 2017.

[29] S. Ostermann, K. Plankensteiner, R. Prodan, and T. Fahringer,
“Groudsim: an event-based simulation framework for computational
grids and clouds,” in European Conference on Parallel Processing.
Springer, 2010, pp. 305–313.

[30] M. Bux and U. Leser, “Dynamiccloudsim: Simulating heterogeneity in
computational clouds,” Future Generation Computer Systems, vol. 46,
pp. 85–99, 2015.

[31] A. Núñez, J. L. Vázquez-Poletti, A. C. Caminero, G. G. Castañé, J. Car-
retero, and I. M. Llorente, “icancloud: A flexible and scalable cloud in-
frastructure simulator,” Journal of Grid Computing, vol. 10, no. 1, pp.
185–209, 2012.

[32] A. W. Malik, K. Bilal, K. Aziz, D. Kliazovich, N. Ghani, S. U. Khan,
and R. Buyya, “Cloudnetsim++: A toolkit for data center simulations
in omnet++,” in 11th IEEE International Symposium on High Capacity
Optical Networks and Enabling Technologies (HONET), Charlotte, NC,
USA, December 2014., 2014.

[33] T. Qayyum, A. W. Malik, M. A. K. Khattak, O. Khalid, and S. U. Khan,
“Fognetsim++: A toolkit for modeling and simulation of distributed fog
environment,” IEEE Access, vol. 6, pp. 63 570–63 583, 2018.

[34] M. Shiraz, A. Gani, R. H. Khokhar, and E. Ahmed, “An extendable
simulation framework for modeling application processing potentials of
smart mobile devices for mobile cloud computing,” in Frontiers of In-
formation Technology (FIT), 2012 10th International Conference on.
IEEE, 2012, pp. 331–336.

[35] S. Sotiriadis, N. Bessis, N. Antonopoulos, and A. Anjum, “Simic: De-
signing a new inter-cloud simulation platform for integrating large-scale
resource management,” in Advanced Information Networking and Appli-
cations (AINA), 2013 IEEE 27th International Conference on. IEEE,
2013, pp. 90–97.

[36] U. U. Rehman, A. Ali, and Z. Anwar, “seccloudsim: Secure cloud simu-
lator,” in Frontiers of Information Technology (FIT), 2014 12th Inter-
national Conference on. IEEE, 2014, pp. 208–213.

BIBLIOGRAPHY 46

[37] X. Li, X. Jiang, K. Ye, and P. Huang, “Dartcsim+: Enhanced cloudsim
with the power and network models integrated,” in Cloud Computing
(CLOUD), 2013 IEEE Sixth International Conference on. IEEE, 2013,
pp. 644–651.

[38] A. Falcone, A. Garro, S. J. Taylor, A. Anagnostou, N. R. Chaudhry,
and O. Salah, “Experiences in simplifying distributed simulation: The
hla development kit framework,” Journal of Simulation, vol. 11, no. 3,
pp. 208–227, 2017.

[39] C. Sung and T. G. Kim, “Framework for simulation of hybrid sys-
tems: Interoperation of discrete event and continuous simulators using
hla/rti,” in Principles of Advanced and Distributed Simulation (PADS),
2011 IEEE Workshop on. IEEE, 2011, pp. 1–8.

[40] A. V. Brito, L. F. S. Costa, H. Bucher, O. Sander, J. Becker, H. Oliveira,
and E. U. Melcher, “A distributed simulation platform using hla for
complex embedded systems design,” in Proceedings of the 19th Inter-
national Symposium on Distributed Simulation and Real Time Applica-
tions. IEEE Press, 2015, pp. 195–202.

[41] S. Guan, R. E. De Grande, and A. Boukerche, “An hla-based cloud
simulator for mobile cloud environments,” in Distributed Simulation and
Real Time Applications (DS-RT), 2016 IEEE/ACM 20th International
Symposium on. IEEE, 2016, pp. 128–135.

[42] C. Gervais, J.-B. Chaudron, P. Siron, R. Leconte, and D. Saussie, “Real-
time distributed aircraft simulation through hla,” in Proceedings of the
2012 IEEE/ACM 16th International Symposium on Distributed Simu-
lation and Real Time Applications. IEEE Computer Society, 2012, pp.
251–254.

[43] A. W. Malik, A. Basit, and S. A. Khan, “Hla compliant network enabled
distributed modeling and simulation infrastructure design,” in Proceed-
ings of the 4th WSEAS International Conference on Software Engineer-
ing, Parallel & Distributed Systems. World Scientific and Engineering
Academy and Society (WSEAS), 2005, p. 20.

[44] E. Galli, G. Cavarretta, and S. Tucci, “Hla-omnet++: An hla compli-
ant network simulator,” in Proceedings of the 2008 12th IEEE/ACM
International Symposium on Distributed Simulation and Real-Time Ap-
plications. IEEE Computer Society, 2008, pp. 319–321.

BIBLIOGRAPHY 47

[45] T. Lu and G. Wu, “The war-gaming training system based on hla dis-
tributed architecture,” in null. IEEE, 2002, p. 889.

	Abstract
	Acknowledgment
	List of Tables
	List of Figures
	List of Abbreviations
	Abbreviations
	List of Symbols
	Symbols
	Introduction
	Motivation
	Problem Definition
	Objectives and Research Goals
	Thesis Organization

	Background Information
	Cloud Computing
	CloudSim
	High-level architecture
	Run-time Infrastructure

	Literature Review
	Cloud Simulation Frameworks
	Distributed Simulation Frameworks Based on HLA

	Methodology
	System Model
	Implementation
	Publish/Subscribe Design
	Communication Among Federates
	Framework Functionality
	Framework Modules
	Broker
	Data center
	Cloud Information Service

	Results
	Service Time
	Queuing Delay
	Network Delay
	Resource Usage
	Summary and Discussion

	Future Work & Conclusion
	Future Work
	Conclusion

	References

