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Abstract

One of the impressive application of the theory of convex functions is to the study

of classical inequalities. Here, we show that how the theory provides an elementary,

elegant, and unifed treatment of some of the best known inequalities in mathematics.

The goal of this study is to give a short summary of the main results of the Hermite-

Hadamard inequality for AG-convex functions, which are a special type of convex

functions that the author has been studying for the past year. Also we present some

interesting nontrivial examples to support our inequalities. Furthermore, we focus on

exponentially convex functions and establish some important results equipped with

integration, we also present some examples to support our main results.
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Chapter 1

Introduction of Convex Functions

Convex and exponential convex functions are fundamental concepts in the field of pure

mathematics, particularly in the study of optimization and convex analysis. Convex

functions have been extensively studied due to their interesting and useful properties,

such as global optimality and uniqueness of solutions. On the other hand, exponential

convex functions have recently gained attention due to their ability to model complex

nonlinear systems in a tractable way. If a function is called convex, it means that its

graph lies above its chords. In other words, any two points belonging to the graph of

the function, the line segment joining these two points must be positioned either above

or on the graph. Convex functions are characterized by their non-negative second

derivative and are known to have several interesting properties, such as being Lipschitz

continuous and having subgradients at every point. Exponential convex functions, on

the other hand, are functions that can be articulated as the the exponential of a convex

function. These functions have been extensively studied in recent years due to their

ability to model complex nonlinear systems in a tractable way. In particular, they

are often used in the study of optimization, where they have been shown to have nice

theoretical properties and can be efficiently optimized. In recent years, exponential

convex functions have also found applications in various areas of pure mathematics,

including geometry, analysis, and number theory. The study of exponential convex

functions continues to be an active area of research, with many open problems and

exciting developments.[1]
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1.1 Convex Sets

For any pair of points x1, x2, a set Q in Rn is considered convex within the set, the

line connecting them is also part of the set. Mathematically, this can be expressed

as: for all x1, x2 in Q and for any scalar value µ in the interval [0, 1], the expression

µx1 + (1− µ)x2 must also be a part of Q [2].

Figure 1.1: Convex and Non-Convex Set

Example 1. A line, triangular region, etc.

1.2 Properties of convex sets

(a) Any arbitrary collection of convex sets {Qi|i ∈ I}, the intersection denoted as ∩i∈IQi

is a convex set.

(b) The vector sum of two convex sets Q1 and Q2, denoted as Q1+ Q2, is also convex

set.

(c) For any scalar value α and convex set Q, the set obtained by scaling Q by α,

denoted as αQ is also convex [2].

1.3 Convex Functions

Definition 1.3.1. A function J mapping convex set Q in Rn to R is considered convex

if, for all pairs of points x1,x2 in Q and for all scalar values µ with 0 ≤ µ ≤ 1, the

following inequality holds

J (µ (x1) + (1− µ)x2) ≤ µ J (x1) + (1− µ) J (x2) . (1.1)
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If this inequality is satisfied with strict inequality, then J is considered a strictly convex

function over Q. On the other hand, In the case of the inequality being reversed, then

J is considered concave. If the reversed inequality is strict, then J is referred to as a

strictly concave function.

Example 1. J : R→ R, J(x) = |x|
Solution: For all x1,x2 in R we have

J (µx1 + (1− µ)x2) = |µx1 + (1− µ)x2|, µ ∈ [0, 1]

≤ |µx1| + |(1− µ)x2|

= µ |x1| + (1− µ) |x2|

= µ J (x1)+ (1− µ) J (x2)

hence, J(x) = |x| satisfy (1.1) so it is convex.

Definition 1.3.2. A function J : R→ R that has two continuous derivatives is convex

if J ′′(x) ≥ 0 for all real x.

Example 2. Show − log(x) is convex for x > 0.

Solution: Let J(x) = − log(x),

J ′(x) = − 1
x
, J ′′(x) = 1

x2 , when x is greater than 0 (with the assumption that − log(x)

is defined), J ′′(x) always remains positive, so − log(x) is convex. To verify this, it

is evident from a plotted graph that log(x) exhibits concavity, thereby confirming the

convex nature of − log(x).

2 4 6 8 10

−4

−2

2

4

x

log(x)
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1.4 Properties of convex functions

(a) If Q is a convex set, and J and K are both convex functions defined on Q in Rn,

then J+K, αJ(where α is a nonnegative scalar) and and the maximum of J (x) and

K (x), represented as Max { J (x) , K (x)} , are also convex on Q.

(b) A convex function is not required to be continuous. for example:

J(x) =

{
x2 if 0 ≤ x < 1

2 if x = 1

(c) A Convex function is not necessarily differentiable.

An example of this is the function J(x) = |x| , where x ∈ R is convex but lacks

differentiability at x = 0.

(d) Let J(x) is a convex function on a subset Q of Rn that is also convex. In such

cases every local minimum of J within Q is also a global minimum.

(e) A function J(x) is convex if and only if for every point in the domain of the

function, the Hessian matrix of J is positive semi-definite.

For a functionJ . The Hessian matrix is defined as

HJ =



∂2 J
∂x′1∂x

′
1

∂2 J
∂x′1∂x

′
2

. . . ∂2 J
∂x′1∂x

′
n

∂2 J
∂x′2∂x

′
1

∂2 J
∂x′2∂x

′
2

. . . ∂2 J
∂x′2∂x

′
n

. . . . . .

. . . . . .

. . . . . .
∂2 J
∂x′n∂x

′
1

∂2 J
∂x′n∂x

′
2

. . . ∂2 J
∂x′n∂x

′
n


A square matrix consisting partial derivatives of the second-order of a function is

known as the Hessian matrix, it gives information about the curvature of a function,

if it’s positive semi-definite, it means the function is convex.

1.5 Continuity and differentiability

On the interval [g, h], a finite and convex function is bounded above by M , where M

is the maximum value between {J(g), J(h)}, since for any w = µg + (1 − µ)h within
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the interval,

J(w) ≤ µJ(g) + (1− µ)J(h) ≤ µM + (1− µ)M =M. (1.2)

Formulating an arbitrary point in a prescribed form (g+h)/2+ t. We can observe that

it is bounded from below. Then,

J(g+h
2
) ≤ 1

2
J(g+h

2
+ t) + 1

2
J(g+h

2
− t) or J(g+h

2
+ t) ≥ 2J(g+h

2
)− J(g+h

2
− t).

With M serving as the upper bound, −J [ (g+h)
2
− t] ≥ −M , so

J(g+h
2

+ t) ≥ 2J(g+h
2
)−M = m.

On the boundary points one can readily observe that the convex function might not

exhibit continuity . In that area, there is a possibility of upward jumps. However, the

function is not just continuous on interior, but it is also satisfies the stronger condition.

For any closed sub interval [g, h] of the interior of the domain we will prove that, there

is a constant C such that for any pair of points x1, x2 ∈ [g, h], the following holds

|J(x1)− J(x2)| ≤ C|x1 − x2|. (1.3)

When a function meets the requirement of equation (1.3) for some C and all x1 and

x2 in the given interval. It is referred to as satisfying a Lipschitz condition or being

Lipschitz.

Definition 1.5.1. The function J is absolutely continuous throughout the interval [g, h]

if, for any positive value ε, we can always identify a δ > 0, such that for any collection

of disjoint open subintervals {(gi, hi)}ni=1, of [g, h] with
∑n

i=1(hi − gi)n < δ and

∑n
i=1 |f(hi)− f(gi)| < ε

Theorem 1.5.1. [3]If a function J maps a convex set Q to R is convex function,

then for any closed interval [g, h] within the int(Q) the function J satisfies a Lipschitz

condition. As a result, the function J is absolutely continuous on [g, h] and continuous

on int(Q)

Proof. To satisfy the condition, select a value greater than zero, represented by ε,

ensuring that both g minus ε and h plus ε belong to the set Q and Assume that m

5



and M denote the lower and upper bounds for J on [g−ε, h+ε]. If g and x2 are two

different points of [g, h], set

w = x2 +
ε

|x2−x1|(x2 − x1), λ = |x2−x1|
ε+|x2−x1| ,

then w ∈ [g − ε, h+ ε], x2 = λw + (1− λ)x1, and we have

J(x2) ≤ λJ(w) + (1− λ)J(x1) = λ[J(w)− J(x1)] + J(x1)

J(x2)− J(x1) ≤ λ(M −m) < |x2−x1|
ε

(M −m) = C|x2 − x1|,
where C = (M − m)/ε. Since this holds true for all values of x1 and x2 within the

range of [g, h], we observe that |J(x2)− J(x1)| ≤ C|x2 − x1| as desired.
Next, Let us remember that J(s) exhibits absolute continuity throughout the interval

[g, h] if, for any positive value ε, we can always identify a δ > 0 such that for any

collection of disjoint open subintervals {(gi, hi)}ni=1, of [g, h] with
∑n

i=1(hi − gi)n < δ

and
∑n

i=1 |f(hi)− f(gi)| < ε. Clearly the choice δ=ε/C meets this requirement.

Finally, the fact that continuity of J on int(Q) can be attributed to the arbitrary nature

of [g, h].

1.6 Jensen’s Inequality

The Jensen inequality was first introduced by the Danish mathematician, Johan Jensen[4]

in 1906. It is an important concept in mathematics and is widely used in many fields

such as economics, physics, and statistics. The study of inequalities has been a crucial

part of the classical literature of mathematics, and the critical analysis of inequalities

has helped to shape the field into what it is today.

One of the most influential works on inequalities was published in 1934 by the mathe-

maticians Hardy, Littlewood, and Polya[5]. This book provided a comprehensive and

sophisticated analysis of inequalities and helped to popularize the subject among math-

ematicians.

Jensen’s inequality has several different forms, but in essence, it states that when a

convex transformation is applied to a mean, the result is always less than or equal to

the mean obtained after the transformation. This concept has many practical appli-

cations, such as in the calculation of expected values in statistics or in the study of
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optimization problems in economics.

Overall, the study of inequalities has been instrumental in advancing the field of math-

ematics, and Jensen’s inequality is just one example of how these concepts are used to

solve complex problems and make important discoveries.

Definition 1.6.1. Consider J be a convex function defined over the interval Q. If

x1, x2,x3, ..., xn ∈ Q and µ1, µ2, µ3, ..., µn are nonnegative real numbers such that µ1 +

µ2 + µ3 + ...+ µn = 1, then

J
(∑

µixi

)
≤
∑

µiJ (xi) . (1.4)

where i from 1 to n.

Definition 1.6.2. Assume J be a convex function defined on the entire real number

line, and the function K is an integrable function over the interval [0, 1] and it follows

that the composition of J with K, denoted as J ◦ K also integrable over the interval

[0, 1]. Then

J

(∫ 1

0

K(x)dx

)
≤
∫ 1

0

(J ◦K)(x)dx. (1.5)

1.7 Hermite-Hadamard inequality

The inequality offers an approximation for the average value of a continuous convex

function over an interval. More specifically,

if the convex function J that maps the interval [g, h] to the set of real numbers is such

a function with g<h, then

J

(
g + h

2

)
≤ 1

h− g

∫ h

g

J (x) dx ≤ J (g) + J (h)

2
(1.6)

Ch. Hermite discovered this inequality in 1881. E. F. Beckenbach, the expert of

history and convex functions theory told about the proof of the inequality (1.6) was

originally formulated by J. Hadamard in the year 1893. Now Eq (1.6) is read as

Hermite-Hadamard inequality, while in the past it was read as Hadamard inequality.
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Consider Q denote a vector space over the field U , where U is either R or C and x1,

x2 in Q, x1 6=x2

Consider the following

[x1, x2] := (1− µ)x1 + (µ)x2, µ ∈ [0, 1].

The Hermite-Hadamard integral inequality holds for every convex function defined on

the interval [x1, x2] ∈Q, (see[6])

J

(
x1 + x2

2

)
≤
∫ 1

0

J [(1− µ)x1 + (µ)x2]dµ ≤
J (x1) + J (x2)

2
(1.7)

This can be deduced from (1.6) for the convex function K(x1, x2):[0, 1]→ R

Definition 1.7.1. Consider a function J(x):

(a) J has a left derivative at p if

(1) For δ>0, J is defined on (p-δ, p) in R and

(2) limu→0−
f(p+u)−f(p)

u
exists

If such a limit exists, it is denoted by J ′−(p)

(b) J has a right derivative at p if

(1) For δ>0, J is defined on (p, p+δ) in R and

(2)limu→0+

f(p+u)−f(p)
u

exists

If such a limit exists, it is denoted by J ′+(p)

8



Chapter 2

Log convex function

2.1 Log convex function

A function J defined over a convex set Q, with range in the positive real numbers is

referred to as multiplicatively-convex,AG-convex, or log-convex if the logarithm of J

is a convex function, or equivalently, if the following inequality is satisfied for every

pair of x1,x2 in Q and µ in [0, 1]:

J (µ (x1) + (1− µ)x2) ≤ [ J (x1)]
µ [ J (x2)]

1−µ (2.1)

A log convex function is convex because J = exp (ln J) . If J and K are convex and K

is increasing, then the composition of the two functions, K ◦J , is also convex. However,

it is not necessarily true that every convex function is log-convex. This follows directly

from above inequality because, by employing the arithmetic-geometric mean inequality.

We have

[ J (x1)]
µ [ J (x2)]

1−µ ≤ µJ (x1) + (1− µ) J (x2) (2.2)

for all x1,x2 ∈ Q and µ ∈ [0, 1]

Example 1. The function J(x) = exp |x|p, for p≥1 is a log convex.
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2.2 Properties of log convex functions

(a) If J(x) is log convex, then J(px) is also log convex for any positive constant p.

(b) If J(x) and K(x) are both log convex, then J(x)K(x) is also log-convex.

(c) If J(x) is a log convex function & K(x) is an increasing function, then K(J(x)) is

also log convex.

(d) If J(x) is log convex & non-decreasing, then its integral is also log convex.

Theorem 2.2.1. [7](i)Consider a function J : [g, h] → [0,+∞) that is both differen-

tiable and strictly decreasing, for any x′ in the interval (g, h] the function J(x′) > 0.

Define J(x′) =
∫ x′
g
J(t)dt for all x′ in the interval (g, h]. Then the function J is log

concave.

(ii) Consider J be a function from [g, h] to [0,+∞) is twice differentiable log con-

cave, J(x′) and J ′(x′) is greater than zero for x′ in the interval (g, h]. Define

J(x′) =
∫ x′
g
J(t)dt with x′ in the interval (g, h]. Then J is log concave.

(iii) Let J : [g, h] → [0,+∞) be a twice differentiable log convex function, J(x′) and

J ′(x′) both are greater than zero for x′ in the interval (g, h], limx′→a+ J
2(x′)/J ′(x′)

is equal to zero. Define J(x′) =
∫ x′
g
J(t)dt with x′ in the interval (g, h]. Then J is a

log convex function.

Proof. Let

Z(x′) :=
J ′′(x′)J(x′)− (J ′(x′))2

J ′(x′)
, x′ ∈ (g, h].

Then

Z(x′) :=

(∫ x′
g
J(t)dt

)′′
·
(∫ x′

g
J(t)dt

)
− J2(x′)

J ′(x′)

=

∫ x′

g

J(t)dt−
(
J2(x′)

J ′(x′)

)
and
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Z ′(x′) = J(x′)−

[
2J(x′) (J ′(x′))2 − J2(x′)J ′′(x′)

(J ′(x′))2

]

= J(x′) ·

[
J(x′)J ′′(x′)− (J ′(x′))2

(J ′(x′))2

]
≤ 0.

Then Z is decreasing. We have

Z(x′) ≤ lim
x′→g+

Z(x′) = − lim
x′→g+

J2(x′)

J ′(x′)
≤ 0,

and

J ′′(x′)J(x′)− (J ′(x′))
2 ≤ 0

This complete the proof.

Theorem 2.2.2. [7]Consider J : [g, h] ⊆ R→ R+ be a log convex(concave), p in the

interval (g, h), J ′−(p) and J ′+(p) both are not equal to zero. Then

∫ h

g

J(t)dt ≥ (≤)
(
(J(p))2

J ′−(p)

)[
1− exp

(
−(p− g)

J ′−(p)

J(p)

)]
+
(J(p))2

J ′+(p)

[
exp

(
(h− p)

J ′+(p)

J(p)

)
− 1

]
,

(2.3)

holds ⇐⇒ J is a qerx-type function, q > 0, and r in R.
Proof. Since J ′+(p) is not equal to zero, we can choose v in the interval (p, h) such that

J(v) is not equal to J(p). For any (t) belongs to (v, h) and µ = v−p
t−p , v = (1−µ)p+µt

hold. Then

J(v) = J((1− µ)p+ µt) ≤ (≥)(J(p))1−µ(J(t))µ, (2.4)

J(t)(≥) ≤ (J(v))
t−p
v−p (J(p))

−(t−v)
(v−p) .

Therefore,
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∫ h

v

J(t)dt(≥) ≤
∫ h

v

(J(v))
t−p
v−p · (J(p))

−(t−v)
(v−p) dt

=
(J(p))

v
v−p

(J(v))
p
v−p

∫ h

v

(
J(v)

J(p)

) t
v−p

dt

=
(v − p)(J(p))

v
v−p

(J(v))
p
v−p (ln J(v)− ln J(p))

[(
J(v)

J(p)

) h
v−p

−
(
J(v)

J(p)

) v
v−p
]

=

(v − p)J(v)

[(
J(v)
J(p)

) (h−v)
(v−p) − 1

]
ln J(v)− ln J(p)

.

Let v → p+, we have

∫ h

p

J(t)dt ≥ (≤) lim
v→p+

J(v)[exp{(h− v)(ln J(v)− ln J(p))/(v − p)} − 1]

(ln J(v)− ln J(p))/(v − p)

= J(p) lim
v→p+

[
exp

{
(h− p) ln J(v)−ln J(p)

J(v)−J(p)
· J(v)−J(p)

v−p

}
− 1
]

ln J(v)−ln J(p)
J(v)−J(p)

· J(v)−J(p)
v−p

=
(J(p))2

J ′+(p)

{
exp

(
(h− p)

J ′+(p)

J(p)

)
− 1

}
.

Similarly,

∫ p

g

J(t)dt ≥ (≤)(J(p))
2

J ′−(p)

(
1− exp

{
−(p− g)J

′(p)

J(p)

})

Hence

∫ h

g

J(t)dt =

∫ p

g

J(t)dt+

∫ h

p

J(t)dt

≥ (≤)(J(p))
2

J ′−(p)

[
1− exp

(
−(p− g)J

′(p)

J(p)

)]
+

(J(p))2

J ′+(p)

[
exp

(
(h− p)

J ′+(p)

J(p)

)
− 1

]
.

the above equality holds because of (2.4), if and only if

J(µ(x1) + (1− µ)x2) = [J(x1)]
µ[J(x2)]

1−µ
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holds for any x1, x2 ∈ [g, h], µ ∈ (0, 1). Then ∃ r,m in R, such that

ln J(x1) = rx1 +m, J(x1) = em (er)x1 .

This complete the proof of Theorem 2.2.2.

Corollary 2.2.1. [7]Consider J : [g, h] ⊆ R → R+be a log convex(concave) function,

p in the interval [g, h] and J ′(p) is not equal to zero. Then

∫ h

g

J(t)dt ≥ (≤)(J(p))
2

J ′(p)

[
exp

(
(h− p)J

′(p)

J(p)

)
− exp

(
−(p− g)J

′(p)

J(p)

)]
.

Specifically, if J ′(g), J ′(h) are not equal to zero or J ′((g+ h)/2) is not equal to zero,

we have

∫ h

g

J(t)dt ≥ (≤)(J(g))
2

J ′(g)

[
exp

(
(h− g)J

′(g)

J(g)

)
− 1

]
,∫ h

g

J(t)dt ≥ (≤)(J(h))
2

J ′(h)

[
1− exp

(
−(h− g)J

′(h)

J(h)

)]
(2.5)

or

∫ h

g

J(t) dt ≥ (≤)
(
J
(
g+h

2

))2

J ′
(
g+h

2

) [
exp

(
h− g
2
·
J ′
(
g+h

2

)
J
(
g+h

2

) )− exp

(
−h− g

2
·
J ′
(
g+h

2

)
J
(
g+h

2

) )] ,
holds ⇐⇒ J is a qerx-type function, q is greater than zero,

and r in R.

2.3 Hermite-Hadamard inequality for log-convex

We know that Hermite-Hadamard inequality

J

(
g + h

2

)
≤ 1

h− g

∫ h

g

J (x) dx ≤ J (g) + J (h)

2
(2.6)
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Apply the inequality mentioned above for log convex functions J : [g,h] → (0,∞) , we

have

ln

[
J

(
g + h

2

)]
≤ 1

h− g

∫ h

g

ln J (x) dx ≤ ln J (g) + ln J (h)

2
(2.7)

from above inequality we get

J

(
g + h

2

)
≤ exp

[
1

h− g

∫ h

g

ln J (x) dx

]
≤
√
J (g) J (h) (2.8)

This is Hermite Hadamard inequality for log convex functions.

Theorem 2.3.1. (Dragomir-Mond, 1998[8]).Consider J : Q→ [0,∞) be a log convex

mapping on Q and g,h belongs to Q with g is less than h. Then one has inequality:

J

(
g + h

2

)
≤ 1

(h− g)

∫ h

g

√
J (x) J (g + h− x) dx ≤

√
J (g) J (h) (2.9)

Theorem 2.3.2. (Dragomir-Mond, 1998[8]).Consider J : Q→ (0,∞) be a log convex

mapping and g,h belongs to Q with g is less than h.Then

J
(
g+h

2

)
≤ exp

[
1

h−g

∫ h
g
ln J (x) dx

]
≤ 1

h−g

∫ h
g

√
J (x) J (g + h− x) dx ≤

√
J (g) J (h)

≤ 1
h−g

∫ h
g
J (x) dx ≤ L (J (g) , J (h))

Where for strictly positive real number q,r, the L(q,r) is logrithmic mean, i.e.,

L(q,r) = q−r
ln q−ln r

if q 6= r and L(q,q) = q. The last above inequality was obtained in a

different context in [9].

Theorem 2.3.3. [10].Consider J : Q → [0,∞) be a log convex defined on set Q, g,h

∈ Q under the condition g<h. Then

J

(
g + h

2

)
≤
(

1

h− g

∫ h

g

√
J (x)dx

)2

≤ 1

h− g

∫ h

g

J (x) dx (2.10)
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Theorem 2.3.4. (Dragomir, 2001 [11]). Consider the function J : Q → (0,∞) be a

diffeentiable log convex on the interior of Q (Q◦) and g,h belongs to the Q◦ with g is

less than h. Then
1

h−g
∫ h
g J(x)dx

J( g+h2 )
≥ L

(
exp

[
J́( g+h2 )
J( g+h2 )

(
h−g

2

)]
, exp

[
− J́( g+h2 )
J( g+h2 )

(
h−g

2

)])
≥ 1

Theorem 2.3.5. (Dragomir, 2001[11]).Consider J : Q → (0,∞) be a diffentiable

log convex function on the interior of Q (Q◦) and g,h in Q◦ with g<h.Then

J(g) + J(h)
2

1
h−g

∫ h
g J(x)dx

≥ 1 + ln

[ ∫ h
g J(x)dx∫ h

g J(x) exp
(
J́ (x)
J(x) (

g+h
2
−x)

)
dx

]

≥ 1 + ln

[
1

h−g
∫ h
g J(x)dx

J( g+h2 )

]
≥ 1

The Hadamard refinement of the Hermite-Hadamard inequality can be stated as

follows:

Lemma 2.3.1. (Dragomir, 1994 [12]).Consider J : [g, h] → R be a convex and an

arbitrary division of [g, h] g = x◦< x1 < ...... <xn= h with n ≥ 2. Then

J

(
g + h

2

)
≤ 1

h− g
∑

J

(
xi + xi+1

2

)
(xi+1 − xi) (2.11)

≤ 1

h− g

∫ h

g

J (x) dx ≤ 1

h− g
∑(

J(xi) + J(xi+1)

2

)
(xi+1 − xi) ≤

J (g) + J (h)

2
(2.12)

where i from 0 to n-1.

Theorem 2.3.6. (Dragomir, 2015 [13]).Consider J : [g, h] → R be a log convex func-

tion on [g, h] and an arbitrary division of [g, h] g = x◦< x1 < ...... <xn= h with n ≥ 1

and i from 1 to n-1. Then

J
(
g+h

2

)
≤
∏[

J
(xi+xi+1

2

)]xi+1−xi
h−g

≤ exp
(

1
h−g

∫ h
g

ln J (x) dx
)

≤
∏[√

J (xi) J (xi+1) dx
]xi+1−xi

h−g ≤ (J (g) J (h))
1
2

Proof: If we write the first inequality in above lemma for the given function J= ln J

15



then we obtain

ln J
(
g+h

2

)
≤ 1

h−g
∑

ln J
(xi+xi+1

2

)
(xi+1 − xi)

≤ 1
h−g

∫ h
g

ln J (x) dx ≤ 1
h−g

∑(
ln J(xi)+ln J(xi+1)

2

)
(xi+1 − xi)

≤ ln J(g)+ln J(h)
2

.

Where i from 1 to n-1. This complete the proof.
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Chapter 3

Exponential convex function

3.1 Exponential Convex Functions

The concept of exponentially convex functions was first developed by S. N. Bernstein

in [14], approximately eighty years ago. Subsequently, D. V. Widder introduced these

functions as a subset of convex functions on a specified interval (g, h) in his publication

[15]. Conveniently, Widder’s [16] book provides an excellent account of the theory that

ultimately leads to the integral representation of exponentially convex functions.

Definition 3.1.1. A positive function J is called exponentially convex if

exp J (µ (x1) + (1− µ) (x2)) ≤ (µ) exp J (x1) + (1− µ) exp J (x2)

for all x1, x2 in Q and µ belongs to [0, 1] ,

Example 1. ln(x) is exponential-convex for x > 0,

3.2 Properties of exponential convex functions

(a)If J(x) is exponential-convex, then exp(J(x)) is always greater than zero.

(b) If J(x) is exponential-convex, then exp(J(px)) is also exponential-convex for any

positive constant p.

17



(c) If J(x) andK(x) are exponential-convex, then exp(J(x)+K(x)) is also exponential-

convex.

(d) If J(x) is exponential-convex andK(x) is an increasing function, then exp(K(J(x)))

is also exponential-convex.

3.3 Jensen Inequality for exponential convex func-
tions

Let us recall Jensen inequality, let J be a convex function over the interval Q. If

x1, x2,x3, ..., xn ∈ Q and µ1, µ2, µ3, ..., µn are non negative real numbers such that µ1 +

µ2 + µ3 + .....+ µn = 1, then

J

(
n∑
i=1

µixi

)
≤

n∑
i=1

µiJ (xi)

applying the above inequality to exponential convex functions we obtain

exp J

(
n∑
i=1

µixi

)
≤

n∑
i=1

µi exp J (xi)

3.4 Hermite Hadamard inequality adapted for the case
of exponential convex functions

Recall Hermite Hadamard inequality

J

(
g + h

2

)
≤ 1

h− g

∫ h

g

J (x) dx ≤ J (g) + J (h)

2

applying the above inequality to exponential convex functions we obtain

exp J

(
g + h

2

)
≤ 1

h− g

∫ h

g

exp J (x)dx ≤ exp J (g) + exp J (h)

2

Theorem 3.4.1. (Dragomir, 2015 [13]).Consider the function J : [g, h] → (0,∞) be a

log convex. Then

18



1 ≤ exp

(
1
8

(
J+ ( g+h2 )− J− ( g+h2 )

J( g+h2 )

)
(h− g)

)
≤

√
J(g) . J(h)

exp( 1
h−g

∫ h
g ln J(x)dx)

≤ exp
(

1
8

(
J− (h)
J(h)

− J+ (g)
J(g)

)
(h− g)

)
and

1 ≤ exp

(
1
8

(
J+ ( g+h2 )− J− ( g+h2 )

J( g+h2 )

)
(h− g)

)
≤ exp( 1

h−g
∫ h
g ln J (x)dx)
J( g+h2 )

≤ exp
(

1
8

(
J− (h)
J(h)

− J+ (g)
J(g)

)
(h− g)

)
Theorem 3.4.2. (Dragomir, 2015 [13]). Consider J : [g, h] → (0,∞) be a log convex

function on [g, h] and an arbitrary division of [g, h], g = x◦< x1 < ...... <xn= h with n

≥ 1. Then

exp
(

1
h−g

∫ h
g
ln J (x) dx

)
≤ 1

h−g
∑∫ xi+1

xi

√
J (x) . J (xi + xi+1 − x) dx

≤ 1
h−g

∫ h
g
J (x) dx

where i from 0 to n-1

Proof: The fact that we have

exp
[

1
h−g

∫ h
g
ln J (x) dx

]
= exp

[
1

h−g
∑n−1

i=0

∫ xi+1

xi
ln J (x) dx

]
= exp

[∑n−1
i=0

xi+1−xi
h−g

(
1

xi+1−xi

∫ xi+1

xi
ln J (x) dx

)]
since

∑n−1
i=0

xi+1−xi
h−g = 1, then by using Jensen inequality for the exp convex function

we have

exp
[∑n−1

i=0
xi+1−xi
h−g

(
1

xi+1−xi

∫ xi+1

xi
ln J (x) dx

)]
≤
∑n−1

i=0
xi+1−xi
h−g exp

(
1

xi+1−xi

∫ xi+1

xi
ln J (x) dx

)
Using the first inequality (of Theorem 3.4.2) on each the intervals [xi, xi+1], we have

exp
[

1
(xi+1−xi)

∫ xi+1

xi
ln J (x) dx

]
≤ 1

xi+1−xi

∫ xi+1

xi

√
J (x) . J (xi + xi+1 − x) dx

≤ 1
xi+1−xi

∫ xi+1

xi
J (x) dx

for every i belongs to {0, 1, ....., n− 1}
When the inequality mentioned above is multiplied by xi+1−xi

h−g and we take the summation

from i equals 0 to n-1, we can obtain
∑n−1

i=0
xi+1−xi
h−g exp

[
1

xi+1−xi

∫ xi+1

xi
ln J (x) dx

]
19



≤ 1
h−g

∑n−1
i=0

∫ xi+1

xi

√
J (x) J(xi + xi+1 − x)dx

≤ 1
h−g

∑n−1
i=0

∫ xi+1

xi
J (x) dx

= 1
h−g

∫ h
g
J (x) dx

making use of above first 3 inequalities we get the desire result.

Corollary 3.4.1. Let J : [g, h] → (0,∞) be a log convex function on the interval

[g, h] , x1 and x2 in [g, h] , then

exp
[

1
h−g

∫ h
g
ln J (x1) dx

]
≤ 1

h−g

[∫ x2

g

√
J (x1) . J (g + x2 − x1)dx+

∫ h
x2

√
J (x1) . J (h+ x2 − x1)dx

]
≤ 1

h−g

∫ h
g
J (x1) dx

Theorem 3.4.3. [13]Let J : [g, h]→ (0,∞) be a log convex function within the specified

interval [g, h] . Then for every p greater than zero we obtain the following inequality

J
(
g+h

2

)
≤ exp

[
1

h−g

∫ h
g
ln J (x) dx

]
≤
(

1
h−g

∫ h
g
Jp (x) Jp (g + h− x) dx

) 1
2p

≤
(

1
h−g

∫ h
g
J2p (x) dx

) 1
2p

≤
{
[L2p−1 (J (g) , J (h))]1−

1
2p [L (J (g) , J (h))]

1
2p , p 6= 1

2
;

L (J (g) , J (h)) , p = 1
2

if p ∈
(
0, 1

2

)
, then we have

J
(
g+h

2

)
≤ exp

[
1

h−g

∫ h
g
ln J (x) dx

]
≤
(

1
h−g

∫ h
g
J p (x) J p (g + h− x) dx

) 1
2p

≤
(

1
h−g

∫ h
g
J2p (x) dx

) 1
2p

≤ 1
h−g

∫ h
g
J (x) dx

Proposition 1. [17]Let the function J : Q→ R. The both statements are the equiva-

lent.

(i) The function J shows exponential convexity on Q

(ii) J is a continuous and

∑
ξiξjJ

(
xi + xj

2

)
≥ 0 (3.1)
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for any ξi belongs to R and any xi ∈ Q, 1 ≤ i ≤ n 1 ≤ j ≤ n.

For exponentially convex on R we will just say exponentially convex function.

Remark 1. From (3.1) we have the following statementss:

(i) if the function J is exponentially convex on the interval Q then J(x) is greater than

and equal to zero, for all x in Q; for every p ≥ 0, pJ is also exponentially convex;

(ii) if J1 and J2 both are exponentially convex on the interval Q, then J1 + J2 is a

exponentially convex on the interval Q

(iii) if the function J is exponentially cnvex. Then for every d, t in R, x 7→ J(dx) and

x 7→ J(x− t) both the functions are exponentially convex.

Corollary 3.4.2. If the function J is convex exponentially on the interval Q. Then

the matrix

[
J

(
xi + xj

2

)]

is a positively semi-definite, and

det

[
J

(
xi + xj

2

)]
≥ 0

for any n in N, xi belongs to Q, i, j = 1, . . . , n.

Corollary 3.4.3. If the function J : Q→ R+ is exponentially convex, then J is a log

convex i.e ln J is convex.

Proof.For n=2 and from(3.1), we obtain

ξ2
1J(x1) + 2ξ1ξ2J(

x1+x2

2
) + ξ2

2J(x2) ≥ 0

for all ξ1, ξ2 belongs to set of real numbers and all x1, x2 in Q, .hence

J2(
x1 + x2

2
) ≤ J(x1)J(x2) for all x1, x2 ∈ Q (3.2)

since the function J is continuous. We have

J (µ (x1) + (1− µ) (x2)) ≤ [J (x1)]
µ [J (x2)]

(1−µ) (3.3)
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for every x1, x2 in Q and µ belongs to [0, 1] .

Proposition 2. [17]Suppose that the function J is nonnegative continuous defined on

the interval Q. s.t

J2(
x1 + x2

2
) ≤ J(x1)J(x2), x1, x2 ∈ Q (3.4)

if J(x′◦) is zero for some x′◦ in Q,then J = 0 on the interval Q

proof.For every x2 in Q. Then from (3.4)

J

(
1

2n
x′◦ +

(
1− 1

2n

)
x2

)
≤ J (x′◦)

1
2n J (x2)

1− 1
2n (3.5)

So that J
(

1
2n
x′◦ +

(
1− 1

2n

)
x2

)
is zero and J (x2) = limn

(
1

2n
x′◦ +

(
1− 1

2n

)
x2

)
= 0

Remark 2. From the previous proposition, we have that if an exponentially convex

function at few points is zero, then the function is also zero on the entire domain.

Remark 3. A function J : Q → (0,∞) is called log convex in J-sense if it satisfies

(3.4)

Theorem 3.4.4. [17]Let the function J : Q→ (0,∞), is log convex and derivable.

Consider K : Q×Q→ (0,∞) is defined by

K (x′, y′) =


(
J(x′)
J(y′)

) 1
x′−y′

, x′ 6= y′

exp
(
J́(x′)
J(y′)

)
, x′ = y′

 (3.6)

if (x′1 ≤ x2′) and (y′1 ≤ y′2). then

K(x′1, y
′
1) ≤ K(x′2, y

′
2) (3.7)

Proof.Given that the function ln J is a convex, we hold (see[18],p. 2)

ln J(x′1)− ln J(y′1)

x′1 − y′1
≤ ln J(x′2)− ln J(y′2)

x′2 − y′2
, (3.8)

for x′1 ≤ x′2 and y
′
1 ≤ y′2; x

′
1 is not equal to y′1 and x′2 is also not equal to y′2

concluding K(x′1, y
′
1) ≤ K(x′2, y

′
2).

if x′1 = y′1 ≤ x′2 we apply the limy′1−x′1 to (3.8) to conclude
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K(x′1, y
′
1) ≤ K(x′2, y

′
2)

Theorem 3.4.5. The function J : Q → R is an exponentially convex on the interval

Q if and only if

J(x) =

∫ ∞
−∞

exp(tx)dσ (t) , x ∈ Q (3.9)

for few non-decreasing function σ from R to R

proof.See [19], p. 211. A first application of theorem 3.4.5 is that exponential convexity

is closed under multiplication.

Corollary 3.4.4. If J1, J2 are exponentially convex function o Q. Then J1J2 is also

exponentially convex on the interval Q.

proof.For any n ∈ Nand all ξi ∈ R, xi∈Q, i = 1, ....., n we have

∑
ξiξjJ1

(xi+xj
2

)
J2

(xi+xj
2

)
=
∫∞
−∞
∑
ξi exp

txi

2
ξj exp

txj

2
J1

(xi+xj
2

)
σ2 (dt) ≥ 0

where i,j=1,...,n and we use the integral representation (3.9) for the function J2.

Example 1. For every α > 0, the function J : (0,∞)→ R defined by

J(x) = x−α

is exponentially convex on the interval (0,∞), since x−α =
∫∞

0
exp−xt tα−1

Γ(α)
dt (see[20]

, p. 210).

Example 2. For every α > 0, the function

J(x) = exp−α
√
x

is exponentially convex on (0,∞), since exp−α
√
x =

∫∞
0

exp−xt exp−α2/4t α

2
√
πt3
dt, x >

0 (see[20], p. 214).
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Further analytical properties and more examples of exponentially convex functions

are contained in the following theorem from [21].

Theorem 3.4.6. [17]If J(s), s ∈ Rd, is exponentially convex, then K(t) = J(it), t ∈ Rd

and the whole function, is a positively definite. Conversely, Assuming K(t), t ∈ Rd, is

whole positively definite, the function J(s) = K(−is), s ∈ Rd is an exponentially convex.

Using the previous theorem, the following examples were constructed in [21].

Example 3. A characteristic function of the uniform distribution on [0, 1] is K(t) =
exp it−1

it
. Applying Theorem 3.4.6, we get exponentially convex function

J(x) =
expx− 1

x
.

Example 4. A characteristic function of the normal distribution N (µ, σ2) ;µ in

R, σ > 0, where is K(t) = exp itµ− 1
2
σ2t2. Applying Theorem 3.4.6, we get the expo-

nentially convex function

J(x) = exp−µx+ σ2x2.

We now proceed with other properties of exponential convexity.

Theorem 3.4.7. Assume that J : Q → R is an exponentially convex function on the

interval Q. Then

(i) For any m ∈ N we have

J (m)(x) =

∫ ∞
−∞

tm exp(tx)dσ(t)

where σ : R→ R is some non-decreasing function.

(ii) For any m ∈ N the function x 7→ J (2m)(x) is exponentially convex.

(iii) For any x ∈ Q and all m ∈ N we have(
J (2m+2)(x)

)2 ≤ J (2m)(x)J (2m+4)(x) (3.10)
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(iv) for any n in N and for all xi belongs to Q and i from 1 to n, the matrix[
J (i+j)

(
xi + xj

2

)]
(3.11)

is positive-semidefinite. where i, j=0,...,n

Proof. (i) and (ii)-part follow by using integral representation (3.9). Proofs of (iii) and

(iv) can be found in [22] and [23] respectively.

Remark 4. From Theorem 3.4.7 it follows that if J is a non-constant exponentially

convex function then J (2m) is also a non-constant exponentially convex function on Q,

for any m ∈ N. Now, it is obvious that no polynomial can be exponentially convex.

Theorem 3.4.8. Let J : Q→ R be an exponentially convex function.

(i) If 0 ∈ Q, xi ∈ Q, i from 1 to n, and
∑
xi belongs to Q, then for m ≥ 2, where m

is any natural number.

Jm−1(0)J

(
m∑
i=1

xi

)
≥
∏

J (xi) ,

for all i = 1, . . .m, xi ≥ 0 or xi ≤ 0

(ii) If 0 ∈ Q, and x1, x2 ∈ Q such that x1 · x2 < 0, x1 + x2 ∈ Q, then

J(0)J(x1 + x2) ≤ J(x1)J(x2).

(iii) If x ∈ Q, and i, j are odd natural numbers, then

J(x)J (i+j)(x) ≥ J (i)(x)J (j)(x).

Proof. (i)

Jm−1(0)J
(∑

xi

)
=

(∫ ∞
−∞

σ(dt)

)m−1 ∫ ∞
−∞

∏
exp(txi)σ(dt)
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We now apply Chebyshev’s inequality (see [18], p. 197 ) for p(t) = 1, fi(t) = exp txi, i =

1, . . . ,m.

(ii) We apply Chebyshev’s inequality for p(t) = 1, f(t) = exp(tx), f(t) = exp ty.

(iii)

J(x)J (i+j)(x) =

∫ ∞
−∞

exp txσ(dt)

∫ ∞
−∞

titj exp(tx)σ(dt)

We now apply Chebyshev’s inequality for p(t) = exp tx, f(t) = ti, g(t) = tj.
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Chapter 4

Conclusions and Recommendations

4.1 Conclusions

In this chapter we are going to write the summary and conclusion of our work pre-

sented in this thesis. This thesis mainly focuses to describe and unify three concepts

of mathematics namely, convex function, log convex function and exponential con-

vexity. Motivated by the ideas of convex functions and its applications in different

fields of mathematics and other Sciences. Furthermore, keeping in mind that convex

functions has a pivotal role to solve variety of problems of engineering, economics and

weather sciences and so on. We begin with Chapter1, define the convex set, convex

function and Hermite Hadamard inequality. In Chapter2, we review the results of Her-

mite Hadamard inequality for log convex function(see,[4]). Moreover by studying the

techniques of refinement of inequalities in [4] for finding different result for log convex

function. In Chapter3, the concept of exponential convexity is introduced. Addition-

ally, the chapter examines Jensen’s inequality adapted for exponential convex functions

and also extends the Hermite-Hadamard inequality to this particular class of functions.

In addition, exponential convexity also plays a key role in regularization, loss function

design, and model fitting, providing support for the successful application of machine

learning.

27



Bibliography

[1] H. H. Bauschke, P. L. Combettes, et al. Convex analysis and monotone operator

theory in Hilbert spaces, volume 408. Springer, 2011.

[2] R. T. Rockafellar. Convex analysis, volume 11. Princeton university press, 1997.

[3] A. W. Roberts. Convex functions. In Handbook of convex geometry, pages 1081–

1104. Elsevier, 1993.

[4] C. Niculescu and L.E. Persson. Convex functions and their applications, volume 23.

Springer, 2006.

[5] G. H. Hardy, J. E. Littlewood, and G. Pólya. Inequalities (Cambridge mathemat-

ical library). cambridge university press, 1934.

[6] S. S. Dragomir. An inequality improving the first hermite-hadamard inequality for

convex functions defined on linear spaces and applications for semi-inner products.

J. Inequal. Pure Appl. Math, 3(2):31, 2002.

[7] X. Zhang and W. Jiang. Some properties of log-convex function and applica-

tions for the exponential function. Computers & Mathematics with Applications,

63(6):1111–1116, 2012.

[8] S. S. Dragomir and B. Mond. Integral inequalities of hadamard type for log-convex

functions. Demonstratio Mathematica, 31(2):355–364, 1998.

[9] P. Gill, C. Pearce, and J. Pecaric. Hadamard’s inequality for r-convex functions.

Journal of Mathematical Analysis and Applications, 215(2):461–470, 1997.

28



[10] S. Sulaiman. Refinements to hadamard’s inequality for log-convex functions. Ap-

plied Mathematics, pages 899–903, 2011.

[11] S. Q. Mir. Refinements of the hermite-hadamard integral inequality for log-convex

functions. volume 28, pages 129–134, 2001.

[12] S. S. Dragomir. Some remarks on hadamard’s inequalities for convex functions.

Extracta mathematicae, 9(2):88–94, 1994.

[13] S. S. Dragomir. New inequalities of hermite-hadamard type for log-convex func-

tions. Khayyam Journal of Mathematics, 3(2):98–115, 2017.

[14] S. Bernstein. Sur les fonctions absolument monotones. Acta Mathematica, 52(1):1–

66, 1929.

[15] D. V. Widder. Necessary and sufficient conditions for the representation of a

function by a doubly infinite laplace integral. 1934.

[16] D. V. Widder. The Laplace Transform. 1941.

[17] J. Jakšetić and J. Pečarić. Exponential convexity method. Journal of Convex

Analysis, 20(1):181–197, 2013.

[18] J. E. Peajcariaac and Y. L. Tong. Convex functions, partial orderings, and statis-

tical applications. 1992.

[19] N. I. Aheizer. The classical moment problem and some related questions in anal-

ysis. 1965.

[20] J. L. Schiff. The Laplace transform: theory and applications. Springer Science &

Business Media, 1999.

[21] W. Ehm, M. G. Genton, and T. Gneiting. Stationary covariances associated with

exponentially convex functions. Bernoulli, 9(4):607–615, 2003.

[22] C. Giordano, B. Palumbo, and J. Pecaric. Remarks on the hankel determinants

inequalities. Rend. Circ. Mat. Di Palermo, Serie II, 46:279–286, 1997.

29



[23] D. Mitrinovic and J. Pecaric. On some inequalities for monotone-functions. BOL-

LETTINO DELLA UNIONE MATEMATICA ITALIANA, 5(2):407–416, 1991.

30


	Introduction of Convex Functions
	Convex Sets
	Properties of convex sets
	Convex Functions
	Properties of convex functions
	Continuity and differentiability
	Jensen's Inequality
	Hermite-Hadamard inequality

	Log convex function
	Log convex function
	Properties of log convex functions
	Hermite-Hadamard inequality for log-convex

	Exponential convex function
	Exponential Convex  Functions
	Properties of exponential convex functions
	Jensen Inequality for exponential convex functions
	Hermite Hadamard inequality adapted for the case of exponential convex functions

	Conclusions and Recommendations
	Conclusions

	Bibliography
	Ubaid.pdf
	Ubaid2
	Ubaid1


