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ABSTRACT 

To examine the behavior of rigid plastic structure several methods have been employed, one of 

which is the linear complementarity approach. However, numerical model of linear 

complementarity problems (LCP) under small displacement subjected to extreme dynamic loading 

model can further be refined to predict exact response of structures. In the current study, a 

numerical model has been established by incorporating large displacement along with the strain 

rate effect by taking into account the nonlinearity of geometry due to axial forces in an RCC beam 

in order to obtain precise and more accurate response of structures subjected to impact loading. 

The maximum mid span deflection obtained from the proposed model under impact loading is 

statistically compared to the experimental dataset of tested RC beams carried out in various 

researches available in the literature. Furthermore, the model is then tested through 

experimentation work under impact testing by constructing an assembly of impact loading and 

Drop Hammer. A parametric study is conducted by varying the drop height of hammer and 

thereafter the results of mid span deflections obtained from experimental work are compared with 

those obtained from the proposed model to ensure the efficiency and reliability of the model.  
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CHAPTER 1: INTRODUCTION 

1.1 Introduction to Impact Loading 

Throughout the course of their service life, various reinforced concrete (RC) structure components 

may be subjected to a variety of extreme dynamic loads, ranging from low to high rates of loading, 

such as earthquake, impact, and ultimately blast loading. There is a possibility that the parts of 

these structures could be susceptible to impact loading from various events or accidents due to the 

evolution of infrastructure. For instance, highway structural elements like bridge piers, side guard 

rails, traffic signal poles, electric distribution poles, and overhead bridge girders may experience 

impact from vehicle collisions. In mountainous regions, falling rocks can pose a threat to different 

structures. Industrial plants are at risk of critical component damage due to heavy objects falling 

from pipes or turbine breaks. Offshore and marine structures may face danger from ship collisions 

or ice impacts. Buildings of diverse types might be subjected to tornadoes or debris impact from 

tsunamis. Multistory building columns and bridge piers could be impacted by moving vehicles, 

while structures designed for protection may experience impacts from projectiles or aircraft 

collisions. These collisions impose significant abnormal forces on the structures, necessitating 

careful consideration and analysis to ensure their integrity and safety throughout their lifespan. 

Predicting how these structures will respond to these extreme dynamic loading is therefore crucial 

for better and safer design. 

1.2 Factors Influencing the response of RC Beams Under Impact Loading 

The response of reinforced beams under impact loading is influenced by several factors. Here are 

some key factors that affect their behavior: 

a) Material properties: The mechanical properties of the materials used in the reinforced 

beam, such as concrete and steel reinforcement, play a crucial role. Factors like 

compressive strength, tensile strength, modulus of elasticity, and strain rate sensitivity 

determine the material's ability to withstand impact loading. 

b) Reinforcement detailing: The arrangement, size, and spacing of reinforcement bars 

within the beam influence its response to impact loading. Proper reinforcement detailing 

can enhance the beam's resistance to dynamic loads by improving its ductility, crack 

control, and load distribution capacity. 
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c) Beam geometry and dimensions: The dimensions and shape of the beam, including its 

depth, width, and length, affect its resistance to impact loading. Beams with larger cross-

sectional areas and higher aspect ratios (depth to width) generally exhibit improved load-

carrying capacity and energy absorption during impact. 

d) Loading characteristics: The magnitude, location, and duration of the impact load 

significantly influence the beam's response. Different types of impact loading, such as 

concentrated or distributed loads, can result in varying stress distributions and failure 

modes within the beam. 

e) Boundary conditions and supports: The boundary conditions and support conditions of 

the beam affect its dynamic response. The presence of fixed or simply supported ends, 

restraints, or connections to other structural elements can alter the beam's behavior and the 

transmission of impact forces. 

f) Strain rate effects: The strain rate at which the impact loading is applied can influence the 

material's response. Concrete and steel exhibit strain rate sensitivity, and their properties, 

including stiffness, strength, and energy absorption, may vary under different strain rates. 

g) Preloading and damage history: The previous loading history of the reinforced beam, 

including any pre-existing damage or cracking, can affect its response to impact loading. 

Beams subjected to cyclic loading or previous damage may have reduced strength and 

resistance to dynamic loads. 

h) Dynamic amplification and resonance: The dynamic behavior of the beam can lead to 

amplification of stresses and deflections during impact loading. Resonance phenomena, 

where the natural frequency of the beam aligns with the frequency of the impact load, can 

result in increased stresses and potential failure. 

1.3 Large Displacement and Strain Rate Effect 

In reinforced concrete beams, the term "strain rate sensitivity" describes how the material reacts 

to variations in the rate of loading or deformation. It shows how the rate at which a material is 

stressed or stretched affects its mechanical qualities, such as strength and stiffness. Strain rate 

sensitivity in the context of reinforced concrete beams is particularly important under dynamic 

loading circumstances, such as during earthquakes or impact events. Under these rapid loading 

situations, concrete's general behavior and failure mechanisms may be influenced by how sensitive 

it is to strain rates. Due to the presence of reinforcing steel bars, concrete is typically referred to as 
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a quasi-brittle material because it possesses some properties of brittle materials (such low tensile 

strength) as well as some ductility. The response of concrete in terms of cracking, distortion, and 

eventual failure can be influenced by its strain rate sensitivity. In comparison to static loading 

circumstances, concrete typically shows improved stiffness, strength, and energy absorption 

capability. Numerous mechanisms, including strain rate-dependent micro cracking, interfacial 

friction, and dynamic pore pressure, are thought to be responsible for this behavior. 

The term "large displacement effect" in the context of impact loading describes the considerable 

deformations and displacements that a structure or component goes through when it is subjected 

to high-intensity dynamic loads. It analyzes the impact of geometric nonlinearity and describes 

how the structure behaves beyond small, linear elastic deformations. Due to the high magnitude 

and brief duration of the applied forces during impact loading, the substantial displacement effect 

is more noticeable. The displacements that result from the structure's deformation might grow 

significantly, changing the structure's geometry, stress distribution, and dynamic response. When 

the displacements become significant, the assumptions of small deformations and linear elasticity 

no longer hold. The geometric nonlinearity introduces changes in the stiffness and deformation 

characteristics of the structure, affecting its overall response. 

1.4 Analysis of RC Beams under Impact Loading 

The analysis of a structure under time-dependent short-term loading is not simple because of the 

complicated character of the loading and the inelastic structural response. By resolving the linear 

second order differential equation of motion, the system in a completely elastic viscous damping 

system with little displacement may be quickly and readily solved. However, the mathematics gets 

more difficult and non-linear in situations like an elasto-plastic system under these dynamic 

loading. Because the elastic component of the structural reaction occurs first when various 

engineered constructions, such as beams, frames, plates, or shells, are subjected to impact loads. 

However, a more sophisticated response of both elastic and plastic deformation is distributed 

along the structure when yield limit is achieved at any location. The plastic deformations are 

dispersed throughout the elastic, making it impossible to distinguish between them. Therefore, it 

is extremely difficult, and occasionally even impossible, to solve closed-form analytical problems 

for elasto-plastic structures. In order to obtain a rough solution, strong numerical solutions like 

finite element analysis (FEA) are used. [1] 
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Different researchers have employed different strategies to address the complexity. Among them, 

rigid-plastic analysis is the most straightforward and effective method and is widely accepted and 

applied. The limiting analysis of steel and concrete under static loads is yielding remarkable 

findings with this technology, and it has also demonstrated promising results when studying 

structures under extremely dynamic loading. Because this method disregards the elastic strain of 

materials, it is simple. Differential equations can be solved analytically or numerically to express 

the dynamic response of several types of structures, including beams, plates, shells, and others [2] 

for given initial and end boundary conditions. Only one fixed point or area of a structure 

experienced plasticity at any given time; everywhere else, rigid-body motion predominated. This 

rigid-plastic hypothesis is based on the presumption that energy transmitted to a structure is far 

greater than the energy that may be stored in strain. Because of this, using this technique to better 

understand how plastic deformation affects residual damage and energy absorption in ductile 

structures is particularly effective.  

When applied to a rigid planar frame that has been subjected to impulsive or short-term pulse 

loading, quadratic programming has demonstrated encouraging results [2]. With the use of 

Newmark's integration method, the kinematic and kinetic laws are expressed in nodal or mesh 

descriptions, along with the plasticity relation, and are then transformed into a linear 

complementarity problem (LCP) [3]. Later, khan et al [4] changed the LCP's incremental form 

into its rate form in order to accurately depict the plasticity relation's non-holonomic nature. 

Second, owing to Lemke's Algorithm's reliability in handling the solution of semi-definite LCP, 

he substituted it for Wolfe's type solver.  

1.2 Problem Statement 

Current approach for evaluating the dynamic behavior of RC components such as beams by small 

displacement rigid plastic model have margin of improvement as large displacement and strain 

rate effects have not been considered in the previous modeling. Therefore, a refined model needs 

to be proposed by incorporating large displacement and strain rate effects in order to predict more 

accurate behavior of RCC beam. 
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1.3 Research Significance 

Predicting the response of an RC beam under drop-weight impact loading is a complex 

phenomenon. In this regard, several approaches have been employed to predict the behavior of 

RCC beams under impact loading which includes Spring Mass System, Analytical approach on 

the basis of conservation of energy, Analytical approach on the basis of various contact laws. 

Application of these processes is not always simple and is occasionally impossible. Rigid plastic 

theory, on the other hand, is an efficient method that can be very helpful in understanding this 

complex behavior of RC structures. The yield stress significantly rises with an increase in the strain 

rate because the dynamic behavior of RC structures is very sensitive to strain rate. Any simplified 

model for reliably forecasting the peak response of these structures under drop-weight impact 

loading should take this attribute of visco-plasticity into account. Moreover, as the large 

displacement effect is also considered simultaneously, the complexity of the formulation can 

significantly increase making it quite difficult to capture the response correctly due to nonlinear 

effect of the forces that arises due to the large displacement effect. Therefore, it is imperative to 

develop a simple yet reliable model that can accurately predict the response of RC beams by 

considering both the large displacement effect along with the strain rate effect in order to obtain 

closer response in comparison with the actual one. 

1.4 Research Objectives 

A numerical and experimental study has been carried out on RC beams in this research in order to 

address the gaps and refine the previously proposed rigid plastic model which was worked out 

under small displacement. The main objectives of this study shall be as follows: 

1. To propose a simplified model based on rigid-plasticity incorporating the large 

displacement along with the strain rate effect for accurately predicting the mid span 

deflection of Reinforced Concrete beam under impact loading 

2. To validate the proposed model with the available experimental data 

3. To validate the proposed model with the existing small displacement model 

4. To validate the proposed model by conducting Drop Hammer Impact Experiments 

 

  



6  

CHAPTER 2: LITERATURE REVIEW 

2.1 Overview  

Vehicle collisions, the effect of rock falls, and terrorist operations are a few examples of the diverse 

engineering issues that are covered by the rapidly expanding subject of research known as impact 

loading response. Although RC structures are prominent almost everywhere, little is known about 

how these structures react to impacts. There is a lot of diversity in how response parameters are 

predicted according to different codes of practice such as AASHTO and British Standards, with 

most of them not requiring a dynamic study of the damaged RC components. But the dynamic 

response of RC structures, like beams, suggests that there may be situations in which the dynamic 

behavior differs noticeably from the static loading [5]–[7]. In fact, assessing how safe these 

structures are in relation to potential structural component damage requires the capacity to estimate 

how these structures will respond under impact loadings [8]. The majority of methods used to 

study the nonlinear dynamic plastic response under impact loading are complex and expensive to 

compute. However, due to the removal of the elastic response, rigid-plastic approximations 

provide a streamlined and computationally effective method for dynamic analysis [9]. 

When the plastic deformation is substantial, the role of elasticity in structural response can be 

ignored due to extreme dynamic loads. It is appropriate to consider that stress resultants on a 

section are coupled to deformation by a rigid-perfectly plastic constitutive law. As a result of this 

simple theory in impact dynamics, computationally efficient approaches have been developed that 

allow considerable physical insight into the underlying mechanics of motion [10]. Although a 

research [11] proposed using the rigid-plastic theory to solve dynamic issues, appear to have 

conducted the first thorough investigation in this area. This research produced a large body of 

literature [12]–[16] on the examinations of structures subjected to extremely dynamic loads. 

However, it is pertinent to mention here that, a kinematically acceptable velocity profile for the 

evolution of displaced configuration must be postulated for each closed-form theoretical solution. 

Reinforced concrete exhibits distinct dynamic behaviors and failure modes in response to quasi 

static stresses, like the majority of structural materials. The large displacement effect along with 

the high rate of loading, which alters the material responses, is what causes this behavioral shift. 

The sections that follow provide a detailed explanation of this variant. 
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2.2 The Large Displacement Effect 

The effect of changes in geometry play a crucial role when beams with axial constraint are 

subjected to extreme dynamic loading. Experiments were conducted by Florence and Firth [17] 

and Humphreys [18],   on clamped beams under the action of impulse loading that was distributed 

evenly from where it was found that the displacements that are encountered in the beam on the 

termination of transition phase of motion are comparable to the depth of the beam. It has been 

demonstrated that membrane forces are dominant when displacements are on the order of the beam 

depth [19]–[22] the nature of the deformation is abruptly altered when bending action is replaced 

by membrane response. This suggests a significant stiffening effect in which displacements might 

only be a small portion of those achieved by bending alone. 

In order to properly address other categories of dynamic issues, finite displacement effects must 

also be taken into account. Ting [23] examined a cantilever beam that had a mass attached to its 

tip and could withstand impact loads. He came to the conclusion that some of the discrepancy 

between Parkes' solution and the experiments can be attributed to neglecting the influence of finite 

displacements by comparing his results with Parkes' theory, in which geometry changes are not 

considered, and with the experimental results provided by Bodner and Symonds [24]. 

A rigid-plastic beam that is indefinitely long and supported on a foundation was struck transversely 

by a moving mass has been studied by Yu and Stronge [25]. It is demonstrated that there is no 

modal phase of deformation and that the transient phase moves closer to the dominant dynamic 

mode. Additionally, the axial forces that result from the existence of large displacements are 

particularly significant and their presence helps to reduce the final displacement that the 

infinitesimal theory would predict. 

2.3 Effect of Strain Rate Sensitivity on Materials 

Given that plain concrete's and the reinforcement's essential mechanical properties are greatly 

influenced by the strain rate impact. Therefore, the impact of strain rate on these fundamental 

materials over a greater range should be taken into consideration in order to accurately estimate 

the responses of these structures. 

It is essential to take into account how different types of structures are affected by loading rates. 

As shown in Figure 1.1, the strain rates integrated by various loading encounters in practice have 

been demonstrated by Bischoff and Perry [26]. As is evident from the broad spectrum, creeping 
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often happens at a very modest strain rate (between 10-8 and 10-7 s-1). The strain rate for static 

situations typically ranges from 10-6 to 10-4/s. Additionally, during an earthquake, it may range 

from 10-3 to 1 /s, and for impact loads, it may rise to 50 /s. 

In the blast loading regime, the strain rate that is higher than an impact scenario will decrease. 

Although the inertial effect on a structure is negligible during an earthquake, it is more prominent 

at excessive strain loading. The phenomena of impact loading is significantly complicated since 

it involves inertial effects, energy transfer mechanics, and the distribution of stress waves along 

the structure in addition to the fact that it is an extremely high dynamic loading. As a result, a 

number of influencing elements, including the compressive strength fc', the mass and beginning 

velocity of the drop hammer, and the stiffness of the contact region, have an impact on the 

behavior of the structure. The local failure which is the main response stage and the overall failure 

which corresponds to the secondary response stage which depend on high rates of loading and the 

propagation of stress waves, are two stages of the structural response to drop-weight impact 

loading.  

2.3.1 Concrete 

Three different elements had an impact on how the structure responded to the impact load. They 

are (a) the progression of cracks through time; (b) the viscous characteristics of the material 

between cracks; and (c) the influence of inertia on structures, which modifies stresses and strains. 

There are several ways to take the strain rate effect into account. The idea of Mihashi and Wittmann 

[27] states that when a material is loaded, cracks form on an atomic scale, and the size of these 

fissures grows with time. Because certain numbers of these cracks are expected to be fixed over 

time, long duration of loading results in more cracks than short term high loading. As a result, 

Figure 1.1:  Strain Rate Pertaining to Various Loading Conditions [26] 
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while short-term high loading increases strength, long-term loading decreases it by increasing the 

amount of cracks in the material. The strength that is increased is expressed by following equation: 

𝑓𝑑

𝑓𝑠
= (

𝜎̇

𝜎̇𝑜
)𝛼           (2.1) 

where 𝑓𝑑 is dynamic strength, 𝑓𝑠 is the static strength under the monotonic loading, 𝜎 ̇ is the stress 

rate due to dynamic load, 𝜎̇𝑜 is the stress rate under static loading, and 𝛼 is the parameter that 

depends on loading, material types, and way of loading. 

Reinhardt and Weerheijm have researched the impact of inertia on materials [28]. They looked at 

a collection of cracks that are parallel to the tension loading direction. They calculated the energy 

balance for this movement after noting that fracture faces move with a specific velocity when 

loading is applied. They discovered that the applied energy is too great to be absorbed by the 

fracturing process, and resultantly, the majority of the energy is retained at the fracture points. The 

researchers came to a conclusion on the behavior of stress distribution at the tips of the structure 

under various load rates based on their data. They specifically noticed that the stress distribution 

at the tips varies as the load rate rises. As a result, the stress intensity factor decreases as a result 

of this change in stress distribution. This phenomenon leads to the conclusion that materials 

typically show a gain in strength when subjected to high loading rates. In other words, the materials 

exhibit improved resistance and are able to tolerate larger amounts of stress without failing under 

conditions of rapid loading. 

In their study, Bazant and his associates [29], [30] used a two-stage methodology to assess the 

impact of loading rate. They used a visco-elastic model to account for viscosity in the initial stage. 

They were able to study the behavior of the material under various rates of loading using this 

model, taking into account how the viscous qualities of the material affected how much energy 

was lost during the process. The second phase of the study focused on the cracks' progressive 

expansion. They used the activation energy theory to explain this phenomenon. This hypothesis 

sheds light on the processes that lead to the material's fractures gradually spreading outward under 

dynamic stress circumstances. It is important to note that Bazant et al.'s analysis left out the inertial 

effect. The dynamic response brought on by rapid loading causes a structure to experience 

variations in stresses and strains, which are referred to as the inertial effect. The structural reaction 
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to impact and high-rate loading situations should be understood, but the researchers did not take 

this particular feature into account in their research. The equation proposed by Bazant et al was: 

𝜎 (𝜖) = 𝜎𝑜 (𝜖) [1 + 𝐶1𝐿𝑁 ( 2𝜖 ̇/𝐶2 )]        (2.2) 

Numerous numerical studies have comprehensively investigated the compression characteristics 

of concrete at high loading rates over the period of several decades. The following are some 

important results from these studies: 

Direct Relationship with Strain-Rate: Concrete's stiffness and compressive strength show a 

direct correlation with the strain rate at which the loading is applied. The compressive strength and 

stiffness of the concrete typically get better as the strain rate rises. 

Impact on Different Concrete Strengths: Compared to greater strength concrete, standard 

strength concrete is more strongly affected by high strain rate loading. In other words, compared 

to high-strength concrete, the behavior of regular strength concrete is more significantly impacted 

by an increase in strain rate. 

Moisture Sensitivity: Concrete behaves differently to high strain rates depending on its moisture 

sensitivity. Contrary to concrete that is wet, dry concrete is shown to be less responsive to changes 

in strain rate. Moisture concentration affects the way concrete reacts dynamically to high loading 

rates. 

Slope of Stress-Strain Plot: For concrete, the descending portion of the stress-strain plot steepens 

as the strain rate increases. In other words, under conditions of high strain rate, the rate of decrease 

in stress with increasing strain becomes more dramatic. 

These important discoveries provide insight into concrete's behavior under heavy loads, which is 

essential for engineering applications where heavy loads, collisions, or dynamic forces may occur. 

When it comes to the mechanical properties of concrete, particularly its tensile strength, there is 

relatively limited test data available in comparison to the extensive data on its compressive 

strength. To study the strain rate effect on concrete in tension, researchers have utilized various 

testing techniques, including the cylinder split test, uniaxial direct tension test, and the Split 

Hopkinson Pressure Bar (SHPB) test. In one significant study, Sauris and Shah [31], they looked 

at how sensitive concrete is to strain rates under tension. They came to an important finding as a 
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result of their research: tension-versus-compression testing shows concrete to be more sensitive to 

strain rate. 

Zielinski and Reinhardt [32] employed the Split-Hopkinson-Bar procedure to investigate the 

behavior of concrete and mortar paste at high strain rates. In their study, they found that the 

specimen treated to high-rate loading circumstances experienced significant crack formation. The 

overall strength of the substance increased as a result of this event. Their study revealed an 

interesting fact that the improvement in strength was more noticeable in concrete than in mortar. 

This change in behavior was attributed to concrete's inclusion of harder aggregates, which worked 

to stop crack growth. The concrete's strength increased as a result of a greater accumulation of 

stored energy in the material. 

One of the most complete models for analyzing the impact of strain rate on both the compressive 

and tensile strength of concrete is provided by the CEB (Comité Euro-International du Béton) 

code. In this model, a parameter called as The Dynamic Increase Factor (DIF), is used to take into 

consideration how strain rate affects the behavior of the material. The dynamic increase factor 

(DIF) is the comparison of the static strength (strength under quasi-static or low strain rate loading) 

and the dynamic strength (strength under high strain rate loading). Accordingly, the expression to 

account the increase in compressive strength given by CEB code is as follows: 

𝐷𝐼𝐹𝑐 = {
(

ϵ̇

ϵ𝑠̇
)1.026𝛼𝑠    ϵ̇ ≤ 30 𝑠−1

𝛾𝑠(
ϵ̇

ϵ𝑠̇
)

1

3    ϵ𝑠̇ > 30   𝑠−1            
                 (2.3) 

where 𝜖 ̇ is the strain rate ranges from 30 × 10−6 − 300 𝑠 −1 , ϵ𝑠̇ = 30 × 10−6 𝑠 −1 (the static strain-

rate), log 𝛾𝑠 = 6.156𝛼𝑠 − 2, 𝛼𝑠 = 1/(5 + 9𝑓𝑐𝑠/𝑓𝑐𝑜), 𝑓𝑐𝑜 = 10 MPa, 𝑓𝑐𝑠 is the static concrete 

compressive strength. 

Malvar and Ross [46] discover that there are some differences between the old and new data, 

leading them to change the CEB equation for tensile strength. Following is the modified equation; 

𝐷𝐼𝐹𝑡 = {
(

𝜖̇

𝜖̇𝑠
)
𝛿

 ϵ̇ ≤ 1 𝑠−1

𝛽 (
𝜖̇

𝜖̇𝑠
)

1

3
ϵ̇ > 1 𝑠−1

             (2.4) 
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where 𝜖 ̇ is the strain rate from 10−6 𝑠 −1 − 160 𝑠 −1 range, 𝜖 ̇𝑠 = 10−6 𝑠 −1 (the static strain rate), 𝑙𝑜𝑔𝛽 

= 6𝛿 − 2, 𝛿 = 1/(1 + 8𝑓𝑠𝑐/𝑓𝑐𝑜), 𝑓𝑐𝑜 = 10 MPa, 𝑓𝑐𝑠 is the static concrete compressive strength. 

To examine the impact of strain-rate and moisture content on the increased strength of concrete, 

Tedesco and Ross [33], [34] conducted a series of SHPB tests. The equations they suggested are 

listed below; 

𝐷𝐼𝐹𝑐 = 0.00965 log10 𝜖̇ + 1.058 ≥ 1.0        𝑓𝑜𝑟 𝜖̇ ≤ 63.1 𝑠−1    (2.5) 

and    

𝐷𝐼𝐹𝑐 = 0.758 log10 𝜖̇ − 0.289 ≤ 2.5             𝑓𝑜𝑟 𝜖̇ > 63.1 𝑠−1    (2.6) 

 

Li and Meng [35] applied SHPB and discovered that the inertial effect on the structure increases 

the hydrostatic effect, which is more pronounced with increasing dynamic effect and strain rates 

greater than 102 s -1.  

The equation of Yamaguchi et al. [36] is used to incorporate the strain rate effect into the 

compressive strength equation provided by Drucker-Prager is: 

𝐷𝐼𝐹𝑐 = 1.021 − 0.05076 log10 𝜖̇ + 0.2583(log10 𝜖̇)2      (2.7) 

By applying compressive tri-axial loading to concrete, Fujikake et al. [54] discovered a dynamic 

rise in the concrete's compressive strength which is as follows: 

 𝐷𝐼𝐹𝑐 = (
𝜖̇

ϵ𝑠𝑐̇
)
0.006[log(

𝜖̇

ϵ𝑠𝑐̇
)]

1.05

         (2.8) 

where 𝜖 ̇𝑠𝑐 = 12 × 10−5 𝑠 −1 and 𝜖̇ < 10 𝑠 –1 

In view of above, it can be concluded that there are many equations that can be used to handle the 

dynamic increase in concrete's compressive and tensile strengths. However, a number of variables 

affect these equations' precision and utility. For instance, a number of concrete parameters, 

including the size of the aggregates used, the water-to-cement ratio, the amount of cement in the 

mix, the form of the aggregates, and even the age and curing method of the concrete, can affect 

the Dynamic Increase Factors (DIF). The behavior of concrete under various strain rates is affected 

by all of these variables. Given this complexity, it is crucial to validate these equations using a 
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large amount of experimental data that covers a variety of scenarios. We can make sure that the 

suggested equations and models are accurate and useful in practical settings by carrying out 

comprehensive experiments. To better understand how concrete reacts to dynamic loads, we 

essentially need to combine theoretical models with empirical data. By doing this, we can create 

prediction models that are more reliable and precise, which will be crucial when constructing 

secure and durable concrete structures for diverse dynamic loading scenarios. 

2.3.2 Steel Reinforcement 

Numerous researchers have extensively investigated the behavior of strain-rate effect on steel 

reinforcements. In-depth studies on the strain-rate behavior of reinforcing bars were carried out by 

Fu et al. [37]  made important observations, noting that the yielding stress of the bar is affected by 

strain rate, whereas strain hardening remains largely unaffected. 

Moreover, relevant discoveries were also made by Soroushian and Choi [38] on the connection 

between strain rate and the mechanical characteristics of steel reinforcements. In accordance with 

their studies, the ultimate strength of the bar exhibits less sensitivity to strain rate than the yielding 

stress does. However, they discovered that the material's elastic modulus is unaffected by the strain 

rate. Soroushian and Choi came to the conclusion that the strain rate primarily impacts the steel's 

static yield stress. 

Furthermore, Soroushian and Choi found that different steel kinds have varying sensitivity to strain 

rate. Comparatively to steels with higher yielding stress, lower yielding stress steels were found to 

be more sensitive to fluctuations in strain rate. Malvar [39] investigated the dynamic increase 

factor for steel reinforcements in accordance with these findings. Malvar, in particular, found an 

inverse correlation between the dynamic rise factor and the bar's yielding stress. This shows that 

the dynamic increase factor tends to decrease as the yielding stress rises. 

On the basis of the available experimental data, an equation is developed for DIFs. The following 

equation is applicable for strain rates ranging from 10-4 s-1 to 10 s-1 and yield stresses in the range 

of 290-710 MPa. The equation is as follows: 

𝐷𝐼𝐹𝑠 = (
𝜖̇

10−4)
𝛼

          (2.9) 
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where for yield stress, 𝛼 = 𝛼𝑓𝑦; 𝛼𝑓𝑦 = 0.074 − 0.04𝑓𝑦/414; while for the ultimate stress, 𝛼 = 𝛼𝑓𝑢; 

𝛼𝑓𝑢 = 0.019 − 0.009𝑓𝑦/414; 𝜖 ̇ is the strain rate in the form of s -1 and 𝑓𝑦 is the static yield strength 

in MPa. 

2.3.3 Reinforced Concrete Beam 

A simple sectional analysis method was used by Kulkarni and Shah [40] in their study to take into 

account the impact of strain rate on the behavior of a reinforced concrete (RC) beam. However, 

this method, which also took into account rate-dependent material characteristics, was unable to 

completely capture the shape of the stress-strain curves. The elevated bond characteristics that 

appear under high-rate loading situations and cause localized bar yielding to occur in an excessive 

way were blamed for the inadequate curve depiction. Recognizing the significance of overcoming 

this limitation, they devised an alternative strategy. To address this issue, Kulkarni and Shah opted 

to incorporate the shape of the average stress-strain curve, alongside a characterization of localized 

yielding. By integrating these additional elements into their analysis, they sought to achieve a more 

comprehensive understanding of how the RC beam responds to varying strain rates. 

An innovative non-linear analytical model was presented by Fujikake et al. [41] in their novel 

work with the goal of precisely capturing the load-midspan deflection relationship of a reinforced 

concrete (RC) beam exposed to drop-weight impact. Their model incorporates the impact of strain 

rate on both the concrete and steel reinforcement to solve the challenges of dynamic loading. 

Fujikake et al. made use of the moment-curvature sectional relation of the RC beam to establish 

the load-deflection relationship. They made sure that a complete portrayal of the beam's response 

to impact loading was achieved by taking into account the impacts of strain rate on both the 

concrete and the steel reinforcement. This strategy enables the model to take into consideration the 

materials' time-dependent behavior and dynamic responses, which are essential for correctly 

projecting the structural performance. 

In addition to this, Adhikary et al. [42] performed a numerical simulation on  RC beams to examine 

the impact of various factors on the dynamic increase factor (DIF) and then provided two empirical 

formulae for the DIF. 

 With Shear Reinforcements: 

𝐷𝐼𝐹 =  [1.89 − 0.067𝜌𝑔 − 0.42𝜌𝑣 − 0.14 (
𝑎

𝑑
)] 𝑒𝐷𝐼𝐹= [1.89−0.067𝜌𝑔−0.42𝜌𝑣−0.14(

𝑎

𝑑
)]

 (2.10) 
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 Without Shear Reinforcements: 

𝐷𝐼𝐹 = [0.004𝜌𝑔 + 0.136 (
𝑎

𝑑
) − 0.34] 𝑙𝑜𝑔𝑒 𝛿 + [0.009𝜌𝑔 + 0.41 (

𝑎

𝑑
) + 0.157] (2.11) 

where 𝜌𝑔 is the reinforcement of longitudinal bars, 𝜌𝑣 is reinforcement ratio of the transverse bars, 

𝑎/𝑑 is the shear span to the effective depth ratio, and 𝛿 is the loading rate. 

2.4 Various Methods of Examining Response of RC Beam under Impact Loading 

In research industry several methods have been adopted inorder to capture the response of RC 

Beam under impact loading. These methods include experimental setup, numerical and analytical 

formulation. Each of them will be discussed in successive sections. 

2.4.1 Experimental Method 

First Method to observe the behavior of RC beam is by forming an experimental setup for impact 

loading loading. In this regard, an Eight 2m long RC beams were tested by Kishi et al. under the 

midspan drop-weight of a 200 kg steel hammer. Cross-sectional dimensions, impact velocity, and 

reinforcement ratios are the variables in these tests. The author made the assumptions that the 

dynamic increasing factor would be 2 and that the ratio of the stored to the input energy would be 

0.7 in order to design the flexure failure of the RC beam under drop-weight impact. The static 

bending resistance of an RC beam under impact stress was calculated using a straightforward 

empirical equation which is as follows: 

𝑃𝑢𝑠𝑑 = 
0.35𝐸𝑘𝑑

𝛿𝑟𝑑
           (2.12) 

where 𝑃𝑢𝑠𝑑 is the static bending strength, 𝐸𝑘𝑑 is the imparted kinetic energy and 𝛿𝑟𝑑 is the mid-

span residual displacement. 

Moreover, Fujikake et al. [41] conducted an impact test on twelve rectangular-shaped RC simply 

supported beams with cross-sectional measurements of 150 x 250 mm and 1700 mm in length. All 

of the beams are having reinforced section, and because their static shear to bending resistance is 

between 1.5 and 2.6, they all are assumed to fail in flexural. A 400 kg steel mass with a 90 mm-

radius hemispherical contact tip was dropped, striking every beam. Drop-height and longitudinal 

reinforcement served as the variables. It was discovered that the quantity of longitudinal bars 

influences failure behavior. The RC beams only fails in the flexure mode for beams with fewer 

longitudinal bars, but fails locally near the impact site for beams with more longitudinal bars. By 
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strengthening the compressive reinforcement, this local failure is significantly decreased. 

Additionally, it was discovered that a commensurate increase in drop height significantly increases 

maximum impacted force, impulse, duration of the impacted load, maximum mid-span deflection, 

and time necessary to attain maximum mid-span deflection. However, flexural stiffness has an 

impact on the duration of the impacted load, the maximum deflection, and the time needed for this 

maximum deflection. 

Tachibana et al.[43] conducted a series of low impact speed tests with span, cross-section, and 

longitudinal reinforcement as the variables. The striker's contact surface is curved, with a 75 mm 

radius. At the midpoint of the beam, steel weights of masses 150, 300, and 450 kg were employed 

as drop weights. As the ratio of shear resistance to bending resistance was kept greater than 1, it 

was anticipated that all of the beams would fail in flexure mode under static pressure. Additionally, 

the author creates a calculation based on the imparted energy and ultimate static flexural strength 

to calculate the maximum mid span deflection of the beam. The formula reads as follows: 

𝛿𝑚𝑎𝑥 = 0.522 
𝐸𝑐𝑜𝑙

𝑃𝑢
          (2.13) 

where 𝛿𝑚𝑎𝑥 is the maximum midspan deflection (mm), 𝐸𝑐𝑜𝑙 is the imparted kinetic energy (J), 𝑃𝑢 

is the static ultimate flexural resistance (kN). This equation is valid in the range of 16.7 – 66.7 kN 

and 150 – 5400 

The performance of RC beams were also examined under drop-weight impact loading by Chen 

and May [44]. He tested a total of 18 RC beams for this purpose, of which 14 have 2.7 m spans 

and the other 4 have 1.5 m lengths. A striker was dropped possessing a mass of 98.7 kg with a 

striking velocity of 7.3 m/s and all the beams were put to the test. The variables included the 

support conditions which were kept as simply supported and pin whereas the striker's contact 

surface were kept as hemispherical and flat. During testing, longitudinal reinforcements' impact 

force, acceleration, and strain time histories were recorded, and fracture profiles were generated 

from the video. Three different types of failure mechanisms were identified during testing in the 

reinforced concrete beams that were subjected to impact loading: 

a) Flexure Failure with Cracks: In this type of failure, the beams deformed flexibly and 

developed cracks in the area that was affected. The concrete demonstrated the ability to endure 

some bending stress before failing. 
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b) Local Crushing and Yielding: Another type of failure involved local crushing of the concrete 

at the place of impact, together with yielding of the steel reinforcement. This failure mode 

demonstrated that the localized damage was caused when the forces concentrated at the impact 

point were greater than the resistance of the concrete. 

c) Flexure Cracks with Scabbing: The third failure mode resembled the flexure failure discussed 

earlier (case a), with fractures emerging as a result of bending force. On the bottom surface of the 

beam, however, concrete scabbing was visible in addition to cracks. This demonstrated that the 

impact pressures were sufficiently strong to cause concrete pieces at the underside to separate. 

From the comprehensive testing conducted, valuable conclusions were drawn regarding the factors 

influencing impact forces and failure modes: 

a) Support Conditions: Surprisingly, the support conditions were found to have a relatively 

minor effect on the impact forces compared to other factors. 

b) Beam Length: The length of the beams played a more significant role in determining the 

impact forces and failure behavior. Longer beams exhibited different responses compared 

to shorter ones. 

c) Behavior of Interface and Flat Head: Interestingly, the behavior of beams with different 

end conditions (interface and flat head) was found to be similar under impact loading, 

indicating that the influence of end conditions on the structural response was limited. 

2.4.2 Numerical and Analytical Method 

In a study conducted by Adhikary et al [45], they developed three-dimensional finite element (FE) 

models of reinforced concrete (RC) beams. These models were designed to accurately represent 

the behavior of RC beams under various loading conditions. To ensure the reliability and accuracy 

of their models, they compared the simulation results with experimental data from physical testing 

of RC beams. Having successfully verified the FE models against experimental results, Adhikary 

and the team proceeded with a parametric study. The purpose of this study was to investigate and 

understand the influence of three key factors on the behavior of RC beams: 

a) Longitudinal Reinforcement Ratio: This factor refers to the ratio of longitudinal steel 

reinforcement present in the concrete beam. By varying this ratio, they could observe its 

impact on the structural response and performance. 
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b) Transverse Reinforcement Ratio: The transverse reinforcement ratio represents the 

amount of stirrups or ties used to reinforce the RC beam. Analyzing different levels of 

transverse reinforcement allowed them to assess its effect on the beam's behavior. 

c) Shear Span to Effective Depth Ratio: This ratio signifies the relative dimensions of the 

shear span to the effective depth of the RC beam. By varying this parameter, they could 

gain insights into how shear influences the structural response. 

By systematically exploring these parameters, Adhikary et al. aimed to gain a deeper 

understanding of the factors influencing the behavior of RC beams. Such investigations contribute 

to the development of improved design guidelines and engineering practices, ensuring the safety 

and efficiency of RC structures in real-world applications. The combination of FE modeling, 

experimental validation, and parametric studies enables engineers to optimize the design of RC 

beams and enhance their performance under various loading conditions. 

Saatci and Vecchio [46] employed a non-linear finite element analysis (NLFEA) approach to 

model reinforced concrete (RC) beams subjected to drop-weight impact loading. The efficiency of 

their modeling technique was evident through a comparison of time history data, specifically 

midspan deflection and strain in the longitudinal reinforcement, as well as the cracking profiles 

obtained from both NLFEA and experimental testing. By using the distributed stress field model 

(DSFM), the researchers achieved highly effective simulations of the response of shear critical RC 

beams under impact loading conditions. The DSFM incorporated the influence of strain rate-

dependent material properties, making it a robust tool for capturing the dynamic behavior of the 

beams. Through the NLFEA procedure, Saatci and Vecchio demonstrated a significant 

advancement in understanding the complex behavior of RC beams under impact scenarios. The 

ability to validate the modeling results against experimental data highlights the accuracy and 

reliability of their approach. By considering strain rate effects and employing the DSFM, their 

modeling technique provides a comprehensive and realistic representation of the structural 

response to impact loading. 

Zhao et al [47] developed a NLFEA using LS-DYNA with primarily default model parameters 

which was capable of predicting the impact responses of RC beams for both failure modes, though 

flexural failure is predicted with higher accuracy. In addition to this, an analytical model was also 

developed by Zhao et al which was based on conservation of energy and contact laws.  
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Fujikake et al. [41] utilized a two degrees of freedom mass-spring damping system to model 

reinforced concrete (RC) beams under drop-weight impact loading. This system aimed to simulate 

the dynamic behavior of the RC beam during impact events. The model consisted of two springs 

with distinct properties. The first spring represented the global stiffness of the RC beam and was 

obtained from the load versus midspan deflection relationship, incorporating the strain rate effect. 

The second spring represented the stiffness of the contact between the impacting weight and the 

beam, calculated using the Hertz contact theory. In terms of damping, the researchers assumed a 

global damping value of zero, implying no energy dissipation within the beam itself. However, for 

the contact spring, the damping value was considered to be half of the critical damping coefficient, 

allowing for some energy dissipation at the contact interface. When the model was applied to 

predict the response of the RC beam in cases of global flexure failure, the output was in good 

agreement with the impacted force, reaction force, and midspan deflection time histories. 

However, when it came to scenarios involving both local and global flexure failure, significant 

variation was observed between the model predictions and experimental data. These findings 

indicate that the model's accuracy is satisfactory for predicting the behavior of RC beams when 

global flexure failure occurs. However, it may require further refinement to effectively simulate 

situations where both local and global flexure failures are present. This highlights the complexity 

of modeling the response of RC beams under dynamic loading conditions and underscores the 

importance of continuously improving simulation techniques to achieve more reliable and realistic 

predictions for various failure scenarios. 

In addition to this, Khan et al. [4], [48] used rigid plastic approach to predict the response of beam 

subjected to impact loading. They developed a numerical model based on kinetic, kinematic, and 

material plasticity relations. The resulting model took the form of a Linear Complementarity 

Problem (LCP), which allowed them to analyze the rigid plastic behavior of simply supported 

beams under impact loading conditions. However, it's worth noting that this particular numerical 

model had some limitations. First of all, the model was proposed just on the consideration of small 

displacement. Furthermore, bending-shear interaction and strain rate effect were also not taken 

into account. This model was further refined in a research [49] wherein bending and shear 

interaction were introduced in this rigid plastic model. However, the effect of large displacement 

and strain rate effect is still not incorporated and thus, this model has further margin of 

improvement for accurately predicting the response of RC beams under impact loading. 
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CHAPTER 3: METHODOLOGY 

In this chapter, the small displacement rigid plastic model having the formulation of the Linear 

Complementarity Problem which was proposed by Khan et al [4] will be revised and refined by 

deriving a formulation for the Large Displacement along with the Strain Rate Effect. First of all 

the kinetic and kinematic equation for the beam shall be established. Thereafter, a relation between 

kinetic-kinematic equations will be formed to subsequently give the formulation for Large 

Displacement as a Linear Complementarity problem. Furthermore, to validate the model 

experimental program was conducted, so the assembly for experimental setup has also been 

explained in successive sections. 

3.1 Nodal Description of Kinetic Equation 

Consider a simply supported beam having a spans of Length L as shown in the Figure 3.1 subjected 

to impact loading. The mass of each of the member of the beam has been lumped at the center at 

a distance 
L

2
 from each member. Out of the complete beam a single element of beam having length 

L has been considered in order to derive the formulation. Figure 3.3 shows the element in the 

original configuration and the displaced configuration. The displacements and the member end 

forces in the local co-ordinate system is represented by F’m and d’m respectively and the rotation 

of the element is represented by p as shown in Figure 3.3. 

 

 

 

 

 

 

 

 

 

Figure 3.1: Simply Supported beam under Impact Loading 
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Figure 3.2: Lumped Mass Model of Beam showing Independent nodal and inertial velocities 

Figure 3.3: Single Beam element in Original and Displaced Configuration under Large Displacement 
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Now as the element or a member of a beam is removed, number of nodal forces Fmj’(j=1,2,3…..,m) 

which acts on the joint which connects each of the nodes of the beams. For one member or element 

of a planar beam the member forces denoted by Sm=6 and the forces that corresponds to it are 

shown in Figure 3.3. These forces are depicted in the local coordinate system. Furthermore, these 

nodal forces can be expressed in term of independent member forces denoted by Xi (i= 1,2,3,…m). 

Since we know that there are 3 conditions of equilibrium, therefore, the nodal forces F can be 

specified by 3 different independent forces X for each of the member of the beam. 

In addition to these forces, when the load is distributed over the entire length of the beam stress 

resultants are induced at each of the members along with the independent member deformation 

rates. 

Now, in order to maintain the equilibrium following equations are obtained: 

[
 
 
 
 
 
F1′

F2′

F3′

F4′

F5′

F6′]
 
 
 
 
 

     =    

[
 
 
 
 
 

0 0 1
−L−1 −L−1 0
−1 0 0
0 0 −1
0 −L−1 −L−1

0 1 0 ]
 
 
 
 
 

  [
X1

X2

X3

]   -  

[
 
 
 
 
 

1 0
0 1
0 0

−1 0
0 −1
0 0 ]

 
 
 
 
 

  [
πn

πt
]    (3.1) 

Eq (3.1) can also be written as: 

 F′m = AmTXm − Aπm
T πm        (3.2) 

And πn and  πt are expressed as: 

[
πn

πt
] =  [

s

Lc
−

s

Lc
1 − c

−
1

L
+

c

Lc

1

L
−

c

Lc
s

] [
X1

X2

X3

]       (3.3) 

and s= sin(p) and c= cos(p) and p is the rotation of the element 

Eq (3.3) can be expressed as: 

πM= ZM XM           (3.4) 

Where πn and  πt behaves as the additional axial and shear forces on the element and the Matrix 

A is a constant matrix while matrix Z is the Variable matrix which changes with respect to time 

based on the change in the changes in the geometry of the element. it is a function of the two 
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parameters p and x3, or of 𝛿𝑛 and 𝛿𝑡. These displacement parameters are indicated in Figure 3.3 

and are expressed as: 

𝑝 =  tan−1 (
𝛿𝑡

𝐿−𝛿𝑛
)          (3.5) 

𝐿𝑐2 = (𝐿 − 𝑥3)
2 − (𝐿 − 𝛿𝑛)2 + 𝛿𝑡

2        (3.6) 

3.2 Nodal Description of Kinematic Equation 

Accordingly, as per Figure 3.3 the kinematic description for the beam element is expressed in 

terms of independent member deformations and displacements which are denoted by xm and dm
′  

respectively: 

[
 
 
 x1 + (p −

δt

L
) 

x2 − (p −
δt

L
) 

x3 + (δn − x3)]
 
 
 
 =   [

0 −L−1 −1 0 L−1 0
0 L−1 0 0 −L−1 1
1 0 0 −1 0 0

]      

[
 
 
 
 
 
 
d1

′

d2
′

d3
′

d4
′

d5
′

d6
′ ]
 
 
 
 
 
 

     (3.7) 

The equation can be summarized as: 

xm + xπm = Am d′m          (3.8) 

In this form, xπ1 and xπ2 are additional rotational deformations, and xπ3, is an additional axial 

deformation, associated with the plastic zones at the ends of the member. They are expressed as: 

[

xπ1

xπ2

xπ3

] =  [

s

Lc
−

1

L
+

c

Lc

−
s

Lc

1

L
−

c

Lc

1 − 𝑐 𝑠

] [
δn

δt
] + [

Rx1

Rx2

Rx3

]       (3.9) 

Expressed as: 

xπm = ZM
T  δπM + Rπm          (3.10) 

Where 𝑅πm are the residuals given by: 

𝑅𝑥1 =  − 𝑅𝑥2 =  𝜌 −
𝐿 𝑠𝑖𝑛𝜌

𝐿𝑐
,           (3.11) 

 𝑅𝑥3 =  −  𝐿(1 − 𝑐𝑜𝑠𝜌)            (3.12) 
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3.3 Nodal Description of Kinetic-Kinematic Equation 

When a beam is divided in N number of elements, a model is created by which is represented in 

terms of degrees of freedom denoted by B. The degrees of freedom are selected at the junction of 

nodes and are expressed in terms of nodal displacement called as independent nodal velocities 𝑞̇ 

as shown in Figure 3.2. In order to obtain a kinematic admissible velocity profile each of the nodal 

velocities are released one by one and the effect on all the other nodes are determined in terms of 

independent deformation rates. 

Furthermore when the load 𝛌 is applied at the nodes of the beam it can be represented by velocities 

generated at each node it produces different types of forces which are the independent member 

forces, inertial forces and the member forces which are generated due to Large Displacement 

Effect which remains at equilibrium.  

D'Alembert's Principle is employed in order to combine the kinetic and the kinematic equation 

resulting in the mathematical equation describing the kinetic-kinematic equation which is given as 

under: 

[
 
 
 
 
𝟎 𝐀𝐓 𝐀𝐝

𝐓 𝐀𝛑
𝐓 𝐀𝐨

𝐓

𝐀 𝟎 𝟎 𝟎 𝟎
𝐀𝐝 𝟎 𝟎 𝟎 𝟎
𝐀𝛑 𝟎 𝟎 𝟎 𝟎
𝐀𝐨 𝟎 𝟎 𝟎 𝟎 ]

 
 
 
 

 

[
 
 
 
 

𝐪̇
−𝐗
𝛍
𝛑
𝛌 ]

 
 
 
 

=  

[
 
 
 
 
𝐐 = 𝟎
𝐱 + 𝐱𝛑

𝛍
𝛅𝛑

𝛅 ]
 
 
 
 

         (3.13) 

Where,  π =  ZX , xπ = ZTδπ + Rx are the matrices in deformed geometry of the structure. 

It is noteworthy to mention here that each of the submatrices A, Ad, A, and A0 are comprised of 

the constant values which depend only on the structure’s geometry based on the original 

configuration and the matrix Z is the matrix that depend on the geometry based in the deformed 

configuration and changes with the change in geometry. 

Furthermore, the inertial forces can be determined by relation between The Mass matrix and their 

corresponding accelerations. The relation is as follows: 

𝛍 =  −𝐦𝐮̈                   (3.14) 

Where m is formed by a Diagonal Matrix and 𝐮̈ is the corresponding accelerations at the center of 

masses. 
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3.3 Plasticity Relations for Material Modelling 

By establishing a link between the stress-resultant 𝑆𝑖
1, also known as the bending moment, and the 

strain-resultant rate 𝑠̇𝑖
1, at the critical section i (i=1,2,3,…, n) one may derive the constitutive 

equation of the material model.. The yielding at the critical section i is shown in Figure 3.4 to be 

characterized by two variables, namely the plastic potential 𝐲∗
𝐢 and the plastic deformation 

multiplier rate  𝐱̇∗
𝐢 . Natural plasticity is irreversible, and complementary conditions are utilized to 

guarantee this process. 

 

 

 

 

 

 

 

 

 

 

The plastic potential 𝐲∗
𝐢 and the plastic deformation multiplier rate 𝐱̇∗

𝐢  are brought together with the 

aid of the complementarity condition 𝐲∗
𝐓 𝐱̇∗ = 𝟎. It means that the appropriate yield limit, 𝐲∗

+𝐢=0, 

must be reached in order for the plastic deformation to take place i.e. 𝐱̇∗
+𝐢 > 𝟎. Conversely, if the 

yield limit is not reached, let's say 𝐲∗
+𝐢>0, the plastic deformation cannot be active because 𝐱̇∗

+𝐢 =

𝟎. 

In addition to this, the moment capacities for positive or negative bending are captured by vector 

𝐗∗. For instance, if 𝐗∗
+𝐢 ≥ 𝟎, implies that plastic deformation has taken place  (𝐲∗

+𝐢 = 𝟎, 𝐱̇∗
+𝐢 ≥ 𝟎) 

at critical section i and hence, stress resultant is positive. . A similar argument applies to 𝐗∗
−𝐢 ≥ 𝟎 

which entails that 𝐲∗
−𝐢 = 𝟎, 𝐱̇∗

−𝐢 ≥ 𝟎 when 𝐒𝟏 
𝐢  is negative.  

Figure 3.4: Rigid Plastic Material Modelling 
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In view of above discussion, the plasticity relation of a rigid perfectly plastic model can be written 

as: 

[𝟎 𝐍𝐓

𝐍 𝟎
] [

𝐱∗̇

𝐒
] +[

𝐘∗

𝟎
] =  [

𝐗∗

𝐬̇
]                (3.15) 

𝐲∗ ≥ 𝟎                     (3.16) 

𝐲∗
𝐓 𝐱̇∗ = 𝟎                     (3.17) 

𝐱̇∗ = 𝟎                     (3.18) 

where matrix N is expressed as N =  [I, -I]  which represents the exterior unit normal to the yield 

function and I denotes the identity matrix. 

3.4 The Large Displacement Formulation 

It is possible to combine the vectoral relations and the triad of complementarity conditions into a 

set of second-order differential equations with respect to time. However, these equations become 

more intricate due to the presence of the complementarity conditions. As there is no known exact 

solution to this type of mathematical problem, it seems logical to use a numerical approach. As a 

result, a time marching method is implemented to move the solution forward from one time point, 

tn, to the next, tn+1, where the subscript n represents consecutive discrete time intervals and t is the 

duration between them. Subsequently, Newmark’s time-integration scheme is used to express 

centroidal velocities and accelerations which is as below: 

𝐮̈n+1 = 𝑏0 (𝐮̇n+1 − 𝐮̇n) − 𝑏1𝐮̈n                    (3.19) 

𝐮̇𝑛+1 = 𝐮𝑛 + 𝑏2𝐮̇𝑛 + 𝑏3𝐮̈𝑛 + 𝑏4𝐮̈𝑛+1                 (3.20) 

in which integration constants are  

𝑏0 = 1 /𝛾̅∆𝑡 ,                             (3.21)  

𝑏1 = 1−𝛾 ̅ /𝛾̅ ,                      (3.22) 

𝑏2 = ∆𝑡,                        (3.23)  

𝑏3 = (0.5 − 𝛼̅)∆𝑡,                   (3.24)  

𝑏4 = 𝛼̅∆𝑡2,                    (3.25) 
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For rigid-plastic problems, khan et al found that one can obtain that appropriate results if α = 0.25 

and γ = 0.5. 

Equations (3.14) to (3.18) are combined together, at the time t = tn+1, and coupled with the 

Newmark’s scheme (3.19) to (3.25) to give following the governing system: 

[

𝐛𝟎𝐌𝐪 𝐀𝛑
𝐓𝐙 − 𝐀𝐓 𝟎 𝟎

𝐀𝛑𝐙𝐓 − 𝐀 𝟎 𝐓𝐍 𝟎

𝟎 𝐍𝐓𝐓𝐓 𝟎 𝐈

] [

𝐪̇𝐧+𝟏

𝐗𝐧+𝟏

𝐱̇∗𝐧+𝟏

𝐲∗𝐧+𝟏

]  = [

−𝐘𝐧+𝟏

−𝐑𝐱

𝐗∗

]        (3.26) 

𝐲∗𝐧+𝟏 ≥ 𝟎                     (3.27) 

𝐲∗𝐧+𝟏
𝐓  𝐱̇∗𝐧+𝟏 = 𝟎            (3.28) 

𝐱̇∗𝐧+𝟏  ≥ 𝟎                     (3.29) 

with variables 𝐪 ̇n+1, 𝐗𝑛+1 unrestricted, the right-hand side sub-vector 𝐘𝑛+1 of (16) is given by: 

 𝐘𝐧+𝟏 = −𝐀𝐨
𝐓 𝛌𝐧+𝟏 + 𝐀𝐨(𝐧+𝟏)

𝐓 + 𝐛𝟎𝐌𝐪𝐪𝐧 − (𝐀𝛑
𝐓𝐙 − 𝐀𝐓)𝐗𝐧+𝟏                         (3.30) 

where matrix Z depends upon the current position of the member and is given by: 

         𝒁 =  

[
 
 
 

S

Lc

−1

L
+

c

Lc

−
s

Lc

1

L
−

c

Lc

1 − c s ]
 
 
 
                                          (3.31) 

and 𝐑𝐱 denotes Residuals given by: 

𝑅𝑥1 = −𝑅𝑥2 =  𝜌 −
𝐿 𝑠𝑖𝑛𝜌

𝐿𝑐
,            (3.32) 

 𝑅𝑥3 = − 𝐿(1 − 𝑐𝑜𝑠𝜌)                         (3.33) 

and mass matrix 𝐌𝐪, associated with the nodal accelerations 𝐪̈, is 

            𝐌𝐪 = 𝐀𝐝
𝐓𝐦𝐀𝐝                            (3.34) 

The mathematical structure of the governing system eq (3.26) to (3.34) being approximated is that 

of a linear complementarity problem (LCP). It is important to note that the variables [𝐱̇∗, 𝐲∗]are 

restricted to being complementary pairs. Additionally, the primary sub-matrix associated with 
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variables [𝐪̇, 𝐗] , is negative semi-definite. Hence, in order to solve the resulting LCPs lemke 

algorithm was used due to its simplicity and reliability. 

3.5 The Strain Rate Effect 

Similar to many other structural materials, RC structures are substantially stronger at extremely 

high rate service loads than under regular rate service loads. In these situations, the yield stress 

rises significantly as the straining rate increases, enabling the inclusion of strain rate effects in the 

dynamic plastic response [37], [42], [50] . Thus, it is imperative to incorporate the rate-dependent 

plastic moment into the equation given above. Notably, a substantial body of research on the strain 

rate-sensitive behavior at the material constitutive level is accessible. However, a little effort is 

made to examine the structural behavior under various loading rates. In order to account for both, 

the material strain-rate effect and various structural influencing parameters, the dynamic increase 

factor—that is, the ratio of dynamic strength to corresponding static strength—has been 

recommended in recent literature for use in numerical formulations. 

Reinforced concrete structures exhibit substantially larger capacity to absorb energy under impact 

loads. According to the parametric study [51] on the dynamic increase factor (DIF), numerous 

material and geometric parameters can affect the strain-rate effect in these structures. On the basis 

of this research, two empirical equations—one with shear bar reinforcement and the other 

without—are suggested for the DIF of RC beams. These are as follows: 

 With Shear Reinforcements: 

𝐷𝐼𝐹 =  [1.89 − 0.067𝜌𝑔 − 0.42𝜌𝑣 − 0.14 (
𝑎

𝑑
)] 𝑒𝐷𝐼𝐹= [1.89−0.067𝜌𝑔−0.42𝜌𝑣−0.14(

𝑎

𝑑
)]

 (3.35) 

 Without Shear Reinforcements: 

𝐷𝐼𝐹 = [0.004𝜌𝑔 + 0.136 (
𝑎

𝑑
) − 0.34] 𝑙𝑜𝑔𝑒 𝛿 + [0.009𝜌𝑔 + 0.41 (

𝑎

𝑑
) + 0.157] (3.36) 

where 𝜌𝑔 is the longitudinal bar reinforcement ratio, 𝜌𝑣 is the transverse bar ratio, 𝑎/𝑑 is the ratio 

of shear span to effective depth, and 𝛿 is the loading rate. 

It is essential to select a constitutive equation keyed to the experimental test programs in order to 

incorporate the aforementioned DIF equations in the plastic moment capabilities. The 

straightforward equation proposed by Cowper and Symonds [52] has been widely applied to the 
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body of research on the strain-rate effects for a variety of metal alloys, including steel and 

aluminum. It has been chosen to apply this equation to reinforce concrete structures in the current 

study based on this precedent. The equation given by copper and Symonds (23) is as follow: 

𝜖 ̇ = 𝐷 (
𝜎𝑜
′

𝜎𝑜
− 1)

𝑝

 ,    𝜎𝑜
′ ≥ 𝜎𝑜         (3.37) 

where 𝜎𝑜
′  is the dynamic stresses at yielding, 𝜖 ̇ is the corresponding strain rate, 𝜎𝑜 is the static state 

yield stress, and both D and p are material constants. It is of interest to note that the ratio 𝜎𝑜′/𝜎𝑜 

can be considered as DIF straightforwardly.  

Now, equation may be written as: 

        𝑙𝑜𝑔𝑒 𝜖 ̇ = 𝑝 𝑙𝑜𝑔(𝐷𝐼𝐹 − 1) + 𝑙𝑜𝑔𝑒 𝐷             (3.38) 

which has the same form as a line with the parameter p as the slope, while the 𝑙𝑜𝑔𝑒 𝐷 as the 

intercept. Hence, these coefficients can be determined from the experimental data of RC structures.  

By integrating through the depth (H) of rectangular cross-section beam, the above equation is 

reproduced by Aspden & Campbell [53] as given below 

𝑀𝑜
′

𝑀𝑜
= {1 + [

𝐻

2𝑧(1+
1

2𝑝
)
𝑝

𝑥̇

𝐷
]

1

𝑃

}         (3.39) 

Where z = length of plastic hinge and is calculated through 

 𝑧 = 𝑑 + 0.05 × 𝑙                 (3.40) 

Now, in order to incorporate strain rate sensitivity in the proposed mathematical formulation for 

rigid-plastic dynamics, equation for capacities at interval can be expressed as 

𝐗∗𝐧+1
 = 𝐕𝑛 𝐗𝒐∗          (3.41) 

where 𝐗∗𝐧+1
 is the plastic capacity at the corresponding active node in the structural system at 

time 𝑡 = 𝑡𝑛+1, 𝐗𝒐∗ is the corresponding plastic capacity for the original state of the structural material 

and 𝐕𝑛 is the viscoplastic function, evaluated at time 𝑡 = 𝑡𝑛. 
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3.6 Proposed Formulation for Large Displacement Along with Strain Rate Effect 

To incorporate strain rate effect into the large displacement model Eq (3.41) shall be used, the 

capacity can be expressed by combining the dynamic increase factor.  

Now 𝑿∗𝒏+1
 will become our Dynamic Moment Capacity at time n+1.  

Then After employing the Vn which is our dynamic increase factor, the capacity of the beam at 

each interval will be increased and then the resulting governing system for Large Displacement 

with strain Rate effects will be as follows: 

[

𝑏0Mq 𝐀𝛑
𝐓𝐙 − 𝐀𝐓 0 0

𝐀𝛑𝐙𝐓 − 𝐀 0 TN 0

0 NTTT 0 I

]  [

q̇n+1

Xn+1

ẋ∗n+1

y∗n+1

]  = [
−Yn+1

−Rx

𝐗∗𝒏+𝟏

]       (3.42) 

𝒚∗𝑛+1 ≥ 𝟎                                    (3.43) 

𝒚∗𝑛+1
𝑇 𝒙̇∗𝑛+1 = 0                        (3.44) 

𝒙̇∗𝑛+1 ≥ 𝟎                                    (3.45) 

3.6 Working of the Proposed Mathematical Formulation 

The working of the proposed mathematical formulation has been depicted in the Figure 3.5. To 

start the program, first of all the matrix related to input parameters will be calculated which 

includes the Stiffness Matrix, Mass Matrix, Load Vector etc in Original Configuration. After that 

the initial deformations and capacities, Residual R and Deformed Geometry Matrix Z will be 

calculated at time n=0 by utilizing the initial conditions. The tabular form of the Eq (3.42) will be 

developed and will be solve with the help of lemke Algorithm. Using them the RHS of the 

Eq (3.42)  all the unknown on the left hand side will be determined at time tn+1. A check |Zn+1-Zn| 

is then employed to cater any changes in geometry in the beam. Thereafter the deformations will 

be checked and the program will get back to induce the increased capacities by Eq (3.41) due to 

strain rate effect and changes in Geometry due to Large Displacement Effect by calculating Z at 

that interval respectively. The loop will continue until all the deformations ceases to exist which 

means that motion has stopped. 
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3.7 Experimental Setup 

3.7.1 Mix Design and Parameters of Beams 

Three beams were casted to conduct a parametric study by varying the drop height of hammer. 

The cross section of the beam was kept 240mm by 160 mm and length was 2000 mm as shown in 

the Figure 3.6. The clear span between the c/c support was 1700mm. The cross section was so 

selected from the literature so that the beams fail in flexure.  

The mix design of the ratio was kept as 1:1:2 @ 0.28 w/c ratio after several trail mixing to achieve 

a target strength of 40 MPa. SP-3rd Generation Superplasticizer 1.3% was used to achieve the 

desired strength. Table 3.1 shows the mix design kept for casting the beams. 

Table 3.1: Mix Design for Beam 

Description 
Cement 

(kg/m3) 

Fine 

Aggregrates 

(kg/m3) 

Coarse 

Aggregate 

(kg/m3) 

w/c Ratio 
Super 

Plasticizer 

Quantity 574 621 1284 0.28 1.3% 

Figure 3.5: Schematic Diagram of Working of Proposed Model 
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3.7.2 Assembly for Impact Loading Test 

The assembly for the impact loading test is shown in Figure 3.7. To set up the experimental setup 

for impact loading, first of all a hammer of 275Kg was assembled by means of steel plates of size  

1m x1m of 12 plates of 20mm thickness. After the assembly of the 275-kilogram hammer using 

sturdy steel plates, each measuring 1x1 meter and 20mm thick, the target was to achieve accurate 

and controlled impact loading on the beam. To ensure precise targeting, a truss guiding assembly 

was meticulously installed on the supporting columns. This truss guiding assembly was installed 

which comprised of long steel structural elements in shape of truss that facilitated the hammer's 

smooth descent while maintaining its alignment with the desired center point of the beam. 

Moreover, to minimize friction and resistance during the hammer's free fall motion, rollers were 

integrated into the guiding assembly, guaranteeing a clean and unobstructed impact path. In 

addition to this, in order to measure the velocity of hammer a laser sensor system comprising of 

three lasers was installed as shown in Figure 3.7. The distance between each sensor was 150 mm. 

These sensors measured the time of flight of the hammer at multiple points when the hammer cut 

each of the laser. The hammer velocity was then calculated by calculating the change in distance 

over time.  

 

(8 𝑁𝑜𝑠.  3 𝐵𝑎𝑟𝑠) 

@ 380 mm c/c 

𝐴𝑠 = 253 𝑚𝑚2  
(2 𝑁𝑜𝑠.  4 𝐵𝑎𝑟𝑠) 

𝐴𝑠 = 253 𝑚𝑚2  
(2 𝑁𝑜𝑠.  4 𝐵𝑎𝑟𝑠) 

160 mm 

2
4

0
 m

m
 

fy = 505.6 Mpa 

L = 2000 mm 

Ln = 1700 mm 

Figure 3.6: Parameters of Beam for Experimental Validation 
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The hammer, now suspended at the designated height, was secured in its elevated position using a 

rope system as shown in Figure 3.8. A rope was firmly fastened to the top of the hammer, and it 

was directed over a pulley, ingeniously routing its path to a predetermined anchoring point on one 

of the columns. This anchoring arrangement effectively held the hammer in suspension, awaiting 

the precise moment of release for the impact test.  

 

 

 

 

 

 

 

Figure 3.7: Assembly Setup for Experiments 
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In the quest to assess the beam's response to impact, a crucial aspect was to monitor the maximum 

deflection experienced by the beam during the loading process. For this critical measurement, a 

high-precision Linear Variable Differential Transformer (LVDT) was strategically installed as 

shown in Figure 3.9. With its ability to accurately predict displacements up to 100mm, the LVDT 

was precisely positioned to monitor and record the mid-span deflection of the beam as the impact 

event unfolded. Furthermore, to quantify the peak impact force generated by the hammer during 

its fall a Load Cell capable of recording loads up to an impressive 180 tons was employed. This 

Load Cell, carefully positioned in the setup, provided real-time measurements of the maximum 

force experienced by the beam during the impact. However, it is pertinent to mention here that 

proposed numerical model does not record the peak impact force. This force measurement 

provision was kept for future provision in order to further refine the current model and then verify 

the peak impact force using the values recorded in this experiment. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8: Rope and Pulley System for Anchoring Hammer 

Figure 3.9: Various Instruments for Data Acquisition 
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To ensure the seamless acquisition of data during the experiment, a highly reliable and efficient 

National Instrument data logger was chosen. This state-of-the-art data logging system was 

equipped to record and store readings from both the Load Cell and the LVDT throughout the 

impact test. The data logger's precision and data storage capabilities made it an indispensable asset, 

as it would play a pivotal role in providing comprehensive data for post-experiment analysis and 

further investigation. 

The combination of these meticulously selected instruments, the precise setup, and the 

comprehensive data collection approach ensured that the experimental impact loading test on the 

reinforced concrete beam was conducted with accuracy and reliability. The recorded data, 

encompassing both deflection measurements and applied load values, served as a foundation for 

in-depth analysis, offering critical insights into the beam's behavior and structural performance 

under impact loading conditions.  
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CHAPTER 4: RESULTS AND DISCUSSION 

4.1 Overview 

In this chapter, the validation of proposed Large displacement model incorporating Strain Rate 

Effect has been conducted through three different techniques i.e. Validation through available data 

available in literature, validation of model against small displacement model and then validation 

of model against the experiments conducted. Statistical analysis has been done in order to confirm 

the accuracy and robustness of the model. 

4.2 Validation of Proposed Large Displacement Model with Strain Rate Effect  

4.2.1 Experimental Database 

By using a standardized set of inclusion criteria, a comprehensive experimental database of 80 

simply supported Reinforced Concrete beams was carefully chosen from the literature [41], [43], 

[54]–[61]. The database only contains rectangular cross-sectional beams which were strike with 

flat or spherical contact surfaces that are subject to impact loads at the mid span. The specimens 

which were failing only in bending and bending-shear are included in this dataset of 80 Reinforced 

Concrete beams.  

4.2.2 Influence Parameters of Experimental Database 

This article examines the key influencing factors for RC simply supported beams. Figure 4.1 

provides the influence parameters, including the impacted drop weight velocity, mass, geometric 

dimension of the beam, concrete compressive strength, longitudinal reinforcement, and shear 

reinforcement. The projectile's velocity can be seen in the figure to range from 2 to 9 meters per 

second, however the majority of the data are in the 3 to 7 meter per second range. Similar to the 

impact mass M, which ranges from 200 to 1000 kg and has a significant number of tested beams 

between 300 and 1000 kg. Furthermore, the width and height of RC beams fall within the range 

limits of 100-300 mm and 100-400 mm, respectively. The net span of simply supported RC beams 

spans from 1000 to 4000 mm whereas the reinforcement ratio falls in the range 0.2-0.8%. These 

influence parameters are shown graphically in Figure 4.1: 
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Figure 4.1: Influence Parameter of Experimental Database 
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4.2.3 Validation with Experimental Database 

A comparative analysis is performed between the proposed LCP model incorporation large 

displacement and strain rate effects against the experimental data, as illustrated in Figure 4.2. To 

ascertain the accuracy of the LCP model using the collected dataset, a statistical assessment of 

midspan deflection is conducted through the use of the coefficient of determination i.e. R2. The 

coefficient of determination is a variance-dependent measure, and a value close to 1 signifies 

excellent predictive capability. In this context, the correlation between the experimental and 

predicted midspan deflection is represented by an impressive R2 value of 0.941, indicating a 

superior level of prediction accuracy. In addition to this, the best-fit line for the predicted peak 

midspan deflection follows the equation y = 0.9746x, which is remarkably close to the 45-degree 

benchmark. This observation suggests a strong and reliable relationship between the experimental 

and predicted results. 

In conclusion, the statistical comparison showcases the effectiveness of the proposed LCP model, 

with the R2 value of 0.941 signifying its excellent predictive capacity. The close alignment of the 

best-fit line with the 45-degree benchmark further reinforces the reliability of the model's 

predictions in relation to the experimental data. These findings validate the suitability of the LCP 

model for accurately predicting midspan deflection in response to impact loading scenarios.  

 

 

 

 

 

 

 

 

Figure 4.2: Comparison of predicted and experimental results of Maximum Midspan deflection 
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4.3 Validation of Proposed Model With Existing Model of Small Displacement 

Table 4.1 compares the various models given by researchers using statistical parameters. It is very 

significant to note that the produced formulation's dependability is superior to that of all other 

models due to its greater value of R2, and that its best-fit line's (m) slope is most similar to that of 

the benchmark line. 

4.3.1 Khan et al Model of Small Displacement 

The comparison of Large Displacement Model incorporating strain rate effect against model 

proposed by khan et al [4] is shown in Figure 4.3. The model was tested against the database of 80 

RC beams for the comparison purpose.  

In the evaluation of the proposed Large Displacement Model incorporating strain rate effect, the 

coefficient of determination i.e. R2 was found to be an impressive 0.97. This indicates an excellent 

goodness of fit, demonstrating how closely the model's predictions align with the actual data. 

Additionally, the Average Absolute Error (AAE) was calculated to be 13.27%. Another 

performance metric, the average PER (Predicted to Experimental Ratio) value, was determined to 

be 0.98. This suggests that, on average, the model's predictions are only 2% lower or higher than 

the actual values. The Coefficient of Variation (CoV) associated with the average PER value is 

15.37%, implying a moderate degree of variability in the PER values. 

On the other hand, when examining the khan et al model [4], its coefficient of determination R2 

was found to be 0.84 which was significantly higher than the LCP model. Moreover, The Average 

Absolute Error (AAE) for this model was determined to be 18.06%, indicating an average 

deviation of 18.06% between the predicted and actual values. The mean PER value for the Khan 

et al model was calculated to be 1.2 which was greater than the value of 1. However, the Coefficient 

of Variation (CoV) associated with the mean PER value is relatively high at 24.89%, indicating a 

greater variability in the PER values for this model. Hence, the proposed model outperformed the 

small displacement model proposed by Khan et al. 
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Figure 4.3: Khan et al [4] vs Proposed Model 

 

4.3.2 Large Displacement Model Without Strain Rate Effect 

A comparison between proposed Large Displacement Model incorporating strain rate effect 

against the Large Displacement model without strain rate was also made by removing the strain 

rate effect formulation from the proposed model as shown in Figure 4.4. The model was tested 

against the database of 80 RC beams for the comparison purpose.  

In the evaluation of the proposed Large Displacement Model incorporating strain rate effect, the 

coefficient of determination R2 was found to be an impressive 0.97. This indicates an excellent 

goodness of fit, demonstrating how closely the model's predictions align with the actual data. 

Additionally, the Average Absolute Error (AAE) was calculated to be 13.27%. Another 

performance metric, the average PER (Predicted to Experimental Ratio) value, was determined to 

be 0.98. This suggests that, on average, the model's predictions are only 2% lower or higher than 

the actual values. The Coefficient of Variation (CoV) associated with the average PER value is 

15.37%, implying a moderate degree of variability in the PER values. 



41  

On the other hand, when examining the large displacement model without strain rate effect, its 

coefficient of determination R2 was found to be 0.95, Though slightly lower than proposed LCP 

model, it still indicates a strong correlation between the model's predictions and the observed data. 

Moreover, The Average Absolute Error (AAE) for this model was determined to be 15.31%, 

indicating an average deviation of 15.31% between the predicted and actual values. The mean PER 

value for the large displacement model was calculated to be 0.95 which suggested that the model's 

predictions are 5% lower than the actual values as compared to only 2% lower of the proposed 

model. However, the Coefficient of Variation (CoV) associated with the mean PER value is also 

relatively high at 17.51% against CoV of 15.37% of proposed model, indicating a greater 

variability in the PER values for this model. Hence, the proposed model was showing better result 

against the model that was neglecting the strain rate effects. 

 

Figure 4.4: Large Displacement vs Large Displacement with Strain Rate (Proposed Model) 
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Table 4.1: Summary of Validation of Proposed Model against Various Models 

Author 
No of 

samples 

Mean 

PER 

Standard 

Deviation 
COV (%) AAE (%) R2 

Khan et al. 80 1.2 0.3 24.89 18.06 0.84 

Large 

displacement 

Model 

80 0.95 0.169 17.51 15.31 0.95 

Large 

displacement  

Model with 

Strain Rate 

80 0.98 0.15 15.37 13.27 0.97 

 

4.4 Validation of Proposed Model with Experimental Work 

In order to validate the model, a parametric study was conducted by varying the height of drop 

hammer. The hammer was dropped from three different heights i.e. 0.7m, 1.2m, 1.7m and the 

displacement time histories of mid span deflection were compared with those obtained from the 

proposed model. In this regard three beams were casted for drop heights having the cross section 

of the beam as 240mm x 160 mm and length as 2000 mm as shown in the Figure 3.6. The clear 

span between the c/c support was 1700mm. The cross section was so selected from the literature 

so that the beams fail in flexure.  

The cylindrical compressive strength was obtained as 40.28 MPa by casting cylinders and The 

flexure strength was obtained using by three point loading test giving the flexural strength of 20.46 

MPa. The recorded peak impact force obtained from load cell were 286 KN, 347KN and 466KN 
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for drop heights 0.7m, 1.2m, 1.7m respectively whereas the Impact velocity of hammer obtained 

from laser sensor system were 3.46 m/s, 4.44 m/s and 5.38 m/s. The results are tabulated under 

Table 4.2. 

Table 4.2: Results of Static and Dynamic Test on RC Beams 

Description (fc’) 

(Mpa) 

Flexure 

Strength 

(MPa) 

Mass of 

Hammer 

(Kg) 

Dropping 

Height (m) 

Recoded 

Peak 

Impact 

Force (KN) 

Impact 

Velocity 

of 

Hammer 

(m/s) 

IB-1 40.28 20.46 275 0.7 286 3.46 

IB-2 40.28 20.46 275 1.2 347 4.44 

IB-3 40.28 20.46 275 1.7 466 5.38 

 

4.4.1 Failure Pattern of Beams 

The experiment for the impact loading test were conducted with three drop heights i.e. 0.7m, 1.2m, 

1.7m. The beams cross section was so selected so that the beams fail in flexure since the proposed 

model was able to capture response of flexure critical beams. Figure 4.5 shows the failure pattern 

of beams that were subjected to drop hammer impact under various drop heights. 

It can be shown from Figure 4.5 that when the drop height was 0.7m few vertical flexure cracks 

were appeared around the mid span indicating the flexure failure of the beam. Furthermore, when 

the drop height was increased to 1.2m the quantity of flexure cracks was increased and the cracks 

appeared to spread away from the mid span as well. Furthermore, when the drop height was kept 

at the maximum value of 1.7m, the cracks further increased and the depth of crack at the mid span 

also increased depicting the flexure failure of beams. Hence all three beams were failed under the 

flexure action as evident from Figure 4.5. 
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4.4.2 Validation of Mid Span Deflection Time Histories 

Finally, the proposed model was validated by conducting a parametric study of varied drop heights 

by making a comparison between the time histories of the mid span deflection obtain from the 

experimental results and from the small displacement model of khan et al, Large Displacement 

Model without strain rate effect and the proposed model of Large Displacement Incorporating the 

Strain Rate Effect.  

Failure pattern at Drop Height 1.7 m 

Failure pattern at Drop Height 1.2 m 

Failure pattern at Drop Height 0.7 m 

Figure 4.5: Failure Pattern of Beams at Various drop heights 



45  

4.4.2.1 Progression of Mid Span Deflection of Beams under Impact Loading at Drop Height 

0.7m 

Figure 4.6 shows the graph of mid span deflection time histories plotted against height of drop 

hammer 0.7m. The black curve shows the displacement time curve obtained from the experimental 

results. It can be seen from Figure 4.6 that the orange curve representing the small displacement 

model is showing relatively large value of progression at the mid span. Furthermore, the Large 

Displacement model without strain rate effect shown by yellow curve depicts a slight decrease in 

progression of displacement due to the effect to membrane axial forces effect. Finally, the green 

curve shows the plot of the proposed model of large displacement with strain rate effect. It can be 

easily fathom from the Figure 4.6 that as both the large displacement effect and strain rate effects 

are considered in the model the progression of mid span displacement is decreasing due to the 

stiffening effect of the beams which is closer to the actualization of the experimental works. 

 

 

Figure 4.6: Comparison of Mid Span Deflection Histories at Drop Height 0.7m 
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4.4.2.2 Progression of Mid Span Deflection of Beams under Impact Loading at Drop Height   

1.2m 

Figure 4.7 shows the graph of mid span deflection time histories plotted against height of drop 

hammer at 1.2m. The black curve shows the displacement time curve obtained from the 

experimental results. Similar pattern of the comparison of progression of mid span deflection was 

seen as was obtained when the drop height of the hammer was kept 0.7m. The small displacement 

model curve is showing relatively large value of progression at the mid span which was followed 

by Large displacement model without strain rate effect and lastly the proposed model curve was 

showing the closest results when compared with the experiment results as evident from Figure 4.7.  

 

Figure 4.7: Comparison of Mid Span Deflection Histories at Drop Height 1.2m 

4.4.2.3 Progression of Mid Span Deflection of Beams under Impact Loading at Drop Height   

1.7m 

Figure 4.8 shows the graph of mid span deflection time histories plotted against height of drop 

hammer at 1.7m. The black curve shows the displacement time curve obtained from the 

experimental results. It can be seen from Figure 4.8 that the orange curve representing the small 

displacement model is showing significantly large value of progression at the mid span. 
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Furthermore, the Large Displacement model without strain rate effect shown by yellow curve 

depicts a slight decrease in progression of displacement due to the effect to membrane axial forces 

effect. Finally, the green curve shows the plot of the proposed model of large displacement with 

strain rate effect. It can be easily fathom from the Figure 4.8 that as both the large displacement 

effect and strain rate effects are considered in the model the progression of mid span displacement 

is decreasing due to the stiffening effect of the beams and showing the closest results when 

compared to the actual results obtained from experiments. Moreover, it can also be noted that as 

the displacement is increasing the proposed model is showing more closer results. 

 

Figure 4.8: Comparison of Mid Span Deflection Histories at Drop Height 1.7m 

4.4.2.4 Summary of Comparison of Maximum Mid Span Deflection 

Table 4.3 shows the comparison of the mid span deflections obtained at various dropping heights 

of hammer from experimental test against the mid span deflections obtained through the proposed 

model. As per the results in Table 4.3 the maximum mid span deflection recorded for the Beams 

IB-1, IB-2 and IB-3 were 21.72, 32.46 and 44.63 mm respectively. The set of experiments were 

first run tested in the small displacement of Khan et al [4]. The results of mid span deflection 

obtained were 24.69, 37.23 and 52.18 mm showing an Average Absolute error of 15.09%. 

Subsequently, the test were run in the model comprising of large displacement without strain rate 
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effect. The mid span deflection of each of the beams were 22.60, 34.69 and 48.38 mm showing an 

an Average Absolute error of 6.43%. Finally, the experiments were run in the refined model of 

large displcements incorporated with the strain rate effect. The mid span deflections were 

respectively 20.87, 30.88 and 43.10 mm showing an Average Absolute error of 4.08%. Thus, it is 

can be observed that the  propsed model is able to give the maximum mid span deflection with 

adequate accuracy given that the error is less than 5%.  

Table 4.3: Summary of Maximum Mid Span Deflections 

Description Experimental 

Tests 

Small displacement Large 

displacement 

without strain rate 

Large 

displacement with 

strain rate 

Max 

Deflection 

(mm) 

Max 

Deflection 

(mm) 

AAE % Max 

Deflection 

(mm) 

AAE 

% 

Max 

Deflection 

(mm) 

AAE 

% 

IB-1 21.72 24.69 13.70% 22.60 4.04% 20.87 3.90% 

IB-2 32.46 37.23 14.66% 34.69 6.84% 30.88 4.89% 

IB-3 44.63 52.18 16.91% 48.38 8.40% 43.10 3.44% 

Average Absolute Error 

(AAE %) 

15.09% 6.43% 4.08% 

It can be observed that the proposed model that considered only large displacement showed better 

results than the model of small displcement; however, the results of maximum deflection in this 

model were observed to be a bit higher than the experimental values. This was due to the fact that 

Large Dispacement only considered the second order effect due to the residual forces which 

occurred in the beam. Unlike the two models of small and large displacement wherein the strain 

rate effect has not been considered, the progression of mid span deflection of the model of large 

displacement with strain rate effect showed closer and more accurate progression as compared to 

the two models. As the mid span displacment was increasing the proposed model was predicting 

more closer results. The response was stiffer due to the consideration of the strain rate effect as the 
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capacity in the beams were changing at each interval of time thereby capturing closer and more 

accurate response of the beams. 

CHAPTER 5: CONCLUSION AND RECOMMENDATIONS 

1. An efficient method for assessing the behavior of reinforced concrete (RC) beams, 

particularly those that are flexure critical, under impact loading circumstances, is provided 

by the proposed model that incorporates large displacement along with the strain rate 

effect. 

2. The Proposed model has been adequately refined than the previous model proposed by 

Khan et al and in comparison to Khan et al.'s earlier model, we can achieve more precise 

estimates of the maximum displacement experienced by RC beams when subjected to 

impact loading by including this improved model. 

3. The proposed large displacement model incorporating strain rate effect key advantage is 

its capacity to minimize the ultimate maximum mid-span displacement when compared to 

predictions from the small displacement model. With the increase in mid span deflections, 

this benefit becomes even more prominent, demonstrating the model's greater capacity to 

capture accurate behavior of reinforced concrete (RC) beams under heavy loads. In 

practical terms, this means that the proposed model provides more realistic and 

conservative estimates of the mid-span displacement when subjected to severe loading 

scenarios. By capturing the nonlinear behavior of the RC beams more effectively, the 

model offers a more accurate representation of their response under extreme conditions, 

leading to better predictions of their structural performance. 

4. The improved accuracy of the proposed model is due to the consideration of the important 

parameters that have a significant impact on the RC beam’s behavior when subjected to 

impact loading. These important parameter includes the axial forces which arises due to 

the non-linear effects in beam which is catered through the formulation of large 

displacement. Furthermore, due to the consideration of strain rate effect, the increase in 

capacity at each interval has been incorporated in the proposed model. Together, by 

considering these two factors, the response of the mid span deflections of the beam can be 

predicted closely to the actual response which RC usually exhibit which was evident from 
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the fact that the Average Absolute Error of the proposed model was less than 5% when 

compared to the experimental results. 

5. Hence from the above discussion, it is evident that the proposed model of large 

displacement incorporating strain rate effect is valuable tool for engineers and researchers 

when designing RC beams as it can accurately predict the mid span deflection of RC beams 

subject to impact loading by reducing the potential for overestimating mid-span 

displacements thereby making the design more economical and safe. 

5.1 Recommendations 

Several important recommendations can be made based on the study's findings for future 

researches: 

1. The proposed Rigid plastic model should be further modified in order to estimate the peak 

impact force accurately and validate the results with obtained results of peak impact force 

in the experimental work. 

2. Extend this 1D formulation to 2D that is for plates and shell objects. 
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