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Abstract 

A formulation for analyzing beams experiencing impact loading, taking into account their large 

displacement behavior, is developed using a three-node beam element based on displacements. 

Ever since computers were first applied to nonlinear structural analysis, various nonlinear beam 

elements have been proposed. The substantial number of publications on nonlinear analysis of 

beam structures is partly attributed to the availability of different nonlinear formulations. However, 

it remains unclear which formulation is the most effective. It is worth noting that developing a 

comprehensive nonlinear beam formulation is not a simple task when considering a beam element. 

This study aims to address this issue by proposing a formulation to accurately predict the nonlinear 

behavior of beams subjected to impact loading. To validate the proposed formulation, it is cross-

verified against experimental data from various research studies available in the literature through 

statistical analysis. Further, a comparative study is conducted with previously available literature 

models and with those predicted by the proposed large displacement solution model. This 

comparison ensures the efficiency and reliability of the model 
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CHAPTER 1: INTRODUCTION 

1.1. Impact loading 

In impact loading, a sudden and intense force or load is applied to a structure member for a short 

time period. Typically, such loading is characterized by its rapid and dynamic nature, resulting in 

high levels of stress and strain on the material or structure. 

Impact loading can arise in numerous situations and applications, such as: 

1. Engineering and Structural Analysis: In engineering, impact loading is considered when 

designing structures to withstand unforeseen events, such as collisions, explosions, or 

heavy impacts.  

2. Sports and Safety Equipment: In the design and testing of safety equipment, such as 

helmets, padding, and body armor, impact loading is crucial in order to avoid injury to 

athletes, workers, or individuals in high-impact situations. 

3. Aerospace and Defense: For aircraft, spacecraft, and military vehicles, impact loading is 

crucial to the design process in order to ensure that they will withstand potential collisions, 

bird strikes, and other kinds of impacts. 

4. Industrial and Machinery Applications: Industrial machinery can be subject to impact 

loading during start-up, shutdown, or sudden changes in load conditions, requiring 

appropriate engineering and design in order to prevent catastrophic failure.. 

Considering the dynamic nature of impact loading and the rapid changes in momentum, its effects 

can differ from those of static loading. In order for structures and materials to cope with such 

transient loading conditions effectively, they must be carefully designed and tested. 

Researchers and engineers utilize a variety of simulation techniques to understand the response of 

materials and structures against impact loading conditions, ensuring reliability, safety, and 

performance in real-world environments. Examples include finite element analysis, computer 

modeling, and physical testing. 
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1.2. RC beam response against impact loading 

This study is focusing to investigate the behavior of Reinforced Concrete against impact loading, 

it is important to discuss the different loading conditions that will influence the behavior of the 

beams. 

a. Low Rate and Extended Duration Scenario: In the presence of a low rate of impact 

loading over an extended period of time, RC beams will predominantly exhibit flexural 

behavior. As a consequence, the main mode of deformation will be bending, in which the 

beam undergoes curvature as a result of the load. The figure-1 demonstrates a visual 

representation of this flexural behavior. 

b. High Rate and Short Duration Scenario: A RC beam, on the other hand, will exhibit 

predominant local shear behavior when experience high rate of impact loading over a small 

period of time. The deformation pattern implies that the concrete and steel reinforcement 

will be sheared along the length of the beam. In order to make the explanation of this local 

shear behavior more understandable, a visual rendition is provided. 

c. Middle Rate of Impact Loading Scenario: In cases where impact loading rates fall 

between the extremes of low and high, RC beams will fail through flexural and shear failure 

patterns. As a result of a beam experiencing both bending and localized shear effects 

simultaneously, this flexural-shear interaction occurs. As part of this study, a 

comprehensive analysis of the flexural and shear failure patterns will be conducted. 

This research aims to forecast the non-linear flexural behavior of RC beams under a variety 

of impact loading conditions. Non-linearity refers to the fact that the response of the beam 
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may not follow a linear relationship with the load applied, and a thorough understanding 

of this behavior is vital to the design of resilient structures that can resist dynamic loads. 

 

                                 

Figure 1.1 RC beam response against impact loading 

 

1.3. Methods for Evaluating the Effects of Impact loading 

As discussed previously, understanding the impact response of structures is crucial for a variety of 

engineering and safety applications. Whenever a structure experience impact loading, such as a 

collision, blast, or sudden external force, its behavior and capacity to withstand such loads become 

critical factors. Researchers and engineers need to analyze how the structure deforms, absorbs 

energy, and reacts during an impact in order to ensure its safety, performance, and durability. 
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1.3.1. Empirical Method:  

To estimate the behavior of a structure against impact loading, the empirical method is a practical 

approach that relies on experimental data and observations. In this method, the structure is 

physically tested on a scaled-down model or on an actual structure. A structural engineer subjects 

the structure to controlled impact loads in order to accurately measure various parameters, 

including displacements, accelerations, and stress distributions. As a result of analyzing the 

experimental data, they advance a better understanding of the performance of the structure during 

an impact.1 

An empirical approach is particularly useful when dealing with complex or non-linear systems for 

which analytical or numerical approaches may prove challenging due to the lack of comprehensive 

theoretical models. For accurate and reliable data on the impact response of real-world structures, 

empirical testing is essential. Because real-world structures have complexities that are difficult to 

capture through equations alone, empirical testing is essential for the development and 

improvement of impact models. Furthermore, empirical data can serve as a basis for validating 

and improving analytical and numerical models. 

1.3.2. Analytical Method:  

In the analytical method, mathematical equations and principles are used to determine how a 

structure will respond to an impact load. Engineers develop mathematical models that simulate the 

behavior of structures under impact conditions. Models based on differential equations and 

calculus are used to describe the structural response based on fundamental principles of mechanics 

and physics. 2 

This approach is suitable for systems that are well-defined and relatively simple, where 

mathematical equations can be used to accurately describe the underlying physical phenomena. 

These models can be used by engineers to predict the behavior of structures without the need for 

physical experimentation. Using analytical solutions, one can gain insight into the variation in key 

parameters, such as deformation, stress, and energy absorption, as a result of different impact 

scenarios. Analytical methods may, however, have limitations in situations involving complex 
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structures or situations where the underlying physics are highly non-linear or difficult to model 

mathematically. When such situations arise, numerical methods are often more effective. 

1.3.3. Numerical Method:  

Numerical methods involve solving complex equations describing the functioning of structures 

against impact loads through the use of computer simulations and mathematical models. It involves 

the use of computer software to generate a virtual representation of the structure. In the simulation, 

they specify the geometry, the properties of the material, the boundary conditions, and the impact 

scenario.3 

As the numerical method is highly versatile and can be applied to complex geometries and material 

properties, it lends itself well to the analysis of real-world structures exposed to complex impact 

scenarios. Simulations can be run multiple times with varying parameters to gain a comprehensive 

interpretation of how the structure behaves under different conditions. The use of numerical 

simulations is particularly valuable for predicting outcomes for which the use of empirical or 

analytical methods is difficult or impractical. The results provide valuable insight into critical 

factors including failure modes, stress concentrations, and potential damage, which assists in the 

design and optimization of structures for specific impact scenarios. 

As a result, each method for determining the impact response of structures has distinct advantages 

and applications. Empirical methods provide direct experimental data, which ensures the accuracy 

and validity of models. Analytical methods provide quick and accurate predictions for simpler 

systems that have well-known equations. The numerical method is well suited for handling 

complex and real-world structures, providing detailed and comprehensive information about the 

behavior of these structures. It is possible to ensure the safety, efficiency, and robustness of 

structures subjected to impact loads by judiciously combining these methods. 

1.4. Large Displacement 

In structural mechanics, the "large displacement solution" is a sophisticated method of analyzing 

structures that undergo significant deformations, where the conventional linear elastic theory is no 

longer sufficient. Structures can exhibit nonlinear behavior when subjected to substantial loads or 
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displacements, which means that the relationship between applied forces and resulting 

deformations is not linear.4 

The following points can be highlighted within the context of the large displacement solution: 

a. Geometric Nonlinearity: Traditional linear analysis assumes that displacements and strains 

are small, which means that the structure's geometry will remain relatively unchanged during 

loading. This assumption, however, is no longer valid when dealing with large 

displacements. In such a case, geometric nonlinearity becomes important, and the 

deformation of the structure can have a significant effect on its overall shape and geometry. 

b. Changes in Stiffness: Structures can experience significant stiffness changes under large 

displacements. Linear analysis typically assumes that stiffness remains constant regardless 

of the deformation. However, due to changes in shape and material behavior, stiffness 

properties may vary as the structure deforms. 

c. Nonlinear Behavior of Deformations: Large displacement solutions consider the nonlinear 

relationship between applied forces and resulting deformations. During larger displacements, 

the material behavior may become nonlinear, and the relationship between stress and strain 

may deviate from Hooke's law, describing linear elastic behavior. 

d. Precise Results: When geometric nonlinearity is taken into account, as well as changes in 

stiffness during loading, the large displacement solution provides more accurate and precise 

results than linear analysis. By using it, engineers can more accurately predict what will 

happen to structures when they are subjected to significant deformations. 

e. Practical Applications: A large displacement solution is especially relevant when analyzing 

structures experience extreme loads, for example bridges under earthquake forces, tall buildings 

under winds, or aerospace structures subjected to aerodynamic forces.  

In summary, the large displacement solution is a complex approach that takes into account geometric 

nonlinearities and changes in stiffness during loading. Taking these factors into consideration, this 

method provides more precise and accurate results when analyzing structures that undergo 

significant deformations. A linear elastic analysis would lead to inaccurate predictions in situations 

where extreme loads are applied to structures, ensuring safety and reliability. 
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CHAPTER 2: LITERATURE REVIEW 

2.1.  Introduction  

Critical evaluation of present literature regarding analysis of rigid-plastic behavior of structure 

under dynamic loading conditions is present in this chapter. This study focuses on contentious 

issues in the literature that have underscored the importance of this investigation. It is important 

to understand how ductile elasto-plastic structures respond to extreme loads, such as pulses, 

impulses, and impacts. It may be difficult to get understanding of dynamic plastic behavior of a 

system by using numerical methods such as finite element and finite difference. An approximate 

model, namely rigid-perfectly plastic, has been developed to get more clear understanding of the 

response. The simplified rigid-plastic model has enabled closed-form, theoretical solutions to 

simple structural members, shedding light on plastic deformation and energy absorption 

mechanisms. 

Calculating the rigid-plastic response of more complex structural members and systems requires 

computational methods. To determine dynamic response of structures before rigid-plastic 

idealization, it was not possible to use a reliable and efficient computer program. As an alternative, 

mathematical programming has proven to be valuable in developing a structured and unified 

discrete mathematical and computational approach to rigid-plastic dynamic problems. In this 

study, the dynamic rigid-plastic response of beam systems is considered using a computer-oriented 

formalism based on linear complementarity problems (LCPs). 

For the purpose of validating the formalism, the study compares the LCP predictions for one 

dimensional beams under impact with closed-form theoretical solutions. An extensive literature 

review on rigid-plastic beams subjected to extreme loads is also presented, and numerical 

challenges encountered during the LCP solution of impulsively loaded and impacted beams 

prompted the inclusion of plastic shear deformation in the model. Using existing literature, this 

chapter emphasizes the importance of considering flexural deformation when solving problems 

agonist extreme dynamic loads. 
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2.2. Methods for investing dynamic behaviour of RC beams against impact loads 

2.2.1. Experiments Studies 

Bhatti AQ and Kishi N (2009)5 in their work, the focus was on developing a simple elastoplastic 

analysis method for shear-failure-type RC beams. In this paper, twelve rectangular RC beams with 

simple supports were subjected to a fall-weight impact test and a 3-D finite element analysis. An 

impact load of 400 kg was applied to the beams at their midpoint using a steel weight. A non-linear 

finite element analysis code, LS-DYNA, was being applied in this study. FE analysis was found 

to accurately predict mid-span displacement, crack patterns, and impact force histories for RC 

beams on their side surfaces based on the results of the study.  

Adhikary S Das, Li B, and Fujikake K (2012)6: objective of their study was to get a better 

understanding of how RC beams react to changes in loading rates. A comprehensive test program 

was conducted to measure load vs mid span displacement, strains at longitudinal reinforcement 

mid-points, accelerations along specimen lengths and crack profiles. Increasing loading rates 

resulted in increases in absorption energy, stiffness, peak load and strain rate, as shown in the 

present study. 

Fujikake and Bing Li (2009)7 in their research conducted in 2009, In this study, reinforced concrete 

(RC) beams were examined in terms of their impact response under a variety of loads. An 

analytical model capable of forecasting max mid-span deflection and impact load was developed 

by the researchers to assess the damage levels resulting from these impacts. For the experiment, 

they used specimens of reinforced concrete beams with under-reinforced sections and transverse 

reinforcements sufficient to cause overall flexural failure. The experimenters conducted drop 

hammer tests to determine the impact of steel longitudinal reinforcement and drop height on the 

response of the beams. The experimental impact responses were analyzed using a mass-spring-

damper system with 2 degrees of freedom that accounted for loading rate effects. For RC beams 

which fail in flexural failure, these results were well in arrangement with the experimental data. 

Research helps improve structural design and safety by better forecasting the response of RC 

beams against impact loads. 
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2.2.2. Analytical Models 

In their research conducted in 2018, Wuchao Zhao and Jiang Qian8, RC beams against impact load 

can be predicted using a straightforward and novel method developed by the researchers. Based 

on four fundamentals first one is contact law, second is energy conservation, third one is impulse-

momentum theorem and fourth is wave theory, they used their approach to explain the 

phenomenon. To establish a relationship between force and deflection for the RC beam, they also 

integrated conventional beam theory and layered section theory. As part of the calculation, strain 

rate was also taken into account. 143 impact tests were conducted to demonstrate the accuracy of 

their proposed method in estimating maximum midspan deflection under impact loads. This aspect 

of anti-impact design may be applied effectively despite the overestimation in predicting peak 

impact force. 

The mid-span deflection was evaluated; 

Ekstab  +  (M +  m)gsmax  =  ∫ F(s)ds
𝑠𝑚𝑎𝑥

0
       (1) 

Ekstab is kinetic energy, 𝑀 in above equation is impact mass, 𝑚 is effective calculated mass of 

beam, 𝑔 is gravity of acceleration, 𝑠𝑚𝑎𝑥 is maximum mid-span deflection, and 𝐹 is strength of 

beam under drop-weight loading at mid-span. 

2.2.3. Numerical Study 

In 2016, Adhikary and Bing Li9 conducted research to assess the feasibility of numerical 

investigation as an alternative to experimental studies when studying RC beams against impact 

loads. Experiments on structural members are often complicated and costly to conduct for 

determining the effects of a variety of parameters. In order to validate their finite-element analysis 

results, the researchers first compared them to experimental results. The impacts of various 

parameters on the dynamic increase factor (DIF) of maximum resistance and the failure mode of 

RC beams were then evaluated using a numerical parametric analysis. It was discovered that 

longitudinal strengthening in beams had a substantial impact on the DIF of maximum resistance. 

DIF was greater in beams with little longitudinal reinforcement than in beams with significant 

longitudinal reinforcement. Furthermore, the longitudinal reinforcement ratio was important in 
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changing the failure mode of under-reinforced beams, especially at high loading rates (e.g., 2 m/s), 

when the failure mode switched from flexure to shear during static loading. Furthermore, beams 

with a considerable quantity of transverse reinforcement had a lower DIF than beams with a 

modest amount. Longitudinal reinforcement yield strength became a major component influencing 

the shift from flexure to shear failure modes at high loading rates. 

It was in 2023 that Azam and Asad10: linear complementarity problem (LCP) was developed as a 

computer tool for examining the dynamic behavior of RC beams under impact. This improved 

model can correctly forecast the behavior of RC beams to impact loads, providing significant 

insights for engineering design and performance. 

2.3. Nonlinear dynamic behaviour of rigid plastic structure 

In 1958, Symonds and Mentelin11 transverse impulsive pressure loading and axial constraints were 

used to explore the plastic deformation of simply supported and clamped beams. The shift from 

fundamental beam behavior to catenary effects happens as deflections increase due to finite axial 

forces. Study authors emphasize the unreality of disregarding axial forces when deflections are 

greater than beam thickness. Without taking into account axial forces, continuous beam deflections 

can be significantly smaller than predicted. In addition to presenting valuable curves, the authors 

illustrate how the beam's span-depth ratio and its intensity determine the reduction in deflection. 

The findings of this study contribute to our understanding of beam behavior and have significant 

consequences for engineering and structural design. 

A study by Taijiro Nonaka12 (1977) analyzes the deformation behavior of affixed beams with and 

without restrictions against axial displacement at the ends. A focused mass is carried in the center 

of the beam, and the beams are subjected to blast loading. Previously, Nonaka developed 

theoretical predictions for the deformation of restraint beams of cross-section forced against axial 

displacements. Furthermore, he approximated the eventual deformation of a stationary beam 

without axial constraints using the findings from his prior work on a totally clamped beam. This 

study compares experimental data to theoretical predictions and finds a high level of agreement, 

indicating the credibility and validity of these models. Nonaka's experimental study contributes to 
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a better understanding of the behavior of firm beams under blast loads, both with and without axial 

constraints, and has practical implications for structural engineers. 

Symonds and Jones13 (1976), provide a comprehensive discussion of beams subjected to impulsive 

loading, with a focus on clamped beams subjected to end rotations and axial displacements. The 

yield stress is examined in this review as a function of strain rate and the effects of small finite 

transverse displacements. On the basis of this existing knowledge, the authors present different 

solutions that are resulting from rigid-plastic analysis and combine these factors in an estimated 

manner. The formulas are validated by conducting experiments on mild steel beams while relating 

outcomes with deflections calculated from formulas. Literature review provides a better 

understanding of beam behavior and can be applied to engineering applications, aiding in the 

design of structures to withstand impulsive loading scenarios, while considering the complex 

interaction between material properties and beam geometry. 

Vaziri14 (1985) develop an expressions calculating maximum permanent deflection of beams, 

which are valid over a wide dynamic range, including pseudostatic step loads as well as high-

pressure impulsive loads. The significant influence of geometry changes on the beam's response, 

even for small deflections, emphasizes the importance of considering the beam's shape and 

dimensions when analyzing its behavior under particular loading conditions. In addition, the study 

introduces a new approach by combining the response expressions in order to establish isoresponse 

relationships, which allows engineers to visualize the beam's deflection patterns under a variety of 

loading scenarios and geometries. The research significantly enhances our understanding of beam 

behavior and provides valuable tools to design structures that are capable of withstanding varied 

pressure pulse loads, thus contributing to safer and more efficient engineering practices. 

According to Liu and Jones15 (1988), rigid, perfectly plastic clamped beams can undergo 

transverse shear and bending when subjected to impulsive loads caused by mass impacts at any 

point along the beam's length. They examines the effect of finite deflections on beam's 

performance under various loading scenarios.  

The study findings of Symonds16 and Mentel, Nonaka17, Symonds, P. S and Jones, Vaziri, and Liu, 

J. H18 and Jones indicate that when displacements reach the depth of the beam, membrane forces 
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become a dominant influence on the beam's behavior. In a transition from bending action to 

membrane response, there is a significant stiffening effect, which alters drastically the nature of 

deformation. Accordingly, the displacements resulting from bending may be much smaller than 

what can be obtained from bending alone. It is important to take into account membrane forces 

when analyzing structural systems, especially in scenarios where displacements are comparable to 

the beam's dimensions. 

2.4. Mathematical programming  

The primary goal of this study is to assess the suitability of mathematical programming for 

modeling nonlinear dynamics and to develop computer-oriented techniques for numerically 

solving dynamic problems in stiff plastic, planar-framed structures. Mathematical programming 

involves the theory and techniques associated with optimizing an objective function while 

adhering to specific constraints. The mathematical programming technique in this study is used to 

simulate the physical behavior of nonlinear dynamics in rigid plastic systems and presents efficient 

algorithms that can be implemented on computers to solve dynamic problems in planar framed 

structures numerically. This study focuses on the study of plane framed structures, which are 

known for their structural integrity and their applicability in a variety of engineering fields. In 

mathematical programming, objective functions are formulated to optimize certain performance 

criteria while accounting for the constraints imposed by physical properties, geometry, and 

boundary conditions. 

Furthermore, the goal of this study is to offer a full knowledge of the dynamic response of stiff 

plastic planar framed structures. The project's goal is to provide algorithms that allow for efficient 

calculations and numerical simulations that generate accurate forecasts of how these structures 

will react when subjected to various dynamic loading situations. It is acknowledged in the study 

that it is important to accurately represent material behavior, particularly plastic deformation, in 

order to accurately predict the structural response to extreme loads. As a result of harnessing the 

power of mathematical programming, this study strives to improve our understanding of structural 

behavior under dynamic conditions, contributing to the design of more resilient and efficient 

structures as well as improving engineering practices. 



13 

 

Maier19 demonstrated in 1984 offers exceptional mathematical formalism for effectively 

representing response of discrete elastoplastic structures. The study provides valuable insight into 

the development of this method and its accurate behavior for analyzing structural problems in the 

future. Mathematical programming provides researchers and engineers with a powerful tool for 

accurately simulating the response of elastoplastic structures, allowing them to better understand 

their behavior under quasi-static loading. This discovery will pave the way for further 

advancements in structural analysis, resulting in better engineering practices and more resilient, 

efficient, and robust structures. The implications of this research go beyond its immediate findings, 

placing mathematical programming as a cornerstone in the field of structural engineering and 

providing novel approaches to the analysis of various structural systems. 

In a groundbreaking work published in 2021, Rodrigo Pierott20 and Ahmed W.A. Hammad 

introduced an optimize model for calculating the size of RC beams against extreme load. In their 

model, strength of concrete (fck), area of cross-section, and diameter of reinforcement bars are 

considered as design variables, resulting in realistic representation of optimization process. By 

determining reinforcement layouts, defining fck values, and minimizing construction costs, the 

research seeks to minimize construction costs, while ensuring structural integrity. With Rodrigo 

Pierott and Ahmed W.A. Hammad's sophisticated finite element method program and longitudinal 

reinforcement database generator, essential data can be obtained for stress and strain analysis and 

for code compliance. By adopting an Evolutionary Algorithm, the optimization problem can be 

effectively solved, resulting in significant cost savings of 3.63% to 17.07% over existing 

researches. The study's goal is to promote the design of RC beams by providing useful insights 

into cost-effective and structurally optimum solutions, hence contributing to the progress of 

engineering techniques in the construction sector. 

According to Azam and Moiz21 in 2021, a linear complementarity method was establish to predict 

the behavior of rigid-plastic structures when experience impact loads. Lemke's algorithm was used 

for calculating the linear complementarity problems (LCP). They propose more authentic approach 

to kinetics and kinematics to enhance the efficiency of LCP formulation. In order to test the 

accuracy of the proposed technique, the obtained numerical findings are compared to previously 

known experimental data in the literature. 
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In their 2023 study, Azam and Asad22 We provide a unique computational framework for assessing 

the dynamic response of shear critical reinforced concrete beams against impact loads based on a 

linear complementarity problem (LCP). The researchers offer comprehensive analysis of impacted 

simply supported beams. Built on results of 46 reinforced concrete beams in the study's database 

that experienced flexure shear or shear failures, the model was demonstrated to be a highly 

predictive system (R2 = 95%). Additionally, the efficiency of the formulation has been tested 

against ABAQUS, a commercial software program, showing that its computational performance 

is competitive. In this study, structural analysis is significantly advanced, offering valuable insights 

and an efficient tool for analyzing RC structures subjected to impact loads, resulting in a potential 

improvement in engineering design and performance. 

2.5. Effect of material elasticity 

In their 1984 paper, P. S. Symonds and W. T. Fleming23 examine the distortions of  line structural 

element i.e. beam having a mass at its corner and exposed to pulse loading for short duration of 

time. This study examines crucial assumption of neglecting elastic strains, where elastic moduli 

are considered to be infinite in "elementary rigid-plastic theory" for dynamic structural response 

problems. The researchers assessed its validity by comparing  numerical solutions obtained from 

previously available computer program that are based on advance finite element with a slightly 

modified rigid-plastic solution that takes into account large deflections. In addition, they employ 

a simplified elastic-plastic approach that artificially separates elastic and plastic actions for a 

deeper understanding. The study's findings provide considerable insight into the impact of elastic 

stresses on RC beam behavior subjected to pulse loading, allowing for a more detailed explanation 

of the limitations and significance of rigid-plastic theory in the context of dynamic structural 

behavior. 

The study conducted by P. S. Symonds and Charles W. G. Frye24 in 1988 confirmed that structures 

experience large dynamic loads, resulting in extensive plastic deformation, are less likely to be 

influenced significantly by material elasticity. According to their findings, rigid plastic analysis 

will be employe to determine a structure's dynamic response under two circumstances: first, when 

the input energy surpasses the maximum elastic energy the structure is capable of storing, and 

second, when pulse durations are significantly shorter than the elastic structure's natural period. In 
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these situations, where plastic deformation dominates the behavior and elastic effects play a 

relatively minor role, rigid plastic analysis is an effective technique for assessing the dynamic 

behavior of structure. 

2.6.Summary 

The literature review indicates that examination of rigid-plastic structural systems against extreme 

loading conditions is a topic of considerable in field of structural engineering. For simple structural 

members, approximate models, such as rigid-perfectly plastic, have provided valuable insights; 

however, more complex systems require computational methods to obtain rigid-plastic responses. 

In rigid-plastic structures, mathematical programming, specifically the Linear Complementarity 

Problem (LCP), is an efficient and robust method for simulating linear dynamics. 

During this study, reinforced concrete (RC) beams will be examined under impact loading to 

determine their dynamic response. Our approach will build on recent research by Azam and 

Asad25, by incorporating a numerical formulation based on the Linear Complementarity Problem 

(LCP). Furthermore, we will improve the model by accounting for substantial displacement effects 

in order to gain a more complete knowledge of the behavior of RC beams under excessive dynamic 

loads. Finally, the study hopes to give further insight into the structural behavior of RC structures 

under impact loads, as well as credible forecasts that will aid in the advancement of our 

understanding of these structures26.  
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CHAPTER 3 METHODOLOGY 
 

A mathematical model for analyzing the dynamic behavior of beams subjected to impact loads is 

offered. The goal is to acquire a better understanding of how these structures respond when 

subjected to unexpected and severe loading situations. In order to achieve this, we use the Linear 

Complementarity Problem (LCP) method, which provides a robust mathematical framework for 

simulating the performance of rigid-plastic systems under extreme dynamic conditions. 

Incorporating a solution that addresses large displacements is the utmost significant feature of our 

formulation. During impact loading, structures can experience significant deformations, and 

neglecting these large displacement effects could result in inaccuracies in the analysis. With our 

model, we aim to obtain more accurate results by taking into account large displacements solution 

(LDS), providing a comprehensive understanding of how beams respond to dynamic forces. 

3.1 Dynamic Rigid-Plastic Model Considering Large Displacement 

The initial goal of our research is to create a numerical model capable of reliably predicting the 

behavior of reinforced concrete (RC) beams under impact loads. To that end, we will create a 

impler model of a simply supported RC beam subjected to a certain impact. A finite number of 

components will be discretized to ease numerical analysis of the beam, as illustrated in Figure 3. 

 

Figure 3.1 Impact loading on a simply-supported beam 
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The proposed model will take into account the dynamic behavior of an RC beam subjected to an 

impact load at a specified impact point. To thoroughly investigate the behavior of the beam under 

such stress conditions, the continuous structure will be split into distinct pieces. As a consequence 

of these elements, we will be able to properly estimate the behavior of the beam in the presence of 

impact loads using mathematical approaches and computational algorithms. 

 
Figure 3.2 Impact loading on discretized simply-supported beams 

Figure 4 depicts the displacement and deformation of a planar frame element M with a length of 

primary L. The element's original location in its local coordinate system is referenced.. 

 𝐹𝑀
′  are representing end forces  

 𝑑𝑀
′  are the displacement   

By p, we depict the rigid body rotation of structural member. 

  c= cosp, s=sinp  (2) 

It depicts the interaction or interconnection force between the end forces of the member or element 

(I = l, 2,...,SM) and from which the element has been withdrawn for structural system. Figure 4 is 

an example of a planar beam or frame element where SM = 6 and F are the equivalent forces. In 

addition, there are several indepentent member forces X (j = 1,2,...,M). The six forces F may 

always be written as a set of three independent forces X for a planar element. As a result, Sm= 3 

when compared to a planar element.  



18 

 

 
 

Figure 3.3 Planar Member in deformed Configuration 

 

The forces F or are found at the terminals of the elements. These forces, in concert with loads 

spread throughout the element's length, create stress resultants or generalized stresses along its 

longitudinal axis. For a planar element, an axial force is X1, a transverse shear force is X2, and a 

bending moment is X3 at position X. The member forces F calculate the stress resultants (X). 

Assuming that the element travels with no change in geometry and that there is no load on the 

element, the following correlations exist between the two sets of member forces: 

 

[
 
 
 
 
 
𝐹1′

𝐹2′

𝐹3′

𝐹4′

𝐹5′

𝐹6′]
 
 
 
 
 

     =    

[
 
 
 
 
 

0 0 1
−𝐿−1 −𝐿−1 0
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0 0 −1
0 −𝐿−1 −𝐿−1

0 1 0 ]
 
 
 
 
 

      [
𝑋1

𝑋2

𝑋3

]   -  

[
 
 
 
 
 

1 0
0 1
0 0

−1 0
0 −1
0 0 ]

 
 
 
 
 

  [
𝜋𝑛

𝜋𝑡
]    (3) 

Or  

𝐹𝑀
′  = 𝐴𝑀

𝑇  𝑋𝑀 - 𝐴𝑀
𝑇  𝜋𝑀          (4) 

 

Where  

𝐹𝑀
′  = 𝐴𝑀

𝑇  𝑋𝑀 - 𝐴𝑀
𝑇  𝜋𝑀          (5) 
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𝜋𝑀= 𝑍𝑀 𝑋𝑀           (6) 

 𝜋𝑀 is additional axial force 

 𝜋𝑇 is additional shear force 

 𝐴𝑀
𝑇 , is the equilibrium matrix in original position   

 𝑍𝑀 depends on current position of element 

 p = tan-1 
 

𝛿𝑡

𝐿−𝛿𝑛
            

 (7) 

𝐿𝐶
2  =  (L - x3)2 

= (L-𝛿𝑛)2 + 𝛿𝑡
2         (8) 

When the law of kinematics is applied to the member M, it is discovered that the independent 

member deformations xm, with respect to the displacements of the member ends 𝑑𝑀
′ . The 

equation from Figure 4 will become 

[
 
 
 𝑥1 + (𝑝 −

𝛿𝑡

𝐿
) 

𝑥2 − (𝑝 −
𝛿𝑡

𝐿
) 

𝑥3 + (𝛿𝑛 − 𝑥3)]
 
 
 
 =   [

0 −𝐿−1 −1 0 𝐿−1 0
0 𝐿−1 0 0 −𝐿−1 1
1 0 0 −1 0 0

]      

[
 
 
 
 
 
 
𝑑1

′

𝑑2
′

𝑑3
′

𝑑4
′

𝑑5
′

𝑑6
′ ]
 
 
 
 
 
 

    (9) 

Or  

XM + XπM = AM 𝑑𝑀
′           (10) 

𝑥π1 and 𝑥π2 are added rotational distortions while 𝑥π3, is an extra axial distortion  

[

𝑥π1

𝑥π2

𝑥π3

] = 

[
 
 
 

𝑆

𝐿𝑐
−

1

𝐿
+

𝐶

𝐿𝑐

−
𝑆

𝐿𝑐

1

𝐿
−

𝐶

𝐿𝑐

1 − 𝑐 𝑠 ]
 
 
 
 [
𝛿𝑛

𝛿𝑡
] + [

𝑅𝑥1

𝑅𝑥2

𝑅x3

]       (11) 

Or 

𝑥πM = 𝑍𝑀
𝑇  𝛿πM + 𝑅πM          (12) 
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𝑅x1 =  −𝑅x2 = p - 
𝐿𝑠𝑖𝑛𝑝

𝐿𝑐
           (13) 

𝑅x3 = -L (1- cosp)          (14) 

3.2  Nodal Governing System 

According to Teixeira de Freitas and Lloyd Smith, it is conceivable to utilize the description of a 

single member M to generate matching descriptions for the complete structural system. Based on 

D'Alembert's Principle, this may be extended to a kinetic-kinematic description as well. Inertia 

forces can be attributed to unconnected masses, and u represents future motions. The nodal kinetic-

kinematic description for the structural system will become 

[
 
 
 
 
0 𝐴𝑇 𝐴𝑑

𝑇 𝐴𝜋
𝑇 𝐴𝑜

𝑇

𝐴 0 0 0 0
𝐴𝑑 0 0 0 0
𝐴𝜋 0 0 0 0
𝐴𝑜 0 0 0 0 ]

 
 
 
 

 

[
 
 
 
 

𝑞
−𝑋
𝜇
𝜋
𝜆 ]

 
 
 
 

 = 

[
 
 
 
 
𝑄 = 0
𝑥 + 𝑥𝜋

𝜇
𝛿𝜋

𝛿 ]
 
 
 
 

       (16) 

Where,    

π =  ZX                      (17) 

 𝑥𝜋 = 𝑍𝑇𝛿𝜋 + 𝑅𝑥,                     (18) 

𝜇 =  −mü           (19) 

A, Ad, Aπ, and A0 consist of unchanging basics that are based on the geometry of the construction 

in its original position. Equations (16–19) are applicable to dislocations of any magnitude. 

3.3  Material Model 

The non-holonomic plasticity relations (20) are shows in of generalized stress S and generalized 

strain rates s at the precarious parts of structural system. 

 X are independent member forces 

 ẋp are independent deformation rates 

 F' are member end forces 

 d′p are velocities 

Therefore, the following transformations must be implemented: 



21 

 

ẋp=T ṡ           (20) 

S=Tt X.          (21) 

In our structural analysis model, we have selected to utilize a material model known as the "rigid 

plastic model." This model allows us to study the behavior of materials under certain loading 

conditions. At each node in our system, two separate possibilities can arise in reply to the applied 

load 27. 

The first option is that the node remains in a state of rigidity, meaning it does not experience any 

permanent deformation. In such cases, the node's behavior can be characterized as a point on the 

graph, positioned along the y-axis. This point designates that the deformation at the node is 

essentially zero.  

 

Figure 3.4 Material model 
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To comprehend and pinpoint this specific point on the graph, we introduce a new variable termed 

as "y." The variable "y" acts as a limit that command the location of the point along y-axis and 

assists us in accurately characterizing the node's response to the applied load when it remains rigid. 

A second possibility is that the node experiences plastic deformation. This scenario involves the 

node moving sideways horizontal line. In this material model, this curve represents the region of 

plastic deformation. Plastic deformation occurs when the node undergoes a change in shape or size 

that cannot be recovered. The variable 'x' is introduced to capture and quantify this behavior 

accurately. Nodes are measured along the horizontal surface of the plastic deformation curve using 

the variable "x".  

Depending on the loading conditions applied to the system, the same situation described above 

may also occur in the opposite direction. Accordingly, nodes are capable of either remaining rigid 

or undergoing plastic deformation in both positive and negative directions relative to the graph's 

axes. 

With the use of the concepts of "x" and "y" variables, as well as the associated graph, we will 

accurately analyze and forecast the conduct of our structural system under the given load 

conditions, as well as understand how nodes respond to deformation in the simulation process. S 

represents stress resultant and s represents deformation. 

 [0 NT

N 0
] [

x∗̇

S
] +[

Y∗

0
] =  [

X∗

ṡ
]        (22) 

y∗ ≥ 0, y∗
T ẋ∗ = 0, ẋ∗ = 0 

 

To generate governing relations, integrate the kinetic and kinematic explanations, Equations (16) 

to (19), with the plasticity relations (22) and the reference system transformations (20) and (21). 

3.4   The governing system 

The presence of complementarity conditions complicates these equations. Since there is no 

known exact solution to this type of mathematical problem, it is logical to use a numerical 

approach to solve it. Consequently, a time marching method is implemented to move the solution 
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forward from one time point, tn, to the next, tn+1, where n represents consecutive discrete time 

intervals and t represents the amount of time between them. Consequently, Newmark's time-

integration scheme is utilized to express centroidal velocities and accelerations as follows: 

�̈�n+1 = 𝑏0 (�̇�n+1 − �̇�n) − 𝑏1�̈�n          (23) 

�̇�𝑛+1 = 𝐮𝑛 + 𝑏2�̇�𝑛 + 𝑏3�̈�𝑛 + 𝑏4�̈�𝑛+1         (24) 

in which integration constants         (25) 

are 𝑏0 = 1 /�̅�∆𝑡 ,           (26) 

𝑏1 = 1−�̅� /𝛾̅ ,            (27)  

 𝑏2 = ∆𝑡,            (28) 

𝑏3 = (0.5 − 𝛼̅)∆𝑡,           (29) 

𝑏4 = �̅�∆𝑡2,           (30) 

Appropriate findings are reached based on detailed research (Khan et al., 2013). when α = 0.25 

and γ = 0.5. Equations (16) to (19) are combined together at t = tn+1, and coupled with the 

Newmark’s scheme (20) to (30) to give following the governing system: 

[

b0Mq Aπ
TZ − AT 0 0

AπZT − A 0 TN 0

0 NTTT 0 I

] [

q̇n+1

Xn+1

ẋ∗n+1

y∗n+1

]  =   [

−Yn+1

−Rx

X∗

]     (31) 

y∗n+1 ≥ 0            (32)  

y∗n+1
T  ẋ∗n+1 = 0           (33)  

ẋ∗n+1  ≥ 0            (34)  

Variables �̇�n+1, 𝐗𝑛+1 are un-restricted, right-hand side subvector 𝐘𝑛+1 of (31) is given by: 

 𝐘𝐧+𝟏 = −𝐀𝐨
𝐓 𝛌𝐧+𝟏 + 𝐀𝐨(𝐧+𝟏)

𝐓 + 𝐛𝟎𝐌𝐪𝐪𝐧 − (𝐀𝛑
𝐓𝐙 − 𝐀𝐓)𝐗𝐧+𝟏     (35) 

Mass matrix 𝐌𝐪, related with  nodal accelerations �̈�, is 

𝐌𝐪 = 𝐀𝐝
𝐓𝐦𝐀𝐝          (36)  

The mathematical structure of the governing system being approximated is that of a linear 

complementarity problem (LCP). The variables [�̇�∗, 𝐲∗]are restricted to being complementary 
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pairs. Additionally,  primary sub-matrix associated with variables[�̇�, 𝐗] , is negative semi-definite. 

Hence, to solve resulting Lemke algorithm was used due to its simplicity and reliability. 

3.5 Flow chart   

 

Figure 3.5 Flow Chart 

a. As a first step, calculate all the input parameters, including the mass matrix, geometric 

parameters, flexural capacity, and axial capacity of the line element. 

b. At time t = 0, determine the initial deformations, Z (displacement vector), and R (load 

vector). 

c. Create the tabular form of Equation 31  

d. Solve the equation using Lemeke's Algorithm 

e. Check Z at time t = n+1 (the next time step) to see if it has changed from the earlier time 

step. This will ensure that analysis is stable and convergent. 
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f. If the displacement vector x (the motion) at time t = n+1 has all zero components, then it 

indicates that the motion has terminated. 

3.6 Statistical Parameters for Validation 

The goal of this part is to assess the accuracy of suggested models of RC beams under impact 

loading using a set of statistical parameters. The Predicted to Experimental Ratio, Coefficient of 

Variation, Coefficient of Determination, and Average Absolute Error are the parameters. To 

evaluate the effectiveness of the models, these parameters are compared to those previously 

proposed in the literature.  

3.6.1 Predicted to Experimental Ratio (PER) 

It is commonly used in fields such as physics, chemistry, biology, and engineering to assess the 

consistency of theoretical predictions with actual experimental results. As used here, "predicted" 

refers to theoretical or calculated values derived from mathematical models, simulations, or 

established theories. In general, predicted values are derived from equations or computational 

methods that describe the behavior of a system under certain conditions. 

The term "experimental" refers to values obtained through actual observations and measurements 

in a controlled laboratory or in the real world. As a result of experiments, these measurements are 

obtained in order to understand and validate the performance of the system that is being 

investigated. To calculate the predicted to experimental ratio, the predicted value is divided by the 

experimental value for a specific quantity or parameter of interest. To assess the degree of 

agreement among theory and experiment, we can use the following ratio: 

Predicted to Experimental Ratio = Predicted Value / Experimental Value 

It is generally recognized that a ratio close to 1 indicates that the model or theory used to make the 

predictions is accurate and reliable under the given circumstances. It is possible that there are 

discrepancies if the ratio is significantly different from 1. There can be several reasons for such 

discrepancies, including experimental error, limitations of the model or theory, incomplete 

understanding of the underlying phenomenon, or unexpected interactions with other variables. 
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3.6.2  Coefficient of Variation 

An assessment of the relative variability or dispersion of a dataset can be made using the 

Coefficient of Variation (CoV) statistic. A special benefit of this method is that it can be used to 

compare datasets that have different scales or units of measurement. A CoV is calculated by 

dividing the standard deviation as  

Percentage CoV=
Standard Deviation 

Mean
𝑥100 

a. Standard deviation: is the measures of the spread of data points around the mean. A higher SD 

shows large degree of variability, while a lower value indicates a closer grouping of data points. 

b. Mean: The mean, also referred to as the average, represents the arithmetic average of all data 

points contained in a dataset. A central value is the point around which the data points tend to 

cluster. 

The Coefficient of Variation is expressed as a percentage, which enables easy comparison of the 

relative variability across datasets. 

The Coefficient of Variation can be interpreted as follows: 

a. Low CoV values (close to 0%) indicate a low level of relative variability in the dataset. In 

other words, the individual data points are relatively close to the mean, which suggests that 

the data are more consistent and less dispersed. 

b. An increase in CoV (greater than 0%) indicates that the dataset has a high degree of relative 

variability. A higher level of variation and dispersion is implied by the data points that are 

spread further apart from the mean. 

It can be concluded that the Coefficient of Variation is a valuable tool in data analysis for 

comparing datasets with different units and understanding the relative variability of the datasets 

using different units. It allows researchers and analysts to make meaningful comparisons and draw 

insights from datasets in many disciplines, including finance, economics, biology, engineering, 

and social sciences. 
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3.6.3 Coefficient of Determination (R2) 

R2, is a fraction of the variation in the dependent variable that can be explained by the independent 

variable(s). This metric measures how well the independent factors explain the variation in the 

dependent variable. 

This factor ranges from 0 to 1, with the following interpretations: 

 R2 = 0: Regression model does not match the data. 

 R2 = 1: Represent fit of regression model to the data. 

R2 can be calculated as follows: 

R2 = 1 − 
𝑆𝑆𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙

𝑆𝑆𝑡𝑜𝑡𝑎𝑙
 

Where: 

 SSresidual The square root of the difference between the observed and anticipated values of 

the dependent variable is used to compute it. 

 SStotal It is determined by taking the square root of the difference between the observed and 

overall mean value of the dependent variable. 

3.6.4 Average Absolute Error  

It is a statistical metric used to assess the accuracy of a prediction model or estimator by calculating 

the average absolute difference between anticipated and actual values. It is particularly useful for 

evaluating the performance of models that predict continuous numerical values.  

The formula to calculate Average Absolute Error is as follows: 

AAE= 
1

𝑛
 ∑  |𝑦𝑖 − 𝑦𝑖

^|𝑛
𝑖=1  

Where, 

 𝑦𝑖  is actual/ observed 
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 𝑦𝑖
^

 is predicted value 

 n is number of data points 
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CHAPTER 4: RESULTS & DISCUSSION 

4.1 Organization 

Various statistical tools are used to validate the proposed models of large displacement solutions 

(LDS). Statistical analysis is not only applied to the current model, but is also extended to the 

previously proposed models in order to determine their robustness and efficiency in comparison 

with the current model. In addition, graphical representations are used to illustrate the variation of 

results, thereby enhancing understanding 

4.2   Large displacement solution validation with experimental data 

4.2.1 Experimental Database 

A wide-ranging experimental database comprising 102 simply supported RC beams has been 

collected from various literature sources28 29 30 31 32 33  34 35 36 37 38, following a consistent set of 

inclusion criteria. It should be noted that all the beams in this database have rectangular cross 

sections and these beams in literature were experience impact loads at the mid span with either flat 

or spherical contact surfaces. 

4.2.2 Key parameters distribution  

The purpose of this part is to determine the parameters that have a substantial impact on the 

performance of RC beams with a basic support. These characteristics comprise several factors such 

as concrete compressive strength, longitudinal reinforcement, and shear reinforcement. The graph 

depicts a projectile velocity range of 1 to 16 meters per second, with the most of data lying between 

3 and 8 meters per second. Additionally, the impact mass (M) of the tested beams ranges from 100 

to 1800 kg with a significant number falling between 300 and 600 kg. Simply supported RC beams 

are capable of spans between 1000 and 5000 mm, with width and height limits of 100 to 300 mm 

and 150 to 500 mm, respectively. The longitudinal reinforcement ratio ranges from 0.25% to 

3.25%, whereas the shear reinforcement ratio ranges from 0% to 1.4%. 
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Figure 4.1 Beam depth 

              

Figure 4.2 Beam Height 

                  
 

Figure 4.3 Hammer Mass 
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Figure 4.42 Velocity of hammer 

                
Figure 4.5 Length of beam 

 

               
 

Figure 4.6 Concrete Strength 
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Figure 4.7 Shear reinforcement 

 

             
 

Figure 4.8 Tensile reinforcement ratio 
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The developed large displacement solution (LDS) model is set side by side with the experimental 

results, as presented in Figure 15. To authenticate this proposed model using the collected dataset, 

mid span deflection is assessed through coefficient of determination (R2), a variance-dependent 

coefficient that approaches 1 (one) for the best predictions. In this case, the correlation factor 

between the experimental and predicted results is found to be R2 = 0.92, representing a strong 
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is perfectly aligned with the 45-degree benchmark, suggesting a strong link between the 

experimental and projected findings. 

 

Figure 4.9 Predicted vs Experimental Ratio 

The anticipated to experimental deflection ratio is used to evaluate prediction accuracy; a PER 

close to one indicates greater performance. As a result, the average PER is 0.92, which is quite 

close to the ideal benchmark of 1. This value shows a coefficient of variation (CoV) of 19.3243%. 

The figures (16-19) illustrate a sensitivity analysis of various parameters within the proposed large 

displacement solution formulation. Figure (16) displays that the precise prediction of the maximum 

mid span deflection of proposed model has a virtual average accuracy of 0.92 within the range of 

velocity 0.6-1.5. In light of this result, it is clear that the proposed model performs well across a 

wide range of velocity conditions. In addition, Figure (17) illustrates a comparison between the 

deflection predicted by the LDS model and the deflection experienced by the experimenter. The 

LDS model exhibits high accuracy and reliability within the range of 0.6-1.5. Based on the 

experimental mass ratio and depth of the beam, figures (18) and (19) demonstrate the robust 

performance of the large displacement solution model. Overall, the large displacement solution 

method consistently predicts deflection with reasonable accuracy, especially for PERs between 0.6 
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and 1.5. 

 

Figure 4.10 PER vs Velocity 

 
 

Figure 4.11 Impact Mass 

               
Figure 4.12 Mass Ratio 
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Figure 4.13 Beam Depth 

 

4.3 Validation with the available models 

Table 1 presents a comprehensive comparison of various available models, with a focus on 

statistical parameters. Particularly noteworthy is the high level of reliability of the developed 

formulation, which outperforms all other models. It is explained that the formulated model has a 

higher R2 value compared to the others, a measure of how well it fits the data. Slope of the for the 

developed formulation is remarkably similar to the slope of the benchmark line. In addition to 

fitting the data well, the formulated model also closely aligns with the reference or benchmark 

relationship, making it a particularly robust and accurate representation of the underlying 

phenomenon. 

4.3.1 Adhikary et al. Model  

The comparison of Large displacement solution with the Adhikary et al. model is shown in Figure 

20. This model is valid to 87 tested beams data. So, only that 87 data were used for LDS (Large 

displacement Solution) model as well. The R2 of the LDS model becomes 0.92 with AAE equal to 

14.787%. The average PER value becomes 0.989786 with CoV equal to 19.3243%. Similarly, the 

R2 of Adhikary etal. formulation is 0.84 having AAE of 18.06%. The mean PER value is 0.85 with 

coefficient of variation of 34.06% for Adhikary et al. 
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Figure 4.14 LDS model vs Adhikary model 
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4.3.2 Zhao et al. Model  

The comparison of Large displacement Solution (LDS) with the Zhao etal. formulation is shown 

in Figure 21. This model is valid to 98 tested beams data. The R2 of the Zhao et al. model is 0.83 

with AAE of 26.9%. The mean PER value is 0.91 with coefficient of variation of 24.90%. 

 

 

Figure 4.153 LDS model vs Zaho model 

4.3.3 Khan et al. Model  

The comparison of Large displacement solution with the Khan et al. model is shown in Figure 22. 

This model is effective to 102 tested beams data. The R2 of the Khan etal. Formulation is 0.84 with 

AAE of 18.06% . Mean PER value is 1.21 with coefficient of variation of 30.5%. 
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Figure 4.16 LDS model vs Khan etal model 

Author 
Samples 

Number 

Mean 

PER 
SD 

COV 

(%) 

AAE 

(%) 
R2 

Zhao et al. 98 0.91 0.17 18.91 26.91 0.9 

Adhikary et al. 87 0.85 0.29 34.06 25.5 0.8 

Khan et al. 102 1.21 0.3 24.9 18.06 0.8 

Proposed LDS 

Model 
102 0.93 0.19 19.32 14.786 0.9 

 

Table 4.1 Analyzing statistical models to predict mid span deflections under impact loading 

for reinforced concrete beams 
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CHAPTER 5: Validating With Khan et al Model 

This study represents a noteworthy development over the earlier model proposed by Khan et al39., 

which forms the basis of our research. To further enhance the understanding of the subject matter, 

we conducted a comprehensive and competitive study based on their work. This was accomplished 

by conducting a comparative analysis between our enhanced model and the existing. For the 

purpose of ensuring credibility and validity of our findings, we carefully selected a sample from 

the previous study conducted by Kishi N, Mikami H40. As a result of their study, we were able to 

evaluate the performance of our enhanced model using well-documented experimental values. 

Figure 22 illustrates the section properties used in our research as well as the experimental values 

from the Kishi N, Mikami H study. As a result of these properties, we are able to make informed 

evaluations of the enhancements we introduced to the existing model during our comparative 

analysis.The inclusion of this comprehensive comparative study is intended to contribute 

significant insight to the field, resulting in a deeper understanding and improved models and 

applications in the future. 

 

              
Figure 5.1 Sectional Properties 

In the research conducted by Kishi N. and Mikami H., they organize drop hammer test to evaluate 

the mechanical properties of their samples. In order to conduct the test, the mass of the hammer 

used for impact, the velocity at which it was dropped onto the samples, as well as the length of the 



40 

 

specimens being tested were carefully measured. The accuracy and reliability of their results were 

dependent on each of these parameters. 

They have meticulously documented and presented the data obtained from their drop hammer test 

in Table 2, including the hammer's mass and velocity, and the length of the sample. Under the 

impact, the beam-shaped specimens underwent bending or deflection, rather than experiencing any 

other form of deformation. Accordingly, this flexural pattern aligns perfectly with the design 

principles of our own model. 

Comparing the results of the drop hammer test with the design characteristics of our model allows 

us to gain valuable insights and make informed decisions regarding the applicability and suitability 

of our model for practical applications. It further reinforces the credibility of our model and allows 

it to be confidently applied to similar flexural applications because the observed behavior and the 

intended application are aligned. 

  L (mm) V (m/s) M (kg) 
Failure  

Model 

Sample 3400 7 300 Flexure 

 

Table 5.1 Detail of Drop Hammer 

As part of our comprehensive analysis of the behavior depicted in Figure 24, we plotted the time 

versus displacement for the sample. Compared to the linear model, the large displacement solution 

exhibits a significant reduction in value as displacement increases. The change in stiffness of the 

structural member is one key factor contributing to the decrease in displacement at large 

deformations. As loads increase, the material's stiffness changes, resulting in a nonlinear response 

that differs from that predicted by the linear model. Stiffness changes become more pronounced 

as the deformation intensifies, resulting in a reduction in displacement values. An major 

component influencing displacement behavior is the creation of extra axial forces inside the 

structural part. When a material undergoes significant deformations, internal forces arise as a result 

of structural configuration and loading conditions. Additionally, these axial forces affect the 

overall response, resulting in a departure from the predictions made by the linear model. 
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A number of independent studies have investigated and described analogous behavior in their 

various studies, including Yu and Stronge41, Bodner and Symonds, as well as Zhang and Yu42. 

The experimental data depicted in Figure 24 originates from a previous study conducted by Kishi 

N. and Mikami H. 

 

Figure 5.2 khan et al vs LDS model 
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CHAPTER 6: Conclusion and results 
 

1. The proposed large displacement solution model provides an effective approach for effectively 

analyzing the behavior of reinforced concrete (RC) beams, especially those that exhibit flexural 

responses under impact loading conditions. In compared to Khan et al.'s earlier linear model, 

we may achieve more accurate estimates of the maximum displacement of RC beams subjected 

to impact load by adopting this new model. 

2. The proposed large displacement model has the major advantage of reducing the final 

maximum mid-span displacement in comparison to the linear model's predictions. With 

increasing displacement, this effect becomes more pronounced. 

3. Significant factor contributing that improve the accuracy of large displacement model is its 

comprehensive consideration of key factors that affect the structural behavior.  

a. Firstly, the model takes into account changes in the stiffness of RC beams during 

significant deformation. As the stiffness of the material evolves under varying loads, this 

results in nonlinear response characteristics that are difficult to capture using a traditional 

linear model. 

b. Secondly, the large displacement model incorporates the influence of additional axial 

forces within RC beams during impact loading. The effects of these forces are significant 

contributors to the overall structural response as well as being essential to accurately 

predicting the displacement behavior in a dynamic environment. 

4. By adopting this model, RC beam structures under real-world conditions could be made more 

safe, reliable, and perform better. Additionally, it contributes to the advancement of structural 

engineering by improving the ability to withstand impact and dynamic loading challenges, 

while meeting stringent safety standards. 

6.1 Recommendation 

Following are some of the recommendations based on this study 

1. Strain rate should be also incorporated in this large displacement solution model  
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2. Experimental validation of proposed large displacement model is required 

3. Bending shear interaction should also be incorporated in the model 
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