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ABSTRACT 

Landslides pose a significant threat to human lives and infrastructure in mountainous 

regions such as the Chitral district of Northern KPK, Pakistan. This study aims to 

assess the earthquake induced landslides in the region by integrating the creation of a 

landslide inventory with the application of Point Pattern Analysis (PPA), Logistic 

Regression (LR), and Frequency Ratio (FR) models. The research began by compiling 

a comprehensive landslide inventory through the analysis of high-resolution satellite 

imagery and temporal study in Google Earth Pro. The inventory includes about 210 

landslides that occurred due to the high seismicity in the region. To analyze the spatial 

distribution and clustering of landslides, Point Pattern Analysis (PPA) was applied. 

Furthermore, Logistic Regression (LR) and Frequency Ratio (FR) models were 

employed to develop Landslide Susceptibility Maps (LSMs). These models utilized 

the landslide inventory data along with relevant terrain, geological, and environmental 

variables as causative factors or predictors. The results of the study revealed 

significant spatial patterns and hotspots of landslide occurrence in the Chitral district. 

Logistic Regression model shows that 18.1 % of the region is highly susceptible 

towards landslide whereas the Frequency Ratio model reveals 26.1 % of the study 

area falls in Very high susceptible class in Landslide Susceptibility Mapping. 

Accuracy assessment through Receiver Operating Characteristics (ROC) Analysis 

reveals that the overall accuracy of LR model (85.34 %) was better than FR model 

(78.56 %). The findings of this research provide valuable insights into the spatial 

distribution of landslides in the Chitral district and contribute to improved 

understanding of the underlying factors influencing landslide susceptibility. The 

generated landslide susceptibility maps can be utilized for land-use planning, 

infrastructure development, and disaster risk management in the region. 

 

Keywords: Landslide Susceptibility Map (LSM), Point Pattern Analysis (PPA), 

Logistic Regression (LR) Model, Frequency Ratio (FR) Model, causative factors, 

landslide inventory, Receiver Operating Characteristics (ROC) 
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Chapter 1 

INTRODUCTION 

Pakistan has a diverse and complex geology, shaped by millions of years of 

tectonic activity and geological processes. The country is situated at the 

intersection of several major tectonic plates, including the Eurasian, Indian, 

Arabian, and African plates. This has led to the formation of a variety of 

geological features, including mountain ranges, valleys, plateaus, and plains. 

The geology of Pakistan is closely related to earthquakes, as the country is 

situated a region that is known to experience seismic activity most frequently. 

Indian and Eurasian tectonic plates collision is the main reason, Pakistan is 

situated within a zone that experiences heightened seismic activity. The 

collision of these two plates has resulted in the formation of the Himalayas and 

other mountain ranges in the region. This process has also led to the formation 

of several active fault zones throughout the country, where tectonic stresses 

build up and are eventually released in the form of earthquakes. 

Pakistan has experienced several devastating earthquakes in recent 

history, including the 2005 Kashmir earthquake and the 2013 Baluchistan 

earthquake. These earthquakes were caused by the movement of tectonic plates 

and fault zones in the region and resulted in huge loss to life buildings. Pakistan 

Geological composition also contributes to the occurrence and spreading of 

earthquakes in the country. The northern area of Pakistan, situated in the 

Himalayan area, encounters frequent seismic activity caused due to convergence 

of Indian and Eurasian plates. Whereas, southern part of the country, which is 

located on the Arabian Sea coast, experiences fewer earthquakes, but those that 

do occur can be more intense due to the type of rocks and sediments in the 

region. 

The relationship between geology and earthquakes in Pakistan is 

complex and highlights the importance of understanding the geological 
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processes and tectonic activity in the region to better predict and prepare for 

future seismic events. 

1.1 Seismicity of Badakhshan region 

The Badakhshan province of Afghanistan, close to the Pakistan border, was hit 

by a strong earthquake on October 26, 2015, which had a magnitude of 7.5. The 

earthquake occurred at a depth of approximately 212 km, making it a deep-focus 

earthquake. The quake was felt across a wide area, including Pakistan, India, 

and Tajikistan. The earthquake initiated major loss in the region, with reports of 

hundreds of fatalities and thousands of injuries. In Pakistan, the hardest-hit area 

was the Chitral region, where dozens of people were killed, and hundreds were 

injured. The earthquake triggered landslides in the mountainous region, which 

blocked roads and caused further damage to infrastructure. 

The earthquake induced landslides in Chitral were particularly 

significant, as they blocked several key roads and access routes in the region. In 

addition to this, the landslides resulted in harm to bridges and other buildings as 

well making it difficult for relief and rescue teams to access affected areas. In 

addition to the landslides, the earthquake also caused significant damage to 

buildings and other infrastructure in the region, including homes, schools, and 

hospitals. The impact of the earthquake and its aftermath was felt for weeks and 

months afterward, as communities worked to rebuild and recover from the 

disaster. 

1.2 Landslides and Earthquakes relation 

Earthquakes and landslides are often related in Pakistan. Earthquakes can trigger 

landslides by shaking loose rocks and soil from mountain slopes, which can then 

cause landslides and rockfalls. This is particularly common in the mountainous 

regions of northern Pakistan, where earthquakes are relatively frequent and the 

terrain is steep and prone to landslides. 

The 2005 Kashmir earthquake in Pakistan led to the occurrence of 

several landslides in the affected region, resulting in significant damage and 
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contributing to the high death toll. Similarly, landslides were set off in the area 

affected by the 2013 Balochistan earthquake, which exacerbated the damage and 

fatalities caused by the quake. 

Pakistan frequently experiences landslides as a natural hazard, especially 

in its northern mountainous regions. The topography of these areas, combined 

with heavy rainfall and seismic activity, increases the likelihood of landslides 

occurring. Pakistan has witnessed several significant landslides in recent years, 

including: 

1. Attabad landslide: In January 2010, a landslide took place in the Hunza 

Valley of Gilgit-Baltistan. The landslide blocked the Hunza River and 

created a natural dam, which flooded nearby areas and displaced thousands 

of people. 

2. Kohistan landslide: This landslide occurred in Kohistan district in Khyber 

Pakhtunkhwa in February 2010. The landslide resulted in unfortunate loss of 

over 20 lives and inflicted significant damage to infrastructures in the area. 

3. Mansehra landslide: This landslide occurred in Mansehra district in 

Khyber Pakhtunkhwa in June 2019. This led to the unfortunate demise of 

over 20 individuals and damage to infrastructure in the affected region. 

4. Golen Gol landslide: This landslide occurred in Chitral district in Khyber 

Pakhtunkhwa in July 2015. The landslide caused by the natural disaster led 

to the loss of over 15 lives and inflicted substantial damage to the 

infrastructures in the affected area. 

1.3 Landslide Susceptibility Mapping (LSM) 

LSM involves the identification of regions that are more susceptible to 

landslides. The process typically involves an analysis of causes such as slope, 

geology, and land cover, soil type and precipitation which are known to 

contribute to landslides. By mapping these factors and their potential 

interactions, it is possible to identify high risk areas prone to landslides. 

Landslide susceptibility mapping has been an important field of study for 

several decades, with early efforts focused on identifying and characterizing 
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landslide-prone areas using geological and geomorphological criteria. From the 

1970s to the 1980s, there was a transition towards the use of quantitative 

techniques in the creation of maps that predict the likelihood of landslides 

occurring in a particular area. This approach involved using statistical models to 

analyze different environmental factors and their relationships with the 

occurrence of landslides. 

Geographic Information System (GIS) is crucial in landslide 

susceptibility mapping. GIS is a software platform that enables the collection, 

analysis, and visualization of spatial data. This makes it possible to combine and 

analyze various types of data like soil, landcover, geology and toography to look 

for areas that are more susceptible to landslides. The ability of GIS to integrate 

different data sources and analyze them spatially makes it a valuable tool in 

landslide susceptibility mapping. By using GIS tools, analysts can input and 

analyze data on the various factors that contribute to landslides. GIS software 

can also be used to generate maps that depict areas that are at higher risk of 

landslides. These maps can be used by planners and policy makers to identify 

areas that may need additional mitigation efforts for risk reductions analysis and 

assessments. 

Mapping involves assessing geological, topographical, and 

environmental factors to determine the areas at higher risk of landslides. This is 

achieved by analyzing data on these factors and producing a map that highlights 

the areas that are more susceptible to landslides. The map can be a useful 

resource for land-use planning, risk management, and hazard evaluation. 

To generate a landslide susceptibility map, various data sources can be 

utilized, such as geological maps, soil surveys, topographical maps, rainfall 

data, and land-use maps. These sources are integrated and assessed using 

statistical analysis, remote sensing, and GIS technology. Subsequently, the map 

displays the regions that are more prone to landslides based on the 

characteristics of the contributing factors. This map is then useful for land-use 

planning, hazard assessment, and risk management purposes. 
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In a research conducted in the Zerqa River Basin in Jordan, the 

susceptibility of landslides was mapped by analyzing contributing causes such 

as geology, elevation, slope angle, soil type, rainfall, and land use. GIS 

technology was employed to integrate and analyze these factors, leading to the 

development of a map that illustrates areas of high and low susceptibility to 

landslides. The map was subsequently utilized to identify high-risk areas and to 

formulate suitable risk management and land-use planning strategies. 

The integration of multiple data sources and the landslide spatial 

distribution can be achieved through GIS technology, which is vital for 

susceptibility mapping. GIS software allows for the combination of diverse data 

sources, statistical analysis, and the creation of susceptibility maps displaying 

areas of high and low susceptibility. These maps can be used to prioritize areas 

for risk mitigation, identify locations that require further investigation, and 

support land-use planning and emergency management policymaking. 

Landslide susceptibility mapping is a great instrument for identifying 

high-risk areas and informing decision-making for land-use planning and risk 

management. GIS technology is essential for analyzing and visualizing the 

contributing factors and creating susceptibility maps that display areas of high 

and low risk.  

Landslide susceptibility mapping plays a crucial role in mitigating the 

hazards and risks associated with landslides. Landslide susceptibility mapping is 

a great instrument for identifying high-risk areas and informing decision-making 

for land-use planning and risk management. GIS technology is essential for 

analyzing and visualizing the contributing factors and creating susceptibility 

maps that display areas of high and low risk. By identifying the region that are 

in danger of landslides occurrences, decision-makers can prioritize risk 

management and mitigation, such as developing early warning systems, 

improving land-use planning practices, and implementing measures to stabilize 

slopes. This can help reduce the impact of landslides on communities and 

infrastructure, ultimately saving lives and minimizing property damage. By 

mapping these factors and their potential interactions, it is possible to identify 
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high risk areas prone to landslides. This is tool for proactive hazard management 

and can contribute to building more resilient communities. 

1.4 Objectives 

Main aim of this study is: 

Identification of potential areas at high risk of landslides and develop a 

susceptibility map that can be used on future for disaster risk reduction and 

management.  

a. To create a current landslide inventory in the study region for future 

investigations. 

b. To analyze the factors contributing to landslides and develop a better 

understanding of their interactions and relationships. 

c. To establish and check new approaches and technologies for susceptibility 

mapping, with a focus on improving accuracy and efficiency. 

1.5 Literature Review 

The analysis of earthquake-induced landslide hazards, specifically examining 

the forms and magnitudes of bulk movements in regions with tectonic activity, 

was conducted in one of the early studies by Keefer in 1984 (Garcia et al., 

2008). The majority of research on landslides triggered by earthquakes has 

concentrated on identifying, describing, and recording the landslides that occur 

during and immediately after the earthquake, especially those resulting from 

major seismic events (Khattak et al., 2014). 

Garcia et al., (2008) used a Geographic Information System (GIS) to 

create a database that included multiple layers or coverages to investigate seven 

factors that influence landslides: elevation, lithology (bedrock and soil), slope, 

mean annual precipitation, slope aspect, land use and terrain roughness lines 

(faults, escarpments, dikes, paleo-riverbeds, and mineral seams), Polygons 

(pedogenic, geologic and volcanic classes), and points (volcanic, fumaroles, and 

fossils classes) were used to organize the lithology data. 20 meter contour lines 

on 1:25000 topographic map being used for model with a 100m cell size, which 

was perfect for regional work. The slope gradient and aspect of the terrain were 
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generated using the Digital Terrain Model (DTM). The landslide inventory was 

created using data from the SNET on slope displacement caused by the 2001 El 

Salvador earthquakes. Landslide density study was done to figure out how slope 

and elevation impacted landslides. According to the findings, places with soft 

terrain at lower elevations had a lower density of landslides than those with 

higher elevations. Receiver Operating Characteristics (ROC) curves was created 

for identifying likelihood of landslides, and logistic regression modeling was 

used to create a model of landslide susceptibility. 

In the early post-seismic phase, new semi-automatic methods for 

detecting landslides using satellite images with high resolution which have the 

potential to help in landslides risk assessment (Harp et al., 2011, Martha et al., 

2010;). In contrast to all-weather, day-night operational satellite radar sensors, 

optical satellites rely on solar illumination and favorable weather conditions to 

capture imagery (Wasowski, Keefer, & Lee, 2011). Developing precise 

landslide inventories is crucial in assessing the temporal patterns of co-seismic 

landslides and identifying the dominant hazard and risk. These inventories play 

a crucial role in analyzing the geographical, geological, seismic, hydrological, 

anthropogenic, and climatic factors that contribute to their occurrence and 

activation. Furthermore, landslide inventories are vital in devising effective 

long-term strategies for mitigating and restoring the impacted areas (Shafique, 

2020).  Logistic regression analysis was employed to assess the landslide risk in 

Izmir, Turkey, utilizing various factors, including slope aspect, lithology, slope 

gradient and proximity to fault lines, drainage and roadways. Based on the 

coefficients presented, lithology emerged as the most significant contributor to 

the incidence and distribution of landslides (Kıncal et al., 2017). Petley et al., 

(2006) reported that tension cracks have created intricate, interlocking patterns 

with both bedrock and colluvium near faults, resulting in high-density arrays. 

In the recent decades, numerous studies have contributed to creating 

landslide susceptibility maps utilizing qualitative and quantitative 

methodologies. The mechanism of landslides is investigated using various 

parameters such as DEM, geology, and others. In landslide research, the quality 
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of data plays a crucial role, and achieving more reliable results depends on the 

adequacy and precision of the data across a broad range of parameters (Li et al., 

2021). Comprehensive areal model of earthquake-induced landslides (CAMEL) 

has been established for decision-making in disaster risk reduction planning. 

CAMEL uses GIS and fuzzy logic systems to create a comprehensive 

framework capable of simulating various types of earthquakes induced 

landslides. The primary goal of CAMEL is to simplify the process of 

representing terrain conditions in both quantitative and qualitative terms and to 

aid in understanding the influence of these characteristics on the expected 

concentration area of each landslide type (Miles & Keefer, 2009). 

The assessment of geo-hazards, debris flow after earthquake, and the 

impact of landslides on geomorphological advancement rely on the 

determination of the volume of landslides generated by significant earthquakes, 

making it a critical parameter. This value is often challenging to detect due to 

the hidden sliding surfaces underground and the three-dimensional nature of the 

landslides. Keefer fitted a power law relationship between the total volume of 

quake-triggered landslides and earthquake magnitude based on past 15 events 

(Xu et al., 2016).  

Hubbard and Shaw (2009) conducted a study on a city in China, which is 

situated 30km away from the epicenter of earthquake. The Sichuan earthquake 

that occurred on 12 May 2008 was caused by the movement of the Longmen 

Shan fault, primarily on Yingxiu-Beichuan fracture (Yang & Chen, 2010). 

Many rocks and soils slid down onto communities, highways, and rivers across 

the broad territory along the 300 km northeast of the LFZ as a result of the 

Wenchuan Earthquake (W. Zhang, Lin, Peng, & Lu, 2010). More than 93% of 

the land of Sila Greca, is covered by forest, was selected as a testing ground for 

the GIS-based model, 4SLIDE. The model demonstrated strong predictive 

potential in identifying areas susceptible to shallow landslides, as confirmed by 

the sensitive Receiver Operating Characteristic (ROC) analysis (Moresi et al., 

2020).  
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Shahabi & Hashim (2015) used the Analytical Hierarchy Process (AHP) 

which aids in decision making by assigning weights to parameters based on their 

importance. To use AHP, a pair-wise comparison matrix is created. The 

weighted linear combination (WLC), which assigns weight to each parameter 

based on the significance determined by the user, strikes a balance between 

qualitative and quantitative methodologies. Spatial multi-criteria evaluation 

(SMCE) enables operators to execute multi-criteria analysis using a location 

based approach. While (Marcus Nosser, 2002) used the Newmark's approach 

which calculates the increasing movement of a mass as a function of the 

acceleration time history of an earthquake. If the computed sum of the static and 

dynamic driving forces surpasses the block's shear resistance, the mass begins to 

move. Additionally, when the induced accelerations exceed a critical 

acceleration, permanent deformation can occur. 

According to (Chacon et al., 2006; Spiker and Gori, 2000) landslide 

management and damage assessment is a critical step in formation of the 

landslides inventory map, which displays the contours & positions of landslides 

and their classification on larger scale maps. The following stage involves 

generating a landslide susceptibility map (LSM), which shows the spatial 

distribution of event-controlling factors including slope gradient and lithology 

which lead to slope breakdown. It helps to define locations that are prone to 

landslides without consideration to time, and identifies places where landslides 

are expected to occur in the future (Chacon et al., 2006). Last step is to produce 

a map of landslides hazard that shows temporal framework, indicating the 

likelihood of a landslides occurring in a given time frame, which differs from 

landslide susceptibility mapping. 

An approach known as PARSIFAL approach is a probabilistic approach 

used to generate earthquake-induced landslide scenarios for seismic 

microzonation studies. The approach considers various causes like as 

topography, geology, seismicity, soil type and hydrology to generate expected 

scenarios that depend on seismic input and saturation conditions. The scenarios 

generated by the PARSIFAL approach can be used to map instability areas and 
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assess the potential impact of landslides on infrastructure and human settlements 

(Martino et al., 2019). MCE (Multi-Criteria Evaluation) is a widely used method 

that employs a variety of methodologies. Other methods, like multivariate 

statistical approach (MSA) and bivariate statistical analyses (BSA) developed 

by Ayalew (2005), are solely statistical in nature and use statistical correlations 

between landslides and environmental factors to identify the most important 

factors that influence landslide occurrence (Growley). OBIA approaches require 

high-resolution satellite images, which may not be available immediately after a 

landslide event. However, they can be used for landslide inventory and 

susceptibility evaluation in pre-disaster or post-disaster situations, if remote 

sensing data is available. Prediction rate curve is a useful tool for assessing the 

accuracy of statistical models. Weight of Evidence modeling is a widely used 

method for landslide susceptibility mapping and can provide valuable 

information for landslide disaster mitigation planning (Bacha, 2019). 

Identifying and categorizing landslides through the application of 

convolutional neural network (CNN) algorithms on satellite imagery is a 

commonly used and highly effective approach in geological hazard assessments 

(Qin et al., 2021). SAR is an active microwave instrument that can collect 

electromagnetic signals reflected from the earth's surface and generate 2D map 

based on the sensor target distance and direction of flight (Colesanti and 

Wasowski 2006). PALSAR sensor utilizes L-band microwaves (wavelength = 

23.6 cm) that can penetrate through leaves and tree branches. This allows for the 

detection of ground deformation that may be concealed by vegetation, making it 

more visible than with shorter wavelength microwaves. SAR is widely used in 

geological hazard assessments (Sato & Harp, 2009). 

Most researches on landslides triggered by earthquakes has focused on 

identifying and describing coseismal landslides, specifically those resulting 

from catastrophic earthquakes, with little understanding of the relationship 

between post-seismic and coseismal landslide activities in most mountainous 

regions. In northern Pakistan's western Himalaya, the 2005 Kashmir earthquake 

resulted in landslides which occurred because of snowmelt and rainfall on the 
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slopes. At 68 different sites in AJK and NWFP, earthquake-triggered landslides 

were investigated. Kamp et al. (2008) used pre-earthquake 2001 ASTER data to 

map landslides and compared it to 2005 ASTER data. Total landslides increased 

from 369 to 2252 from 2001 (covering 8.2 km2) to October 2005 (covering 61.1 

km2), according to (Kamp et al. 2008). 

In domain of GIS, Multi-Criteria Evaluation (MCE) is an essential 

decision-making tool used for choosing alternatives or determining priorities 

such as landslide susceptibility. MCE integrates multiple factors to create a 

single composite to aid decision-making based on a specific goal. In this study, 

the declared objective of MCE is to analyze the selected research region to 

estimate landslide susceptibility. MCE uses different methodologies, some 

qualitative like AHP (Saaty, 1980) and WLC, and some exclusively employing 

statistical techniques, such as bivariate statistical analyses (BSA) and the 

approach of multivariate statistics (MSA) (Ayalew, 2005). Their study utilizes 

the AHP approach due to its precision and integration with the software used to 

conduct the analysis. 

Pakistan faces a significant challenge from landslides that are triggered 

by earthquakes. The mountainous regions of northern Pakistan are particularly 

prone to natural disasters, and the Kashmir earthquake of October 8th, 2005 

resulted in thousands of landslides across India-Pakistan, concentrated in 6 

locations. A spatial database of 2,252 landslides was created and studied using 

satellite images of ASTER and GIS technologies. The significance of 

parameters that triggered the landslides was determined using a multi-criterion 

analysis. To manage and assess the damage caused by landslides. Multi-criteria 

evaluation (MCE) combines these criteria to create an only complex that can be 

used to make decisions for a precise goal (Malczewski, 1999) (Kamp et al., 

2008). Based on the massive fracturing of dolomites near Muzaffarabad, it is 

highly probable that future heavy rainfall or low-intensity earthquakes could 

trigger slope failures in the area. Therefore, this location is prone to experience 

slope failures ( van der Meijde et al., 2010). A study has been conducted on the 

Karakoram Highway (KKH), which passes through most seismically active 
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regions. The presence of active thrusts and strike-slip faults in the area leads to 

earthquakes, which in turn trigger landslides. Since 1904, there have been 317 

documented occurrences of earthquakes with magnitudes greater than 5, and 10 

of those have had magnitudes greater than 7, along the KKH. Notable events 

include the Muzaffarabad earthquake of October 2005 with a magnitude of 7.6 

and the Afghanistan earthquake of October 2015 with a magnitude of 7.5 (Ali et 

al., 2019). 

1.6 Statistical Analysis and Modelling 

Statistical analysis involves the collection, analysis, interpretation, presentation, 

and organization of data. It involves applying mathematical formulas and 

techniques to describe and understand data. Different categories of statistical 

analysis include inferential statistics, descriptive statistics, time series analysis, 

regression analysis and cluster analysis. 

In GIS-based landslide susceptibility modelling, statistical analysis and 

modeling have an important role in establishing the correlation between 

landslides and environmental factors such as geology, land use, soil, vegetation 

and topography. By analyzing these relationships, predictive models can be 

developed to estimate the likelihood of landslides occurring in a specific area. 

Landslide susceptibility modeling in GIS involves statistical analysis and 

modeling to determine the correlation between landslide incidents and various 

environmental factors like topography, geology, soil, vegetation, and land-use. 

Predictive models are developed from these correlations to estimate the 

possibility of landslides happening in a particular location. Support vector 

machines, logistic regression (LR), artificial neural networks (ANN), random 

forests (RF) stand out as commonly employed statistical frameworks for the 

purpose of landslide susceptibility modeling. To evaluate the performance of 

these models, statistical analysis is carried out by comparing predicted landslide 

probabilities to actual landslide occurrences and computing measures of model 

accuracy, including sensitivity, specificity, and AUC-ROC.  
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Chapter 2 

MATERIALS AND METHODS 

2.1 Study Area 

The region under investigation consists of Chitral district and is situated in the 

northwestern part of Pakistan, in the Khyber Pakhtunkhwa province (Figure 

2.1). To the north and west lies Afghanistan, while the eastern border of this 

place is shared with the Gilgit-Baltistan region of Pakistan. The region is 

mountainous, with several major mountain ranges intersecting in the area. The 

Hindu Kush range runs along the northern and western borders of the district, 

while the Pamir range extends along its eastern border. The Chitral River flows 

through the region, originating in the glaciers of the Hindu Kush and emptying 

into the Kabul River in Afghanistan. The district has a total area of around 

14,850 square kilometers and is divided into several sub-districts or tehsils.. The 

district headquarters is in the town of Chitral. The Chitral region’s altitude 

ranges from 1065 meters to 7701 meters above the sea level and is known for its 

rugged terrain, with steep mountains, deep valleys, and narrow gorges. The 

highest peak in the region is Tirich Mir, which is located in the Hindu Kush 

range. 

2.1.1 Climate and Topography 

The climate of the Chitral district is characterized by cold and temperate 

conditions with significant variations in temperature and precipitation. The 

region is situated in the mountainous northwestern part of Pakistan and is 

subject to a wide range of weather patterns for whole year. With temperatures 

ranging from 10 to 30 degrees Celsius (50 to 86 degrees Fahrenheit), the 

summers are warm and pleasant while, winters are chilly and snowy, with lows 

well below freezing. Snowfall is common in the winter months, especially at 

higher elevations. The district receives most of its precipitation during the 

summer monsoon season, which runs from June to September. During this time, 
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the region experiences heavy rainfall and occasional flooding, particularly in 

low-lying areas. The monsoon season is critical for agriculture in the district, 

providing much-needed water for crops and livestock. The rugged topography 

of the region is defined by steep peaks, narrow gorges, and valleys. Situated at 

the convergence of multiple prominent mountain ranges such as the Pamir, 

Karakoram, and Hindu Kush, the region bears this distinctive feature. These 

mountains form a natural barrier that separates the region from the rest of 

Pakistan and contributes to its isolation and unique identity. 

 

Figure 2.1. Map of the area under study showing the district Chitral of the KPK 

province of Pakistan. It is situated towards the northwestern border of Pakistan 

with Afghanistan and is mostly run by the Hindu Kush mountain ranges of the 

country. 

 

The region's topography has a significant impact on its natural resources 

and land use patterns. The mountains provide habitat for a wide range of 

wildlife, including the snow leopard, Himalayan Ibex, and Markhor. The valleys 

and river basins are home to forests, agricultural lands, and pastures for grazing 
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livestock. The Chitral district's climate and geography create unique challenges 

and opportunities for the region's residents and natural resources. Harsh winter 

conditions, combined with rugged mountain terrain, can make travel and access 

to remote areas difficult. However, the region's natural resources, including 

forests, rivers, and wildlife, provide important economic and ecological benefits 

to the local communities. 

2.1.2 Geology and Tectonics 

The geology of Chitral is characterized by complex and a diverse range of rock 

formations, reflecting the region's geological history. It is situated within the 

Himalayan orogenic belt and consists of sedimentary, igneous, and metamorphic 

rocks that have undergone significant heat and pressure during the mountain-

building process. The oldest rocks in the Chitral region are Precambrian in age 

and include granite, gneiss, and schist. Above these rocks are younger 

sedimentary formations, including sandstone, shale, and limestone. The 

Paleozoic and Mesozoic eras are represented by the Hazara Formation, which 

consists of limestone, shale, and sandstone. The region's Cenozoic rocks include 

the Murree and Nagri formations, which are composed of sandstone and shale. 

These formations are important for their fossil content, which includes plant and 

animal remains that provide insight into the region's past environments and 

ecosystems. The region is located at the interface of the Indian and Eurasian 

plates, which have been converging for millions of years. This collision has led 

to the creation of the Himalayan Mountain range which also includes the Mount 

Everest. The Chitral region is characterized by complex tectonic structures, 

including thrust faults, folds, and uplifted blocks, which have resulted from the 

compression and deformation of the Earth's crust due to the plate collision. The 

region's geology is also marked by the presence of ophiolites, which are 

fragments of oceanic crust and upper mantle that were thrust onto the continent 

during the collision. The region is still tectonically active, with ongoing 

deformation and seismic activity. As a result of the convergence between the 

Indian and Eurasian plates, the Himalayan Mountain range formed along with 
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the development of multiple faults throughout the region. One of the major 

faults in the Chitral region is the Reshun Fault. It is a thrust fault that runs along 

the Chitral valley and is capable of producing large earthquakes. The fault has 

been responsible for several earthquakes in the past, including the earthquake of 

2015, on the Richter scale it had a magnitude of 7.5. The Reshun Fault is a part 

of larger Hindu Kush-Himalayan (HKH) seismic belt, which extends from 

Afghanistan to Myanmar. This region is known for its high seismicity, and a lot 

of major earthquakes have happened in this region in the past. The region's 

complex tectonic history and ongoing activity make it an important area for 

studying the processes that shape the Earth's crust and the hazards associated 

with seismic activity.  

2.1.3 Landuse and Landcover (LULC) 

The classification of the Chitral region’s land cover reveals a varied landscape, 

which is dominated by glaciers, natural vegetation, agriculture, and bare ground. 

Total area of the district is almost 14, 866 km2. The region's LULC can be 

broadly classified into forests, agriculture, settlements, and water bodies 

(glaciers and snow). Almost 40% of the area is covered with glaciers and snow. 

Forests and rangelands are also in abundance in the district and covering almost 

35% of the area with more than 5175 km2. Agriculture is practiced in the fertile 

river valleys and terraced hillsides which covers almost 3.2% of the district and 

is mainly focused on growing crops such as wheat, maize, and potatoes. Barren 

land comprises of 20% of the district area. Settlements are scattered in about 1% 

of the total land cover and are concentrated around the larger towns and villages, 

characterized by a mix of residential, commercial, and industrial land use. The 

region also has several water bodies, including rivers, lakes, and wetlands, 

which are important for irrigation, hydropower generation, and biodiversity. 
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2.2 Materials 

2.2.1 Satellite Images 

To overcome field data collection in the inaccessible study area, Landsat 8 data 

was used as it is considered a powerful tool for collecting information on 

landslides and understanding the processes that drive them. Landslides were 

identified by analyzing changes in the terrain and vegetation cover. Areas of 

bare ground and areas where vegetation has been disrupted or removed were 

initially considered as landslides. Satellite imagery provided the base for 

Landslide Susceptibility Mapping and establishing of the Landslide Catalog of 

the region. Table 2.1 shows the detailed information. 

2.2.2 Tools and Software  

Table 2.2 lists the tools and software utilized for data analysis and processing. 

2.3 Analytical Framework 

2.3.1 Methodology 

This research is conducted in four major sections, which comprise a literature 

review and data collection using Landsat satellite imagery (landslide inventory 

and exploratory data) to generate various maps.  Google Earth Engine (GEE) 

was then used for change detection and Classification of LULC was performed 

from 2001 to 2021.  Statistical analysis was performed, and a Landslide 

Susceptibility Model was developed for the study. Detailed methodology is 

shown in (Figure 2.2), and a step-by-step explanation is given below:  

Step 1:  A comprehensive literature review was conducted on earthquake-

triggered landslides and landslide susceptibility mapping to gain a thorough 

understanding of the current state of research, methodologies, and best practices. 

All necessary data was gathered for the study area, including geological and 

topographical maps, satellite imagery, digital elevation models (DEMs), and 

earthquake data. Other exploratory data collection included hydrology, slope 

angle, aspect, lithology, and vegetation cover. 
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Step 2:  Preprocessing of satellite imagery was done. Landslide inventory was 

created through time series in Google Earth Pro and DEM was used to extract 

the required information of elevation, slope angle and aspect. Hydrology data 

was used to digitize all the rivers in study area and geological information was 

extracted from the geology datasets. Different maps were generated from these 

datasets to further incorporate it in the statistical analysis.  

Step 3:  In this step, LULC Classification was performed to observe the changes 

in land cover. Then Point Pattern Analysis was performed for landslide 

susceptibility mapping that allowed to identify spatial patterns and clustering of 

landslide occurrences in the Chitral district.  

Step 4: Finally, Landslide Susceptibility Model was generated in “R” by 

incorporating all important factors that contributed to landslide susceptibility. 

Ultimately, the validation of the landslide susceptibility map involved the 

utilization of receiver operating characteristic (ROC) analysis and the 

assessment of the area under the curve (AUC). These methodologies were 

instrumental in appraising the precision and trustworthiness of the generated 

map. 

 

Table 2.1. List of datasets with its purposes. 

Materials/Data Purpose 

Landsat 5 and 8 Imagery Landslide Inventory 

Landuse/Landcover (LULC) 

Vegetation Index (NDVI) 

DEM (SRTM) Elevation 

Slope Angle 

Aspect 

Stream Network 
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Table 2.2. Tools used for Analysis and Processing. 

Software/Tools Purpose 

ERDAS Imagine/QGIS Preprocessing of Landsat Satellite 

Imagery 

ArcMap/QGIS Landslide Inventory, Processing of 

DEM, Landslide Inventory Map, 

Elevation Map, Slope Angle, Aspect 

Map, Geological Map, Hydrology 

Map,  Landslide Susceptibility Maps 

Google Earth Pro Time series study of landslides, 

Digitization of rivers and streams 

Google Earth Engine Landuse/Landcover Classification 

(LULC), Vegetation Index (NDVI) 

R-Studios, Python and Microsoft 

Excel 

Statistical Analysis and Modeling 

Microsoft Word Thesis Report Writing 

Microsoft Power Point Presentations 
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Figure 2.2. Detailed methodology flowchart showing step by step collection of data and 

processing with results. 
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2.4 Earthquake Data 

Earthquake data was collected from USGS Earthquake Catalogue 

(https://earthquake.usgs.gov/earthquakes/map/) for mapping the events in the 

study area that provided valuable insights into the seismic activity and 

earthquake risk in the region. Earthquake event of 26th October 2015 having 

magnitude of 7.5 with 115 other earthquakes above 4.5 magnitudes on Richter 

scale were mapped in such a way that the landslides triggered by these 

earthquakes in a radius of 400 kilometers could be identified. This data was 

further analyzed to identify patterns and trends in the seismic activity in and 

helped in developing the Landslide inventory for study area. 

2.5 Landslide Inventory 

The utilization of satellite imagery can be highly effective in recognizing 

potential landslide zones and creating a comprehensive inventory of landslides 

for a given study area. However, different other sources of data and information 

can be combined to create a comprehensive landslide catalog.  

The best alternative for developing a landslide catalog of an inaccessible 

region is Satellite imagery. Making a landslide inventory requires various steps. 

The USGS Earth Explorer website (earthexplorer.usgs.gov) provides free access 

to Landsat 8 imagery. First of all, Landsat 8 imageries were obtained for the 

study area of Chitral district in such a way that Earthquake event of October 26 

2015, was set as a reference event. Before and after event imageries with cloud 

cover less than 10% were downloaded for the year 2015. Preprocessing of the 

imagery was done in ERDAS Imagine software in which atmospheric 

corrections and radiometric calibrations were performed to ensure that the image 

data is accurate. Different bands were combined to create a composite image to 

highlight different features and identify potential landslide areas. Initially the 

visual interpretation helps in interpretation of the areas with distinctive features 

such as scarps, hummocky terrain, or steep slopes. Identified landslides can be 

verified by comparing it with the past landslide inventories if ground validation 

https://earthquake.usgs.gov/earthquakes/map/
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is not possible. Once identified and verified the landslides, one can generate a 

landslide inventory for this study.  

Another way or procedure for development of a landslide inventory is 

the Google Earth Pro. It can be used for the identification and analysis of 

landslides using time series data. Time series data involves the analysis of 

changes over time, which can be helpful in identifying the characteristics of 

landslides and their potential impact. Time series (temporal) study was 

performed for the identification of landslides in Google Earth Pro in number of 

steps. First step included the visual interpretation of the historical and present 

high resolution satellite imagery provided by the Google Earth Pro. “Time 

Slider” tool was used to view the images over time and compare them to 

identify any changes. This tool allowed viewing multiple images of the same 

locality at dissimilar points in time. Diverse areas in the study area were 

identified where there were noticeable changes in topography, such as new or 

larger cracks or fissures, changes in slope or vegetation cover, or other 

indications of ground movement. Some other tools for measurement were used 

to measure the dimensions and locations of the identified landslide features, as 

well as any potential areas at risk of future landslides. A total of 210 landslides 

were identified and confirmed through comparison with historical landslide 

records of the area.  

2.6 Remote Sensing/Satellite Data 

Google Earth Engine (GEE) has a wide range of satellite imagery data available 

for free, such as Landsat, Sentinel, and MODIS. Data can be accessed through 

the GEE Code Editor. Different satellite imagery was selected as required for 

analysis. For Landuse/Landcover (LULC) classification, Landsat satellite data 

was used and for Normalized Difference Vegetation Index (NDVI) calculations, 

Sentinel 2 imagery was used.  
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2.6.1 LULC Classification in GEE 

For Landuse/Landcover classification (LULC) of the study area, three Landsat 

images of two different years were selected. Landsat 5 satellite image of year 

2001 was selected and Landsat 8 image was selected for the year 2021. Both the 

satellite images have a spectral resolution of 30 m. Images were pre-processed 

by removing cloud cover, shadows, and atmospheric corrections by applying 

different tools and functions in Google Earth Engine. Supervised Classification 

was performed on each image by using traditional Machine Learning (ML) 

algorithms and five different classes were extracted for these years namely 

Built-up area, snow cover, soil, vegetation, and water. GEE code is attached in 

Appendix A. 

2.6.2 NDVI Calculations in GEE 

For NDVI calculations and vegetation cover of the study area, satellite data of 

Sentinel-2 for the year 2021 was imported in Google Earth Engine. The image 

was pre-processed by removing the cloud cover and a function to clip the image 

according to the study area was applied. After that, the Red and Near-Infrared 

(NIR) bands were selected from the satellite data. The red band is denoted by 

B4 and the NIR band is represented by B8. NDVI was calculated by using 

following formula: 

 

 𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅−𝑅𝑒𝑑

𝑁𝐼𝑅+𝑅𝑒𝑑
 (2.1) 

   

2.7 Digital Elevation Model (DEM) 

Digital Elevation Model (DEM) which is a comprehensive digital dataset of the 

Earth’s terrain, covering the entire globe was generated. 
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Specifications: 

 Data Collection Date: February 11, 2000 – February 22, 2000 

 Data Source: Space Shuttle Endeavour using the SIR-C/X-SAR radar 

instrument. 

 Spatial Resolution: 30 meters 

 Vertical Accuracy: +/- 16 meters (relative) and +/- 20 meters (absolute) 

First of all, pre-processing was done on the downloaded SRTM DEM. 

SRTM DEM data is provided in tiles that cover different parts of the Earth’s 

surface. It was necessary to mosaic the tiles together to create a seamless 

elevation dataset that covers the entire study area of Chitral district. Once DEM 

was mosaicked, it was further used for extraction of river networks in the study 

area plane curvature, aspect, slope angle and elevation,  

2.8 Hydrology Data 

To map the drainage networks, river data was needed for the study area. DEM 

was used to extract rivers.  First the DEM was pre-processed by filling in some 

sinks, which are areas of the DEM where the elevation is lower than the 

surrounding area, so that water can flow out of them. This step is important 

because sinks can interfere with the hydrologic analysis. Then the flow direction 

and flow accumulation grids were derived from the preprocessed DEM. These 

grids were used to identify the flow path of water and the accumulation of flow 

at each cell. Using the flow direction and flow accumulation grids, the stream 

network was extracted by thresholding the flow accumulation grid at a suitable 

value to isolate streams and rivers. Further the extracted stream network was 

refined by smoothing and simplifying the lines and by using tools such as edge 

detection and image segmentation. This helped to remove any noise or 

inaccuracies in the original data and create a more visually pleasing result. 

Missing rivers were digitized as accurately as possible, using high-resolution 

imagery and taking care to follow the exact course of the river to ensure the 

resulting data to be accurate as possible. By incorporating river data into 
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landslide susceptibility mapping, as it has the potential to provide a broader 

insight of the potential triggers and locations of landslides. This information can 

be used to develop effective mitigation strategies and land-use planning.  

2.9 Geological Data 

Geological data is crucial for mapping landslides because the geology of an area 

has a substantial impact in the stability of slopes and the likelihood of 

landslides. The Survey of Pakistan has produced a geological map of Pakistan 

that provides information on the geological structures and formations found in 

the country. The geological map depicts the different geological formations and 

rock units found in the country. The map also provides information on the age 

and composition of these rock formations. The map is divided into different 

regions, each with its unique geological features. Main Fault lines and 

geological formations were digitized manually by the help of this map. Other 

geological datasets were downloaded and incorporated into the digitized data to 

develop a geological map of the region. The USGS Geological datasets provided 

a lot of information about the geological formations of the Chitral district. It also 

provided information about the composition and structure of rock and soil 

layers, which helped in identifying the potential triggers and locations of 

landslides. Geological data can be used to map areas that are prone to landslides 

based on their geological characteristics. For example, areas with steep slopes, 

loose soils, or weak rock layers are more likely to experience landslides. By 

incorporating geological data into landslide mapping, it is possible to grow a 

more complete understanding of the potential triggers and locations of 

landslides in future. 

2.10 Statistical Analysis and Modeling 

Statistical analysis and modeling are important components of geographic 

information systems (GIS) that help to extract meaningful information from 

spatial data. Statistical analysis in GIS involves the use of various statistical 
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tools to analyze data and detect patterns or trends. Modeling involves the use of 

mathematical models to simulate various spatial phenomena. 

2.10.1 Point Pattern Analysis 

Point pattern analysis is used to identify patterns and clustering of events or 

phenomena in a particular geographic region. Point pattern analysis can be 

applied in the field of landslides to determine the spatial arrangement of 

landslides and pinpoint regions with a higher risk of landslide activity. The 

approach involves assessing the concentration of landslide occurrences and 

examining the spatial association between individual landslides.  

Descriptive Statistics 

In point pattern analysis (PPA); descriptive statistics are used to measures of 

dispersion and central tendency. According to O'Sullivan and Unwin (2010), 

central tendency refers to the determination of the central location of a point 

pattern and provides information of how points are distributed. The commonly 

measures of central tendency in PPA are mean and median center (Gimond, 

2019). (x, y) coordinates of all points are used as an average by mean center in 

the study area, as shown below.  

 

 (𝜇𝑥,𝜇𝑦) = (
∑ 𝑥𝑖

𝑛
𝑖=1

𝑛
,

∑ 𝑦𝑖
𝑛
𝑖=1

𝑛
) (2.2) 

 

The coordinates of the mean center are denoted by (μx, μy), while (xi, yi) are 

coordinates of point i. while n is total number of points.  

Median center is basically location that minimizes the total distances 

traveled to all points. This center is calculated by the help of the procedure 

developed by Kuenne & Kulin in 1962. Algorithm begins with an initial 

location, such as the median center, and then updates its coordinates (x', y') 

through the following process, as explained by Rogerson (2019): 
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𝑤𝑖𝑦𝑖
𝑑𝑖

𝑛
𝑖=1

∑
𝑤𝑖
𝑑𝑖

𝑛
𝑖=1

 (2.3) 

 

Where as "di " is distance, between the point (xi, yi) and "wi " is weight of point. 

For computing an unweighted mean center, "Wi" remains constant across all 

locations.  

Iterative process is carried out till the difference between the previously 

computed median centers and newly computed is no longer significant, i.e., the 

distance between the two centers is less than a pre-defined threshold.  

a) Standard distance: 

Standard deviations and the standard distance have comparable definitions. Both 

these indicators are used to determine the extent of spread or dispersion of a set 

of points around their mean center (Gimond, 2019). The calculation of standard 

distances involves utilizing Equation 2.4. 

 

 𝑑 = √
∑ (𝑥𝑖−𝜇𝑥)2𝑛

𝑖=1 +∑ (𝑦𝑖−𝜇𝑦)
2𝑛

𝑖=1

𝑛
 (2.4) 

 

The equation takes into account the coordinates of the mean center, represented 

by (μx, μy), along with the coordinates of a specific point "i", represented by 

(xi, yi), and the total number of points denoted by "n". 

b) Standard deviational ellipse: 

Although it can reflect the level of dispersion of a point pattern, standard 

distance only computes an isotropic metric and fails to demonstrate any 

directional influence. Researchers use standard deviational ellipses to compute 

independent standard distances on two axes that are perpendicular for this 

purpose. The mean centre of the ellipse serves as the major axis, and the total 

length of orthogonal axis is calculated by the matching standard distance along 

the direction with the highest dispersion. The standard deviational ellipse is very 

useful for displaying point patterns with a directed orientation (ESRI, 2018). 
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According to Gatrell et al. (1996), the standard deviational ellipse can be 

calculated using point locations or by giving various points weights (w) based 

on their characteristics. That is known as weighted standard deviational ellipse.  

A weighted directional distribution's rotational semi-minor (y) and semi-major 

(x) axes may be determined as follows (Wang, Shi, & Miao, 2015): 

 

 (x̃
ỹ
) = w. (xi

yi
) − (μx

μy
) (2.5) 

 

 σx = √
1

n
∑ ( yĩ  sin θ + xĩ  cos θ)2n

1  (2.6) 

 

 σy = √
1

n
∑ ( yĩ  cos θ + xĩ  sin θ)2n

1  (2.7) 

 

The equation considers the weight matrix denoted by "w", along with the 

coordinates of point "i" represented by (xi, yi), the (weighted) mean center 

indicated by (μx, μy), and "θ" is rotation angle determined by: 

 

tan θ =
(∑ x̃i

2n
i=1 −∑ ỹi

2n
i=1 )+√∑ x̃i

2n
i=1 −∑ ỹi

2n
i=1 +4(∑ x̃i

x
i=1 ỹi)

2

2 ∑ x̃iỹi
n
i=1

  (2.8) 

 

 

Distance-based Measures 

By computing the separations between pairs of points, distance-based measures 

are used to analyse the spatial arrangement of points. These measurements are 

frequently considered to be the most accurate predictors of the second-order 

attribute. There are several distance-based measures that use distances other 

than Euclidean distances, even though the majority of these measures use 

Euclidean distances (Lamb et al., 2016; Okabe & Yamada, 2001). 
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a) Nearest-Neighbor Distance: 

A point's distance from its closest neighbour is referred to as the nearest-

neighbor distance (NND). The first order nearest neighbour is another name for 

NND. In addition to NND, the kth nearest neighbour, commonly known as the 

kth-order NN or KNN, can also have its distance determined. The mean NND 

among all point sets is frequently employed as a global indicator to assess a 

point set's overall pattern (Clark & Evans, 1954). The mean NND of a certain 

point collection can be compared to the anticipated NND produced from points 

that follow complete spatial randomness (CSR), which can help establish the 

significance of the pattern. A point pattern known as a CSR has points that all 

appear to be randomly dispersed within the research region. This comparison 

helps in assessing the level of clustering or dispersion present in the point 

pattern. Equation 2.9 can be used to calculate the mean NND (𝐷) for a point set. 

 

 𝐷 =
∑ 𝑑𝑖

𝑛
𝑖=1

𝑛
 (2.9) 

 

Where "di" is Distance of point "i", as "n", is total points. Moreover, the mean 

NND in a scenario of complete spatial randomness (CSR) can be determined as: 

 

 𝐷𝐸 =
0.5

√
𝑛

𝐴

 (2.10) 

 

The area of a point set is used in the following equation to calculate the z-score 

of mean NND (represented by A): 

 

 𝑧 =
𝐷−𝐷𝐸

𝑆𝐸
 (2.11) 

 

Where 
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 𝑆𝐸 =
0.261356

√𝑛2 𝐴⁄
 

 

b) Distance Functions: 

i.G Function: 

The mean NND offers a single-value metric for determining how 

clustered a set of points is, but it provides only a limited understanding of the 

complex nature of point pattern at various spatial scales. In order to account for 

more complex variations in a point pattern, multiple distance functions have 

been developed. Among them, the G function is the simplest approach used to 

measure cumulative frequency. And it is represented as: 

 

 𝐺(𝑑) =
𝑠𝑢𝑚(𝐷𝑖𝑗<𝑑)

𝑛
 (2.12) 

 

In the G function equation, "sum(Dij < d)" denotes the count of points (i, j) that 

have smaller distance as compared to d.  

ii.F Function: 

The F function involves generating a small set of random points 

(referred to as "P"), where as computing the min. distance between random 

points & any of the original points (referred to as "O"). It expressed as follows: 

 

 𝐹(𝑑) =
𝑠𝑢𝑚[𝑑𝑚𝑖𝑛(𝑝𝑖,𝑠)<𝑑]

𝑛
 (2.13) 

 

F(d)= value of the function at distance d. 

sum[dmin(pi,s) < d]= count of points in P. 

iii.K Function: 

Since the F & G functions focus solely on the NN of every point and do 

not take into account distances to other points, they are not suitable for 

analyzing point patterns at multiple scales or for reflecting local variations. 
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While Ripley's K function can be used to identify multi-scale point patterns. The 

K function is expressed as follows: 

 

 𝐾(𝑑) =
𝑅

𝑛2
∑ ∑

𝐼𝑑(𝑑𝑖𝑗)

𝑤𝑖𝑗
𝑖≠𝑗  (2.14) 

 

The extent of the study region is denoted by R, and the indicator “wij” accounts 

for edge correction. 

Density-based Analysis 

Density-based measures are employed by researchers to investigate how point 

densities vary across space. There are two types of density measurements: local 

density and global density. Ratio of the observed points to area of the research 

region is called global density and can be easily calculated by given equ.: 

 

 𝜆 =
𝑛

𝑎
 (2.15) 

 

The equation calculates the global density using the number of points (n) and 

the area of the study district (a). 

Local density, on the other hand, considers variations in point density 

across the study region. Two density based measures used to study local density 

are quadrat density and kernel density. 

a) Quadrat Density: 

Divided into smaller subregions called quadrats, the research area is subjected to 

a quadrat density analysis, which involves calculating the point density for each 

quadrat. According to (Gimond 2019) quadrats can be hexagons, squares, 

triangles, or Thiessen polygons among other shapes. However, the shape, size, 

and number of quadrats used have a major effect on the results of quadrat 

density. Small quadrats may result in multiple quadrats with no or few points, 
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but exceptionally big quadrats may not be able to record fine-scale changes 

(Anderson & Marcus, 1993). 

b) Kernel Density: 

Kernel Density Estimation (KDE) differs from quadrat density analysis in that it 

assumes that every location has a density, and density estimation is done by 

kernel. By counting the number of events in a search window centred at the 

density calculation site, KDE determines the local density of points. Only 

selected point window are counted, and nearby points often carry more weight 

than far-off places. A number of kernel functions, such as gaussian kernel, 

polynomial kernel, exponential kernel, uniform kernel, and the linear kernel are 

available to assign weights to the points. KDE is useful for transforming discrete 

data into continuous variables, as it generates a continuous surface of point 

densities. 

2.11 Point Pattern Analysis in R 

R-Studio is a comprehensive IDE designed specifically for the R programming 

language, providing a user-friendly interface for writing and executing R code, 

as well as a suite of tools for data analysis, visualization, and package 

development. R language is being widely used and designed for statistical 

ananlysis, and it is frequently employed in point pattern analysis along with 

various other data analyses. “R” code is attached in the Appendix B. 

 

2.12 Landslide Susceptibility Mapping (LSM) 

Landslide susceptibility mapping aims to identify areas with a higher possibility 

of landslide occurrences based on the analysis of various contributing factors. 

These factors may include environmental, geological, and topographic factors 

that affect landslide occurrences. The outcome of this analysis is a map that 

demonstrates the susceptibility level of an area to landslides. The initial step in 

landslide susceptibility mapping involves collecting data on various factors that 

can influence landslides, including topographical maps, soil surveys, geological 
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maps, land use maps, and rainfall data. Following that, the collected data is 

analyzed using different methods such as remote sensing, statistical analysis, 

and GIS technology, which can aid in the identification of areas with greater 

risks of landslides based on the analyzed factors. The results of the analysis 

shows susceptibility map that indicates areas that are at higher risk of landslides. 

This map can assist in the development of land use planning, engineering 

design, and emergency management. Nonetheless, it can provide useful 

information that can help to mitigate the risks related to landslides, decrease 

potential damage, and prevent loss of life. 
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Chapter 3 

RESULTS AND DISCUSSIONS 

3.1 Earthquake Mapping 

Google Earth Pro was utilized to map the earthquake event of October 26, 2015 

so that seismic activity within 400 kilometers of the epicenter could be 

observed. The epicenter of the earthquake was seen 45 kilometers south of 

Feyzabad, in the vicinity of Jarm, Badakhshan, Afghanistan (Figure 3.1). It was 

a deep-focus earthquake with a magnitude of 7.5 that happened at a depth of 

around 212 kilometers. A large area, including Pakistan, India, and Tajikistan, 

felt the quake. There were hundreds of reported fatalities and thousands of 

reported injuries from the earthquake that left the area significantly damaged. 

The Chitral region of Pakistan was worst affected, with results of fatalities and 

hundreds of injuries. 

 

 

Figure 3.1. Earthquake map of 26th October, 2015 mapped showing the exact 

location of the epicenter and the affected region of Chitral, Pakistan. 
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3.2 Landslide Inventory 

Landslide catalog was created by plotting a total of 210 landslides that are 

scattered almost all over the study area. Landslides were identified using 

satellite imagery and Google Earth Pro by using the time series study.  Temporal 

images of 20 years from the year 2001 to 2021 were visualized to identify the 

landslide prone regions. Most of the landslides identified were along the major 

riverbanks. The study area is surrounded by deep valleys and the mountainous 

terrain which makes it difficult to identify and mark the landslides locations. 

Some landslides were identified along the roads and fault lines due to different 

events like anthropogenic and seismic activities taking place in the region. 

Identified landslides were validated with the NASA landslides catalog and 

Global landslides viewer to check the accuracy with the historical landslide 

inventories. Furthermore, the identified landslides were categorized into 

modelling datasets (80%) and validation datasets (20%) for further processing 

and modelling of the Landslide Susceptibility Mapping.   

 

 

Figure 3.2. Landslide Inventory map of Chitral showing locations of the 

landslides (Modelling samples that were used to train different models 

Validation Samples that were used to validate the models after training them). 
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3.3 Landslide Causative Factors 

Landslides can occur in many different forms, ranging from small debris flows 

to catastrophic rockslides. However, all landslides share a common feature: they 

involve the movement of soil, rock, or other materials down a slope. To better 

understand and manage the risk of landslide, it is very important to identify and 

understand the factors that contribute to their occurrence. A total of 10 causative 

factors for landslides were identified that includes elevation, slope angle, aspect, 

land cover, geological/lithological units, soil type, vegetation cover, distance to 

faults, rivers/streams and roads. Given factors plays crucial role in identification 

of the potential landslide occurrences and landslide susceptible zones when 

combined and studied under different statistical models.  

Elevation Profile 

Elevation plays an important role as a landslide causative factor. Elevation was 

mapped from the SRTM Digital Elevation Model which is freely available from 

the USGS website, and it has a resolution of 30 m. The elevation profile of 

Chitral district ranges from 1065m -7701m above the sea level and it was 

further classified into 5 classes of equal intervals. These 5 classes (1065 – 

2392.2, 2392.2 – 3718.4, 3719.4 – 5046.6, 5046.6 – 6373.8 and 6373.8 – 7701) 

were mapped to show the landslide occurrence in each class with respect to the 

area of each class (Figure 3.3, 3.4).  
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Figure 3.3. Map of Elevation Profile Chitral divided into 5 classes with equal 

intervals. 

 

 

Figure 3.4.  Relationship between the Elevation classes and the landslide pixel 

% in corresponding class. 
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Slope Angle 

The greater the slope angle, the more likely landslides are to occur. The 

equilibrium between shear pressures and resistance to shear determines how 

stable a slope is. Landslides may occur when the slope angle is steep due to an 

increase in movement of mass (Guillard and Zezere, 2012). According to 

studies, the shifting of the landslip mass and the lateral forces exerted on the 

slope of the hill are both proportional to how steep a slope is (Tien Bui et al. 

2017). Additionally, slope gradient is important for subsurface movement and 

influences the amount of soil moisture, both of which have a direct bearing on 

the likelihood of landslides (Magliulo et al. 2008). A map of slope angle of 

Chitral was created using a Digital Elevation Model (DEM) with 30 meters 

spatial resolution (Figure 3.5). Map covered a range of slope angles from 0 to 

80.6 degrees and was further classified into 5 classes ranging from (< 15 

degrees, 15 – 30, 30 – 45, 45 – 60 and > 60 degrees).  

 

 

Figure 3.5.  Slope map of the study area showing different slope angles in 

different classes. 
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Figure 3.6.  Relationship between slope angle and landslide pixel % in each 

class. 

 

Aspect 

The aspect can have both direct and indirect impacts on landslides through 

various processes. These processes include sunlight exposure, precipitation 

patterns, vegetation, orientation of discontinuities, evapotranspiration, and 

concentration of soil moisture, hydrological processes and wind directions 

(Devkota et al., 2013; Quan and Lee 2012; Neuhcauser et al., 2012). To examine 

the slope aspect in the region, a Digital Elevation Model (DEM) was utilized to 

create a classification system with nine categories. The categories included flat 

(1) West (247.5 – 292.5), Southeast (112.5 – 157.5), Northeast (292.5 – 337.5), 

South (157.5 – 202.5), Southeast (202.5 – 247.5), Northeast (22.5 – 67.5), North 

(0 – 22.5 and 337.5 – 360), East (67.5 – 112.5). 
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Figure 3.7.  Aspect map of the study area divided into classes from 0 to 360 

degrees. 

 

 

 

 

Figure 3.8.  Relationship between landslide pixel % in each class of Aspect. 
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Geological/Lithological Units 

Rahmati et al. (2016) found that changes in lithology significantly affect a 

variety of geo-hazards, including land subsidence and landslide. Different 

physical and mechanical properties, such as degree of weathering, permeability, 

durability, strength, type and density are to blame for these variances in 

lithology as highlighted by (Henriques et al. 2015). Geological map was taken 

from the Geological Survey of Pakistan at a 1:20,00,000 scale. Furthermore, the 

map was digitized and lithological units were marked according to the standards 

of USGS. The results identified 12 lithological units, including Glaciers, Chitral 

Slate, Karakoram Metamorphic Complex, Kohistan Batholiths, Wakhan 

Formation, Permian Massive Limestone, Shamran Volcanic Group, Pre-

collision Intrusive rocks, Post-collision Granitic rocks, Karakoram Batholiths, 

Mirkhani Batholiths and Chalt Group.  

 

 

Figure 3.9.  Geological Map of Chitral shows different lithologies and the main 

fault lines in Chitral district. 
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Figure 3.10.  Graph showing relationship between the landslide pixel % and the 

lithologies in the study area. 

 

 

Soil Type 

Soil is considered as a significant factor in landslide susceptibility and 

occurrence. Different types of soils have varying physical and mechanical 

properties that can affect the slope’s stability. For example, highly weathered 

and poorly consolidated soils such as clay and silt are more prone to landslides 

compared to more compacted soils like sand and gravel. Soil data was obtained 

from website of the Food and Agriculture Organization (FAO) of United 

Nations. Soil was classified on the basis of type and class. The data was 

classified into 3 sub-classes namely Sand and Silts (Lithosols), Sands (Haplic 

Xerosols) and Glaciers.  
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Figure 3.11.  The above Map shows different soil types in the study region that 

includes Sands and silts also known as Lithosols and Sands also known as 

Haplic Xerosols along with the glacier debris. 

 

 

 

Figure 3.12.  The relationship between the soil types and percentage landslide 

occurrence in each class. 
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Land Cover 

Land cover information is an important input for landslide susceptibility 

mapping and modeling. Different types of land cover feature like deforestation 

and man-made structures like roads, buildings, and other infrastructures can also 

alter the land cover and slope stability, making slopes more vulnerable to 

landslides. Land cover data was obtained from the Satellite Imagery of the 

LANDSAT 8 through Google Earth Engine. It was classified into 5 classes on 

the basis of statistical differences in the spectral characteristics of pixels, 

otherwise known as Unsupervised Classification Technique. The classes 

identified were: Built up areas, Soil, Vegetation, Water and Snow/Ice.  

 

 

 

Figure 3.13.  LULC map of Chitral showing different land covers in the study 

area. 
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Figure 3.14.  Relationship between different land covers and the landslide 

occurrence in each class. 

 

 

NDVI/Vegetation Cover 

According to Althuwaynee et al. (2012), the NDVI is a significant factor in 

predicting the likelihood of landslides. To assess vegetation density, the NDVI 

was utilized in this research. Typically, the NDVI values are in between -1 to 

+1, with higher values means +ive values indicating dense vegetation coverage. 

For calculating NDVI values, Landsat satellite imagery was utilized and 

processed through Google Earth Engine. The values for Normalized Difference 

Vegetation Index lies between -0.642141 to 0.667333 where negative values 

representing barren land and positive values indicating vegetated regions. 

Vegetation cover map was extracted from the NDVI map and 2 classes were 

assigned as Vegetation and Non Vegetation. 
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Figure 3.15.  Map of the study area showing Vegetation cover calculated 

through the NDVI values in Chitral district. 

 

 

 

 

Figure 3.16.  Relationship between landslide pixel % in vegetated class and 

non-vegetated class. 
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Distance to Rivers/Streams 

The present investigation involves utilization of a DEM and Google earth 

images to identify primary streams in the area. It is worth noting that runoff 

through these streams is critical in triggering undercutting phenomena, raising 

pore water pressure in regions near these streams, and ultimately leading to 

landslide events (Hadji et al., 2013). The presence of streams and rivers serves 

as a crucial contributing factor in the susceptibility of landslides (Pradhan et al., 

2010a, b). The digitized streams resulted into 27 rivers flowing all over the 

region with Yarkhun and Mastuj rivers being the longest. Buffer Analysis was 

performed on all the rivers and 5 classes were identified on the basis of their 

Euclidean distances ranging from (less than 1000 m, 1000 to 2000 m, 2000 to 

3000 m, 3000 to 4000 m and greater than 4000 m).  

 

 

Figure 3.17.  Map of the study area showing different rivers and streams 

flowing in the Chitral district. 
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Figure 3.18.  Map showing proximity to river with multiple buffer zones. 

 

 

 

 

Figure 3.19.  Figure showing distance to rivers in meters and the landslide 

pixels percentage in each class. 
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Distance to Faults 

The existence of structural discontinuities, such as joints, shear zones, fractures, 

folds, and faults is crucial aspect in the occurrence of landslides and 

destabilization of rock masses (Bucci et al., 2016; Kanungo et al., 2006; Lee et 

al., 2002). Thus, the proximity to faults may serve as a useful predictor of 

landslide susceptibility. Apart from the extraction of geological/lithological 

units, extraction of fault lines from the geological map dataset. The Chitral 

district comprises of three main fault lines namely the Main Karakoram Thrust 

Fault (MKT), Reshun Fault and the Tirich Mir Fault. Buffer Analysis was 

performed on the three main faults and 5 classes were identified on the basis of 

their Euclidean distances ranging from (less than 1000 m, 1000 to 2000 m, 2000 

to 3000 m, 3000 to 4000 m and greater than 4000 m).  

 

 

Figure 3.20.  Map showing proximity to fault lines with multiple buffer zones. 
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Figure 3.21.  Graph showing the relationship between the fault lines and 

landslide pixel percentage in each buffer class. 

 

 

Distance to Roads 

Engineering tasks excavating slopes during the construction of mountain roads, 

also known as escarpment roads, have the potential to change the initial 

geological setup and decrease the natural stability of rock slopes. Therefore, 

these doings may significantly reduce the likelihood of landslides (Xiao et al., 

2019; Wang et al., 2016). Main roads data was obtained from the National 

Highways Authority (NHA) official website and then the Buffer Analysis was 

performed on the data and 5 classes were identified on the basis of their 

Euclidean distances ranging from (less than 1000 m, 1000 to 2000 m, 2000 to 

3000 m, 3000 to 4000 m and greater than 4000 m).  
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Figure 3.22.  Road Network Map of Chitral showing main highways in the study 

area. 

 

 

 

Figure 3.23.  Proximity to Road map showing multiple buffer zones. 
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Figure 3.24.  Percentage landslide occurrence with respect to distance from 

roads. 

 

 

3.4 Point Pattern Analysis and Modelling 

By analyzing the spatial distribution of past landslide event, it was possible to 

identify areas with a high concentration of landslides or areas that are spatially 

clustered. These areas of high landslide density were considered as high-risk 

zones. This analysis was also used to identify possible spatial dependence or 

clustering between different factors that contribute to landslide susceptibility, 

such as included factors contributing to landslides like elevation profile, slope 

angle, slope aspect, geology, soil, land cover, vegetation, and proximity to 

rivers, faults and roads. By analyzing the spatial relationships between these 

factors and landslide events, different patterns were identified, and cluster map 

was generated. 
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Density Based Analysis 

Density based analysis was performed in R-Studios where two types of analysis 

were done. Study region was divided into smaller regions for Quadrat density 

analysis, are known as Quadrats and point density was calculated for each 

quadrant. Some quadrats showed zero landslide occurrences whereas the highest 

number of events occurred in a single quadrat recorded was 66. The resulting 

map showed the density of historical landslides that occurred in each region. 

Kernel Density Estimate (KDE) is another method to perform Density based 

analysis. In this method isotropic kernel intensity estimate of a point pattern was 

computed using the spatstat package in R-Studios. Kernel window extent was 

set by assigning the bandwidth of 50km. This kernel defaults to a smoothing 

function and then it is converted into any of three; quartic, disc or epanechnikov 

function. By including different covariates in KDE, landslides point pattern 

intensity was estimated against each covariate or landslide causative factors.  

 

 

Figure 3.25.  Map showing number of landslides in each quadrat. 
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Figure 3.26.  Map showing landslides density in each quadrat. 

 

 

Figure 3.27.  Map showing Kernel Density Estimate (KDE) with the bandwidth 

of 50km disc. function. 
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Figure 3.28.  Quadrat density estimation for elevation ranges. 

 

Figure 3.29.  Kernel Density Estimate for elevation ranges. 
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Distance based Analysis 

Distance based analysis was performed on the spatial data on the basis of the 

Euclidean distances of respective covariates and their relationship with the 

landslides occurrence. Average Nearest Neighbor Analysis (ANN) function was 

applied to observe the relation between ANN and Neighbor order where first 

hundred closest neighbors were assessed to find the kth order for prediction of 

the landslide’s occurrences. To determine the significance of a point pattern, 

such as its level of clustering or dispersion, mean nearest-neighbor distance 

(NND) of the point collection were compared to the expected NND of points 

that conform to complete spatial randomness (CSR). A Poisson distribution was 

formed by the mean nearest-neighbor distance (NND) of points in a complete 

spatial randomness (CSR) arrangement. The rapid increase of the G-Function at 

the short distances shows the clustering of the point pattern. K-Function and L-

Function were computed by applying the default isotropic, translate and border 

edge correction techniques. Values of K and Kexpected were compared at lower 

distances where more values were greater than 0 which indicates clustering of 

the point pattern. A cluster map was generated after all the density based and 

distance based measurements were performed for the data. The map shows the 

high clustering of landslide points in different parts of the study region. Apart 

from that, some landslides points are randomly distributed.  

 

Figure 3.30.  Average Nearest Neighbor Analysis (ANN), K, L and G functions 

on a randomly chosen 20 landslide points to establish a relationship between 

elevation, slope and aspect parameters. 
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Figure 3.31.  Figure shows the landslide point distribution in each causative 

factor. 
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Figure 3.32.  Distribution of landslide points in Elevation, Slope and Aspect 

according to the values of each class. 

 

 

 

 

Figure 3.33.  Cluster map of the region under study showing clusters of points 

at different locations indicating high density of landslides in most of the regions. 
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3.5 Logistic Regression Modelling 

Based on the logistic regression analysis conducted on the collected data, 

several key findings were observed. The coefficients of the predictor variables 

provided insights into their relationship with the likelihood of landslide 

occurrences. The slope variable had a positive coefficient of 1.320 in the class 

greater than 60 degrees, indicating that an increase in slope was associated with 

higher odds of landslides. The aspect variable, after converting it into useable 

variables, showed that the “southeast” aspect had a positive coefficient of 

0.9824, suggesting an increased likelihood of landslides compared to the 

reference category (“north”). In terms of elevation, a higher elevation was 

associated with a decrease in the odds of landslides, as indicated by the negative 

coefficient. The geology/lithology variable, specifically the “Permian Massive 

Limestone” class, had a positive coefficient with value greater than 1, indicating 

a higher likelihood of landslides compared to the reference category (“Chitral 

Slate”). The distance to rivers/streams variable showed a negative coefficient, 

indicating that greater distance from streams was associated with lower odds of 

landslides. Distance to faults, on the other hand, had a positive coefficient, 

suggesting that proximity to faults increased the likelihood of landslides. The 

inclusion of vegetation cover as a predictor revealed a negative coefficient with 

value of -1.7960, indicating that denser vegetation cover was associated with 

reduced odds of landslides. Land cover variables were also significant, with 

certain classes showing positive coefficients, suggesting an increased likelihood 

of landslides compared to the reference category. Soil type had an impact on 

landslide prediction, with certain soil types exhibiting positive coefficients, 

indicating a higher likelihood of landslides. Distance to road exhibited a 

negative coefficient, suggesting that greater distance from roads was associated 

with lower odds of landslides. These results were statistically significant, as 

evidenced by the p-values associated with the coefficients. Overall, this model 

provided insights into the relationships between the predictor variables and the 

prediction of landslide occurrences, highlighting the importance of land cover, 
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elevation, slope, lithology, soil, distance to rivers, faults, and road, aspect, and 

vegetation cover, in landslide susceptibility mapping. Table 3.1 shows the 

detailed relationship between each group of elements leading to landslides and 

the regression coefficients derived from respective classes. 

Table 3.1.  Landslide causative factors and the calculated Regression 

coefficients from the LR method. 

Landslide Causative 

Factors 

Classes Regression 

Coefficients 

Elevation 1065 - 2392 -0.6337 

 2392 - 3719 0.9859 

 3719 - 5046 -0.1599 

 5046 - 6373 0.5476 

 6373 - 7701 1.1547 

Slope <15 -0.455 

 15-30 -0.513 

 30-45 0.6018 

 45-60 0.6495 

 >60 1.320 

Aspect Flat -0.1599 

 North 0.2487 

 North-east 0.5476 

 East 0.4859 

 South-east 0.9824 

 South -0.585 

 South-west -0.7916 

 West 0.6082 

 North-west 0.6510 

Geological/Lithological 

units 

Glaciers 1.018 

 Chitral Slate 2.003 

 Karakoram Metamorphic 

Complex 

-0.829 

 Kohistan Batholiths -0.250 

 Wakhan Formation 0.141 

 Permian Massive Limestone 1.356 

 Shamran Volcanic Group 0 

 Pre-collision Intrusive Rocks -0.403 

 Post-collision Granitic Rocks 0.761 

 Karakoram Batholiths 0.410 

 Mirkhani Batholiths 0 



 

 

61 
 
 

 

Landslide Causative 

Factors 

Classes Regression 

Coefficients 

 Chalt Group 0 

Land cover Built up 1.550 

 Soil -0.014 

 Vegetation -0.5850 

 Snow/Ice -0.0273 

 Water 0.649 

Soil Type Glaciers 0.320 

 Sands and Silts (Lithosols) 1.4397 

 Sands (Haplic Xerosols) 0 

Vegetation Cover Vegetation -1.7960 

 Non-Vegetation 0.1714 

Distance to Fault <1000 0.6082 

 1000-2000 0.4522 

 2000-3000 -0.2487 

 3000-4000 -0.8023 

 >4000 1.3569 

Distance to Rivers <1000 0.6871 

 1000-2000 0.8783 

 2000-3000 0.5623 

 3000-4000 -0.1567 

 >4000 -1.6223 

Distance to road <1000 0.5963 

 1000-2000 -0.2342 

 2000-3000 -0.6435 

 3000-4000 -0.7534 

 >4000 1.2657 

3.6 Frequency Ratio Modelling 

To assess the link between factors causing landslides and their occurrence, the 

Frequency Ratio model were employed. The analysis reveals the impact of slope 

on landslide distribution, with increasing slope gradient corresponding to an 

escalation in landslide activities within the area. Specifically, slope angle classes 

of 15 – 30, 30 – 45, and > 60 demonstrate a positive correlation with landslide 

occurrences, as indicated by their FR values of 1.17, 1.343, and 2.149, 

respectively. The aspect direction model reveals that the Southeast, East, South 

and Northwest classes exhibit Frequency Ratio values >1, indicating a higher 
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correlation with landslide events, while the Flat class shows the lowest 

association. Analysis of elevation reveals a normal correlation, which shows 

neither landslides increase with higher elevation nor decreases with lower 

elevations. Notably, the elevation class of 2392 – 3719 meters exhibits the 

strongest correlation, with a value of 2.259. Geologically, the Permian Massive 

Limestone formation displays the highest number of 2.831, while some other 

formations also exhibit a positive correlation with landslide inventory. Landslide 

occurrences increase significantly with increasing distance to faults. Streams 

have a significant influence on landslide susceptibility, with buffer classes of < 

1000 m and 1000 – 2000 positively correlated with landslide occurrences, 

having values of 2.898 and 1.034, respectively. In terms of land cover, the water 

class shows the highest landslide occurrence (43%) with an FR ratio of 2.097, 

indicating a strong correlation. High vegetation cover class, account for 

approximately 60% of landslides. Along roads, a significant number of 

landslides were detected, with the FR model demonstrating a decreasing 

frequency ratio as the distance to the road increases. The buffer class of < 1000 

m exhibits the highest FR value of 1.921, while the highest distance category (> 

4000) has a value of 1.052. Table 3.2 shows the detailed information about the 

landslide pixels and percentages with respect to each class of the landslide 

causative factors. 

Table 3.2.  Intended weights for each landslide causative factor and its classes 

for FR method. 

Landslide 

Causative Factors 

Classes Pixels 

in each 

class 

% 

Pixel 

in 

each 

class 

Landslid

es pixels 

% 

Landslid

es pixel 

Frequen

cy Ratio 

(FR) 

Elevation 1065 - 

2392 

309834

9 

18.88

2 

73423 20.476 1.084 

 2392 - 

3719 

366724

9 

22.34

9 

180998 50.476 2.259 

 3719 - 

5046 

630532

5 

38.42

6 

56348 15.714 0.409 
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Landslide 

Causative Factors 

Classes Pixels 

in each 

class 

% 

Pixel 

in 

each 

class 

Landslid

es pixels 

% 

Landslid

es pixel 

Frequen

cy Ratio 

(FR) 

 5046 - 

6373 

249859

9 

15.22

7 

46103 12.857 0.844 

 6373 - 

7701 

116733

7 

7.114 1710 0.477 0.067 

Slope <15 288339

1 

17.57

2 

27439 7.652 0.435 

 15-30 399214

8 

24.32

9 

102064 28.463 1.17 

 30-45 199779

7 

12.17

5 

58614 16.346 1.343 

 45-60 729052

3 

44.43

0 

158957 44.329 0.998 

 >60 245151 1.494 11511 3.21 2.149 

Aspect Flat 4266 0.026 8 0.002 0.077 

 North 214744

7 

13.08

7 

40861 11.395 0.871 

 North-east 190475

8 

11.60

8 

26417 7.367 0.635 

 East 183567

6 

11.18

7 

52586 14.665 1.311 

 South-east 225279

3 

13.72

9 

80983 22.584 1.645 

 South 216303

5 

13.18

2 

52608 14.671 1.113 

 South-west 206966

8 

12.61

3 

19948 5.563 0.441 

 West 198155

2 

12.07

6 

37239 10.385 0.86 

 North-west 204981

3 

12.49

2 

47936 13.368 1.07 

Geological/Litholog

ical units 

Glaciers 266367

4 

16.23

3 

32416 9.04 0.557 

 Chitral 

Slate 

169866

0 

10.35

2 

81962 22.857 2.208 

 Karakoram 

Metamorp

hic 

Complex 

317908

1 

19.37

4 

66593 18.571 0.959 
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Landslide 

Causative Factors 

Classes Pixels 

in each 

class 

% 

Pixel 

in 

each 

class 

Landslid

es pixels 

% 

Landslid

es pixel 

Frequen

cy Ratio 

(FR) 

 Kohistan 

Batholiths 

144661

8 

8.816 17072 4.761 0.54 

 Wakhan 

Formation 

235846

7 

14.37

3 

56291 15.698 1.092 

 Permian 

Massive 

Limestone 

121426

7 

7.40 75131 20.952 2.831 

 Shamran 

Volcanic 

Group 

46109 0.281 0 0 0 

 Pre-

collision 

Intrusive 

Rocks 

635684 3.874 18872 5.263 1.359 

 Post-

collision 

Granitic 

Rocks 

689835 4.204 5125 1.429 0.34 

 Karakoram 

Batholiths 

114239

5 

6.962 5125 1.429 0.205 

 Mirkhani 

Batholiths 

466508 2.843 0 0 0 

 Chalt 

Group 

867798 5.288 0 0 0 

Land cover Built up 776310 4.731 4683 1.306 0.276 

 Soil 401807

3 

24.48

7 

50542 14.095 0.576 

 Vegetation 356502

1 

21.72

6 

87086 24.286 1.118 

 Snow/Ice 465343

0 

28.35

9 

60615 16.904 0.596 

 Water 339617

2 

20.69

7 

155658 43.409 2.097 

Soil Type Glaciers 305699

8 

18.63

0 

35858 10.00 0.537 

 Sands and 

Silts 

(Lithosols) 

 

128128

09 

78.08

4 

322726 90.00 1.153 
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Landslide 

Causative Factors 

Classes Pixels 

in each 

class 

% 

Pixel 

in 

each 

class 

Landslid

es pixels 

% 

Landslid

es pixel 

Frequen

cy Ratio 

(FR) 

 Sands 

(Haplic 

Xerosols) 

627809 3.826 0 0 0 

Vegetation Cover Vegetation 701403

0 

42.74

5 

216857 60.476 1.415 

 Non-

Vegetation 

939497

7 

57.25

5 

141727 39.524 0.69 

Distance to Fault <1000 123567

5 

9.422 8534 2.380 0.253 

 1000-2000 120788

8 

9.571 13662 3.810 0.398 

 2000-3000 113455

5 

8.720 18783 5.238 0.601 

 3000-4000 109578

8 

8.395 23907 6.667 0.794 

 >4000 187566

5 

63.89

2 

293698 81.905 1.282 

Distance to Rivers <1000 204899

3 

12.48

7 

129772 36.190 2.898 

 1000-2000 211544

9 

12.89

2 

47814 13.334 1.034 

 2000-3000 324324

0 

19.76

5 

63179 17.619 0.891 

 3000-4000 305552

1 

18.62

1 

34564 9.639 0.518 

 >4000 594580

4 

36.23

5 

83256 23.218 0.641 

Distance to road <1000 125988

4 

7.678 52888 14.749 1.921 

 1000-2000 107085

2 

6.526 20489 5.714 0.876 

 2000-3000 102441

4 

6.243 3292 0.918 0.147 

 3000-4000 109234

8 

6.657 6831 1.905 0.286 

 >4000 119615

09 

72.89

6 

275084 76.714 1.052 
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3.7 Landslide Susceptibility Mapping (LSMs) 

3.7.1 LSM by Logistic Regression Model (LSM – LR) 

Assessment of the terrain’s potential for landslides is crucial for assuring 

sustainable development and reducing the likelihood of landslide-related 

disasters. The analysis’s causative factors included elevation, slope, aspect, 

lithological units, land cover, NDVI, proximity to faults, streams and rivers, and 

road network. The study found that 18.1% of the district’s land area is 

particularly vulnerable to landslides. Landslides are highly vulnerable in 21.3% 

of the region, moderately susceptible in 25.5% of the territory, and not at all 

susceptible in 35.1% of the area. The observed landslide susceptibility map was 

compared in order to verify the accuracy of the susceptibility map. The 

verification findings revealed a satisfactory level of agreement between the 

landslides location data currently available and the susceptibility map.  

 

Figure 3.34.   Landslide Susceptibility Map generated by LR Method showing 

areas from Low to Very High Susceptible. 
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3.7.2 LSM by Frequency Ratio Model (LSM – FR) 

The map shows the results derived from frequency ratio model that 26.1% of the 

district’s land area is particularly vulnerable to landslides. Landslides are highly 

vulnerable in 23.5% of the region, moderately susceptible in 31.5% of the 

territory, and not at all or low susceptible in 18.9% of the area. A robust 

chronological association between landslides and the validation set for the 

Frequency ratio (FR) model was produced. The overlay analysis of the training 

and validation set of Frequency ratio derived maps, which depicts a gradual rise 

from the lowest to extremely high susceptibility classes, reveals a satisfactory 

degree of match. Similar results are seen when comparing the training and 

validation sets of the FR-derived susceptibility map for all susceptibility 

categories. 

 

 

Figure 3.35.  Landslide Susceptibility Map generated by FR Method showing 

areas from Low to Very High Susceptible. 
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3.7.3 AUC – ROC Analysis 

To evaluate the performance of the models, Receiver Operating Characteristic 

(ROC) curve and Area under Curve (AUC) analysis was applied. The AUC 

analysis was performed on the data by using Python codes. Data was generated 

for the Logistic Regression (LR) model coupled with for the Frequency Ratio 

(FR) model. The LR model showed a higher AUC of 0.8534, suggesting better 

discrimination compared to the FR model with an AUC of 0.7856. This implies 

that the Logistic Regression model, on average, has a greater probability of 

assigning higher scores to positive instances and lower scores to negative 

instances, making it more effective in distinguishing between the two classes. 

The specificity vs sensitivity curve showcases the relationship between 

sensitivity (successful positive recognition) and specificity (successful negative 

recognition) for different classification thresholds. Y-axis & x-axis represents 

specificity and sensitivity respectively. By displaying the values in percentage 

on the specificity vs sensitivity graph, we can interpret the curve more 

intuitively. The sensitivity values range from 0% to 100%, representing the 

correct identification percentage for true positives. Similarly, the specificity 

values also range from 0% to 100%, representing the correct identification 

percentage for true negative values. By evaluating the AUC values and 

analyzing the ROC curve, the effectiveness of the LR and FR models in 

classifying positive and negative instances was assessed. The higher AUC value 

of LR (85.34 %) suggests that it has better discriminatory power, while the 

lower AUC value of FR (78.56 %) indicates comparatively lower performance. 

These values provide valuable insights into the models’ abilities to distinguish 

between classes and aid in the validation and selection of the most suitable 

model for the research. 
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Figure 3.36.  ROC Curve of LR and FR Model showing that LR model has a 

value of 0.85 and FR model shows value of 0.79 respectively. 

 

 

Figure 3.37.  Sensitivity vs Specificity Analysis of LR and FR Models. 



 

 

70 
 
 

 

3.8 Discussions 

This research aimed to assess and compared the effectiveness of three widely 

used methods, namely Logistic Regression (LR), Frequency Ratio (FR), and 

Point Pattern Analysis (PPA), for landslide susceptibility mapping considering 

various causative factors. These factors included elevation, slope, aspect, 

lithology/geology, land cover, soil type, vegetation cover, and distance to faults, 

rivers, and roads. 

The application of Logistic Regression revealed significant relationships 

between landslide occurrences and the considered causative factors. The model 

highlighted the importance of terrain characteristics, such as slope and elevation, 

as key contributors to landslide susceptibility. In addition, lithology/geology, 

soil type, and land cover were found to be influential factors. The analysis 

further indicated that proximity to faults, rivers, and roads had a major impact 

on landslide occurrence. The resulting landslide susceptibility map generated by 

Logistic Regression exhibited distinct zones of susceptibility, with high-risk 

areas characterized by steep slopes, certain lithologies, and proximity to roads 

and faults. 

The Frequency Ratio method focused on analyzing the frequency of 

landslide events within different terrain units and their association with the 

causative factors. The resulting landslide susceptibility map revealed areas with 

high occurrence rates, emphasizing the significance of terrain characteristics in 

landslide susceptibility. Steep slopes, specific lithologies, and proximity to 

rivers and faults were found to be closely related to increased landslide 

susceptibility. The map generated by Frequency Ratio exhibited different levels 

of susceptibility, ranging from low to high, enabling the identification of areas at 

the risk of landslides according to past event occurrences and their associated 

causative factors. 

Furthermore, the Point Pattern Analysis method examined the spatial 

clustering of landslide events and its relation to the considered causative factors. 

The analysis identified significant spatial clusters with high landslide densities, 
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indicating areas of increased susceptibility. Steep slopes, specific lithologies and 

proximity to rivers and faults were found to be strongly associated with the 

observed clustering patterns. 

The combined results of Logistic Regression, Frequency Ratio, and 

Point Pattern Analysis provide a comprehensive understanding of susceptibility 

of landslides in the region. These methods consider various causative factors, 

including terrain characteristics, lithology/geology, soil type, land cover, and 

proximity to natural features and infrastructure. The generated landslide 

susceptibility maps integrate these factors, enabling the identification of 

different susceptibility zones. The maps provide valuable information for land 

management, spatial planning, and decision-making processes aimed at 

mitigating landslide hazards. By considering multiple methods and causative 

factors, a more accurate and reliable assessment of landslide susceptibility can 

be achieved, supporting effective risk reduction strategies and promoting safer 

land use practices. 
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Chapter 4 

CONCLUSIONS AND RECOMMENDATIONS 

4.1 Conclusion 

Each model offers advantages of its own, but the frequency ratio (FR) model is 

particularly simple to use and makes it simple to interpret the findings of earlier 

research (Lee and Talib et, al 2005 and Lee and Pradhan et al, 2007). Frequency 

ratio (FR) model is capable of being used as a general method to evaluate a 

landslide's susceptibility. A popular statistical technique for mapping landslip 

vulnerability is the linear regression (LR) model. Inferring the binary output 

from a set of input variables using the model is helpful. The benefit of the linear 

regression (LR) model is that by supplementing the standard linear regression 

model with an appropriate link function, the variables may take either a discrete 

or continuous shape and are not required to follow normal distributions.  

It was determined that the logistic regression model effectively 

illustrates the connection between the likelihood of landslide & instability 

components. The regression coefficient can be used to express the relative 

weights of independent variables. It was discovered that, compared to other 

parameters, land use had the strongest correlation with slope collapse 

occurrences. Particularly, characteristics like "distance from river" and "distance 

to roads" exhibit zero weight; this is possible given the study's minimal impact 

on the frequency of landslides. The majority of the observed landslide locations 

were found to be in the two susceptibility classes of high and very high, 

according to the validation findings from the landslides susceptibility study. As 

a result, it may be concluded that the map and actual field conditions (collected 

data) coincide well. To the chosen areas, the model appears to be trustworthy. 

The Point Pattern Analysis approach identified spatial clusters of 

landslide events highlighting areas with concentrated landslide densities. The 

analysis further confirmed the influence of terrain characteristics, 

lithology/geology, and proximity to natural features on the occurrence of 
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landslides. The identification of these clusters enables targeted interventions in 

high-risk zones.  

The research area's north-western and south-eastern regions tend to have 

the highest landslides occurrence, which is related to elevations between 1065m 

and 3719m. The majority of the landslides in the region are connected to slope 

angles between 30° and 60°. The south-east slope aspect exhibits the greatest 

density of landslides.  

In conclusion, the integration of Logistic Regression, Frequency Ratio, 

and Point Pattern Analysis provides a comprehensive understanding of landslide 

susceptibility and its underlying causative factors. The study underscores the 

importance of considering multiple methods and variables to accurately assess 

and map landslide susceptibility. The findings of this study contribute to 

improved landslide risk management, facilitating informed decision-making, 

and promoting safer land use practices in areas prone to landslides. Further 

research and continuous monitoring are recommended to improve the precision 

and efficiency of landslide susceptibility mapping and to support proactive 

measures for landslide risk reduction. 

4.2 Recommendations 

The landslide susceptibility map's precision and predictability could provide us 

with vital knowledge for future city planning, infrastructure building, and 

agricultural activities in our area or in other areas with comparable 

characteristics. The landslides susceptibility map can be used for a variety of 

things, including regional planning, hazard mitigation strategies, and decision-

making on slope repair measures. On the other hand, by adding more variables, 

the susceptibility map's quality can be raised even further. Additionally, any 

alteration of the natural environment brought about by human intervention, such 

as the deployment of development projects or deforestation, may alter the 

region's current susceptibility to landslides. Therefore, such maps need to be 

updated on a regular basis.  
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Risk analysis can be done if information about the susceptibility of 

people, buildings, villages, and other property is available. By combining the 

results with information about time, a landslides hazard zonation map can then 

be created. Continuous monitoring and updating of the susceptibility maps is 

essential to ensure accuracy and relevance over time. Incorporating new data 

and monitoring changes in the landscape will enable the identification of 

evolving susceptibility patterns and facilitate adaptive management approaches. 

To effectively manage landslide risks, an integrated risk management 

framework is recommended. This framework should incorporate the findings 

from landslide susceptibility mapping and integrate early warning systems, land 

use planning regulations, and targeted mitigation measures. 

 Collaboration among stakeholders, including government agencies, 

researchers, and local communities, is essential for the successful 

implementation of risk reduction strategies. By implementing these 

recommendations, the field of landslide susceptibility mapping can advance in 

its ability to accurately assess and manage landslide risks. Continued research, 

data improvement, and collaboration among various stakeholders will contribute 

to more effective landslide risk reduction strategies and the protection of 

vulnerable communities and infrastructure.  
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Appendix A.  Google Earth Engine code for Land use and Land cover 

(LULC) classification of the study area for the year 2016 from Landsat 8 

imagery. 

 

#GEE code for LULC classification 

 

Map.addLayer(table,{},"Study Area"); 

Map.centerObject(table,6); 

var Images=ee.ImageCollection("LANDSAT/LC08/C02/T1_TOA"); 

var s2_composite = Images.filterBounds(table) 

     filterDate('2016-05-01', '2016-08-30') 

     filter(ee.Filter.lte('CLOUD_COVER', 10)) 

     median(); 

 

var comp=s2_composite.clip(table) 

Map.addLayer(comp,{Bands:["B1","B2","B3"]}, 'Study Area Imagery'); 

print(comp); 

 

var bands = ['B2', 'B3', 'B4', 'B5', 'B6', 'B7']; 

var samples = snow.merge(water.merge(veg.merge(builtup.merge(soil)))); 

print ('Sample',samples); 

var points = comp.select(bands).sampleRegions({ 

  collection: samples,  

  properties: ['Landcover'], 

  scale: 30 

}).randomColumn(); 
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Contd. 

//--------------------------------------------------------------------------- 

var training = points.filter(ee.Filter.lt('random', 0.7)); 

var validation = points.filter(ee.Filter.gte('random', 0.7)); 

var classifier =ee.Classifier.smileRandomForest(100).train({ 

  features: training,  

  classProperty: 'Landcover', 

  inputProperties: bands 

}); 

//--------------------------------------------------------------------------- 

// CLASSIFY THE IMAGE. 

var Classified_imagery = comp.select(bands).classify(classifier); 

Map.addLayer(Classified_imagery.clip(table), {min: 0, max:4, palette: [ 

'BLUE', 'Green','LightGreen', 'Brown','YELLOW']}, 'Classified'); 

 

print('error matrix: ' , classifier.confusionMatrix()); 

print('accuracy: ' , classifier.confusionMatrix().accuracy()); 

 

Export.image.toDrive({ 

  image:Classified_imagery , 

  description: 'LULC2016', 

  region: table 

}); 
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Appendix B. Generalized code for Point Pattern Analysis in "R" Studio. 

 

Here are some steps to calculate measures of spatial clustering and patterns in R 

using point pattern analysis:  

 

1. Loading the packages: To perform point pattern analysis in R, we need to 

load the necessary packages, such as spatstat, rgdal, and raster. 

 

install.packages(“spatstat”) 

install.packages(“rgdal”) 

install.packages(“raster”) 

 

2. Loading the data: Load the point data into R and preprocess it by checking 

for completeness and accuracy, removing duplicates, and transforming it if 

necessary. 

 

library(spatstat) 

library(rgdal) 

library(raster) 

data <- read.shp(“path/to/data.shp”) 

coordinates(data) <- c(“longitude”, “latitude”) 

 

3. Creating a point pattern object: Create a point pattern object using the 

‘ppp’ function in spatstat. This function creates a point pattern object that 

can be used for further analysis. 

 

Pp <- ppp(data$longitude, data$latitude, marks=data$attribute) 
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Contd. 

 

4. Calculating measures of spatial clustering: Calculate measures of spatial 

clustering and patterns using functions such as Kest, pcf, and envelope in 

spatstat. 

 

K <- Kest(pp) 

plot(K, main=”Ripley’s K-function”) 

 

5. Developing a statistical model: Use a statistical model, such as a Poisson 

or negative binomial regression, to identify the environmental factors that 

contribute to landslide occurrence. 

 

Model <- glm(attribute ~ variable1 + variable2, data=data, family=poisson)  

summary(model) 

 

6. Validating the model: To check the how much the model is accurate and 

reliable, it is necessary to compare its predictions with actual landslide 

events in the study area that were not used in developing the model. This 

process, known as model validation, ensures that the model can accurately 

predict events beyond the ones it was trained on. 

 

Validation <- data[validation_set, ] 

prediction <- predict(model, newdata=validation, type=”response”) 
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