

Analyzing Spatio-Temporal Behavior of Moving Object

Trajectories using PostgreSQL and MobilityDB Operations:

 A Case Study of Pakistan Railways

By

Asif Nawaz

(2019-NUST-MS-GIS-320903)

A thesis submitted in partial fulfillment of the requirements for the

degree of Master of Sciences in Remote Sensing and GIS

Institute of Geographical Information Systems

School of Civil and Environmental Engineering

National University of Sciences & Technology

Islamabad, Pakistan

August 2023

Scanned with CamScanner

https://v3.camscanner.com/user/download

iii

DEDICATION

This dissemination is dedicated to my Dearest Mother. By the virtue of whose prays, I

have been able to reach at this high position. My Father whose support and believe in

me made me stand in front of every obstacle in my life. My wife and sons whose support

and courage after my parents made it possible to successfully continue this sacred path

of knowledge. To my brothers for their unconditional support. May Allah bless them

all with best reward.

iv

ACKNOLEDGEMENTS

All praise to Allah Almighty, the most merciful, most forgiving and loves to forgive. To whom

all the knowledge belongs for known and unknown. Who always blessed me with best of the

best to achieve this knowledgeable landmark. This achievement was not possible without

guidance under light of Prophet Mohammad (SAWA) saying “Seek knowledge from the cradle

to the grave”.

Many thanks to my family who always believed in me and prayed for my success especially

my father who is supporting me through think and thins. Enormous thanks to my mother,

without her prayers, I was never able to complete this journey. A prayer follows every moment

your thought crosses my heart. I wish you both be granted highest place in Jannah.

I would like to express my heartfelt appreciation to my supervisor Dr. Ali Tahir for patient

guidance, advice and encouragement throughout this wonderful task. He always remained

available to answer my queries promptly. I would also like to fortunately acknowledge to Dr.

Salman Atif and Dr. M Tariq Saeed for their kind support and guidance which gave me new

ideas throughout the course of the study. I would specially thank Dr. Ejaz Ahmed for

continuously motivating me to work harder and complete this research in an easy and optimized

way.

I am very thankful and pay my gratitude to all IGIS staff who always worked behind and arrange

administrative support in time. I would like to acknowledge my fellow students Mr. Raees

Ahmad, Mr. Faqir Hussain and Mr. Ala-Ud-Din Awan for creating healthy discussions on the

subject.

Asif Nawaz

v

TABLE OF CONTENTS

CERTIFICATE ... i

ACADEMIC THESIS: DECLARATION OF AUTHORSHIP ii

DEDICATION .. iii

ACKNOLEDGEMENTS .. iv

TABLE OF CONTENTS ... v

LIST OF FIGURES ... vii

LIST OF TABLES .. viii

ABSTRACT .. ix

CHAPTER1. INTRODUCTION ... 1

1.1 Background information ... 2

1.2 Objectives .. 4

1.3 Scope of study ... 4

1.4 Pakistan railways ... 4

1.5 Literature review ... 6

1.5.1 Areas of application in Pakistan .. 12

CHAPTER 2. MATERIALS AND METHODS ... 15

2.1 Study area .. 15

2.2 Methodology ... 17

2.3 Data acquisition ... 18

2.3.1 PuTTY: terminal emulator ... 23

2.3.2 FileZilla: file transfer protocol ... 23

2.4 Environment building .. 25

2.5 Installations and configurations .. 26

2.6 Identification of missing footprints ... 28

 CHAPTER 3. RESULTS AND DISCUSSIONS .. 31

3.1 Identification of idle and stopped trains .. 31

vi

3.2 Trains speed analysis ... 33

3.3 Over speeding at station crossings .. 37

3.3.1 Query to filter over speeding events .. 38

3.3.2 Summary of over speeding at station crossings 39

3.4 Stop time analysis.. 42

3.5 Stops frequency in trips ... 44

3.6 Assessing signal visibility to trains: A comparative analysis of PostgreSQL

and MobilityDB for efficient traffic management ... 45

3.6.1 Utilizing PostgreSQL and PostGIS functions .. 47

3.6.2 Utilizing MobilityDB functions ... 52

 CHAPTER 4. CONCLUSION AND RECOMMENDATIONS 58

4.1 Conclusion ... 58

4.2 Recommendations for further research ... 59

 REFERENCES ... 60

 APPENDICES .. 66

Appendix-1. Python script to capture raw API responses. 67

Appendix-2. Python script to sort raw footprints. .. 69

vii

LIST OF FIGURES

Figure 2.1. Study area map. ... 16

Figure 2.2. Methodological flowchart. .. 19

Figure 2.3. Trains footprints data collection. ... 21

Figure 2.4. Raw data structure of each API response. ... 22

Figure 2.5. Data migration sorting and pre-processing.. 22

Figure 2.6. PuTTY configuration view. ... 24

Figure 2.7. Installation of MobilityDB. ... 24

Figure 2.8: Gap in coverage from Faisalabad to Toba Tek Singh. 29

Figure 2.9.Gap in coverage from Bahawalpur to Rahimyar Khan. 29

Figure 2.10. Identification of missing footprints. .. 29

Figure 3.1.Identification of idle and stopped trains. .. 34

Figure 3.2. Train streaming location in middle of trip. .. 34

Figure 3.3. Train streaming location on idle situation. .. 34

Figure 3.4. Speed summary on tracks. ... 35

Figure 3.5. Summary of speed on tracks.. 36

Figure 3.6. Over speeding at station crossing. ... 40

Figure 3.7. Observed speed ranges. ... 40

Figure 3.8. Over speeding map at station crossings... 41

Figure 3.9. Trip stop times. .. 43

Figure 3.10. Top 5 trips with minimum stops. ... 43

Figure 3.11. Top 5 trips with maximum stops. .. 43

Figure 3.12. Map visualization of trains GPS point and signal. 50

Figure 3.13. Map visualization of PostgreSQL query. .. 50

Figure 3.14. Map visualization of MobilityDB query. .. 56

file:///D:/Personal/Masters/Thesis/Thesis/MobilityDB/Write-up/Draft%20Thesis%20Writeup%20-%20Asif%20Nawaz%20-%20v4.docx%23_Toc143678707
file:///D:/Personal/Masters/Thesis/Thesis/MobilityDB/Write-up/Draft%20Thesis%20Writeup%20-%20Asif%20Nawaz%20-%20v4.docx%23_Toc143678708
file:///D:/Personal/Masters/Thesis/Thesis/MobilityDB/Write-up/Draft%20Thesis%20Writeup%20-%20Asif%20Nawaz%20-%20v4.docx%23_Toc143678709

viii

LIST OF TABLES

Table 3.1. Summary of speed on track. ... 35

Table 3.2. GCOR permissible trains speed at station crossings. 40

ix

ABSTRACT

Recent advances in location tracking technologies have led to availability of the

extensive spatio-temporal datasets. Extracting meaningful information from these

datasets is a crucial for informed decision-making across the different industries.

Objectives of the study encompass capturing the real-time trains trajectories,

conducting a comprehensive analysis, and lastly visualizing results for the improved

railway’s monitoring efficiency. The study also focuses on leveraging the PostgreSQL

and its extensions to manage the moving objects data efficiently, particularly in context

of Pakistan Railways. In order to achieve these objectives, study collected the

comprehensive inventory of trains, stations, and schedules data from Pakistan

Railways. Also, dynamic train footprints were obtained using the custom developed

Python scripts and web APIs. Demanding preprocessing ensured data accuracy and data

consistency. The heart of study lies in leveraging the PostgreSQL's capabilities for

executing complex spatio-temporal analyses that encompassed detailed speed

assessment, stop time analysis, and evaluation of the signal visibility. The findings of

the study highlighted hidden patterns and the insights within train trajectories. Stop time

analysis highlighted the fact that about 12% of the trains time is being consumed during

station stops. Speed analysis identified that about 40 km/h is the average speed of the

trains. Signal visibility analysis performed and resulted that MobilityDB queries are

computationally efficient and easy to understand compared to PostgreSQL queries.

Study's outcomes are not only beneficial for the railway sector but also emphasize the

broader potential of the data-driven decision-making in optimizing the operational

processes across various

1

Chapter 1

1 INTRODUCTION

Over the past few decades, the need for easy and flexible management and

visualization of temporal geographic data has become increasingly evident. As a

result, numerous efforts have been made to develop computer systems capable of

handling this type of data. GIS experts have proposed several spatio-temporal

models based on three key components: space, time, and attributes. These models

allow for the representation of state changes in space over time. One such model,

known as the Temporal Map Sets (TMS) model, is an extension of the snapshot

model and is designed to manage geographic data in a space-time environment.

Many ideas and methods to use temporal data alongside relational information

have been developed by GIS and computer scientists.

MobilityDB is advanced platform for managing, analysing, and

visualising temporal datasets. With funding from the European Commission,

Fonds de la Recherche Scientifique (FNRS), Belgium, and Innoviris, Belgium,

the Computer & Decision Engineering Department of the Université Libre de

Bruxelles (ULB) developed the MobilityDB platform, an extension of PostGIS

and PostgreSQL for handling spatio-temporal data. Project was created by a group

of programmers under the direction of the Project Steering Committee (PSC)

members. In order to visualize mobility data, MobilityDB integrates PostgreSQL,

PostGIS (a database add-on), and QGIS which is an open-source geographic

information system (Zimányi, 2020). Additionally, Move is an open-source QGIS

plugin for temporal mobility visualisation.

This study tries to explain the procedures that MobilityDB running after

successful installations, use, and upgrade, then presents test scenarios with

2

suggested solutions. In this regard, a case study involving the mobility datasets of

Pakistan Railways will be examined in order to understand the effectiveness and

usage of MobilityDB and PostgreSQL in Pakistan as well as its capacity to aid in

the understanding of complex data in order to improve the monitoring

effectiveness of Pakistan Railways and associated institutions. In this study, all

workflow steps will be covered, including installation and configuration, data

loading, preprocessing, explorations, spatio-temporal analysis, and trajectory

design.

1.1 Background information

Pakistan Railways launched online train tracking system named as Pak

Rail Live in year 2019. The development of OS apps, Android apps, product

design workshops, back-end development, web app development, and UI/UX

design were all handled by EASYWAYS1. Pak Rail Live is a free application that

allows Pakistani citizens to track trains in real time via Pakistan Railways.

Additionally, it offers pre-arrival notifications, schedule updates, and estimates

for the arrival of the following stations. People who have access to Pak Rail Live

can follow trains in real time. Any train's pre-arrival and expected arrival time can

be announced to the public. Additionally, passengers can check for any railway

delays or updates/news. By using GPS, Pakistan Railways' trains create a

significant amount of multidimensional data every day. With this initiative from

Pakistan Railways department, valuable analysis may be done on live stream data

that is being streaming live publically using APIs into web and android

1 http://easywayinnovations.com/bjsttl

http://easywayinnovations.com/bjsttl

3

applications to uncover information that could improve train surveillance

effectiveness in addition to visualising real-time positions.

To analyse the data fast and effectively, this enormous data required a big

data platform. Large spatial datasets can be easily accommodated by conventional

database management systems like My SQL, Oracle, etc., but these systems still

fall short when it comes to the temporal concept. The only database system

available today that not only offers effective and optimised data storage but also

assists in managing massive moving datasets with its advanced and constantly

expanding temporal mobility functionalities and views is PostgreSQL and it

extensions like MobilityDB which is a moving objects database management

system. A developing platform called MobilityDB offers maximum database

adapter support combined with support for the PostgreSQL platform. It offers

datatypes to create trajectories from location and time and offer management of

moving trajectories,

Thousands of studies on moving object databases were conducted during

the previous ten years, but only a small fraction of them were highlighted by their

prototypes, and even fewer of these prototypes were put to use in a commercial

setting (Güting et al., 2010). The main prototype that uses abstract data types is

MobilityDB, an extension to PostgreSQL and PostGIS. With its strong data

extraction capabilities, MobilityDB develops indexes and aggregates, hence

decreasing the storage capacity (Zimányi et al., 2020). The need for transferring

object data and its application in the management of spatio-temporal databases is

growing daily. Real-time data generation from mobility items necessitates an

effective management system. Performance problems exist for PostgreSQL and

PostGIS-configured applications with simple architecture.

4

1.2 Objectives

The study has following objectives:

a) To develop a mechanism for capturing and storing live streaming train

trajectories into a database

b) To analyze trains footprints data to improve monitoring efficiency of

trains using;

 Stop time analysis

 Speed analysis

 Signal visibility analysis

1.3 Scope of study

The research presented here provides evidence that the analysis of GPS

data can produce findings that are helpful in many different decision-making

contexts. It displays the use of GPS data generated by roughly 44 active passenger

trains each day during a period of 1.5 months, with each train broadcasting its

location every 10 seconds. This data can be used to categories train behavior,

track conditions, and track operations. Utilizing this information would enable

Pakistan rails to more effectively monitor concerns relating to security, safety,

and anticipation on the rails. Study describes the methods adopted for collecting

and processing the raw footprints from each active train on track, till analysis. The

footprints data of trains trajectory is streaming free for the general public of

Pakistan.

1.4 Pakistan railways

Ministry of Railways is in a quest to upgrade their system based on new

techniques and technologies. As they now have online bookings and purchasing

system. Even they now have online land inventory management system and their

5

lease managements are now monitoring by online portals. (Li et al., 2018)

examines the current state of Pakistan Railways (PR) and its future prospects

based on the industry life cycle theory. The results show that PR has been in the

maturity stage of the industry life cycle since the 1990s and is facing various

challenges including a lack of investment, outdated technology, and poor

management. The study suggests that PR needs to adopt new technologies,

improve its management, and increase investment to remain competitive and

move towards the growth stage of the industry life cycle. The article provides

valuable insights for policymakers, stakeholders, and researchers interested in the

development of the railway industry in Pakistan. Pakistan Railways is investing

and performing well currently and as per the Pakistan Railways yearbook 2020-

2021, all business-critical services and applications, including e-ticketing, have

been successfully moved to the Government Cloud Data Center (NTC),

Islamabad, in a secure manner in accordance with industry standards.

Moreover, the central control center at Headquarters Lahore will have a

video wall constructed as part of the ongoing railway tracking operation. Through

a GIS system, this system would track the location of trains in real time. Wherever

the transportation business is automating, this most recent technology is used. The

goal of Pakistan Railways is to create a centralized control room for tracking all

of the country's trains. All locomotives will have tracking devices installed, and a

video wall will be put in the central control room so that everyone can see how

each train is performing in terms of numerous criteria in real time (Ministry of

Railways, 2021). Based on these initiative from Pakistan Railways it will be a

good approach for respective authorities to adopt the top notch technology of

6

spatio-temporal database management system that PostgreSQL offers do better

deal mobility data also and get more depth insights of moving trains.

1.5 Literature review

A revolutionary solution to train monitoring and communication in the

Egyptian National Railways was suggested by (Mohamed, 2014). The system

seeks to deliver precise train location updates and effective communication

between control centers and railway operators by integrating GSM and GPS

technology. The system provides for continuous tracking of train positions as well

as immediate transmission to a central web server, hence improving safety and

operational efficiency. The proposed approach is applicable to both primary and

secondary railway lines, considering the availability of infrastructure. The study

gives a thorough examination of the system's advantages, illustrating how the

extent of GPS technology penetration has a substantial impact on operational

outcomes. As technology advances, train wait times decrease, resulting in a more

efficient and user-friendly experience for passengers. The research paper

proposes a paradigm shift in train monitoring and communication, emphasizing

the potential of combining GSM and GPS technology to transform railway

operations.

Imran (2009) described a public transportation in Pakistan as a critical

overview. His paper also provides a comprehensive evaluation of the country's

public transportation system. The report, which was published in the Journal of

Public Transportation, evaluates the nation's public transportation system

severely. It explores a number of topics, most likely including infrastructure,

services, and difficulties. Imran describes the system's advantages and

7

disadvantages through a thorough investigation, which contributes to a better

comprehension of Pakistan's transportation environment.

In accordance with the notion of the industry life cycle, Pakistan Railways

has gone through many stages and shown distinct patterns (Stripple et al., 2010,

Irfan et al., 2012, Transport, 2015). Its founding in 1861 signaled the beginning

of the pioneering age. Connectivity and economic development were bolstered by

subsequent growth and expansion during the boom era (Karniouchina et al.,

2013). Nevertheless, inefficiencies started to show up, which forced it into the

maturity stage where problems like poor management and competition from the

road transport sector occurred. Pakistan Railways needs to enter the revitalization

phase by embracing innovation, modernizing its operations, and putting a strong

emphasis on customer demands (Utterback et al., 1993). Pakistan Railways will

be able to reenergize, adapt, and ensure a sustainable future by matching tactics

with each phase's requirements.

In the context of Egyptian National Railways, this paper provides a

proposed Radio Frequency (RF) system combined with GPS for tracking trains

(Nahid et al., 2013). The model intends to improve the effectiveness, safety, and

real-time monitoring of train operations while taking into account the unique

requirements of the Egyptian railway network (Mohamed, 2014).

In the field of railway administration, the use of radio frequency (RF)

equipment for train tracking has become a cutting-edge and effective technique.

This strategy entails fusing RF technology with current systems to track and

control train movements, improving operational performance across the board

(Furman et al., 2001, Hofestadt, 1995, Ikeda. 1993).

8

The fundamental idea behind RF-based train tracking is to install a

transponder-like RF transmitter and receiver system on each train. These gadgets

talk to fixed RF base stations put in place all throughout the rail network. Real-

time position updates are made possible by the RF transponder's periodic signal

exchanges with the base stations as a train travels along its path. This technology

has advantages such as accurate estimates of train arrival and departure times and

exact train positioning and speed calculation. The capacity to quickly identify

probable crashes or unauthorized entry onto rails enhances safety. Additionally,

maintenance schedules can be made more efficient by looking at the train

movement patterns and the wear-and-tear of the information (Bates, 1994).

Implementing an RF-based train tracking system could aid in resolving

operational issues with the Egyptian National Railways, such as delays and

communication breakdowns. The railway network can improve its dependability,

punctuality, and passenger experience by implementing this technology.

However, infrastructural investment, technology integration, and the expert

maintenance are necessary for the ultimately successful adoption (Mahalakshmi

et al, 2013, Lancian, 1990).

Helland‐Hansen and Hampson (2009) offers a thorough examination of

trajectory analysis ideas and their real-world applications. The authors examine

the theoretical underpinnings and methods of trajectory analysis, providing

insights into its importance in a number of different domains. The article probably

discusses methods for comprehending how processes and phenomena change

through time, helping to enhance how geological, environmental, and spatial data

are interpreted. The paper advances knowledge of dynamic processes in complex

systems by highlighting the value of trajectory analysis.

9

Predictive analysis using multifaceted trajectories of fishing vessels in the

Northern Adriatic Sea is the main topic of (Brandoli et al., 2022). Research

explains multiple aspect trajectories to the predictive analysis which is a case

study on fishing the vessels in northern Adriatic Sea. The study investigates the

conversion of intricate trajectory data into prognostic information. This case study

serves as an example of how trajectory analysis can be used in the real world to

manage fisheries and conduct maritime operations in the area. The work

contributes to better decision-making in marine situations by enhancing

comprehension of trajectory-based predictive analysis techniques.

A ground-breaking research study conducted by (Das et al., 2009) that

focuses on railway monitoring and its potential to revolutionize the process. The

research describes a novel solution that combines satellite communication and

global positioning system (GPS) technologies to collect accurate location data on

trains and send it to a centralized server (Vershinin and Mustafina, 2021). This

gives operators and authorities a comprehensive, real-time view of train positions,

movements, and trajectories, allowing them to make informed decisions. The

architectural architecture of the system, technological details, and potential

hurdles to satellite communication reliability, data correctness, and smooth

integration with pre-existing the railway frameworks are all discussed (Chacko,

Basheer, & Kumar, 2015). The study presents a ground-breaking method that

improves train tracking precision and efficiency, resulting in increased safety,

fewer operational disturbances, and enhanced railway performance.

Graser and Dragaschnig (2020) in their research of Exploring the

movement data in the notebook environments incorporated movement data into

interactive digital notebooks. Their research, which was presented at the IEEE

10

VIS 2020 Workshop, highlights the value of geospatial data visualization in

notebook scenarios and furthers the conversation about information visualization.

Another describes an innovative solution for real-time train tracking,

railway crossing management, and emergency path establishment using D2D

communication technology. The system allows for direct and seamless

connection between trains and railway infrastructure, allowing for accurate

tracking of train movements and management of railway crossings (Cubukcu et

al., 2021). The system also includes emergency path establishment, which ensures

safe travel in the event of a contingency or malfunction. The seamless integration

of sophisticated technologies into the railway domain highlights D2D

communication's ability to reduce operational issues and improve safety

measures. The incorporation of this technology into railway infrastructure holds

significant promise for revolutionizing train system efficiency, safety, and overall

performance, solving critical challenges in current transportation management

(Kumar and Ramesh, 2017).

A study investigates a significant area of concern in the field of database

management: dealing with spatio-temporal pattern queries in the setting of

moving objects. Databases must support the delicate interaction of spatial and

temporal components in an increasingly linked world where things and entities

are continuously on the move (Guedes et al., 2018). The writers recognize this

difficulty and provide ideas on how to deal with its intricacies. They investigate

novel ways for streamlining the querying process in circumstances with both

spatial and temporal aspects. While the specifics of the techniques, experimental

sets, and findings are not given in this brief description, the study advances

database management in dynamic situations. By tackling the complexities of

11

spatio-temporal pattern searches for moving objects, it provides a potential

avenue for improving query processing efficiency and efficacy, therefore

contributing to the broader field of data and software engineering (Yogiandra and

Esterina Widagdo, 2019).

A study conducted by (D'Orso and Migliore, 2017) provide a GIS-based

methodology for assessing the prospective demand for an integrated transport

system in their research paper. The authors address the difficulty of measuring

demand for such systems, which mix diverse forms of transportation, in an

efficient manner. Geographic Information Systems (GIS) are used in the approach

to analyze and visualize geographical data connected to transportation trends and

population distribution (Sharma, Sharma, & Bundele, 2018). The suggested

approach seeks to offer reliable projections of demand for the integrated transport

system by integrating data on transport networks and demography. The study adds

to transport planning by providing a methodical and technology-driven strategy

for anticipating demand for complicated transport networks, assisting in optimal

infrastructure construction and urban planning (Borodin et al., 2017).

The above discussed literature underscores with the transformative

potential of the innovative solutions and technologies in enhancing railways

operations and safety measures. Mohamed (2014) proposed a solution integrating

GSM and GPS solutions for train monitoring that aligns with current study that

focuses on spatio-temporal analysis by using PostgreSQL and the MobilityDB

solutions. Das et al. (2009) proposed a groundbreaking study by combining

satellite communication with GPS for real-time train tracking that resonates with

this thesis emphasis on the accurate measurement of signal visibility. Similarly,

exploration of D2D communication and its impact on trains tracking and safety

12

measures reflect the integration of MobilityDB for the improved train monitoring

operations (Kumar and Ramesh, 2017). Yogiandra et. al. (2019) performed

investigation into spatio-temporal patterns queries that aligns with thesis aim to

enhance the efficiency of query processing. Lastly, GIS-based methodology for

transportation demand assessment aligns the thesis focus on the data-driven

analysis for optimizing railway operations. These discussed studies collectively

reinforce significance of the technological advancement in revolutionizing the

railways safety, trains monitoring and its efficiency by echoing key themes that

been explored in the thesis (Sharygin et al., 2017).

1.5.1 Areas of application in Pakistan

Moving objects like humans, vehicles, trains, ships and aircraft can be

tracked, monitored and anticipated and these are one of the main applications of

spatio-temporal databases. Live footprints datasets from moving objects like

human, animals, trains, vehicles planes can be a useful resource to analyse the

patterns in moving objects. There is a great potential in Pakistan in order to utilize

the operations of moving object database management systems and utilize

mobility data alongside GIS.

Analysis of speed and transportation infrastructure can not only produce

helpful velocity maps but also influence Pakistani government officials to

modernize the country's current rail and road networks. Travel time can be

precisely calculated using route and trajectory analysis. Trip time forecasting can

aid in the creation of more creative software tools that can aid in early planning

and booking. Although the majority of large cities, including Karachi, Lahore,

Faisalabad, Rawalpindi, and Multan, have experienced rapid population growth,

their road infrastructure has not improved over time. The current traffic

13

congestion problems in Pakistan's major cities can be helped by the use of datasets

such as vehicle speed, school and office closing times, road conjoining, traffic

lights, weather conditions, road infrastructure condition, and lane count along

with mobility data (Syed, 2014). It is possible to measure traffic at various time

periods, such as hourly, daily, or weekly. Using the tgeogpoint (inst) function,

MobilityDB can quickly extract data on traffic volume and count for a specific

time and location. Data from trips can be used to extract multi-dimensional

information, such as mobility optimization, multimodal transportation, and

commuter scenarios (Rovinelli, 2021).

When evaluating population or density, MobilityDB can be used to better

understand pedestrian mobility patterns. With the aid of heat maps based on

automobile, bicycle, and pedestrian crash incidences in densely populated cities

like Karachi, Lahore, Faisalabad, Peshawar, and Multan, MobilityDB can assist

reduce the crash ratio. In addition to saving lives, this will lighten the load on

hospitals and emergency rooms like Rescue 1122. On busy roadways,

MobilityDB can forecast collision hazards.

Based on demographic, socioeconomic, and population data, MobilityDB

can anticipate resource equality. Velocity maps created with mobilityDB can also

be used to evaluate equity. Based on the mobility loads, amenities, and services

provided by various highways, MobilityDB can analyze and categorize them.

Careem, Uber, Bykea, and other public transportation services in Pakistan can

also be distinguished by their various socioeconomic effects on society. In

Pakistan, there is currently no sophisticated system in place to upgrade the road

system. The use of mobility data can help locate areas in need of further

infrastructure restoration. Additionally, with the availability of mobility Data,

14

places and points of interest like schools, hospitals, and grocery stores may be

efficiently handled.

Mobility patterns can be a crucial factor in predicting criminal behavior,

as an individual's movements can provide valuable insights into their activities

and intentions. Therefore, it is no surprise that law enforcement agencies around

the world have increasingly turned to mobility data analysis to prevent crime and

maintain public safety. In Pakistan, the use of spatio Trajectory Analysis can be

a promising tool in law and order management, especially given the country's

growing crime rates. According to a report by the Pakistan Bureau of Statistics,

there were over 1.1 million cases of crime reported in the country, with a sharp

increase in the violent crime activities such as murder, robbery, and kidnapping

(Statistics, 2017). With such alarming statistics, it is becoming more critical than

ever for law enforcement to adopt innovative approaches to tackle crime.

15

Chapter 2

2 MATERIALS AND METHODS

2.1 Study area

This study focuses on the management of large datasets of live stream

footprints of Pakistan Railways along with the trains stations details, railway

network details and train schedule. Passenger trains are being consider for this

research. Figure 2.1 shows the study area map along with railway network lines,

stations location, and sample trains footprints. Overall study area is the whole

railway network of Pakistan but live stream data from active trains does not cover

most of the regions of Baluchistan and Khyber-Pakhtunkhwa.

The study area maps show around 296 mains stations out of 458 railway

station excluding halts. Tracks of 11,881 KM of length are mapped as main line

and other lines (Ministry of Railways, 2021).

The study area incorporates a diverse railway network that comprise

railways stations, networks, and railways tracks. Railways stations serves as the

key nodal point for the passenger and cargo transits. The railway network is

categorized into three main distinct groups that is 1) main lines which represents

core routes that connect major cities. 2) New lines that signifies recently

developed railway tracks to accommodate the growing demands. 3) and existing

lines that comprises the established railway tracks by connecting various region.

The footprints on the tracks captures the spatial-temporal trajectories data of trains

movements. This study investigates the spatio-temporal variables of these

categories by leveraging advance technologies to analyze the train behaviors, and

operational efficiency by contributing to into comprehensive understandings of

the railway operations.

16

 Figure 2.1. Study area map.

17

2.2 Methodology

The overall study is focused on analyzing spatio-temporal behavior of

moving object trajectories by utilizing PostgreSQL and MobilityDB operations.

In this regard study has been segregated into three main phases and the first phase

was acquisition of Pakistan Railways datasets along with its acquisition and

preprocessing and storing into a database for further analysis. The second phase

was installations and configurations of the suitable version of MobilityDB to be

used in this study. The third phase includes loading of Pakistan Railways datasets

into MobilityDB environment, its upgradations, spatio-temporal analysis and

extractions of useful information with the utilization of MobilityDB queries that

makes it possible in more optimized and the simpler way. The phase wise

segregation involves following steps;

1. Data acquisition and preprocessing

2. Installation and environment configurations

3. Spatio-temporal analysis and recommendations

Data was acquired by Pakistan Railways website and Pak Rail Live web APIs

in raw JSON and HTML formats and then processed to reshape into readable

formats. The process of data acquisition and preprocessing is further explained in

data acquisition and pre-processing section.

Due to the limited help resources and lack of availability on the Windows

platform, configuring MobilityDB is a difficult operation. In this case,

MobilityDB was configured over Windows using the Docker (Linux environment

simulation program for Windows) application. The initial and most difficult steps

in the study include data input into MobilityDB, upgrading, and evaluation. Prior

to visualizing temporal trajectories in QGIS, the MobilityDB data needed to be

18

upgraded, which included creating points, temporal points, and trajectories.

Generation of the spatio-temporal queries for analytical information extraction

like stoppage of certain train at certain point in time, identification of train

patterns at station crossings, comparison of scheduled and actual trip progress

throughout the trip and anytime, maximum concurrent trips of trains, total

travelled distances of trains, average duration and speed of each trip, shorted vs

longest trips, histograms of trip lengths, identification of minimum distances

between pair of trains on same tracks etc. Proposed methodology of the study is

shown in Figure 2.2.

2.3 Data acquisition

Pakistan Railways datasets were obtained by utilizing the public

information provided over Pakistan Railways website and the Pak Rail Live web

application. List of datasets with its formats and sources are listed in Table 2.1.

In order to capture the trains list, stations list and trains schedule data,

Pakistan Railways website was used to collect the data in JSON and hardcoded

HTML pages. These data sets were then filtered sorted and stored in PostgreSQL

database. To capture the raw footprints data of each active passenger train, AWS

instance was developed and train footprints was acquired. Figure 2.3 shows the

methodological flow chart of how footprints data was collected by using the

Elastic Compute Cloud (EC2) instance of AWS system. Ubuntu 14.04 LTS

version was installed over the instance and PostgreSQL version is 12.3 was

installed so that captured data from API response should be captured and dumped

into PostgreSQL Table. A Python script was developed as that enabled the data

fetching from Pak Rail Live APIs. Python script to capture raw API responses is

attached in Appendix – 1.

19

Figure 2.2. Methodological flowchart.

20

The duration of acquired footprints is about 1.5 month of the duration

starting from 27-06-2022 till 15-08-2022. Raw footprints data captured from

about 44 active passenger trains but this number slightly varies depending upon

the nature of train to be active and is in middle of its trip or there could be chance

of train to be inactive and have to trip. For each active train on track, about

298,656 API responses was captured with every 10 second interval where the

APIs are streaming location after every 5 second interval. In order to capture and

store record without delay in internet coverage and to reduce the density of data,

10 second interval was opted which still gives ample of information about trains

activity and trips trajectories can be easily developed by using this interval.

Now each API is set in such a way that possess the location of all active

trains in its single response, so with each API response a complex nested JSON

is received at the end with relevant information from all the trains in it. Figure 2.4

shows the data structure of raw response from a single API response out the about

300,000 collected responses. Now, from about 44 passenger trains, the 300,000

API responses generated a total of about 13 Million footprints record that been

captured from all active trains.

Data migration of collected data was initiated that includes backup of

database, transferring backup file to local storage and then restoring backup into

local PostgreSQL system as shown in Figure 2.5. Footprints table was then sorted

by converting nested JSON strings into a PostgreSQL table where records of each

footprint contained data columns as are mentioned in Figure 2.5. Whereas,

Appendix – 2 contained the Python script was used to sort data into readable

format.

21

Table 2.1. Datasets.

Sr# Dataset Description File Type Source

1 Railway

Tracks

Railway Tracks

Network of Pakistan

JSON Pak Rail Live

APIs / OSM

2 Train

Stations

Coordinates of train

stations with station

names.

JSON/HTML Pakistan

Railways

Website /

OSM

3 Trains

Schedule

Train ID JSON/HTML Pakistan

Railways

Website
Stops

Arrival Time

4 Trains

Trajectories

Train ID APIs Pak Rail Live

APIs
Train Coordinates

Date/Time

Figure 2.3. Trains footprints data collection.

22

Figure 2.4. Raw data structure of each API response.

Figure 2.5. Data migration sorting and pre-processing.

23

2.3.1 PuTTY: terminal emulator

PuTTY was used to communicate with the AWS instance where

installations, configurations and Python script development and implementations

was performed through terminal based window. As PuTTY provides faceless

view of the AWS Instance and Ubuntu. Once Python script was finalized and

tested on local system, on cloud implementation of script was performed where it

was running 24/7 to capture the active trains footprints data. Figure 2.6 shows the

configuration view to access the AWS instance.

PuTTY is a free and open-source terminal emulator, serial console, and

network file transfer application. It supports various network protocols, including

SSH, Telnet, rlogin, and SCP, as well as raw socket connection. PuTTY is

commonly used on Windows operating systems to establish a secure remote

connection to a server or other computer over the internet. It is also popular for

its lightweight and customizable interface, as well as its ability to save session

settings for easy access to frequently-used connections.

2.3.2 FileZilla: file transfer protocol

Raw captured API responses were backed up from AWS based

PostgreSQL in .sql format and was transferred to local storage by using FileZilla.

FileZilla is a free, open-source, cross-platform FTP (File Transfer

Protocol), FTPS, and SFTP client. It is widely used by website administrators and

developers to upload, download, and manage files on remote servers. FileZilla

provides a user-friendly interface for transferring files between the local machine

and a remote server, allowing users to manage files and folders seamlessly.

24

Figure 2.6. PuTTY configuration view.

Figure 2.7. Installation of MobilityDB.

25

It supports various transfer modes, including ASCII, binary, and auto, and

can be customized according to user preferences. Additionally, FileZilla offers

features such as site manager, transfer queue, drag and drop support, and remote

file editing, making it a popular choice for website management and maintenance.

2.4 Environment building

The MobilityDB team is diligently working to deploy the MobilityDB

extension on PostGIS in Windows, but as of right now, MobilityDB is only

accessible on Linux / Debian operating systems. Users can use MobilityDB's two

primary branches, Master and Development, in either research or production

environments. Only the number of functions each database instance carries

distinguishes the two. Prior to being published on GIT or Docker hubs,

MobilityDB team thoroughly tested every function in the master copy, which is

the most recent release (Zimányi, 2020). However, the MobilityDB development

team is still validating the development branch, which has greater functionality

than the master branch. In order to configure the MobilityDB extension into

PostgreSQL that is installed on Linux following are the mandatory requirements:

 The following criteria must be met: PostgreSQL version greater than 10

verified using the simple SQL command # SELECT version ();

 The GNU Scientific Library (GSL) is a free C and C++ library for numerical

computations.

 PostGIS version greater than 2.4 10 -- verified using the simple SQL statement

SELECT PostGIS_Version();

 CMake version greater than 3.6 -- verified using the batch command # cmake

--version;

26

 JSON-C is an implementation of the RCO (Reference Counting Object)

model that makes it simple to create JSON objects in C and convert them to

JSON representations of the objects

 PostgreSQL, PostGIS/liblwgeom, JSON-C, and PROJ development files

2.5 Installations and configurations

The procedure of installing MobilityDB on Linux from scratch involves

configuring all necessary components to the same or compatible specifications.

Pre-compiled images have been made available on Docker Hub by the

MobilityDB team to simplify this laborious process. Using these images will

make it simple to install and upgrade MobilityDB on Windows, Linux, and

Debian-based operating systems. For creating, sharing, and running applications,

Docker is a free and open platform. While in a loosely linked environment,

Docker containers help run many applications simultaneously.

Applications that are packaged with all essential flaws and configurations

are portable artifacts. When a group of developers is necessary to install the

majority of the operating system's services locally on each development

workstation while working on an application, Docker containers streamline the

development process. This kind of development architecture is frequently

complicated and fraught with mistakes when it comes to configuring and

versioning the services that are essential to the host operating system. Depending

on the complexity of the program, this method of setting up a new environment

can be a laborious task. In our scenario, completely configuring MobilityDB on a

distant client. Each remote client needs the MobilityDB components that were

previously specified.

27

MobilityDB containers, which have their own distinct OS layer mounted

by Linux-based images, replace this form of laborious installation of MobilityDB

because they are not intended to be deployed on the local operating system. Every

requirement of MobilityDB with a specific version is packaged with a

configuration in the start script inside of one container, and everything is here

bundled in one isolated environment. MobilityDB is available in a variety of

Docker images on Docker Hub, a public repository for Docker that is open to

everyone. Each image has a distinct PostGIS extension or function that

corresponds to a different MobilityDB release or branch. However, for large and

scalable datasets, the codewit repository is the most reliable with the most

extensions / functions and dependencies.

The Docker engine (a docker runtime), which can be installed on Mac,

Linux, and Windows, pulls and runs Docker images. When MobilityDB is

implemented using Docker, it is possible to run many branch MobilityDB

containers at once on various host ports.

Listed below is the installation processes of MobilityDB from Docker hub using

its Codewit repository also can be shown in Figure 2.7;

A. Docker simply needs one command to get a container, irrespective of the host

machine's operating system.

o docker pull codewit/mobilitydb

B. Although the MobilityDB container can function without a Docker-volume,

the following command is used to establish a Docker Volume with the name

"mobility_data" in order to maintain the MobilityDB files outside of the

container.

o Docker volume creation with sudo mobility_data

28

C. In order for any pulled pictures to be operational, they must all be executed.

The following command maps the Postgres default port of 5432 to the host

port of 25432 to avoid any conflicts with any Postgres instances currently

operating on the local machine:

o mobilitydb_data:/var/lib/postgresql codewit/mobilitydb docker run --

name "mobilitydb_codewit" -d -p 25432:5432

Upon successful execution of above three commands, MobilityDB docker

image is now up and running and is ready to accept connections. We can connect

newly configured MobilityDB container by using any version of PgAdmin4

Client (a web-based GUI tool used to communicate with Postgress database both

locally and remotely) with following parameters: -

 Name: mobilitydb_image

 Host: Container IP address

 Maintenance Database: postgres_database

 Username & Password: docker (it is the default ID & Password

of Docker images for MobilityDB)

2.6 Identification of missing footprints

Now after migrating and converting raw footprints of trains into the

Postgres environment, data were analyzed to apply some pre-processing over it

that includes identification of missing footprints as shown in Figure 2.8 and

Figure 2.9. Gaps in the coverage of the train's location footprint were discovered

throughout the data processing. These pauses ranged in length from a couple of

hours to the entire journey.

29

Figure 2.9.Gap in coverage from Bahawalpur to Rahimyar Khan.

Figure 2.10. Identification of missing footprints.

Figure 2.8: Gap in coverage from Faisalabad to Toba Tek Singh.

30

The train started its journey from Faisalabad and originally transmitted its

location information. The train, however, eventually stopped transmitting

updates, which caused a void in the location data that had previously been logged.

This gap was recorded as beginning at 12:44 and lasting until14:08 on 27th June

2022.

The train stopped streaming its location data while it was between

Bahawalpur to Rahimyar Khan. The recorded footprint coverage had a gap as a

result of this disruption. This gap was recorded as beginning at 22:49 and lasting

until 23:19 on 05th July 2022.

These noted footprint coverage gaps represent times when the train's

location information was either unavailable or not recorded. These gaps were

taken into account while examining how the train moved as well as when

evaluating the correctness and completeness of the entire data set.

Therefore, PostgreSQL query was made to handle the problem of finding

and excluding trips with data gaps. This query aids in classifying each record's

status as "gap" or "no gap" based on a certain circumstance. The test involves

determining whether the time gap between two successive footprints is larger than

one hour. Figure 2.10 shows the query.

This query can be used to quickly filter out all footprint entries with the

"gap" state. This makes it possible to exclude certain records from additional

analysis and reducing their potential influence.

31

Chapter 3

3 RESULTS AND DISCUSSIONS

3.1 Identification of idle and stopped trains

Two conditions were taken into account in order to recognize and

categorize trains as stopped or idle. First, speed of trains had to be 0, indicating

that it wasn't moving and second, no station should be within a 1-kilometer radius

of any footprints (that is the train location data).

This logic was implemented utilizing the "st_contains" function of

Postgres. This tool aids in determining whether a footprint is contained within the

limits of a particular station. It is possible to tell whether a train is close to a station

or not by using this function. Figure 3.1 shows the query used to identify and filter

the dataset with status as idle and not idle.

The goal of the query is to update the idle column status under the

assumption that the train is moving at a standstill. By utilizing the st_contains

method to see if any footprints fall within the selected buffer table, it also makes

sure that another condition is not true.

In order to determine whether one spatial object is included within

another, the st_contains function is frequently employed. It looks to see if any

footprints are present in the buffer zone in this instance. But in this case, the query

is made to prevent footprints inside the buffer area from being regarded as idle.

As a result, they won't be classified as idle if the st_contains function detects any

footprints inside the buffer.

The footprints that met the aforementioned requirements were tagged as

"yes" for the idle status in order to update the status of the idle column in the

32

footprints table. This update makes it simple to recognize the footprints of stopped

or idle trains. This method's goal is to correctly detect and categorize stationary

trains so that they can be left out of any future research or calculations where their

presence might create bias or errors. The analysis can concentrate on the pertinent

and active train movements by putting these conditions into place and updating

the idle status accordingly.

Figure 3.2 reveals a distinct cluster that denotes a circumstance in which

the train is inactive or stopped. In this instance, the cluster on the map designates

a particular location where the train's motion has stopped. The proximity of the

imprints in this group indicates that the train was stopped for a considerable

amount of time. This observation of the cluster's features can help with additional

analysis and decision-making about train operations and scheduling as well as

analyzing and evaluating the operational behavior of the train.

It is clear from Figure 3.3 that the train in the illustration has no scheduled

route but is nonetheless transmitting location information. This case raises a

number of plausible possibilities. The location streaming option may have

accidentally been left on by the train's driver, to name one possibility. Due to

human error or oversight, this can happen, resulting in the transmission of location

data even when there isn't a scheduled trip or the train isn't in motion. Another

option is that the train may have had a problem or been involved in an accident,

which forced an unforeseen stop in the middle of the journey. In these scenarios,

the train's location streaming might still be going strong despite the unplanned

break in its route.

33

For successful train operations management and monitoring, these

situations must be recognized. It enables prompt investigation of any problems,

guaranteeing that suitable responses may be given to any malfunctions, mishaps,

or operational mistakes that may have happened.

3.2 Trains speed analysis

The railway tracks' speed data was analyzed and condensed using a PostgreSQL

query. The summary contains data on the maximum, average, and minimum track

speeds. EL-1, EL-2, EL-3, and line L-1, L-2, L-3 are two other subcategories of

the Pakistan railways networks. A speed summary table was created and it offers

a thorough breakdown of the track speeds. By removing footprint records that are

within a 2-kilometer radius of a station, the minimum speed was calculated. As

the rains usually slowdown in these buffer zones as they approach stations,

therefore this exclusion was necessary. A graph shown in Figure 3.4 was made

utilizing the search results to illustrate the speed data. The greatest speed is shown

on the graph as a blue bar, the average speed is shown as an orange bar, and the

minimum speed is shown as a gray bar. The graph's minimal speed regions show

places other than stations. Additionally, maps and tables as shown in Figure 3.5

and Table 3.1 summarize the track speed are included in the query results.

34

Figure 3.1.Identification of idle and stopped trains.

Figure 3.2. Train streaming location in middle of trip.

Figure 3.3. Train streaming location on idle situation.

35

Figure 3.4. Speed summary on tracks.

Table 3.1. Summary of speed on track.

Track

ID

Track Name Route

Speed of Top 5 Tracks (Km/h)

Max Avg.

ML Main Line Peshawar - Karachi 123 44

EL-21

Existing Line

21

Attock - Multan 123 41

L-3 Line 3 Lahore - Multan 118 40

L-5 Line 5

Khanewal –

Lodhran

115 34

L-4 Line 4

Sheikhupura -

Shorkot

108 49

36

Figure 3.5. Summary of speed on tracks.

37

The quickest tracks are ML (Main Line) and EL-21, with a recorded speed

of 123 km/h on these lines were observed, as can be seen from the graph and table.

While the starting point for the ML track is Peshawar to Karachi and the stretch

of Existing Line 21 (EL-21) is from Multan to Attock. The analysis also identifies

tracks where no operational trains were discovered in the query data.

3.3 Over speeding at station crossings

It has been noted that many passenger trains frequently exceed the posted

speed limitations. There have been numerous reports of trains speeding through

stations at speeds of up to 110 km/h. This pattern appears to be constant regardless

of place, province, or level of station activity. Concerns are raised by these rapid

speeds when crossing stations, especially when the station is shut off to the public

and passengers. The authorities need to pay attention to this issue to handle the

over speeding situation. The Pakistan Railway's General Code of Operating Rules

(GCOR) specifies the maximum permissible speeds, which train operators and

other personnel must follow. These speed restrictions have been put in place to

promote safety and guard against mishaps or occurrences inside station

boundaries. Table 3.2 shows the permissible speeds at station crossings.

Speed of trains can be maintained with proper boundary walls and steel

barriers at the railway tracks and specifically at the areas where tracks are crossing

the slums, villages and cities. This way speed can be maintained to improve the

efficiency and new policy can be implemented with new speed limits based on

locations, train and type of tracks. Moreover, in such scenarios, slop will also be

a crucial factor to be considered during trains movements.

38

3.3.1 Query to filter over speeding events

To filter and identify over speeding incidents, particularly at station

crossings, a query was created. The goal of the search was to locate footprints

within a 1-kilometer radius of stations where the train was traveling at a speed

more than or equal to 40 km/h as the trains with speed less than 40KM were

expected to stop at terminal so they were filtered out. A new table called

"jul2_fp_1km_st" was made in order to carry out this filtering operation where

the information was preserved against columns of Rec_id (record ID), rec_time

(record time), sp (speed), and geom (geographical coordinates). The

"footprints_2july" table is used as the source of the query's data. Only footprints

with a speed more than or equal to 40 km/h are included in the new table,

according to the requirement stated in the WHERE clause.

-- speed at station crossings-footprints within 1km of Stations

CREATE TABLE jul2_fp_1km_st AS

SELECT rec_id, rec_time, sp, geom

FROM footprints_2july

WHERE sp >= 40;

By running this query, all the footprints that indicate over speeding

incidents at station crossings and fulfill the required criteria are saved in the

"jul2_fp_1km_st" table for additional analysis or research. Figure 3.6 shows the

representations of over speeding events captured from the trains footprints dataset

throughout the Pakistan Railways network. Speed parameter was also being

provided along with each streaming point, by utilizing these parameters, over

speeding was mapped for all trains.

39

It has been noted that the tendency to drive too fast at station crossings

seems unrelated to the station's location, province, or even its level of activity.

This shows that the problem of excessive speeding within the railway system is a

general one and is not limited to certain regions or stations. When taking into

account the prospect of a station being shut down with no public or passenger

access, the ramifications of such high speeds during station crossings become

even more crucial. In such circumstances, the dangers of speeding are increased

because there are no safeguards in place to safeguard people or avoid accidents.

3.3.2 Summary of over speeding at station crossings

The observed speed ranges of a single day over numerous stations were

compiled in a graph in Figure 3.7, taking into account that the maximum

permissible speed within station boundaries is 25 km/h for passenger trains.

According to the data, 20 sites recorded with speeds greater than 100 km/h, and

about 50 stations reported speed ranges between 40 and 50 km/h.

The speed ranges at station crossings were also visually represented on a

map in Figure 3.8. The map shows that the over speeding trend is constant

independent of the station's location, province, or degree of commerce. This

demonstrates the importance of thorough and uniform enforcement of speed

limits at all station crossings throughout the entire railway network.

These findings emphasize the significance of addressing the problem of

excessive speeding and putting more stringent measures in place to ensure

adherence to established speed limits. The safety of travelers, railroad employees,

and the general integrity of the railroad system can all be improved by

encouraging adherence to these rules.

40

Table 3.2. GCOR permissible trains speed at station crossings.

Train Type Allowed Speed (km/h) Allowed Speed (mph)

Passenger trains 25 km/h 15.5 mph

Freight trains 15 km/h 9.3 mph

Figure 3.6. Over speeding at station crossing.

Figure 3.7. Observed speed ranges.

41

 Figure 3.8. Over speeding map at station crossings.

42

3.4 Stop time analysis

 To evaluate the length of the entire journey and the amount of time spent

at each station stop, train schedules were examined. For the most popular routes,

the graph in Figure 3.9 shows the total journey time as an orange bar and the time

spent at station stops as a blue bar to illustrate this comparison.

The data shows that stopping at stations takes up a substantial amount of

time. For instance, the Awam Express, which runs between Peshawar and

Karachi, completes the journey in about 35 hours. However, it takes about 4.4

hours just for station stops, which makes up a sizable chunk of the overall travel

time. From Rawalpindi (RWP) to Multan, the Thall Express and Mehr Express

follow the same route. Although they stop for around 1.5 hours each along the

way at stations, the trains take nearly 15 hours to make the trip. With both trains

at same track, the introduction of at least a direct train with no stops might be one

way to shorten the overall trip duration given the significant time spent at station

pauses. By doing this, waiting times at different stations would be eliminated,

possibly resulting in shorter travel times for passengers.

Station pauses account for about 12% of the average trip's total time. This

suggests that stopping at numerous stations along the way takes up a considerable

amount of the travel time. Improvements can be made to train timetables, cut

down on unneeded delays, and increase the overall effectiveness of the railway

system by looking at the data and identifying places where a lot of time is spent

at station pauses.

43

Figure 3.9. Trip stop times.

Figure 3.10. Top 5 trips with minimum stops.

Figure 3.11. Top 5 trips with maximum stops.

44

3.5 Stops frequency in trips

Stops frequency in trains trips analyse the count and duration of stops in

various train journeys The graph in Figure 3.10 shows the summary of top 5

minimum stops on trip where y-axis in the graph reflects the count of stops

observed from all trips in the database, and the x-axis represents the duration of

stops in hours.

The graph shows the frequency of stops in journeys. As an illustration, the

Rawal Express shows zero stops on its route from Rawalpindi (RWP) to Lahore

(LHR), showing that it is a non-stop or direct service between these two locations.

The Islamabad Express, in contrast, only makes one stop along the way.

Passengers now have alternatives to select their favorite train based on elements

like cost and schedule thanks to this information. Others may not mind making a

few stops if it fits their timetable or has a more reasonable ticket. Some passengers

may choose a non-stop service for faster travel. The graph helps passengers to

choose a train that best suits their unique needs and preferences by outlining the

number of stops and their durations.

The top five journeys with the most stops are shown on the graph in Figure

3.11. The y-axis displays the total number of stops observed throughout all

journeys in the database, while the x-axis displays the stop time in hours and

routes.

For instance, the Awan Express makes 62 stops along the way as it travels

from Peshawar to Karachi, covering the distance in around 35 hours. This

impressive number of stops is remarkable since it enables the connection of

numerous Pakistani cities along a single rail route. However, providing alternate

45

options such as direct trains between important cities would provide customers

more freedom to select according to their preferences for cost and travel time.

3.6 Assessing signal visibility to trains: A comparative analysis of

PostgreSQL and MobilityDB for efficient traffic management

In this thesis research, investigation on how to measure the visibility of

signals for the moving trains was performed by using a database query that was

performed by implementing the strategy2. In order to analyze GPS trajectories

and determine the visibility of signals for the best traffic management, this study

compares MobilityDB against traditional PostgreSQL to show how efficiently

and effectively it does these tasks. Railway authorities can improve the shift from

manual operations to a computerized approach and arrange the visibility of

specific signal indications to individual train drivers by extracting useful data.

Analysis started by building a streamlined PostGIS database to represent

the described scenario. The next step was to progressively create a SQL query to

assess if signals are visible to train passengers. In order to use spatial data in the

database, the PostGIS extension is first created. As part of the database setup, two

tables gpspoints and signals were created. GPS point information, including

timestamps and geographical coordinates, was be kept in the gpspoints table. The

signals table, on the other hand, contained details on the locations of the signals,

including their names and related coordinates. Within the SQL code block given

2 https://techcommunity.microsoft.com/t5/azure-database-for-

postgresql/analyzing-gps-trajectories-at-scale-with-postgres-mobilitydb-amp/ba-

p/1859278#fn-1

https://techcommunity.microsoft.com/t5/azure-database-for-postgresql/analyzing-gps-trajectories-at-scale-with-postgres-mobilitydb-amp/ba-p/1859278#fn-1
https://techcommunity.microsoft.com/t5/azure-database-for-postgresql/analyzing-gps-trajectories-at-scale-with-postgres-mobilitydb-amp/ba-p/1859278#fn-1
https://techcommunity.microsoft.com/t5/azure-database-for-postgresql/analyzing-gps-trajectories-at-scale-with-postgres-mobilitydb-amp/ba-p/1859278#fn-1

46

below, first PostGIS extension was created. And then created two tables:

gpspoints and signals with listed columns and datatypes. A representation of the

database is shown in the map, see Figure 3.12. Green points, which represent the

location of the train in the gpspoints table. Database was created with following

queries .

-- filtering gpspointss and signals

CREATE TABLE gpspoints (tripID int, pointID int, t timestamp, geom

geometry(Point, 32643));

CREATE TABLE signals(signalID int, geom geometry(Point, 32643));

INSERT INTO gpspoints Values

(1, 1, '2022-07-21T08:37:27.000', 'SRID=32643;POINT(308124.109890976

3728273.58762612)'), (1, 2, '2022-07-21T08:37:37.000',

'SRID=32643;POINT(308227.027802868 3728292.46531692)'), (1, 3, '2022-07-

21T08:37:47.000', 'SRID=32643;POINT(308334.174048068

3728335.19043466)'), (1, 4, '2022-07-21T08:37:57.000',

'SRID=32643;POINT(308408.640584836 3728369.59647611)'), (1, 5, '2022-07-

21T08:38:07.000', 'SRID=32643;POINT(308461.9169791 3728407.41833811)'),

(1, 6, '2022-07-21T08:38:17.000', 'SRID=32643;POINT(308551.381967878

3728441.52537676)'), (1, 7, '2022-07-21T08:38:27.000',

'SRID=32643;POINT(308663.644254388 3728490.1344151)'), (1, 8, '2022-07-

21T08:38:37.000', 'SRID=32643;POINT(308767.68893195

3728503.01244136)'), (1, 9, '2022-07-21T08:38:47.000',

'SRID=32643;POINT(308871.271302941 3728495.83161316)'), (1, 10, '2022-

07-21T08:38:57.000', 'SRID=32643;POINT(308948.63331003

3728484.44304838)'), (1, 11, '2022-07-21T08:39:07.000',

'SRID=32643;POINT(309024.462819388 3728461.99059971)'), (1, 12, '2022-

07-21T08:39:17.000', 'SRID=32643;POINT(309133.341037885

3728403.73139497)'), (1, 13, '2022-07-21T08:39:27.000',

'SRID=32643;POINT(309245.657120396 3728298.29116713)'),

(1, 14, '2022-07-21T08:39:37.000', 'SRID=32643;POINT(309315.104214897

3728206.41934101)'), (1, 15, '2022-07-21T08:39:47.000',

47

'SRID=32643;POINT(309373.581720467 3728113.08386572)'), (1, 16, '2022-

07-21T08:39:57.000', 'SRID=32643;POINT(309461.975318551

3727972.88083162)'), (1, 17, '2022-07-21T08:40:07.000',

'SRID=32643;POINT(309530.497389953 3727860.55748382)'), (1, 18, '2022-

07-21T08:40:17.000', 'SRID=32643;POINT(309574.593020876

3727751.24417646)'), (1, 19, '2022-07-21T08:40:27.000',

'SRID=32643;POINT(309657.650540303 3727620.21726585)'), (1, 20, '2022-

07-21T08:40:37.000', 'SRID=32643;POINT(309729.083467153

3727506.36102802)'), (1, 21, '2022-07-21T08:40:47.000',

'SRID=32643;POINT(309785.946987735 3727421.36138047)');

INSERT INTO signals Values

(1, 'SRID=32643;POINT(309245.657120396 3728298.29116713)')

3.6.1 Utilizing PostgreSQL and PostGIS functions

Each points record of the table has timestamp, enabling a temporal

examination of the train's motion. A red diamond icon on the map also designates

the location of a signal that is located shortly before the Golra railway station in

Islamabad. For determining visibility and examining how the train and the signal

interact, this signal is an essential point of reference. It is possible to learn a lot

about how visible the signal is to drivers on a moving train by analyzing the spatial

distribution of the gpspoints data in conjunction with the signal location. This

visualization helps with situation comprehension and provides a framework for

additional investigation and query creation.

The next step was to locate the points where a train is within a 300-meter

radius of a signal and to calculate the times when it is in this vicinity. This

technique seeks to evaluate the period of time when the train and signal are close

to each other, indicating probable passenger visibility.

48

CREATE TABLE signal_psql_300 AS

SELECT a.tripid, a.pointid, a.t, a.geom, b.signalid

FROM gpspoint1 a, signals b

WHERE ST_DWithin(ST_Transform(a.geom, 32643), ST_Transform(b.geom,

32643), 300);

While the preceding the above PostGIS query identified GPS locations

within a 300-meter radius of a signal, it did not address the question of how long

this event lasted. Additionally, if a particular GPS point was absent, it would

produce null values and ignore the bus trip's continuity and moving trajectory.

PostGIS query was needed that creates a continuous movement trajectory

from the provided GPS coordinates in order to get around these restrictions. This

query computes how long the signal will be visible to train while they are

traveling, in addition to identifying the locations where the signal is visible. This

improved query will give a more accurate assessment of signal visibility and the

associated duration it is visible to the train by taking into account the movement

trajectory and the timestamps of GPS sites. This method guarantees a thorough

study that captures both the precise visibility of the signal along the trajectory and

the continuity of the bus ride. Following query was developed by utilizing

Postgres, PostGIS and windows operations and functions.

WITH pointPair AS (

 SELECT

 tripID, pointID AS p1, t AS t1, geom AS geom1,

 lead(pointID, 1) OVER (PARTITION BY tripID ORDER BY pointID) p2,

 lead(t, 1) OVER (PARTITION BY tripID ORDER BY pointID) t2,

 lead(geom, 1) OVER (PARTITION BY tripID ORDER BY pointID) geom2

 FROM gpspoints), segment AS (SELECT

 tripID, p1, p2, t1, t2, st_makeline(geom1, geom2) geom

49

 FROM pointPair

 WHERE p2 IS NOT NULL), approach AS (

 SELECT

 tripID, p1, p2, t1, t2, a.geom, st_closestpoint(a.geom, b.geom)

visibilityTogglePoint

 FROM segment a, signal b WHERE st_dwithin(a.geom, b.geom, 300)

)

SELECT

 tripID, p1, p2, t1, t2, geom, visibilityTogglePoint,

 (st_lineLocatePoint(geom, visibilityTogglePoint) * (t2 - t1)) + t1

visibilityToggleTime

FROM approach;

Illustrated above query seems though fulfilling the objective, seemed to

be quite complex and many Common Table Expressions (CTEs) have been used

to structure the complex PostGIS query, making it easier to interpret and write

SQL queries with many phases. The window function "lead" is used by the first

CTE, "pointPairs" in lines 1–7, to pair up consecutive points that are part of the

same bus trip. The data prepared for the subsequent CTE in this stage.

The second CTE, referred to as "segment" in lines 7–12, draws a line

segment joining the two locations in each pair. The path between each pair of

GPS locations can be thought of as being linearly interpolated in this way. The

outcome is a collection of line segments that depict the bus's motion trajectory.

Understanding the logic and flow of the actions being carried out is made simpler

by decomposing the query into various CTEs. With a modular design, the query

is easier to read and maintain, which makes it more manageable for intricate

spatial analysis combining GPS points and trajectory interpolation. Result of

above discussed query can be visualized as in Figure 3.13.

50

Figure 3.12. Map visualization of trains GPS point and signal.

Figure 3.13. Map visualization of PostgreSQL query.

51

The third CTE, referred to as "approach" in lines 12–18, is concerned with

locating the points where the train departs from or arrives at within a 300-meter

range of the signal. To do this, a 30-meter-diameter ring is formed around the

placement of the signal. The line segments that depict the train trajectory are then

intersected with this ring. These points reflect the places where the train passes

the signal within 300 meters, suggesting probable driver visibility of the signal.

In order to examine the spatial link between the bus route segments and the

circular ring surrounding the signal, this method makes use of geometric

operations in PostGIS. It enables us to identify the precise locations along the

trajectory where the bus is close to the signal, allowing us to estimate how visible

the signal may be to the drivers while they are traveling.

The time at the two points identified in the "approach" CTE are computed

using linear referencing in the final phase of the preceding PostGIS query at lines

19–22. Along the train trajectory, linear referencing implies a constant speed each

segment. Based on the distance traveled along the trajectory, linear referencing

can be used to estimate the amount of time spent at each point. The amount of

time needed to go from the train starting point to each destination can be

determined by assuming a constant speed every segment.

This computation enables us to determine the amount of time that drivers

may potentially see the signal while traveling. An estimation of the time spent

near the signal can be obtained by taking into account the distance covered along

the trajectory and the anticipated constant speed. This method offers information

on the length of visibility, enabling a more thorough investigation of the signal’s

impact and potential exposure to train drivers.

52

The query was that much complex due to two non-trivial concepts that were

mused in development of the PostGIS query:

1. The GPS data that is currently accessible is discrete and made up of separate

points. Nevertheless, the goal of the query was to create a continuous travel

trajectory from these separate sites. This required joining adjacent dots to

create a seamless trail that represented the train's journey.

2. Spatial-temporal proximity: The train's continuous movement trajectory was

then used to pinpoint the precise locations and moments when it was less than

300 meters from the signal. This methodology evaluated the distance between

the train and the signal at various times throughout its path, taking into

account both spatial and temporal variables.

3.6.2 Utilizing MobilityDB functions

The analysis of such movement trajectories is made easier by MobilityDB.

As explained in previous chapters that MobilityDB is an extension of PostgreSQL

and PostGIS. By adding unique types and methods to the PostgreSQL foundation,

MobilityDB integrates spatio-temporal notions. This integration makes it possible

to analyze complex spatio-temporal data more quickly and effectively, making it

easier to evaluate movement trajectories.

MobilityDB can be used to implement the same PostgreSQL query to

achieve the same results with quite reduced code effort and with easy to

understand logic. The transition of the previous PostGIS query might look

something like this in MobilityDB.

53

create table signal_mdb_300_raw as

SELECT astext(atperiodset(trip, getTime(atValue(tdwithin(a.trip, b.geom,

300), TRUE))))

FROM trainTrip a, signals b

WHERE dwithin(a.trip, b.geom, 300)

This is as simple in the MobilityDB as describe in above query block. The

supplied query uses the outcomes of a SELECT operation to create a new table

called signal_mdb_300_raw. Here is a description of the problem:

The trainTrip table and the signals table are queried using the SELECT

statement to retrieve the spatio-temporal data. The tdwithin function is used to

determine whether the train's trajectory is 300 meters or less from a signal

position. The getTime and atValue procedures extract the precise time periods of

intersection, whereas the atperiodset and atperiodset functions combine the

matching time periods of the train trajectory and signal proximity The outcome is

then transformed into a text representation using the astext function. The

CREATE TABLE statement is used to store the whole result set in the

signal_mdb_300_raw table.

Now in order to map this query in QGIS, text column was divided into

geom and time columns as explain in following code block.

 -- mapped query --

 -- Add new columns to the existing table

 ALTER TABLE signal_mdb_300

 ADD COLUMN geom geometry(Point, 32643),

 ADD COLUMN time timestamp;

 -- Update the new columns with the extracted information

 UPDATE signal_mdb_300

54

 SET geom = ST_SetSRID(ST_MakePoint(

 CAST(split_part(SUBSTRING(astext

FROM 'POINT\((.*?)\)'), ' ', 1)

AS DOUBLE PRECISION),

 CAST(split_part(SUBSTRING(astext

FROM 'POINT\((.*?)\)'), ' ', 2)

AS DOUBLE PRECISION)

), 32643),

 time = to_timestamp(SUBSTRING(astext

FROM '@(.*?)\)') || '+00', 'YYYY-MM-DD HH24:MI:SS.US+00');

The given code snippet runs the following commands on the'signal_mdb_300'

database to make it changes:

1. It adds the two columns "geom" of type "geometry(Point, 32643)" and "time"

of type "timestamp" to the table. The extracted geographic and temporal

information will be kept in these columns, respectively.

2. The newly added columns in the table are updated by the 'UPDATE' statement

using the data that was previously taken from the 'astext' column.

a. The 'ST_SetSRID' and 'ST_MakePoint' functions are used to create a

'Point' geometry in order to update the 'geom' column. Using string

manipulation functions, the coordinates for the point are extracted from

the 'astext' column.

b. The 'time' column is updated by removing the timestamp data from the

'astext' column using string manipulation techniques and converting it to

a 'timestamp' data type.

55

trainTrip table creation was performed with following query.

CREATE TABLE trainTrip(tripID, trip) AS

 SELECT tripID,tgeompointseq(array_agg(tgeompointinst(geom, t) ORDER

BY t))

FROM gpspoints

GROUP BY tripID;

The provided above code creates one new table that is called trainTrip using the

results obtained from the SELECT statement. Here is the explanation of the query:

1. The SELECT statement pulls information from the gpspoints table and

aggregates it by tripID to group the points. The points are combined into

an array using the array_agg function, and temporal geometry points are

created using the tgeompointinst function for each point and its

corresponding time (t).

2. The array of temporal geometry points is then converted into a temporal

sequence of points using the tgeompointseq function. The time sequence

that results depicts each journey's path.

3. The CREATE database statement generates the trainTrip database with

two columns: tripID and trip, where tripID holds the temporal sequence.

56

Figure 3.14. Map visualization of MobilityDB query.

57

One thing to note, even though no GPS coordinates or timestamps were

explicitly provided, the result of the given query using MobilityDB displays the

beginning point where the train is anticipated to be within 300 meters of a

particular location and that point is marked with green diamond symbol and the

orange points are the GPS points of the trip section where red diamond symbol is

the signal as shown on map in Figure 3.14.

Based on the information at hand, MobilityDB has the capacity to

internally calculate and rebuild the train's trajectory. It determines the movement

trajectory by using the spatial and temporal data contained in the trainTrip table.

The query can calculate the time when the train will be close by using the temporal

geometry functions and types offered by MobilityDB.

The query works by taking into account the temporal order of points stored

in the trainTrip table's journey column. The starting point where the train is

anticipated to be within 300 meters of a signal position is determined from this

sequence. Based on the trajectory's internal calculation, the time at this location

is inferred.

Because of its temporal capabilities, MobilityDB can analyze and forecast

movement trajectories even when explicit GPS coordinates or timestamps are not

given. In situations where complete data may be unavailable, it makes use of the

existing information to reconstruct and evaluate the trajectory, enabling more

thorough spatio-temporal analysis.

58

Chapter 4

4 CONCLUSION AND RECOMMENDATIONS

4.1 Conclusion

Research conducted through the thesis addressed the problem of

enhancing monitoring efficiency of the Pakistan Railways by exploring

capabilities of MobilityDB, PostgreSQL and PostGIS for analyzing the train

trajectories. The main goal was to provide a valuable insight into spatio-temporal

behavior of moving object and to offer suggestions for the optimization of railway

operations. Various tools and techniques were also utilized to achieve the research

objectives. A mechanism was also developed to capture and to store live

streaming train trajectories data in a PostgreSQL database. The data

preprocessing and the cloud collected data migration was conducted by utilizing

customized Python scripts.

Throughout the research, several key aspects of Pakistan Railways were

identified and analyzed. Idle and stopped trains were analyzed and successfully

identified using the speed and location datasets, enabling efficient monitoring and

the resource allocation. Speed patterns were also analyzed to detect the instances

of over speeding and suggested the importance of adhering to speed limits. A

comprehensive analysis of trains speed, track speed, stop times stop frequency

were performed that provided insights to optimize schedules and to reduce the

unnecessary delays in trains trips. The visibility of the signals to trains were

explored by using MobilityDB and PostgreSQL, enabling assessment of signal

visibility duration and the spatial coverage. This analysis then offered insights to

optimize the traffic management and ensure the passengers safety.

59

Also, the research outcomes demonstrate effectiveness of using

MobilityDB over PostGIS and PostgreSQL for analyzing spatio-temporal

behavior of transportation systems. By leveraging the spatio-temporal analysis,

the resource allocations can be optimized and passenger experiences can be

enhanced and safe and reliable journeys can be ensured. In conclusion, this

research highlights the significance of the analysis of moving object trajectories

using MobilityDB and PostgreSQL operations, particularly in context of Pakistan

Railways systems.

4.2 Recommendations for further research

This study mainly focuses on captured archived footprints of trains but a real time

dataset can be used to perform spatio-temporal analysis to look into the creation

of real-time monitoring and decision support systems for transportation networks.

To enable prompt decision-making, optimize resource allocation, and boost

overall system efficiency, this could entail integrating live streaming data, real-

time analytics, and visualization approaches.

Godfrid (2022) used the real time GTFS data to develop a system to

monitor trajectories in real time but during its research period, no live feeds were

available and thus got no responses. Same was the case with this thesis research

where Pak Rail Live APIs got down after August 2019 due to portal maintenance

issue and the researched was focused to only archived data. Now based on the

availability of live stream trajectory data, new dimension of implementing

MobilityDB queries over real time data can be explored to further extend this

research.

60

5 REFERENCES

1. Brandoli, B., Raffaetà, A., Simeoni, M., Adibi, P., Bappee, F. K., Pranovi,

F., & Matwin, S. (2022). From multiple aspect trajectories to predictive

analysis: a case study on fishing vessels in the Northern Adriatic

sea. GeoInformatica, 26(4), 551-579.

2. Bates, G. A. (1994, February). The use of GPS in a mobile data acquisition

system. In Developments in the Use of Global Positioning Systems (pp.

2-1). IET.

3. Borodin, A., Mirvoda, S., Kulikov, I., & Porshnev, S. (2017).

Optimization of memory operations in generalized search trees of

PostgreSQL. In Beyond Databases, Architectures and Structures.

Towards Efficient Solutions for Data Analysis and Knowledge

Representation: 13th International Conference, BDAS 2017, Ustroń,

Poland, May 30-June 2, 2017, Springer International Publishing.

Proceedings 13 (pp. 224-232).

4. Chacko, A. M., Basheer, A. M., & Kumar, S. M. (2015, December).

Capturing provenance for big data analytics done using SQL interface. In

2015 IEEE UP Section Conference on Electrical Computer and

Electronics (UPCON) (pp. 1-6). IEEE.

5. Cubukcu, U., Erdogan, O., Pathak, S., Sannakkayala, S., & Slot, M. (2021,

June). Citus: Distributed postgresql for data-intensive applications. In

Proceedings of the 2021 International Conference on Management of Data

(pp. 2490-2502).

61

6. D’Orso, G., & Migliore, M. (2017). A GIS-based methodology to estimate

the potential demand of an integrated transport system. In Computational

Science and Its Applications–ICCSA 2017: 17th International

Conference, Trieste, Italy, July 3-6, 2017, Springer International

Publishing. Proceedings, Part IV 17 (pp. 525-540).

7. Das, N. K., Das, C. K., Mozumder, R., & Bhowmik, J. C. (2009). Satellite

based train monitoring system. Journal of Electrical Engineering the

Institution of Engineers, Bangladesh Vol. EE, 36.

8. Furman, E., Lampe, S., & Immel, E. (2001). Keeping Track of RF High-

speed trains will use GPS in their data communications platform to

automate selections of radio channels, improve safety, and coordinate

operations with the train dispatch center. A pilot projects tests this system

along tracks in the Pacific Northwest. GPS WORLD, 12(2), 16-23.

9. Godfrid, J., Radnic, P., Vaisman, A., & Zimányi, E. (2022). Analyzing

public transport in the city of Buenos Aires with MobilityDB. Public

Transport, 14(2), 287-321.

10. Graser, A., & Dragaschnig, M. (2020). Exploring movement data in

notebook environments. In IEEE VIS 2020 Workshop on Information

Visualization of Geospatial Networks, Flows and Movement (MoVis).

2020.

11. Georgiou, H., Karagiorgou, S., Kontoulis, Y., Pelekis, N., Petrou, P.,

Scarlatti, D., & Theodoridis, Y. (2018). Moving objects analytics: Survey

on future location & trajectory prediction methods. arXiv preprint

arXiv:1807.04639.

62

12. Güting, R. H., Behr, T., & Xu, J. (2010). Efficient k-nearest neighbor

search on moving object trajectories. The VLDB Journal, 19, 687-714.

13. Guedes, T., Silva, V., Mattoso, M., Bedo, M. V., & de Oliveira, D. (2018,

November). A practical roadmap for provenance capture and data analysis

in spark-based scientific workflows. In 2018 IEEE/ACM Workflows in

Support of Large-Scale Science (WORKS) (pp. 31-41). IEEE.

14. Hofestadt, H. (1995, March). GSM-R: global system for mobile radio

communications for railways. In 1995 International Conference on

Electric Railways in a United Europe (pp. 111-115). IET.

15. Helland‐Hansen, W., & Hampson, G. J. (2009). Trajectory analysis:

concepts and applications. Basin Research, 21(5), 454-483.

16. Ikeda, M. (1993). Characteristic of position detection and method of

position correction by rotating axle. Railway Technical Research Institute,

Quarterly Reports, 34(4).

17. Imran, M. (2009). Public transport in Pakistan: a critical overview. Journal

of Public Transportation, 12(2), 53-83.

18. Irfan, S. M., Kee, D. M. H., & Shahbaz, S. (2012). Service quality and rail

transport in Pakistan: A passenger perspective. World Applied Sciences

Journal, 18(3), 361-369.

19. Kumar, G. H., & Ramesh, G. P. (2017, February). Intelligent gateway for

real time train tracking and railway crossing including emergency path

using D2D communication. In 2017 International Conference on

Information Communication and Embedded Systems (ICICES) (pp. 1-4).

IEEE.

63

20. Karniouchina, E. V., Carson, S. J., Short, J. C., & Ketchen Jr, D. J. (2013).

Extending the firm vs. industry debate: Does industry life cycle stage

matter?. Strategic management journal, 34(8), 1010-1018.

21. Li, X., Alam, K. M., & Wang, S. (2018). Trend analysis of Pakistan

railways based on industry life cycle theory. Journal of Advanced

Transportation, 2018.

22. Lancien, D. (1990). Full-Scale ASTREE Tests Planned. IRJ November,

90.

23. Mohamed, H. A. R. (2014). A Proposed Model for Radio Frequency

Systems to Tracking Trains via GPS (The Study for Egyptian National

Railways). International Journal of Intelligent Systems and

Applications, 6(4), 76.

24. Ministry of Railways (Ed.). (2021). Year Book 2020-2021

[Https://www.pakrail.gov.pk/]. Ministry of Railways.

https://www.pakrail.gov.pk/images/yearbook/yearbook2020_21.pdf

25. Mahalakshmi, V., & Joseph, K. O. (2013). GPS based railway track

survey system. IJCAES, 3.

26. Mohamed, H. A. R. (2014). A Proposed Model for Radio Frequency

Systems to Tracking Trains via GPS (The Study for Egyptian National

Railways). International Journal of Intelligent Systems and Applications,

6(4), 76.

27. Nahid, S., Padala, S., & Kumar, V. S. D. (2013). Design and development

of train tracking system in south central railways. International Journal of

Science and Modern Engineering, Vol1 (12), 60-64.

64

28. Statistics, F. B. (2017). Provisional summary results of 6th population and

housing census. Islamabad: Pakistan Bureau Of Statistics, Ministry Of

Statistics, Islamabad, Islamic Republic Of Pakistan.

29. Syed, W. H., Yasar, A., Janssens, D., & Wets, G. (2014). Analyzing the

real time factors: which causing the traffic congestions and proposing the

solution for Pakistani City. Procedia Computer Science, 32, 413-420.

30. Sharma, M., Sharma, V. D., & Bundele, M. M. (2018, November).

Performance analysis of RDBMS and no SQL databases: PostgreSQL,

MongoDB and Neo4j. In 2018 3rd International Conference and

Workshops on Recent Advances and Innovations in Engineering

(ICRAIE) (pp. 1-5). IEEE.

31. Sharygin, E. Y., Buchatskiy, R. A., Zhuykov, R. A., & Sher, A. R. (2017).

Query compilation in PostgreSQL by specialization of the DBMS source

code. Programming and Computer Software, 43, 353-365.

32. Stripple, H., & Uppenberg, S. (2010). Life cycle assessment of railways

and rail transports-Application in environmental product declarations

(EPDs) for the Bothnia Line.

33. Transport, R. (2015). Environment Facts & Figures. UIC/CER, Paris, 1-

68.

34. Utterback, J. M., & Suárez, F. F. (1993). Innovation, competition, and

industry structure. Research policy, 22(1), 1-21.

35. Vaisman, A., & Zimányi, E. (2019). Mobility data warehouses. ISPRS

International Journal of Geo-Information, 8(4), 170.

36. Vershinin, I. S., & Mustafina, A. R. (2021, September). Performance

analysis of PostgreSQL, MySQL, microsoft SQL server systems based on

65

TPC-H tests. In 2021 International Russian Automation Conference

(RusAutoCon) (pp. 683-687). IEEE.

37. Yogiandra, A. F., & Widagdo, T. E. (2019, November). Handling of

Spatio-Temporal Pattern Queries in Moving Object Database. In 2019

International Conference on Data and Software Engineering

(ICoDSE) (pp. 1-6). IEEE.

38. Zimányi, E., Sakr, M., & Lesuisse, A. (2020). MobilityDB: A mobility

database based on PostgreSQL and PostGIS. ACM Transactions on

Database Systems (TODS), 45(4), 1-42.

39. Zimányi, E., Sakr, M., Lesuisse, A., & Bakli, M. (2019, August).

Mobilitydb: A mainstream moving object database system.

In Proceedings of the 16th International Symposium on Spatial and

Temporal Databases (pp. 206-209).

40. Zimányi, E., Sakr, M., Bakli, M., Schomans, M., Tsesmelis, D., &

Choquet, R. (2021, November). MobilityDB: hands on tutorial on

managing and visualizing geospatial trajectories in SQL. In Proceedings

of the 3rd ACM SIGSPATIAL International Workshop on APIs and

Libraries for Geospatial Data Science (pp. 1-2).

66

Appendices

6 Appendix

67

Appendix-1. Python script to capture raw API responses.

import urllib.request

from urllib.request import urlopen

from datetime import datetime

import csv

import pytz

import psycopg2

import psycopg2.extras

import time

#login credentials

hostname = 'localhost'

database = 'Dump_APIs_Resp'

username = 'postgres'

pwd = 'postgres'

port_id = 5432

conn = None

Iteration=0

#Fetchning Fresh SID

url =

'https://socket.pakraillive.com/socket.io/?EIO=3&transport=polling&t='

with urlopen(url) as response:

 html_response = response.read()

 encoding = response.headers.get_content_charset('utf-8')

 decoded_html = html_response.decode(encoding)

 sid = decoded_html[12:32]

#login to postgres databse

try:

 while True:

 try:

 with psycopg2.connect(

 host = hostname,

 dbname = database,

 user = username,

 password = pwd,

 port = port_id) as conn:

 with conn.cursor(cursor_factory=psycopg2.extras.DictCursor) as

cur:

 cur.execute(

 CREATE TABLE IF NOT EXISTS footprints (

68

 id serial not null,

 time timestamp default current_timestamp,

 train_id VARCHAR (50),

 lat VARCHAR (50),

 long VARCHAR (50),

 from_station VARCHAR (50),

 to_station VARCHAR (50),

 last_updated VARCHAR (50),

 late_by VARCHAR (50),

 station VARCHAR (50),

 sp VARCHAR (50)

)

 insert_script = 'INSERT INTO footprints (sid, url, data)

VALUES (%s, %s, %s)'

 #while len(sid)==20:

 Time = datetime.now(pytz.timezone('Asia/Karachi'))

 Iteration = Iteration+1

 t = 'O4Qc14S'

 url =

'https://socket.pakraillive.com/socket.io/?EIO=3&transport=polling&t='+t+'

&sid='+sid

 API_Response = urllib.request.urlopen(url)

 data = API_Response.read(20000).decode('utf-8')

 print ("Iteration:", Iteration)

 print("Time =", t)

 print("sid: ", sid)

 #print("API Resp:", data)

 if len(data) < 20000:

 insert_values = [sid, url, data]

 cur.execute(insert_script, insert_values)

 time.sleep(5)

 #Fetchning Fresh SID for Next Iteration

 url =

'https://socket.pakraillive.com/socket.io/?EIO=3&transport=polling&t='

 with urlopen(url) as response:

 html_response = response.read()

 encoding = response.headers.get_content_charset('utf-8')

 decoded_html = html_response.decode(encoding)

 sid = decoded_html[12:32]

 except Exception as error:

 print(error)

 finally:

 if conn is not None:

 conn.close()

except KeyboardInterrupt:

 pass

print ("Script Terminated")

69

Appendix-2. Python script to sort raw footprints.

 import json

import psycopg2

import psycopg2.extras

import time

import winsound

frequency = 2500 # Set Frequency To 2500 Hertz

duration = 1000 # Set Duration To 1000 ms == 1 second

start_time = time.time()

"main()"

try:

 connection = psycopg2.connect(user="postgres",

 password="postgres",

 host="localhost",

 port="5432",

 database="trains_footprints")

 cursor = connection.cursor()

 postgreSQL_select_Query = "select * from footprints where id >= 31261

and id<= 100000 order by id asc"

 cursor.execute(postgreSQL_select_Query)

 print("Selecting rows from footprints table")

 mobile_records = cursor.fetchall()

 print("Fetched records from footprints table")

 #print("raw rows:",mobile_records)

except (Exception, psycopg2.Error) as error:

 print("Con 1: Error while fetching data from PostgreSQL", error)

finally:

 # closing database connection.

 if connection:

 cursor.close()

 connection.close()

 print("PostgreSQL connection is closed")

 ########Opening new database connection########

try:

 connection = psycopg2.connect(user="postgres",

 password="postgres",

 host="localhost",

 port="5432",

 database="trains_footprints")

 cursor = connection.cursor()

70

 postgres_insert_query = """ INSERT INTO TrainWiseFootprints (rec_id,

rec_time, rec_sid, trip_id, lat, long, prev_st, next_st, station, sp, lst_updated,

lateby_m) VALUES (%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s)"""

 for row in mobile_records:

 print("@@@@@@@@ Record:", row[0]," @@@@@@@@")

 #print("rec_id = ", row[0],)

 #print("rec_timestamp = ", row[1])

 #print("rec_sid = ", row[2])

 m = row[4]

 #print("rec_rawdata = ", m, "\n")

 t=1

 while "[" in m:

 start = m.index('[')

 end = m.index(']',start+1)

 substring = m[start:end+1]

 #print("this: ",substring)

 m=m[end+1:]

 data_json=json.loads(substring)

 print()

 print("//////////// Train#", t, " in Record ID: ",row[0]," ////////////")

 #print ("trip_id : " + data_json[0])

 jsd=data_json[1]

 if jsd is not None:

 #print("lat : " + jsd["lat"])

 #print("long : " + jsd["lon"])

 #print("last_updated : " + jsd["last_updated"])

 #print("late_by_min : " + jsd["late_by"])

 #print("next_st : " + jsd["next_st"])

 #print("Prev_st : " + jsd["prev_st"])

 #print("sp : " + jsd["sp"])

 #print("station : " + jsd["st"])

 t=t+1

 record_to_insert = (row[0], row[1], row[2], data_json[0],

jsd["lat"], jsd["lon"], jsd["prev_st"], jsd["next_st"], jsd["st"], jsd["sp"],

jsd["last_updated"], jsd["late_by"])

 cursor.execute(postgres_insert_query, record_to_insert)

 connection.commit()

 count = cursor.rowcount

 #print(count, "Record inserted successfully into mobile table")

71

except (Exception, psycopg2.Error) as error:

 print(" Con 2: Error while fetching data from PostgreSQL", error)

finally:

 # closing database connection.

 if connection:

 cursor.close()

 connection.close()

 print("PostgreSQL connection is closed")

print("--- %s minutes consumed in filtering records ---" % ((time.time() -

start_time)/60))

winsound.Beep(frequency, duration)

