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ABSTRACT

Reed Solomon codes form an important class of linear cyclic block codes with 

numerous applications in communications and data storage. This thesis involves investigation 

and Hardware Description Language (HDL) implementation of Reed Solomon decoding 

algorithms and code acquisition for Direct Sequence spread spectrum (DSSS) systems. 

Conventional decoding algorithms which can correct errors up to half the minimum distance 

include Berlekamp-Massey (BM) and extended Euclidean (eE) algorithms. These algorithms 

are compared with respect to their hardware complexity, architecture regularity and decoding 

delay. A series of algorithmic transformations result in a fully systolic architecture for BM 

algorithm. This reformulated BM algorithm requires fewer hardware resources and reduced 

critical path delay when compared with architectures for eE algorithms. A parameterized 

Verilog code generator for Reed Solomon encoder and Berlekamp Massey architecture has 

been written in Matlab. Alternate RS decoding procedures based upon polynomial 

interpolation such as Guruswami-Sudan (GS) algorithm and Berlekamp-Welch (BW) 

algorithm are implemented using Matlab. GS algorithm is a list decoding algorithm which can 

provide error correction capabilities beyond half the minimum distance. 

Second part of the thesis deals with synchronization issues in a DSSS with emphasis 

on Code acquisition. A baseband DSSS transmitter using a PN spreading sequence equipped 

with read only memory (ROM) based raised cosine filter is implemented. Correct de-

spreading and decoding of data is possible only if the receiver reference sequence and 

received sequence are properly synchronized. Receiver coarse synchronization is done by 

parallel search over the code offset space. Cross correlation of these sequences is performed in 

the frequency domain by exploiting computational efficiency of the Fast Fourier Transform 

algorithm. 
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CHAPTER 1

INTRODUCTION

1.1 Background 

Modern communication systems are required to operate at high data rates with constrained 

power and bandwidth. These conflicting requirements lead to complex modulation and pulse 

shaping along with inevitable use of efficient error control coding and an increased level of signal 

processing at the receiver. Synchronization requirements also become more stringent at high data 

rates and, as a result, receivers become more complex.   

This thesis investigates a special class of non-binary cyclic block codes recognized for 

their superior multiple error correction capability called Reed-Solomon codes. Moreover, the 

synchronization problem for Direct Sequence spread spectrum (DSSS) system is also considered 

and a parallel search scheme for DSSS acquisition is developed and implemented using Verilog 

Hardware description language (HDL). 

Error control coding also called channel coding in the context of digital communication 

has a history dating back to the middle of the twentieth century [1,10,16]. In recent years, the 

field has been revolutionized by codes which are capable of approaching the theoretical limits of 

performance, the channel capacity.  

Error control can be classified into Error correction and Error detection [16]. Error 

correction coding is the means whereby errors introduced into digital data as a result of 

transmission through a communication channel can be corrected based upon received data. Error 

detection coding is the means whereby errors can be detected based upon received information. 

 Error control coding can provide the difference between an operating communication 

system and a dysfunctional system. It has been a significant enabler in the telecommunication 

revolution, the internet, digital recording, and space exploration. Error control coding is 

ubiquitous in modern, information-based society. Every compact disc, CD-ROM, or DVD 
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employs codes to protect the data embedded in the plastic disk. Every hard disk drive employs 

correction coding. Every phone call made over a digital cellular phone employs it. Every packet 

transmitted over the internet has a protective coding “wrapper” used to determine if the packet 

has been received correctly. Even everyday commerce takes advantage of error detection coding. 

Every consumer good and every text employs ISBN (International Standard Book Number) and 

UPC (Universal Product Code) respectively to uniquely identify and to ensure reliability in 

scanning [1].

The principle of channel codes is to represent the information being transmitted as a 

sequence of symbols and then add redundant symbols (parity check) in a structured manner. This 

encoded information is transmitted over the channel and a noisy version is received. The 

structural arrangement of the redundant received information is used by the channel decoder to 

detect and possibly correct the errors induced during transmission [15]. 

Reed Solomon (RS) codes are among the most extensively used error-control codes, with 

applications ranging from magnetic recording, through satellite and mobile communications to 

deep space exploration [7].

1.2 Basic Communication System: 

A digital communication system has functionality to perform physical actions on information.  A 

basic frame-work for a single communication link is shown in the Figure 1-1. This 

communication link transforms the information from the source into a form suitable for 

transmission over the designated channel. At the other end, reverse transformations are done to 

recover the data and sent to a sink. The performance of all these blocks is governed by the 

theorems from information theory. 

There are various codes employed in a communication system. Let us take a brief 

overview of every block and understand the context of each type of code especially error-

correction codes which is the focus of this thesis. 

Source: Source represents data to be communicated which may represent any kind of 

information. They can be viewed as streams of random numbers governed by some probability 

distribution.
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Source Encoder: Source encoder performs data compression by removing redundancy. Source 

Figure 1-1: A general frame work for a DSSS digital communications 

coding theorem puts entropy of the source as the theoretical minimum bound on the compression 

capabilities of source encoder.  

Channel Coder: Channel coder adds redundant information in a structured way to the stream of 

input symbols that allows errors which are introduced by the channel to be corrected.  

The redundancy in the source cannot be used as an alternative to channel coding because 

source redundancy is unstructured and thus wasteful of power and bandwidth to transmit.  

Because of the redundancy introduced by the channel coder, there must be more symbols 

at the output of the coder than at the input. The rate R of a channel coder can be defined as 

Where n is the number of output symbols produced for every k message symbols at its input. 

The Modulator: Converts the symbol sequences from the channel encoders into signals suitable 

for transmission over the channel.  

Channel: Channel is the medium over which information is conveyed. Examples of channels 

include telephone lines, fiber optic cable, internet cables, microwave radio channels, high 
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frequency channels, cell phone channels, etc. These are the channels in which information is 

conveyed between two distinct places. Information may also be conveyed between two separate 

times, for example, by writing information onto a computer disk and then retrieving it at a later 

time. Hard disks, diskettes, CD-ROMS, DVDs, and solid state memory are other examples of 

channels.

Channel Impairments: As signals travel through a channel they may be corrupted. For example, 

a signal may have noise added to it; it may experience time delay or timing jitter, or suffer from 

attenuation due to propagation distance and/or carrier offset; it may be multiply reflected by 

objects in its path, resulting in constructive and/or destructive interference patterns; it may 

experience inadvertent interference from other channels, or be deliberately jammed. It may be 

filtered by channel response, resulting in interference among symbols. These sources of 

corruption in many cases all occur simultaneously.  

For purpose of analysis, channels are frequently characterized by mathematical models, 

which (it is hoped) are sufficiently accurate to be representative of the attributes of the actual 

channel, yet are also sufficiently abstracted to yield tractable mathematics.  

Channels can have different information carrying capabilities. For example, a dedicated 

fiber-optic cable is capable of carrying more information than a plain old telephone service 

(POTS) pair of copper wires. Associated with each channel is a quantity known as the capacity C, 

which indicates how much information it can carry reliably. 

The reliable information a channel can carry is intimately related to the use of error 

correction coding. The governing theorem from information theory is Shannon’s Channel Coding 

Theorem [10], which states essentially, “Provided that the rate R of the transmission is less than 

the capacity C, there exists a code such that the probability of error can be made arbitrarily 

small.” 

Channel encoding and modulation may be combined into Coded Modulation [1]. 

The Demodulator/Equalizer: Receives the signal from the channel and converts it into a 

sequence of symbols. This typically involves many functions, such as filtering, demodulation, 
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carrier synchronization, symbol timing estimation, frame synchronization, and matched filtering, 

followed by a detection step in which decisions about the transmitted symbols are made.  

The Channel Decoder: Exploits the redundancy introduced by the channel encoder to correct 

any errors that may have been introduced. As suggested by the figure, demodulation, equalization 

and decoding may be combined e.g. in a turbo equalizer.

Source Decoder: Provides uncompressed received data. 

The sink: Ultimate destination of the data. 

Code and Frame Synchronization: The synchronization block influences almost every block. 

The coherent demodulation of a digitally modulated signal requires that the receiver be 

synchronous to the transmitter. Two sequences of events are said to be synchronous relative to 

each other when the events in one sequence and the corresponding events in the other occur 

simultaneously. The process of making a situation synchronous is called Synchronization. At the 

receiver, the process of synchronizing the frequency and phase of the carrier is called carrier 

recovery and synchronizing symbol boundaries is called symbol Alignment, symbol recovery or 

symbol timing recovery. A coherent demodulator requires knowledge of carrier phase, carrier 

frequency and symbol timing for successful operation. Similarly a channel decoder block must 

know the boundaries of the block or frame to be decoded. This is called frame synchronization 

[26].

1.3 Motivation

Reed Solomon (RS) codes and their decoding is a very rich and growing research area even after 

48 years of their introduction by Irving S. Reed and Gustave Solomon. Their outstanding error 

performance and diversity of application areas make them most attractive when compared with 

other block codes. New methods and architectures are being sought which reduce the decoding 

complexity, improve the error correction performance without reducing the code rate. 

Concatenation of RS codes with convolutional codes has made it possible to reach within half dB 

of the Shannon’s theoretical bound of channel capacity. Various reformulations of the decoding 

algorithms which reduce the architecture complexity and provide more regular systolic 

architectures have been derived. Recently introduced concept of soft-decision decoding for Reed 

Solomon codes has also met with great success. These architectures originally thought of as 
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unpractical because of very high complexity have been made implemented by such architectural 

innovations.

1.4  Objectives of the Thesis 

This thesis involves a detailed investigation of the Reed Solomon codes, their encoding, 

various decoding approaches, error performance capability for various decoding procedures 

and their algebraic formulation. 

High speed architectures for Berlekamp Massey algorithms and their efficient reformulations 

have been investigated.

Major RS decoding algorithms such as Berlekamp-Massey (BM), Extended Euclidean eE) 

algorithm and Berlekamp-Welch (BW) algorithm have been implemented and tested in 

Matlab.

Verilog Hardware description Language (HDL) code generator for Matlab has been coded 

which generates all the Verilog files with more than twenty different modules,   ready to be 

synthesized and simulated. 

Theoretical understanding of Guruswami-Sudan (GS) decoding and implementation of all the 

modules has been carried out in Matlab. 

1.5 Overview of the Thesis 

Thesis contents are organized into seven chapters. Chapter 2 provides the theoretical construction 

of Reed Solomon codes, systematic encoding, syndrome evaluation and theorems related to 

Berlekamp-Massey algorithm. Chapter 3 deals with derivation of second Key-equation and 

associated decoding technique of Berlekamp Welch. Chapter 4 introduces list decoding and 

interpolation based decoding algorithm introduced by Guruswami and Sudan. Koetter’s 

interpolation and Roth-Ruckenstein’s factorization algorithm are important components of the GS 

decoder and have been discussed thoroughly. Chapter 5 gives an overview of Spread Spectrum 

communications, PN sequences, acquisition for Direct sequence spread spectrum systems. 

Chapter 6 deals with HDL implementation details of Reed Solomon decoder and Chapter 7 

concludes the thesis and provides future work recommendations. Selected references are provided 

at the end. 
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CHAPTER 2                     

REED SOLOMON CODES AND BERLEKAMP-MASSEY 

DECODING 

The most commonly used error correcting codes are the BCH and Reed Solomon 

Codes. The BCH code is named for Bose, Ray-Chaudhari, and Hocquenghem, who published 

work in 1959 and 1960 which revealed a means of designing codes over  with a 

specified design distance. Decoding algorithms were then developed by Peterson and 

others.[1,10] 

The Reed-Solomon codes are named for their inventors, who published in 1960. It was 

later realized that Reed Solomon (RS) codes and BCH codes are related and that their 

decoding algorithms are quite similar. Decoding of these codes is an extremely rich area.  

2.1 BCH Codes 

BCH codes are cyclic codes and hence may be specified by a generator polynomial. A BCH 

code over  of length n capable of correcting at least  errors is specified as follows: 

1. Determine the smallest  such that  has a primitive th root of unity .

Select a non-negative integer b. Frequently, 

3. Write down a list of  consecutive powers of 

and determine the minimal polynomial with respect to  of each of these powers of 

.

4. The generator polynomial   is the least common multiple (LCM) of these minimal 

polynomials.  

5. The code is a  cyclic code. 
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Because the code is constructed using minimal polynomials with respect to , the 

generator has coefficients in  , and the code is over 

Definition 2-1 

If  in the construction procedure, the BCH code is said to be . If

, then the BCH code is said to be  [1]. 

Two fields are involved in the construction of BCH codes. The “small field”  is 

where the generator polynomial has its coefficients and is the field where the elements of the 

code words are. The “big field”  is the field where the generator polynomial has its 

roots. For encoding purposes, it is sufficient to work only with the small field. However, 

decoding requires operations in the extension field. 

2.2 The BCH Bound 

The BCH bound is the proof that the constructive procedure described above produces codes 

with at least the specified minimum distance.  

Theorem 2-1 

Let  be a -ary  cyclic code with generator polynomial  Let ) be the 

smallest extension field of that contains a primitive root of unity and let be a 

primitive  root of unity in that field. Let  be the minimal-degree polynomial in 

 having  consecutive roots of the form  

         Eq. ( 2-1) 

then the minimum distance of the code satisfies  ; that is, the code is 

capable of correcting at least  errors.[1] 

2.3 Reed Solomon Codes 

There are actually two distinct constructions for Reed-Solomon codes. While these initially 

appear to describe different codes, it can be shown using Galois Field Fourier transform 

techniques that two are in fact equivalent. Most of the decoding operations are concerned with 

the second construction.  
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2.3.1 Reed Solomon Construction 1 

Definition 2-2 

Let  be a primitive element in  and let . Let 

 be a message vector and let 

be its associated polynomial. Then the encoding is defined by the mapping c by 

That is  evaluates  at all the non-zero elements of . The Reed 

Solomon code of length  and dimension  over  is the image under  of 

all polynomials in 

The code is the image of the support set under  of all polynomials in  of 

degree less than k.[1] 

Following properties can be shown to be true for RS Codes. 

The Reed Solomon code is a linear code

The minimum distance of an (n,k) Reed Solomon code is 

Reed Solomon codes achieve the singleton bound and are thus maximum distance 

separable codes.

This construction of RS Codes came first historically and Guruswami Sudan list decoding 

algorithm is based on it [8]. 

2.3.2 Reed Solomon Construction 2 

In constructing BCH codes, generator polynomials over   (base field) are dealt with by 

finding least common multiple of minimal polynomials which have all the conjugates of  as 

roots. The degree of resulting generator polynomial usually exceeds the number  of roots 

specified. However, in Reed Solomon codes, we can operate in the extension field [1]. 
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A Reed-Solomon code is a  -ary BCH code of length . In  the 

minimal polynomial for any element is . The generator polynomial for an RS-Code 

is therefore 

                                                 Eq. ( 2-2)

where is a primitive element. There are no extra roots of  included due to conjugacy in 

the minimal polynomials, so the degree of  is exactly equal to . Thus,  , for an 

RS code. The design distance is 

2.4 Systematic Encoding of Reed Solomon Codes 

Reed Solomon codes may be encoded just as any other cyclic code (provided that the 

arithmetic is done in the right field). Given a message vector , where 

each  and its corresponding message polynomial, 

 , the systematic encoding process is 

                                                        Eq. ( 2-3) 

where denotes the operation of taking the remainder after division by .

Typically, the code is over , for some . The message symbol  can then be 

formed by taking  bits of data, then interpreting these as the vector representation of the 

 elements [16]. 

2.5 Decoding BCH and RS Code General Outline 

There are many algorithms which have been developed for decoding BCH or RS codes. The 

algebraic decoding of BCH or RS codes has the following steps: 

1. Compute the syndromes. 

2. Determination of an error locator polynomial, whose roots provide an indication of where 

the errors are. There are several different ways of finding the locator polynomial. These 

methods include Peterson’s algorithm for BCH codes, the Berlekamp-Massey algorithm 

for BCH codes; the Peterson-Gorenstein-Zierler algorithm for RS codes, the Berlekamp-

Massey algorithm for RS codes, and the Euclidean Algorithm. In addition there are 

techniques based upon Galois-filed Fourier transforms. 
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3. Finding the roots of the error locator polynomial. This is usually done using the Chien 

search, which is an exhaustive search over all the elements in the field. 

4. For RS codes or non-binary BCH codes, the error values must also be determined. This is 

typically accomplished using Forney’s algorithm. 

2.5.1 Computation of the Syndrome 

Since consecutive powers of  are roots of the generator polynomial, 

                        ( 0

It follows that a codeword   with polynomial  

  has 

 ( 0

For a received polynomial          

We have              =  = ,     j = 0,…., 2t-1 

The values  are called the Syndromes of the received data.Suppose that 

 has  errors in it which are at locations  with corresponding values in these 

locations  Then   

  = 

Let           

Then we can write          ,      

For binary codes, we have  ( i.e. if there is a non-zero error , it must be 1). For a 

moment, we restrict our attention to binary (BCH) codes. Then we have 

                                                                                                     Eq. ( 2-4)   

If we know  , then we know the location of the error. For example, suppose we know 

that . This means, by definition of  that  that is, the error is in the received 
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digit . We thus call the   the error locators.  The next stage in the decoding problem is to 

determine the error locators  , given the syndrome  [1]. 

2.5.2 The Error Locator Polynomial 

From Eq (2-4), we obtain the following equations: 

 =                   Eq. ( 2-5) 

 =

 =

The equations are said to be power-sum symmetric functions. This gives us 

equations in the  unknown error locators. In principle, this set of nonlinear equations 

could be solved by an exhaustive search, but this would be computationally unattractive [10]. 

Rather than attempting to solve these non-linear equations directly, a new polynomial 

is introduced, the error-locator polynomial, which casts the problem in a different, and more 

tractable, setting. The error locator polynomial is defined as 

             Eq. ( 2-6) 

where  By this definition, if , then  that is, the roots of the error 

locator polynomial are at the reciprocals (in the Galois field arithmetic) of the error locators 

[1]. 

2.5.3 Chein Search 

If we have the error-locator polynomial, the next step is to find the roots of the error locator 

polynomial. The field of interest is . Being a finite field, we can examine every 

element of the field to determine if it is a root [13].Suppose for example, that v = 3 and the 

error locator polynomial is  

We evaluate   at each non-zero element in the field in succession: 

. This gives us the following 
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A set of  registers are loaded initially with the coefficients of the error locator 

polynomial, . The initial output is the term 

If A = 1, then an error has been located (since then  . At the next stage, each 

register is multiplied by ,j=1,2,..,v, so the register contents are 

. The output is the sum 

The registers are multiplied again by successive powers of  , resulting in evaluation 

at . This procedure continues until  has been evaluated at all non-zero elements of the 

field. 

If the roots are distinct and all lie in the appropriate field, then we use these to 

determine the error locations. If they are not distinct or lie in the wrong field, then the received 

word is not within distance  of any codeword. (This condition can be observed if the error 

locator polynomial of degree  does not have  roots in the field that the operations take in; 

the remaining roots are either repeated or exist in an extension of the field). The 

corresponding error pattern is said to be an uncorrectable error pattern. An uncorrectable error 

pattern results in a Decoder Failure [11]. 

2.6 Finding the Error Locator Polynomial 

Let us return to the question of finding the error locator polynomial using the syndromes. Let 

us examine the structure of the error locator polynomial by expanding it for the case 
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So that  

In general, for an error locator of degree  we find that  

                             Eq. ( 2-7) 

That is, the coefficient of the error locator polynomial   is the sum of the product of all 

combinations of the error locator taken  at a time. Equations of the form (above) are referred 

to as the  of the error locators (so called because if 

the error locators  are permuted, the same values are computed [1,10]. 

The power sum symmetric functions of the Eq(2-7) provides a non-linear relationship 

between the syndromes and the error locators. The elementary symmetric functions provide a 

non-linear relationship between the coefficients of the error locator polynomial and the error 

locators. The Key observation is that there is a linear relationship between the syndromes and 

the coefficients of the error locator polynomial. This relationship is provided by the Newton 

Identities, which apply over all fields. 
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Theorem 2-2 

The syndromes and the coefficients of the error locator polynomial are related by 

Eq. ( 2-8) 

That is, 

Eq. ( 2-9)

For   , there is linear feedback shift register relationship between the syndromes 

and the coefficients of the error locator polynomial.  

          Eq. ( 2-10) 

This equation can be expressed in a matrix form 

The  matrix, which we denote , is a Toeplitz matrix, constant on the diagonals 

[1,10,6]. The number of errors   is not known in advance, so it must be determined. The 

Peterson-Gorenstein-Zierler decoder [1] operates as follows. 
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Set

Form   and compute the determinant   to determine if invertible. If it is not 

invertible, set and repeat this step.

If is invertible, solve the coefficients  

2.6.1 Simplifications for Binary Codes and Peterson’s Algorithm 

For binary codes, Newton’s identities are subject to further simplifications  if  is 
even and  if  is odd. Furthermore, we have . We can thus write Newton’s 
Identities as, 

which can be expressed in the matrix form as 

Eq. ( 2-11) 

or  If there is in fact t errors, the matrix is invertible , as we can determine by 

computing the determinant of the matrix. If it is not invertible, remove two rows and columns 

and then try again. Once  is found, we find its roots. This matrix based approach for solving 

for the error-locator polynomial is called Peterson’s algorithm for decoding binary BCH codes 

[1].  

For large number of errors, Peterson’s algorithm is quite complex. Computing the 

sequence of determinants to find the number of errors is costly. So is solving the system of 

equations, once the number of errors is determined. We therefore look for more efficient 

techniques.  

2.7 Berlekamp Massey Algorithm 

While Peterson’s method involves straightforward linear algebra, it is computationally 

complex in general. Starting with matrix A in Eq (2-11) it is examined to see if it is singular. 
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This involves either attempting to solve the equations (e.g., by Gaussian Elimination or 

equivalent), or computing the determinant to see if the solution can be found. If A is singular, 

then the last two rows and columns are dropped to form a new A matrix. Then the attempted 

solution must be re-computed starting over with the new A matrix.  

The Berlekamp-Massey algorithm takes a different approach. Starting with a small 

problem, it works up to increasingly longer problems until it obtains an overall solution. 

However, at each stage, it is able to reuse information it has already learnt. Whereas, as the 

computational complexity of the Peterson method is the computational complexity of 

the Berlekamp-Massey algorithm is  [12]. 

We have observed from the Newton’s Identity, Eq. ( 2-10), that , 

                                        Eq. ( 2-12) 

This formula describes the output of a linear feedback shift register (LFSR), with 

coefficients In order for this formula to work, we must find the  coefficients 

in such a way that the LFSR generates the known sequence of Syndromes 

Furthermore, by the Maximum-likelihood principle; the number of errors  determined must 

be the smallest that is consistent with the observed syndromes. We therefore want to 

determine the shortest such LFSR.  

In the Berlekamp-Massey algorithm, we build the LFSR that produces the entire 

sequence  by successively modifying an existing LFSR, if necessary, to produce 

increasingly longer sequences. We start with an LFSR that could produce  We determine if 

that LFSR could also produce the sequence ; if it can, then no modifications are 

necessary. If the sequence cannot be produced using the current LFSR configuration, we 

determine a new LFSR that can produce the longer sequence.  

Proceeding inductively in this way, we start from an LFSR capable of producing a 

sequence  and modify it if necessary, so that it can also produce the 

sequence . At each stage, the modifications to the LFSR are accomplished so that 

the LFSR is the shortest possible. By this means after completion of the algorithm, an LFSR 

has been found that is able to produce  and its coefficients correspond to the 

error locator polynomial  of smallest degree [1]. 
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Since we build up the LFSR using information from prior computations, we need a 

notation to represent the  used at different stages of the algorithm. Let  denote the 

length of the LFSR produced at stage k of the algorithm. Let  

be the connection polynomial at stage k, indicating the connections for the LFSR capable of 

producing the output sequence . That is, 

.                                                        Eq. ( 2-13) 

It is important to realize that some of the coefficients in    may be zero, so that 

may be different from the degree of  In realizations which use polynomial 

arithmetic, it is important to keep in mind what the length is as well as the degree.  

At some intermediate step, suppose we have a connection polynomial  , of 

length  that produces  for some . We check if this connection 

polynomial also produces . By computing the output, 

If  is equal to then there is no need to update the LFSR, so ,

and . Otherwise, there is some non-zero discrepancy associated with 

                  Eq. ( 2-14)

 In this case, we update the connection polynomial using the formula, 

,                                       Eq. ( 2-15) 

where A is some element in the field,  is an integer, and , is one of the prior 

connection polynomials produced by our process associated with non-zero discrepancy .

Using this new connection polynomial, we compute the new discrepancy denoted by  , as  

Eq. ( 2-16) 

Now, let   . Then, by comparison with the definition of the discrepancy in                  

Eq. ( 2-14) the second summation gives 
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.

Thus, if we choose , then the summation in Eq. (2-16), gives 

So the new connection polynomial produces the sequence  with no discrepancy. 

2.7.1 Characterization of LFSR Length in Massey’s Algorithm 

The update in Eq. (2.15) is, in fact, the heart of Massey’s algorithm. If all we need is an 

algorithm to find a connection polynomial, no further analysis is necessary. However, the 

problem was to find the shortest LFSR, but have no indication yet that it is the shortest. 

Following two theorems provide results about it [1]. 

Theorem 2-3 

Suppose that an LFSR with connection polynomial  of length produces the 

sequence , but not the sequence then any connection polynomial 

that produces the latter sequence must have a length  satisfying  

Since the shortest LFSR that produces the sequence  must also produce 

the first part of that sequence, we must have . Combining this with the result of the 

theorem, we obtain, 

)                                       Eq. ( 2-17) 

We observe that the shift register cannot become shorter as more outputs are produced. 

We have seen how to update the LFSR to produce a longer sequence using                  

Eq. ( 2-15) and have also seen that there is a lower bound on the length of the LFSR. We now 

show that this lower bound can be achieved with equality, thus providing the shortest LFSR 

which produces the desired sequence. 
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Theorem 2-4 

In the update procedure, if , then a new LFSR can be found whose length 

satisfies  

In the update step, we observe that the new length is the same as the old length if 

 that is, if 

In this case, the connection polynomial is updated but there is no change in length. The 

shift register synthesis algorithm, known as Massey’s algorithm, is presented first in pseudo 

code as Algorithm  2-1  where we use the notations.  

to indicate the “Current” connection  polynomial and  

to indicate the “previous” connection polynomial. Also, N is the number of input symbols 

N for many decoding problems. 

Algorithm 2-1 

Berlekamp-Massey Algorithm[1] 

         (Previous discrepancy) 
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2.8 Non-Binary BCH and RS Decoding 

For non-binary BCH or RS decoding, some additional work is necessary. Some extra care is 

needed to find the error locators, and then the error values must be determined. As the 

syndromes are related to the error-values as: 

 =

 =

 =

Because of the  coefficients these are not power-sum symmetric functions as was the case 

for the binary codes. Nevertheless, in a similar manner, it is possible to make use of an error 

locator polynomial [4,6]. 
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Lemma 2-1 

The syndromes and the coefficients of the error  locator polynomial  = 

  are related by 

                                            Eq. ( 2-18) 

Because Eq (2-18) holds,  the Berlekamp-Massey algorithm (in its non-binary 

formulation), can be used to find the coefficients of the error locator polynomial, just as for 

binary codes. 

2.9 Forney’s Algorithm 

Having formed the error locator polynomial and its roots, there is still one more step for the 

non-binary BCH or RS codes: we have to find the error values. Let us return to the syndrome,  

,

Knowing the error-locators (obtained from the roots of the error locator polynomial) it 

is straightforward to setup and solve a set of linear equations: 

 =            Eq. ( 2-19) 

However, there is a method which is computationally easier and in addition provides 

us a key insight for another way of doing the decoding. It may be observed that the matrix in                  

Eq. ( 2-19) is essentially a Vandermonde matrix. There exist fast algorithms for solving 

Vandermonde systems. One of these which apply specifically to this problem is known as 

Forney’s Algorithm.  

Let us define the syndrome polynomial as 

                                Eq. ( 2-20) 

and the error-evaluator polynomial as  

Eq. ( 2-21) 
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 This equation is called the Key Equation. [1,6,10] 

Theorem 2-5 

 (Forney’s Algorithm) The error values for a narrow-sense Reed-Solomon code are computed 

by  

Where 

2.10 Euclidean Algorithm for the Error Locator Polynomial 

We have seen that the Berlekamp-Massey algorithm can be used to construct the error locator 

polynomial. An alternative algorithm called extended Euclidean algorithm can also be used 

for the same purpose. This approach to decoding is often called the Sugiyama algorithm [1,4]. 

We return to the key equation: 

Given only  and , we desire to determine the error locator polynomial  and 

the error evaluator polynomial . From the statement of the problem it looks hopefully 

unconstrained. However, we can re-write the Key equation above as 

for some polynomial  Also, the extended Euclidean algorithm returns, for a pair of 

elements  from a Euclidean domain, a pair of elements  such that  

where  is the GCD of  and . In our case, we run the extended Euclidean algorithm to obtain 

a sequence of polynomials  and  satisfying 

And the stopping criterion is when the polynomial  has a degree less than 

The steps to decode using the Euclidean algorithm are summarized as follows: 
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1. Compute the syndromes and the syndrome polynomial  

2. Run the Euclidean algorithm with  and , until .

Then and

3. Find the roots of  and the error locator .

4. Solve for the error values using Forney’s formula. 

In terms of computational efficiency, it appears that the Berlekamp-Massey algorithm 

procedure may be slightly better than the Euclidean algorithm for binary codes, since the 

Berlekamp-Massey deals with polynomials no longer than the error locator polynomial, while 

the Euclidean algorithm may have intermediate polynomials of higher degree [6]. The 

computational complexity for Euclidean algorithm is probably quiet smaller. Also, the error 

evaluator polynomial  is automatically obtained as useful by product of the Euclidean 

algorithm method. However, there are inversion-less reformulations of Berlekamp Massey 

algorithm which have considerably lower critical path delay and have comparable complexity 

[2,3]. 
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CHAPTER 3                                                        

BERLEKAMP-WELCH ALGORITHM 

 

In this chapter, we discuss another decoding method for Reed Solomon codes. It is based upon 

a new Key equation and is called Remainder Decoding [1]. 

3.1 Workload for Reed-Solomon Decoding 

A primary motivation between the remainder decoder is that its implementation may have 

lower decoder complexity. The decode complexity for a conventional decoding algorithm for 

an ሺ݊, ݇ሻ code having redundancy ߩ ൌ ݊ െ ݇ is summarized by the following steps: 

1. Compute the syndromes. ߩ Syndromes must be computed, each with a computational 

cost of  ܱሺ݊ሻ , for a total cost of  ܱሺ݊ߩሻ . Furthermore, all the syndromes must be 

computed, regardless of the number of errors. 

2. Find the error locator polynomial and the error evaluator. This has a computation cost 

of ܱሺߩଶሻ, (depending on the approach). 

3. Find the roots of the error locator polynomial. This has a computation cost of ܱሺ݊ߩሻ 

using the Chien Search.  

4. Compute the error values, with a cost of ܱሺߩଶሻ. 

Thus, if ߩ ൏  ݊/2, the most expensive steps are computing the syndrome and finding the 

roots. In remainder decoding, decoding takes place by computing remainders instead of 

syndromes; the remaining steps retain similar complexity. This results in potentially faster 

decoding. Furthermore, it is possible to find the error locator polynomial using a highly-

parallelizable algorithm. The general outline for the new decoding algorithm is as follows 

[20]: 

1. Compute the remainder polynomial ݎሺݔሻ ൌ  ܴሺݔሻ ݉݀݋൫݃ሺݔሻ൯,  with complexity ܱሺ݊ሻ 

(using very simple hardware). 

2. Compute an error-locator polynomial W(x) and an associated polynomial  ܰሺݔሻ . The 

complexity is ܱሺߩଶሻ, Architectures exist for parallel processing. 

3. Find the roots of the error locator polynomial, complexity ܱሺ݊ߩሻ. 
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4. Compute the error values, complexity ܱሺ݊ሻ. 

3.2 Derivations of the Welch-Berlekamp Key Equation 

Welch-Berlekamp (WB) Key equation can be derived using two separate methods. The first 

derivation uses the definition of the remainder polynomial. The second definition shows that 

the WB Key equation can be obtained from Conventional Reed-Solomon Key equation [1]. 

3.2.1 The Welch-Berlekamp Derivation of the Key Equation 

The generator polynomial for an ሺ݊, ݇ሻ RS code can be written as 

݃ሺݔሻ ൌ  ෑ ሺݔ െ ߙ௜ሻ
௕ାௗିଶ

௜ୀ௕

 

which is a polynomial of degree ݀ െ 1, where ݀ ൌ ݀௠௜௡ ൌ ݐ2 ൅ 1 ൌ ݊ െ ݇ ൅ 1. We denote 

the received polynomial as ܴሺݔሻ ൌ  ܿሺݔሻ ൅ ݀ ሻ. We designate the firstݔሺܧ  െ 1 symbols of 

ܴሺݔሻ  as check symbols, and the remaining k symbols as the Message symbols.  This 

designation applies naturally to systematic encoding of codewords, but we use it even in the 

case that non-systematic coding is employed. Let ܮ௖ ൌ ሼ0,1, … , ݀ െ 2ሽ be the index of set of 

the check locations with corresponding check locators ܮఈ೎ ൌ ሼߙ௞, 0 ൑ ݇ ൑ ݀ െ 2ሽ. Also ܮ௠ ൌ

ሼ݀ െ 1, ݀, … , ݊ െ 1ሽ denote the index set of the message locations, with corresponding 

message locators  ܮఈ೘ ൌ ሼߙ௞, ݀ െ 1 ൑ ݇ ൑ ݊ െ 1ሽ 

We define the remainder polynomial as 

ሻݔሺݎ ൌ  ܴሺݔሻ ݉݀݋ሺ݃ሺݔሻሻ 

and write ݎሺݔሻ in terms of its coefficients as      ݎሺݔሻ ൌ  ∑ ௜ݎ
ௗିଶ
௜ୀ଴  ௜ݔ

The degree of ݎሺݔሻ is ൑ ݀ െ 2 .  This remainder can be computed using conventional LFSR 

hardware that might be used for the encoding operation, with computational complexity  

ܱሺ݊ሻ. 

Lemma 3-1 

ሻݔሺݎ ؠ  ሻݔሺ݃ ݀݋݉ ሻݔሺܧ

And       ݎሺן௞ሻ ൌ א ݇ ௞ሻ                forןሺܧ ሼܾ, ܾ ൅ 1, … , ܾ ൅ ݀ െ 2ሽ.  [1,21] 
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3.2.1.1   Single Error in a Message Location 

To derive the WB key equation, we assume initially that a single error occurs. We need to 

make a distinction between whether the error location  ݁  is a message location or a check 

location. Initially we assume that ݁ א ሻݔሺܧ ௠  with error value ܻ. We thus takeܮ ൌ  ௘, orݔܻ 

the (error position, error location) =   (ן௘, ܻሻ ൌ ሺܺ, ܻሻ. The notation ܻ ൌ ܻሾܺሿ is also used to 

indicate the error value at the error locator ܺ.    

When ݁ א  ሻ “folds” the polynomial backݔሺ݃ ݀݋݉ ௘ݔܻ ௠  , then modulo operationܮ

into the lower order terms, as pictured in Error! Reference source not found.. Evaluating 

 ,ሻ at generator root locations we have by Lemma 3-1ݔሺݎ

௞ሻןሺݎ  ൌ ௞ሻןሺܧ ൌ ܻሺן௞ሻ௘ ൌ ܻܺ௞,               ݇ א ሼܾ, ܾ ൅ 1, … , ܾ ൅ ݀ െ 2ሽ               Eq. ( 3-1) 

where ܺ ൌ ן௘ is the error locator. It follows that  

௞ሻןሺݎ െ ௞ିଵሻןሺݎܺ  ൌ ܻܺ௞ െ  ܻܺܺ௞ିଵ ൌ א ݇    ,0 ሼܾ ൅ 1, ܾ ൅ 2, … , ܾ ൅ ݀ െ 2ሽ 

Define the polynomial,  

ሻݔሺݑ ൌ ሻݔሺݎ  െ  ,ଵሻିןሺݎܺ 

which has the degree less than ݀ െ 1. Then ݑሺݔሻ has roots at  ן௕ାଵ, ,௕ାଶן … ,  ௕ାௗିଶ, so thatן

 ሻ is divisible by the polynomialݔሺݑ

ሻݔሺ݌ ൌ  ෑ ൫ݔ െ ߙ௜൯
௕ାௗିଶ

௜ୀ௕ାଵ

ൌ  ෍ ௜ݔ௜݌
ௗିଶ

௜ୀ଴

 

which has degree ݀ െ 2.  Thus ݑሺݔሻ must be a scalar multiple of ݌ሺݔሻ, 

ሻݔሺݑ  ൌ  ሻ,                                          Eq. ( 3-2)ݔሺ݌ܽ 

For some ܽ א  ,ሻ we obtainݔሺ݌ ሻ andݔሺݑ ሻ. Equating coefficients betweenݍሺܨܩ

௜൫1ݎ െ ܺ ௜൯ିן ൌ ݅               .௜݌ܽ  ൌ 0,1, … , ݀ െ 2 

That is,  

௜െן௜൫ݎ ܺ൯ ൌ  ܽ ௜ן ݅               .௜݌ ൌ 0,1, … , ݀ െ 2                               Eq. ( 3-3) 
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We define the error locator polynomial as ௠ܹሺݔሻ ൌ ݔ െ ܺ ൌ ݔ െ ן௘. (This definition 

is different from the error locator we defined for the conventional decoding algorithm, since 

the roots of ௠ܹሺݔሻ are the message locators, not the reciprocals of message locators.) Using 

௠ܹሺݔሻ, we see from Eq (3-3)  that  

௜ݎ ௠ܹ൫ן௜൯ ൌ  ܽ ௜ן ݅               .௜݌ ൌ 0,1, … , ݀ െ 2                                  Eq. ( 3-4) 

Since the error is in the message location, ݁ א ,௠ܮ ௠ܹ൫ן௜൯   is not zero for ݅ ൌ

0,1, … , ݀ െ 2. We can solve for ݎ௜ as  

௜ݎ  ൌ ܽ ௜ן ௜݌
௠ܹሺן௜ሻ൘                                                           Eq. ( 3-5)  

We can now eliminate the coefficient ܽ  from Eq (3-5) The error value ܻ  can be 

computed using  Eq. ( 3-1) choosing ݇ ൌ ܾ: 

ܻ ൌ ܻሾܺሿ ൌ  ܺି௕ݎሺן௕ሻ ൌ  ܺି௕ ෍ ௜ݎ

ௗିଶ

௜ୀ଴

௜௕ൌן  ܺି௕ ෍
ܽ ௜ן ௜݌

௠ܹሺן௜ሻ

ௗିଶ

௜ୀ଴

௜௕ൌן  ܽܺି௕ ෍
௜ሺ௕ାଵሻן ௜݌

ሺן௜െ  ܺሻ

ௗିଶ

௜ୀ଴

 

Define 

݂ሺݔሻ ൌ ௕ିݔ  ෍
௜ሺ௕ାଵሻן ௜݌

ሺן௜െ ሻݔ 

ௗିଶ

௜ୀ଴

א ݔ        ,  ఈ೘ܮ 

which can be pre-computed for all the values of א ݔ  ఈ೘. Thenܮ 

ܻ ൌ ݂ܽሺܺሻ  

or  ܽ ൌ  ܻ/݂ሺܺሻ.  We thus write Eq (3-4)  as 

௜ݎ ൌ  ௒ן೔௣೔
௙ሺ௑ሻௐ೘൫ן೔൯

                                               Eq. ( 3-6) 

3.2.1.2 Multiple errors in the Message Locations 

Now assume that there are ݒ ൒ 1errors, with error locators, ௜ܺ א ఈ೘ܮ    and corresponding 

error values ௜ܻ ൌ ܻሾ ௜ܺሿ  ݂ݎ݋  ݅ ൌ 1,2, … , .ݒ  Corresponding to each error there is a “mode” 
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yielding a relationship ሺן௞ሻ ൌ  ௜ܻ ௜ܺ
௞ , each of which has a solution of the form Eq. ( 3-6). 

Thus by linearity we can write 

௞ݎ ൌ ௞ሿןሾݎ ൌ ௞݌  ௞ן ∑ ௒೔
௙ሺ௑೔ሻሺןೖି ௑೔ሻ

௩
௜ୀଵ   , ݇ ൌ 0,1, . . , ݀ െ 2                         Eq. ( 3-7) 

Now define the function, 

ሻݔሺܨ ൌ  ∑ ௒೔
௙ሺ௑೔ሻሺ௫ି ௑೔ሻ

௩
௜ୀଵ                                                          Eq. ( 3-8) 

having poles at the error locations. This function can be written as  

ሻݔሺܨ ൌ  ෍ ௜ܻ

݂ሺ ௜ܺሻሺݔ െ ௜ܺሻ

௩

௜ୀଵ

ൌ  
ܰ௠ሺݔሻ

௠ܹሺݔሻ
 

where ௠ܹሺݔሻ ൌ  ∏ ሺݔ െ ௜ܺሻ௩
௜ୀଵ   is the error locator polynomial for the errors among the 

symbol locations and where ܰ௠ሺݔሻ is the numerator obtained by adding together the terms in 

.ሻݔሺܨ   It is clear that  deg ሺܰ௠ሺݔሻሻ ൏  deg ሺ ௠ܹሺݔሻሻ . Note that the representation in                  

Eq. ( 3-8)  corresponds to a partial fraction expansion of  ே೘ሺ௫ሻ
ௐ೘ሺ௫ሻ

. Using this notation,                  

Eq. ( 3-7) can be written as  

௞ݎ ൌ ௞݌ ௞ן ௞ሻןሺܨ ൌ ௞݌  ௞ן ܰ௠ሺן௞ሻ
௠ܹሺן௞ሻ 

or   ܰ௠ሺן௞ሻ ൌ  ௥ೖ
௣ೖןೖ ௠ܹሺן௞ሻ, א ݇ ௖ܮ ൌ ሼ0,1, . . , ݀ െ 2ሽ                  Eq. ( 3-9) 

        ܰ௠ሺݔሻ  and ௠ܹሺݔሻ  have the degree constraints deg ሺܰ௠ሺݔሻሻ ൏  deg ሺ ௠ܹሺݔሻሻ  and 

deg ሺ ௠ܹሺݔሻሻ ൑ ሺ݀ہ  െ 1ሻ 2⁄ ۂ ൌ  errors can be corrected, Eq (3-9)  has ݐ since no more than ,ݐ 

the form of the Key equation we seek [1,21]. 

3.2.1.3 Errors in Check Locations 

For a single error occurring in a check location ݁ א ሻݔሺݎ  ௖, thenܮ ൌ  ሻ  since there is noݔሺܧ  

“folding” by modulo operation [20]. Then  ݑሺݔሻ ൌ ሻݔሺݎ  െ ଵିןሺݎܺ   ,ሻ must be identically 0ݔ

so the coefficient a in Eq (3-2) is equal to zero. We can write 

௞ݎ ൌ ሼ ܻ          ݇ ൌ ݁
 ݁ݏ݅ݓݎ݄݁ݐ     0
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            If there are errors in both check locations and message locations, let ܧ௠ ൌ

൛݅ଵ, ݅ଶ, … , ݅௩భൟ ؿ ௠ܮ  denote the error locations among the message locations and let ܧ௖ ൌ

൛݅௩భାଵ, … , ݅௩ൟ ؿ ௖ܮ  denote the error locations among the check locations. Let 

,௜భן೘ୀሼןܧ ,௜మן … , ௜ೡభן ሽ and ןܧ೎ୀሼן௜ೡభశభ, … ,  ௜ೡሽ denote the corresponding error locators. Theן

(error location, error value) pairs for the errors in message locations are ሺ ௜ܺ, ௜ܻሻ, ݅ ൌ 1,2, … ,   .ଵݒ

The pairs for errors in check locations are ሺ ௜ܺ , ௜ܻሻ, ݅ ൌ ଵݒ ൅ 1, … ,  ,Then by linearity .ݒ

௞ݎ ൌ ௞݌  ௞ן ෍ ௜ܻ

݂ሺ ௜ܺሻሺן௞െ  ௜ܺሻ

௩భ

௜ୀଵ

൅  ൜    ௝ܻ ௝ܺ ݎ݋ݐܽܿ݋݈ ݎ݋ݎݎ݁ ݂݅    ൌ ן௞  ݊݅݋ݐܽܿ݋݈ ݄݇ܿ݁ܿ ܽ ݊݅ ݏ݅ 
݁ݏ݅ݓݎ݄݁ݐ݋                                                                         0

     

Eq. ( 3-10) 

           Because of the extra terms added on in Eq. ( 3-10) , equation Eq (3-9)  does not apply 

when ݇ א  ௖, so we haveܧ

ܰ௠ሺן௞ሻ ൌ   ௥ೖ
௣ೖןೖ ௠ܹሺן௞ሻ, א ݇  ௖                                       Eq. ( 3-11)ܧ\௖ܮ

              To account for errors among the check symbols, let ௖ܹሺݔሻ ൌ  ∏ ሺݔ െ ן௜ሻ௜ א ா೎  be the 

error locator polynomial for errors in check locations. Let 

ܰሺݔሻ ൌ  ܰ௠ሺݔሻ ௖ܹሺݔሻ          and            ܹሺݔሻ ൌ  ௠ܹሺݔሻ ௖ܹሺݔሻ.        

Since    ܰሺן௞ሻ ൌ ܹሺן௞ሻ ൌ 0 for ݇ א  ௖, we can writeܧ

ܰሺן௞ሻ ൌ  ௥ೖ
௣ೖןೖ ܹሺן௞ሻ, א ݇ ௖ܮ ൌ ሼ0,1, . . , ݀ െ 2ሽ                                             Eq. ( 3-12) 

That is, the equation is now satisfied for all values of  ݇ ݅݊ ܮ௖ . Eq (3-12) is the Welch-

Berlekamp (WB) Key equation, to be solved subject to the conditions 

deg൫ܰሺݔሻ൯ ൏  deg ሺܹሺݔሻሻ                  deg൫ܹሺݔሻ൯ ൏ ሺd െ 1ሻ 2⁄  

              The polynomial ܹሺݔሻ is the error locator polynomial, having roots at all the error 

locators. We write Eq (3-12) as 

ܰሺݔ௜ሻ ൌ  ܹሺݔ௜ሻy୧              i ൌ 1,2, … , m ൌ 2t ൌ d െ 1                                 Eq. ( 3-13) 
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For points (ݔ௜, y୧ሻ ൌ ൫ן୧ିଵ, r୧ିଵ ൫p୧ିଵ ⁄୧ିଵ൯ן ൯,     i ൌ 1,2, … , m ൌ 2t 

              Hereafter we will refer to the ܰሺݔሻ and ܹሺݔሻ as ଵܰሺݔሻ and ଵܹሺݔሻ, referring to the 

first (WB) derivation. 

3.2.2 Derivation from the Conventional Key Equation 

A WB-type key equation may also be obtained starting from the conventional key equation 

and syndromes [1]. Let us denote the syndromes as  

௜ܵ ൌ R൫ןୠା୧൯ ൌ  r൫ןୠା୧൯ ൌ  ෍ r୨൫ןୠା୧൯୨
ୢିଶ

୨ୀ଴

 , i ൌ 0,1, … , d െ 2 

            The conventional error locator polynomial Λሺݔሻ ൌ  ∏ ሺ1 െ ௜ܺݔሻ௩
௜ୀଵ ൌ  Λ଴ ൅ Λଵx ൅

ڮ ൅ Λ୴x୴  where Λ଴ ൌ 1;  the Welch-Berlekamp error locator polynomial is Wሺݔሻ ൌ

 ∏ ሺݔ െ ௜ܺሻ௩
௜ୀଵ  ൌ  W଴ ൅ Wଵx ൅ ڮ ൅ x୴ . These are related by Λ୧ ൌ W୴ି୧. The conventional 

key equation can be written as  

                                     ෍Λ୧

௩

௜ୀ଴

S୩ି୧ ൌ 0    ;                    ݇ ൌ ,ݒ ݒ ൅ 1, … , ݀ െ 2. 

Writing this in terms of coefficients of W we have 

                                     ෍ W୧

௩

௜ୀ଴

S୩ା୧ ൌ 0  ;                      ݇ ൌ 0,1, … , ݀ െ 2 െ  .ݒ

or                                    ∑ W୧
௩
௜ୀ଴ ∑ ௝ݎ

ௗିଶ
௝ୀ଴ ௝ሺ௕ା௞ା௜ሻߙ ൌ 0 

Rearranging,  

∑ ௝ݎ
ௗିଶ
௝ୀ଴ ൫∑ W୧α୨୧௩

௜ୀ଴ ൯ߙ௝ሺ௞ା௕ሻ ൌ 0   ,            k ൌ 0,1, … , d െ 2 െ v.                    Eq. ( 3-14) 

Letting 

௝݂ ൌ         ௝௕,                                                 Eq. ( 3-15)ߙ௝ܹ൫α୨൯ݎ
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Eq (3-14) can be written as  

෍ ௝݂ߙ௝௞ ൌ 0,                 ݇ ൌ 0,1, … , ݀ െ 2 െ .ݒ
ௗିଶ

௝ୀ଴

 

which corresponds to the Vandermonde set of equations 

ۏ
ێ
ێ
ێ
ۍ 1 1

1
1

ߙ
ଶߙ

ڮ
1      1

ௗିଷߙ

ଶሺௗିଷሻߙ
ௗିଶߙ

ଶሺௗିଶሻߙ

ڭ ڰ ڭ
1 ௗିଶି௩ߙ ڮ ሺௗିଶି௩ሻሺௗିଷሻߙ ےሺௗିଶି௩ሻሺௗିଶሻߙ

ۑ
ۑ
ۑ
ې
 

with ሺ݀ െ 1 െ ሻݒ ൈ ሺ݀ െ 1ሻ matrix ܸ. The bridge to the WB key equation is provided by the 

following lemma. 

Lemma 3-2[1] 

Let ܸ a ݉ ൈ ݎ matrix ݎ ൐ ݉ having Vandermonde structure 

൦

1
ଵݑ

1
ଶݑ

ڮ 1
௥ݑ

ڭ ڰ ڭ
ଵݑ

௠ିଵ ଶݑ
௠ିଵ ڮ ௥ݑ

௠ିଵ

൪ 

with the ሼݑ௜ሽ all distinct. For any vector z in the nullspace of V (satisfying ܸݖ ൌ  0), there 

exists a unique polynomial ܰሺݔሻ of degree less than ݎ െ ݉ such that  

௜ݖ ൌ  Nሺ୳౟ሻ
F′ሺ୳౟ሻ

 , i ൌ 1,2, … , r, 

where ܨሺݔሻ ൌ  ∏ ሺݔ െ ௜ሻ௥ݑ
௜ୀଵ . 

         Hereafter we will refer ܰሺݔሻ and ܹሺݔሻ as ଶܰሺݔሻ and ଶܹሺݔሻ, for the DB (Dabiri- Black)  

method derivation. 

3.3 Finding the Error Values 

We begin with the key equation in the WB-form Eq (3-12). Assuming that the error locator 

W(x) has been found it can be shown [1] that for WB Key equation error values ௜ܻ 

corresponding to an error locator ௜ܺ can be computed as  
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ܻൣ ௝ܺ൧ ൌ ௞ݎ  െ ௞݌  ௝ܺ
ଵܰ′ሺ ௝ܺሻ
ଵܹ′ሺ ௝ܺሻ

 

           For the DB form of WB equation, error values can be computed as follows 

ܻሾܺ௞ሿ ൌ  െ ଶܰሺן௞ሻ ௕ሺௗି௞ିଵሻן

ଶܹ
′ሺן௞ሻ݃ሺן௕ା௞ሻ

ൌ െ ଶܰሺܺ௞ሻܺ௞
ି௕ ௕ሺௗିଵሻן

ଶܹ
′ሺܺ௞ሻ݃ሺܺ௞ ௕ሻן

   ሺ݉݁ݏ݊݋݅ݐܽܿ݋݈ ݁݃ܽݏݏሻ 

௞ܻሾܺ௞ሿ ൌ ௞ݎ  െ ଶܰ′ሺן௞ሻ ௕ሺௗି௞ିଶሻן

ଶܹ
′ሺן௞ሻ݃′ሺן௕ା௞ሻ

ൌ ௞ݎ  െ  ଶܰ′ሺܺ௞ሻܺ௞
ି௕ ௕ሺௗିଶሻן

ଶܹ
′ሺܺ௞ሻ݃′ሺܺ௞ ௕ሻן

      ሺcheck locationsሻ 

3.4 Rational Interpolation Problem 

The key equation problem can be expressed as follows: 

         Given a set of points ሺݔ௜, ,௜ሻݕ ݅ ൌ 1,2, . . , ݉  over some field ࣠, the problem of finding 

polynomial N(x) and W(x) with d݁݃ሺܰሺݔሻሻ  ൏  ݀݁݃ሺܹሺݔሻሻ satisfying  

ܰሺݔ௜ሻ ൌ  ܹሺݔ௜ሻݕ௜,     ݅ ൌ 1,2, … , ݉.                                Eq. ( 3-16) 

is called a rational interpolation problem[1,20]. Since in the case that ܹሺݔ௜ሻ ് 0, we have 

௜ݕ ൌ  
ܰሺݔ௜ሻ
ܹሺݔ௜ሻ

  

                A solution to the rational interpolation problem provides a pair  ሾܰሺݔሻ, ܹሺݔሻሿ , 

satisfying Eq (3-16) 

3.5 The Welch-Berlekamp Algorithm 

Rational interpolation problem is structurally similar to the Berlekamp-Massey algorithm, in 

that it provides a sequence of solution pairs which are updated in the event that there is a 

discrepancy when a new point is considered. We are interested in a solution satisfying 

d݁݃ሺܰሺݔሻሻ  ൏  ݀݁݃ሺܹሺݔሻሻ and ݀݁݃൫ܹሺݔሻ൯ ൑ ݉/2. 

Definition 3-1[1] 

The rank of a solution ሾܰሺݔሻ, ܹሺݔሻሿ, is defined as  

,ሻݔሾܰሺ݇݊ܽݎ ܹሺݔሻሿ ൌ maxሼ2 deg൫Wሺxሻ൯ , 1 ൅ 2deg ሺNሺxሻሻሽ 
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        We construct a solution to the rational interpolation problem of rank ൑ m and show that 

it is unique. By the definition of the rank, the d݁݃ሺܰሺݔሻሻ  ൏  ݀݁݃ሺܹሺݔሻሻ . 

        The polynomial expression for the interpolation problem  is useful . Let ܲሺݔሻ be an 

interpolating polynomial such that ܲሺݔ௜ሻ ൌ , ௜ݕ  i ൌ 1,2, … , m. For example, ܲሺݔሻ could be the 

Lagrange interpolating polynomial ,  

ܲሺݔሻ ൌ  ෍ ௜ݕ
∏ ሺݔ െ ௞ሻ௠ݔ

௞ୀଵ,௞ஷ௜
∏ ሺݔ௜ െ ௞ሻ௠ݔ

௞ୀଵ,௞ஷ௜

௠

௜ୀଵ

 

        By the evaluation Homomorphism the equation ܰሺݔ௜ሻ ൌ  ܹሺݔ௜ሻݕ௜ is equivalent to  

ܰሺݔሻ ൌ  ܹሺݔሻܲሺݔሻ   ሺmod  ሺ x െ x୧ ሻሻ 

        Since it is true for each point ሺx୧, y୧ሻ, and since the polynomials ሺ x െ x୧ ሻ, i ൌ 1,2, … , m 

are pairwise relatively prime, by the ring Isomorphism we can write using Chinese remainder 

theorem, 

ܰሺݔሻ ൌ  ܹሺݔሻܲሺݔሻ   ሺmod  ∏ሺ x ሻሻ,                                      Eq. ( 3-17) 

where ∏ሺ x ሻ  = ∏ ሺ x െ x୧ሻ௠
௜ୀଵ  

Definition 3-2 

Suppose ሾܰሺݔሻ, ܹሺݔሻሿ, is a solution to the rational interpolation problem, and that ܰሺݔሻ and 

ܹሺݔሻ share a common factor ݂ሺݔሻ , such that ܰሺݔሻ ൌ ݊ሺݔሻ݂ሺݔሻ ܽ݊݀ ܹሺݔሻ ൌ  ሻ. Ifݔሻ݂ሺݔሺݓ

 ሾ݊ሺݔሻ, ,ሻݔሻሿ, is also a solution to this problem, the solution ሾܰሺݔሺݓ ܹሺݔሻሿ, is said to be 

Reducible. A solution which has no common factors of ݀݁݃݁݁ݎ ൐ 0 which may be factored 

out leaving a solution is said to be Irreducible [1]. 

Lemma 3-3 

There exists at least one irreducible solution to eq. Eq. ( 3-17) with rank ൑ m. 

         The Welch-Berlekamp algorithm finds a rational interpolation of minimal rank by 

building successive interpolants for increasingly larger set of points. First a minimal rank 

rational interpolant is found for the single point ሺxଵ, yଵሻ. This is used to construct a minimal 

polynomial for the pair of points { ሺxଵ, yଵሻ,  ሺxଶ, yଶሻ }, and so on, until a minimal rank 

interpolant for the entire set of points {ሺxଵ, yଵሻ, ሺxଶ, yଶሻ, … , ሺx୫, y୫ሻ} is found [1]. 
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Definition 3-3 

We say that ሾܰሺݔሻ, ܹሺݔሻሿ satisfy the interpolation problem if  

ܰሺݔ௜ሻ ൌ  ܹሺݔ௜ሻݕ௜   ݅ ൌ 1,2, … , ݇ 

              The Welch Berlekamp finds a sequence of solutions  ሾܰሾ௞ሿ, ܹሾ௞ሿሿ of minimum rank 

satisfying the interpolation (k) problem, for ݇ ൌ 1,2, … , ݉.  We can express the interpolation 

(k) problem as 

ܰሺݔሻ ൌ  ܹሺݔሻ ௞ܲሺݔሻ       ሺ݉݀݋ Π୩ሺݔሻ ሻ  

where  Π୩ሺݔሻ ൌ  ∏ ሺݔ െ ௜ሻ௞ݔ
௜ୀଵ  and ௞ܲሺݔሻ is polynomial that interpolates (at least) the first ݇ 

points ܲሺݔ௜ሻ ൌ ,௜ݕ  ݅ ൌ 1,2, … , ݇.  

          As with Berlekamp-Massey algorithm, the Welch-Berlekamp algorithm propagates two 

solutions, using one of them in the update of the other. For the Welch-Berlekamp algorithm, 

the two sets of solution maintain the property that they are complements of each other. 

Definition 3-4 

Let ሾܰሺݔሻ, ܹሺݔሻሿ and ሾܯሺݔሻ, ܸሺݔሻሿ be two solutions of interpolation (k) such that  

,ሻݔሾܰሺ ݇݊ܽݎ ܹሺݔሻሿ ൅ ,ሻݔሺܯሾ݇݊ܽݎ  ܸሺݔሻሿ ൌ  2݇ ൅ 1 

And  

ܰሺݔሻܸሺݔሻ െ ሻݔሻܸሺݔሺܯ  ൌ  ݂Πሺݔሻ 

For some scalar f. Then ሾܰሺݔሻ, ܹሺݔሻሿ  and ሾܯሺݔሻ, ܸሺݔሻሿ  are Complementary. The key 

results to construct the algorithm are presented in following Lemmas [1]. 

Lemma 3-4 

Let ሾܰሺݔሻ, ܹሺݔሻሿ be an irreducible solution to the interpolation (k) problem with ݇݊ܽݎ ൑ ݇. 

Then there exists at least one solution to the interpolation (k) problem which is a complement 

of ሾܯሺݔሻ, ܸሺݔሻሿ ሾ1ሿ. 

 

 



36 

 

Lemma 3-5 

If ሾܰሺݔሻ, ܹሺݔሻሿ is an irreducible solution to the interpolation (k) problem and ሾܯሺݔሻ, ܸሺݔሻሿ is 

another solution such that ݇݊ܽݎሾܰሺݔሻ, ܹሺݔሻሿ ൅ ,ሻݔሺܯሾ݇݊ܽݎ  ܸሺݔሻሿ  ൑ 2݇,  then 

ሾܯሺݔሻ, Vሺݔሻሿ  can be reduced to ሾܰሺݔሻ, ܹሺݔሻሿ.  

This Lemma implies that there exists only one irreducible solution to the interpolation 

(k) problem with ݇݊ܽݎ ൑ ݇, and that this solution must have at least one complement ሾ1,20ሿ. 

Lemma 3-6 

If ሾࡺሺ࢞ሻ, ,ሺ࢞ሻࡹሺ࢞ሻሿ is an irreducible solution to the interpolation (k) problem and ሾࢃ  ሺ࢞ሻሿ isࢂ

one of its complements, then for any ࢇ, א ࢈ ऐ , with ࢔ ് ૙, ሾࡹ࢈ሺ࢞ሻ െ ,ሺ࢞ሻࡺࢇ  ሺ࢞ሻࢂ࢈ െ

 .ሺ࢞ሻሿ is also one of its complements [1]ࢃࢇ 

We are now ready to state and prove the theorem describing the Welch-Berlekamp algorithm. 

Theorem 3-1 

Suppose that ൣܰሾ௞ሿ, ܹሾ௞ሿ൧  and ൣܯሾ௞ሿ, ܸሾ௞ሿ൧  are two complementary solutions of the 

interpolation (k) problem. Suppose also that ൣܰሾ௞ሿ, ܹሾ௞ሿ൧ is the solution of lower rank. Let 

ܾ௞ ൌ  ܰሾ௞ሿሺݔ௞ାଵሻ െ ݕ௞ାଵܹሾ௞ሿሺݔ௞ାଵሻ 

ܽ௞ ൌ ௞ାଵሻݔሾ௞ሿሺܯ  െ ݕ௞ାଵܸሾ௞ሿሺݔ௞ାଵሻ 

(These are analogous to the discrepancies of the Berlekamp-Massey algorithm). If ܾ௞ ൌ 0, 

(the discrepancy is zero, so no update is necessary) then 

 ൣܰሾ௞ሿ, ܹሾ௞ሿ൧ and ൣሺݔ െ ,ሻݔሾ௞ሿሺܯ௞ାଵ ሻݔ ሺݔ െ  ሻ൧ݔ௞ାଵ ሻܸሾ௞ሿሺݔ

Are two complementary solutions of the interpolation (k+1) problem, and ൣܰሾ௞ሿ, ܹሾ௞ሿ൧ is the 

solution of the lower rank. 

If ܾ௞  ് 0, ( the discrepancy is not zero, so an update is required), then 

ൣሺݔ െ ,ሻݔ௞ାଵ ሻܰሾ௞ሿሺݔ ሺݔ െ ሻݔሾ௞ሿሺܯሻ൧ and ሾܾ௞ݔ௞ାଵ ሻܹሾ௞ሿሺݔ െ   ܽ௞ܰሾ௞ሿሺݔሻ, ܾ௞ܰሾ௞ሿሺݔሻ െ

  ܽ௞ܹሾ௞ሿሺݔሻሿ 
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are two complementary solutions. The solution with lower rank is the solution to the 

interpolation (k+1) problem [1,20,21]. 

Based on this theorem, the Welch-Berlekamp algorithm is shown in the figure below. 

Algorithm 3-1[1,20] 

Welch Berlekamp Interpolation 

,௜ݔሺ  :ݐݑ݌݊ܫ ,௜ሻݕ ݅ ൌ 1, … , ݉ 

,ሻݔሾ௠ሿሺܰൣ  :ݏ݊ݎݑݐܴ݁ ܹሾ௠ሿሺݔሻ൧ ݈ܾ݉݁݋ݎ݌ ݊݋݅ݐ݈ܽ݋݌ݎ݁ݐ݊݅ ݄݁ݐ ݃݊݅ݕ݂ݏ݅ݐܽݏ ݇݊ܽݎ ݈ܽ݉݅݊݅݉ ݂݋ 

ሻݔሾ଴ሿሺܰ  :݁ݖ݈݅ܽ݅ݐ݅݊ܫ ൌ  0; ܸሾ଴ሿሺݔሻ ൌ  0; ܹሾ଴ሿሺݔሻ ൌ ሻݔሾ଴ሿሺܯ ;1 ൌ 1; 

݅ ݎ݋݂ ൌ ݉ ݋ݐ 0 െ 1 

        ܾ௜ ൌ  ܰሾ௜ሿሺݔ௜ାଵሻ െ                ሻݕܿ݊ܽ݌݁ݎܿݏ݅݀ ݁ݐݑ݌݉݋ܥ௜ାଵሻ                            ሺݔ௜ାଵܹሾ௜ሿሺݕ 

        ݂݅ሺܾ௜ ൌൌ 0ሻ                                           ሺ݄݁ݐ ݊݅ ݄݁݃݊ܽܿ ݋݊ ݄݊݁ݐ ሾܰ, ܹሿ ݊݋݅ݐݑ݈݋ݏሻ 

                      ܰሾ௜ାଵሿሺݔሻ ൌ  ܰሾ௜ሿሺݔሻ;         ܹሾ௜ାଵሿሺݔሻ ൌ  ܹሾ௜ሿሺݔሻ;   

ሻݔሾ௜ାଵሿሺܯ                         ൌ ሺݔ െ ;  ሻݔሾ௜ሿሺܯ௜ାଵሻݔ     ܸሾ௜ାଵሿሺݔሻ ൌ ሺݔ െ  ሻݔ௜ାଵሻܸሾ௜ሿሺݔ

 ሻݕܿ݊ܽ݌݁ݎܿݏ݅݀ ݎ݋݂ ݐ݊ݑ݋ܿܿܽ ݋ݐ ݁ݐܽ݀݌ሺܷ                       ݁ݏ݈݁       

                        ܽ௜ ൌ ௜ାଵሻݔሾ௜ሿሺܯ  െ ݕ௜ାଵܸሾ௜ሿሺݔ௜ାଵሻ ; 

ሻݔሾ௜ାଵሿሺܯ                         ൌ ሺݔ െ ; ሻݔ௜ାଵሻܰሾ௜ሿሺݔ   ܸሾ௜ାଵሿሺݔሻ ൌ ሺݔ െ     ; ሻݔ௜ାଵሻܹሾ௜ሿሺݔ

                        ܰሾ௜ାଵሿሺݔሻ ൌ ܾ௜ܯሾ௜ሿሺݔሻ െ ܽ௜ܰሾ௜ሿሺݔሻ;  ܹሾ௜ାଵሿሺݔሻ ൌ ܾ௜ܸሾ௜ሿሺݔሻ െ ܽ௜ܹሾ௜ሿሺݔሻ ;     

,ሻݔሾ௜ାଵሿሺܰൣ ݇݊ܽݎ  ሺ݂ܫ                         ܹሾ௜ାଵሿሺݔሻ൧ ൐ ,ሻݔሾ௜ାଵሿሺܯሾ ݇݊ܽݎ    ܸሾ௜ାଵሿሺݔሻሿሻ  

                                                                  (swap for minimal rank) 

,ሻݔሺൣܰሾ௜ାଵሿሺ ݌ܽݓݏ                                            ܹሾ௜ାଵሿሺݔሻ൧, ሾܯሾ௜ାଵሿሺݔሻ,  ܸሾ௜ାଵሿሺݔሻሿሻ 

                    ݁݊݀ (if) 

       ݁݊݀   (else) 

݁݊݀     ሺ݂ݎ݋ሻ                    
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CHAPTER 4                                                                

THE GURUSWAMI-SUDAN DECODING 

ALGORITHM 

 

 

In 1997 Madhu Sudan [19], building on previous work of Welch-Berlekamp[20] and others, 

discovered a polynomial-time algorithm for decoding certain low-rate Reed-Solomon codes 

beyond the classical ݀/2 error-correcting bound. Two years later Guruswami and Sudan [22] 

published a significantly improved version of Sudan’s algorithm, which was capable of 

decoding virtually every RS code at least somewhat, and often significantly, beyond the ݀/2 

limit. The main focus of these seminal papers was to establish the existence of polynomial-

time decoding algorithms, and not on devising practical implementations. However, several 

later authors, notably Koetter [23,24] and Roth-Ruckenstein[25] , were able to find low-

complexity (no worse than ܱሺ݊ଶሻ ) realizations for the key steps in the GS algorithm, thus 

making GS a genuinely practical engineering alternative in storage and transmission systems 

requiring RS codes [7,8]. 

An ሺ݊, ݇ሻ Reed-Solomon code over ܨ ൌ  ሻ, as given by Reed Solomon in theirݍሺܨܩ 

original paper is defined as follows. Let ሺߙଵ, . . . ,  ,௡ሻ be a fixed list of n distinct elements of Fߙ

called the support set of the code[1,10]. The encoding process is that of mapping a vector 

ሺ ଴݂, ଵ݂, . . . , ௞݂ିଵሻ of k information symbols into an n-symbol codeword ሺݔଵ, ,ଶݔ . . . , ௡ሻݔ   by 

polynomial evaluation, i.e., 

ሺݔଵ, ,ଶݔ . . . , ௡ሻݔ ൌ     ሺ݂ሺߙଵሻ, . . . , ݂ሺߙ௡ሻሻ,                                                   Eq. ( 4-1)  

where 

݂ሺݔሻ  ൌ  ݂0 ൅ ൅ ݔ1݂   ・ ・ ・ ൅  ௞݂ିଵݔ௞ିଵ.                             Eq. ( 4-2) 

The corresponding Reed-Solomon code consists of all n-vectors of the form in Eq. ( 

4-1) where f(x) is a polynomial of degree < k. It is well-known that this code has minimum 

Hamming distance d = n − k +1 and is therefore capable of correcting up to 

 

଴ݐ   ൌ  ቔ௡ ି ௞
ଶ

ቕ                                           Eq. ( 4-3) 
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errors. Conceptually, this may be accomplished as follows. The decoder searches the 

Hamming sphere of radius ݐ଴  centered at the received word for codewords. If the sphere 

contains a unique codeword, that is the decoder’s output. Otherwise, the decoder reports 

failure. (This strategy is called bounded distance decoding, (BDD) and dates back to 

Shannon’s proof of the noisy-channel coding theorem. The conventional RS decoding 

algorithms, e.g., Berlekamp, Berlekamp-Massey, Continued Fractions, or Euclidean 

Algorithm-based are all BDD algorithms.) The decoding sphere cannot contain more than one 

codeword, since the minimum distance of the code is ൐  ଴. If we attempt to correct moreݐ2 

than ݐ଴  errors by increasing the decoding radius, it is possible for the decoding sphere to 

contain more than one codeword, in which case the decoder will fail. For this reason, 

conventional wisdom asserts that the code is not capable of correcting more than ݐ଴ errors. 

Nevertheless, if we examine the probability that the decoding sphere will contain multiple 

codewords, rather than the possibility, we may reach a different conclusion [7]. 

The Guruswami Sudan Decoder is capable of correcting more than ݐ଴ errors[7,22]. It is 

a polynomial-time algorithm for correcting (in a certain sense) up to ீݐௌ errors, where ீݐௌ is 

the largest integer strictly less than ݊ െ  ඥሺ݇ െ  1ሻ݊, i.e., 

ௌீݐ  ൌ  ݊ െ  1 െ ሺ݇ െہ   1ሻ݊ۂ.                          Eq. ( 4-4) 

It is easy to show that ீݐௌ ൒ ௌீݐ ଴  , and oftenݐ  is considerably greater than ݐ଴ . 

Asymptotically, for RS codes of rate ܴ, the conventional decoding algorithms will correct a 

fraction  ߬଴  ൌ  ሺ1 െ ܴሻ/2 of errors, while the GS algorithm can correct up to ߬ீௌ ൌ 1 െ  √ܴ.  

The GS decoder has an adjustable integer parameter ݉ ൒  1  called the interpolation 

multiplicity[1]. Associated with the interpolation multiplicity ݉  is positive integer ݐ ൌ

 ሺ݉ሻ decoder returns aܵܩ ௠ called the designed decoding radius. Given a received word, theݐ 

list which includes all codewords with Hamming distance ݐ௠ or less from the received word, 

and perhaps a few others. The exact formula for ݐ௠ is a bit complicated, however following 

relation holds 

଴ݐ  ൑ ଵݐ   ൑ ଶݐ   ൑  , ڮ

and there exists an integer ݉଴ such that 

௠బݐ  ൌ ௠బାଵ ݐ  ൌ  ・ ・ ・ ൌ  .ௌீݐ 
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4.1 An Overview of the GS(m) Algorithm 

Suppose ܥ ൌ  ሺ݂ሺߙଵሻ, . . . , ݂ሺߙ௡ሻሻ, is the transmitted codeword, where ݂ሺݔሻ is a polynomial of 

degree ൏  ݇ , and that C is received as ܴ ൌ  ሺߚଵ, . . . , .௡ሻߚ  Let ݌ሺݔሻ  be any polynomial of 

degree ൏  ݇ which maps to an RS codeword with Hamming distance ൑  ,.௠ from ܴ, i.eݐ 

| ሼ݅ ׷ ௜ሻߙሺ݌   ് | ௜ሽߚ   ൑  .௠ݐ 

The ܵܩሺ݉ሻ decoder “finds” ݌ሺݔሻ as follows [8]. 

1. The interpolation step  

Given the received vector ܴ ൌ  ሺߚଵ, . . . ,  ௡ሻ, the decoder constructs a two-variableߚ

polynomial ܳሺݔ, ሻݕ  ൌ ∑ ܽ௜௝ݔ௜ݕ௝
௜,௝  

with the property that Qሺx, yሻ  has a zero of multiplicity m at each of the points ሺα୧, β୧ሻ, 

and for which the ሺ1, k െ 1ሻ weighted degree of Qሺx, yሻ is as small as possible. 

2. The factorization step 

The decoder then finds all factors of ܳሺݔ, ݕ ሻ of the formݕ െ  ሻ is aݔሺ݌ ሻ, whereݔሺ݌

polynomial of degree ݇ െ 1 or less. Let 

ࣦ ൌ  ሼ݌ଵሺݔሻ, . . . ,  ሻሽݔ௅ሺ݌

be the list of polynomials produced by this step. The polynomials (codewords) 

pሺxሻ א L are of three possible types: 

 Type 1. The transmitted, or causal, codeword. 
 Type 2. Codewords with Hamming distance ≤ tm from R, which we call plausible 

             codewords. 
  Type 3. Codewords with distance ൐ ௠ݐ   from ܴ , which we call implausible 

codewords. 

Theorem 4-1 

If the ܵܩሺ݉ሻ decoding algorithm is used, all plausible codewords will be in ࣦ. In particular, 

the transmitted codeword will be in ࣦ if the number of channel errors is ൑  ௠. The list mayݐ 

also contain implausible codewords, but the total number of codewords in the list, plausible 

and implausible, will satisfy ܮ ൑  ௠  is conservatively estimated byܮ  ௠, whereܮ 

௠ܮ ൏ ሺ݉ ൅ 
1
2ሻට

݊
݇ െ 1 

Let ܮതሺݐሻ is the average number of codewords in a randomly chosen sphere of radius t, 

and which gives a heuristic upper bound on the probability that the decoding sphere will 

contain a non-causal codeword [1,8,22]. 
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4.2 Monomial Orders and Generalized Degree 

This section provides an introduction to the algebraic fundamentals of two-variable 

polynomials. These fundamentals include weighted monomial orderings, generalized degree 

functions, and certain related combinatorial results [1]. 

If ࣠ is a field, we denote by ܨሾݔ,  with coefficients from ݕ and ݔ ሿ the ring of polynomials inݕ

࣠. A polynomial ܳሺݔ, ሻݕ א  ,ݔሾܨ    ,ሿ is, by definition, a finite sum of monomialsݕ

ܳሺݔ, ሻݕ  ൌ  ∑ ܽ௜௝ݔ௜ݕ௝
௜,௝ஹ଴                               Eq. ( 4-5) 

where only a finite number of the coefficients ܽ௜௝  are nonzero. The summation in                  

Eq. ( 4-5) is two-dimensional, but often it is desirable to have a one-dimensional 

representation instead. To do this, we need to have a linear ordering of set of 

monomials ࣧሾݔ, ሿݕ ൌ ሼݔ௜ݕ௝ ׷  ݅, ݆ ൒  0ሽ 

It can be observed that the set ࣧሾݔ,  ሿ is isomorphic to the set Գଶ of pairs of nonnegativeݕ

integers under the bijection ݔ௜ݕ௝ ՞  ሺ݅, ݆ሻ.   A monomial ordering is a relation “ ൏ ”  on 

ࣧሾݔ,  :ሿ (equivalently, on Գଶ) with the following three propertiesݕ

1. If ܽ1 ൑  ܾ1 and ܽ2 ൑  ܾ2, then ሺܽ1, ܽ2ሻ  ൑  ሺܾ1, ܾ2ሻ.                 

2. The relation “ ൏ ” is a total ordering, i.e., if ࢇ and ࢈ are distinct monomials, either 

൏ ࢇ ൏ ࢈ or ࢈       .ࢇ 

3. If a ≤ b and c א  Գଶ, then a + c ≤ b + c.     

There are many possible monomial orderings, but the most important ones are the 

weighted degree monomial orders [1]. A WD monomial order is characterized by a pair 

࢝ ൌ  ሺݑ,  ሻ of nonnegative integers, not both zero. For a fixed w, the w-degree of theݒ

monomial ݔ௜ݕ௝ is defined as  

௝ݕ௜ݔ࢝݃݁݀  ൌ ൅ ݅ݑ   .݆ݒ 

If we order ࣧሾݔ, ,ݔሿ by w-degree, i.e., declare that ߶ሺݕ ሻݕ  ൏  ߶Ԣሺݔ, ,ݔሻ if ݀݁݃࢝ ߶ሺݕ ሻݕ  ൏ 

݀݁݃࢝ ߶Ԣሺݔ, ሻݕ , we only get a partial order, since monomials with equal w-degree are 

incomparable. It turns out that there are just two ways to break such ties so that Property (3) is 

satisfied: w-lexicographic (w-lex) order, and w-reverse lexicographic (w-revlex) order [8]. 

 

Definition. 

w-lex order is defined as follows: 

x୧భy୨భ ൏ x୧మy୨మ 

if either uiଵ  ൅  vjଵ  ൏  uiଶ  ൅  vjଶ  or uiଵ  ൅  vjଵ ൌ  uiଶ  ൅  vjଶ and iଵ ൏ iଶ. 

 w-revlex order is similar, except that the rule for breaking ties is iଵ ൐ iଶ. 
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 (In the special case w = (1, 1), these orderings are called graded-lex, or grlex, and reverse 

graded-lex, or grevlex, respectively) [1]. 

Let “<” be a fixed monomial ordering: 

 
1 ൌ  ߶଴ሺݔ, ሻݕ ൏  ߶ଵሺݔ, ሻݕ ൏  ߶ଶሺݔ, ሻݕ ൏  ڮ

 

With respect to this ordering every nonzero polynomial in ܨሾݔ,  ሿ can be expressedݕ

uniquely in the form 

ܳሺݔ, ሻݕ ൌ  ෍ ௝ܽ߶௝

௃

௝ୀ଴

ሺݔ,  ሻݕ

for suitable coefficients ௝ܽ א   ࣠ with ௝ܽ  ്  0. The integer J is called the ݂݋ ݇݊ܽݎ ܳሺݔ,  ,ሻݕ

and the monomial ߶௃ is called the leading monomial of ܳሺݔ,  ሻ. We indicate this notationallyݕ

by writing ܴܽ݊݇ሺܳሻ  ൌ ܬ   and ܯܮሺܳሻ  ൌ  ߶௃ ሺݔ, ሻݕ . The relation ܲܯܮ ൌ ܳܯܮ   is an 

equivalence relation, which we denote by ܲ ؠ  ܳ. We can extend the order “ ൏ ” to all of 

,ݔሾܨ  ሿ by declaring P < Q to mean LMP < LMQ. In this way, “<,” which is a total order onݕ

the set of monomials, becomes a partial order on ܨሾݔ,  ሿ and a total order on the equivalenceݕ

classes under LM [1,8]. 

In the case of a WD order, the weighted degree of the leading monomial ߶௝ is also 

called the weighted degree, or w-degree, of Q(x, y), denoted degw Q. Thus 

݀݁݃௪ ܳሺݔ, ሻݕ  ൌ ,ݔሼ݀݁݃௪ ߶ሺ ݔܽ݉  ሻݕ ׷  ௝ܽ ്  0ሽ  

The w-degree function has the following basic properties: 

݀݁݃௪ 0 ൌ  െ∞ 

݀݁݃௪ሺܲܳሻ  ൌ  ݀݁݃௪ ܲ ൅  ݀݁݃௪ ܳ 

݀݁݃௪ሺܲ ൅  ܳሻ  ൑ ,ܲ ሺ݀݁݃௪ݔܽ݉  ݀݁݃௪ ܳሻ 

݀݁݃௪ሺܲ ൅  ܳሻ  ൌ ,ܲ ሺ݀݁݃௪ݔܽ݉  ݀݁݃௪ ܳሻ, ് ܲܯܮ ݂݅  .ܳܯܮ 

If ߶଴ (x, y) < ߶ଵ(x, y) <… is a fixed monomial ordering, and ߶ ൌ  ௝ is a particularݕ௜ݔ

monomial, the index of ߶, denoted Ind(ࣘ), is defined as the unique integer K such that ߶௄(x, 

y) = ߶. 

For (1, v) revlex order, the numbers ݀݊ܫሺݔ௄ሻ and ݀݊ܫሺݕ௅ሻare especially important, so 

we introduce a special notation for them: 

,ܭሺܣ ሻݒ ؜  ௄ሻݔሺ݀݊ܫ

,ܮሺܤ ሻݒ ؜  ௅ሻݕሺ݀݊ܫ

it being understood that the underlying monomial order is (1, v)-revlex [8]. 
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We note that ݔ௄ is the first monomial of (1, v)-degree K, and ݕ௅ is the last monomial 

of  (1, v)-degree ܮݒ, so that 

,ܭሺܣ ሻݒ  ൌ  | ሼሺ݅, ݆ሻ ׷  ݅ ൅ ൏ ݆ݒ   | ሽܭ 

,ܮሺܤ ሻݒ  ൌ  | ሼሺ݅, ݆ሻ ׷  ݅ ൅ ൑ ݆ݒ  | ሽݒܮ  െ 1. 

4.3 Zeros and Multiple Zeros 

In this section we consider bivariate polynomials, and focus on their notion of a zero, or a 

multiple zero. 

If ܳሺݔ, ሻݕ א  ,ݔሾܨ  ,ߙሿ, and ܳሺݕ ሻߚ  ൌ  0, we say that Q has a zero at ሺߙ,  .ሻߚ

Definition 4-1 

We say that ܳሺݔ, ሻݕ  ൌ  ∑ ܽ௜௝ݔ௜ݕ௝
௜,௝ א  ,ݔሾܨ   ,ሿ has a zero of multiplicity, or order m at (0, 0)ݕ

and write 

ሺܳ݀ݎ݋ ׷  0, 0ሻ  ൌ  ݉, 

If ܳሺݔ, ሻ involves no term of total degree less thanݕ  ݉ , i.e., ܽ௜௝ ൌ 0 if ݅ ൅ ݆ ൏ ݉ . 

Similarly, we say that ܳሺݔ, ,ߙሻ has a zero of order ݉ at ሺݕ  ሻ, and writeߚ

ሺܳ݀ݎ݋ ׷ ,ߙ  ሻߚ  ൌ  ݉, 

if ܳሺݔ ൅ ,ߙ  ൅ ݕ  .ሻ has a zero of order m at (0, 0)ߚ 

To calculate ݀ݎ݋ሺܳ ׷ ,ߙ  ൅ ݔሻ, we need to be able to express ܳሺߚ ,ߙ  ൅ ݕ  ሻ  as aߚ 

polynomial in x and y. The following theorems, due to H. Hasse tell us one way to do this. We 

begin with the one-variable version of Hasse’s theorem [1]. 

Theorem 4-2 

If ܳሺݔሻ  ൌ  ∑ ܽ௜ݔ௜
௜ א  א ߙ ሿ, then for anyݔሾܨ   we have ,ܨ 

 ܳሺݔ ൅ ሻߙ   ൌ ∑ ܳ௥௥ ሺןሻݔ௥,     

where  ܳ௥ሺݔሻ ൌ  ∑ ቀ݅
ቁ௜ݎ ܽ௜ݔ௜ି௥      

which is called the ݄ݐݎ Hasse derivative of ܳሺݔሻ. Also, 

ܳ௥ሺןሻ ൌ ሻן ൅ݔ௫ೝ ܳሺ݂݂݁݋ܥ    ൌ  ෍ ቀ݅
ቁݎ

௜

ܽ௜  ௜ି௥ן

and                   ܳሺݔሻ ൌ  ∑ ܳ௥ሺןሻ௥ஹ଴ ሺݔെ ןሻ௥ 

Theorem 4-3 

Let ܳሺݔ, ሻݕ  ൌ  ∑ ܽ௜,௝ݔ௜ݕ௝
௜,௝ א  ,ݔሾܨ  ,ߙሿ. For any ሺݕ ሻߚ א  ࣠ଶ, we have 
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ܳሺݔ ൅ ,ߙ  ൅ ݕ ሻߚ   ൌ ∑ ܳ௥,௦ሺߙ, ௦ݕ௥ݔሻߚ
௥,௦                   

where 

ܳ௥,௦ሺݔ, ሻݕ ൌ  ෍ ቀ݅
ቁݎ ቀ݆

ቁݏ
௜,௝

ܽ௜,௝ݔ௜ି௥ݕ௝ି௦ 

which is called the ሺݎ, ,ݔHasse (mixed partial) derivative of ܳሺ ݄ݐሻݏ  .ሻݕ

Also, an alternative equivalent formula is 

 

ܳ௥,௦ሺߙ, ሻߚ ൌ ,ן ൅ݔ௫ೝ௬ೞ ܳሺ݂݂݁݋ܥ ݕ ൅   ሻߚ

and  

ܳሺݔ, ሻݕ ൌ  ෍ ܳ௥,௦ሺן, ሻߚ
௥,௦

ሺݔെ ןሻ௥ሺݕ െ  ሻ௦ߚ

Corollary: 

The polynomial ܳሺݔ, ,ߙሻ has a zero of order ݉ at ሺݕ ,ߙሻ if and only if ܳ௥,௦ሺߚ ሻߚ  ൌ  0  for all ݎ 

and ݏ such that 0 ൑ ൅ ݎ  ൏ ݏ  ݉ [8].   

4.4 The Interpolation and Factorization Theorems 

Two basics theorems of GS algorithm are stated as below. 

4.4.1 The Interpolation Theorem 

Suppose a nonnegative integer m(α) is assigned to each element α א ࣠, and we are asked to 

construct a polynomial ݂ሺݔሻ of least degree which has a zero of multiplicity m(α), at ݔ ൌ  ,ߙ 

for all α א ࣠ . Clearly a minimum degree solution to this one-dimensional interpolation 

problem is 

݂ሺݔሻ ൌ   ෑ ሺݔ െ ሻ௠ሺఈሻߙ 

ఈ א ࣠ 

 

deg൫ ݂ሺݔሻ൯ ൌ  ෍ ݉ሺߙሻ
ఈ א ࣠ 

 

We are interested in the analogous two-dimensional interpolation problem: Given a 

required multiplicity m(α, β) for each (α, β) א ࣠ଶ, construct a low-degree polynomial ܳሺݔ,  ሻݕ

which has zeros of the required multiplicity. This is a much harder problem, in general, but the 

following theorem gives a useful upper bound on the minimum required degree [7,8]. 
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Theorem 4-4 

 Let ሼmሺα, βሻ ׷  ሺα, βሻ א   ࣠ଶሽ be a multiplicity function as above and let Ԅ଴  ൏  Ԅଵ  ൏  be ڮ

an arbitrary monomial order. Then there exists a non-zero polynomial Qሺx, yሻ of the form 

ܳሺݔ, ሻݕ ൌ   ෍ ܽ௜

஼

௜ୀ଴

Ԅ୧ሺx, yሻ                            

where            ܥ ൌ ∑ ቀ݉ሺߙ, ሻߚ  ൅  1
2 ቁఈ,ఉ   

which has a zero of multiplicity m(α, β), at (x, y) = (α, β), for all (α, β) א ࣠ଶ. 

For any (u, v), there is a nonzero polynomial ܳሺݔ, ሻݕ  with the required zero 

multiplicities whose (u, v)-degree is strictly less than √2[22]  ܥݒݑ. 

4.4.2 The Factorization Theorem 

If ܳሺݔ, ሻݕ א   ࣠ሾݔ, ሻݔሿ, and ݂ሺݕ א   ࣠ሾݔሿ, define the Q-score of f as 
ܵொሺ݂ሻ  ൌ  ෍ :ܳ ሺ݀ݎ݋ ,ߙ ݂ሺߙሻሻ

ఈ࣠א

 

Suppose ݂ሺݔሻ א   ௩࣠ሾݔሿ, ܳሺݔ, ሻݕ א   ࣠ሾݔ,  ሿ, andݕ

ܵொሺ݂ሻ ൐ ݀݁ ଵ݃,௩ܳ. Then y − f(x) is a factor of Q(x, y). 

Lemma 4-1 

If ݂ሺݔሻ א   ௩࣠ሾݔሿ, then deg ሺܳሺݔ, ݂ሺݔሻሻ  ൑  ݀݁݃ଵ,௩ ܳሺݔ,  .ሻݕ

Lemma 4-2 

ܳሺݔ, ݂ሺݔሻሻ  ൌ  0 if and only if ሺݕ െ  ݂ሺݔሻሻ|ܳሺݔ,  .ሻݕ

Lemma 4-3 

If ݀ݎ݋ሺܳ ׷ ,ߙ  ሻߚ  ൌ ሻߙand ݂ሺ ,ܭ   ൌ െ ݔthen   ሺ ,ߚ  ,ݔሻ௄ |ܳ൫ߙ  ݂ሺݔሻ൯ [8]. 
 

4.5 A Second Look at the Guruswami-Sudan Algorithm 

 
Given a ሺ݊, ݇ሻ RS code over the finite field ࣠, with support set ሺߙଵ, . . . ,  ௡ሻ, and a positiveߙ

integer  ݉ , the GS(m) decoder accepts a vector ߚ ൌ  ሺߚଵ, . . . , א ௡ሻߚ  ࣠୬ as input, and 

produces a list of polynomials ሼ ଵ݂, . . . , ௅݂ሽ, as output. Here’s how: 
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The GS(m) Decoder. The GS(m) decoder constructs a nonzero two-variable polynomial 

of the form ܳሺݔ, ሻݕ ൌ ∑ ௝ܽ߶௝ሺݔ, ሻ஼ሺ௡,௠ሻݕ
௝ୀ଴ ൌ 0 where ߶଴ < ߶ଵ <…  is (1, v)-revlex monomial 

order, such that Q(x, y) has a zero of order m at each of the n points ሺߙ௜,  .௜ሻ, for  i = 1, . . . , nߚ

(The Interpolation Theorem guarantees that such a polynomial exists.) The output of the 

algorithm is the list of y-roots of Q(x, y), i.e., 

ൌ ܮ  ሼ݂ሺݔሻ א  ሿݔሾܨ  ׷  ሺݕ െ  ݂ሺݔሻሻ | ܳሺݔ,   ሻሽݕ
 

Theorem 4-5 

The output list contains every polynomial of degree ≤ v such that K(f, β) ≥ ܭ௠. Furthermore, 

the number of polynomials in the list is at most ܮ௠. 

 

4.6 Koetter’s Solution to the Interpolation Problem 

In general terms, the interpolation problem is to construct a bivariate polynomial Q(x, y) with 

minimal (1, v)-degree that satisfies a number of constraints of the form 

,ߙ௥,௦ܳሺܦ ሻߚ  ൌ  0, 

where ሺݎ, ሻݏ א   Գଶ and ሺߙ, ሻߚ א   ࣠ଶ. It turns out that the mapping 

ܳሺݔ, ሻݕ ՜ ,ߙ௥,௦ܳሺܦ   ሻߚ

is an example of what is called a linear functional on ܨሾݔ,  ሿ. We consider the more generalݕ

problem of constructing a bivariate polynomial Q(x, y) of minimal weighted-degree that 

satisfies a number of constraints of the form 

,ݔ௜ܳሺܦ ሻݕ  ൌ  0, ൌ ݅ ݎ݋݂  1, 2, . . ., 

where each ܦ௜ is a linear functional. The goal of this section is to describe an algorithm for 

solving the more general problem [23]. 

4.6.1 Linear Functionals  F[x, y] 

A mapping ܦ ׷ ,ݔሾܨ  ሿݕ  ՜  is called a linear functional if ܨ 

൅ ܲߙሺܦ ሻܳߚ   ൌ ሺܲሻܦߙ   ൅    ሺܳሻܦߚ 

for all ܲ, א ܳ ,ݔሾܨ  ,ߙ ݈݈ܽ ሿ andݕ א ߚ  ࣠. The primary example of a linear functional is the 

mapping that evaluates a Hasse derivative: 

ܳሺݔ, ሻݕ  ՜ ,ߙ௥,௦ܳሺܦ   ,ሻߚ
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for fixed values of ሺݎ, ሻݏ א   Գଶ and ሺߙ, ሻߚ א   ࣠ଶ. 

If we agree on a particular monomial order, say 

߶଴ሺݔ, ሻݕ ൏  ߶ଵሺݔ, ሻݕ ൏  , ڮ

so that any polynomial ܳሺݔ,  ሻ has a unique expansion of the formݕ

ܳሺݔ, ሻݕ ൌ  ෍ ௝ܽ߶௝ሺݔ, ሻݕ
௃

௝ୀ଴
 

 

where ܽ௃ ് 0, then any linear functional can be expressed as 

ሺܳሻܦ ൌ ෍ ௝ܽ ௝݀

௃

௜ୀ଴
 

where  ௝݀ ൌ ,ݔሺ߶௝ሺܦ  ሻሻ. The kernel of D is defined to be the setݕ

ൌ ܭ ൌ ܦݎ݁݇   ሼܳ ׷ ሺܳሻܦ   ൌ  0ሽ 

If D is a linear functional with kernel K, the corresponding bilinear mapping ሾܲ, ܳሿ஽  is 

defined as 

ሾܲ, ܳሿ஽ ؜ ሺܳሻܲ െܦ   ሺܲሻܳܦ 

This simple mapping is a crucial part of the algorithms presented below; its key 

properties are given in the following lemma [23,24]. 

Lemma 4-4 

For all P, Q in ܨሾݔ, ,ሿݕ ሾP, QሿD א    kerD . Furthermore, if P >Q and  Q ב  K , then 

RankሾP, QሿD  ൌ  Rank P. 

4.6.2 Problem Statement 

Let ܨ௅ሾݔ, ,ݔሾܨ ሿ denote the set of polynomials fromݕ  ሿ whose y-degree is ≤ L, i.e., thoseݕ

of the form 

ܳሺݔ, ሻݕ ൌ  ෍ ௞ݕሻݔ௞ሺݍ
௅

௞ୀ ଴

 

where each ݍ௞ሺݔሻ א  .ሿݔሾܨ   We note that  ܨ௅ሾݔ, ሿݕ  is an F[x]-module, i.e., if ܳሺݔ, ሻݕ א 

,ݔ௅ሾܨ    ,ሿݕ

and  ݌ሺݔሻ א  ,ݔሻܳሺݔሺ݌ ሿ, thenݔሾܨ  ሻݕ א  ,ݔ௅ሾܨ   .ሿ as wellݕ

Let ܦଵ, . . . , ஼ܦ  be C linear functionals defined on  ܨ௅  [x, y], and let ܭଵ, . . . , ஼ܭ  be the 

corresponding kernels, i.e., 

ൌ ݅ܭ  ሼܳሺݔ, ሻݕ א  ,ݔ௅ሾܨ   ሿݕ ׷ ሺܳሻ݅ܦ   ൌ  0ሽ  
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The cumulative kernels ܭ଴തതത, . . . , ,ݔ௅ሾܨ  = ଴തതതܭ :஼തതതത are defined as followsܭ ሿ and for ݅ ൌݕ  1, . . . ,  ,ܥ

ഥܭ                                                   ௜  ൌ ഥ௜ିଵܭ  ת   ഥ௜ܭ 

                                                               ൌ ଵܭ  ת  ת …  ௜ܭ 

                                                       ൌ  ൛ܳሺݔ, ሻ൯ݕ א ,ݔ௅ሾܨ   ଵሺܳሻܦ :ሿݕ ൌ ڮ ൌ ௜ሺܳሻܦ   ൌ  0ሽ 

4.6.3 Generalized Interpolation Problem 

Construct a minimal element from ܭഥ஼ = ܭଵ ת   ஼, i.e., calculateܭ ת …

ܳ଴ሺݔ, ሻݕ א   ݉݅݊  ൛ܳሺݔ, ሻ൯ݕ א ,ݔ௅ሾܨ   ଵሺܳሻܦ :ሿݕ ൌ ڮ ൌ ௜ሺܳሻܦ   ൌ  0ሽ 
 
Koetter’s Algorithm: 
 
Koetter [12,13] noticed, in effect, that if the cumulative kernels are F[x]-modules, generalized 

interpolation problem admits a less complex solution than the one afforded by the Feng-Tzeng 

algorithm [1,7,23]. 

This observation applies to the GS interpolation problem, since if we enforce the 

conditions ܦ௥,௦ሺߙ, ሻߚ  ൌ ݏ ݎ݋݂ 0  ൅ ൏ ݎ ݉݅݊ an order in which (r−1, s) always precedes (r, 

s), the cumulative kernels will be F[x]-modules. For example, (m − 1, 1) lex order, which 

orders the pairs as (0, 0), (0, 1), . . . , (0,m − 1), (1, 0), (1, 1), . . . , (1,m − 2), . . . , (m − 1, 0) 

has the desired property. 

In Koetter’s algorithm, the set of monomials from ܨ௅ሾݔ,   ,ሿݕ

௅ࣧሾݔ, ሿݕ ൌ ሼ ݔ௜ݕ௝ ׷    0 ൑  ݅, 0 ൑  ݆ ൑  ሽ,ܮ 

is partitioned according to the exponent of y: ௅ࣧሾݔ, ሿݕ ൌ ڂ  ௝ࣧ
௅
௝ୀ଴  

where                               ௝ࣧ  ൌ ሼݔ௜ݕ௝: ݅ ൒  0ሽ 

This partition of ௅ࣧ induces a partition on  ܨ௅ሾݔ, ,ݔ௅ሾܨ  :,ሿݕ ,ሿݕ ൌ  ܵ ଴ ׫  ・・ ・ ׫ ܵ௅, where 

௝ܵ  ൌ  ሼܳ א ,ݔ௅ሾܨ   ሿݕ ׷ ሺܳሻܯܮ  א   ௝ࣧ ሽ 

Koetter’s algorithm generates a sequence of lists ܩ଴, ,ଵܩ . . . , ஼ܩ , with 

௜ܩ  ൌ  ሺ݃௜,଴, . . . , ݃௜,௅ሻ, 

where ݃௜,௝ is a minimal element of ܭపഥ  ௝ܵ . The algorithm’s output is the polynomial ת 

ܳ଴ሺݔ, ሻݕ ൌ min
଴ஸ୨ஸL

݃஼,௝ሺݔ,  ሻݕ

which is a minimal rank element of ܭഥ஼. 

Koetter’s algorithm is initialized as follows: 

݃଴,௝ ൌ ݅    ,௝ݕ ൌ 0, … ,  ܮ

Given ܩ௜,  :௜ାଵ is defined recursivelyܩ

଴ܬ  ൌ  ሼ݆ ׷ ௜ାଵሺ݃௜,௝ሻܦ   ൌ  0ሽ 
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ଵܬ  ൌ  ሼ݆ ׷ ௜ାଵሺ݃௜,௝ሻܦ   ്  0ሽ 

If ܬଵ is not empty, among the polynomials ݃௜,௝ with  ݆ א  be the one with כଵ, let ݃௜,௝ܬ 

minimal rank; and temporarily denote ݃௜,௝כ  by f: 

 

݂ ൌ  min
௝ א௃భ

݃௜,௝ 

כ݆ ൌ argmin
௝ א௃భ 

݃௜,௝ 

Then using the notation of linear functionals, ݃௜ାଵ,௝ is defined for  ݆ ൌ  0, . . . ,  ,ܮ

݃௜ାଵ,௝  ൌ  ቐ
݃௜,௝                   ݂݅ ݆ א ଴ܬ 

ሾ݃௜,௝, ݂ሿ஽೔ାଵ     ݂݅ ݆ א ଵܬ 
ሾ݂ݔ, ݂ሿ஽೔ାଵ    ݂݅ ݆       ൌ כ݆

്       ݆ ݐݑܾ  כ݆

Theorem 4-6 

For ݅ ൌ  0, . . . , we have ݃௜,௝ ,ܥ  ൌ  ݉݅݊ ሼ݃ ׷ א ݃  ഥ௜ܭ  ת   ݆ܵሽ        ݂ݎ݋ ݆ ൌ  0, . . . ,  [1] .ܮ

Algorithm 4-1 : Koetter’s Interpolation for Guruswami-Sudan Decoder [1,8] 

,௜ݔሺ  ݏݐ݊݅݋ܲ  :ݐݑ݌݊ܫ ,௜ሻݕ ݅
ൌ 1, … , ݊. ;௜݉ ݎ݁݀ݎ݋ ݊݋݅ݐ݈ܽ݋݌ݎ݁ݐ݊݅ ݄݁ܶ ܽ ሺ1, ;ݎ݁݀ݎ݋ ݈ܽ݅݉݋݊݋ሻ݉ݒ  ܮ

:ݏ݊ݎݑݐܴ݁ ܳ଴ሺݔ,  ݈ܾ݉݁݋ݎ݌ ݊݋݅ݐ݈ܽ݋݌ݎ݁ݐ݊݅ ݄݁ݐ ݃݊݅ݕ݂ݏ݅ݐܽݏሻݕ

:݁ݖ݈݅ܽ݅ݐ݅݊ܫ ݃௝ ൌ ݆ ݎ݋௝݂ݕ ൌ 0, … ,  .ܮ

݅ ݎ݋݂              ൌ ݅  ݉݋ݎ݂ ݋ሺ݃    ݊ ݋ݐ 1 െ  ሻ݁݃ܽݐݏ ݄ݐ݅ ݋ݐ ݁݃ܽݐݏ ݐݏ 1

ܥ                        ൌ ሺ௠೔ା ଵሻ௠೔
ଶ

                               ሺ݋݊ ݁ݐݑ݌݉݋ܥ.  ሻ݀݁ݒ݈݋ݒ݊݅ ݏ݁ݒ݅ݐܽݒ݅ݎ݁݀ ݂݋

,ݎሺ ݎ݋݂                       ሻݏ ൌ ሺ0,0ሻ ݋ݐ ሺ݉௜ െ  1,0ሻܾݕ ሺ݉௜ െ  1,1ሻ݈݁ܥ ݋ݐ 1 ݉݋ݎ݂ ݎ݁݀ݎ݋ ݔ  

݆  ݎ݋݂                               ൌ  ܮ  ݋ݐ 0

                                   Δ୨ ൌ Dሺ୰,ୱሻg୨ሺx୧, y୧ሻ  

                             ݁݊݀         ሺ݂ݎ݋ ݆ሻ    

ܬ        ൌ ൛݆ ׷  Δ୨  ് 0ൟ              ሺܵ݁݊݋݊ ݂݋ ݐ െ   ሻݏ݁݅ܿ݊ܽ݌݁ݎܿݏ݅݀ ݋ݎ݁ݖ

                                ݂݅ ሺܬ ്  ሻ׎

                                    
כ݆ ൌ arg min൛ ݃௝:  ݆ א  ሻ݁݁ݎ݃݁݀ ݀݁ݐ݄݃݅݁ݓ ݐݏ݈ܽ݁ ݂݋ ݈ܽ݅݉݋݊ݕ݈݋݌ൟ       ሺܬ

                                    ݂ ൌ ݃௝כ    ;      Δ ൌ  Δ୨כ 
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א ݆    ݎ݋݂                                           ܬ

                                                     ݂݅  ሺ ݆ ്  ሻכ݆ 

                                                     ݃௝ ൌ  Δ݃௝ െ  Δ୨݂             ሺ݇݊ܽݎ ݊݅ ݄݁݃݊ܽܿ ݐݑ݋݄ݐ݅ݓ ݁ݐܽ݀݌ݑሻ  

݆ ሺ ݂݅ ݁ݏ݈݁                                                    ൌ  ሻכ݆ 

                                                   ݃௝ ൌ ሺx െ x୧ሻ݂             ሺ݇݊ܽݎ ݊݅ ݄݁݃݊ܽܿ ݄ݐ݅ݓ ݁ݐܽ݀݌ݑሻ 

                                                   ݁݊݀ሺ݂݅ሻ 

                                     ݁݊݀  ሺ݂ܬ ݎ݋ሻ 

                           ݁݊݀    ሺ ݂݅  ܬሻ 

                      ݁݊݀ ሺ ݂ݎ݋ ሺݎ,  ሻ  ሻݏ

            ݁݊݀  ሺ݂ݎ݋ ݅ሻ 

ܳ଴ሺݔ, ሻݕ ൌ  min୨  ሼ ݃௝ሺݔ, ሻ  ሽݕ                 ሺ݈݁ܽ݁݁ݎ݃݁݀ ݀݁ݐ݄݃݅݁ݓ ݐݏሻ 

4.7  The Roth-Ruckenstein Solution to the Factorization Problem 

The most efficient algorithm currently known for solving the factorization problem is due to 

Roth and Ruckenstein [25].  

The factorization problem is this: given a polynomial ܳሺݔ, ሻݕ א  ,ݔሾܨ  ,ሿݕ  find all 

polynomials ݂ሺݔሻ  of degree ൑ ݒ   such that ሺݕ െ  ݂ሺݔሻሻ | ܳሺݔ, .ሻݕ  Alternatively, find all 

݂ሺݔሻ א   ሿ such thatݔ௩ሾܨ 

ܳሺݔ, ݂ሺݔሻሻ ؠ   0. 

If this condition holds, we call ݂ሺݔሻ a y-root of ܳሺݔ,  ሻ. This section describes an algorithmݕ

due to Roth and Ruckenstein [1] for finding y-roots. 

If Q(x, y) is a two-variable polynomial such that ݔ௠ | ܳሺݔ, ௠ାଵݔ ሻ, butݕ ץ ܳሺݔ,  ሻ,defineݕ

,ݔሺܳۃ ۄሻݕ ؜   
ܳሺݔ, ሻݕ

௠ݔ   

Although ܳሺ0, ,ሺ0ܳۃ ሻ might be identically zero, neverthelessݕ  is a nonzero polynomial in ۄሻݕ

y. 

Suppose 

݂ሺݔሻ  ൌ  ܽ଴  ൅  ܽଵݔ ൅  ・ ・ ・ ൅  ܽ௩ݔ௩ 

is a y-root of Q(x, y). We will see that the coefficients ܽ଴, ܽଵ … , ܽ௩    can be “picked off,” one 

at a time. As a start, the following lemma shows how to determine ܽ଴ [1,8]. 
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Lemma 4-5 

If  ሺݕ െ  ݂ሺݔሻሻ | ܳሺݔ, ൌ ݕ ሻ thenݕ  ݂ሺ0ሻ  ൌ  ܽ଴ is a root of the equation ܳ଴ሺ0,  ሻ  = 0, whereݕ

ܳ଴ሺݔ, ሻݕ ൌ ,ݔሺܳۃ   .ۄሻݕ

We now proceed by induction, defining three sequences of polynomials  ௝݂ሺݔሻ, ௝ܶሺݔ,  ,ሻݕ

ܽ݊݀ ܳ௝ሺݔ, ሻ,for  ݆ ൌݕ  0, 1, . . . ,  .as follows  ,ݒ

Initially, ଴݂ ൌ׷  ݂ሺݔሻ, ܳ଴ሺݔ, ሻݕ ൌ׷ ,ݔሺܳۃ    .ۄሻݕ

For j ≥ 1 define 

௝݂ሺݔሻ: ൌ ௝݂ିଵሺݔሻ െ  ௝݂ିଵሺ0ሻ
ݔ ൌ  ௝ܽ  ൅  ・ ・ ・ ൅  ܽ௩ݔ௩ି௝    

௝ܶሺݔ, ሻݕ ൌ׷  ܳ௝ିଵሺݔ, ൅ ݕݔ  ௝ܽିଵሻ 

ܳ௝ሺݔ, ሻݕ ൌ׷ ۃ  ௝ܶሺݔ,  ۄሻݕ

Theorem 4-7 

Given ݂ሺݔሻ ൌ  ܽ଴  ൅ ܽଵݔ ൅ ൅ ڮ  ܽ௩ݔ௩ א ,ݔሿ, and ܳሺݔ௩ሾܨ  ሻݕ א  ,ݔሾܨ   ሿ, define theݕ

sequences ௝݂ሺݔሻ and ܳ௝ሺݔ, ሻ as above. Then for any ݆ ൒ݕ  1, ሺݕ െ ݂ሺݔሻሻ | ܳሺݔ,  ሻݕ

if and only if ሺݕ െ  ௝݂ሺݔሻሻ | ܳ௝ሺݔ,  .ሻݕ

Here is the “picking off” theorem. [7,8] 

Corollary 
If ሺݕ െ ݂ሺݔሻሻ | ܳሺݔ, ൌ ݕ ሻ thenݕ  ௝ܽ   is a root of the equation 

ܳ௝ሺ0, ሻݕ  ൌ ൌ ݆ ݎ݋݂      ,0   0, . . . ,  .ݒ

 
Corollary 
If ݕ | ܳ௩ାଵሺݔ, ,ݔሻ, i.e., if ܳ௩ାଵሺݕ 0ሻ ൌ 0,, then ݂ሺݔሻ ൌ  ܽ଴  ൅ ܽଵݔ ൅ ൅ ڮ  ܽ௩ݔ௩ is a y-root of 

ܳሺݔ,  .ሻݕ

The following Lemma provides some insight into the all-important transformation 

Q(x, y) → Q(x, xy + a) 

Lemma 4-6 

If                                                         ܳሺݔ, ሻݕ ൌ  ∑ ሻ௜ݕ௜݃௜ሺݔ  

                       ൌ ෍ ௝݃௜ሺ0ሻܦ௝ݕ௜ݔ
௜,௝

  

Then                                           ܳሺݔ, ݕݔ ൅ ܽሻ ൌ ∑ ௝݃௜ି௝ሺܽሻ௜,௝ܦ௝ݕ௜ݔ  

where ܦ௜ denotes the ݅th one-dimensional Hasse derivative. 

Symbolically, this lemma can be summarized as follows: 
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ܳሺݔ, ሻݕ ൌ ൦

݃଴ሺ0ሻ ଵ݃ሺ0ሻ ݃ଶሺ0ሻ ݃ଷሺ0ሻ
ଵ݃଴ሺ0ሻܦ ଵ݃ଵሺ0ሻܦ ଵ݃ଶሺ0ሻܦ ଵ݃ଷሺ0ሻܦ
ଶ݃଴ሺ0ሻܦ ଶ݃ଵሺ0ሻܦ ଶ݃ଶሺ0ሻܦ ଶ݃ଷሺ0ሻܦ

ڮ

ڭ

൪ 

 

ܳሺݔ, ݕݔ ൅ ܽሻ ൌ ൦

݃଴ሺܽሻ ଵ݃ሺܽሻ ݃ଶሺܽሻ ݃ଷሺܽሻ
0 ଵ݃଴ሺܽሻܦ ଵܦ ଵ݃ሺܽሻ ଵ݃ଶሺܽሻܦ
0 0 ଶ݃଴ሺܽሻܦ ଶ݃ଵሺܽሻܦ

ڮ

ڭ

൪ 

 

In words: if the entries of column j of Q(x, y) are interpreted as the coefficients of a 

polynomial, say ݃௝ሺݖሻ, then the entries of the jth diagonal of Q(x, xy+a) are the coefficients 

of the polynomial ݃௝ሺݖ ൅ ܽሻ [1,23]. 

A pseudocode representation of the RR algorithm is given below. It takes as input a 

bivariate polynomial Q(x, y) and positive integer D, and returns as output the set of all y-roots 

of Q(x, y) of degree ≤ D. The strategy adopted by the algorithm is “depth-first search,” as 

described in [1,25].  

4.8 Roth-Ruckenstein Pseudo code for Finding y-roots of Q(x,y) [1] 

ݐݑ݌݊ܫ ׷ ܳሺݔ, ,ሻݕ  ሻ ሻݔሺ݌ ݂݋ ݁݁ݎ݃݁݀ ݉ݑ݉݅ݔܽ݉ ݄݁ݐ ݏ݅ ܦ ݁ݎ݄݁ݓሺ    ܦ

:ݐݑ݌ݐݑܱ ൑ ݁݁ݎ݃݁݀ ݂݋ ሻݔሺ݌ ݏ݈ܽ݅݉݋݊ݕ݈݋݌ ݂݋ ݐݏ݅ܮ ݕሺ ݐ݄ܽݐ ݄ܿݑݏ ܦ െ ,ݔሻ ሻ| ܳሺݔሺ݌  ሻݕ

 :݊݋݅ݐܽݖ݈݅ܽ݅ݐ݅݊ܫ

ሻݔሺ݌ ݐ݁ܵ ൌ 0 , ݑ ൌ degሺ݌ሻ ൌ  െ1, ܦ ൌ  ሻ݈ܾܽ݋݈݃ ݈ܽ݊ݎ݁ݐ݊݅ ݏܽ ݐ݁ݏሺ ݁݁ݎ݃݁݀ ݉ݑ݉݅ݔܽ݉

 .݀݁ݒܽݏ ݁ݎܽ ݏ݈ܽ݅݉݋݊ݕ݈݋݌ ݁ݎ݄݁ݓ ݐݏ݈݅ ݈݀݁݇݊݅ ݌ݑ ݐ݁ܵ

ൌ ݒ ݐ݁ܵ  0 ሺ݁݀݋݊ ݄݁ݐ ݂݋ ݎܾ݁݉ݑ݊ ݄݁ݐ;  .ሻ݈ܾ݁ܽ݅ݎܽݒ ݈ܾܽ݋݈݃ 

,ݔሺ ܳሺ ݁݁ݎݐ݇ܿݑݎ݄ݐ݋ݎ  ݈݈ܽܥ ,ሻݕ ,ݑ  ሻ ݌

 

,ܳ ሺ ݁݁ݎݐ݇ܿݑݎ݄ݐ݋ݎ ݊݋݅ݐܿ݊ݑܨ ,ݑ  ሻ݌

,ݔሺܳ  :ݐݑ݌݊ܫ ,ሻݕ  ሻ݌ ݂݋ ݁݁ݎሺ݀݁݃  ݑ ݀݊ܽ ሻݔሺ݌

:ݐݑ݌ݐݑܱ  ݏ݈ܽ݅݉݋݊ݕ݈݋݌ ݂݋ ݐݏ݅ܮ

ൌ ݒ   ݒ  ൅ 1       ሺ݅݊ܿݎܾ݁݉ݑ݊ ݁݀݋݊ ݐ݊݁݉݁ݎሻ 

,ݔሺ ܳሺ ݂ܫ ሻݕ  ൌ  0 ሻ 

 ݐݏ݈݅ ݐݑ݌ݐݑ݋ ݄݁ݐ ݋ݐ ሻݔሺ݌ ݀݀ܣ   

݁݊݀ ሺ݂݅ሻ 
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൏ ݑ ሺ ݂݅ ݁ݏ݈݁  ሻ݁݁ݎݐ ݄݁ݐ ݂݋ ݄ܿ݊ܽݎܾ ݎ݄݁ݐ݋݊ܽ ݕݎݐሻ    ሺܦ

    ܴ ൌ ,ሺ0ܳ ݂݋ ݏݐ݋݋ݎ ݂݋ ݐݏ݈݅   ሻݕ

א ן   ݄ܿܽ݁ ݎ݋݂     ܴ   

        ܳ௡௘௪ሺݔ, ሻݕ ൌ  ܳሺݔ,  ሻ݈ܽ݅݉݋݊ݕ݈݋݌ ݄݁ݐ ݐ݂݄݅ݏሻ            ሺן൅ݕݔ

௨ାଵ݌           ൌ  ן             ሺ݊݁݌ ݂݋ ݐ݂݂݊݁݅ܿ݅݁݋ܿ ݓሺݔሻ   ሻ 

,ݔ௡௘௪ሺܳۃ ሺ ݁݁ݎݐ݇ܿݑݎ݄ݐ݋ݎ  ݈݈ܽܥ           ,ۄሻݕ ݑ ൅ 1,  ሻ݈݈ܽܿ ݁ݒ݅ݏݎݑܿ݁ݎ  ሻ           ሺ ݌

    ݁݊݀ ሺ݂ݎ݋ሻ 

݊݋݊ ݄ݐ݅ݓ ݄݀݁ܿܽ݁ݎ ݁݁ݎݐ ݂݋ ሺ݈݂݁ܽ ݁ݏ݈݁ െ  ሻ݈ܽ݅݉݋݊ݕ݈݋݌ ݋ݎ݁ݖ

    ሺ݊ݐݑ݌ݐݑ݋ ݋ሻ 

݁݊݀ ݂݅ 

݁݊݀ 
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CHAPTER 5                                                         

DIRECT SEQUENCE SPREAD SPECTRUM 

SYSTEMS AND CODE ACQUISITION   

 

 Spread spectrum is a communication technique which is widely used in the radar, navigation 

and telecommunication systems and playing a dominant role in the philosophy of the 

forthcoming generation of systems and networks. The amount of interest and research effort 

invested in this area is growing constantly especially after successful commercial success of 

Code division multiple access (CDMA) mobile telephone (IS-95) and the use of CDMA as the 

basic platform of 3G mobile radio [27]. 

The term Spread spectrum is today one of the most popular in the radio engineering 

and communication community. At the same time, it appears difficult to formulate an 

unequivocal and precise definition which distinguishes clearly between a spread spectrum and 

non-spread spectrum system.  

A rather frequent way to explain the concept consists in the statement that a system or 

a signal is of spread spectrum type if its bandwidth significantly exceeds the minimum 

bandwidth necessary to send the information.  

The very idea of a minimum bandwidth of information or message is full of ambiguity 

because there is no standard definition of bandwidth.  A better definition is the one which 

incorporates Gabor’s uncertainty principle [27]. 

A signal for which product of signal duration and bandwidth are of the order of 1 i.e. 

they are tightly linked together is called a “Plain” or “Non-spread spectrum signal”. The only 

way to widen the bandwidth of a plain signal is to increase its bandwidth. On the other hand a 

deterministic signal for which time-bandwidth product is very greater than 1 and bandwidth 

can be governed independently of duration is called Spread Spectrum one. A system 

employing spread spectrum signals is a spread spectrum system. 
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An important difference that a spread spectrum modulated signal has over other 

conventional modulation techniques is that in spread spectrum modulation, the most precious 

resources of the communication channel i.e. bandwidth and power are sacrificed in order to 

achieve the goal of secure communications [15]. 

An important advantage of a spread-spectrum communication system is that it can 

provide immunity against externally generated (interfering) signals with finite power. The 

interference can be intentional as well as un-intentional. Protection against jamming 

waveforms is provided by purposely making the information bearing signal occupy a 

bandwidth far in excess of the minimum bandwidth necessary to transmit it. This has the 

effect of making the transmitted signal assume a noise-like appearance so as to blend into the 

background. The transmitted signal is thus enabled to propagate through the channel 

undetected by anyone who may be listening.  

Spread spectrum systems were initially developed for military application, where 

resistance to jamming was of major concern. However, there are non-tactical applications 

which make use of beneficial attributes of a spread spectrum system. For example, it can be 

used to provide multipath rejection in ground-based mobile radio environment. Another 

application is in multiple-access communications in which a number of independent users are 

required to share a common channel without an external synchronizing mechanism [14]. 

5.1 Pseudo-Noise Sequences 

All spread spectrum signals utilize some kind of a code which is independent of the 

data to spread the spectrum before transmission. These codes have special auto-correlation 

and cross-correlation properties and are called Pseudo-random noise (PN) codes because these 

sequences have white-noise like statistical properties while being obviously deterministic 

[15,16]. Thus, the sequence is "nearly random". The method most frequently used to generate 

pseudo-random codes is based on a feedback shift register. 

Various spread spectrum systems can be classified based upon the exact point of usage 

of the PN sequence. On the transmitter end, they are used to increase the signal spectrum and 

hence called Spreading. On the receiver end, they are used to reduce the signal spectrum to 

its original bandwidth and hence called Despreading.  The factor by which bandwidth of the 

signal is increased is called the Processing Gain of the system. 

There are two categories regarding the length of codes: 
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5.1.1 Short codes 

In this category, same PN-sequence is used for each data symbol i-e  

௖ܰ  . ௖ܶ  ൌ  ௌܶ 

Where  

௖ܰ is the length of sequence 

௖ܶ is the chip period 

ௌܶ is the symbol period 

5.1.2 Long codes 

For long codes, the PN-sequence period is much longer than that of the data symbol so that a 

different chip pattern is associated with each symbol. 

௖ܰ  . ௖ܶ ب   ௌܶ 

5.2 Properties of PN-sequences 

PN-sequences of maximal length have a number of special properties possessed by a truly 

random binary sequence. A random binary sequence is a sequence in which the presence of 

binary symbol 1 or 0 is equally probable [14, 15]. Some properties of such sequences are as 

follows: 

5.2.1 Balance property 

In each period of the sequence the number of binary ones differs from the number of binary 

zeros by at most one digit (for Nc odd). 

Pn = +1  +1  +1  -1  +1  -1  -1   ∑ = +1 

5.2.2 Run length Property 

A “run” means a subsequence of identical symbols (1s or 0s) within one period of the 

sequence. The length of these subsequences is the length of the run.  For maximal length PN 

sequences; among the runs of 1s and 0s in each period of a maximal-length sequence, one half 

the runs of each kind are of length one, one fourth are of length two, one eighth are of length 

three, and so on as long as these fractions represent positive number of runs. This property is 
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called Run property. For a maximal length sequence generated by a linear feedback shift 

register of length ݉, the total number of runs is ሺܰ ൅ 1ሻ/2 where ܰ ൌ 2௠ െ 1. 

5.2.3 Autocorrelation 

The auto-correlation function of a maximal-length PN sequence is periodic and binary-

valued. The origin of the name pseudo-noise is that the sequence has an autocorrelation 

function which is very similar to that of a white noise signal. The autocorrelation function for 

the periodic sequence PN is defined as the number of agreements less the number of 

disagreements in a term by term comparison of one full period of the sequence with a cyclic 

shift (position τ) of the sequence itself. 

ܴሺτሻ ൌ  න p୬ሺtሻp୬ሺt ൅ τሻdt
NౙTౙ/ଶ

ିNౙTౙ/ଶ
 

The autocorrelation has a large peaked maximum only for perfect synchronization of 

two identical sequences. For a period of the maximal-length sequence, the auto-correlation 

function is somewhat similar to that of a random binary wave. The synchronization of the 

receiver is based on this property. 

 

Figure 5-1: Autocorrelation and Time/frequency domain representation of PN-sequence [14] 
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5.2.4 Frequency spectrum 

Periodicity of the PN sequence in the time domain is transformed into uniform 

sampling in the frequency domain. Its frequency spectrum has spectral lines which become 

closer to each other with increasing sequence length ௖ܰ .  Each line is further smeared by data 

scrambling, which spreads each spectral line and further fills in between the lines to make the 

spectrum more nearly continuous. The DC component is determined by the zero-one balance 

of the PN-sequence. 

5.2.5 Cross-correlation 

Cross-correlation describes the interference between codes p୬୧ and p୬୨. 

ܴ௖ሺ߬ሻ ൌ න p୬୧ሺtሻp୬୨ሺt ൅ τሻdt
NౙTౙ/ଶ

ିNౙTౙ/ଶ
 

It is a measure of agreement between two different codes p୬୧  and p୬୨. When the cross-

correlation ܴ௖ሺ߬ሻ is zero for all τ, the codes are called orthogonal. In multi-user environment, 

users occupy the same RF bandwidth and transmit simultaneously. When the user codes are 

orthogonal, there is no interference between the users after de-spreading and the privacy of the 

communication of each user is protected. 

In practice, codes are not perfectly orthogonal, hence the cross-correlation between 

user codes introduces performance degradation (increased noise power after de-spreading), 

which limits the maximum number of simultaneous users. 

The construction or selection of proper sequences is not trivial. To guarantee efficient 

Spread Spectrum communications, the sequences must respect certain rules, such as length, 

auto-correlation, cross-correlation and bits balancing. The popular sequences include Barker, 

M-Sequence, Gold, Walsh etc. Every sequence has its own characteristics like gold codes 

have better cross-correlation properties so they are good for multi-user environment.  

5.3 Types of Spread Spectrum Systems 

Different Spread Spectrum techniques are distinguished according to the point in the 

system at which a pseudo-random code is inserted in the communication channel. This is 

illustrated in the figure below. 
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Figure 5-2: Spreading techniques [14] 

If the PN sequence is inserted at the data level, we have the direct sequence form of 

spread spectrum (DSSS). If the PRN acts at the carrier-frequency level, we have the frequency 

hopping form of spread spectrum (FHSS). Applied at the local oscillator (LO) stage, FHSS 

PN codes force the carrier to change or hop according to the pseudo-random sequence. If the 

PRN acts as an on/off gate to the transmitted signal, we have a time hopping spread spectrum 

technique (THSS). There is also the chirp technique, which linearly sweeps the carrier 

frequency in time. Our topic of discussion for the rest of this chapter is the acquisition of 

DSSS signals in the receiver. 

5.4 Direct Sequence Spread Spectrum (DSSS) 

Direct Sequence Spread Spectrum transmissions multiply the data being transmitted by 

a "noise" signal. This noise signal is a pseudorandom sequence of 1 and −1 values, at a 

frequency much higher than that of the original signal, thereby spreading the energy of the 

original signal into a much wider band. 

The resulting signal resembles white noise which can be filtered out at the receiving 

end to recover the original data, by again multiplying the same pseudorandom sequence to the 

received signal. Spreading operation can be summarized as: 

The binary data ݀௧with symbol rate Rs = 1/Ts is multiplied with the pseudo-noise code 

pnt with chip rate Rc = 1/Tc to produce the transmitted baseband signal txb.  

txb = dt . pnt 

The effect of multiplication of dt with the PN-sequence is to spread the baseband bandwidth 

Rs of dt to a baseband bandwidth of Rc. Following figure illustrates this phenomenon. 
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Figure 5-3: DSSS transmitter end [14] 

 

Figure 5-4: DSSS Spreading [14] 

The bandwidth expansion factor or processing gain, being the ratio of chip rate Rc and 

the data symbol rate Rs, is usually selected to be an integer in practical spread spectrum 

systems. 

ss c s
p c

d s c

BW R TG N
BW R T

= = = =  

The de-spreading operation can be summarized as: 

At the receiver, the received baseband signal rxb is multiplied with the PN-sequence 

pnr. If pnr = pnt and synchronized to the PN-sequence in the received data, then the recovered 

binary data is produced on dr.  
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Figure 5-5: DSSS Receiver end [14] 
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Last equation holds only if the sequences are perfectly synchronized with each other. 

The effect of multiplication of the spread spectrum signal rxb with the PN-sequence pnt used 

in the transmitter is to de-spread the bandwidth of rxb to Rs. This is illustrated in the following 

figure. 

 

Figure 5-6: Direct-Sequence de-spreading [14] 

If pnr ≠ pnt, then there is no de-spreading action. The multiplier output becomes: 

.
( . ).

r b r

r t t r

d rx pn
d d pn pn

=

=
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In the receiver, detection of the desired signal is achieved by correlation against a local 

reference PN-sequence. For secure communications in a multi-user environment, the 

transmitted data dt may not be recovered by a user that doesn’t know the PN-sequence pnt 

used at the transmitter. Therefore the cross-correlation between all PN-sequences used for 

multi-user transmission should be ideally zero. If this is achieved then the output of the 

correlator used in the receiver is approximately zero for all except the desired transmission. 

5.5 DSSS acquisition 

One of the most characteristic problems in spread spectrum technology is measuring the time 

of arrival and frequency of the received signal [27]. In the systems where spread spectrum 

signals are used for ranging and measurement of object motion parameters (radar, sonar, and 

navigation), time-frequency estimation is the main task. In spread spectrum communications, 

it is the core of the timing recovery procedure. In fact to correctly demodulate the transmitted 

data, a receiver of every digital communication system must know with sufficient accuracy 

the border of symbols, frames etc. in the received data stream. In other words, the local 

receiver clock should be properly synchronized with the received data stream. The initial 

acquisition of the correct phase offset is referred to as the coarse acquisition. The subsequent 

tracking, once coarse acquisition has been achieved is sometimes called fine acquisition. 

Coarse acquisition consists of searching the time/frequency space illustrated in the figure 

below. 

 

Figure 5-7 Time/Frequency Search Space associated with coarse sync/ acquisition 
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In case of DSSS systems, fortunately, the carrier frequency is generally known in 

advance and the search is needed only in the time dimension.[26] Coarse acquisition attempts 

to adjust the phase offset of the locally generated pseudo random sequence to within a large 

fraction of one chip time, ஼ܶ. 

5.5.1 Search Strategies for Acquisition: 

Irrespective of the code used, the code space must be searched in some fashion to find the 

correct phase offset. There are several ways to accomplish this.  

5.5.1.1 Serial Search 

The simplest is a serial approach where one phase offset at a time is attempted and the 

comparison with the threshold is made. If the sequence length is large, however, this approach 

can be very slow if bounds on the search space are not available.[16]  

5.5.1.2 Parallel Search 

On the other hand, a fully parallel search which is the fastest way can also be performed. In 

this architecture, N parallel matched filters would simultaneously search the code space, one 

offset for each matched filter. The filter with the largest output would correspond to the 

correct phase offset. If N is large, implementation would be prohibitive, however [16]. 

5.5.1.3 Multi-dwell Approach 

Between these approaches, fully serial and fully parallel, there are compromises that can be 

made. Instead of a fully parallel implementation, for example, some smaller number of 

parallel matched filters could also be included.[26] Multi-dwell search is one such approach. 

The first correlator implements a relatively low threshold with a short integration time. Its 

purpose is to quickly eliminate offsets that are not acceptable. This stage would have a 

relatively high false alaram rate but corresponding high probability of detection. The second 

correlator implements a small false alarm rate and small probability of miss, and therefore a 

large acquisition time. The goal is to have the first stage hand off to the second infrequently so 

the overall acquisition time is minimized. 
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5.6 Correlation in Frequency Domain: 

Time average cross-correlation of two sequences ݎሺ݊ሻ and ݌ሺ݊ሻ for a lag of ߬ is defined as 

follows                                         ܿሺ߬ሻ ൌ  ∑ ሺ݊݌ሺ݊ሻݎ ൅ ߬ሻ 

where the summation is taken over all the non-zero values of ݎሺ݊ሻ and ݌ሺ݊ሻ. Let the number 

of such indices be ܰ. However, this correlation can be done with much less computations in 

the frequency domain by following relationship 

ܿሺ߬ሻ ൌ ሺ݊ሻሻݎሺ ܶܨܨ   ሺ ܶܨܫ כ  ሺ݊ሻ൯   ሻ݌തതതത൫ܶܨ 

where IFFT denotes operation of inverse Fourier transform and FT means Forward Fourier 

transform and a bar over it represents its complex conjugate. In order to compute correlation 

for a single lag in time domain, we have to perform ܰଶ multiplications and ܰ െ 1 additions 

while in the case of FFT based approach we can compute correlation for all the lags with only 

ܰ logଶ ܰ complex additions and multiplications. So, computing correlation in frequency 

domain is much simpler computationally when compared with time domain calculations. 

Following section explains how this scheme is implemented.   

5.7 Implementation Details: 

For HDL implementation of DSSS acquisition, parallel search technique is used. Correlation 

of the local reference signal with the received signal is performed in the frequency domain. 

Length of the selected PN sequence is 512 chips. Received signal is stored in a read only 

memory (ROM) having a depth of 1024 (corresponding of two periods of the PN sequence) 

and width of 16 bits. Both real and imaginary parts of the conjugate of the Fourier Transform 

of the local reference PN noise are also stored in two separate ROMs. Each of these ROMs 

has a depth of 512 and precision of 16 bits. Correlation is performed for two periods of the PN 

sequence. Overall block diagram is shown in Figure 5-8. FFT is computed by using the built-

in Xilinx Intellectual Property (IP) core in the Radix-2 Burst I/O mode of operation. For the 

product specifications see [11]. The FFT result for the received sequence is shown in the 

Figure 5-9. 
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Figure 5-8:  Parallel search acquisition architecture for DSSS systems. 

 

Figure 5-9   Fast Fourier Transform of the Received signal 

 

 

 

 

 

The computed FFT of the received sequence and stored FFT of the local reference sequence 

are multiplied together using a complex multiplier. Modelsim simulation waveform for the 

product is shown in the Figure 5-10. 

Product 
 (Real part) 

Product  
(Imag. part) 

FFT  (Real part) 

FFT  (Imag. part) 

Figure 5-10 Real and Imaginary Parts of the Complex Multiplier output 
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Then we take the inverse Fourier Transform of this product to get the result for the received 

sequence cross-correlation with the local reference PN sequence. Modelsim waveform for this 

computed correlation and its maximum correlation lag is shown in the Figure 5-11. 

 

Figure 5-11: Cross-correlation of Received signal with Reference PN sequence 

Once the maximum index of correlation is available, we add it to the address counter 

of the received signal ROM to remove the offset of the two signals.  This completes the 

process of code acquisition.  
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CHAPTER 6                                                       

SIMULATION AND IMPLEMENTATION OF REED 

SOLMON CODEC ARCHITECTURES 

 

Area efficient and high speed VLSI architectures for encoding and decoding Reed–Solomon 

codes with the Berlekamp–Massey algorithm are presented in this chapter. The speed 

bottleneck in the Berlekamp–Massey algorithm is in the iterative computation of 

discrepancies followed by the updating of the error-locator polynomial [6]. This bottleneck 

can be eliminated via a series of algorithmic transformations that result in a fully systolic 

architecture in which a single array of processors computes both the error-locator and the 

error-evaluator polynomials. In contrast to conventional Berlekamp–Massey architectures in 

which the critical path passes through two multipliers and   1 ൅ logଶڿ ݐ ൅ 1ሻۀ adders, the 

critical path in reformulated inversion-less Berlekamp Massey architectures passes through 

only one multiplier and one adder, which is comparable to the critical path in architectures 

based on the extended Euclidean algorithm [3,4].  

6.1 Arithmetic Operations in Galois Field 

Before discussing Reed Solomon codec architecture, we discuss how addition and 

multiplication is performed in the Galois Field GF(2m). 

6.1.1 Addition in Galois Field GF(2m) 

Addition and subtraction are same in GF(2m). Addition is performed by expressing both the 

operands in the polynomial representation. Then we take bit- by bit exclusive-or (XOR) of the 

corresponding bits to get the result of addition [1,10]. 

6.1.2 Multiplication in Galois Field GF(2m) 

Multiplication of GF(2m) is bit more completed. We define the primitive polynomial of the 

field and its root is known as the primitive element (we can express all the non-zero elements 

of the field as powers of the primitive element.) We express both the multiplier and the 
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multiplicand as the powers of the primitive element. Let ߙ be the primitive element and ߙ௜ 

and ߙ௝ be the two operands. Then the product is defined as follows: 

௟ߙ ൌ ௝ߙ௜ߙ  ൌ ௜ା௝ߙ  ൌ   ሺ௜ା௝ሻ௠௢ௗሺଶ೘ିଵሻߙ 

We present an example of the design of a GF(24) multiplier. Let ߙ be the primitive 

element of the field corresponding to the primitive polynomial 

݃ሺݔሻ ൌ  1 ൅ ݔ ൅  ସݔ

As ߙ is  a root of the primitive polynomial and addition and subtraction are  same 

operation in the GF(2m),                                           ߙସ ൌ ߙ  ൅ 1 

In order to develop an architecture for a GF(24) multiplier , we first consider an arbitrary field 

element ܨܩ ߳ ߚሺ2௠ሻ which is to multiplied with the primitive element ߙ of the field. 

Polynomial representation of ߚ in terms of ߙ is as follows 

ߚ ൌ ܾ଴ ൅  ܾଵߙ ൅ ܾଶߙଶ ൅  ܾଷߙଷ  

Multiplying it with ߙ, we get 

ߚߙ ൌ ߙ כ ሺܾ଴ ൅  ܾଵߙ ൅ ܾଶߙଶ ൅  ܾଷߙଷሻ 

ൌ   ܾ଴ߙ ൅  ܾଵߙଶ ൅ ܾଶߙଷ ൅  ܾଷߙସ   

But                                                  ߙସ ൌ ߙ  ൅ 1 

So,                                         ߚߙ ൌ  ܾ଴ߙ ൅  ܾଵߙଶ ൅ ܾଶߙଷ ൅ ܾଷሺߙ ൅ 1ሻ 

ൌ ߚߙ         ܾଷ  ൅  ሺܾ଴ ൅ ܾଷሻߙ ൅ ܾଵߙଶ ൅  ܾଶߙଷ 

 

This alpha–gain block is shown in Figure 6-1. 

 

Figure 6-1: An alpha-gain block for GF(24) 

Now we consider multiplying two arbitrary field elements ߚ and ߛ א  ሺ2ସሻ expressed in theܨܩ
polynomial form as follows: 
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ߚ ൌ ܾ଴ ൅  ܾଵߙ ൅  ܾଶߙଶ ൅  ܾଷߙଷ 

ߛ ൌ ܿ଴ ൅  ܿଵߙ ൅ ܿଶߙଶ ൅  ܿଷߙଷ 

Their product can be expressed in the Horner notation as follows: 

 

This expression and the alpha-gain multiplier can be used to design the multiplier for ܨܩሺ2ସሻ 
shown in the Figure 6-2. 

 

Figure 6-2: Parallel-in parallel-out GF (24) Multiplier 

Addition and Multiplication tables for GF (24) are shown in                    Table 6-1. 

 

                   Table 6-1: Addition and Multiplication Tables for GF(16) [1] 

6.2 An overview of Reed Solomon Codes 

Let ሺ݀௞ିଵ, ݀௞ିଶ, … … … … . . , ݀ଵ, ݀଴ሻ denote k m-bit data symbols (bytes) that are to be 

transmitted over a communication channel (or stored in memory). These bytes are regarded as 
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elements of the finite field (also called Galois field), GF (2௠),  and encoded into a codeword 

ሺܿ௡ିଵ, ܿ௡ିଶ, … … … … . . , ܿଵ, ܿ଴ሻ of   n  ൐ k bytes.  

For Reed–Solomon codes over GF (2௠),   ݊ ൌ 2௠ െ  1,  and the code can ݀݀݋ ݏ݅ ݇

correct  ݐ ൌ ሺ݊ െ ݇ሻ/2    byte errors. The encoding process is best described in terms of the 

data polynomials 

D(z) =  ݀௞ିଵݖ௞ିଵ ൅ ݀௞ିଶݖ௞ିଶ ൅ … … ݀ଵݖ ൅ ݀଴ 

being transformed into a codeword  polynomial  

C(z) =  ܿ௡ିଵݖ௡ିଵ ൅  ܿ௡ିଶݖ௡ିଶ ൅  … … ܿଵݖ ൅ ܿ଴. 

All codeword polynomials C (z) are polynomial multiples of G (ݖ), the generator 

polynomial of the code, which is defined as 

ሻݖሺܩ ൌ  ∏ ሺ ݖ െ ן௠బା௜ሻଶ௧ିଵ
௜ୀ଴                                           Eq. ( 6-1) 

where ݉଴  is typically zero or one [1,6]. Since 2ݐ  consecutive powers 

,௠బן ,௠బାଵן … … , ן  ௠బାଶ௧ିଵ    ofן  are roots ofܩሺݖሻ , and C(z)is  a multiple of G(z),  it 

follows that           ܥ൫ן௠బା௜൯ ൌ  0,    0 ൑ ݅ ൑ ݐ2 െ 1                                                          Eq. ( 6-2)  

 

Figure 6-3: Reed Solomon Systematic Encoder Architecture [1] 

for all codeword polynomials C(z) . In fact, an arbitrary polynomial of degree less than n is a 

codeword polynomial if and only if it satisfies                                                           Eq. ( 6-2). 

A systematic encoding produces codewords that are comprised of data symbols 

followed by parity-check symbols and is obtained as follows. Let Q(z) and P(z) denote the 

quotient and remainder respectively when the polynomial ݖ௡ି௞ܦሺݖሻ of degree n-1 is divided 

by G(z)   of degree 2t = n - k . Thus, ݖ௡ି௞ܦሺݖሻ ൌ  ܳሺݖሻܩሺݖሻ ൅  ܲሺݖሻ where deg൫ܲሺݖሻ൯ ൏

 ݊ െ ݇. Clearly, ܳሺݖሻܩሺݖሻ ൌ ሻݖሺܦ௡ି௞ݖ  െ  ܲሺݖሻ ൌ  ,ሻ. Furthermoreݖሺܩ ሻ  is a multiple ofݖሺܥ
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since the lowest degree term in ݖ௡ି௞ܦሺݖሻ is  ݀଴ݖ௡ି௞ while ܲሺݖሻ is of degree at most  ݊ െ ݇ ൅

1 , it follows that the codeword is given by 

ሺܿ௡ିଵ, ܿ௡ିଶ, … … , ܿଵ, ܿ଴ሻ 

ൌ ሺ݀௞ିଵ, ݀௞ିଶ, … … … … . . , ݀ଵ, ݀଴, 

െ݌௡ି௞ିଵ, െ݌௡ି௞ିଶ, … … … … . . , െ݌ଵ, െ݌଴ሻ 

and consists of the data symbols followed by the parity-check symbols.  

6.2.1  Decoding of Reed–Solomon Codes 

Let C(z)   denote the transmitted codeword polynomial and let  R(z)   denote the received word 

polynomial. The input to the decoder is R(z)   , and it assumes that 

                                     R(z)   = C(z) + E(z) 

where, if e≥0 errors have occurred during transmission, the error polynomial  E(z) can be 

written as    

E(z) = ଵܻݖ௜భ ൅ ଶܻݖ௜మ ൅ … … ൅ ௘ܻݖ௜೐ 

It is conventional to say that the error values ଵܻ, ଶܻ, … … , ௘ܻ , occurred at the error 

locations  ଵܺ ൌ ן௜భ, ܺଶ ൌ ן௜మ,……,  ܺ௘ ൌ ן௜೐. Note that the decoder does not know E(z)  ; in 

fact, it does not even know the value of  e. The decoder’s task is to determine E(z)  from its 

input R(z)   , and thus correct the errors by subtracting off E(z)  from R(z)   . If e൑  then such ,ݐ

a calculation is always possible, that is t, or fewer errors can always be corrected [10]. 

The decoder begins its task of error correction by computing the syndrome values 

 

௜ݏ ൌ ܴ൫ן௠బା௜൯ ൌ ௠బା௜൯ן൫ܥ ൅ ௠బା௜൯ן൫ܧ  ൌ ௠బା௜൯            0ן൫ܧ ൑ ݅ ൑ ݐ2 െ 1 

Eq. ( 6-3) 

If all 2ݐ syndrome values are zero, then R(z)  is a codeword and it is assumed that C(z) 

= R(z) that is, no errors have occurred. Otherwise, the decoder knows that and uses the 

syndrome polynomial , which is defined to be 

S(z) = ݏ଴ ൅ ݖଵݏ ൅ ڮ ൅  ଶ௧ିଵݖଶ௧ିଵݏ

to calculate the error values and error locations. Define the error-locator polynomial Λሺݖሻ of 

degree ݁ and the error evaluator polynomial Ωሺݖሻ ݋f degree  ݁ െ 1 at most to be 

  Λ(z) = ∏ ሺ 1 െ ௝ܺݖሻ௘
௝ୀଵ  = 1 ൅ߣଵݖ ൅ ଶݖଶߣ ൅ ڮ ൅  ௘              Eq. ( 6-4)ݖ௘ߣ
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ષሺࢠሻ ൌ ∑ ࢏ࢄ࢏ࢅ
ࢋ૙࢓

ୀ૚࢏ ∏ ሺ ૚ െ ࢋሻࢠ࢐ࢄ
࢐ୀ૚,࢐ஷ࢏  = 1 ࣓૙ ൅ ࣓૚ࢠ ൅ ૛ࢠ૛ࣅ࣓ ൅ ڮ ൅  ૚ିࢋࢠ૚ିࢋ࣓

                       Eq. ( 6-5) 

These polynomials are related to S(z) through the key equation [1], [3]: 

઩(z) S(z)ؠ ષሺࢠሻࢠ  ࢊ࢕࢓૛࢚                                                               Eq. ( 6-6) 

Solving the key equation to determine both Λ(z) and Ωሺݖሻ from S(z) is the hardest part of the 

decoding process. The BM algorithm and the eE algorithm can be used to solve                  

Eq. ( 6-6). If ݁ ൑ ݁ ሻ, but ifݖሻ  and Ωሺݖthese algorithms find  Λሺ ,ݐ ൐  then the algorithms , ݐ

almost always fail to find Λ(z) and Ωሺݖሻ. Fortunately, such failures are usually easily detected 

[6]. 

Once Λሺݖሻ  and Ωሺݖሻ have been found, the decoder can find the error locations by checking 

whether Λ(ିן௝)= 0  for each ݆, 0 ൑ ݆ ൑ ݊ െ 1 . Usually, the decoder computes the value of 

Λ(ିן௝ )just before the ݆-th received symbol leaves the decoder circuit. This process is called a 

Chien search [1]. If Λ(ିן௝)= 0 , then ן௝ is one of the error locations (say ௜ܺ). In other words, 

 ௝is in error, and needs to be corrected before it leaves the decoder. The decoder can calculateݎ

the error value ௜ܻ to be subtracted from ݎ௝ via Forney’s error value formula [1] 

 

௜ܻ ൌ  െ ௑೔
షሺ೘బషభሻΩ൫௑೔

షభ൯
Λ′൫௑೔

షభ൯
ൌ െ ௭೘బΩሺ௭ሻ

୸Λ′ሺ௭ሻ
ቚ

௭ୀ ఈషೕ
                                    Eq. ( 6-7) 

where Λ′ሺݖሻ ൌ ଵߣ  ൅ ݖଶߣ2 ൅ ଶݖଷߣ3 … ൅  ሻ . Noteݖ௘ିଵdenotes the formal derivative of Λሺݖ௘ߣ݁

that the formal derivative simplifies to Λ′ሺݖሻ ൌ ଵߣ  ൅ ଶݖଷߣ … since we are considering codes 

over GF (2௠). Thus,   zΛ′ሺߣ = ( ݖଵݖ ൅ ଷݖଷߣ ൅  ሻݖwhich is just the terms of odd degree in Λሺ ڮ

. Hence, the value of zΛ′ሺݖሻ   at ݖ ൌ ௝ିߙ  can be found during the evaluation of Λ (z) at 

ݖ ൌ ௝ିߙ  and does not require a separate computation. Note also that Eq. ( 6-7) can be 

simplified by choosing ݉଴ ൌ 0 . 

6.3  Reed–Solomon Decoder Structure 

In summary, a Reed–Solomon decoder consists of three blocks which are shown in Figure 

6-4: 

1. the syndrome computation (SC) block 

2. the key-equation solver (KES) block 

3. the Chien search and error evaluator (CSEE) block 
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Figure 6-4: Reed Solomon Decoder Block Diagram 

These blocks usually operate in pipelined mode in which three blocks are separately 

and simultaneously working on three successive received words.  

6.3.1 Syndrome Computation Block 

 

The SC block computes the syndromes via Eq. ( 6-3) usually as the received word is entering 

the decoder. The SC architecture is shown in the Figure 6-5  which uses multiply accumulate 

blocks. The incoming received word enters serially symbol by symbol and gets multiplied 

with the roots of the generator polynomial and the result is accumulated for each clock cycle. 

At the end of n clock cycles, last symbol of the received word enters the SC block and the 

result is 2t syndrome values. 

The syndromes are passed to the KES block which solves Eq (6-6) to determine the 

error locator and error evaluator polynomials. KES block and its various architectures will be 

discussed in detail in the following section.  
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Figure 6-5: Syndrome Computation (SC) Block [13] 

6.3.2 Chein Search and Error-Evaluator Block 

These polynomials are then passed to the CSEE block, which calculates the error locations 

and error values via  Eq. ( 6-7) and corrects the errors as the received word is being read out of 

the decoder. Chein search block can be implemented as shown in the Figure 6-6 

 

Figure 6-6: Chein Search (CS) Block [3] 

Error-values are evaluated using Forney’s Formula. The numerator of the Forney’s 

formula can be computed using block diagram of Figure 6-7. 
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Figure 6-7: Evaluation of Error-evaluator at reciprocal of Error-location [13] 

It can be shown that both Chein search and Forney’s Formula computation can share 

certain calculations. For example, the computation of the error locator polynomial’s formal 

derivative is same as that of the odd powered terms of the Chein search if we both multiply 

and divide Forney’s formula with inverse of the error location. Architecture of Figure 6-8 

shows this computation. 

Overall architecture for both Chein Search and Error-evaluation unit is shown in 

Figure 6-9. Zero-detector is simply a NOR gate whose output goes high if it detects a zero at 

the output of the Chein search unit i.e. a root and hence an error-location is found. It output is 

thus called Error Locator Sequence (ELS) .  The the reciprocal of the computed formal 

derivative of the error-locator polynomial is taken by using an IROM look up table which has 

inverses of GF elements tabulated. This is then multiplied with the error-evaluator polynomial 

computed at inverse of the error-locators. This product represents the estimated error-values 

which is then ‘anded’ with ELS (working as an enable signal) to get the error polynomial e(x). 

e(x) may be added to a delayed version of the received word to get an estimate of the 

transmitted codeword. 
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Figure 6-8: Combined Chein-Search and Formal Derivative of Error-locator Polynomial [13] 

 

Figure 6-9: Combined Chein-Search and Error-evaluator Block [13] 

6.3.3 Key Equation Solver (KES) Block 

The throughput bottleneck in Reed–Solomon decoders is in the KES block which solves                   

Eq. ( 6-6). In contrast, the SC and CSEE blocks are relatively straightforward to implement. 

Now we focus on high-speed architectures for the KES block. As mentioned earlier, the key 
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equation can be solved via the eE algorithm or via the BM algorithm. We discuss high-speed 

architectures for a reformulated version of the BM algorithm because this reformulated 

algorithm can be used to achieve much higher speeds than can be achieved by other 

implementations of the BM and eE algorithms. Furthermore, these new architectures also 

have lower gate complexity and a simpler control structure than architectures based on the eE 

algorithm [6]. 

6.4 Berlekamp-Massey (BM) Architectures 

In this section, we give a brief description of different versions of the Berlekamp–Massey 

(BM) algorithm and then discuss a generic architecture for implementation of the algorithm. 

6.4.1 The Berlekamp–Massey Algorithm 

The BM algorithm is an iterative procedure for solving the Key equation. In the form 

originally proposed by Berlekamp [1,10], the algorithm begins with polynomials Λ(0,z) = 

1,  Ωሺ0, zሻ ൌ 0   and iteratively determines polynomials Λ (r,z),  ܽ݊݀  Ωሺr, zሻ  satisfying the 

polynomial congruence  Λ(r,z) S(z)ؠ Ωሺݎ,  ଶ௧ For r = 1,2,…,2t and, thus, obtains aݖ  ݀݋ሻ݉ݖ

solution Λ(2t,z)  and Ωሺ2ݐ,  ሻto the key equation. Two “scratch” polynomials B(r,z)  andݖ

Hሺݎ, ,ሻwith initial values B(0,z)= 1  and Hሺ0ݖ ሻݖ ൌ  െ1 are used in the algorithm. For each 

successive value of  ݎ , the algorithm determines Λ (r,z),  ܽ݊݀  Bሺr, zሻ from Λ (r-

1,z),  ܽ݊݀  Bሺr െ 1, zሻ  . Similarly, the algorithm determines  Ωሺr, zሻ and Hሺݎ, ሻݖ from Ωሺr െ

1, zሻand Hሺݎ െ 1,  ሻ . Since Sሺzሻhas degree 2t-1, and the other polynomials can have degreesݖ

as large as t, the algorithm needs to store roughly 6t field elements. If each iteration is 

completed in one clock cycle, then 2t  clock cycles are needed to find the error-locator and 

error-evaluator polynomials.  

In recent years, most researchers have used the formulation of the BM algorithm given 

by Blahut in which only Λ (r,z),  and  Bሺr, zሻ  are computed iteratively. Following the 

completion of the 2t iterations, the error-evaluator polynomial Ωሺ2t, zሻis computed as the 

terms of degree  t-1or less in the polynomial product Ωሺ2t, zሻSሺzሻ . An implementation of this 

version thus needs to store only 4t field elements, but the computation of  Ωሺ2t, zሻ requires an 

additional t  clock cycles. Although this version of the BM algorithm trades off space against 

time, it also suffers from the same problem as the Berlekamp version, viz. during some of the 

iterations, it is necessary to divide each coefficient of Λ(r,z), by a quantity ߜ௥ . These divisions 

are most efficiently handled by first computingߜ௥
ିଵ , the inverse of ߜ௥ , and then multiplying 
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each coefficient of Λ(r,z)  by ߜ௥
ିଵ . Unfortunately, regardless of whether this method is used 

or whether one constructs separate divider circuits for each coefficient of Λ(r,z)   , these 

divisions, which occur inside an iterative loop, are more time consuming than multiplications. 

Obviously, if these divisions could be replaced by multiplications, the resulting circuit 

implementation would have a smaller critical path delay and higher clock speeds would be 

usable.  

The inversion-nless BM (iBM) algorithm [3,4] is described by the pseudocode shown 

below. The iBM algorithm actually finds scalar multiples ߚ.Λሺݖሻܽ݊݀ ߚ.Ωሺݖሻ instead of the 

Λሺݖሻܽ݊݀ Ωሺݖሻ. However, it is obvious that the Chien search will find the same error locations 

and it follows from Forney’s formula that the same error values are obtained. Hence, we 

continue to refer to the polynomials computed by the iBM algorithm as  Λሺݖሻܽ݊݀ Ωሺݖሻ. 

Algorithm 6-1 

 [6] ࢓ࢎ࢚࢏࢘࢕ࢍ࢒࡭ ࡹ࡮࢏ ࢋࢎࢀ

 :࢔࢕࢏࢚ࢇࢠ࢏࢒ࢇ࢏࢚࢏࢔ࡵ

଴ሺ0ሻߣ ൌ ܾ଴ሺ0ሻ ൌ ௜ሺ0ሻߣ   ,1  ൌ ܾ௜ሺ0ሻ ൌ ݅  ݎ݋݂   ,0  ൌ 1,2, … , ሺ0ሻ݇         ,ݐ ൌ  0, ሺ0ሻߛ ൌ  1 

,௜ ݏ             :ݐݑ݌݊ܫ ݅ ൌ  0, 1 . . . ݐ2, െ 1. 

ൌ ݎ ࢘࢕ࢌ  0 ׷ 1: ݐ2 െ  ࢕ࢊ 1 

 ࢔࢏ࢍࢋ࢈

.ࡹ࡮࢏ ࢖ࢋ࢚ࡿ ૚    ࢾሺݎሻ ൌ ሻݎ଴ሺߣ ௥ݏ  ൅ ሻݎଵሺߣ ௥ିଵݏ ൅ ڮ ൅  ሻݎ௧ሺߣ ௥ି௧ݏ 

.ࡹ࡮࢏ ࢖ࢋ࢚ࡿ ૛   ߣ௜ ሺݎ ൅  1ሻ ൌ ሻ  െݎ௜ሺߣሻݎሺߛ  ሻ;  ሺ݅ݎሻܾ௜ିଵ ሺݎሺߜ  ൌ 0,1, … ,   ሻݐ

.ࡹ࡮࢏ ࢖ࢋ࢚ࡿ ૜    ݂݅   ሺߜሺݎሻ ്  0 ܽ݊݀ ݇ሺݎሻ  ൒ 0 ሻ 

 ࢔ࢋࢎ࢚               

 ࢔࢏ࢍࢋ࢈             

                       ܾ௜ ሺݎ ൅  1ሻ ൌ ,ሻݎ௜ ሺߣ   ሺ݅ ൌ  0, 1, . . . ,  ሻݐ

൅ ݎሺߛ                          1ሻ  ൌ ൅ ݎሻ            ݇ሺݎሺߜ   1ሻ ൌ   െ ݇ሺݎሻ െ   1 

 ࢊ࢔ࢋ            

 ࢋ࢙࢒ࢋ            

 ࢔࢏ࢍࢋ࢈            

                       ܾ௜ ሺݎ ൅  1ሻ ൌ  ܾ௜ିଵ ሺݎሻ,    ሺ݅ ൌ  0,1, . . . ,  ሻݐ

൅ ݎሺߛ                        1ሻ  ൌ ൅ ݎሻ                   ݇ሺݎሺߛ   1ሻ  ൌ  ݇ሺݎሻ  ൅  1 

 ࢊ࢔ࢋ             
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 ࢊ࢔ࢋ

ൌ ݅ ࢘࢕ࢌ  0 ׷ 1: ݐ െ  ݋݀ 1

.ࡹ࡮࢏ ࢖ࢋ࢚ࡿ ૝   ߱௜ሺ2ݐ ሻ ൌ ሻݐ଴ሺ2ߣ ௜ݏ  ൅ ሻݐଵሺ2ߣ ௜ିଵݏ  ൅ … ൅  ሻݐ௜ሺ2ߣ ଴ݏ 

;ሻݐ௜ ሺ2ߣ :࢚࢛࢖࢚࢛ࡻ  ݅ ൌ  0, 1, . . . , ,ሻ ݐ௜ሺ2߱    .ݐ ݅ ൌ  0, 1, . . . , ݐ െ 1   

 

For ݎ ൏ ݐ , Step iBM.1 includes terms ିݏଵ. ,ሻݎ௥ାଵሺߣ .ଶିݏ ,ሻݎ௥ାଶሺߣ … , .௥ି௧ݏ  ሻݎ௧ሺߣ

involving unknown quantities. Fortunately, it is known that deg ሺΛ (r,z)) ൑ ݎ , so that 

ሻݎ௥ାଵሺߣ ൌ ሻݎ௥ାଶሺߣ ൌ ڮ ൌ  ௜ do not affect the value ofݏ ሻ=0 and therefore the unknownݎ௧ሺߣ

 ሻ .Notice also the similarity between Steps iBM.1 and iBM.4.These facts simplify theݎሺߜ

architecture that we describe next. 

6.4.2 Architectures Based on the iBM Algorithm 

Due to the similarity of Steps iBM.1 and iBM.4, architectures based on the iBM algorithm 

need only two major computational structures as shown in Figure 6-10. 

1. The discrepancy computation (DC) block for implementing Step iBM.1. 

2. The error locator update (ELU) block which implements Steps iBM.2 and iBM.3 in 

parallel. 

The DC block contains latches for storing the syndromes ݏ௜, the GF (2௠) arithmetic units 

for computing the discrepancy ߜሺݎሻand the control unit for the entire architecture. It is 

connected to the ELU block, which contains latches for storing for Λ(r,z)and B(r,z) as well as 

arithmetic units for updating these polynomials, as shown in Figure 6-10. During a clock 

cycle, the DC block computes the discrepancy ߜሺݎሻ and passes this value together with ߛሺݎሻ 

and a control signal ܥܯሺݎሻ to the ELU block which updates the polynomials during the same 

clock cycle.  

 

 



80 

 

 

Figure 6-10: The iBM Architecture [6] 

6.4.2.1 DC Block Architecture:   

The DC block architecture shown in Figure 6-11 has 2ݐ latches constituting the DS shift 

register that are initialized such that the latches ܦ ଵܵ, ,ଶܵܦ  … … , ,ଶ௧ିଵܵܦ ଴ܵܦ    contain the 

syndromes ݏଵ, ݏଶ, … … , ݐ clock cycles, the ݐ଴,  respectively. In each of the first 2ݏ ,ଶ௧ିଵݏ ൅ 1 

multipliers compute the products in Step iBM.1. These are added in a binary adder tree of 

depth ڿlogଶ ݐ ൅ 1ሻۀ to produce the discrepancy ߜሺݎሻ. Thus, the delay in computing ߜሺݎሻ is Tδ 

= Tmult +ڿlogଶ ݐ ൅ 1ሻۀ.Tadd. 

 

Figure 6-11: The Discrepancy Computation Block [6] 
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Figure 6-12: Control Block [6] 

A typical control unit such as the one illustrated in Figure 6-12  has counters for the 

variables ݎ and ݇ሺݎሻ, and storage for ߛሺݎሻ. Following the computation of ߜሺݎሻ, the control 

unit computes the OR of the bits in order to determine whether ߜሺݎሻ  is nonzero. This requires 

݉ െ 1 two-input OR gates arranged in a binary tree of depth ڿlogଶሺ݉ሻۀ. If the counter for 

݇ሺݎሻ is implemented in two’s-complement representation, then ݇ሺݎሻ ൒ 0 if and only if the 

most significant bit in the counter is 0. The delay in generating ܥܯሺݎሻ signal is thus TMC = ఋܶ  

logଶڿ+ ݉ሻۀ.Tor + ௔ܶ௡ௗ. Finally, once the signal ܥܯሺݎሻ is available, the counter for ݇ሺݎሻ can be 

updated. Notice that a twos-complement arithmetic addition is needed if ݇ሺݎ ൅ 1ሻ ൌ  ݇ሺݎሻ ൅

1 .On the other hand, negation in two’s-complement representation complements all the bits 

and then adds one and, hence, the update ݇ሺݎ ൅ 1ሻ ൌ  െ݇ሺݎሻ ൅ 1   requires only the 

complementation of all the bits in the counter ݇ሺݎሻ. We note that it is possible to use ring 

counters for ݎ  and ݇ሺݎሻ, in which case ݇ሺݎሻ is updated just ௠ܶ௨௫  seconds after the signal 

 .ሻ has been computedݎሺܥܯ

 

Following the 2ݐ clock cycles for the BM algorithm, the DC block computes the error-

locator polynomial Ωሺݖሻ  in the next ݐ clock cycles. To achieve this, the ܵܦ௧,  ,௧ାଵܵܦ

… … ,  ଶ௧ିଵ latches are reset to zero during the 2t-th clock cycle, so that, at the beginning ofܵܦ

the (2t+1)-th clock cycle, the contents of the DS register (see Figure 6-11) are ݏଵ , ଶݏ  , 

… … , ,௧ିଵ, 0,0ݏ … . . ,  ଴. Also, the outputs of the ELU block are frozen so that these do notݏ

change during the computation of Ωሺݖሻ. From Step iBM.4, it follows that the “discrepancies” 

computed during the next  ݐ  clock cycles are just the coefficients 

߱଴ሺ2ݐሻ, ߱ଵሺ2ݐሻ  , … … , ߱௧ିଵሺ2ݐሻ  of Ωሺݖሻ.  
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Note that the total hardware requirements of the DC block are 2ݐ  m-bit latches, ݐ ൅ 1 

multipliers, ݐ adders, and miscellaneous other circuitry (counters, arithmetic adder or ring 

counter, OR gates, inverters and latches), in the control unit. The critical path delay of the DC 

block is  

TୈC = ௠ܶ௨௟௧ ൅  ሺ1 ൅ logଶڿ ݐ ൅ 1ሻۀ ሻ. ௔ܶௗௗ+ ڿlogଶ ݉ሻۀ. ௢ܶ௥ + ௔ܶ௡ௗ. 

6.4.2.2  ELU Block Architecture: 

Following the computation of the discrepancy ߜሺݎሻ and the signal ܥܯሺݎሻ in the DC block, the 

polynomial coefficient updates of Steps iBM.2 and iBM.3 are performed simultaneously in 

the ELU block. The processor element PE0 (hereinafter the PE0 processor) that updates one 

coefficient of λሺݖሻ and Bሺݖሻ is illustrated in  

Figure 6-13. 
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Figure 6-13: The PE0 processor and ELU Block Diagram [6] 

 

The complete ELU architecture is also shown in  

Figure 6-13 where we see that signals ߜሺݎሻ, ߛሺݎሻ and ܥܯሺݎሻ are broadcast to all the 

PE0 processors. In addition, the latches in all the PE0 processors are initialized to zero except 

for  PE૙૙, which has its latches initialized to the element  1 ߳ GF (2௠) . Notice that 2ݐ ൅

1 latches and multipliers, and ݐ ൅ 1 adders and multiplexers are needed. The critical path 

delay of the ELU block is given by 

T୉LU = ௠ܶ௨௟௧ ൅ ௔ܶௗௗ 

6.4.2.3 iBM Architecture 

Ignoring the hardware used in the control section, the total hardware needed to implement the 

iBM algorithm is 4ݐ ൅ 2  latches, 3ݐ ൅ 3 multipliers, 2ݐ ൅ 1  adders, and ݐ ൅ 1 multiplexers. 

The total time required to solve the key equation for one codeword is 3ݐ  clock cycles. 

Alternatively, if Ωሺ2ݐ, ሻݖ  is computed iteratively, the computations require only 2ݐ clock 

cycles. However, since the computations required to update  Ωሺݎ,  ሻ are the same as that ofݖ

Λሺݎ, ሻݖ , a near-duplicate of the ELU block is needed. This increases the hardware 

requirements to 6ݐ ൅ 2 latches, 5ݐ ൅ 3 multipliers, 3ݐ ൅ 1 adders, and  2ݐ ൅ 1 multiplexers. In 

either case, the critical path delay of the iBM architecture can be obtained as 

 

T୍ BM = 2. ௠ܶ௨௟௧ ൅ ሺ1 ൅ logଶڿ ݐ ൅ 1ሻۀ ሻ. ௔ܶௗௗ ൐ 2. ሺ ௠ܶ௨௟௧ ൅   ௔ܶௗௗሻ 

 

which is the delay of the direct path that begins in the DC block starting from the  ࢏ࡿࡰ latches, 

through a multiplier, an adder tree of height ڿlogଶ ݐ ൅ 1ሻۀ  (generating the signal  ߜሺݎሻ ), 

feeding into the ELU block multiplier and adder before being latched. We have assumed that 

the indirect path taken by through the control unit (generating signal  ܥܯሺݎሻ) feeding into the 

ELU block multiplexer is faster than the direct path, i.e.,  

௠ܶ௨௟௧ ൐ logଶڿ  ݉ሻۀ ௢ܶ௥ ൅  ௔ܶ௡ௗ 

This is a reasonable assumption in most technologies. Note that more than half of T୍ BM  

is due to the delay in the DC block, and that this contribution increases logarithmically with 

the error correction capability. Thus, reducing the delay in the DC block is the key to 

achieving higher speeds. In the next section, we describe algorithmic reformulations of the 
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iBM algorithm that lead to a systolic architecture for the DC block and reduce its critical path 

delay to ாܶ௅௎. 

6.5 Reformulated Reed-Solomon Decoder Architectures 

The critical path in iBM architecture passes through two multipliers as well as the adder tree 

structure in the DC block. The multiplier units contribute significantly to the critical path 

delay and hence reduce the throughput achievable with the iBM architecture. In this section, 

we discuss decoder architectures that have a smaller critical path delay. These architectures 

are derived via algorithmic reformulation of the iBM algorithm. This reformulated iBM 

(riBM) algorithm computes the next discrepancy ߜሺݎ ൅ 1ሻ at the same time that it is 

computing the current polynomial coefficient updates, that is, the ߣ௜ሺݎ ൅ 1ሻ  ’s and the 

ܾ௜ሺݎ ൅ 1ሻ’s. This is possible because the reformulated discrepancy computation does not use 

the ߣ௜ሺݎ ൅ 1ሻ’s explicitly. Furthermore, the discrepancy is computed in a block which has the 

same structure as the ELU block, so that both blocks have the same critical path delay 

௠ܶ௨௟௧ ൅   ௔ܶௗௗ. 

6.5.1 Reformulation of the iBM Algorithm 

6.5.1.1  Simultaneous Computation of Discrepancies and Updates 

Viewing Steps iBM.2 and iBM.3 in terms of polynomials, we see that Step iBM.2 computes 

  ઩ሺ࢘ ൅ ૚, ሻࢠ ൌ .ሺ࢘ሻࢽ  ઩ሺ࢘, ሻࢠ െ .ࢠ  .ሺ࢘ሻࢾ ۰ሺ࢘,  ሻ    Eq. ( 6-8)ࢠ

while Step iBM.3 sets Bሺݎ ൅ 1, ሻݖ  either to Λሺݎ, ሻݖ  or to ݖ. ,ݎሺܤ ሻݖ  . Next, note that the 

discrepancy ߜሺݎሻ computed in Step iBM.1 is actually ߜ௥ሺݎሻ  , the coefficient of ݖ௥  in the 

polynomial product 

Λሺݎ, .ሻݖ ܵሺݖሻ ൌ  Δሺݎ, ሻݖ ൌ ሻݎ଴ሺߜ  ൅ .ሻݎଵሺߜ ݖ ൅ ڮ ൅ .ሻݎ௥ሺߜ  ௥ݖ ൅  Eq. ( 6-9)                 ڮ

Much faster implementations are possible if the decoder computes all the coefficients 

of Δሺݎ, ሻݖ  (and of  Θሺݎ, ሻݖ ൌ ,ݎሺܤ .ሻݖ ܵሺݖሻ) even though only ߜ௥ሺݎሻ  is needed to compute 

Λሺݎ ൅ 1, ݎሺܤ ሻ and to decide whetherݖ ൅ 1, ,ݎሻ is to be set to Λሺݖ .ݖ ሻ or toݖ ,ݎሺܤ  .ሻݖ

Suppose that at the beginning of a clock cycle, the decoder has available to it all the 

coefficients of Δሺݎ, ሻ andݖ   Θሺݎ, ,ݎሻ (and, of course, of Λሺݖ ,ݎሺܤ  ሻ andݖ  ,ሻ as well). Thusݖ

ሻݎሺߜ ൌ  ሻis available at the beginning of the clock cycle, and the decoder can computeݎ௥ሺߜ 
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Λሺݎ ൅ 1, ሻݖ  and ܤሺݎ ൅ 1, ሻݖ . Furthermore, it follows from ઩࢘൅૚,ࢠ ൌ .ሺ࢘ሻࢽ  ઩ሺ࢘, ሻࢠ െ

.ࢠ  .ሺ࢘ሻࢾ ۰ሺ࢘,  ሻ    Eq. ( 6-8) and                  Eq. ( 6-9) thatࢠ

 

Δሺݎ ൅ 1, ሻݖ ൌ Λሺݎ ൅ 1, .ሻݖ ܵሺݖሻ ൌ ሾߛሺݎሻ.Λሺݎ, ሻݖ െ .ݖ  .ሻݎ௥ሺߜ ,ݎሺܤ .ሻሿݖ ܵሺݖሻ

ൌ ,ݎሻ.Δሺݎሺߛ  ሻݖ െ .ݖ ,ݎሻ.Θሺݎ௥ሺߜ  ሻݖ

 

while Θሺݎ ൅ 1, ሻݖ ൌ Bሺݎ ൅ 1, .ሻݖ ܵሺݖሻ  is set to either  Δሺݎ, ሻݖ ൌ  Λሺݎ, .ሻݖ ܵሺݖሻ or to 

,ݎΘሺ.ݖ ሻݖ ൌ .ݖ  ,ݎሺܤ .ሻݖ ܵሺݖሻ. In short, Δሺݎ ൅ 1, ݎሻand Θሺݖ ൅ 1,  ሻ are computed in exactly theݖ

same manner as are Λሺݎ ൅ 1, ݎሻand Bሺݖ ൅ 1,  ሻ . Furthermore, all four polynomial updatesݖ

can be computed simultaneously, and all the polynomial coefficients as well as ߜ௥ାଵሺݎ ൅

1ሻare thus available at the beginning of the next clock cycle. 

6.5.1.2 A New Error-Evaluator Polynomial 

The riBM algorithm simultaneously updates four polynomials Λሺݎ, ,ሻݖ Bሺݎ, ,ݎሻ,Δሺݖ   ሻ, andݖ

Θሺݎ, ሻݖ  with initial values Λሺ0, ሻݖ ൌ Bሺ0, ሻݖ ൌ 1 and Δሺ0, ሻݖ ൌ Θሺ0, ሻݖ ൌ ܵሺݖሻ  . The 

2t iterations thus produce the error-locator polynomial Λሺ2ݐ,  ሻ and also theݖ

polynomial  Δሺ2ݐ, ሻݖ . Note that since Ωሺ2ݐ, ሻݖ ؠ   Λሺ2ݐ, .ሻݖ ܵሺݖሻ݉ݖ ݀݋ଶ௧ it follows from 

                 Eq. ( 6-9) that the low-order coefficients of  Δሺ2ݐ, ,ݐሻ are just Ωሺ2ݖ  ሻ , that is, theݖ

2t iterations compute both the error-locator polynomial Λሺ2ݐ, ሻݖ and the error-evaluator 

polynomial Ωሺ2ݐ, -iterations of Step iBM.4 are not needed. The high ݐ  ሻ — the additionalݖ

order coefficients of  Δሺ2ݐ, ,ݐሻ can also be used for error evaluation. Let Δሺ2ݖ ሻݖ ൌ Ωሺ2ݐ, ሻݖ ൅

.ଶ௧ݖ  Ωሺ୦ሻሺݖሻ , where Ωሺ୦ሻሺݖሻ of degree at most e െ 1  contains the high-order terms. Since 

X୧
ିଵ  is a root of Λሺ2ݐ, ,ݐሻ, it follows from                  Eq. ( 6-9) that Δሺ2ݖ X୧

ିଵሻ ൌ  Ωሺ2ݐ, X୧
ିଵሻ ൅

 X୧
ିଶ୲Ωሺ୦ሻሺX୧

ିଵሻ = 0. Thus, Forney’s error evaluation formula can be rewritten as 

௜ܻ ൌ  െ ௜ܺ
ିሺ௠బାଶ௧ିଵሻΩሺ୦ሻ൫ ௜ܺ

ିଵ൯
Λᇱ൫ ௜ܺ

ିଵ൯
ൌ െ

ሻݖ௠బାଶ௧Ωሺ୦ሻሺݖ
zΛᇱሺݖሻ ቤ

௭ୀ ௑೔
షభ

                                

Eq. ( 6-10) 

This variation of the error evaluation formula has certain architectural advantages. Note that 

the choice ݉଴ ൌ  െ2ݐ ൌ ݊ െ  .is preferable if  Eq. ( 6-10) is to be used ݐ2
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6.5.1.3 Further Reformulation 

Since the updating of all four polynomials is identical, the discrepancies can be calculated 

using an ELU block. Unfortunately, for ݎ  ൌ 0,1, … … ݐ2, െ 1, , the discrepancy ߜ௥ሺݎሻ is 

computed in processor PE0r . Thus, multiplexers are needed to route the appropriate latch 

contents to the control unit and to the ELU block that computes Λሺݎ ൅ 1, ݎሻand Bሺݖ ൅ 1,  . ሻݖ

Additional reformulation of the iBM algorithm, as described next, eliminates these 

multiplexers [6]. We use the fact that for any  ݅ ൏ ,ݎ  ሻ  cannot affect the value ofݎ௜ሺߠ ሻ andݎ௜ሺߜ

any later discrepancy ߜ௥ା௝ሺݎ ൅ ݆ሻ. Consequently, we need not store ߜ௜ሺݎሻ and ߠ௜ሺݎሻ  for ݅ ൏  .ݎ

Thus, for ൌ 0,1, … … ݐ2, െ 1  , define ߜመ௜ሺݎሻ ൌ ሻݎ௜ା௥ሺߜ      and ߠ෠௜ሺݎሻ ൌ ሻݎ௜ା௥ሺߠ   and the 

polynomials 

Δ෡ሺr, zሻ ൌ  ෍ ௥ݖሻݎመ௜ሺߜ
ଶ୲ିଵ

୧ୀ଴

 

And     

Θ෡ሺr, zሻ ൌ  ෍ ௜ݖሻݎ෠௜ሺߠ
ଶ୲ିଵ

୧ୀ଴

 

with initial values Δ෡ሺ0, zሻ = Θ෡ሺ0, zሻ = S(z). It follows that these polynomial coefficients are 

updated as  ߜመ௜ሺݎ ൅ 1ሻ ൌ ݎ௜ାଵା௥ሺߜ  ൅ 1ሻ ൌ .ሻݎሺߛ  ሻݎ௜ାଵା௥ሺߜ െ .ሻݎሺߛ = ሻݎ௜ା௥ሺߠሻݎ௥ሺߜ ሻݎመ௜ାଵሺߜ െ

ሻݎ෠௜ሺߠሻݎመ଴ሺߜ    while  θన෡ ሺr ൅ 1ሻ ൌ  θ୧ାଵା୰ሺr ൅ 1ሻ  is set either to ߜ௜ାଵା௥ሺݎሻ ൌ  ሻ or toݎመ௜ାଵሺߜ 

ሻݎ௜ାଵሺߠ ൌ ௥ߜ ሻ . Note that the discrepancyݎ෠௜ሺߠ   (r) = ߜመ଴  (r)  is always in a fixed (zero-th) 

position with this form of update. As a final comment,  note this form of update ultimately 

produces  

Δ෡ሺ2t, zሻ ൌ ሻݐଶ௧ሺ2ߜ  ൅ ݖሻݐଶ௧ାଵሺ2ߜ ൅ ڮ ൌ  Ωሺ୦ሻሺ2ݐ,   ሻݖ

and, thus,  Eq. ( 6-10) can be used for error evaluation in the CSEE block. The riBM 

algorithm is described by the following pseudo code.  

Algorithm 6-2 

 [6] ࢓ࢎ࢚࢏࢘࢕ࢍ࢒࡭ ࡹ࡮࢏࢘ ࢋࢎࢀ

 :࢔࢕࢏࢚ࢇࢠ࢏࢒ࢇ࢏࢚࢏࢔ࡵ

଴ሺ0ሻߣ ൌ ܾ଴ሺ0ሻ ൌ ௜ሺ0ሻߣ   ,1  ൌ ܾ௜ሺ0ሻ ൌ ݅  ݎ݋݂   ,0  ൌ 1,2, … , ሺ0ሻ݇         ,ݐ ൌ  0, ሺ0ሻߛ ൌ  1 

,௜ݏ             :࢚࢛࢖࢔ࡵ ݅ ൌ  0, 1 . . . ݐ2, െ 1. 

መ௜ሺ0ሻߜ ൌ ෠௜ሺ0ሻߠ ൌ ௜ ሺ݅ ൌݏ    0; . . . ; ݐ2  െ 1ሻ 
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ൌ ݎ ࢘࢕ࢌ  ࢕ࢊ 1   ݐ2 ࢒࢏࢚࢔࢛ 1 ࢖ࢋ࢚࢙ 0 

 ࢔࢏ࢍࢋ࢈

.ࡹ࡮࢏࢘ ࢖ࢋ࢚ࡿ ૚         ߣ௜ ሺݎ ൅  1ሻ ൌ .ሻݎሺߛ  ሻ; ሺ݅ ൌݎሻܾ௜ିଵ ሺݎመ଴ሺߜ ሻ െݎ௜ ሺߣ 0, … ݐ2, െ 1ሻ 

ݎመ௜ሺߜ                                     ൅ 1ሻ ൌ .ሻݎሺߛ  ሻݎመ௜ାଵሺߜ െ .ሻݎመ଴ሺߜ  ሻ; ሺ݅ ൌݎ෠௜ሺߠ  0, … ݐ2, െ 1ሻ  

.ࡹ࡮࢏࢘ ࢖ࢋ࢚ࡿ ૛         ࢌ࢏  ሺ  ߜመ଴ሺݎሻ  ് ሻݎሺ݇ ࢊ࢔ࢇ 0   ൒  0 ሻ 

 ࢔ࢋࢎ࢚

 ࢔࢏ࢍࢋ࢈

               ܾ௜ ሺݎ ൅  1ሻ  ൌ ሻ; ሺ݅ ൌݎ௜ሺߣ   0, 1, . . . ,  ሻݐ

൅ ݎ෠௜ ሺߠ                1ሻ  ൌ ;ሻݎመ௜ାଵሺߜ   ሺ݅ ൌ  0, 1, . . . , ݐ2 െ 1ሻ 

൅ ݎሺߛ                1ሻ ൌ             ሻݎመ଴ ሺߜ 

             ݇ሺݎ ൅  1ሻ ൌ   െ ݇ሺݎሻ െ 1 

 ࢊ࢔ࢋ

 ࢋ࢙࢒ࢋ

 ࢔࢏ࢍࢋ࢈

                ܾ௜ ሺݎ ൅  1ሻ  ൌ  ܾ௜ିଵሺݎሻ;  ሺ݅ ൌ  0, 1, . . . ,  ሻݐ

൅ ݎ෠௜ ሺߠ               1ሻ   ൌ ሻ;   ሺ݅ ൌݎ෠௜ሺߠ    0, 1, . . . , ݐ2 െ 1ሻ 

൅ ݎሺߛ               1ሻ ൌ              ሻݎሺ ߛ 

              ݇ሺݎ ൅  1ሻ ൌ   ݇ ሺݎሻ ൅ 1 

 ࢊ࢔ࢋ

 ࢊ࢔ࢋ

ሻ; ሺ݅ ൌݐ௜ሺ2ߣ   :࢚࢛࢖࢚࢛ࡻ  0, 1, . . . , ;ሻݐ  ߱ሺ௛ሻሺ2ݐሻ  ൌ ;ሻݐመ௜ሺ2ߜ   ሺ݅ ൌ 0, 1, . . . , ݐ െ 1ሻ 

Next, we consider architectures that implement the riBM algorithm. 

6.6 High-Speed Reed–Solomon Decoder Architectures 

As in the iBM architecture described in Section Error! Reference source not found., the 

riBM architecture consists of a reformulated discrepancy computation (rDC) block connected 

to an ELU block. 

6.6.1 The rDC Architecture 

 The rDC block uses processor PE1 shown in Figure 6-14 and the rDC architecture shown in 

Figure 6-15. Notice that processor PE1 is very similar to processor PE0 of  

Figure 6-13. 
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Figure 6-14:  Processor Element 1 (PE1) [6] 

 

Figure 6-15: The reformulated Discrepancy Computation (rDC) Architecture [6] 

Obviously, the hardware complexity and the critical path delays of processors PE0 and 

PE1 are identical, we get that  ௥ܶ஽஼ ൌ ௠ܶ௨௟௧ ൅ ௔ܶௗௗ.  Note that the delay is independent of 

the error-correction capability ݐ of the code. The hardware requirements of the architecture in 

Figure 6-15 are 2ݐ PE1 processors, that is,  4ݐ  latches,  4ݐ  multipliers, 2ݐ  adders, and  2ݐ 

multiplexers, in addition to the control unit, which is the same as that in iBM. 
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Figure 6-16: The Systolic riBM Architecture [6] 

6.6.2 The riBM Architecture 

The overall riBM architecture is shown in Figure 6-16 . It uses the rDC block of Figure 6-15 

and the ELU block in  

Figure 6-13. Note that the outputs of the ELU block do not feed back into the rDC block. 

Both blocks have the same critical path delay of  ௥ܶ஽஼ ൌ  ாܶ௅௎  ൌ ௠ܶ௨௟௧ ൅ ௔ܶௗௗ and since 

they operate in parallel, riBM architecture achieves the same critical path delay:  

௥ܶ௜஻ெ  ൌ ௠ܶ௨௟௧ ൅  ௔ܶௗௗ 

which is less than half the delay ௜ܶ஻ெ  of the enhanced iBM architecture [6]. 

At the end of the 2ݐ -th iteration,the ࡱࡼ૚ s, contain the coefficients of 

Ωሺ୦ሻሺ2ݐ, ݐሻ which can be used for error evaluation. Thus, 2ݖ  clock cycles are used to 

determine both Λሺݖሻ and Ωሺ୦ሻሺݖሻ. Ignoring the control unit, the hardware requirement of this 

architecture is 3ݐ ൅ 1 processors, that is, 6ݐ ൅ 2 latches, 6ݐ ൅ 2 multipliers, 3ݐ ൅ 1  adders, 

and 3ݐ ൅ 1   multiplexers. This compares very favorably with the 6ݐ ൅ 2 latches, ݐ5 ൅ 3 

multipliers, 3ݐ ൅ 1  adders, and 2ݐ ൅ 1 multiplexers needed to implement the enhanced iBM 

architecture in which both the error-locator and the error-evaluator  polynomial are computed 
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in 2ݐ clock cycles. Using only ݐ െ 1  additional multipliers and ݐ additional multiplexers, we 

have reduced the critical path delay by more than 50%. Furthermore, the riBM architecture 

consists of two systolic arrays and is thus very regular [6]. 

6.6.3 The RiBM Architecture 

It is possible to eliminate the ELU block entirely, and to implement the BM algorithm in an 

enhanced rDC block in which the array of  2ݐ PE1 processors are lengthened into an array of 

૜࢚ ൅ ૚ PE1 processors as shown in Figure 6-17.  

 

Figure 6-17: The homogeneous  Systolic RiBM architecture [6] 

In this completely systolic architecture, a single array computes both Λሺݖሻ  and 

Ωሺ୦ሻሺݖሻ. Since the   1+ ݐ PE0 processors eliminated from the ELU block re-appear as the 1+ ݐ 

additional PE1 processors, the RiBM architecture has the same critical path delay as the 

riBM architecture. However, its extremely regular structure offers some advantage in VLSI 

circuit layouts. 

 

An array of PE0 processors in the riBM architecture (see Figure 6-16) carries out the 

same polynomial computation as an array of PE1 processors in the RiBM architecture (see 

Figure 6-17), but in the latter array, the polynomial coefficients shift left with each clock 

pulse. Thus, in the RiBM architecture, suppose that the initial loading of ࡱࡼ૚૙,  ,૚૚ࡱࡼ 

 ,૚૜࢚ି૚,are loaded with zerosࡱࡼ,… ,૚૛࢚ା૚ࡱࡼ ,૚૛࢚ࡱࡼ ૚૛࢚ି૚, is as in Figure 6-15, whileࡱࡼ,…
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and the latches in ࡱࡼ૚૜࢚ are loaded with 1 א  ሺ2௠ሻ . Then, as the iterations proceed, theܨܩ

polynomials Δ෡ሺݎ, ,ݎሻand Θ෡ሺݖ  ሻ are updated in the processors in the left-hand end of the arrayݖ

(effectively Δሺݎ, ,ݎሻ, and Θሺݖ  .(ሻ, get updated and shifted leftwardsݖ

 

After  2ݐ clock cycles, the coefficients of Ωሺ୦ሻሺݖሻare in processors ࡱࡼ૚૙–ࡱࡼ૚࢚ି૚ . 

Next, note that ࡱࡼ૚૜࢚ contains Λሺ0, ,ሺ0ܤ  ሻ andݖ ,ݎሻ, and as the iterations proceed, Λሺݖ  ሻandݖ

Bሺݎ,  ሻ andݎ௜ሺߣ ሻshift leftwards through the processors in the right-hand end of the array, withݖ

ܾ௜ሺݎሻ being stored in processor ࡱࡼ૚૜࢚ି࢘ା૚ . After 2ݐ clock cycles, processor ࡱࡼ૚࢚ା࢏ contains 

ሻݐሻ and ܾ௜ሺ2ݐ௜ሺ2ߣ  for  ݅ ൌ 0,1, … , ݐ  . Thus, the same array is carrying out two separate 

computations. These computations donot interfere with one another. On the other hand, since 

deg൫Δሺݎ, ሻ൯ݖ ൌ degሺ ܵሺݖሻሻ ൅  deg ሺΛሺݎ, ሻሻݖ  , it follows that deg ቀΔ෡ሺݎ, ሻቁݖ ൑ ݐ2 െ 1 ൅ ݎ ൅

 ݈ሺݎሻ  where ݈ሺݎሻ ൌ ௥ି௞ሺ௥ሻ
ଶ

  is known to be an upper bound on deg ሺΛሺݎ,  ሻሻ. It is known thatݖ

݈ሺݎሻ   is a non-decreasing function of  ݎ  and that it has maximum value ݈ሺ2ݐሻ ൌ  ݁   if  ݁ ൑

ݐerrors have occurred. Hence, 2 ݐ െ 1 ൅ ݎ ൅  ݈ሺݎሻ ൏ ݐ3 െ ,ݎand thus, as Λሺ ,ݎ for all  ݎ  ሻ andݖ

,ݎሺܤ ሻ shift leftwards, they do not over-write the coefficients of  Δ෡ݖ ሺݎ, ,ݎሻ and Θ෡ሺݖ  ሻ . Weݖ

denote the contents of the array in the RiBM architecture as polynomials 

 Δ෡ ሺݎ, ሻ andݖ  Θ෡ሺݎ, ሻ with initial values  Δ෡ݖ ሺ0, ሻ andݖ  Θ෡ሺ0, ሻݖ ൌ ܵሺݖሻ൅ ݖଷ௧ . The RiBM 

architecture [6] implements the following pseudo code.  

Algorithm 6-3 

 [6] ࢓ࢎ࢚࢏࢘࢕ࢍ࢒࡭ ࡹ࡮࢏ࡾ ࢋࢎࢀ

 :࢔࢕࢏࢚ࢇࢠ࢏࢒ࢇ࢏࢚࢏࢔ࡵ

መଷ௧ሺ0ሻߜ ൌ 1. መ௜ሺ0ሻߜ ൌ ݅ ݎ݋݂ 0 ൌ ,ݐ2 … , ݐ3 െ 1.       ݇ሺ0ሻ ൌ  0, ሺ0ሻߛ ൌ  1 

, ௜ݏ :࢚࢛࢖࢔ࡵ ݅ ൌ  0, 1, . . . ݐ2, െ  1. 

መ௜ሺ0ሻߜ ൌ ෠௜ሺ0ሻߠ ൌ ; ௜ݏ    ሺ݅ ൌ  0, . . . ,  1ሻ   ݐ2

ൌ ݎ ࢘࢕ࢌ  0 ׷ ૚: ݐ2 െ  ࢕ࢊ 1

 ࢔࢏ࢍࢋ࢈

.ࡹ࡮࢏ࡾ ࢖ࢋ࢚ࡿ ૚  ߜመ௜ሺݎ ൅ 1ሻ ൌ .ሻݎሺߛ  ሻݎመ௜ାଵሺߜ െ .ሻݎመ଴ሺߜ ݅          ሻݎ෠௜ሺߠ ൌ ሺ0, . . . ,  ሻݐ3

.ࡹ࡮࢏ࡾ ࢖ࢋ࢚ࡿ ૛ ࢌ࢏   ሺߜመ଴ሺݎሻ ് ሻݎሺ݇ ࢊ࢔ࢇ 0  ൒ 0 

 ࢔ࢋࢎ࢚

 ࢔࢏ࢍࢋ࢈

ݎ෠௜ሺߠ ൅ 1ሻ ൌ ሻ          ሺ݅ ൌݎመ௜ାଵሺߜ   0;  1; . . . ;  ሻݐ3 
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൅ ݎሺߛ  1ሻ  ൌ  ሻݎመ଴ሺߜ 

݇ሺݎ ൅  1ሻ ൌ   െ ݇ሺݎሻ െ 1 

 ࢊ࢔ࢋ

 ࢋ࢙࢒ࢋ

 ࢔࢏ࢍࢋ࢈

ݎ෠௜ሺߠ ൅ 1ሻ ൌ ሻ,          ሺ݅ ൌݎ෠௜ሺߠ   0;  1; . . . ;  ሻݐ3 

൅ ݎሺߛ  1ሻ  ൌ  ሻݎሺߛ 

݇ሺݎ ൅  1ሻ  ൌ  ݇ሺݎሻ  ൅  1 

 ࢊ࢔ࢋ

 ࢊ࢔ࢋ

6.7 Comparison of Architectures 

Table 6-2 summarizes the complexity of the various architectures described so far. It can be 

seen that, in comparison to the conventional iBM architecture (Berlekamp’s version), the 

reformulated riBM and RiBM systolic architectures require more ݐ െ 1 multipliers and 

 more multiplexers. All three architectures require the same numbers of latches and adders ݐ

and all three architectures require 2ݐ cycles to solve the key equation for a ݐ -error-correcting 

code. The riBM and RiBM architectures require considerably more gates than the 

conventional iBM architecture (Blahut’s version), but also require only 2ݐ clock cycles as 

compared to the 3ݐ clock cycles required by the latter. Furthermore, since the critical path 

delay in the riBM and RiBM architectures is less than half the critical path delay in either of 

the iBM architectures, the reformulated architectures significantly reduce the total time 

required to solve the key equation (and thus achieve higher throughput) with only a modest 

increase in gate count. More important, the regularity and scalability of the riBM and RiBM 

architectures creates the potential for automatically generating regular layouts (via a core 

generator) with predictable delays for various values of  ݐ  and m . Nonetheless, a rough 

comparison is that the riBM and RiBM architectures require three times as many gates as the 

hypersystolic eE architecture, but solve the key equation in one-sixth the time. 
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Table 6-2: Comparison of Hardware complexity and Path Delay [6] 

 

 

 It is possible to implement the eE algorithm with complex processor elements, as 

described by Shao et al. [4]. Here, the four multiplications in each processor are computed 

using four separate multipliers. The architecture described in [4] uses only  2ݐ ൅ 1 processors 

as compared to the 3ݐ ൅ 1  PE0 or PE1 processors needed in the riBM and RiBM 

architectures, but each processor in [4] has 4 multipliers, four multiplexers, and two adders. 

As a result, the riBM and RiBM architectures compare very favorably to the eE architecture 

of [4]—the reformulated iBM architectures achieve the same (actually slightly higher) 

throughput with much smaller complexity.  

All the multiplexers in the riBM and RiBM architectures receive the same signal and 

the computations in these architectures is purely systolic in the sense that all processors carry 

out exactly the same computation in each cycle, with all the multiplexers  set the same way in 

all the processors—there are no cell-specific control signals. 

6.8 Simulation and Synthesis of  iBM,riBM and RiBM Architectures 

We have used Xilinx Integrated Simulation Environment (ISE) v9.2 for the design process of 

RS codec. Simulation and synthesis are done using Xilinx ISE Simulator and Xilinx Synthesis 

Tool(XST) respectively. Target selected was Spartan-3 Xc3s500 with a speed grade -5.  

6.8.1 Simulation Results for Reed Solomon Codec 

Process of systematic Reed Solomon encoding for (15,9) code  (where  n = 15, k = 9 and m = 

4) over GF(24) are shown in Figure 6-18. The first and second waveforms of the clock and 
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reset signals respectively. On the positive edge o f the clock after the reset goes low, message 

symbols (3rd waveform) start emerging and transition at the negative edge of the clock. The 

message polynomial used in this example simulation is as follows: 

݉ሺݔሻ ൌ  5 ൅ ݔ2 ൅ ଶݔ ൅ ଷݔ6  ൅ ସݔ8 ൅ ହݔ3  ൅ ଺ݔ10  ൅ 15ݔ଻ ൅  ଼ݔ4 

And the encoded polynomial is  

ܿሺݔሻ ൌ   5 ൅ ݔ4 ൅ ଶݔ9 ൅ ଷݔ8  ൅ ସݔ6 ൅ 2ݔହ ൅ ଺ݔ5 ൅ ଻ݔ2 ൅ ଼ݔ ൅ 6ݔଽ ൅ ଵ଴ݔ8 ൅ 3ݔଵଵ

൅ ଵଶݔ10  ൅ 15ݔଵଷ ൅ 4ݔଵସ 

 

 

Figure 6-18: Systematic RS Encoding simulation waveform 

For simulation purposes, it is assumed that 3 errors have occurred during the 

transmission of the code-word as the received word is as follows: 

ሻݔሺݎ ൌ   5 ൅ ݔ4 ൅ ଶതതതതതതതݔ13 ൅ 8ݔଷ ൅ ସݔ6 ൅ ହݔ2  ൅ ଺ݔ5 ൅ ଻ݔ2 ൅ തതതതത଼ݔ2 ൅ ଽݔ6  ൅ ଵ଴ݔ8 ൅ ଵଵݔ3 

൅ 10ݔଵଶ ൅ ଵଷݔ15  ൅ 6ݔଵସതതതതതത 

Symbols in errors are shown with a bar above them. Now, the task of the decoder is to 

find out both the locations of the error and their corresponding values. i.e. the error 

polynomial 

݁ሺݔሻ ൌ ଶݔ4  ൅ ଼ݔ3   ൅  ଵସݔ2 

Syndrome computation for this example is shown in simulation wave-form in Figure 

6-19. The received word r(x) shown in the third row is input to the Syndrome Computation 
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module. As t = 3, for (15,9) code, there are 2t = 6 syndromes.  Syndromes get evaluated one 

cycle after the received word has entered completely into SC block.  Computed syndromes are  

ܵ ൌ ሼ13,3,5,4,8,5ሽ 

SE_done goes high as the computation of the syndrome completes. 

After the syndromes are calculated, the Key Equation Solver block computes the error-

locator and the error-evaluator polynomial. Simulation results for both iBM architecture and 

RiBM architectures are presented for comparison in Figure 6-20 and Figure 6-21respectively. 

It can be observed from the simulation waveforms that the error-locator and error-evaluator 

polynomials are computed in about 50% less time (2t cycles) in RiBM and riBM as compared 

with iBM (2t cycles). Coefficients of error-locator polynomial are indicated by lam_i and 

those of error-evaluator polynomial as omg_i. 

 

Figure 6-19: Syndrome Computation 
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Figure 6-20: Key Equation Solver Simulation for iBM Architecture 

 

Figure 6-21: Key equation solver simulation for RiBM and riBM architecture 

 
 

Figure 6-22: Error-correction 

Figure 6-22 shows the results of Chein-search and Error-evaluator block. Error location 

sequence indicates the location of error and err_sym are the values of the errors. CSEE_reset 

enables the block and a delayed version of received signal  rd_x is added with the error 

sequence to get the decoded code-word symbols c_x.  

6.8.2 Synthesis Results for Reed Solomon Codec: 

Reed Solomon codec was synthesized for Spartan-3 speed grade-5 with various values of the 

parameters n,k and t. This was accomplished by writing the Matlab code for a Verilog HDL 

code generator application. Values of the parameters n and k are specified to the application 

and it generates the required Verilog files in a directory ready to be synthesized by Xilinx ISE.  

Synthesis report generated by XST contains details about the resource usage and maximum 

attainable clock frequency which is the inverse of the critical path delay. 
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6.8.2.1 Synthesis results with changing Error-correction capability ‘t’: 

Synthesis results for 4 different RS codec parameters are shown in Table 6-3 for RiBM. 

RS Code 
(n,k) 

Slices  Flip_Flops  4‐input LUTs  Max.Freq in MHz. 

(15,11)  164  118  300  198 

(15,9)  234  162  427  204 

(15,7)  302  205  551  206 

(15,5)  368  247  672  208 

Table 6-3: Area vs. Speed Comparison with increasing Error-correction capability (n=15) 

It can be observed that as we increase the error-correction capability of the code 

without changing the code-size (and hence the underlying Galois Field) there is an increase in 

the area (resource consumption) however, the speed remains almost the same because we are 

using same GF(16) and the critical path delay is the sum of the delays of adder and multiplier. 

Results in the table are shown in the graph in Figure 6-23. 

 

 

Figure 6-23: Area vs. Speed Comparison for (n,k) RS Code (n =15) for RiBM 
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Similar results are observed for n = 63. Tabulated data is as follows : 

RS Code 
(n,k) 

Slices  Flip_Flops  4‐input LUTs 
Max.Freq(MHz

) 

(63,55)  574  290  1057  164 

(63,47)  1107  537  2034  160 

(63,31)  2179  1123  4017  155 

Table 6-4: Area vs. Speed Comparison with increasing Error-correction capability (n=63) 

 

These results are displayed in the graph in Figure 6-24. 

 

Figure 6-24: Area vs. Speed Comparison for (n,k) RS Code (n =63) for RiBM 

 

As we increase the value of n, we operate in larger Galois Fields with multipliers having 

greater critical path delays and lower maximum clock period. This can be observed by the 

graph in Figure 6-25 
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Figure 6-25: Increase in critical path delay with increasing code size 

Figure 6-26 compares three different inversion-less BM architectures. These architectures 

when synthesized for (15,9) show that they use almost the same number of slices, flip-flops 

and LUT (look up tables). However, the systolic and homogeneous architecture of RiBM 

makes it the fastest i.e. with the minimum critical path delay. 

 

Figure 6-26: Area-Speed comparison of iBM, riBM and RiBM architectures 

This chapter concludes that application of algorithmic transformations to the 

Berlekamp–Massey algorithm result in the riBM and RiBM architectures whose critical path 

delay is less than half that of conventional architectures such as the iBM architecture. The 

riBM and RiBM architectures use systolic arrays of identical processor elements.  



100 

 

CHAPTER 7                                                    

CONCLUSIONS AND FUTURE WORK 

SUGGESTIONS 

 

 

7.1 Conclusions 

This work aimed at investigation, simulation and implementation of various Reed Solomon 

encoding and decoding architectures as well as development of a code acquisition system for 

Direct sequence spread spectrum communication systems.  Simulation and programming was 

done in Matlab while HDL implementation and synthesis were carried out in Xilinx Integrated 

Simulation environment.  

Reed Solomon decoding algorithms implemented in Matlab include Berlekamp-

Massey(BM) algorithm, Extended Euclidean (eE) algorithm, Berlekamp-Welch(BW) modular 

decoding approaches, Guruswami-Sudan(GS) list decoding algorithm, Inversion-less 

Berlekamp Massey algorithm (iBM), Reformulated versions of iBM i.e. riBM and RiBM. 

Algorithms are compared based upon their structure, operational complexity, and critical path 

delay and error-correction capability. 

Guruswami-Sudan decoding algorithm can correct errors beyond half the minimum 

bound but involves high computational cost. We observed that BM algorithm which requires 

division in each iteration and results in irregular architectures can be transformed to an 

inversionless form (iBM). However, iBM algorithm’s critical path delay is dependent upon 

the error-correction capability of the code which is highly undesirable. Reformulated versions 

of iBM  i.e. riBM and RiBM have a very regular and systolic architecture having critical path 

delay lowest among all the current decoding approaches. iBM and its reformulated forms were 

implemented in Verilog HDL and their simulation was carried out using Modelsim and Xilinx 

ISE. A Reed Solomon Codec depends upon three parameters n (block length), k (message 

length) and t (no. of correctable errors) only two of which are independent. These parameters 
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may be required to change in any step during the receiver design. So, in order to add 

flexibility for the system designer, a scalable and parameterizable code must be written. 

Adding this flexibility in Verilog language directly is very tough if not impossible. Solution to 

this problem is obtained by writing a Code generator in Matlab which is capable of generating 

all the Verilog source files for the required set of parameters. 

Second part of the work involves the implementation of a code acquisition system for 

direct sequence spread spectrum (DSSS) systems. A parallel search acquisition strategy is 

adopted and correlation is performed in frequency domain for computational efficiency. Built-

in efficient Xilinx cores for Fast-Fourier Transform and Complex Multiplier are used by this 

design.  

7.2 Future Work Suggestions 

This thesis involved work on two very important components of a digital communication 

receiver, that is, Synchronization and Channel Coding. The implemented schemes can be used 

with other receiver modules to integrate into a functional receiver. For example, a DSSS 

tracking system should accompany the Code acquisition system for fine synchronization. 

Similarly, a concatenated channel coding scheme utilizing both Convolutional codes and Reed 

Solomon codes can be implemented to get greater coding gains.  

The critical path delay of Reed Solomon decoding architectures depends upon the 

delay of the Galois Field (GF) multiplier. Use of an efficient and fast GF multiplier can 

increase the speed of the implemented architectures substantially.  

VLSI architectures for interpolation based Reed Solomon decoder architectures can be 

derived and implemented for better error-correction capability. This work can also be 

extended by utilizing soft-decision reliability information from the channel for better decoding 

performance.  
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