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ABSTRACT

Reed Solomon codes form an important class of linear cyclic block codes with
numerous applications in communications and data storage. This thesis involves investigation
and Hardware Description Language (HDL) implementation of Reed Solomon decoding
algorithms and code acquisition for Direct Sequence spread spectrum (DSSS) systems.
Conventional decoding algorithms which can correct errors up to half the minimum distance
include Berlekamp-Massey (BM) and extended Euclidean (eE) algorithms. These algorithms
are compared with respect to their hardware complexity, architecture regularity and decoding
delay. A series of algorithmic transformations result in a fully systolic architecture for BM
algorithm. This reformulated BM algorithm requires fewer hardware resources and reduced
critical path delay when compared with architectures for eE algorithms. A parameterized
Verilog code generator for Reed Solomon encoder and Berlekamp Massey architecture has
been written in Matlab. Alternate RS decoding procedures based upon polynomial
interpolation such as Guruswami-Sudan (GS) algorithm and Berlekamp-Welch (BW)
algorithm are implemented using Matlab. GS algorithm is a list decoding algorithm which can

provide error correction capabilities beyond half the minimum distance.

Second part of the thesis deals with synchronization issues in a DSSS with emphasis
on Code acquisition. A baseband DSSS transmitter using a PN spreading sequence equipped
with read only memory (ROM) based raised cosine filter is implemented. Correct de-
spreading and decoding of data is possible only if the receiver reference sequence and
received sequence are properly synchronized. Receiver coarse synchronization is done by
parallel search over the code offset space. Cross correlation of these sequences is performed in
the frequency domain by exploiting computational efficiency of the Fast Fourier Transform

algorithm.
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CHAPTER 1

INTRODUCTION

1.1 Background

Modern communication systems are required to operate at high data rates with constrained
power and bandwidth. These conflicting requirements lead to complex modulation and pulse
shaping along with inevitable use of efficient error control coding and an increased level of signal
processing at the receiver. Synchronization requirements also become more stringent at high data

rates and, as a result, receivers become more complex.

This thesis investigates a special class of non-binary cyclic block codes recognized for
their superior multiple error correction capability called Reed-Solomon codes. Moreover, the
synchronization problem for Direct Sequence spread spectrum (DSSS) system is also considered
and a parallel search scheme for DSSS acquisition is developed and implemented using Verilog

Hardware description language (HDL).

Error control coding also called channel coding in the context of digital communication
has a history dating back to the middle of the twentieth century [1,10,16]. In recent years, the
field has been revolutionized by codes which are capable of approaching the theoretical limits of

performance, the channel capacity.

Error control can be classified into Error correction and Error detection [16]. Error
correction coding is the means whereby errors introduced into digital data as a result of
transmission through a communication channel can be corrected based upon received data. Error

detection coding is the means whereby errors can be detected based upon received information.

Error control coding can provide the difference between an operating communication
system and a dysfunctional system. It has been a significant enabler in the telecommunication
revolution, the internet, digital recording, and space exploration. Error control coding is

ubiquitous in modern, information-based society. Every compact disc, CD-ROM, or DVD

1



employs codes to protect the data embedded in the plastic disk. Every hard disk drive employs
correction coding. Every phone call made over a digital cellular phone employs it. Every packet
transmitted over the internet has a protective coding “wrapper” used to determine if the packet
has been received correctly. Even everyday commerce takes advantage of error detection coding.
Every consumer good and every text employs ISBN (International Standard Book Number) and
UPC (Universal Product Code) respectively to uniquely identify and to ensure reliability in

scanning [1].

The principle of channel codes is to represent the information being transmitted as a
sequence of symbols and then add redundant symbols (parity check) in a structured manner. This
encoded information is transmitted over the channel and a noisy version is received. The
structural arrangement of the redundant received information is used by the channel decoder to

detect and possibly correct the errors induced during transmission [15].

Reed Solomon (RS) codes are among the most extensively used error-control codes, with
applications ranging from magnetic recording, through satellite and mobile communications to

deep space exploration [7].

1.2 Basic Communication System:

A digital communication system has functionality to perform physical actions on information. A
basic frame-work for a single communication link is shown in the Figure 1-1. This
communication link transforms the information from the source into a form suitable for
transmission over the designated channel. At the other end, reverse transformations are done to
recover the data and sent to a sink. The performance of all these blocks is governed by the

theorems from information theory.

There are various codes employed in a communication system. Let us take a brief
overview of every block and understand the context of each type of code especially error-

correction codes which is the focus of this thesis.

Source: Source represents data to be communicated which may represent any kind of
information. They can be viewed as streams of random numbers governed by some probability

distribution.



Source Encoder: Source encoder performs data compression by removing redundancy. Source

Source > Source > Channel —>] DSSS —>1 Modulation
Encoder “| Encoder Spreading
h 4
Channel
. S Channel DSSS
Sink & ource e € . €— Demodulation [€—
Decoder Decoder De-spreading

[ Code and Frame J

Synchronization

Figure 1-1: A general frame work for a DSSS digital communications

coding theorem puts entropy of the source as the theoretical minimum bound on the compression

capabilities of source encoder.

Channel Coder: Channel coder adds redundant information in a structured way to the stream of

input symbols that allows errors which are introduced by the channel to be corrected.

The redundancy in the source cannot be used as an alternative to channel coding because

source redundancy is unstructured and thus wasteful of power and bandwidth to transmit.

Because of the redundancy introduced by the channel coder, there must be more symbols

at the output of the coder than at the input. The rate R of a channel coder can be defined as

R==%
n

Where n is the number of output symbols produced for every k message symbols at its input.

The Modulator: Converts the symbol sequences from the channel encoders into signals suitable

for transmission over the channel.

Channel: Channel is the medium over which information is conveyed. Examples of channels
include telephone lines, fiber optic cable, internet cables, microwave radio channels, high

3



frequency channels, cell phone channels, etc. These are the channels in which information is
conveyed between two distinct places. Information may also be conveyed between two separate
times, for example, by writing information onto a computer disk and then retrieving it at a later
time. Hard disks, diskettes, CD-ROMS, DVDs, and solid state memory are other examples of

channels.

Channel Impairments: As signals travel through a channel they may be corrupted. For example,
a signal may have noise added to it; it may experience time delay or timing jitter, or suffer from
attenuation due to propagation distance and/or carrier offset; it may be multiply reflected by
objects in its path, resulting in constructive and/or destructive interference patterns; it may
experience inadvertent interference from other channels, or be deliberately jammed. It may be
filtered by channel response, resulting in interference among symbols. These sources of

corruption in many cases all occur simultaneously.

For purpose of analysis, channels are frequently characterized by mathematical models,
which (it is hoped) are sufficiently accurate to be representative of the attributes of the actual

channel, yet are also sufficiently abstracted to yield tractable mathematics.

Channels can have different information carrying capabilities. For example, a dedicated
fiber-optic cable is capable of carrying more information than a plain old telephone service
(POTS) pair of copper wires. Associated with each channel is a quantity known as the capacity C,

which indicates how much information it can carry reliably.

The reliable information a channel can carry is intimately related to the use of error
correction coding. The governing theorem from information theory is Shannon’s Channel Coding
Theorem [10], which states essentially, “Provided that the rate R of the transmission is less than
the capacity C, there exists a code such that the probability of error can be made arbitrarily

small.”
Channel encoding and modulation may be combined into Coded Modulation [1].

The Demodulator/Equalizer: Receives the signal from the channel and converts it into a

sequence of symbols. This typically involves many functions, such as filtering, demodulation,



carrier synchronization, symbol timing estimation, frame synchronization, and matched filtering,

followed by a detection step in which decisions about the transmitted symbols are made.

The Channel Decoder: Exploits the redundancy introduced by the channel encoder to correct
any errors that may have been introduced. As suggested by the figure, demodulation, equalization

and decoding may be combined e.g. in a turbo equalizer.
Source Decoder: Provides uncompressed received data.
The sink: Ultimate destination of the data.

Code and Frame Synchronization: The synchronization block influences almost every block.
The coherent demodulation of a digitally modulated signal requires that the receiver be
synchronous to the transmitter. Two sequences of events are said to be synchronous relative to
each other when the events in one sequence and the corresponding events in the other occur
simultaneously. The process of making a situation synchronous is called Synchronization. At the
receiver, the process of synchronizing the frequency and phase of the carrier is called carrier
recovery and synchronizing symbol boundaries is called symbol Alignment, symbol recovery or
symbol timing recovery. A coherent demodulator requires knowledge of carrier phase, carrier
frequency and symbol timing for successful operation. Similarly a channel decoder block must
know the boundaries of the block or frame to be decoded. This is called frame synchronization

[26].

1.3 Motivation

Reed Solomon (RS) codes and their decoding is a very rich and growing research area even after
48 years of their introduction by Irving S. Reed and Gustave Solomon. Their outstanding error
performance and diversity of application areas make them most attractive when compared with
other block codes. New methods and architectures are being sought which reduce the decoding
complexity, improve the error correction performance without reducing the code rate.
Concatenation of RS codes with convolutional codes has made it possible to reach within half dB
of the Shannon’s theoretical bound of channel capacity. Various reformulations of the decoding
algorithms which reduce the architecture complexity and provide more regular systolic
architectures have been derived. Recently introduced concept of soft-decision decoding for Reed

Solomon codes has also met with great success. These architectures originally thought of as
5



unpractical because of very high complexity have been made implemented by such architectural

innovations.

14 Objectives of the Thesis

e This thesis involves a detailed investigation of the Reed Solomon codes, their encoding,
various decoding approaches, error performance capability for various decoding procedures
and their algebraic formulation.

e High speed architectures for Berlekamp Massey algorithms and their efficient reformulations
have been investigated.

e Major RS decoding algorithms such as Berlekamp-Massey (BM), Extended Euclidean ¢E)
algorithm and Berlekamp-Welch (BW) algorithm have been implemented and tested in
Matlab.

e Verilog Hardware description Language (HDL) code generator for Matlab has been coded
which generates all the Verilog files with more than twenty different modules, ready to be
synthesized and simulated.

e Theoretical understanding of Guruswami-Sudan (GS) decoding and implementation of all the

modules has been carried out in Matlab.

1.5  Overview of the Thesis

Thesis contents are organized into seven chapters. Chapter 2 provides the theoretical construction
of Reed Solomon codes, systematic encoding, syndrome evaluation and theorems related to
Berlekamp-Massey algorithm. Chapter 3 deals with derivation of second Key-equation and
associated decoding technique of Berlekamp Welch. Chapter 4 introduces list decoding and
interpolation based decoding algorithm introduced by Guruswami and Sudan. Koetter’s
interpolation and Roth-Ruckenstein’s factorization algorithm are important components of the GS
decoder and have been discussed thoroughly. Chapter 5 gives an overview of Spread Spectrum
communications, PN sequences, acquisition for Direct sequence spread spectrum systems.
Chapter 6 deals with HDL implementation details of Reed Solomon decoder and Chapter 7
concludes the thesis and provides future work recommendations. Selected references are provided

at the end.



CHAPTER 2
REED SOLOMON CODES AND BERLEKAMP-MASSEY
DECODING

The most commonly used error correcting codes are the BCH and Reed Solomon
Codes. The BCH code is named for Bose, Ray-Chaudhari, and Hocquenghem, who published
work in 1959 and 1960 which revealed a means of designing codes over GF(2) with a
specified design distance. Decoding algorithms were then developed by Peterson and

others.[1,10]

The Reed-Solomon codes are named for their inventors, who published in 1960. It was
later realized that Reed Solomon (RS) codes and BCH codes are related and that their

decoding algorithms are quite similar. Decoding of these codes is an extremely rich area.

2.1  BCH Codes
BCH codes are cyclic codes and hence may be specified by a generator polynomial. A BCH

code over GF (q) of length n capable of correcting at least t errors is specified as follows:

1. Determine the smallest m such that GF (q™) has a primitive n-th root of unity £3.
2. Select a non-negative integer b. Frequently, b = 1.

3. Write down a list of 2¢ consecutive powers of 5

‘Bb’ﬁb+1’ ...,,Bb+2t_1

and determine the minimal polynomial with respect to GF (q) of each of these powers of
B.

4. The generator polynomial g(x) is the least common multiple (LCM) of these minimal
polynomials.

5. The codeisa (n,n —deg(g(x)) cyclic code.



Because the code is constructed using minimal polynomials with respect to GF(q), the

generator g(x) has coefficients in GF(q) , and the code is over GF (q).

Definition 2-1

If b = 1 in the construction procedure, the BCH code is said to be narrow sense. If n =

q™ — 1, then the BCH code is said to be primitive [1].

Two fields are involved in the construction of BCH codes. The “small field” GF(q) is
where the generator polynomial has its coefficients and is the field where the elements of the
code words are. The “big field” GF(q™) is the field where the generator polynomial has its
roots. For encoding purposes, it is sufficient to work only with the small field. However,

decoding requires operations in the extension field.

2.2 The BCH Bound
The BCH bound is the proof that the constructive procedure described above produces codes

with at least the specified minimum distance.

Theorem 2-1

Let C be a g-ary (n, k) cyclic code with generator polynomial g(x). Let GF (q™) be the
smallest extension field of GF(q) that contains a primitive nth root of unity and let 5 be a
primitive nth root of unity in that field. Let g(x) be the minimal-degree polynomial in

GF (q)[x] having 2t consecutive roots of the form
g =g(**H =, ..,.= g(B****H =0 Eq. (2-1)

then the minimum distance of the code satisfies d;;;, = & = 2t + 1 ; that is, the code is

capable of correcting at least t errors.[1]

2.3 Reed Solomon Codes

There are actually two distinct constructions for Reed-Solomon codes. While these initially
appear to describe different codes, it can be shown using Galois Field Fourier transform
techniques that two are in fact equivalent. Most of the decoding operations are concerned with

the second construction.



2.3.1 Reed Solomon Construction 1
Definition 2-2

Let o< be a primitive element in GF(q™) and letn = g™ — 1. Let m = (my, my, ..., my_1) €
GF(q™)* be a message vector and let m(x) = my + myx + -+ my_;x*"1 € GF(q™)[x]

be its associated polynomial. Then the encoding is defined by the mapping p: m(x) = ¢ by
(o) €1y s Cneg) 2 p(m(x)) = (M(1), m(x), m(x?), ..., m(x™1))

That is p(m(x)) evaluates m(x) at all the non-zero elements of GF(q™). The Reed
Solomon code of length n = ¢™ — 1 and dimension k over GF(q™) is the image under p of

all polynomials in GF(q™)[x] of degree less than or equal to k — 1.

More generally, a Reed Solomon code can be defined by taking n < q, choosing n
distinct elements out of (q™), 4, X, ..., «,, known as the Support set , and defining the

encoding operation as

p(m(x)) = (m(OCl), m(“z);m(o%)' ,m(OCn))

The code is the image of the support set under p of all polynomials in GF (q™)[x] of
degree less than k.[1]

Following properties can be shown to be true for RS Codes.

1. The Reed Solomon code is a linear code
2. The minimum distance of an (n,k) Reed Solomon code is d,,;;, = n—k + 1.
3. Reed Solomon codes achieve the singleton bound and are thus maximum distance

separable codes.

This construction of RS Codes came first historically and Guruswami Sudan list decoding

algorithm is based on it [§].
2.3.2 Reed Solomon Construction 2

In constructing BCH codes, generator polynomials over GF(q) (base field) are dealt with by
finding least common multiple of minimal polynomials which have all the conjugates of 8 as
roots. The degree of resulting generator polynomial usually exceeds the number 2t of roots

specified. However, in Reed Solomon codes, we can operate in the extension field [1].



A Reed-Solomon code is a g™ -ary BCH code of length ¢™ — 1. In GF(q™), the
minimal polynomial for any element 8 is (x — ). The generator polynomial for an RS-Code

is therefore
gx) = (x— a?)(x — aP*H) .. (x — aP*HY), Eq. (2-2)

where « is a primitive element. There are no extra roots of g(x) included due to conjugacy in
the minimal polynomials, so the degree of g is exactly equal to 2t. Thus, n — k = 2t , for an

RS code. The design distanceis§ =n —k + 1.

24 Systematic Encoding of Reed Solomon Codes

Reed Solomon codes may be encoded just as any other cyclic code (provided that the
arithmetic is done in the right field). Given a message vector m = (mgy, my, ..., my_;), where
each m; € GF(q), and its corresponding message polynomial, m(x) = my + myx + -+

my_1x*"1 € GF(q™)[x] , the systematic encoding process is

c(x) = m@)x™k - Ry [m(x)x™ k] Eq. (2-3)
where Ry, [. ] denotes the operation of taking the remainder after division byg (x).

Typically, the code is over GF (2™), for some m. The message symbol m; can then be
formed by taking m bits of data, then interpreting these as the vector representation of the

GF(2™) elements [16].

2.5 Decoding BCH and RS Code General Outline
There are many algorithms which have been developed for decoding BCH or RS codes. The
algebraic decoding of BCH or RS codes has the following steps:

1. Compute the syndromes.

2. Determination of an error locator polynomial, whose roots provide an indication of where
the errors are. There are several different ways of finding the locator polynomial. These
methods include Peterson’s algorithm for BCH codes, the Berlekamp-Massey algorithm
for BCH codes; the Peterson-Gorenstein-Zierler algorithm for RS codes, the Berlekamp-
Massey algorithm for RS codes, and the Euclidean Algorithm. In addition there are

techniques based upon Galois-filed Fourier transforms.
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3. Finding the roots of the error locator polynomial. This is usually done using the Chien
search, which is an exhaustive search over all the elements in the field.
4. For RS codes or non-binary BCH codes, the error values must also be determined. This is

typically accomplished using Forney’s algorithm.

2.5.1  Computation of the Syndrome

Since 2t consecutive powers of a are roots of the generator polynomial,

b+1y = ... b+2t—1) =0

g@”) = gla = g(a
It follows that a codeword ¢ = (cy, ¢4, -.., Cp—1) With polynomial
c(x) = ¢+ X+ -+ cp_1x* 1 has
c(@?) = c(al*l) = = c(ab*?t-1) =0
For a received polynomial
r(x) = c(x) + e(x)

We have S; =r(@*?) =c(a/*?) + e(a/*?) =e(a/*?), j=0,...,2t-1

The values Sy S ....,S2¢—4, are called the Syndromes of the received data.Suppose that
r has v errors in it which are at locations iy, iy, ..., i,, With corresponding values in these

locations ey; # 0. Then

Si= Yioy e ()t =¥1 e (<))
Let Xl - OCil
Then we can write S;i= Xl eil(X,)j , Jj=01,..,2t—-1

For binary codes, we have ey = 1 (i.e. if there is a non-zero error , it must be 1). For a

moment, we restrict our attention to binary (BCH) codes. Then we have
S;= Yt X/ Eq. (2-4)

If we know X; , then we know the location of the error. For example, suppose we know

that X; = «*. This means, by definition of X; that i; = 4; that is, the error is in the received
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digit r,. We thus call the X; the error locators. The next stage in the decoding problem is to

determine the error locators X; , given the syndrome S; [1].

2.5.2  The Error Locator Polynomial
From Eq (2-4), we obtain the following equations:

SOZ X1+ X2+"'+ XV Eq.(2-5)

Sl = Xlz + X22 + -+ sz

SZt—l = Xlzt + X22t + A + szt

The equations are said to be power-sum symmetric functions. This gives us
2t equations in the v unknown error locators. In principle, this set of nonlinear equations

could be solved by an exhaustive search, but this would be computationally unattractive [10].

Rather than attempting to solve these non-linear equations directly, a new polynomial
is introduced, the error-locator polynomial, which casts the problem in a different, and more

tractable, setting. The error locator polynomial is defined as

A(x) = TTei(T = Xx) = Agx? + Ay x" 14+ o+ Ajx+ Ay Eq. ( 2-6)

where A, = 1. By this definition, ifx = X;”*, then A(x) = 0; that is, the roots of the error

locator polynomial are at the reciprocals (in the Galois field arithmetic) of the error locators

[1].
2.5.3 Chein Search

If we have the error-locator polynomial, the next step is to find the roots of the error locator
polynomial. The field of interest is GF(q™). Being a finite field, we can examine every
element of the field to determine if it is a root [13].Suppose for example, that v = 3 and the

error locator polynomial is
A(x) = Ao+ Ayx 4+ Apx® 4+ Azx® = 14 Ajx + Apx® + Azx?®

We evaluate A(x) at each non-zero element in the field in succession: x = 1,x = ¢, x =

o2, ..., x = oc?" =2 This gives us the following
12



A(D) = 1+ A (D) + A (D% + A3(1)3
A(X) =1 + A(x) + Ay()? + Az(x)3

A(®) =1 4+ A(c?) + Ay (x?)? + Az(ec?)?

AT 72) = 1+ Ay (x9"72) + Ay(x@"72)2 + Ag(xd"72)3

A set of v registers are loaded initially with the coefficients of the error locator

polynomial, Ay, ..., Ay. The initial output is the term
v
A= ZA]- = AG) = 1]pey
j=1

If A = 1, then an error has been located (since then A(x) = 0). At the next stage, each
register is multiplied by o/ j=12,.v, so the register contents are

Ay o, Ay o2, Ay o3, ..., A, xV. The output is the sum

v
A=) Ajed = AGO) = 1o
=1

The registers are multiplied again by successive powers of &, resulting in evaluation

at oc?. This procedure continues until A(x) has been evaluated at all non-zero elements of the

field.

If the roots are distinct and all lie in the appropriate field, then we use these to
determine the error locations. If they are not distinct or lie in the wrong field, then the received
word is not within distance t of any codeword. (This condition can be observed if the error
locator polynomial of degree v does not have v roots in the field that the operations take in;
the remaining roots are either repeated or exist in an extension of the field). The
corresponding error pattern is said to be an uncorrectable error pattern. An uncorrectable error

pattern results in a Decoder Failure [11].

2.6 Finding the Error Locator Polynomial

Let us return to the question of finding the error locator polynomial using the syndromes. Let

us examine the structure of the error locator polynomial by expanding it for the case v = 3.
13



A(X) = 1 - X(Xl + XZ + X3) + XZ(XIXZ + X1X3 + X2X3) - X3X1X2X3
= AO + XA]_ + XZAZ + X3A3

So that

A= —(X+ X, + X3)

A, = XX, + X1 X3+ XoX5

Az = —(X1X,X3)

In general, for an error locator of degree v we find that

Ay =1 Eq. (2-7)

v
_A]_: le: X1+ X2+ X3+ .t X‘U
i=1

1=

A, = ZXixj = X, Xy + Xy Xz + o XoXp 4 ot Xyt X,
i<j

_A3 == Z Xl)(] Xk == X1X2X3 + X1X2X4 + ...+ XIXZXU + "'+X17—2X17—1X17
i<j<k

(_1)VAV - X1X2X3 "'X‘U

That is, the coefficient of the error locator polynomial A; is the sum of the product of all
combinations of the error locator taken i at a time. Equations of the form (above) are referred
to as the elementary symmetric functions of the error locators (so called because if

the error locators {X;} are permuted, the same values are computed [1,10].

The power sum symmetric functions of the Eq(2-7) provides a non-linear relationship
between the syndromes and the error locators. The elementary symmetric functions provide a
non-linear relationship between the coefficients of the error locator polynomial and the error
locators. The Key observation is that there is a linear relationship between the syndromes and
the coefficients of the error locator polynomial. This relationship is provided by the Newton

Identities, which apply over all fields.

14



Theorem 2-2
The syndromes and the coefficients of the error locator polynomial are related by
Sk + Alsk_l + ...+ Ak_lsl + kAk == 0 1 S k S v

Sk, + A15k_1 + ..+ Av_lSk_vH + AVSk—v =0 k>v

Eq. (2-8)

That is,

k=1 5+ A =0

k=2: Sz+ A151+ 2A2=0
k = V: SU + Alsv_l + Azsv_z + -+ AV—l’Sl + VAV =0
k=v+1: Syoy+ AS,+ AySyy + -+ AS; =0
k:’U+2: S‘U+1+ A15V+1+ AZSU+.”+ AVSZ :O
k = 2t: SZt + Alszt_l + AZSZt—Z + -+ AVSZt—V =0 Eq (2‘9)

For k > v, there is linear feedback shift register relationship between the syndromes

and the coefficients of the error locator polynomial.
S] = — ;-]=1 AiSj—i Eq ( 2-10)

This equation can be expressed in a matrix form

Sv+2

SZ S3 Sv+1 Av—l Sv+2
S3 54 Avy2|= —

Sv+3

[ S1 S2 Sy ]| Ay [Svi1]
I

lSv .Sv+1 521;—1J A1J lS;VJ

The v X v matrix, which we denote M,,, is a Toeplitz matrix, constant on the diagonals
[1,10,6]. The number of errors v is not known in advance, so it must be determined. The

Peterson-Gorenstein-Zierler decoder [1] operates as follows.
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1. Setv==¢.
2. Form M, and compute the determinant det (M,) to determine if M,, invertible. If it is not
invertible, set v = v — 1 and repeat this step.

3. If M, is invertible, solve the coefficients Ay, A,, ..., Ay.

2.6.1 Simplifications for Binary Codes and Peterson’s Algorithm

For binary codes, Newton’s identities are subject to further simplifications nS; = 0 if n is
even and nS; = §; if nis odd. Furthermore, we have S,; = sz. We can thus write Newton’s

Identities as,

S,+ A, =0

S3 + A152 + Ale +A3 = 0

SZt—l + AISZt—Z + ...+ AtSt—l = 0,

which can be expressed in the matrix form as

1 0 00 0 0N S1
S, S 1 0 ..0 0l|A2 S;
Sy S3 S S1 0 of|lAs|=—| Ss Eq. (2-11)
lad s,
or AA = —S. If there is in fact t errors, the matrix is invertible , as we can determine by

computing the determinant of the matrix. If it is not invertible, remove two rows and columns
and then try again. Once A is found, we find its roots. This matrix based approach for solving

for the error-locator polynomial is called Peterson’s algorithm for decoding binary BCH codes
[1].

For large number of errors, Peterson’s algorithm is quite complex. Computing the
sequence of determinants to find the number of errors is costly. So is solving the system of
equations, once the number of errors is determined. We therefore look for more efficient

techniques.

2.7  Berlekamp Massey Algorithm

While Peterson’s method involves straightforward linear algebra, it is computationally

complex in general. Starting with matrix A in Eq (2-11) it is examined to see if it is singular.
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This involves either attempting to solve the equations (e.g., by Gaussian Elimination or
equivalent), or computing the determinant to see if the solution can be found. If A is singular,
then the last two rows and columns are dropped to form a new A matrix. Then the attempted

solution must be re-computed starting over with the new A matrix.

The Berlekamp-Massey algorithm takes a different approach. Starting with a small
problem, it works up to increasingly longer problems until it obtains an overall solution.
However, at each stage, it is able to reuse information it has already learnt. Whereas, as the
computational complexity of the Peterson method is O(v?3), the computational complexity of

the Berlekamp-Massey algorithm is 0 (v?) [12].
We have observed from the Newton’s Identity, Eq. ( 2-10), that
S] = —ZleAIS]_l ] =U+1,U+2, ,2t Eq(2-12)

This formula describes the output of a linear feedback shift register (LFSR), with
coefficients Ay, Ay, ..., Ay. In order for this formula to work, we must find the A; coefficients
in such a way that the LFSR generates the known sequence of Syndromes S;,S,,.., Sy;.
Furthermore, by the Maximum-likelihood principle; the number of errors v determined must
be the smallest that is consistent with the observed syndromes. We therefore want to

determine the shortest such LFESR.

In the Berlekamp-Massey algorithm, we build the LFSR that produces the entire
sequence {S;,S,,..,S,:} by successively modifying an existing LFSR, if necessary, to produce
increasingly longer sequences. We start with an LFSR that could produce S;. We determine if
that LFSR could also produce the sequence {S;,S,}; if it can, then no modifications are
necessary. If the sequence cannot be produced using the current LFSR configuration, we

determine a new LFSR that can produce the longer sequence.

Proceeding inductively in this way, we start from an LFSR capable of producing a
sequence {S;,S,,..,S¢_1} and modify it if necessary, so that it can also produce the
sequence{S;, S,,.., Sk }. At each stage, the modifications to the LFSR are accomplished so that
the LFSR is the shortest possible. By this means after completion of the algorithm, an LFSR
has been found that is able to produce {S;,S,,..,S,:} and its coefficients correspond to the

error locator polynomial A(x) of smallest degree [1].
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Since we build up the LFSR using information from prior computations, we need a
notation to represent the A(x) used at different stages of the algorithm. Let L, denote the
length of the LFSR produced at stage k of the algorithm. Let

AM) = 14 A, M + A2 + 4 Ay T

be the connection polynomial at stage k, indicating the connections for the LFSR capable of

producing the output sequence{S;, S,, .., Si}. That is,
Si= =Sk AMS L j=L+1,. k. Eq. (2-13)

It is important to realize that some of the coefficients in AXl(x) may be zero, so that
L, may be different from the degree of AKI(x). In realizations which use polynomial

arithmetic, it is important to keep in mind what the length is as well as the degree.

At some intermediate step, suppose we have a connection polynomial AX~(x), of
length L, _; that produces {S;, S,,..,Sx_1} for some k — 1 < 2t. We check if this connection

polynomial also produces Sj. By computing the output,
S =— Z APHS
i=1

If S is equal to S, then there is no need to update the LFSR, so AlKl(x) = Alk-1(x),

and L, = L,_,. Otherwise, there is some non-zero discrepancy associated with A=11(x),
di = Sk = S = S+ TET AT = g AR Eq. (2-14)
In this case, we update the connection polynomial using the formula,
A (x) = AK-1(x) + Ax!AI-1(x), Eq. (2-15)

where A is some element in the field, [ is an integer, and Al™~1(x), is one of the prior
connection polynomials produced by our process associated with non-zero discrepancyd,,,.

Using this new connection polynomial, we compute the new discrepancy denoted by dj, , as
di = TS = B ANTYS G + AT A S Eg. (2-16)

Now, let | = k-m . Then, by comparison with the definition of the discrepancy in

Eq. ( 2-14) the second summation gives
18



AT ATS = Ady,

Thus, if we choose 4 = —d,;, 'd}, then the summation in Eq. (2-16), gives
dy = dy —dp, 'dpdy, =0
So the new connection polynomial produces the sequence {S;, S, .., Si} with no discrepancy.

2.7.1  Characterization of LFSR Length in Massey’s Algorithm

The update in Eq. (2.15) is, in fact, the heart of Massey’s algorithm. If all we need is an
algorithm to find a connection polynomial, no further analysis is necessary. However, the
problem was to find the shortest LFSR, but have no indication yet that it is the shortest.

Following two theorems provide results about it [1].
Theorem 2-3

(k=1](x) of length L,_; produces the

Suppose that an LFSR with connection polynomial A
sequence {Sy, Sy, .., Sk_1}, but not the sequence {S;, S5, .., S} then any connection polynomial

that produces the latter sequence must have a length L;, satisfying
Ly >k — Ly_4

Since the shortest LFSR that produces the sequence {S;, S,, .., S;} must also produce
the first part of that sequence, we must have L, > Lj_;. Combining this with the result of the

theorem, we obtain,
Ly 2 max(Ly_q,k— Li_q) Eq. (2-17)
We observe that the shift register cannot become shorter as more outputs are produced.

We have seen how to update the LFSR to produce a longer sequence using
Eq. ( 2-15) and have also seen that there is a lower bound on the length of the LFSR. We now
show that this lower bound can be achieved with equality, thus providing the shortest LFSR

which produces the desired sequence.

19



Theorem 2-4

In the update procedure, if AKI(x) # AX~1(x), then a new LFSR can be found whose length

satisfies
Ly = max (Ly-1,k — Ly-1)

In the update step, we observe that the new length is the same as the old length if
Lk—l 2 k — Lk—l' that iS, lf

2Lp_1 =k

In this case, the connection polynomial is updated but there is no change in length. The
shift register synthesis algorithm, known as Massey’s algorithm, is presented first in pseudo

code as Algorithm 2-1 where we use the notations.
c(x) = AK¥l(x)
to indicate the “Current” connection polynomial and
p(x) = A1)

to indicate the “previous” connection polynomial. Also, N is the number of input symbols

N = 2t for many decoding problems.

Algorithm 2-1

Berlekamp-Massey Algorithm[1]

Input SI'SZ' ...,SN

Initialize:
L = 0 (the current length of the LFSR)
c(x) = 1 (the current connectoin polynomial)

p(x) = 1 (the previous connection polynomial)

=1 (1 is k —m, the amount of shift in update)
dnp =1 (Previous discrepancy)
fork=1ton
L
d=S,+ Z CiSk—i (Compute the discrepancy)
i=1
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if (d==0) (no change in update)
I=1+1
else
if (2L = k) then (no length change in the update)
c(x) = c(x) — ddylx'p(x)

l=14+1
else (update c with length change)

t(x) = c(x) (temporary storage)
c(x) = c(x) — dd; x'p(x)

L=k-L

p(x) = t(x)

dnp=d

l =1

end

end
2.8 Non-Binary BCH and RS Decoding

For non-binary BCH or RS decoding, some additional work is necessary. Some extra care is
needed to find the error locators, and then the error values must be determined. As the

syndromes are related to the error-values as:
SO = ei1X1 + eizXz + o+ el'VXU

Si= e Xit+ e, X'+ + e X,

— 2t 2t 2t
SZt—l - eile + eizXz + -+ eiVXv

Because of the e;; coefficients these are not power-sum symmetric functions as was the case

for the binary codes. Nevertheless, in a similar manner, it is possible to make use of an error

locator polynomial [4,6].
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Lemma 2-1

The syndromes and the coefficients of the error locator polynomial A(x) = Ayx’ +

Av_1x"" 1+ ..+ Ajx + A, arerelated by
AySicy + DyrSjgprt . 0 Sy + S; =0 Eq. (2-18)

Because Eq (2-18) holds, the Berlekamp-Massey algorithm (in its non-binary
formulation), can be used to find the coefficients of the error locator polynomial, just as for

binary codes.

2.9  Forney’s Algorithm

Having formed the error locator polynomial and its roots, there is still one more step for the

non-binary BCH or RS codes: we have to find the error values. Let us return to the syndrome,
Si=Y,eX, j=01.,2t-1

Knowing the error-locators (obtained from the roots of the error locator polynomial) it

is straightforward to setup and solve a set of linear equations:

X1 X Xy [eil‘l [ So 1

X2 X% - X2 |6 S,

X? X° X2 |[C=]=] S Eq. (2-19)
12t XZZt A szt eiv lSZt—IJ

However, there is a method which is computationally easier and in addition provides
us a key insight for another way of doing the decoding. It may be observed that the matrix in
Eq. ( 2-19) is essentially a Vandermonde matrix. There exist fast algorithms for solving
Vandermonde systems. One of these which apply specifically to this problem is known as

Forney’s Algorithm.
Let us define the syndrome polynomial as

S(x) = So+ Sy x+ -+ Sy x = YIS ) Eq. ( 2-20)
and the error-evaluator polynomial as

Q(x) = S()A(x) (mod x?t) Eq. (2-21)
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This equation is called the Key Equation. [1,6,10]

Theorem 2-5

(Forney’s Algorithm) The error values for a narrow-sense Reed-Solomon code are computed

by

b _ XD
B A

Where A(x) is the formal derivative of A(x) [1].

2.10 Euclidean Algorithm for the Error Locator Polynomial

We have seen that the Berlekamp-Massey algorithm can be used to construct the error locator
polynomial. An alternative algorithm called extended Euclidean algorithm can also be used
for the same purpose. This approach to decoding is often called the Sugiyama algorithm [1,4].

We return to the key equation:
Q(x) = S(x)A(x) (mod x?*)

Given only S(x) and t, we desire to determine the error locator polynomial A(x) and
the error evaluator polynomial Q(x). From the statement of the problem it looks hopefully

unconstrained. However, we can re-write the Key equation above as
) (x*) + AXSK) = Q(x)

for some polynomial @(x). Also, the extended Euclidean algorithm returns, for a pair of

elements (a, b) from a Euclidean domain, a pair of elements (s, t) such that
as+bt=c

where c is the GCD of a and b. In our case, we run the extended Euclidean algorithm to obtain

a sequence of polynomials @I (x), All(x) and Q¥ (x) satisfying
Ol () + AM()S() = M)
And the stopping criterion is when the polynomial Q¥l(x) has a degree less than t.

The steps to decode using the Euclidean algorithm are summarized as follows:
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1. Compute the syndromes and the syndrome polynomial
2t-1
S(X) =Sy + Sy x+ -+ Sy x?t = Z S;xJ
j=0

2. Run the Euclidean algorithm with a(x) = x2* and b(x) = S(x), until deg(r;(x)) < t.
Then Q(x) = r;(x) and A(x) = t;(x).
3. Find the roots of A(x) and the error locator X;.

4. Solve for the error values using Forney’s formula.

In terms of computational efficiency, it appears that the Berlekamp-Massey algorithm
procedure may be slightly better than the Euclidean algorithm for binary codes, since the
Berlekamp-Massey deals with polynomials no longer than the error locator polynomial, while
the Euclidean algorithm may have intermediate polynomials of higher degree [6]. The
computational complexity for Euclidean algorithm is probably quiet smaller. Also, the error
evaluator polynomial Q(x) is automatically obtained as useful by product of the Euclidean
algorithm method. However, there are inversion-less reformulations of Berlekamp Massey
algorithm which have considerably lower critical path delay and have comparable complexity

[2,3].
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CHAPTER 3

BERLEKAMP-WELCH ALGORITHM

In this chapter, we discuss another decoding method for Reed Solomon codes. It is based upon

anew Key equation and is called Remainder Decoding [1].

3.1  Workload for Reed-Solomon Decoding
A primary motivation between the remainder decoder is that its implementation may have
lower decoder complexity. The decode complexity for a conventional decoding algorithm for

an (n, k) code having redundancy p = n — k is summarized by the following steps:

1. Compute the syndromes. p Syndromes must be computed, each with a computational
cost of O(n), for a total cost of O(pn). Furthermore, all the syndromes must be
computed, regardless of the number of errors.

2. Find the error locator polynomial and the error evaluator. This has a computation cost
of 0(p?), (depending on the approach).

3. Find the roots of the error locator polynomial. This has a computation cost of O(pn)
using the Chien Search.

4. Compute the error values, with a cost of 0 (p?).

Thus, if p < n/2, the most expensive steps are computing the syndrome and finding the
roots. In remainder decoding, decoding takes place by computing remainders instead of
syndromes; the remaining steps retain similar complexity. This results in potentially faster
decoding. Furthermore, it is possible to find the error locator polynomial using a highly-
parallelizable algorithm. The general outline for the new decoding algorithm is as follows

[20]:

1. Compute the remainder polynomial r(x) = R(x) mod(g(x)), with complexity O(n)
(using very simple hardware).

2. Compute an error-locator polynomial W(x) and an associated polynomial N(x). The
complexity is O(p?), Architectures exist for parallel processing.

3. Find the roots of the error locator polynomial, complexity O(pn).
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4. Compute the error values, complexity O (n).

3.2 Derivations of the Welch-Berlekamp Key Equation

Welch-Berlekamp (WB) Key equation can be derived using two separate methods. The first
derivation uses the definition of the remainder polynomial. The second definition shows that

the WB Key equation can be obtained from Conventional Reed-Solomon Key equation [1].

3.2.1  The Welch-Berlekamp Derivation of the Key Equation

The generator polynomial for an (n, k) RS code can be written as

b+d-2

g =[] - ab
i=b

which is a polynomial of degree d — 1, where d = d,p;, = 2t + 1 =n —k + 1. We denote
the received polynomial as R(x) = c(x) + E(x). We designate the first d — 1 symbols of
R(x) as check symbols, and the remaining k symbols as the Message symbols. This
designation applies naturally to systematic encoding of codewords, but we use it even in the
case that non-systematic coding is employed. Let L. = {0,1, ...,d — 2} be the index of set of
the check locations with corresponding check locators L,c = {a*,0 < k < d — 2}. Also L,,, =
{d—1,d,...,n— 1} denote the index set of the message locations, with corresponding

message locators L,m = {a¥,d —1<k<n-1}
We define the remainder polynomial as
r(x) = R(x) mod(g(x))
and write 7(x) in terms of its coefficients as  7(x) = Y% 2r x!

The degree of r(x) is < d — 2. This remainder can be computed using conventional LFSR
hardware that might be used for the encoding operation, with computational complexity
o(n).

Lemma 3-1
r(x) = E(x) mod g(x)
And  r(xF) = E(«xk) fork €{b,b+1,..,b+d -2} [121]
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3211 Single Error in a Message Location

To derive the WB key equation, we assume initially that a single error occurs. We need to
make a distinction between whether the error location e is a message location or a check
location. Initially we assume thate € L,, with error value Y. We thus take E(x) = Yx€, or
the (error position, error location) = (¢,Y) = (X,Y). The notation Y = Y[X] is also used to

indicate the error value at the error locator X.

When e € L,, , then modulo operation Yx°¢ mod g(x) “folds” the polynomial back
into the lower order terms, as pictured in Error! Reference source not found.. Evaluating

r(x) at generator root locations we have by Lemma 3-1,
r(«k) = E(«¥) = Y(xF)e = YXF, k e{b,b+1,..,b+d -2} Eq. (3-1)
where X = «® is the error locator. It follows that
r(«ck) — Xr(ock™1) = yx*k — Xyx*1=0, k €{b+1,b+2,..,b+d—2}
Define the polynomial,
u(x) = r(x) — Xr(«x1),

which has the degree less than d — 1. Then u(x) has roots at o?*1, «?*+2,  oP*+2=2 5o that

u(x) is divisible by the polynomial

b+d-2 d—2
p(x) = 1_[ (x— o) = Eplxl
i=b+1 i=0

which has degree d — 2. Thus u(x) must be a scalar multiple of p(x),
u(x) = ap(x), Eq. (3-2)
For some a € GF(q). Equating coefficients between u(x) and p(x) we obtain,
r(1-X «<7t) = ap;. i=01,..,d—2
That is,

ri(oi=X) = a ! p,. i=01,..,d—2 Eq. (3-3)
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We define the error locator polynomial as W, (x) = x — X = x — «®. (This definition
is different from the error locator we defined for the conventional decoding algorithm, since
the roots of W}, (x) are the message locators, not the reciprocals of message locators.) Using

W, (x), we see from Eq (3-3) that
Wy (x) = a o p;. i=01,..,d—2 Eq. (3-4)

Since the error is in the message location, e € L, Wm(oci) is not zero for i =

0,1, ...,d — 2. We can solve for 7; as

a <t p;
n = Pi W, (oct) Eq. (3-5)

We can now eliminate the coefficient a from Eq (3-5) The error value Y can be

computed using Eq. ( 3-1) choosing k = b:

a-2

i oci(b+1)
Y=Y = ) = A7) o= ZW( = ax 2( s

Define

a-2 .
c>cL(b+1) D
fO) = xP Yy ———F,
i=0 (OCL_ x)

X € Lym

which can be pre-computed for all the values of x € L,m. Then
Y =af(X)
or a = Y/f(X). We thus write Eq (3-4) as

Yip;

ry = OO Wi () Eq. ( 3-6)

3.2.1.2 Multiple errors in the Message Locations

Now assume that there are v > lerrors, with error locators, X; € L,m and corresponding

error values Y; = Y[X;] for i = 1,2, ...,v. Corresponding to each error there is a “mode”
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yielding a relationship (<¥) = Y;X¥ , each of which has a solution of the form Eq. ( 3-6).
Thus by linearity we can write

Y;

1 = r[oc] = py °<k2}7=1m k=01,..,d—-2 Eq. ( 3-7)

Now define the function,

F(x) — v Yi

=1 70X XD Eq. (3-8)

having poles at the error locations. This function can be written as

NN N
FOO = )RG5 = W)

where W, (x) = []-;(x — X;) is the error locator polynomial for the errors among the
symbol locations and where N,,(x) is the numerator obtained by adding together the terms in

F(x). It is clear that deg (N, (x)) < deg (W,,(x)) . Note that the representation in

£ N (%)

Eq. ( 3-8) corresponds to a partial fraction expansion o
Wmn(x)

. Using this notation,

Eq. ( 3-7) can be written as

N,, (<)
7 = p, &k F(«k) = p, ock 2
k = Pk () = py W, ()
or N, (k) = ﬁwm(ock),k €eL.={01,..,d -2} Eq. ( 3-9)

Np,(x) and W,,(x) have the degree constraints deg (N, (x)) < deg (W,,(x)) and
deg (W,,(x)) < [(d —1)/2] = t, since no more than t errors can be corrected, Eq (3-9) has
the form of the Key equation we seek [1,21].

3.2.1.3 Errors in Check Locations

For a single error occurring in a check location e € L., then r(x) = E(x) since there is no
“folding” by modulo operation [20]. Then u(x) = r(x) — Xr(x~! x) must be identically 0,
so the coefficient a in Eq (3-2) is equal to zero. We can write

k=e

T = {Y
k 0 therwise
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If there are errors in both check locations and message locations, let E,, =
{il, iy, ...,ivl} C L,, denote the error locations among the message locations and let E, =
{iv1+1, . i,,} c L. denote the error locations among the check locations. Let
Eom_{oit, o2, .., ocv1} and Eqe_{ocv1+1, ..., i} denote the corresponding error locators. The
(error location, error value) pairs for the errors in message locations are (X;,Y;),i = 1,2, ..., v;.

The pairs for errors in check locations are (X;,Y;),i = vy + 1, ..., v. Then by linearity,

V1 Y
e = pr o ik
Zzlf(Xl-)(oc = X)

n { Y; if error locator X; = «¥ isin a check locatoin
0 otherwise

Eq. (3-10)

Because of the extra terms added on in Eq. ( 3-10) , equation Eq (3-9) does not apply

when k € E., so we have

Ny (oc¥) = %Wm(ock),k € L.\E, Eq. (3-11)

To account for errors among the check symbols, let W, (x) = [[;eg (x — «!) be the

error locator polynomial for errors in check locations. Let
N(x) = Ny (x)We(x) and Wx) = W ()W (x).
Since N (oK) = W (k) = 0 for k € E., we can write

N(ok) = 5 W(o9), k € Le={01,..,d -2} Eq. (3-12)

That is, the equation is now satisfied for all values of kinL.. Eq (3-12) is the Welch-
Berlekamp (WB) Key equation, to be solved subject to the conditions

deg(N(x)) < deg (W (x)) deg(W(x)) < (d - 1)/2

The polynomial W (x) is the error locator polynomial, having roots at all the error

locators. We write Eq (3-12) as

N(x) = W(x)y; i=12,..m=2t=d-1 Eq. (3-13)
30



For points (x;,y;) = (<74, 1y, /(pi—y «71)), i=12,..,m =2t

Hereafter we will refer to the N(x) and W (x) as N; (x) and W, (x), referring to the
first (WB) derivation.

3.2.2  Derivation from the Conventional Key Equation

A WB-type key equation may also be obtained starting from the conventional key equation

and syndromes [1]. Let us denote the syndromes as
d-2 .

S; = R(ePH) = r(ocPH) = Z rj(<®*) ,i=0,1,..,d -2
j=0

The conventional error locator polynomial A(x) = [[;—;(1 —X;x) = Ay + A;x+
<+ Ayx¥ where Ay =1; the Welch-Berlekamp error locator polynomial is W(x) =
i —X) = Wy + Wyx+ -+ xV. These are related by A; = W,_;. The conventional

key equation can be written as
v
ZAiSk—iZO ; k:U,U‘l‘l,..., d-—2.
i=0

Writing this in terms of coefficients of W we have

14
ZWiSk+i=O; k=0,1,.., d—2-—w.
i=0
or ;7=0 Wi 51;()27} aj(b+k+i) =0
Rearranging,
YA 2y (XY, Wiod)a/ kD) = 0, k=01,..,d—2—v. Eq. (3-14
j=0"j =0
Letting
fi =W (d)a®, Eq. ( 3-15)
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Eq (3-14) can be written as

a-2
> fak=o, k=01,.,d-2—v.
7=0

which corresponds to the Vandermonde set of equations

1 1 1 1
1 a . ad—3 ad—z
1 a? @2(@=3)  2(d-2)
1 q4-2-v .. a(d—z—v)(d—3) a(d—z—v)(d—Z)

with (d — 1 —v) X (d — 1) matrix V. The bridge to the WB key equation is provided by the

following lemma.

Lemma 3-2[1]

LetV am X r matrix r > m having Vandermonde structure

1 1 1
U Uy Uy
Ml gyl e g el

with the {u;} all distinct. For any vector z in the nullspace of V (satisfying Vz = 0), there

exists a unique polynomial N (x) of degree less than r — m such that

_ NQu) . _
i = F(up) ,1 = 1,2,...,r,

where F(x) = [[i—;(x — u;).

Hereafter we will refer N(x) and W (x) as N,(x) and W, (x), for the DB (Dabiri- Black)

method derivation.

3.3 Finding the Error Values

We begin with the key equation in the WB-form Eq (3-12). Assuming that the error locator
W(x) has been found it can be shown [1] that for WB Key equation error values Y;

corresponding to an error locator X; can be computed as
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Ny (X))
YIXi| = e — 03 Xi ———=<

[ j] k Pk JWl'(Xj)
For the DB form of WB equation, error values can be computed as follows

Ny (oK) o@D Ny (X)X, ™" ocP @D
W, (ock) g (oc+v) W, (X1)g (X o)

Y[Xi ] = — (message locations)

N, "(ock ocb(d—k—-2) N (X)X -b och(d-2)
YelXil = 1 — = ( k) e = Tk~ z (, 2 k, 5 (check locations)
W, (o) g (o) W, (Xi)g' (X &)

3.4  Rational Interpolation Problem

The key equation problem can be expressed as follows:

Given a set of points (x;,y;),i = 1,2,..,m over some field F, the problem of finding

polynomial N(x) and W(x) with deg(N(x)) < deg(W (x)) satisfying
N(x) = W)y, i=12,..,m. Eq. (3-16)

is called a rational interpolation problem[1,20]. Since in the case that W (x;) # 0, we have

_ N(x;)
Yi= W(x;)

A solution to the rational interpolation problem provides a pair [N(x), W (x)],

satisfying Eq (3-16)

3.5  The Welch-Berlekamp Algorithm

Rational interpolation problem is structurally similar to the Berlekamp-Massey algorithm, in
that it provides a sequence of solution pairs which are updated in the event that there is a

discrepancy when a new point is considered. We are interested in a solution satisfying

deg(N(x)) < deg(W(x)) and deg(W (x)) < m/2.
Definition 3-1[1]
The rank of a solution [N (x), W (x)], is defined as

rank[N(x), W(x)] = max{2 deg(W(X)) ,1+ 2deg (N(x))}
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We construct a solution to the rational interpolation problem of rank < m and show that

it is unique. By the definition of the rank, the deg(N(x)) < deg(W(x)) .

The polynomial expression for the interpolation problem is useful . Let P(x) be an
interpolating polynomial such that P(x;) = y;,i = 1,2, ..., m. For example, P(x) could be the

Lagrange interpolating polynomial ,

m

P(x) = Zy. H}Zl:quci(x — Xk)
£ Tl i (X = 220)

By the evaluation Homomorphism the equation N(x;) = W (x;)y; is equivalent to
N(x) = W(x)P(x) (mod (x—%;))

Since it is true for each point (X;,y;), and since the polynomials (x —%; ),i=1,2,...,m
are pairwise relatively prime, by the ring Isomorphism we can write using Chinese remainder

theorem,
N(x) = W(x)P(x) (mod [[(x)), Eq. (3-17)
where [[(x) =]12,(x — %)

Definition 3-2

Suppose [N(x), W(x)], is a solution to the rational interpolation problem, and that N(x) and
W (x) share a common factor f(x) , such that N(x) = n(x)f(x) and W(x) = w(x)f (x). If
[n(x),w(x)], is also a solution to this problem, the solution [N(x), W (x)], is said to be
Reducible. A solution which has no common factors of degree > 0 which may be factored

out leaving a solution is said to be Irreducible [1].

Lemma 3-3

There exists at least one irreducible solution to eq. Eq. ( 3-17) with rank < m.

The Welch-Berlekamp algorithm finds a rational interpolation of minimal rank by
building successive interpolants for increasingly larger set of points. First a minimal rank
rational interpolant is found for the single point (x4,y;). This is used to construct a minimal
polynomial for the pair of points {(Xy,¥;), (X2,¥2)}, and so on, until a minimal rank
interpolant for the entire set of points {(x1,¥1), (X2,¥2), --+» (X, ¥Ym)} 1s found [1].
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Definition 3-3
We say that [N (x), W (x)] satisfy the interpolation problem if
N(x) = W(x)y; i=12,..,k

The Welch Berlekamp finds a sequence of solutions [N, W¥1] of minimum rank
satisfying the interpolation (k) problem, for k = 1,2, ..., m. We can express the interpolation

(k) problem as
N(x) = W()P(x)  (mod Il (x) )

where I (x) = [1,(x — x;) and P,(x) is polynomial that interpolates (at least) the first k
points P(x;) = y;, i = 1,2,..., k.

As with Berlekamp-Massey algorithm, the Welch-Berlekamp algorithm propagates two
solutions, using one of them in the update of the other. For the Welch-Berlekamp algorithm,

the two sets of solution maintain the property that they are complements of each other.
Definition 3-4
Let [N(x), W(x)] and [M(x),V (x)] be two solutions of interpolation (k) such that
rank [N(x), W(x)] + rank[M(x),V(x)] = 2k +1
And
NV () — M)V (x) = fTI(x)

For some scalar f. Then [N(x), W(x)] and [M(x),V(x)] are Complementary. The key

results to construct the algorithm are presented in following Lemmas [1].

Lemma 3-4

Let [N(x), W(x)] be an irreducible solution to the interpolation (k) problem with rank < k.

Then there exists at least one solution to the interpolation (k) problem which is a complement

of [M(x), V(x)] [1].
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Lemma 3-5

If [N(x), W (x)] is an irreducible solution to the interpolation (k) problem and [M(x),V (x)] is
another  solution such that rank[N(x), W(x)]+ rank[M(x),V(x)] < 2k, then
[M(x),V(x)] can be reduced to [N(x), W (x)].

This Lemma implies that there exists only one irreducible solution to the interpolation

(k) problem with rank < k, and that this solution must have at least one complement [1,20].
Lemma 3-6

If [N(x), W(x)] is an irreducible solution to the interpolation (k) problem and [M(x), V(x)] is
one of its complements, then for any a,b € F, with n # 0,[bM(x) — aN(x),bV(x) —
aW (x)] is also one of its complements [1].

We are now ready to state and prove the theorem describing the Welch-Berlekamp algorithm.

Theorem 3-1

Suppose that [N [k],W[k]] and [M [k],V[k]] are two complementary solutions of the

interpolation (k) problem. Suppose also that [N L], W[k]] is the solution of lower rank. Let
b = NM(xei1) = Yieea W (xpe40)

ax = M[k](xk+1) - Yk+1V[k](xk+1)

(These are analogous to the discrepancies of the Berlekamp-Massey algorithm). If b, = 0,

(the discrepancy is zero, so no update is necessary) then
[NE, wkI] and [ = x40 JMP (), (o = 2004 )V ()]

Are two complementary solutions of the interpolation (k+1) problem, and [N [k, W[k]] is the

solution of the lower rank.
If b, # 0, ( the discrepancy is not zero, so an update is required), then

[(x — Xk+1 NI (), (¢ = xpe41 ywlkl (x)] and [bkM[k] (x) — akN[k] (x), ka[k] (x) —
a, Wk ()]
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are two complementary solutions. The solution with lower rank is the solution to the

interpolation (k+1) problem [1,20,21].
Based on this theorem, the Welch-Berlekamp algorithm is shown in the figure below.
Algorithm 3-1[1,20]
Welch Berlekamp Interpolation
Input: (x;,v;), i=1,...,m
Returns: [N [ml (x), wiml (x)] of minimal rank satisfying the interpolation problem
Initialize: N(x) = 0; VIO(x) = o; wll(x) = 1; M9 (x) = 1;
fori=0tom—1
bi = N 1) = v W (xi4q) (Compute discrepancy)
if (b ==0) (then no change in the [N, W] solution)
NEIG) = NG, Wit ) = Wi,
M) = (x = x )MI(x) 5 VI = (2 = x )V )
else (Update to account for discrepancy)
a; = MU(xp0) = Y VI (g 5
M) = (x = % )N 5 VI () = (2 — 2 )W ()5
NI () = bMU(x) — a;N(x); WIHI(x) = bV (x) — a, W (x) ;
If ( rank [N (), W (x)] > rank [MIEF(x), VI (x)])
(swap for minimal rank)

swap ([N (o), wiH o], MG, v o))

end (if)
end (else)
end (for)
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CHAPTER 4

THE GURUSWAMI-SUDAN DECODING

ALGORITHM

In 1997 Madhu Sudan [19], building on previous work of Welch-Berlekamp[20] and others,
discovered a polynomial-time algorithm for decoding certain low-rate Reed-Solomon codes
beyond the classical d/2 error-correcting bound. Two years later Guruswami and Sudan [22]
published a significantly improved version of Sudan’s algorithm, which was capable of
decoding virtually every RS code at least somewhat, and often significantly, beyond the d /2
limit. The main focus of these seminal papers was to establish the existence of polynomial-
time decoding algorithms, and not on devising practical implementations. However, several
later authors, notably Koetter [23,24] and Roth-Ruckenstein[25] , were able to find low-
complexity (no worse than 0(n?) ) realizations for the key steps in the GS algorithm, thus
making GS a genuinely practical engineering alternative in storage and transmission systems
requiring RS codes [7,8].

An (n, k) Reed-Solomon code over F = GF(q), as given by Reed Solomon in their
original paper is defined as follows. Let (4, ..., a,) be a fixed list of n distinct elements of F,
called the support set of the code[1,10]. The encoding process is that of mapping a vector
(fo, f1,--+» fx—1) of k information symbols into an n-symbol codeword (xq,x,,...,x,) by
polynomial evaluation, i.e.,

(X1, %2, %) = (f(@1),-.., f(an), Eq. (4-1)
where
f(x) = f0+ flx + « = - + f_x*¥ L Eq. (4-2)

The corresponding Reed-Solomon code consists of all n-vectors of the form in Eq. (

4-1) where f(x) is a polynomial of degree < k. It is well-known that this code has minimum

Hamming distance d = n — k +1 and is therefore capable of correcting up to

n-k
t, = [_2 Eq. (4-3)
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errors. Conceptually, this may be accomplished as follows. The decoder searches the
Hamming sphere of radius t, centered at the received word for codewords. If the sphere
contains a unique codeword, that is the decoder’s output. Otherwise, the decoder reports
failure. (This strategy is called bounded distance decoding, (BDD) and dates back to
Shannon’s proof of the noisy-channel coding theorem. The conventional RS decoding
algorithms, e.g., Berlekamp, Berlekamp-Massey, Continued Fractions, or Euclidean
Algorithm-based are all BDD algorithms.) The decoding sphere cannot contain more than one
codeword, since the minimum distance of the code is > 2¢,. If we attempt to correct more
than ¢, errors by increasing the decoding radius, it is possible for the decoding sphere to
contain more than one codeword, in which case the decoder will fail. For this reason,
conventional wisdom asserts that the code is not capable of correcting more than t; errors.
Nevertheless, if we examine the probability that the decoding sphere will contain multiple
codewords, rather than the possibility, we may reach a different conclusion [7].

The Guruswami Sudan Decoder is capable of correcting more than t, errors[7,22]. It is

a polynomial-time algorithm for correcting (in a certain sense) up to tg;g errors, where tg;g is

the largest integer strictly less thann — m, ie.,
tes =m—1—|(k — Dnl. Eq. (4-4)
It is easy to show that t;g >ty , and often t;s is considerably greater than ¢, .
Asymptotically, for RS codes of rate R, the conventional decoding algorithms will correct a
fraction T, = (1 — R)/2 of errors, while the GS algorithm can correct up to 75 = 1 — VR.
The GS decoder has an adjustable integer parameter m = 1 called the interpolation
multiplicity[1]. Associated with the interpolation multiplicity m is positive integer ¢ =
t,, called the designed decoding radius. Given a received word, the GS(m) decoder returns a
list which includes all codewords with Hamming distance t,, or less from the received word,
and perhaps a few others. The exact formula for ¢,, is a bit complicated, however following

relation holds
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4.1  An Overview of the GS(m) Algorithm

Suppose C = (f(ay),..., f(a,)), is the transmitted codeword, where f(x) is a polynomial of
degree < k, and that C is received as R = (fy,...,Fn)- Let p(x) be any polynomial of
degree < k which maps to an RS codeword with Hamming distance < t,, from R, i.e.,
[{i: plar) # Bi}| < tin.
The GS(m) decoder “finds” p(x) as follows [8].
1. The interpolation step
Given the received vector R = (f4,...,Bn), the decoder constructs a two-variable
polynomial Q(x,y) = X;; al-jxiyj
with the property that Q(x,y) has a zero of multiplicity m at each of the points (¢, B;),
and for which the (1,k — 1) weighted degree of Q(x,y) is as small as possible.
2. The factorization step
The decoder then finds all factors of Q(x,y) of the form y — p(x), where p(x) is a
polynomial of degree k — 1 or less. Let
L= {p(@),..., p(0)}
be the list of polynomials produced by this step. The polynomials (codewords)
p(x) € L are of three possible types:

» Type 1. The transmitted, or causal, codeword.
» Type 2. Codewords with Hamming distance < tm from R, which we call plausible

codewords.
» Type 3. Codewords with distance > t,, from R, which we call implausible
codewords.
Theorem 4-1

If the GS(m) decoding algorithm is used, all plausible codewords will be in L. In particular,
the transmitted codeword will be in L if the number of channel errors is < t,,. The list may
also contain implausible codewords, but the total number of codewords in the list, plausible

and implausible, will satisfy . < L,,, where L, is conservatively estimated by

L. < +1/"
m <+ 27

Let L(t) is the average number of codewords in a randomly chosen sphere of radius ¢,

and which gives a heuristic upper bound on the probability that the decoding sphere will

contain a non-causal codeword [1,8,22].
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4.2 Monomial Orders and Generalized Degree

This section provides an introduction to the algebraic fundamentals of two-variable
polynomials. These fundamentals include weighted monomial orderings, generalized degree
functions, and certain related combinatorial results [1].

If F is a field, we denote by F[x, y] the ring of polynomials in x and y with coefficients from
F. A polynomial Q(x,y) € F|[x,y] is, by definition, a finite sum of monomials,

Q(x,y) = Xijsoax'y’ Eq. (4-5)

where only a finite number of the coefficients a;; are nonzero. The summation in
Eq. ( 4-5) is two-dimensional, but often it is desirable to have a one-dimensional
representation instead. To do this, we need to have a linear ordering of set of
monomials M [x,y] = {x'y/ : i,j > 0}
It can be observed that the set M[x, y] is isomorphic to the set N? of pairs of nonnegative
integers under the bijection x'y/ & (i,j). A monomial ordering is a relation “ <” on
M[x,y] (equivalently, on N?) with the following three properties:

1. Ifal < bland a2 < b2, then (al,a2) < (b1,b2).

2. The relation “ < ” is a total ordering, i.e., if @ and b are distinct monomials, either

a < borb < a.

3. Ifa<bandc € N% thena+c<b+c.

There are many possible monomial orderings, but the most important ones are the
weighted degree monomial orders [1]. A WD monomial order is characterized by a pair
w = (u,v) of nonnegative integers, not both zero. For a fixed w, the w-degree of the
monomial x!y/ is defined as

deg,x'y) = ui + vj.
If we order M [x, y] by w-degree, i.e., declare that ¢p(x,y) < ¢'(x,y) ifdeg,, p(x,y) <
deg,, ¢'(x,y), we only get a partial order, since monomials with equal w-degree are
incomparable. It turns out that there are just two ways to break such ties so that Property (3) is

satisfied: W-lexicographic (W-lex) order, and W-reverse lexicographic (W-reviex) order [8].

Definition.
W-lex order is defined as follows:
xl1ylt < xlzyl2
if either ui; + vj; < ui, + vj, orui; + vj; = ui, + vj, and i; < i,.

w-revlex order is similar, except that the rule for breaking ties is i; > i.
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(In the special case w = (1, 1), these orderings are called graded-lex, or grlex, and reverse
graded-lex, or grevlex, respectively) [1].

Let “<” be a fixed monomial ordering:

1= ¢0(X'J’) < ¢1(X'Y) < ¢2(X'Y) < e

With respect to this ordering every nonzero polynomial in F[x, y] can be expressed

uniquely in the form
J

Q) = ) 4 (x,y)
j=0
for suitable coefficients a; € F with a; # 0. The integer J is called the rank of Q(x,y),

and the monomial ¢, is called the leading monomial of Q(x,y). We indicate this notationally
by writing Rank(Q) = J and LM(Q) = ¢, (x,y) . The relation LMP = LMQ is an
equivalence relation, which we denote by P = Q. We can extend the order “ < ”to all of
F[x,y] by declaring P < Q to mean LMP < LMQ. In this way, “<,” which is a total order on
the set of monomials, becomes a partial order on F[x, y] and a total order on the equivalence
classes under LM [1,8].

In the case of a WD order, the weighted degree of the leading monomial ¢; is also

called the weighted degree, or w-degree, of QO(x, y), denoted degy Q. Thus
deg,, Q(x,y) = max {deg,, ¢(x,y): a; # 0}
The w-degree function has the following basic properties:
deg,, 0 = —oo
deg,,(PQ) = deg, P + deg, Q
deg,, (P + Q) < max(deg,, P,deg,, Q)
deg,,(P + Q) = max(deg,, P,deg,, Q),if LMP # LMQ.

If ¢y (x, ¥) < ¢;(x, ¥) <... is a fixed monomial ordering, and ¢ = x'y/ is a particular
monomial, the index of ¢, denoted Ind(¢), is defined as the unique integer K such that ¢ (x,
»n=¢.

For (1, v) revlex order, the numbers Ind(x%) and Ind (y")are especially important, so
we introduce a special notation for them:

A(K,v) £ Ind(x")
B(L,v) £ Ind(y")

it being understood that the underlying monomial order is (1, v)-revlex [8].
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We note that xX is the first monomial of (1, v)-degree K, and y" is the last monomial
of (1, v)-degree vL, so that
AK,v) = [{(L,): i +vj < K}
B(L,v) = |{(i,j)):i +vj < Lv}|—-1

4.3  Zeros and Multiple Zeros

In this section we consider bivariate polynomials, and focus on their notion of a zero, or a
multiple zero.

IfQ(x,y) € F[x,y],and Q(a, B) = 0, we say that Q has a zero at (a, 3).

Definition 4-1

We say that Q(x,y) = X;;a; jxiyj € F[x,y] has a zero of multiplicity, or order m at (0, 0),
and write
ord(Q: 0,0) = m,
If Q(x,y) involves no term of total degree less than m, ie., a;; =0ifi+j <m.

Similarly, we say that Q(x, y) has a zero of order m at («, 8), and write
ord(Q: a,B) = m,
ifQ(x + a,y + p) has a zero of order m at (0, 0).
To calculate ord(Q : «,f), we need to be able to express Q(x + a,y + ) as a
polynomial in x and y. The following theorems, due to H. Hasse tell us one way to do this. We

begin with the one-variable version of Hasse’s theorem [1].

Theorem 4-2

IfQ(x) = Y;a;x' € F[x], then forany a € F, we have
Qlx + a) =X, Qr (c)x7,
where Q,(x) = ¥; (:‘) a;xt"

which is called the rth Hasse derivative of Q (x). Also,

0:(9) = Coeffur Qo) = ) (D)oo

and Q(x) = Y20 Qr() (x— )"

Theorem 4-3

Let Q(x,y) = Y;ja;;x'y/ € F[x,y]. Forany (a,B) € F?, we have
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Q(x +ay + B) = Zr,sQr,s(arﬁ)xrys

where

Qr,s(x: y) = Z (rl') (é) ai'jxi—ryj—s

Lj
which is called the (r, s)th Hasse (mixed partial) derivative of Q(x, y).

Also, an alternative equivalent formula is

Qr,s(a:ﬂ) = Coeffxrys Qx+ o,y + )

and

QU6 y) = D 0rs(x,B) (=) (v = B)°

Corollary:
The polynomial Q(x,y) has a zero of order m at (a, f) if and only if @, ;(a,f) = 0 forallr

and s suchthat 0 < r +s < m[8].

4.4  The Interpolation and Factorization Theorems

Two basics theorems of GS algorithm are stated as below.

441  The Interpolation Theorem

Suppose a nonnegative integer m(a) is assigned to each element o €F, and we are asked to
construct a polynomial f(x) of least degree which has a zero of multiplicity m(a), atx = «,
for all @ € F. Clearly a minimum degree solution to this one-dimensional interpolation
problem is

f@=|]a-om@

a€EF

deg(f(0) = ) m(@

a€EF

We are interested in the analogous two-dimensional interpolation problem: Given a
required multiplicity m(a, B) for each (a, f) € F?, construct a low-degree polynomial Q(x, y)
which has zeros of the required multiplicity. This is a much harder problem, in general, but the

following theorem gives a useful upper bound on the minimum required degree [7,8].
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Theorem 4-4

Let {m(a, B) : (o, B) € F?} be a multiplicity function as above and let py < ¢; < -+ be

an arbitrary monomial order. Then there exists a non-zero polynomial Q(x,y) of the form
c

Q) = ) aidi(xy)
i=0
where C =Xap (m(a,[;) + 1)

which has a zero of multiplicity m(a, ), at (x, y) = (a, p), for all (a, f) € F2.
For any (u, v), there is a nonzero polynomial Q(x,y) with the required zero

multiplicities whose (u, v)-degree is strictly less than v2uvC [22].

442  The Factorization Theorem

IfQ(x,y) € Flx,y], and f(x) € F|x], define the O-score of fas
So(f) = Y ord(Q:a, f(@)

a€EF

Suppose f(x) € F,[x],Q(x,y) € F[x,y], and
So(f) > deg;,Q. Then y — f(x) is a factor of Q(x, y).

Lemma 4-1

Iff(x) € Fplx], then deg (Q(x, f(x)) =< degy, Q(x,¥).

Lemma 4-2

Qx, f(x)) = Oifandonly if (y — f(x))Q(x,¥).

Lemma 4-3

Iford(Q: a,B) = K, and f(a) = B, then (x — o) |Q(x, f(x)) [8].

45 A Second Look at the Guruswami-Sudan Algorithm

Given a (n, k) RS code over the finite field F, with support set (a4, ..., a,), and a positive

integer m , the GS(m) decoder accepts a vector f = (B4,...,B,) € F" as input, and

produces a list of polynomials {f;, ..., f.}, as output. Here’s how:
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The GS(m) Decoder. The GS(m) decoder constructs a nonzero two-variable polynomial

of the form Q(x,y) = Z]C-Sé'm) a;jp;(x,y) = 0 where ¢y < ¢p1 <... is (1, v)-revlex monomial
order, such that Q(x, y) has a zero of order m at each of the n points (a;, B;), for i=1,..., n.
(The Interpolation Theorem guarantees that such a polynomial exists.) The output of the
algorithm is the list of y-roots of Q(x, v), i.e.,

L ={f(x) € Flx]: (v = f(x))|Q(x,¥)}
Theorem 4-5

The output list contains every polynomial of degree < v such that K(f, p) > K,,. Furthermore,

the number of polynomials in the list is at most L,,.

4.6  Koetter’s Solution to the Interpolation Problem

In general terms, the interpolation problem is to construct a bivariate polynomial O(x, y) with
minimal (1, v)-degree that satisfies a number of constraints of the form
DysQ(a, B) = 0,
where (1,s) € N? and (a,8) € F2. It turns out that the mapping
Q@ y) = DysQ(a, B)
is an example of what is called a linear functional on F[x,y]. We consider the more general
problem of constructing a bivariate polynomial Q(x, y) of minimal weighted-degree that
satisfies a number of constraints of the form
D;Q(x,y) = 0,fori = 1,2,..,
where each D; is a linear functional. The goal of this section is to describe an algorithm for

solving the more general problem [23].

46.1 Linear Functionals F[x, y]

A mapping D : F[x,y] — F is called a linear functional if

D(aP + Q) = aD(P) + BD(Q)
for all P,Q € F[x,y]andall a,f € F. The primary example of a linear functional is the

mapping that evaluates a Hasse derivative:

Q(x,y) = DpsQ(a,p),
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for fixed values of (r,s) € N? and (a,B) € F2.

If we agree on a particular monomial order, say

¢0(x'J’) < ¢1(X:}’) <,

so that any polynomial Q(x, y) has a unique expansion of the form

J
Qx,y) = ijo ajpi(x,y)

where a; # 0, then any linear functional can be expressed as

D(Q) = Zj:o a;d;
where d;j = D(¢;(x,y)). The kernel of D is defined to be the set
K = kerD = {Q: D(Q) = 0}
If D is a linear functional with kernel K, the corresponding bilinear mapping [P,Q]p is

defined as

[P,Qlp £ D(Q)P — D(P)Q
This simple mapping is a crucial part of the algorithms presented below; its key

properties are given in the following lemma [23,24].

Lemma 4-4

For all P, Q in F[x,y],[P,Q]p € kerD . Furthermore, if P >Q and Q & K, then
Rank[P,Q]p = RankP.

46.2 Problem Statement

Let F; [x, y] denote the set of polynomials from F|[x, y] whose y-degree is <L, i.e., those

of the form

L
Q) = . aul0y*
k=0

where each q;(x) € F[x]. We note that F;[x,y] is an F[x]-module, i.e., if Q(x,y) €
F L [X, y ]'

and p(x) € F[x], then p(x)Q(x,y) € F.[x,y] as well.

Let Dy,...,D; be C linear functionals defined on F, [x, y], and let K;,...,K; be the

corresponding kernels, i.e.,

Ki = {Q(x,y) € Flx,y]: Di(Q) = 0}
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The cumulative kernels K, ..., K are defined as follows: K, = F,[x,y] and fori = 1,...,C,
K, = Ki_; n K;
=K N..NnK
= {Q(.») € Flx,yl:Di(Q) = = Di(Q) = 0}

4.6.3  Generalized Interpolation Problem

Construct a minimal element from K =K, 0 ... N K, i.e., calculate
Qo(x,y) € min {Q(x,y)) € Flx,y]:D;(Q) == D;(Q) = 0}
Koetter’s Algorithm:

Koetter [12,13] noticed, in effect, that if the cumulative kernels are F|x]-modules, generalized
interpolation problem admits a less complex solution than the one afforded by the Feng-Tzeng
algorithm [1,7,23].

This observation applies to the GS interpolation problem, since if we enforce the
conditions D, ;(a,f) = 0 for s +r < min an order in which (r—1, s) always precedes (7,
s), the cumulative kernels will be F[x]-modules. For example, (m — 1, 1) lex order, which
orders the pairs as (0, 0), (0, 1), ..., (0m—1),(1,0), (1, 1),...,(A,m—=2),...,(m—1,0)
has the desired property.

In Koetter’s algorithm, the set of monomials from F; [x, y],

M [x,yl ={x'y/ : 0 <i0<j <L}
is partitioned according to the exponent of y: M [x, y] = Uf:o M;
where M; ={x'y):i = 0}
This partition of M}, induces a partition on F;[x,y],: F.[x,y], = SoU * ° - US;, where

S =1{Q € Flxyl: LM(Q) € M;}
Koetter’s algorithm generates a sequence of lists Gy, G4, ..., G¢, with
G = (9ior---» 9iL)

where g; ; is a minimal element of K, n S; . The algorithm’s output is the polynomial

Qo(x,y) = min ge,;(x,y)

which is a minimal rank element of K.
Koetter’s algorithm is initialized as follows:

goj=y), i=0,..,L
Given Gj, G;,1 1s defined recursively:

Jo = U+ Diz1(9:;) = 0}
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Lh=1{: Di+1(gi.j) #+ 0}
If J; 1s not empty, among the polynomials g; ; with j € Jy, let g; j+ be the one with

minimal rank; and temporarily denote g; j+ by f:

= min g; ;
f JEl 9ij

. .
j* = argmin g; ;
J €1

Then using the notation of linear functionals, g;44,; is defined for j = 0,...,L,

gi,j ifj € Jo
gi+1,j = [gi,j'f]Di+1 I’f] € ]1 but] :'t]*
[xf, flp+1 ifT=J"

Theorem 4-6

Fori = 0,...,C, wehave g;; = min{g: g € K; n Sj}  forj = 0,...,L.[1]

Algorithm 4-1 : Koetter’s Interpolation for Guruswami-Sudan Decoder [1,8]
Input: Points (x;,v;),i

=1, ...,n.The interpolation order m;; a (1, v)monomial order; L
Returns: Qy(x, y)satisfying the interpolation problem
Initialize: g; = y/for j =0, ..., L.

fori=1ton (go from i—1ststage to ith stage)

_ (mi+ D)my
2

C (Compute no.of derivatives involved)

for (r,s) = (0,0) to (m; — 1,0)by (m; — 1,1)lex order from 1to C
for j=0to L

Aj = Dr.5)8i (X1, Vi)

end (forj)
J= {j A # 0} (Set of non — zero discrepancies)
if g #0)

j* =arg min{ gji J E]} (polynomial of least weighted degree)

f :g]* N A: A]*
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for j €]

if (G #J)
gj = Agj — Af (update without change in rank)
elseif (j=Jj")
gj=Ex—-x)f (update with change in rank)
end(if)
end (for])
end (if ])
end (for (r,s) )
end (fori)
Qo(x,¥) = min; {g;(x,y) } (least weighted degree)

47 The Roth-Ruckenstein Solution to the Factorization Problem

The most efficient algorithm currently known for solving the factorization problem is due to
Roth and Ruckenstein [25].

The factorization problem is this: given a polynomial Q(x,y) € F|x,y], find all
polynomials f(x) of degree < v such that (y — f(x))| Q(x,y). Alternatively, find all
f(x) € F,[x] such that
0.

Q(x, f(x))

If this condition holds, we call f(x) a y-root of Q(x,y). This section describes an algorithm
due to Roth and Ruckenstein [1] for finding y-roots.
If O(x, y) is a two-variable polynomial such that x™ | Q(x, y), but x™*1 } Q(x,y),define

ey = L&Y

Although Q(0, y) might be identically zero, nevertheless (Q (0, y)) is a nonzero polynomial in

V.
Suppose

f(x) =ay +a;x + - - -+ ax’
is a y-root of O(x, y). We will see that the coefficients ag, a; ..., a,, can be “picked off,” one

at a time. As a start, the following lemma shows how to determine a; [1,8].
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Lemma 4-5

If (y — f(x))|Q(x,y)theny = f(0) = a, is aroot of the equation Q,(0,y) =0, where

Qo(x,y) = (Q(x, y)).

We now proceed by induction, defining three sequences of polynomials f;(x), T;(x,y),
and Q;(x,y).for j = 0,1,...,v, as follows.

Initially, fo := f(x), Qo(x,y) := (Q(x,¥)).
Forj > 1 define

f}(x)::f]'—l(x); f}'—l(o) —q - -+ a,,x"‘f

Ti(x,y) == Qj—1(x,xy + a;j_1)
Qi(x,y) = (Tj(x,))

Theorem 4-7

Given f(x) = ay + a4x + - + a,x” € E,[x], and Q(x,y) € F|[x,y], define the
sequences fj(x) and Qj(x,y) as above. Then for any j = 1,(y — f(x)) | Q(x,y)
ifand only if (y — f;(x)) | Q;(x, ).

Here is the “picking off” theorem. [7,8]

Corollary
If(y — f(x)) | Q(x,y) theny = a; is aroot of the equation

Q;(0,y) =0, forj=0,..,v.

Corollary

Ify|Qui1(x,y), e, if Qyy1(x,0) =0, then f(x) = ag + a;x + - + a,x" is a y-root of

Q(x, y).

The following Lemma provides some insight into the all-important transformation

O, y) = Ox, xy + a)

Lemma 4-6
If Qlx,y) = Xix'g:(y)
= > xiy/Dg,(0)
i,Jj
Then Q(x,xy+a) = z:i,jxiijjgi—j(a)

where D; denotes the ith one-dimensional Hasse derivative.

Symbolically, this lemma can be summarized as follows:
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90(0) 91(0) g2(0) g3(0)
Q(x,y) = D,1go(0) D;g:(0) D;192(0) D;g5(0)--
D;90(0) D,g:(0) Pzgz (0) D,g5(0)

9o(@)  g1(a) 92(a) g3(a)
QCx,xy +a) = 0  Digo(a) Digi(a) Digz(a)--
0 0 Dgﬂo (a) Dyg:(a)

In words: if the entries of column j of Q(x, ) are interpreted as the coefficients of a
polynomial, say g;(z), then the entries of the jth diagonal of Q(x, xy+a) are the coefficients
of the polynomial g;(z + a) [1,23].

A pseudocode representation of the RR algorithm is given below. It takes as input a
bivariate polynomial Q(x, v) and positive integer D, and returns as output the set of all y-roots
of O(x, y) of degree < D. The strategy adopted by the algorithm is “depth-first search,” as
described in [1,25].

4.8  Roth-Ruckenstein Pseudo code for Finding y-roots of Q(x,y) [1]

Input : Q(x,y),D (where D is the maximum degree of p(x))

Output: List of polynomials p(x) of degree < D such that (y — p(x) )| Q(x,y)
Initialization:

Setp(x) = 0,u =deg(p) = —1,D = maximum degree (set as internal global)

Set up linked list where polynomials are saved.
Set v = 0 (the number of the node; global variable).
Call rothrucktree (Q(x,y),u,p)

Function rothrucktree ( Q,u,p)
Input: Q(x,y),p(x) and u (degree of p)
Output: List of polynomials

v =v+1 (increment node number)
If (Q(x,y) = 0)

Add p(x) to the output list

end (if)
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elseif (u < D) (try another branch of the tree)
R = list of roots of Q(0,y)

foreach «<€R

Qnew(x,y) = Q(x,xy+x) (shift the polynomial)
Pus1 = & (new coefficient of p(x) )
Call rothrucktree ({Qpew(x,y)),u+1,p) ( recursive call)
end (for)

else (leaf of tree reached with non — zero polynomial)
(no output)
end if

end
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CHAPTER 5
DIRECT SEQUENCE SPREAD SPECTRUM

SYSTEMS AND CODE ACQUISITION

Spread spectrum is a communication technique which is widely used in the radar, navigation

and telecommunication systems and playing a dominant role in the philosophy of the
forthcoming generation of systems and networks. The amount of interest and research effort
invested in this area is growing constantly especially after successful commercial success of
Code division multiple access (CDMA) mobile telephone (IS-95) and the use of CDMA as the
basic platform of 3G mobile radio [27].

The term Spread spectrum is today one of the most popular in the radio engineering
and communication community. At the same time, it appears difficult to formulate an
unequivocal and precise definition which distinguishes clearly between a spread spectrum and

non-spread spectrum system.

A rather frequent way to explain the concept consists in the statement that a system or
a signal is of spread spectrum type if its bandwidth significantly exceeds the minimum

bandwidth necessary to send the information.

The very idea of a minimum bandwidth of information or message is full of ambiguity
because there is no standard definition of bandwidth. A better definition is the one which

incorporates Gabor’s uncertainty principle [27].

A signal for which product of signal duration and bandwidth are of the order of 1 i.e.
they are tightly linked together is called a “Plain” or “Non-spread spectrum signal”. The only
way to widen the bandwidth of a plain signal is to increase its bandwidth. On the other hand a
deterministic signal for which time-bandwidth product is very greater than 1 and bandwidth
can be governed independently of duration is called Spread Spectrum one. A system

employing spread spectrum signals is a spread spectrum system.
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An important difference that a spread spectrum modulated signal has over other
conventional modulation techniques is that in spread spectrum modulation, the most precious
resources of the communication channel i.e. bandwidth and power are sacrificed in order to

achieve the goal of secure communications [15].

An important advantage of a spread-spectrum communication system is that it can
provide immunity against externally generated (interfering) signals with finite power. The
interference can be intentional as well as un-intentional. Protection against jamming
waveforms is provided by purposely making the information bearing signal occupy a
bandwidth far in excess of the minimum bandwidth necessary to transmit it. This has the
effect of making the transmitted signal assume a noise-like appearance so as to blend into the
background. The transmitted signal is thus enabled to propagate through the channel

undetected by anyone who may be listening.

Spread spectrum systems were initially developed for military application, where
resistance to jamming was of major concern. However, there are non-tactical applications
which make use of beneficial attributes of a spread spectrum system. For example, it can be
used to provide multipath rejection in ground-based mobile radio environment. Another
application is in multiple-access communications in which a number of independent users are

required to share a common channel without an external synchronizing mechanism [14].

5.1  Pseudo-Noise Sequences

All spread spectrum signals utilize some kind of a code which is independent of the
data to spread the spectrum before transmission. These codes have special auto-correlation
and cross-correlation properties and are called Pseudo-random noise (PN) codes because these
sequences have white-noise like statistical properties while being obviously deterministic
[15,16]. Thus, the sequence is "nearly random". The method most frequently used to generate

pseudo-random codes is based on a feedback shift register.

Various spread spectrum systems can be classified based upon the exact point of usage
of the PN sequence. On the transmitter end, they are used to increase the signal spectrum and
hence called Spreading. On the receiver end, they are used to reduce the signal spectrum to
its original bandwidth and hence called Despreading. The factor by which bandwidth of the

signal is increased is called the Processing Gain of the system.

There are two categories regarding the length of codes:
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5.1.1 Short codes

In this category, same PN-sequence is used for each data symbol i-e

Where

N, is the length of sequence
T, is the chip period

T is the symbol period

5.1.2 Long codes

For long codes, the PN-sequence period is much longer than that of the data symbol so that a

different chip pattern is associated with each symbol.
N..T, » Ts

5.2  Properties of PN-sequences

PN-sequences of maximal length have a number of special properties possessed by a truly
random binary sequence. A random binary sequence is a sequence in which the presence of
binary symbol 1 or 0 is equally probable [14, 15]. Some properties of such sequences are as

follows:

5.2.1 Balance property

In each period of the sequence the number of binary ones differs from the number of binary

zeros by at most one digit (for N, odd).
Pn=+1 +1 +1 -1 +1 -1 -1 2 =+1

5.2.2  Run length Property

A “run” means a subsequence of identical symbols (1s or 0s) within one period of the
sequence. The length of these subsequences is the length of the run. For maximal length PN
sequences; among the runs of 1s and Os in each period of a maximal-length sequence, one half
the runs of each kind are of length one, one fourth are of length two, one eighth are of length

three, and so on as long as these fractions represent positive number of runs. This property is
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called Run property. For a maximal length sequence generated by a linear feedback shift

register of length m, the total number of runs is (N + 1) /2 where N = 2™ — 1.

5.2.3  Autocorrelation

The auto-correlation function of a maximal-length PN sequence is periodic and binary-
valued. The origin of the name pseudo-noise is that the sequence has an autocorrelation
function which is very similar to that of a white noise signal. The autocorrelation function for
the periodic sequence PN is defined as the number of agreements less the number of
disagreements in a term by term comparison of one full period of the sequence with a cyclic

shift (position 1) of the sequence itself.

NcTc/2

RO = | 7 pa(@pa(e+ e
—NcTc/2

The autocorrelation has a large peaked maximum only for perfect synchronization of

two identical sequences. For a period of the maximal-length sequence, the auto-correlation

function is somewhat similar to that of a random binary wave. The synchronization of the

receiver is based on this property.

pn(0)= +1 +1 +1 -1 +1 -1 -1
)= +1 +1 +1 -1 +1 -1 -1
+1 +1 +#141 +1+1+1 =3 =7 =Ra(=0)

pn(@)= +1 +1 +1 -1 +1 -1 -1
pn(1)= +1 +1 -1+1 -1 -1 +1
+1 +1 -1 -1 -1+41 -1 =% =-1=Ra(=1)

Ra(t) &

N=T

T

—

i L . \
. b Ut ATFETR| } P
T R, DC=0 — _I-Rc

Figure 5-1: Autocorrelation and Time/frequency domain representation of PN-sequence [14]
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5.2.4  Frequency spectrum

Periodicity of the PN sequence in the time domain is transformed into uniform
sampling in the frequency domain. Its frequency spectrum has spectral lines which become
closer to each other with increasing sequence length N.. Each line is further smeared by data
scrambling, which spreads each spectral line and further fills in between the lines to make the
spectrum more nearly continuous. The DC component is determined by the zero-one balance

of the PN-sequence.

5.25 Cross-correlation

Cross-correlation describes the interference between codes pp; and py;.

NcTe/2
R.(D) = f P (Opm(t + D)t
—N¢Te/2

It is a measure of agreement between two different codes p,; and ppj. When the cross-

correlation R, (7) is zero for all t, the codes are called orthogonal. In multi-user environment,
users occupy the same RF bandwidth and transmit simultaneously. When the user codes are
orthogonal, there is no interference between the users after de-spreading and the privacy of the

communication of each user is protected.

In practice, codes are not perfectly orthogonal, hence the cross-correlation between
user codes introduces performance degradation (increased noise power after de-spreading),

which limits the maximum number of simultaneous users.

The construction or selection of proper sequences is not trivial. To guarantee efficient
Spread Spectrum communications, the sequences must respect certain rules, such as length,
auto-correlation, cross-correlation and bits balancing. The popular sequences include Barker,
M-Sequence, Gold, Walsh etc. Every sequence has its own characteristics like gold codes

have better cross-correlation properties so they are good for multi-user environment.

5.3  Types of Spread Spectrum Systems

Different Spread Spectrum techniques are distinguished according to the point in the
system at which a pseudo-random code is inserted in the communication channel. This is

illustrated in the figure below.
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Figure 5-2: Spreading techniques [14]

If the PN sequence is inserted at the data level, we have the direct sequence form of
spread spectrum (DSSS). If the PRN acts at the carrier-frequency level, we have the frequency
hopping form of spread spectrum (FHSS). Applied at the local oscillator (LO) stage, FHSS
PN codes force the carrier to change or hop according to the pseudo-random sequence. If the
PRN acts as an on/off gate to the transmitted signal, we have a time hopping spread spectrum
technique (THSS). There is also the chirp technique, which linearly sweeps the carrier
frequency in time. Our topic of discussion for the rest of this chapter is the acquisition of

DSSS signals in the receiver.

5.4  Direct Sequence Spread Spectrum (DSSS)

Direct Sequence Spread Spectrum transmissions multiply the data being transmitted by
a "noise" signal. This noise signal is a pseudorandom sequence of 1 and —1 values, at a
frequency much higher than that of the original signal, thereby spreading the energy of the
original signal into a much wider band.

The resulting signal resembles white noise which can be filtered out at the receiving
end to recover the original data, by again multiplying the same pseudorandom sequence to the
received signal. Spreading operation can be summarized as:

The binary data d,with symbol rate R;= 1/Tis multiplied with the pseudo-noise code
pn; with chip rate R, = 1/T, to produce the transmitted baseband signal txy,.

txp=d; . pny
The effect of multiplication of d; with the PN-sequence is to spread the baseband bandwidth
R; of d; to a baseband bandwidth of R.. Following figure illustrates this phenomenon.
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Figure 5-3: DSSS transmitter end [14]

I
T, (symbol
+1 ’7
% LN »f

[ Lol ¢ >
-RS RE
=1

T. (chip)

"TILCn L -
~ 00 -

Ne

-1

Te

0 0., B

X, |

-1

time frequency
Figure 5-4: DSSS Spreading [14]

The bandwidth expansion factor or processing gain, being the ratio of chip rate Rc and

the data symbol rate Rs, is usually selected to be an integer in practical spread spectrum

systems.
BW, R, T
= == —= NC
* BW, R, T,

The de-spreading operation can be summarized as:
At the receiver, the received baseband signal ry, is multiplied with the PN-sequence
pn,. If pn; = pn; and synchronized to the PN-sequence in the received data, then the recovered

binary data is produced on d,.
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Figure 5-5: DSSS Receiver end [14]

d, =rx,.pn,
d, =(d,.pn,).pn,

d, =(d,.pn,).pn, " pn, = pn,
d, =d, " pn.pn =1

Last equation holds only if the sequences are perfectly synchronized with each other.

The effect of multiplication of the spread spectrum signal rx, with the PN-sequence pn, used

in the transmitter is to de-spread the bandwidth of rx,, to Rs. This is illustrated in the following

figure.
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Figure 5-6: Direct-Sequence de-spreading [14]

If pn, # pny, then there is no de-spreading action. The multiplier output becomes:

d, =rx,.pn,
d, =(d,.pn).pn,
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In the receiver, detection of the desired signal is achieved by correlation against a local
reference PN-sequence. For secure communications in a multi-user environment, the
transmitted data d; may not be recovered by a user that doesn’t know the PN-sequence pn,
used at the transmitter. Therefore the cross-correlation between all PN-sequences used for
multi-user transmission should be ideally zero. If this is achieved then the output of the

correlator used in the receiver is approximately zero for all except the desired transmission.

55  DSSS acquisition

One of the most characteristic problems in spread spectrum technology is measuring the time
of arrival and frequency of the received signal [27]. In the systems where spread spectrum
signals are used for ranging and measurement of object motion parameters (radar, sonar, and
navigation), time-frequency estimation is the main task. In spread spectrum communications,
it is the core of the timing recovery procedure. In fact to correctly demodulate the transmitted
data, a receiver of every digital communication system must know with sufficient accuracy
the border of symbols, frames etc. in the received data stream. In other words, the local
receiver clock should be properly synchronized with the received data stream. The initial
acquisition of the correct phase offset is referred to as the coarse acquisition. The subsequent
tracking, once coarse acquisition has been achieved is sometimes called fine acquisition.
Coarse acquisition consists of searching the time/frequency space illustrated in the figure

below.

Figure 5-7 Time/Frequency Search Space associated with coarse sync/ acquisition
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In case of DSSS systems, fortunately, the carrier frequency is generally known in
advance and the search is needed only in the time dimension.[26] Coarse acquisition attempts
to adjust the phase offset of the locally generated pseudo random sequence to within a large

fraction of one chip time, T.

55.1  Search Strategies for Acquisition:

Irrespective of the code used, the code space must be searched in some fashion to find the

correct phase offset. There are several ways to accomplish this.

55.1.1 Serial Search

The simplest is a serial approach where one phase offset at a time is attempted and the
comparison with the threshold is made. If the sequence length is large, however, this approach

can be very slow if bounds on the search space are not available.[16]

55.1.2 Parallel Search

On the other hand, a fully parallel search which is the fastest way can also be performed. In
this architecture, N parallel matched filters would simultaneously search the code space, one
offset for each matched filter. The filter with the largest output would correspond to the

correct phase offset. If N is large, implementation would be prohibitive, however [16].

5513 Multi-dwell Approach

Between these approaches, fully serial and fully parallel, there are compromises that can be
made. Instead of a fully parallel implementation, for example, some smaller number of
parallel matched filters could also be included.[26] Multi-dwell search is one such approach.
The first correlator implements a relatively low threshold with a short integration time. Its
purpose is to quickly eliminate offsets that are not acceptable. This stage would have a
relatively high false alaram rate but corresponding high probability of detection. The second
correlator implements a small false alarm rate and small probability of miss, and therefore a
large acquisition time. The goal is to have the first stage hand off to the second infrequently so

the overall acquisition time is minimized.
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56  Correlation in Frequency Domain:

Time average cross-correlation of two sequences r(n) and p(n) for a lag of 7 is defined as

follows c(r) = Yr(n)p(n + 1)

where the summation is taken over all the non-zero values of r(n) and p(n). Let the number
of such indices be N. However, this correlation can be done with much less computations in

the frequency domain by following relationship

c(r) = IFT ( FFT (r(n) = FT(p(n)) )

where IFFT denotes operation of inverse Fourier transform and FT means Forward Fourier
transform and a bar over it represents its complex conjugate. In order to compute correlation
for a single lag in time domain, we have to perform N2 multiplications and N — 1 additions
while in the case of FFT based approach we can compute correlation for all the lags with only
N log, N complex additions and multiplications. So, computing correlation in frequency
domain is much simpler computationally when compared with time domain calculations.

Following section explains how this scheme is implemented.

5.7  Implementation Details:

For HDL implementation of DSSS acquisition, parallel search technique is used. Correlation
of the local reference signal with the received signal is performed in the frequency domain.
Length of the selected PN sequence is 512 chips. Received signal is stored in a read only
memory (ROM) having a depth of 1024 (corresponding of two periods of the PN sequence)
and width of 16 bits. Both real and imaginary parts of the conjugate of the Fourier Transform
of the local reference PN noise are also stored in two separate ROMs. Each of these ROMs
has a depth of 512 and precision of 16 bits. Correlation is performed for two periods of the PN
sequence. Overall block diagram is shown in Figure 5-8. FFT is computed by using the built-
in Xilinx Intellectual Property (IP) core in the Radix-2 Burst I/O mode of operation. For the
product specifications see [11]. The FFT result for the received sequence is shown in the

Figure 5-9.
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Figure 5-8: Parallel search acquisition architecture for DSSS systems.
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Figure 5-10 Real and Imaginary Parts of the Complex Multiplier output
The comguted FFT 0? tf'le recelveg seq1>1/ence and stored FFT of the {ogaf refergnce sequence

are multiplied together using a complex multiplier. Modelsim simulation waveform for the

product is shown in the Figure 5-10.
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Then we take the inverse Fourier Transform of this product to get the result for the received

sequence cross-correlation with the local reference PN sequence. Modelsim waveform for this

computed correlation and its maximum correlation lag is shown in the Figure 5-11.
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Figure 5-11: Cross-correlation of Received signal with Reference PN sequence

Once the maximum index of correlation is available, we add it to the address counter

of the received signal ROM to remove the offset of the two signals. This completes the

process of code acquisition.
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CHAPTER 6

SIMULATION AND IMPLEMENTATION OF REED

SOLMON CODEC ARCHITECTURES

Area efficient and high speed VLSI architectures for encoding and decoding Reed—Solomon
codes with the Berlekamp—Massey algorithm are presented in this chapter. The speed
bottleneck in the Berlekamp—Massey algorithm is in the iterative computation of
discrepancies followed by the updating of the error-locator polynomial [6]. This bottleneck
can be eliminated via a series of algorithmic transformations that result in a fully systolic
architecture in which a single array of processors computes both the error-locator and the
error-evaluator polynomials. In contrast to conventional Berlekamp—Massey architectures in
which the critical path passes through two multipliers and 1 + [log, t + 1)] adders, the
critical path in reformulated inversion-less Berlekamp Massey architectures passes through
only one multiplier and one adder, which is comparable to the critical path in architectures

based on the extended Euclidean algorithm [3,4].

6.1  Arithmetic Operations in Galois Field

Before discussing Reed Solomon codec architecture, we discuss how addition and

multiplication is performed in the Galois Field GF(2™).

6.1.1  Addition in Galois Field GF(2™)

Addition and subtraction are same in GF(2™). Addition is performed by expressing both the
operands in the polynomial representation. Then we take bit- by bit exclusive-or (XOR) of the

corresponding bits to get the result of addition [1,10].

6.1.2  Multiplication in Galois Field GF(2™)

Multiplication of GF(2™) is bit more completed. We define the primitive polynomial of the
field and its root is known as the primitive element (we can express all the non-zero elements

of the field as powers of the primitive element.) We express both the multiplier and the
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multiplicand as the powers of the primitive element. Let a be the primitive element and a*

and a’ be the two operands. Then the product is defined as follows:

1 —

d = dia) = qiti = gli+)Hmod(@™-1)

We present an example of the design of a GF(24) multiplier. Let @ be the primitive
element of the field corresponding to the primitive polynomial
gx)=1+x+x*
As a is aroot of the primitive polynomial and addition and subtraction are same

operation in the GF(2™), at=a+1

In order to develop an architecture for a GF(2*) multiplier , we first consider an arbitrary field
element 8 € GF(2™) which is to multiplied with the primitive element a of the field.
Polynomial representation of § in terms of « is as follows

B =by+ bja+ bya?+ bzad
Multiplying it with a, we get

af = a+* (by+ bja+ bya?+ bza®)

= bya + bja® + bya®+ bza*
But at=a+1
So, af = bya + bya?+ bya® + bs(a+ 1)

aﬁ = b3 + (bo + bg)a‘l' blaz + b2a3

This alpha—gain block is shown in Figure 6-1.

bg — .
b1 '5: .
B b, A
1’3‘3 T

Figure 6-1: An alpha-gain block for GF(2%)

Now we consider multiplying two arbitrary field elements § and y € GF (2*) expressed in the
polynomial form as follows:
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ﬁ = bo + bla + bzaz + b3a3
Yy=co+ qa+ ca®+ czad
Their product can be expressed in the Horner notation as follows:

Py = (((c3f)a + cxf)a+ ciff)a+ coff

This expression and the alpha-gain multiplier can be used to design the multiplier for GF (2*)
shown in the Figure 6-2.

Co fd A N
ﬁC ’
B - &

C2
ﬁC'z
B

Figure 6-2: Parallel-in parallel-out GF (2*) Multiplier

Addition and Multiplication tables for GF (2*) are shown in Table 6-1.
Zlog: - - 4 1 8 2 10 5 14 3 7 9 13 6 12 11
log: - 0 1 4 2 8 5 10 3 14 9 7 6 13 11 12
0 1 o (1'4 a: aS o’ Q,IO Q,S Q,I-l Ct'9 a,? aﬁ tx'”’ a,ll Q.iZ
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 0 |[x 0 0 0 0 0 0 0O 0 0O 0 0 0 0 0 0 o0
1 1 1]1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
a2 2 3|4 6 8 10 12 14 3 1 7 5 11 9 15 13
at 3 3 02 1]5 121510 9 11 8 13 14 7 4 1 2
o« 4 4 5 6 7]3 7 11 15 6 2 14 10 5 1 13 9
o 5 5 4 7 6 1]2 13 8 14 11 4 1 9 12 3 6
« 6 6 7 4 5 2 317 1 5 3 9 15 14 8 2 4
all 7 7 6 5 4 3 2 6 13 10 32 4 2 5 12 11
o 8 8 9 10 11 12 13 12 4 15 7 10 2 9 1
ot 9 9 8 11 10 13 12 15 14 13 5 12 6 15 7 14
o 10 10 11 8 9 14 15 12 13 g 2 1 11 6 12
« 11 11 10 9 8 15 14 13 12 I ]9 13 6 8 3
a® 12 12 13 14 15 8 9 10 11 6 7115 3 4 8
o 13 13 12 15 14 9 8 11 10 7 6 1]14 10 7
o'l 14 14 15 12 13 10 11 8§ 9 4 s 2 3 |11 s
a2 15 15 14 13 12 11 10 9 8 5 4 3 2 1 ]10
Table 6-1: Addition and Multiplication Tables for GF(16) [1]
6.2 An overview of Reed Solomon Codes
Let (di_q,dk_z, e eee e wennn, dq, dg) denote k m-bit data symbols (bytes) that are to be

transmitted over a communication channel (or stored in memory). These bytes are regarded as
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elements of the finite field (also called Galois field), GF (2™), and encoded into a codeword
(Cne1)Crezy wer ve ve wnnv, €1, Cg) Of 1 > k bytes.

For Reed—Solomon codes over GF (2™), n = 2™ — 1,k is odd and the code can
correct t = (n—k)/2 byte errors. The encoding process is best described in terms of the
data polynomials

D(z) = dp_1z¥ 1+ dp_pz* %2 + ... diz+d,
being transformed into a codeword polynomial
C(z) = Cpor 2™ 1+ 2™ 2+ ... 1z + ¢,

All codeword polynomials C (z) are polynomial multiples of G (z), the generator

polynomial of the code, which is defined as

G(z) = [125, (z — ™oty Eq. (6-1)
where m, is typically =zero or one [1,6]. Since 2t consecutive powers
oMo, oMo+l ,ocMot2t=1 of o are roots ofG(z), and C(z)is a multiple of G(z), it

follows that Clcmoti) =0, 0<i<2t—1 Eq. (6-2)

sel =z k m(x)

- - .

n >, B> . PP~

m-bit
CNTR

v

> 0 c(x)
Faia 1

> sel sel = k

Figure 6-3: Reed Solomon Systematic Encoder Architecture [1]

for all codeword polynomials C(z) . In fact, an arbitrary polynomial of degree less than n is a

codeword polynomial if and only if it satisfies Eq. (6-2).
A systematic encoding produces codewords that are comprised of data symbols
followed by parity-check symbols and is obtained as follows. Let O(z) and P(z) denote the
quotient and remainder respectively when the polynomial z*~¥D(z) of degree n-1 is divided
by G(z) of degree 2t = n - k . Thus, 2" *D(2) = Q(2)G(2) + P(2) where deg(P(z)) <
n — k. Clearly, Q(2)G(z) = z"*D(z) — P(z) = C(z) is a multiple of G(2). Furthermore,
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since the lowest degree term in 2" ¥D(z) is dyz™ ¥ while P(z) is of degree at most n — k +

1, it follows that the codeword is given by

(Cne1,Cn_zy e oo ,€1,Co)
= (dk_]_, dk—Zr fee v wen e dll do,
~Pn—k—1r ~Pn—k=2s = sss wes e+, ~P1, ~Po)

and consists of the data symbols followed by the parity-check symbols.

6.2.1 Decoding of Reed-Solomon Codes

Let C(z) denote the transmitted codeword polynomial and let R(z) denote the received word
polynomial. The input to the decoder is R(z) , and it assumes that
R(z) =C(z) +E(z)

where, if e>0 errors have occurred during transmission, the error polynomial E(z) can be

written as
E(z) =Y,z + Yyz2 + ... ... +Y,zle
It is conventional to say that the error values Yi,Y,, ... ... ,Y,, occurred at the error
locations X; = o1, X, = iz, ... , X, = e, Note that the decoder does not know E(z) ; in

fact, it does not even know the value of e. The decoder’s task is to determine E(z) from its
input R(z) , and thus correct the errors by subtracting off £(z) from R(z) . If e<t, then such
a calculation is always possible, that is ¢, or fewer errors can always be corrected [10].

The decoder begins its task of error correction by computing the syndrome values

si = R(«™ott) = C(«™Motl) 4+ E(ocMot) = E(ocMot) 0<i<2t—1

Eq. ( 6-3)

If all 2t syndrome values are zero, then R(z) is a codeword and it is assumed that C(z)
= R(z) that is, no errors have occurred. Otherwise, the decoder knows that and uses the
syndrome polynomial , which is defined to be

S(z) =sg+ 812+ -+ Spp_12%t71

to calculate the error values and error locations. Define the error-locator polynomial A(z) of
degree e and the error evaluator polynomial Q(z) of degree e — 1 at most to be

A@) =T1521(1 = X;2) = 1 + 2,2 + A2° + -+ + A, 2° Eq. (6-4)
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Q2) = X5 ViX; O [[fc1jei( 1 — X;2) = ] 0o + 012 + 0Ap2% + -+ + w1271

Eq. ( 6-5)

These polynomials are related to S(z) through the key equation [1], [3]:

A(z) S(z)= Q(z)mod z* Eq. ( 6-6)

Solving the key equation to determine both A(z) and Q(z) from S(z) is the hardest part of the
decoding process. The BM algorithm and the eE algorithm can be used to solve
Eq. ( 6-6). If e < t, these algorithms find A(z) and Q(z), but if e > t, then the algorithms
almost always fail to find A(z) and Q(z). Fortunately, such failures are usually easily detected
[6].

Once A(z) and Q(z) have been found, the decoder can find the error locations by checking
whether A(x~/)= 0 for eachj,0 <j <n — 1. Usually, the decoder computes the value of
A(x7/ )just before the j-th received symbol leaves the decoder circuit. This process is called a
Chien search [1]. If A(x™/)= 0, then «/ is one of the error locations (say X;). In other words,
rjis in error, and needs to be corrected before it leaves the decoder. The decoder can calculate

the error value Y; to be subtracted from 7; via Forney’s error value formula [1]

XM Va(x ) _ zma)
A,(Xi_l) ZA’(Z)

Y, = — Eq. (6-7)

z=a~J

where A'(z) = Ay + 24,z + 32322 ...+ ed,z¢ Ldenotes the formal derivative of A(z) . Note
that the formal derivative simplifies to A(z) = A + A3z2 ... since we are considering codes
over GF (2™). Thus, zA'(z)= A,z 4 1323 + --- which is just the terms of odd degree in A(2)
. Hence, the value of ZA'(Z) at z= a/can be found during the evaluation of A(z) at
z= aJand does not require a separate computation. Note also that Eq. ( 6-7) can be

simplified by choosing my =0 .

6.3 Reed-Solomon Decoder Structure

In summary, a Reed—Solomon decoder consists of three blocks which are shown in Figure
6-4:

1. the syndrome computation (SC) block

2. the key-equation solver (KES) block

3. the Chien search and error evaluator (CSEE) block
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Figure 6-4: Reed Solomon Decoder Block Diagram

These blocks usually operate in pipelined mode in which three blocks are separately

and simultaneously working on three successive received words.

6.3.1  Syndrome Computation Block

The SC block computes the syndromes via EQ. ( 6-3) usually as the received word is entering
the decoder. The SC architecture is shown in the Figure 6-5 which uses multiply accumulate
blocks. The incoming received word enters serially symbol by symbol and gets multiplied
with the roots of the generator polynomial and the result is accumulated for each clock cycle.
At the end of n clock cycles, last symbol of the received word enters the SC block and the
result is 2t syndrome values.

The syndromes are passed to the KES block which solves Eq (6-6) to determine the
error locator and error evaluator polynomials. KES block and its various architectures will be

discussed in detail in the following section.
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Figure 6-5: Syndrome Computation (SC) Block [13]

6.3.2  Chein Search and Error-Evaluator Block

These polynomials are then passed to the CSEE block, which calculates the error locations
and error values via Eq. ( 6-7) and corrects the errors as the received word is being read out of

the decoder. Chein search block can be implemented as shown in the Figure 6-6

,‘ ? @ - € o~
[ 7, o[ 2, SN S [ 1,
S S S e S S
a.U al a,Z at—l af.‘

Figure 6-6: Chein Search (CS) Block [3]

Error-values are evaluated using Forney’s Formula. The numerator of the Forney’s

formula can be computed using block diagram of Figure 6-7.
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Figure 6-7: Evaluation of Error-evaluator at reciprocal of Error-location [13]

It can be shown that both Chein search and Forney’s Formula computation can share
certain calculations. For example, the computation of the error locator polynomial’s formal
derivative is same as that of the odd powered terms of the Chein search if we both multiply
and divide Forney’s formula with inverse of the error location. Architecture of Figure 6-8

shows this computation.

Overall architecture for both Chein Search and Error-evaluation unit is shown in
Figure 6-9. Zero-detector is simply a NOR gate whose output goes high if it detects a zero at
the output of the Chein search unit i.e. a root and hence an error-location is found. It output is
thus called Error Locator Sequence (ELS) . The the reciprocal of the computed formal
derivative of the error-locator polynomial is taken by using an IROM look up table which has
inverses of GF elements tabulated. This is then multiplied with the error-evaluator polynomial
computed at inverse of the error-locators. This product represents the estimated error-values
which is then ‘anded’ with ELS (working as an enable signal) to get the error polynomial e(x).
e(x) may be added to a delayed version of the received word to get an estimate of the

transmitted codeword.
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Figure 6-8: Combined Chein-Search and Formal Derivative of Error-locator Polynomial [13]
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Figure 6-9: Combined Chein-Search and Error-evaluator Block [13]

6.3.3  Key Equation Solver (KES) Block

The throughput bottleneck in Reed—Solomon decoders is in the KES block which solves
Eq. ( 6-6). In contrast, the SC and CSEE blocks are relatively straightforward to implement.

Now we focus on high-speed architectures for the KES block. As mentioned earlier, the key
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equation can be solved via the eE algorithm or via the BM algorithm. We discuss high-speed
architectures for a reformulated version of the BM algorithm because this reformulated
algorithm can be used to achieve much higher speeds than can be achieved by other
implementations of the BM and eE algorithms. Furthermore, these new architectures also
have lower gate complexity and a simpler control structure than architectures based on the eE

algorithm [6].

6.4  Berlekamp-Massey (BM) Architectures

In this section, we give a brief description of different versions of the Berlekamp—Massey

(BM) algorithm and then discuss a generic architecture for implementation of the algorithm.

6.4.1  The Berlekamp—Massey Algorithm

The BM algorithm is an iterative procedure for solving the Key equation. In the form
originally proposed by Berlekamp [1,10], the algorithm begins with polynomials A(0,z) =
1, Q(0,z) =0 and iteratively determines polynomials A (r,z), and Q(r,z) satisfying the
polynomial congruence A(r.z) S(z)= Q(r,z)mod z?' For r = 1,2,...,2t and, thus, obtains a
solution A(2t,z) and Q(2t,z)to the key equation. Two “scratch” polynomials B(r,z) and
H(r, z)with initial values B(0,z)= I and H(0,z) = —1 are used in the algorithm. For each
successive value of r, the algorithm determines A (r,z), and B(r,z) from A (r-
1,z), and B(r —1,z) . Similarly, the algorithm determines Q(r,z)and H(r, z) from Q(r —
1,z)and H(r — 1, 2z) . Since S(z)has degree 2¢-1, and the other polynomials can have degrees
as large as ¢, the algorithm needs to store roughly 6¢ field elements. If each iteration is
completed in one clock cycle, then 2¢ clock cycles are needed to find the error-locator and
error-evaluator polynomials.

In recent years, most researchers have used the formulation of the BM algorithm given
by Blahut in which only A (r,z), and B(r,z) are computed iteratively. Following the
completion of the 2¢ iterations, the error-evaluator polynomial Q(2t,z)is computed as the
terms of degree ¢-/or less in the polynomial product Q(2t,z)S(z) . An implementation of this
version thus needs to store only 47 field elements, but the computation of Q(2t, z) requires an
additional # clock cycles. Although this version of the BM algorithm trades off space against
time, it also suffers from the same problem as the Berlekamp version, viz. during some of the

iterations, it is necessary to divide each coefficient of A(7,z), by a quantity §,- . These divisions

are most efficiently handled by first computingd, ' , the inverse of 8, , and then multiplying
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each coefficient of A(r,z) by 8, " . Unfortunately, regardless of whether this method is used
or whether one constructs separate divider circuits for each coefficient of A(7,z) , these
divisions, which occur inside an iterative loop, are more time consuming than multiplications.
Obviously, if these divisions could be replaced by multiplications, the resulting circuit
implementation would have a smaller critical path delay and higher clock speeds would be
usable.

The inversion-nless BM (iBM) algorithm [3,4] is described by the pseudocode shown
below. The iBM algorithm actually finds scalar multiples 5. A(z)and B.€Q(z) instead of the
A(z)and Q(z). However, it is obvious that the Chien search will find the same error locations
and it follows from Forney’s formula that the same error values are obtained. Hence, we

continue to refer to the polynomials computed by the iBM algorithm as A(z)and Q(z).

Algorithm 6-1
The iBM Algorithm [6]
Initialization:

20(0) = by(0) = 1, 4;(0) =h;(0) =0, for i=12,..,¢t, k(0) = 0, y(0) =1
Input: s, =0,1...,2t—-1.
forr = 0:1:2t— 1do
begin
StepiBM.1 8(r) = s, g(r) + 5,1 A, (r) + -+ 50t A:(1)
StepiBM.2 A, (r + 1) = y(mA4(@) — §(r)bi—; (r); (i=01,..,t)
StepiBM.3 if (6(r)# Oandk(r) =0)
then
begin
b(r + 1)= 2; (1), (i=01,...1%
y(r +1) = 8(r) k(r+ )= —k(r)—1

end
else
begin
bj(r + 1) = b;_; (r), (i =0,1,...,t)
y(r + 1) = y(r) k(r + 1) = k(r) +1
end
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end

fori =0:1:t—1do

Step iBM.4 w;(2t) = s5; 4o(2t) + s;_1 1, (2t) + ...+ s 4;(20)
Output: 1, (2t); i = 0,1,...,t. w;(2t),i = 0,1,...,t —1

For r <t , Step iBM.1l includes terms s_;.A,41(7),S_2. A 42(7), oo, Sp_p. A (1)
involving unknown quantities. Fortunately, it is known that deg (A (r,z)) <r, so that
Ary1(r) = Apyo(r) = -+ = A,(r)=0 and therefore the unknown s; do not affect the value of
6(r) Notice also the similarity between Steps iBM.1 and iBM.4.These facts simplify the

architecture that we describe next.

6.4.2  Architectures Based on the iBM Algorithm
Due to the similarity of Steps iBM.1 and iBM.4, architectures based on the iBM algorithm
need only two major computational structures as shown in Figure 6-10.

1. The discrepancy computation (DC) block for implementing Step iBM.1.

2. The error locator update (ELU) block which implements Steps iBM.2 and iBM.3 in

parallel.

The DC block contains latches for storing the syndromes s;, the GF (2™) arithmetic units
for computing the discrepancy §(r)and the control unit for the entire architecture. It is
connected to the ELU block, which contains latches for storing for A(7,z)and B(7,z) as well as
arithmetic units for updating these polynomials, as shown in Figure 6-10. During a clock
cycle, the DC block computes the discrepancy §(r) and passes this value together with y(r)
and a control signal MC (r) to the ELU block which updates the polynomials during the same

clock cycle.

79



Syndromes from the SC Block

DC - Block
Ap(r) pA_q(r) A (PP AL ()
I— e @ 9
y(r)
To the CS-EE block
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To the CS-EE block
Q(x) incycles 2t+1 to 3t

Figure 6-10: The iBM Architecture [6]

6.4.2.1 DC Block Architecture:

The DC block architecture shown in Figure 6-11 has 2t latches constituting the DS shift
register that are initialized such that the latches DS;,DS,, ... ... ,DS,¢_1, DS, contain the
syndromes Sq, Sz, ... ... ,Sa2t—1, So, respectively. In each of the first 2t clock cycles, the t + 1
multipliers compute the products in Step iBM.1. These are added in a binary adder tree of
depth [log, t + 1)] to produce the discrepancy §(r). Thus, the delay in computing §(r) is T
= Tt t[log, t + 1)].Tada-

Sy St Sot—1 So

DS, ° o(_ oo -(__ol DSues l:_l DS, l:__ Control

Block
8(r)
92 _dh
3] '49"1( ;
o —F+ AR
& | w
< IS t
X w
°ee y() 8(r) mecr

A(r) M@ K@)

Figure 6-11: The Discrepancy Computation Block [6]
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Figure 6-12: Control Block [6]

A typical control unit such as the one illustrated in Figure 6-12 has counters for the
variables r and k(r), and storage for y(r). Following the computation of §(r), the control
unit computes the OR of the bits in order to determine whether §(r) is nonzero. This requires
m — 1 two-input OR gates arranged in a binary tree of depth [log,(m)]. If the counter for
k(r) is implemented in two’s-complement representation, then k(r) = 0 if and only if the
most significant bit in the counter is 0. The delay in generating MC (r) signal is thus Tyc = Ts
+[log, m)].Tor +T4pnq. Finally, once the signal MC(r) is available, the counter for k(r) can be
updated. Notice that a twos-complement arithmetic addition is needed if k(r + 1) = k(r) +
1 .On the other hand, negation in two’s-complement representation complements all the bits
and then adds one and, hence, the update k(r +1) = —k(r) +1 requires only the
complementation of all the bits in the counter k(). We note that it is possible to use ring
counters for r and k(r), in which case k(r) is updated just Ty, seconds after the signal

MC(r) has been computed.

Following the 2t clock cycles for the BM algorithm, the DC block computes the error-
locator polynomial Q(z) in the next t clock cycles. To achieve this, the DS;, DS;,q,
...... ,DS,¢_4 latches are reset to zero during the 2t-th clock cycle, so that, at the beginning of
the (2t+1)-th clock cycle, the contents of the DS register (see Figure 6-11) are s;, s;,
...... ,St—1, 0,0, ....., 5. Also, the outputs of the ELU block are frozen so that these do not
change during the computation of Q(z). From Step iBM.4, it follows that the “discrepancies”
computed during the next t clock cycles are just the coefficients

wo(2t), w,(2t) , ... ... ,we_1(2t) of Q(2).
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Note that the total hardware requirements of the DC block are 2t m-bit latches, t + 1

multipliers, t adders, and miscellaneous other circuitry (counters, arithmetic adder or ring

counter, OR gates, inverters and latches), in the control unit. The critical path delay of the DC

block is

TDC = Tmult + (1 + [lng t+ 1)] )-Tadd+ HOgZ m)]-Tor + Tand~

6.4.2.2

ELU Block Architecture:

Following the computation of the discrepancy & () and the signal MC (r) in the DC block, the

polynomial coefficient updates of Steps iBM.2 and iBM.3 are performed simultaneously in

the ELU block. The processor element PEO (hereinafter the PEO processor) that updates one

coefficient of A(z) and B(z) is illustrated in

Figure 6-13.
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I |
r) €—| i(r) [€— by (r
oo B -
[}
MC(r) Hew
Ae(1) Ae—1 (1) A (1) Ao(1)
| 1 ! t
0 0
& e see . | U € 1 — “r"{?')
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Figure 6-13: The PEO processor and ELU Block Diagram [6]

The complete ELU architecture is also shown in
Figure 6-13 where we see that signals §(r), y(r) and MC(r) are broadcast to all the
PEOQ processors. In addition, the latches in all the PEO processors are initialized to zero except
for PEOQy, which has its latches initialized to the element 1 e GF (2™) . Notice that 2t +
1 latches and multipliers, and t + 1 adders and multiplexers are needed. The critical path

delay of the ELU block is given by

Tery = Trmuie + Taaa
6.4.2.3 iBM Architecture

Ignoring the hardware used in the control section, the total hardware needed to implement the
iBM algorithm is 4t + 2 latches, 3t + 3 multipliers, 2t + 1 adders, and t + 1 multiplexers.
The total time required to solve the key equation for one codeword is 3t clock cycles.
Alternatively, if Q(2t,z) is computed iteratively, the computations require only 2t clock
cycles. However, since the computations required to update Q(r,z) are the same as that of
A(r,z), a near-duplicate of the ELU block is needed. This increases the hardware
requirements to 6t + 2 latches, 5t + 3 multipliers, 3t + 1 adders, and 2t + 1 multiplexers. In

either case, the critical path delay of the iBM architecture can be obtained as

TIBM =2. Tmult + (1 + ﬂogz t+ 1)] ) Tadd > 2. ( Tmult + Tadd)

which is the delay of the direct path that begins in the DC block starting from the DS; latches,
through a multiplier, an adder tree of height [log, t + 1)] (generating the signal &(r) ),
feeding into the ELU block multiplier and adder before being latched. We have assumed that
the indirect path taken by through the control unit (generating signal MC(r)) feeding into the
ELU block multiplexer is faster than the direct path, i.e.,
Tonue > oga M) Tor + Tana

This is a reasonable assumption in most technologies. Note that more than half of Tigy
is due to the delay in the DC block, and that this contribution increases logarithmically with
the error correction capability. Thus, reducing the delay in the DC block is the key to

achieving higher speeds. In the next section, we describe algorithmic reformulations of the
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iBM algorithm that lead to a systolic architecture for the DC block and reduce its critical path
delay to Ty -

6.5 Reformulated Reed-Solomon Decoder Architectures

The critical path in iBM architecture passes through two multipliers as well as the adder tree
structure in the DC block. The multiplier units contribute significantly to the critical path
delay and hence reduce the throughput achievable with the iBM architecture. In this section,
we discuss decoder architectures that have a smaller critical path delay. These architectures
are derived via algorithmic reformulation of the iBM algorithm. This reformulated iBM
(riBM) algorithm computes the next discrepancy §(r + 1) at the same time that it is
computing the current polynomial coefficient updates, that is, the 4;(r + 1) ’s and the
b;(r + 1)’s. This is possible because the reformulated discrepancy computation does not use
the A;(r + 1)’s explicitly. Furthermore, the discrepancy is computed in a block which has the
same structure as the ELU block, so that both blocks have the same critical path delay

Tmult + Tadd-

6.5.1  Reformulation of the iBM Algorithm

6.5.1.1 Simultaneous Computation of Discrepancies and Updates

Viewing Steps iBM.2 and iBM.3 in terms of polynomials, we see that Step iBM.2 computes

Alr+1,z) = y(r).A(r,z) — z.6(r).B(r, 2) Eq. ( 6-8)

while Step iIBM.3 sets B(r + 1, z) either to A(r,z) or to z.B(r,z) . Next, note that the
discrepancy 6(r) computed in Step iBM.1 is actually §,(r) , the coefficient of z" in the
polynomial product
A, z).85(z) = A(r,z) = §o(r) + 6,(r).z+ -+ 6,.(r).z" + - Eq. (6-9)
Much faster implementations are possible if the decoder computes all the coefficients
of A(r,z) (and of O(r,z) = B(r,z).5(z)) even though only 6,(r) is needed to compute
A(r + 1, z) and to decide whether B(r + 1, z) is to be set to A(r, z) or to z. B(r, z).
Suppose that at the beginning of a clock cycle, the decoder has available to it all the
coefficients of A(r,z) and ©(r,z) (and, of course, of A(r,z) and B(r,z) as well). Thus,

6(r) = §8,(r)is available at the beginning of the clock cycle, and the decoder can compute
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A(r+1,z) and B(r +1,z) . Furthermore, it follows from Ar+1,z = y(r).A(r,z) —
z.6(r).B(r,z) Eq. (6-8) and Eq. ( 6-9) that

A(r+1,2) =A(r+1,2).5=) = [y(r).A(r,z) — z.6,(r).B(r,2)].5(z)
= y(r).A(r,z) — z.6,(r).O(r, z)

while O(r+1,z) =B(r+1,2).5(z) is set to either A(r,z) = A(r,z).5(z) or to
2.0(r,z) = z.B(r,z).5(z). In short, A(r + 1,z)and ®(r + 1, z) are computed in exactly the
same manner as are A(r + 1,z)and B(r + 1,z) . Furthermore, all four polynomial updates
can be computed simultaneously, and all the polynomial coefficients as well as 6,4 (r +

1)are thus available at the beginning of the next clock cycle.

6.5.1.2 A New Error-Evaluator Polynomial

The riBM algorithm simultaneously updates four polynomials A(r,z),B(r, z), A(r, z), and
O(r,z) with initial values A(0,z) =B(0,z) =1 and A(0,z) =0(0,z) =S(z) . The
2t iterations thus produce the error-locator polynomial A(2t,z) and also the
polynomial A(2t,z). Note that since Q(2t,z) = A(2t,z).S(z)mod z?! it follows from

Eq. ( 6-9) that the low-order coefficients of A(2t, z) are just Q(2t, z) , that is, the
2t iterations compute both the error-locator polynomial A(2t,z) and the error-evaluator
polynomial Q(2t,z) — the additional t iterations of Step iBM.4 are not needed. The high-
order coefficients of A(2t, z) can also be used for error evaluation. Let A(2t, z) = Q(2t,z) +
z28.0®™(z) , where Q™ (z) of degree at most e — 1 contains the high-order terms. Since
X;t is a root of A(2t, 2), it follows from Eq. ( 6-9) that A(2t, X71) = Q(2¢, X)) +
X 2t (X;'1) = 0. Thus, Forney’s error evaluation formula can be rewritten as

v Xi_(m0+2t_1)ﬂ(h)(Xi_1) B Zm0+2tQ(h)(Z)
(= NxT) @

z= Xi_l

Eq. (6-10)

This variation of the error evaluation formula has certain architectural advantages. Note that

the choice my = —2t = n — 2t is preferable if EqQ. ( 6-10) is to be used.
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6.5.1.3 Further Reformulation

Since the updating of all four polynomials is identical, the discrepancies can be calculated
using an ELU block. Unfortunately, for r = 0,1, ... ... 2t — 1, , the discrepancy &,(r) is
computed in processor PEO, . Thus, multiplexers are needed to route the appropriate latch
contents to the control unit and to the ELU block that computes A(r + 1,z)and B(r + 1, 2) .
Additional reformulation of the iBM algorithm, as described next, eliminates these
multiplexers [6]. We use the fact that for any i < r,6;(r) and 8;(r) cannot affect the value of

any later discrepancy &, ;(r + j). Consequently, we need not store §;(r) and 6;(r) fori <r.

Thus, for = 0,1, ...... 2t — 1, define 6;,(r) = 8;.r(r) and 0;(r) = 6;,,(r) and the

polynomials
2t-1
A(r,z) = Z 8.,(rz"
i=0
And

2t-1

0(r,z) = Z 0;(r)z
i=0

with initial values A(0,z) = 0(0,z) = S(z). It follows that these polynomial coefficients are
updated as §;(r + 1) = Spy147(r + 1) = Y1) 811140 (1) = 85,1014 (1) =y (r). 8141 (r) —
8o()0;(r) while 6,(r+1) = 0;,,,,(r+ 1) is set either to §;,1,,() = 8;4.,(r) or to
0;4+1(r) = 0;(r) . Note that the discrepancy &, (r) = 8, (r) is always in a fixed (zero-th)
position with this form of update. As a final comment, note this form of update ultimately
produces
AQ2t,2) = 8,,(2t) + 8501120z + -+ = QM (2¢, 2)

and, thus, Eq. ( 6-10) can be used for error evaluation in the CSEE block. The riBM
algorithm is described by the following pseudo code.

Algorithm 6-2
The riBM Algorithm [6]

Initialization:

20(0) = by(0) = 1, 2;(0) =b;(0) =0, for i =1,.2,..,¢t, k(0) = 0, y(0) =1
Input: Si i =01...2t—1.

5:(0)=0,(0)= s;(i = 0;...; 2t —1)
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forr = 0step 1until 2t 1do
begin
StepriBM.1 A, (r + 1) = y().4; (") — So()bi_1 (r); (i =0,..,2t — 1)
5;r+1) = y().8;4.(r) — 6,(1).0;(r); (i = 0,..,2t —1)

StepriBM.2  if ( 8,(r) # Oandk(r) = 0)
then
begin

b(r +1) = 4(); (i =0,1,...,t)

0;(r +1) = 61(); (i = 0,1,...,2t — 1)

yor + 1) = 8 (r)

k(r + )= —k(r)—1
end
else
begin

b(r +1) = b;_4(r); (i =0,1,...,¢t)

0;r +1) = 6;(r); (i =0,1,..,2t—1)

yr + D=y

k(r + ) =k(r)+1
end
end
Output: 1;(2t); (i = 0,1,...,t); o™ (Q2t) = §;(2t); (i =0,1,...,t —1)

Next, we consider architectures that implement the riBM algorithm.

6.6  High-Speed Reed—-Solomon Decoder Architectures

As in the iBM architecture described in Section Error! Reference source not found., the

riBM architecture consists of a reformulated discrepancy computation (rDC) block connected

to an ELU block.

6.6.1  The rDC Architecture

The rDC block uses processor PE1 shown in Figure 6-14 and the rDC architecture shown in
Figure 6-15. Notice that processor PE1 is very similar to processor PEO of

Figure 6-13.

87



&)
R - 1
8;(r) H‘ Cammm 0.1(1) &) «— . 5.
vi(r) T ¥(r) e R — le— (1)
8(r) c——l_o} l &(r) 8(r)  €— PE1; le—— 8(r)
/1
1
| IEI 0 T
M MC{!')
MC(r)
Figure 6-14: Processor Element 1 (PE1) [6]
2|
1
: S0 (1) Control :
: oo (1) wh, (1) Block :
|1 1 !
1
| e | ||
: PE1, PE1; [ °*° < petsg PEL,, i
1
| |
| , J |
! I
! I
! I
L EEEE————— —— = e

Trpe = Touae + Taaa

() 8(r) mMer)

Figure 6-15: The reformulated Discrepancy Computation (rDC) Architecture [6]

Obviously, the hardware complexity and the critical path delays of processors PEO and

PE1 are identical, we get that Typc = Tynuie + Taaq- Note that the delay is independent of

the error-correction capability t of the code. The hardware requirements of the architecture in

Figure 6-15 are 2t PE1 processors, that is, 4t latches, 4t multipliers, 2t adders, and 2t

multiplexers, in addition to the control unit, which is the same as that in iBM.
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Figure 6-16: The Systolic riBM Architecture [6]

6.6.2  The riBM Architecture

The overall riBM architecture is shown in Figure 6-16 . It uses the rDC block of Figure 6-15
and the ELU block in
Figure 6-13. Note that the outputs of the ELU block do not feed back into the rDC block.
Both blocks have the same critical path delay of T,pe = Ty = Tmur + Taaq and since
they operate in parallel, riBM architecture achieves the same critical path delay:
Trism = Tmuie + Taaa

which is less than half the delay T;z,, of the enhanced iBM architecture [6].

At the end of the 2t -th iteration,the PE1 s, contain the coefficients of
QM (2¢t,z) which can be used for error evaluation. Thus, 2t clock cycles are used to
determine both A(z) and Q™ (z). Ignoring the control unit, the hardware requirement of this
architecture is 3t 4+ 1 processors, that is, 6t + 2 latches, 6t + 2 multipliers, 3t + 1 adders,
and 3t +1 multiplexers. This compares very favorably with the 6t + 2 latches, 5t + 3
multipliers, 3t + 1 adders, and 2t + 1 multiplexers needed to implement the enhanced iBM

architecture in which both the error-locator and the error-evaluator polynomial are computed
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in 2t clock cycles. Using only t — 1 additional multipliers and t additional multiplexers, we
have reduced the critical path delay by more than 50%. Furthermore, the riBM architecture

consists of two systolic arrays and is thus very regular [6].
6.6.3  The RiBM Architecture

It is possible to eliminate the ELU block entirely, and to implement the BM algorithm in an
enhanced rDC block in which the array of 2t PE1 processors are lengthened into an array of

3t + 1 PE1 processors as shown in Figure 6-17.

Bo(r) Control
el () Boir) BIDEI{
] ™y T AT
A A t-2(T)
[So ] T | R | T |
PE].[."' PE]]E ::: szldg_:é
I 50 I I 51 I 2t—2
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Ac(r)
I o
I 0 I = I o I+ LR +I 0 I I 1 I'&
PELpi  [PELcl. ... ClpEr, [ | PEI ¥ |
Col Lol - <15
L o ry A
MC(r)

Figure 6-17: The homogeneous Systolic RiBM architecture [6]

In this completely systolic architecture, a single array computes both A(z) and
QM (z). Since the t +1 PEO processors eliminated from the ELU block re-appear as the t +1
additional PEL processors, the RIBM architecture has the same critical path delay as the

riBM architecture. However, its extremely regular structure offers some advantage in VLSI

circuit layouts.

An array of PEO processors in the riBM architecture (see Figure 6-16) carries out the
same polynomial computation as an array of PE1 processors in the RiIBM architecture (see
Figure 6-17), but in the latter array, the polynomial coefficients shift left with each clock
pulse. Thus, in the RIBM architecture, suppose that the initial loading of PE1,, PE1,4,

....PE1,;_4,1s as in Figure 6-15, while PE1,;, PE15;.4, ...,PE13;_4,are loaded with zeros,
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and the latches in PE13; are loaded with 1 € GF(2™) . Then, as the iterations proceed, the

polynomials A(r, z)and ©(r, z) are updated in the processors in the left-hand end of the array

(effectively A(r, z), and ©(r, z), get updated and shifted leftwards).

After 2t clock cycles, the coefficients of QM (z)are in processors PE1y—PE1,_,.
Next, note that PE13, contains A(0,z) and B(0,z), and as the iterations proceed, A(r, z)and
B(r, z)shift leftwards through the processors in the right-hand end of the array, with A;(r) and
b;(r) being stored in processor PE13,_, .4 . After 2t clock cycles, processor PE1,,; contains
A;(2t) and b;(2t) for i =0,1,...,t . Thus, the same array is carrying out two separate

computations. These computations donot interfere with one another. On the other hand, since

deg(A(r, z)) = deg(S(2)) + deg (A(r,z)) , it follows that deg (Z(r, Z)) <2t—1+4r+

I(r) wherel(r) = %(r) is known to be an upper bound on deg (A(r, 2)). It is known that
[(r) is a non-decreasing function of r and that it has maximum value [(2t) = e if e <
t errors have occurred. Hence, 2t — 1+ r + [(r) < 3t —r for all r, and thus, as A(r, z) and
B(r, z) shift leftwards, they do not over-write the coefficients of A(r,z) and 8(r,z) . We
denote the contents of the array in the RIBM architecture as polynomials
A(r,z) and O(r,z) with initial values A(0,z) and ©(0,2z) = S(z)+ z3t . The RIiBM

architecture [6] implements the following pseudo code.

Algorithm 6-3

The RiBM Algorithm [6]
Initialization:
85:(0)=1.5;(0) =0 fori=2t,..,3t—1. k(0)=0  y0)=1
Input:s;,i = 0,1,...,2t — 1.
5:(0)=0,(0)= s;; (i = 0,...,2t 1)
forr = 0:1:2t—1do
begin
Step RiBM.1 §;(r + 1) = y(1).8;,,(r) — 6,(1).0;(r) i =(0,...,3t)
Step RiBM.2 if (5,(r) # 0 and k(r) =0
then
begin
0,(r+1) = 8;,,(r) (i=0;1;...; 30t
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y(r + 1) = 8o(r)

k(r + )= —k(r)—-1

end

else

begin

b:(r+1) = §;(n), (i=01..; 30t
yr + 1) = y([)

k(r + 1) k(r) + 1

end

end

6.7  Comparison of Architectures

Table 6-2 summarizes the complexity of the various architectures described so far. It can be
seen that, in comparison to the conventional iBM architecture (Berlekamp’s version), the
reformulated riBM and RiBM systolic architectures require more t — 1 multipliers and
t more multiplexers. All three architectures require the same numbers of latches and adders
and all three architectures require 2t cycles to solve the key equation for a t -error-correcting
code. The riBM and RiBM architectures require considerably more gates than the
conventional iBM architecture (Blahut’s version), but also require only 2t clock cycles as
compared to the 3t clock cycles required by the latter. Furthermore, since the critical path
delay in the riBM and RiBM architectures is less than half the critical path delay in either of
the iIBM architectures, the reformulated architectures significantly reduce the total time
required to solve the key equation (and thus achieve higher throughput) with only a modest
increase in gate count. More important, the regularity and scalability of the riBM and RiBM
architectures creates the potential for automatically generating regular layouts (via a core
generator) with predictable delays for various values of t and m . Nonetheless, a rough
comparison is that the riBM and RiBM architectures require three times as many gates as the

hypersystolic eE architecture, but solve the key equation in one-sixth the time.
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Clock
Architectures Adders | Multipliers Latches Muxes C;Te: Critical Path Delay

iBM (Blahut) 2t +1 3t+3 4t + 2 t+1 3t = 2. (Te + Toga)
iBM (Berlekamp) | 3t +1 5t+3 6t + 2 2t+1 3t = 20 (Toae + Toga)

riBM 3t+1 6t + 2 6t + 2 3t+1 2t Tt ¥+ Taaa

RiBM 3t+1 o6t + 2 6t + 2 3t+1 2t Tt + Taaa
Euclidean 4t + 2 8t + 8 4t +4 8t + 8 2t Tt T Taga + Toaer
Euclidean (folded) | 2t +1 2t+1 10t +5 | 14t +7 12t Toir + Taga + T

Table 6-2: Comparison of Hardware complexity and Path Delay [6]

It is possible to implement the eE algorithm with complex processor elements, as
described by Shao et al. [4]. Here, the four multiplications in each processor are computed
using four separate multipliers. The architecture described in [4] uses only 2t + 1 processors
as compared to the 3t +1 PEO or PE1l processors needed in the riBM and RiBM
architectures, but each processor in [4] has 4 multipliers, four multiplexers, and two adders.
As a result, the riBM and RiBM architectures compare very favorably to the eE architecture
of [4]—the reformulated iBM architectures achieve the same (actually slightly higher)
throughput with much smaller complexity.

All the multiplexers in the riBM and RiBM architectures receive the same signal and
the computations in these architectures is purely systolic in the sense that all processors carry
out exactly the same computation in each cycle, with all the multiplexers set the same way in

all the processors—there are no cell-specific control signals.

6.8  Simulation and Synthesis of iBM,riBM and RiBM Architectures

We have used Xilinx Integrated Simulation Environment (ISE) v9.2 for the design process of
RS codec. Simulation and synthesis are done using Xilinx ISE Simulator and Xilinx Synthesis

Tool(XST) respectively. Target selected was Spartan-3 Xc3s500 with a speed grade -5.

6.8.1  Simulation Results for Reed Solomon Codec

Process of systematic Reed Solomon encoding for (15,9) code (where n=15,k=9 and m =

4) over GF(2%) are shown in Figure 6-18. The first and second waveforms of the clock and
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reset signals respectively. On the positive edge o f the clock after the reset goes low, message
symbols (3rd waveform) start emerging and transition at the negative edge of the clock. The

message polynomial used in this example simulation is as follows:
m(x) = 5+ 2x +x% + 6x3 +8x* + 3x> + 10x® + 15x7 + 4x8

And the encoded polynomial is

c(x) = 5+4x +9x% + 8x3+ 6x* + 2x° +5x% + 2x7 + x® + 6x° + 8x10 + 3x1!
+ 10x'2 + 15x13 + 4x1*
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Figure 6-18: Systematic RS Encoding simulation waveform

For simulation purposes, it is assumed that 3 errors have occurred during the

transmission of the code-word as the received word is as follows:

r(x) = 54 4x +13x2 + 8x3 + 6x* + 2x5 4+ 5x6 4+ 2x7 + 2x8 + 6x° + 8x10 + 3x1!
+ 10x'? + 15x13 + 6x14

Symbols in errors are shown with a bar above them. Now, the task of the decoder is to
find out both the locations of the error and their corresponding values. i.e. the error

polynomial
e(x) = 4x% + 3x8 + 2™

Syndrome computation for this example is shown in simulation wave-form in Figure

6-19. The received word r(x) shown in the third row is input to the Syndrome Computation
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module. As t = 3, for (15,9) code, there are 2t = 6 syndromes. Syndromes get evaluated one

cycle after the received word has entered completely into SC block. Computed syndromes are
S ={13,3,5,4,8,5}
SE done goes high as the computation of the syndrome completes.

After the syndromes are calculated, the Key Equation Solver block computes the error-
locator and the error-evaluator polynomial. Simulation results for both iBM architecture and
RiBM architectures are presented for comparison in Figure 6-20 and Figure 6-21respectively.
It can be observed from the simulation waveforms that the error-locator and error-evaluator
polynomials are computed in about 50% less time (2t cycles) in RiBM and riBM as compared
with iBM (2t cycles). Coefficients of error-locator polynomial are indicated by lam i and

those of error-evaluator polynomial as omg_i.

A ek 1
& SE_reset 0

B e o -_BIEBBB-BEBEEIB

Hent 0 m

@ glsndo30)  4hD -_nnnnmnnmanmnn 13
S @oming a3 “nnn-mnmmm-nan ;
LRELE (T S 0 0 /0 0/ 0/0 0/0,0/[0 6N 0/ &
K ond3zn 4w (4‘nxx 0 X8 ) s mmnmnn-nnn- 4
DQema30) a8 (amiX 0 XB6ABXISNTAOXSXISXB X 2NMAEAIATASX 8
T ECTRETR T G O 6 0 () G (0.40 €3 6 €3 (0 0.0
Mse_done 1 Y

T

Time (ns)

Figure 6-19: Syndrome Computation
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Figure 6-20: Key Equation Solver Simulation for iBM Architecture
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Figure 6-21: Key equation solver simulation for RiBM and riBM architecture
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Figure 6-22: Error-correction

Figure 6-22 shows the results of Chein-search and Error-evaluator block. Error location
sequence indicates the location of error and err_sym are the values of the errors. CSEE _reset
enables the block and a delayed version of received signal rd x is added with the error

sequence to get the decoded code-word symbols ¢_x.

6.8.2  Synthesis Results for Reed Solomon Codec:

Reed Solomon codec was synthesized for Spartan-3 speed grade-5 with various values of the
parameters n,k and t. This was accomplished by writing the Matlab code for a Verilog HDL
code generator application. Values of the parameters n and k are specified to the application

and it generates the required Verilog files in a directory ready to be synthesized by Xilinx ISE.

Synthesis report generated by XST contains details about the resource usage and maximum

attainable clock frequency which is the inverse of the critical path delay.
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6.8.2.1

Synthesis results with changing Error-correction capability ‘t’:

Synthesis results for 4 different RS codec parameters are shown in Table 6-3 for RiIBM.

Rs(:;;:ie Slices Flip_Flops 4-input LUTs Max.Freq in MHz.
(15,11) 164 118 300 198
(15,9) 234 162 427 204
(15,7) 302 205 551 206
(15,5) 368 247 672 208

Table 6-3: Area vs. Speed Comparison with increasing Error-correction capability (n=15)

It can be observed that as we increase the error-correction capability of the code

without changing the code-size (and hence the underlying Galois Field) there is an increase in

the area (resource consumption) however, the speed remains almost the same because we are

using same GF(16) and the critical path delay is the sum of the delays of adder and multiplier.

Results in the table are shown in the graph in Figure 6-23.
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Figure 6-23: Area vs. Speed Comparison for (n,k) RS Code (n =15) for RiBM
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Similar results are observed for n = 63. Tabulated data is as follows :

RS Code Slices Flip_Flops 4-input LUTs Max.Freq(MHz
(n,k) )
(63,55) 574 290 1057 164
(63,47) 1107 537 2034 160
(63,31) 2179 1123 4017 155

Table 6-4: Area vs. Speed Comparison with increasing Error-correction capability (n=63)

These results are displayed in the graph in Figure 6-24.
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Figure 6-24: Area vs. Speed Comparison for (n,k) RS Code (n =63) for RiBM

As we increase the value of n, we operate in larger Galois Fields with multipliers having

greater critical path delays and lower maximum clock period. This can be observed by the

graph in Figure 6-25
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Figure 6-26 compares three different inversion-less BM architectures. These architectures
when synthesized for (15,9) show that they use almost the same number of slices, flip-flops
and LUT (look up tables). However, the systolic and homogeneous architecture of RiBM

makes it the fastest i.e. with the minimum critical path delay.
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Figure 6-26: Area-Speed comparison of iBM, riBM and RiBM architectures

This chapter concludes that application of algorithmic transformations to the
Berlekamp—Massey algorithm result in the riBM and RiBM architectures whose critical path
delay is less than half that of conventional architectures such as the iBM architecture. The
riBM and RiBM architectures use systolic arrays of identical processor elements.

99



CHAPTER 7

CONCLUSIONS AND FUTURE WORK

SUGGESTIONS

7.1 Conclusions

This work aimed at investigation, simulation and implementation of various Reed Solomon
encoding and decoding architectures as well as development of a code acquisition system for
Direct sequence spread spectrum communication systems. Simulation and programming was
done in Matlab while HDL implementation and synthesis were carried out in Xilinx Integrated

Simulation environment.

Reed Solomon decoding algorithms implemented in Matlab include Berlekamp-
Massey(BM) algorithm, Extended Euclidean (eE) algorithm, Berlekamp-Welch(BW) modular
decoding approaches, Guruswami-Sudan(GS) list decoding algorithm, Inversion-less
Berlekamp Massey algorithm (iBM), Reformulated versions of iBM i.e. riBM and RiBM.
Algorithms are compared based upon their structure, operational complexity, and critical path

delay and error-correction capability.

Guruswami-Sudan decoding algorithm can correct errors beyond half the minimum
bound but involves high computational cost. We observed that BM algorithm which requires
division in each iteration and results in irregular architectures can be transformed to an
inversionless form (iBM). However, iBM algorithm’s critical path delay is dependent upon
the error-correction capability of the code which is highly undesirable. Reformulated versions
of iBM i.e. riBM and RiBM have a very regular and systolic architecture having critical path
delay lowest among all the current decoding approaches. iBM and its reformulated forms were
implemented in Verilog HDL and their simulation was carried out using Modelsim and Xilinx
ISE. A Reed Solomon Codec depends upon three parameters n (block length), k (message

length) and t (no. of correctable errors) only two of which are independent. These parameters
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may be required to change in any step during the receiver design. So, in order to add
flexibility for the system designer, a scalable and parameterizable code must be written.
Adding this flexibility in Verilog language directly is very tough if not impossible. Solution to
this problem is obtained by writing a Code generator in Matlab which is capable of generating

all the Verilog source files for the required set of parameters.

Second part of the work involves the implementation of a code acquisition system for
direct sequence spread spectrum (DSSS) systems. A parallel search acquisition strategy is
adopted and correlation is performed in frequency domain for computational efficiency. Built-
in efficient Xilinx cores for Fast-Fourier Transform and Complex Multiplier are used by this

design.

7.2  Future Work Suggestions

This thesis involved work on two very important components of a digital communication
receiver, that is, Synchronization and Channel Coding. The implemented schemes can be used
with other receiver modules to integrate into a functional receiver. For example, a DSSS
tracking system should accompany the Code acquisition system for fine synchronization.
Similarly, a concatenated channel coding scheme utilizing both Convolutional codes and Reed

Solomon codes can be implemented to get greater coding gains.

The critical path delay of Reed Solomon decoding architectures depends upon the
delay of the Galois Field (GF) multiplier. Use of an efficient and fast GF multiplier can

increase the speed of the implemented architectures substantially.

VLSI architectures for interpolation based Reed Solomon decoder architectures can be
derived and implemented for better error-correction capability. This work can also be
extended by utilizing soft-decision reliability information from the channel for better decoding

performance.
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