

SIMULATION AND IMPLEMENTATION OF A ROBUST

DIRECT SEQUENCE SPREAD SPECTRUM COMMUNICATION

SYSTEM

By

Sajid Saleem

Submitted to the Department of Electrical Engineering

in Partial Fulfillment of the requirements for the Degree of

Master of Science

in

Electrical Engineering

Thesis Advisor
Dr. Mohammad Bilal Malik

College of Electrical and Mechanical Engineering
National University of Sciences and Technology, Pakistan

2008

ii

In the name of Allah, the most Merciful and the most Beneficent

iii

ABSTRACT

Reed Solomon codes form an important class of linear cyclic block codes with

numerous applications in communications and data storage. This thesis involves investigation

and Hardware Description Language (HDL) implementation of Reed Solomon decoding

algorithms and code acquisition for Direct Sequence spread spectrum (DSSS) systems.

Conventional decoding algorithms which can correct errors up to half the minimum distance

include Berlekamp-Massey (BM) and extended Euclidean (eE) algorithms. These algorithms

are compared with respect to their hardware complexity, architecture regularity and decoding

delay. A series of algorithmic transformations result in a fully systolic architecture for BM

algorithm. This reformulated BM algorithm requires fewer hardware resources and reduced

critical path delay when compared with architectures for eE algorithms. A parameterized

Verilog code generator for Reed Solomon encoder and Berlekamp Massey architecture has

been written in Matlab. Alternate RS decoding procedures based upon polynomial

interpolation such as Guruswami-Sudan (GS) algorithm and Berlekamp-Welch (BW)

algorithm are implemented using Matlab. GS algorithm is a list decoding algorithm which can

provide error correction capabilities beyond half the minimum distance.

Second part of the thesis deals with synchronization issues in a DSSS with emphasis

on Code acquisition. A baseband DSSS transmitter using a PN spreading sequence equipped

with read only memory (ROM) based raised cosine filter is implemented. Correct de-

spreading and decoding of data is possible only if the receiver reference sequence and

received sequence are properly synchronized. Receiver coarse synchronization is done by

parallel search over the code offset space. Cross correlation of these sequences is performed in

the frequency domain by exploiting computational efficiency of the Fast Fourier Transform

algorithm.

iv

To my Parents and Teachers

v

ACKNOWLEDGEMENTS

All praise to Allah Almighty the most merciful, beneficent and the source of all knowledge;

Who granted the courage and knowledge to complete this research successfully.

I would like to express my sincere gratitude to my supervisor, Dr. Mohammad Bilal Malik,

for being the guiding force behind the research necessary for the completion of this thesis.

Without his guidance, encouragement, support, ideas, and scientific enlightenment this work

would not have been possible.

I would like to thank Dr. Khalid Munawar, Dr. Shahzad Amin Sheikh and Mr. Asim Ajaz for

serving as members on the committee and for their suggestions regarding this work. I would

also like to thank Mr. Muhammad Salman and Mr. Abdul Wahid for providing useful

suggestions and continuous support.

And finally I am thankful to my family and friends for their support, trust and patience during

this research work.

vi

TABLE OF CONTENTS

Table of Contents

ABSTRACT iii

ACKNOWLEDGEMENTS .. v

TABLE OF CONTENTS ... vi

LIST OF FIGURES ... ix

LIST OF TABLES ... xi

CHAPTER 1 Introduction ... 1

1.1 Background .. 1

1.2 Basic Communication System: .. 2

1.3 Motivation .. 5

1.4 Objectives of the Thesis ... 5

1.5 Overview of the Thesis .. 6

CHAPTER 2 Reed Solomon Codes and Berlekamp-Massey Decoding 7

2.1 BCH Codes .. 7

2.2 The BCH Bound: ... 8

2.3 Reed Solomon Codes ... 8

2.4 Systematic Encoding of Reed Solomon Codes: ... 10

2.5 Decoding BCH and RS Code General Outline: ... 10

2.6 Finding the Error Locator Polynomial ... 13

2.7 Berlekamp Massey Algorithm: .. 16

2.8 Non-Binary BCH and RS Decoding .. 21

2.9 Forney’s Algorithm .. 22

vii

2.10 Euclidean Algorithm for the Error Locator Polynomial 23

CHAPTER 3 Berlekamp-Welch Algorithm .. 25

3.1 Workload for Reed-Solomon Decoding... 25

3.2 Derivations of the Welch-Berlekamp Key Equation ... 26

3.3 Finding the Error Values .. 32

3.4 Rational Interpolation Problem .. 33

3.5 The Welch-Berlekamp Algorithm .. 33

CHAPTER 4 The Guruswami-Sudan Decoding Algorithm .. 38

4.1 An Overview of the GS(m) Algorithm .. 40

4.2 Monomial Orders and Generalized Degree .. 41

4.3 Zeros and Multiple Zeros ... 43

4.4 The Interpolation and Factorization Theorems .. 44

4.5 A Second Look at the Guruswami-Sudan Algorithm .. 45

4.6 Koetter’s Solution to the Interpolation Problem .. 46

4.7 The Roth-Ruckenstein Solution to the Factorization Problem 50

4.8 Roth-Ruckenstein Pseudo code for Finding y-roots of Q(x,y) 52

CHAPTER 5 Direct sequence spread spectrum systems and code acquisition 54

5.1 Pseudo-Noise Sequences .. 55

5.2 Properties of PN-sequences.. 56

5.3 Types of Spread Spectrum Systems ... 58

5.4 Direct Sequence Spread Spectrum (DSSS) .. 59

5.5 DSSS acquisition: .. 62

5.6 Correlation in Frequency Domain:... 64

5.7 Implementation Details: ... 64

CHAPTER 6 Simulation and Implementation of Reed Solmon Codec Architectures 67

viii

6.1 Arithmetic Operations in Galois Field ... 67

6.2 An overview of Reed Solomon Codes ... 69

6.3 Reed–Solomon Decoder Structure ... 72

6.4 Berlekamp-Massey (BM) Architectures .. 77

6.5 Reformulated Reed-Solomon Decoder Architectures .. 84

6.6 High-Speed Reed–Solomon Decoder Architectures .. 87

6.7 Comparison of Architectures: .. 92

6.8 Simulation and Synthesis of iBM,riBM and RiBM Architectures 93

CHAPTER 7 Conclusions and Future work suggestions .. 100

7.1 Conclusions .. 100

7.2 Future Work Suggestions ... 101

ix

LIST OF FIGURES

Figure 1-1: A general frame work for a DSSS digital communications 2

Figure 5-1: Autocorrelation and Time/frequency domain representation of PN-sequence 57

Figure 5-2: Spreading techniques.. 59

Figure 5-3: DSSS transmitter end .. 60

Figure 5-4: DSSS Spreading ... 60

Figure 5-5: DSSS Receiver end .. 61

Figure 5-6: Direct-Sequence de-spreading .. 61

Figure 5-7 Time/Frequency Search Space associated with coarse sync/ acquisition 62

Figure 5-8: Parallel search acquisition architecture for DSSS systems. 65

Figure 5-9 Fast Fourier Transform of the Received signal ... 65

Figure 5-10 Real and Imaginary Parts of the Complex Multiplier output 65

Figure 5-11: Cross-correlation of Received signal with Reference PN sequence 66

Figure 6-1: An alpha-gain block for GF(24) ... 68

Figure 6-2: Parallel-in parallel-out GF (24) Multiplier ... 69

Figure 6-3: Reed Solomon Systematic Encoder Architecture .. 70

Figure 6-4: Reed Solomon Decoder Block Diagram .. 73

Figure 6-5: Syndrome Computation (SC) Block .. 74

Figure 6-6: Chein Search (CS) Block ... 74

Figure 6-7: Evaluation of Error-evaluator at reciprocal of Error-location 75

Figure 6-8: Combined Chein-Search and Formal Derivative of Error-locator Polynomial 76

Figure 6-9: Combined Chein-Search and Error-evaluator Block ... 76

Figure 6-10: The iBM Architecture .. 80

x

Figure 6-11: The Discrepancy Computation Block ... 80

Figure 6-12: Control Block ... 81

Figure 6-13: The PE0 processor and ELU Block Diagram... 83

Figure 6-14: Processor Element 1 (PE1) .. 88

Figure 6-15: The reformulated Discrepancy Computation (rDC) Architecture 88

Figure 6-16: The Systolic riBM Architecture ... 89

Figure 6-17: The homogeneous Systolic RiBM architecture ... 90

Figure 6-18: Systematic RS Encoding simulation waveform ... 94

Figure 6-19: Syndrome Computation.. 95

Figure 6-20: Key Equation Solver Simulation for iBM Architecture 96

Figure 6-21: Key equation solver simulation for RiBM and riBM architecture 96

Figure 6-22: Error-correction .. 96

Figure 6-23: Area vs. Speed Comparison for (n,k) RS Code (n =15) for RiBM 97

Figure 6-24: Area vs. Speed Comparison for (n,k) RS Code (n =63) for RiBM 98

Figure 6-25: Increase in critical path delay with increasing code size 99

Figure 6-26: Area-Speed comparison of iBM, riBM and RiBM architectures 99

xi

LIST OF TABLES

Table 6-1: Addition and Multiplication Tables for GF(16) .. 69

Table 6-2: Comparison of Hardware complexity and Path Delay .. 93

Table 6-3: Area vs. Speed Comparison with increasing Error-correction capability (n=15) ... 97

Table 6-4: Area vs. Speed Comparison with increasing Error-correction capability (n=63) ... 98

1

CHAPTER 1

INTRODUCTION

1.1 Background

Modern communication systems are required to operate at high data rates with constrained

power and bandwidth. These conflicting requirements lead to complex modulation and pulse

shaping along with inevitable use of efficient error control coding and an increased level of signal

processing at the receiver. Synchronization requirements also become more stringent at high data

rates and, as a result, receivers become more complex.

This thesis investigates a special class of non-binary cyclic block codes recognized for

their superior multiple error correction capability called Reed-Solomon codes. Moreover, the

synchronization problem for Direct Sequence spread spectrum (DSSS) system is also considered

and a parallel search scheme for DSSS acquisition is developed and implemented using Verilog

Hardware description language (HDL).

Error control coding also called channel coding in the context of digital communication

has a history dating back to the middle of the twentieth century [1,10,16]. In recent years, the

field has been revolutionized by codes which are capable of approaching the theoretical limits of

performance, the channel capacity.

Error control can be classified into Error correction and Error detection [16]. Error

correction coding is the means whereby errors introduced into digital data as a result of

transmission through a communication channel can be corrected based upon received data. Error

detection coding is the means whereby errors can be detected based upon received information.

 Error control coding can provide the difference between an operating communication

system and a dysfunctional system. It has been a significant enabler in the telecommunication

revolution, the internet, digital recording, and space exploration. Error control coding is

ubiquitous in modern, information-based society. Every compact disc, CD-ROM, or DVD

2

employs codes to protect the data embedded in the plastic disk. Every hard disk drive employs

correction coding. Every phone call made over a digital cellular phone employs it. Every packet

transmitted over the internet has a protective coding “wrapper” used to determine if the packet

has been received correctly. Even everyday commerce takes advantage of error detection coding.

Every consumer good and every text employs ISBN (International Standard Book Number) and

UPC (Universal Product Code) respectively to uniquely identify and to ensure reliability in

scanning [1].

The principle of channel codes is to represent the information being transmitted as a

sequence of symbols and then add redundant symbols (parity check) in a structured manner. This

encoded information is transmitted over the channel and a noisy version is received. The

structural arrangement of the redundant received information is used by the channel decoder to

detect and possibly correct the errors induced during transmission [15].

Reed Solomon (RS) codes are among the most extensively used error-control codes, with

applications ranging from magnetic recording, through satellite and mobile communications to

deep space exploration [7].

1.2 Basic Communication System:

A digital communication system has functionality to perform physical actions on information. A

basic frame-work for a single communication link is shown in the Figure 1-1. This

communication link transforms the information from the source into a form suitable for

transmission over the designated channel. At the other end, reverse transformations are done to

recover the data and sent to a sink. The performance of all these blocks is governed by the

theorems from information theory.

There are various codes employed in a communication system. Let us take a brief

overview of every block and understand the context of each type of code especially error-

correction codes which is the focus of this thesis.

Source: Source represents data to be communicated which may represent any kind of

information. They can be viewed as streams of random numbers governed by some probability

distribution.

3

Source Encoder: Source encoder performs data compression by removing redundancy. Source

Figure 1-1: A general frame work for a DSSS digital communications

coding theorem puts entropy of the source as the theoretical minimum bound on the compression

capabilities of source encoder.

Channel Coder: Channel coder adds redundant information in a structured way to the stream of

input symbols that allows errors which are introduced by the channel to be corrected.

The redundancy in the source cannot be used as an alternative to channel coding because

source redundancy is unstructured and thus wasteful of power and bandwidth to transmit.

Because of the redundancy introduced by the channel coder, there must be more symbols

at the output of the coder than at the input. The rate R of a channel coder can be defined as

Where n is the number of output symbols produced for every k message symbols at its input.

The Modulator: Converts the symbol sequences from the channel encoders into signals suitable

for transmission over the channel.

Channel: Channel is the medium over which information is conveyed. Examples of channels

include telephone lines, fiber optic cable, internet cables, microwave radio channels, high

4

frequency channels, cell phone channels, etc. These are the channels in which information is

conveyed between two distinct places. Information may also be conveyed between two separate

times, for example, by writing information onto a computer disk and then retrieving it at a later

time. Hard disks, diskettes, CD-ROMS, DVDs, and solid state memory are other examples of

channels.

Channel Impairments: As signals travel through a channel they may be corrupted. For example,

a signal may have noise added to it; it may experience time delay or timing jitter, or suffer from

attenuation due to propagation distance and/or carrier offset; it may be multiply reflected by

objects in its path, resulting in constructive and/or destructive interference patterns; it may

experience inadvertent interference from other channels, or be deliberately jammed. It may be

filtered by channel response, resulting in interference among symbols. These sources of

corruption in many cases all occur simultaneously.

For purpose of analysis, channels are frequently characterized by mathematical models,

which (it is hoped) are sufficiently accurate to be representative of the attributes of the actual

channel, yet are also sufficiently abstracted to yield tractable mathematics.

Channels can have different information carrying capabilities. For example, a dedicated

fiber-optic cable is capable of carrying more information than a plain old telephone service

(POTS) pair of copper wires. Associated with each channel is a quantity known as the capacity C,

which indicates how much information it can carry reliably.

The reliable information a channel can carry is intimately related to the use of error

correction coding. The governing theorem from information theory is Shannon’s Channel Coding

Theorem [10], which states essentially, “Provided that the rate R of the transmission is less than

the capacity C, there exists a code such that the probability of error can be made arbitrarily

small.”

Channel encoding and modulation may be combined into Coded Modulation [1].

The Demodulator/Equalizer: Receives the signal from the channel and converts it into a

sequence of symbols. This typically involves many functions, such as filtering, demodulation,

5

carrier synchronization, symbol timing estimation, frame synchronization, and matched filtering,

followed by a detection step in which decisions about the transmitted symbols are made.

The Channel Decoder: Exploits the redundancy introduced by the channel encoder to correct

any errors that may have been introduced. As suggested by the figure, demodulation, equalization

and decoding may be combined e.g. in a turbo equalizer.

Source Decoder: Provides uncompressed received data.

The sink: Ultimate destination of the data.

Code and Frame Synchronization: The synchronization block influences almost every block.

The coherent demodulation of a digitally modulated signal requires that the receiver be

synchronous to the transmitter. Two sequences of events are said to be synchronous relative to

each other when the events in one sequence and the corresponding events in the other occur

simultaneously. The process of making a situation synchronous is called Synchronization. At the

receiver, the process of synchronizing the frequency and phase of the carrier is called carrier

recovery and synchronizing symbol boundaries is called symbol Alignment, symbol recovery or

symbol timing recovery. A coherent demodulator requires knowledge of carrier phase, carrier

frequency and symbol timing for successful operation. Similarly a channel decoder block must

know the boundaries of the block or frame to be decoded. This is called frame synchronization

[26].

1.3 Motivation

Reed Solomon (RS) codes and their decoding is a very rich and growing research area even after

48 years of their introduction by Irving S. Reed and Gustave Solomon. Their outstanding error

performance and diversity of application areas make them most attractive when compared with

other block codes. New methods and architectures are being sought which reduce the decoding

complexity, improve the error correction performance without reducing the code rate.

Concatenation of RS codes with convolutional codes has made it possible to reach within half dB

of the Shannon’s theoretical bound of channel capacity. Various reformulations of the decoding

algorithms which reduce the architecture complexity and provide more regular systolic

architectures have been derived. Recently introduced concept of soft-decision decoding for Reed

Solomon codes has also met with great success. These architectures originally thought of as

6

unpractical because of very high complexity have been made implemented by such architectural

innovations.

1.4 Objectives of the Thesis

This thesis involves a detailed investigation of the Reed Solomon codes, their encoding,

various decoding approaches, error performance capability for various decoding procedures

and their algebraic formulation.

High speed architectures for Berlekamp Massey algorithms and their efficient reformulations

have been investigated.

Major RS decoding algorithms such as Berlekamp-Massey (BM), Extended Euclidean eE)

algorithm and Berlekamp-Welch (BW) algorithm have been implemented and tested in

Matlab.

Verilog Hardware description Language (HDL) code generator for Matlab has been coded

which generates all the Verilog files with more than twenty different modules, ready to be

synthesized and simulated.

Theoretical understanding of Guruswami-Sudan (GS) decoding and implementation of all the

modules has been carried out in Matlab.

1.5 Overview of the Thesis

Thesis contents are organized into seven chapters. Chapter 2 provides the theoretical construction

of Reed Solomon codes, systematic encoding, syndrome evaluation and theorems related to

Berlekamp-Massey algorithm. Chapter 3 deals with derivation of second Key-equation and

associated decoding technique of Berlekamp Welch. Chapter 4 introduces list decoding and

interpolation based decoding algorithm introduced by Guruswami and Sudan. Koetter’s

interpolation and Roth-Ruckenstein’s factorization algorithm are important components of the GS

decoder and have been discussed thoroughly. Chapter 5 gives an overview of Spread Spectrum

communications, PN sequences, acquisition for Direct sequence spread spectrum systems.

Chapter 6 deals with HDL implementation details of Reed Solomon decoder and Chapter 7

concludes the thesis and provides future work recommendations. Selected references are provided

at the end.

7

CHAPTER 2

REED SOLOMON CODES AND BERLEKAMP-MASSEY

DECODING

The most commonly used error correcting codes are the BCH and Reed Solomon

Codes. The BCH code is named for Bose, Ray-Chaudhari, and Hocquenghem, who published

work in 1959 and 1960 which revealed a means of designing codes over with a

specified design distance. Decoding algorithms were then developed by Peterson and

others.[1,10]

The Reed-Solomon codes are named for their inventors, who published in 1960. It was

later realized that Reed Solomon (RS) codes and BCH codes are related and that their

decoding algorithms are quite similar. Decoding of these codes is an extremely rich area.

2.1 BCH Codes

BCH codes are cyclic codes and hence may be specified by a generator polynomial. A BCH

code over of length n capable of correcting at least errors is specified as follows:

1. Determine the smallest such that has a primitive th root of unity .

Select a non-negative integer b. Frequently,

3. Write down a list of consecutive powers of

and determine the minimal polynomial with respect to of each of these powers of

.

4. The generator polynomial is the least common multiple (LCM) of these minimal

polynomials.

5. The code is a cyclic code.

8

Because the code is constructed using minimal polynomials with respect to , the

generator has coefficients in , and the code is over

Definition 2-1

If in the construction procedure, the BCH code is said to be . If

, then the BCH code is said to be [1].

Two fields are involved in the construction of BCH codes. The “small field” is

where the generator polynomial has its coefficients and is the field where the elements of the

code words are. The “big field” is the field where the generator polynomial has its

roots. For encoding purposes, it is sufficient to work only with the small field. However,

decoding requires operations in the extension field.

2.2 The BCH Bound

The BCH bound is the proof that the constructive procedure described above produces codes

with at least the specified minimum distance.

Theorem 2-1

Let be a -ary cyclic code with generator polynomial Let) be the

smallest extension field of that contains a primitive root of unity and let be a

primitive root of unity in that field. Let be the minimal-degree polynomial in

 having consecutive roots of the form

 Eq. (2-1)

then the minimum distance of the code satisfies ; that is, the code is

capable of correcting at least errors.[1]

2.3 Reed Solomon Codes

There are actually two distinct constructions for Reed-Solomon codes. While these initially

appear to describe different codes, it can be shown using Galois Field Fourier transform

techniques that two are in fact equivalent. Most of the decoding operations are concerned with

the second construction.

9

2.3.1 Reed Solomon Construction 1

Definition 2-2

Let be a primitive element in and let . Let

 be a message vector and let

be its associated polynomial. Then the encoding is defined by the mapping c by

That is evaluates at all the non-zero elements of . The Reed

Solomon code of length and dimension over is the image under of

all polynomials in

The code is the image of the support set under of all polynomials in of

degree less than k.[1]

Following properties can be shown to be true for RS Codes.

The Reed Solomon code is a linear code

The minimum distance of an (n,k) Reed Solomon code is

Reed Solomon codes achieve the singleton bound and are thus maximum distance

separable codes.

This construction of RS Codes came first historically and Guruswami Sudan list decoding

algorithm is based on it [8].

2.3.2 Reed Solomon Construction 2

In constructing BCH codes, generator polynomials over (base field) are dealt with by

finding least common multiple of minimal polynomials which have all the conjugates of as

roots. The degree of resulting generator polynomial usually exceeds the number of roots

specified. However, in Reed Solomon codes, we can operate in the extension field [1].

10

A Reed-Solomon code is a -ary BCH code of length . In the

minimal polynomial for any element is . The generator polynomial for an RS-Code

is therefore

 Eq. (2-2)

where is a primitive element. There are no extra roots of included due to conjugacy in

the minimal polynomials, so the degree of is exactly equal to . Thus, , for an

RS code. The design distance is

2.4 Systematic Encoding of Reed Solomon Codes

Reed Solomon codes may be encoded just as any other cyclic code (provided that the

arithmetic is done in the right field). Given a message vector , where

each and its corresponding message polynomial,

 , the systematic encoding process is

 Eq. (2-3)

where denotes the operation of taking the remainder after division by .

Typically, the code is over , for some . The message symbol can then be

formed by taking bits of data, then interpreting these as the vector representation of the

 elements [16].

2.5 Decoding BCH and RS Code General Outline

There are many algorithms which have been developed for decoding BCH or RS codes. The

algebraic decoding of BCH or RS codes has the following steps:

1. Compute the syndromes.

2. Determination of an error locator polynomial, whose roots provide an indication of where

the errors are. There are several different ways of finding the locator polynomial. These

methods include Peterson’s algorithm for BCH codes, the Berlekamp-Massey algorithm

for BCH codes; the Peterson-Gorenstein-Zierler algorithm for RS codes, the Berlekamp-

Massey algorithm for RS codes, and the Euclidean Algorithm. In addition there are

techniques based upon Galois-filed Fourier transforms.

11

3. Finding the roots of the error locator polynomial. This is usually done using the Chien

search, which is an exhaustive search over all the elements in the field.

4. For RS codes or non-binary BCH codes, the error values must also be determined. This is

typically accomplished using Forney’s algorithm.

2.5.1 Computation of the Syndrome

Since consecutive powers of are roots of the generator polynomial,

 (0

It follows that a codeword with polynomial

 has

 (0

For a received polynomial

We have = = , j = 0,…., 2t-1

The values are called the Syndromes of the received data.Suppose that

 has errors in it which are at locations with corresponding values in these

locations Then

 =

Let

Then we can write ,

For binary codes, we have (i.e. if there is a non-zero error , it must be 1). For a

moment, we restrict our attention to binary (BCH) codes. Then we have

 Eq. (2-4)

If we know , then we know the location of the error. For example, suppose we know

that . This means, by definition of that that is, the error is in the received

12

digit . We thus call the the error locators. The next stage in the decoding problem is to

determine the error locators , given the syndrome [1].

2.5.2 The Error Locator Polynomial

From Eq (2-4), we obtain the following equations:

 = Eq. (2-5)

 =

 =

The equations are said to be power-sum symmetric functions. This gives us

equations in the unknown error locators. In principle, this set of nonlinear equations

could be solved by an exhaustive search, but this would be computationally unattractive [10].

Rather than attempting to solve these non-linear equations directly, a new polynomial

is introduced, the error-locator polynomial, which casts the problem in a different, and more

tractable, setting. The error locator polynomial is defined as

 Eq. (2-6)

where By this definition, if , then that is, the roots of the error

locator polynomial are at the reciprocals (in the Galois field arithmetic) of the error locators

[1].

2.5.3 Chein Search

If we have the error-locator polynomial, the next step is to find the roots of the error locator

polynomial. The field of interest is . Being a finite field, we can examine every

element of the field to determine if it is a root [13].Suppose for example, that v = 3 and the

error locator polynomial is

We evaluate at each non-zero element in the field in succession:

. This gives us the following

13

A set of registers are loaded initially with the coefficients of the error locator

polynomial, . The initial output is the term

If A = 1, then an error has been located (since then . At the next stage, each

register is multiplied by ,j=1,2,..,v, so the register contents are

. The output is the sum

The registers are multiplied again by successive powers of , resulting in evaluation

at . This procedure continues until has been evaluated at all non-zero elements of the

field.

If the roots are distinct and all lie in the appropriate field, then we use these to

determine the error locations. If they are not distinct or lie in the wrong field, then the received

word is not within distance of any codeword. (This condition can be observed if the error

locator polynomial of degree does not have roots in the field that the operations take in;

the remaining roots are either repeated or exist in an extension of the field). The

corresponding error pattern is said to be an uncorrectable error pattern. An uncorrectable error

pattern results in a Decoder Failure [11].

2.6 Finding the Error Locator Polynomial

Let us return to the question of finding the error locator polynomial using the syndromes. Let

us examine the structure of the error locator polynomial by expanding it for the case

14

So that

In general, for an error locator of degree we find that

 Eq. (2-7)

That is, the coefficient of the error locator polynomial is the sum of the product of all

combinations of the error locator taken at a time. Equations of the form (above) are referred

to as the of the error locators (so called because if

the error locators are permuted, the same values are computed [1,10].

The power sum symmetric functions of the Eq(2-7) provides a non-linear relationship

between the syndromes and the error locators. The elementary symmetric functions provide a

non-linear relationship between the coefficients of the error locator polynomial and the error

locators. The Key observation is that there is a linear relationship between the syndromes and

the coefficients of the error locator polynomial. This relationship is provided by the Newton

Identities, which apply over all fields.

15

Theorem 2-2

The syndromes and the coefficients of the error locator polynomial are related by

Eq. (2-8)

That is,

Eq. (2-9)

For , there is linear feedback shift register relationship between the syndromes

and the coefficients of the error locator polynomial.

 Eq. (2-10)

This equation can be expressed in a matrix form

The matrix, which we denote , is a Toeplitz matrix, constant on the diagonals

[1,10,6]. The number of errors is not known in advance, so it must be determined. The

Peterson-Gorenstein-Zierler decoder [1] operates as follows.

16

Set

Form and compute the determinant to determine if invertible. If it is not

invertible, set and repeat this step.

If is invertible, solve the coefficients

2.6.1 Simplifications for Binary Codes and Peterson’s Algorithm

For binary codes, Newton’s identities are subject to further simplifications if is
even and if is odd. Furthermore, we have . We can thus write Newton’s
Identities as,

which can be expressed in the matrix form as

Eq. (2-11)

or If there is in fact t errors, the matrix is invertible , as we can determine by

computing the determinant of the matrix. If it is not invertible, remove two rows and columns

and then try again. Once is found, we find its roots. This matrix based approach for solving

for the error-locator polynomial is called Peterson’s algorithm for decoding binary BCH codes

[1].

For large number of errors, Peterson’s algorithm is quite complex. Computing the

sequence of determinants to find the number of errors is costly. So is solving the system of

equations, once the number of errors is determined. We therefore look for more efficient

techniques.

2.7 Berlekamp Massey Algorithm

While Peterson’s method involves straightforward linear algebra, it is computationally

complex in general. Starting with matrix A in Eq (2-11) it is examined to see if it is singular.

17

This involves either attempting to solve the equations (e.g., by Gaussian Elimination or

equivalent), or computing the determinant to see if the solution can be found. If A is singular,

then the last two rows and columns are dropped to form a new A matrix. Then the attempted

solution must be re-computed starting over with the new A matrix.

The Berlekamp-Massey algorithm takes a different approach. Starting with a small

problem, it works up to increasingly longer problems until it obtains an overall solution.

However, at each stage, it is able to reuse information it has already learnt. Whereas, as the

computational complexity of the Peterson method is the computational complexity of

the Berlekamp-Massey algorithm is [12].

We have observed from the Newton’s Identity, Eq. (2-10), that ,

 Eq. (2-12)

This formula describes the output of a linear feedback shift register (LFSR), with

coefficients In order for this formula to work, we must find the coefficients

in such a way that the LFSR generates the known sequence of Syndromes

Furthermore, by the Maximum-likelihood principle; the number of errors determined must

be the smallest that is consistent with the observed syndromes. We therefore want to

determine the shortest such LFSR.

In the Berlekamp-Massey algorithm, we build the LFSR that produces the entire

sequence by successively modifying an existing LFSR, if necessary, to produce

increasingly longer sequences. We start with an LFSR that could produce We determine if

that LFSR could also produce the sequence ; if it can, then no modifications are

necessary. If the sequence cannot be produced using the current LFSR configuration, we

determine a new LFSR that can produce the longer sequence.

Proceeding inductively in this way, we start from an LFSR capable of producing a

sequence and modify it if necessary, so that it can also produce the

sequence . At each stage, the modifications to the LFSR are accomplished so that

the LFSR is the shortest possible. By this means after completion of the algorithm, an LFSR

has been found that is able to produce and its coefficients correspond to the

error locator polynomial of smallest degree [1].

18

Since we build up the LFSR using information from prior computations, we need a

notation to represent the used at different stages of the algorithm. Let denote the

length of the LFSR produced at stage k of the algorithm. Let

be the connection polynomial at stage k, indicating the connections for the LFSR capable of

producing the output sequence . That is,

. Eq. (2-13)

It is important to realize that some of the coefficients in may be zero, so that

may be different from the degree of In realizations which use polynomial

arithmetic, it is important to keep in mind what the length is as well as the degree.

At some intermediate step, suppose we have a connection polynomial , of

length that produces for some . We check if this connection

polynomial also produces . By computing the output,

If is equal to then there is no need to update the LFSR, so ,

and . Otherwise, there is some non-zero discrepancy associated with

 Eq. (2-14)

 In this case, we update the connection polynomial using the formula,

, Eq. (2-15)

where A is some element in the field, is an integer, and , is one of the prior

connection polynomials produced by our process associated with non-zero discrepancy .

Using this new connection polynomial, we compute the new discrepancy denoted by , as

Eq. (2-16)

Now, let . Then, by comparison with the definition of the discrepancy in

Eq. (2-14) the second summation gives

19

.

Thus, if we choose , then the summation in Eq. (2-16), gives

So the new connection polynomial produces the sequence with no discrepancy.

2.7.1 Characterization of LFSR Length in Massey’s Algorithm

The update in Eq. (2.15) is, in fact, the heart of Massey’s algorithm. If all we need is an

algorithm to find a connection polynomial, no further analysis is necessary. However, the

problem was to find the shortest LFSR, but have no indication yet that it is the shortest.

Following two theorems provide results about it [1].

Theorem 2-3

Suppose that an LFSR with connection polynomial of length produces the

sequence , but not the sequence then any connection polynomial

that produces the latter sequence must have a length satisfying

Since the shortest LFSR that produces the sequence must also produce

the first part of that sequence, we must have . Combining this with the result of the

theorem, we obtain,

) Eq. (2-17)

We observe that the shift register cannot become shorter as more outputs are produced.

We have seen how to update the LFSR to produce a longer sequence using

Eq. (2-15) and have also seen that there is a lower bound on the length of the LFSR. We now

show that this lower bound can be achieved with equality, thus providing the shortest LFSR

which produces the desired sequence.

20

Theorem 2-4

In the update procedure, if , then a new LFSR can be found whose length

satisfies

In the update step, we observe that the new length is the same as the old length if

 that is, if

In this case, the connection polynomial is updated but there is no change in length. The

shift register synthesis algorithm, known as Massey’s algorithm, is presented first in pseudo

code as Algorithm 2-1 where we use the notations.

to indicate the “Current” connection polynomial and

to indicate the “previous” connection polynomial. Also, N is the number of input symbols

N for many decoding problems.

Algorithm 2-1

Berlekamp-Massey Algorithm[1]

 (Previous discrepancy)

21

2.8 Non-Binary BCH and RS Decoding

For non-binary BCH or RS decoding, some additional work is necessary. Some extra care is

needed to find the error locators, and then the error values must be determined. As the

syndromes are related to the error-values as:

 =

 =

 =

Because of the coefficients these are not power-sum symmetric functions as was the case

for the binary codes. Nevertheless, in a similar manner, it is possible to make use of an error

locator polynomial [4,6].

22

Lemma 2-1

The syndromes and the coefficients of the error locator polynomial =

 are related by

 Eq. (2-18)

Because Eq (2-18) holds, the Berlekamp-Massey algorithm (in its non-binary

formulation), can be used to find the coefficients of the error locator polynomial, just as for

binary codes.

2.9 Forney’s Algorithm

Having formed the error locator polynomial and its roots, there is still one more step for the

non-binary BCH or RS codes: we have to find the error values. Let us return to the syndrome,

,

Knowing the error-locators (obtained from the roots of the error locator polynomial) it

is straightforward to setup and solve a set of linear equations:

 = Eq. (2-19)

However, there is a method which is computationally easier and in addition provides

us a key insight for another way of doing the decoding. It may be observed that the matrix in

Eq. (2-19) is essentially a Vandermonde matrix. There exist fast algorithms for solving

Vandermonde systems. One of these which apply specifically to this problem is known as

Forney’s Algorithm.

Let us define the syndrome polynomial as

 Eq. (2-20)

and the error-evaluator polynomial as

Eq. (2-21)

23

 This equation is called the Key Equation. [1,6,10]

Theorem 2-5

 (Forney’s Algorithm) The error values for a narrow-sense Reed-Solomon code are computed

by

Where

2.10 Euclidean Algorithm for the Error Locator Polynomial

We have seen that the Berlekamp-Massey algorithm can be used to construct the error locator

polynomial. An alternative algorithm called extended Euclidean algorithm can also be used

for the same purpose. This approach to decoding is often called the Sugiyama algorithm [1,4].

We return to the key equation:

Given only and , we desire to determine the error locator polynomial and

the error evaluator polynomial . From the statement of the problem it looks hopefully

unconstrained. However, we can re-write the Key equation above as

for some polynomial Also, the extended Euclidean algorithm returns, for a pair of

elements from a Euclidean domain, a pair of elements such that

where is the GCD of and . In our case, we run the extended Euclidean algorithm to obtain

a sequence of polynomials and satisfying

And the stopping criterion is when the polynomial has a degree less than

The steps to decode using the Euclidean algorithm are summarized as follows:

24

1. Compute the syndromes and the syndrome polynomial

2. Run the Euclidean algorithm with and , until .

Then and

3. Find the roots of and the error locator .

4. Solve for the error values using Forney’s formula.

In terms of computational efficiency, it appears that the Berlekamp-Massey algorithm

procedure may be slightly better than the Euclidean algorithm for binary codes, since the

Berlekamp-Massey deals with polynomials no longer than the error locator polynomial, while

the Euclidean algorithm may have intermediate polynomials of higher degree [6]. The

computational complexity for Euclidean algorithm is probably quiet smaller. Also, the error

evaluator polynomial is automatically obtained as useful by product of the Euclidean

algorithm method. However, there are inversion-less reformulations of Berlekamp Massey

algorithm which have considerably lower critical path delay and have comparable complexity

[2,3].

25

CHAPTER 3

BERLEKAMP-WELCH ALGORITHM

In this chapter, we discuss another decoding method for Reed Solomon codes. It is based upon

a new Key equation and is called Remainder Decoding [1].

3.1 Workload for Reed-Solomon Decoding

A primary motivation between the remainder decoder is that its implementation may have

lower decoder complexity. The decode complexity for a conventional decoding algorithm for

an ሺ݊, ݇ሻ code having redundancy ߩ ൌ ݊ െ ݇ is summarized by the following steps:

1. Compute the syndromes. ߩ Syndromes must be computed, each with a computational

cost of ܱሺ݊ሻ , for a total cost of ܱሺ݊ߩሻ . Furthermore, all the syndromes must be

computed, regardless of the number of errors.

2. Find the error locator polynomial and the error evaluator. This has a computation cost

of ܱሺߩଶሻ, (depending on the approach).

3. Find the roots of the error locator polynomial. This has a computation cost of ܱሺ݊ߩሻ

using the Chien Search.

4. Compute the error values, with a cost of ܱሺߩଶሻ.

Thus, if ߩ ൏ ݊/2, the most expensive steps are computing the syndrome and finding the

roots. In remainder decoding, decoding takes place by computing remainders instead of

syndromes; the remaining steps retain similar complexity. This results in potentially faster

decoding. Furthermore, it is possible to find the error locator polynomial using a highly-

parallelizable algorithm. The general outline for the new decoding algorithm is as follows

[20]:

1. Compute the remainder polynomial ݎሺݔሻ ൌ ܴሺݔሻ ݉݀݋൫݃ሺݔሻ൯, with complexity ܱሺ݊ሻ

(using very simple hardware).

2. Compute an error-locator polynomial W(x) and an associated polynomial ܰሺݔሻ . The

complexity is ܱሺߩଶሻ, Architectures exist for parallel processing.

3. Find the roots of the error locator polynomial, complexity ܱሺ݊ߩሻ.

26

4. Compute the error values, complexity ܱሺ݊ሻ.

3.2 Derivations of the Welch-Berlekamp Key Equation

Welch-Berlekamp (WB) Key equation can be derived using two separate methods. The first

derivation uses the definition of the remainder polynomial. The second definition shows that

the WB Key equation can be obtained from Conventional Reed-Solomon Key equation [1].

3.2.1 The Welch-Berlekamp Derivation of the Key Equation

The generator polynomial for an ሺ݊, ݇ሻ RS code can be written as

݃ሺݔሻ ൌ ෑ ሺݔ െ ߙ௜ሻ
௕ାௗିଶ

௜ୀ௕

which is a polynomial of degree ݀ െ 1, where ݀ ൌ ݀௠௜௡ ൌ ݐ2 ൅ 1 ൌ ݊ െ ݇ ൅ 1. We denote

the received polynomial as ܴሺݔሻ ൌ ܿሺݔሻ ൅ ݀ ሻ. We designate the firstݔሺܧ െ 1 symbols of

ܴሺݔሻ as check symbols, and the remaining k symbols as the Message symbols. This

designation applies naturally to systematic encoding of codewords, but we use it even in the

case that non-systematic coding is employed. Let ܮ௖ ൌ ሼ0,1, … , ݀ െ 2ሽ be the index of set of

the check locations with corresponding check locators ܮఈ೎ ൌ ሼߙ௞, 0 ൑ ݇ ൑ ݀ െ 2ሽ. Also ܮ௠ ൌ

ሼ݀ െ 1, ݀, … , ݊ െ 1ሽ denote the index set of the message locations, with corresponding

message locators ܮఈ೘ ൌ ሼߙ௞, ݀ െ 1 ൑ ݇ ൑ ݊ െ 1ሽ

We define the remainder polynomial as

ሻݔሺݎ ൌ ܴሺݔሻ ݉݀݋ሺ݃ሺݔሻሻ

and write ݎሺݔሻ in terms of its coefficients as ݎሺݔሻ ൌ ∑ ௜ݎ
ௗିଶ
௜ୀ଴ ௜ݔ

The degree of ݎሺݔሻ is ൑ ݀ െ 2 . This remainder can be computed using conventional LFSR

hardware that might be used for the encoding operation, with computational complexity

ܱሺ݊ሻ.

Lemma 3-1

ሻݔሺݎ ؠ ሻݔሺ݃ ݀݋݉ ሻݔሺܧ

And ݎሺן௞ሻ ൌ א ݇ ௞ሻ forןሺܧ ሼܾ, ܾ ൅ 1, … , ܾ ൅ ݀ െ 2ሽ. [1,21]

27

3.2.1.1 Single Error in a Message Location

To derive the WB key equation, we assume initially that a single error occurs. We need to

make a distinction between whether the error location ݁ is a message location or a check

location. Initially we assume that ݁ א ሻݔሺܧ ௠ with error value ܻ. We thus takeܮ ൌ ௘, orݔܻ

the (error position, error location) = (ן௘, ܻሻ ൌ ሺܺ, ܻሻ. The notation ܻ ൌ ܻሾܺሿ is also used to

indicate the error value at the error locator ܺ.

When ݁ א ሻ “folds” the polynomial backݔሺ݃ ݀݋݉ ௘ݔܻ ௠ , then modulo operationܮ

into the lower order terms, as pictured in Error! Reference source not found.. Evaluating

 ,ሻ at generator root locations we have by Lemma 3-1ݔሺݎ

௞ሻןሺݎ ൌ ௞ሻןሺܧ ൌ ܻሺן௞ሻ௘ ൌ ܻܺ௞, ݇ א ሼܾ, ܾ ൅ 1, … , ܾ ൅ ݀ െ 2ሽ Eq. (3-1)

where ܺ ൌ ן௘ is the error locator. It follows that

௞ሻןሺݎ െ ௞ିଵሻןሺݎܺ ൌ ܻܺ௞ െ ܻܺܺ௞ିଵ ൌ א ݇ ,0 ሼܾ ൅ 1, ܾ ൅ 2, … , ܾ ൅ ݀ െ 2ሽ

Define the polynomial,

ሻݔሺݑ ൌ ሻݔሺݎ െ ,ଵሻିןሺݎܺ

which has the degree less than ݀ െ 1. Then ݑሺݔሻ has roots at ן௕ାଵ, ,௕ାଶן … , ௕ାௗିଶ, so thatן

 ሻ is divisible by the polynomialݔሺݑ

ሻݔሺ݌ ൌ ෑ ൫ݔ െ ߙ௜൯
௕ାௗିଶ

௜ୀ௕ାଵ

ൌ ෍ ௜ݔ௜݌
ௗିଶ

௜ୀ଴

which has degree ݀ െ 2. Thus ݑሺݔሻ must be a scalar multiple of ݌ሺݔሻ,

ሻݔሺݑ ൌ ሻ, Eq. (3-2)ݔሺ݌ܽ

For some ܽ א ,ሻ we obtainݔሺ݌ ሻ andݔሺݑ ሻ. Equating coefficients betweenݍሺܨܩ

௜൫1ݎ െ ܺ ௜൯ିן ൌ ݅ .௜݌ܽ ൌ 0,1, … , ݀ െ 2

That is,

௜െן௜൫ݎ ܺ൯ ൌ ܽ ௜ן ݅ .௜݌ ൌ 0,1, … , ݀ െ 2 Eq. (3-3)

28

We define the error locator polynomial as ௠ܹሺݔሻ ൌ ݔ െ ܺ ൌ ݔ െ ן௘. (This definition

is different from the error locator we defined for the conventional decoding algorithm, since

the roots of ௠ܹሺݔሻ are the message locators, not the reciprocals of message locators.) Using

௠ܹሺݔሻ, we see from Eq (3-3) that

௜ݎ ௠ܹ൫ן௜൯ ൌ ܽ ௜ן ݅ .௜݌ ൌ 0,1, … , ݀ െ 2 Eq. (3-4)

Since the error is in the message location, ݁ א ,௠ܮ ௠ܹ൫ן௜൯ is not zero for ݅ ൌ

0,1, … , ݀ െ 2. We can solve for ݎ௜ as

௜ݎ ൌ ܽ ௜ן ௜݌
௠ܹሺן௜ሻ൘ Eq. (3-5)

We can now eliminate the coefficient ܽ from Eq (3-5) The error value ܻ can be

computed using Eq. (3-1) choosing ݇ ൌ ܾ:

ܻ ൌ ܻሾܺሿ ൌ ܺି௕ݎሺן௕ሻ ൌ ܺି௕ ෍ ௜ݎ

ௗିଶ

௜ୀ଴

௜௕ൌן ܺି௕ ෍
ܽ ௜ן ௜݌

௠ܹሺן௜ሻ

ௗିଶ

௜ୀ଴

௜௕ൌן ܽܺି௕ ෍
௜ሺ௕ାଵሻן ௜݌

ሺן௜െ ܺሻ

ௗିଶ

௜ୀ଴

Define

݂ሺݔሻ ൌ ௕ିݔ ෍
௜ሺ௕ାଵሻן ௜݌

ሺן௜െ ሻݔ

ௗିଶ

௜ୀ଴

א ݔ , ఈ೘ܮ

which can be pre-computed for all the values of א ݔ ఈ೘. Thenܮ

ܻ ൌ ݂ܽሺܺሻ

or ܽ ൌ ܻ/݂ሺܺሻ. We thus write Eq (3-4) as

௜ݎ ൌ ௒ן೔௣೔
௙ሺ௑ሻௐ೘൫ן೔൯

 Eq. (3-6)

3.2.1.2 Multiple errors in the Message Locations

Now assume that there are ݒ ൒ 1errors, with error locators, ௜ܺ א ఈ೘ܮ and corresponding

error values ௜ܻ ൌ ܻሾ ௜ܺሿ ݂ݎ݋ ݅ ൌ 1,2, … , .ݒ Corresponding to each error there is a “mode”

29

yielding a relationship ሺן௞ሻ ൌ ௜ܻ ௜ܺ
௞ , each of which has a solution of the form Eq. (3-6).

Thus by linearity we can write

௞ݎ ൌ ௞ሿןሾݎ ൌ ௞݌ ௞ן ∑ ௒೔
௙ሺ௑೔ሻሺןೖି ௑೔ሻ

௩
௜ୀଵ , ݇ ൌ 0,1, . . , ݀ െ 2 Eq. (3-7)

Now define the function,

ሻݔሺܨ ൌ ∑ ௒೔
௙ሺ௑೔ሻሺ௫ି ௑೔ሻ

௩
௜ୀଵ Eq. (3-8)

having poles at the error locations. This function can be written as

ሻݔሺܨ ൌ ෍ ௜ܻ

݂ሺ ௜ܺሻሺݔ െ ௜ܺሻ

௩

௜ୀଵ

ൌ
ܰ௠ሺݔሻ

௠ܹሺݔሻ

where ௠ܹሺݔሻ ൌ ∏ ሺݔ െ ௜ܺሻ௩
௜ୀଵ is the error locator polynomial for the errors among the

symbol locations and where ܰ௠ሺݔሻ is the numerator obtained by adding together the terms in

.ሻݔሺܨ It is clear that deg ሺܰ௠ሺݔሻሻ ൏ deg ሺ ௠ܹሺݔሻሻ . Note that the representation in

Eq. (3-8) corresponds to a partial fraction expansion of ே೘ሺ௫ሻ
ௐ೘ሺ௫ሻ

. Using this notation,

Eq. (3-7) can be written as

௞ݎ ൌ ௞݌ ௞ן ௞ሻןሺܨ ൌ ௞݌ ௞ן ܰ௠ሺן௞ሻ
௠ܹሺן௞ሻ

or ܰ௠ሺן௞ሻ ൌ ௥ೖ
௣ೖןೖ ௠ܹሺן௞ሻ, א ݇ ௖ܮ ൌ ሼ0,1, . . , ݀ െ 2ሽ Eq. (3-9)

 ܰ௠ሺݔሻ and ௠ܹሺݔሻ have the degree constraints deg ሺܰ௠ሺݔሻሻ ൏ deg ሺ ௠ܹሺݔሻሻ and

deg ሺ ௠ܹሺݔሻሻ ൑ ሺ݀ہ െ 1ሻ 2⁄ ۂ ൌ errors can be corrected, Eq (3-9) has ݐ since no more than ,ݐ

the form of the Key equation we seek [1,21].

3.2.1.3 Errors in Check Locations

For a single error occurring in a check location ݁ א ሻݔሺݎ ௖, thenܮ ൌ ሻ since there is noݔሺܧ

“folding” by modulo operation [20]. Then ݑሺݔሻ ൌ ሻݔሺݎ െ ଵିןሺݎܺ ,ሻ must be identically 0ݔ

so the coefficient a in Eq (3-2) is equal to zero. We can write

௞ݎ ൌ ሼ ܻ ݇ ൌ ݁
 ݁ݏ݅ݓݎ݄݁ݐ 0

30

 If there are errors in both check locations and message locations, let ܧ௠ ൌ

൛݅ଵ, ݅ଶ, … , ݅௩భൟ ؿ ௠ܮ denote the error locations among the message locations and let ܧ௖ ൌ

൛݅௩భାଵ, … , ݅௩ൟ ؿ ௖ܮ denote the error locations among the check locations. Let

,௜భן೘ୀሼןܧ ,௜మן … , ௜ೡభן ሽ and ןܧ೎ୀሼן௜ೡభశభ, … , ௜ೡሽ denote the corresponding error locators. Theן

(error location, error value) pairs for the errors in message locations are ሺ ௜ܺ, ௜ܻሻ, ݅ ൌ 1,2, … , .ଵݒ

The pairs for errors in check locations are ሺ ௜ܺ , ௜ܻሻ, ݅ ൌ ଵݒ ൅ 1, … , ,Then by linearity .ݒ

௞ݎ ൌ ௞݌ ௞ן ෍ ௜ܻ

݂ሺ ௜ܺሻሺן௞െ ௜ܺሻ

௩భ

௜ୀଵ

൅ ൜ ௝ܻ ௝ܺ ݎ݋ݐܽܿ݋݈ ݎ݋ݎݎ݁ ݂݅ ൌ ן௞ ݊݅݋ݐܽܿ݋݈ ݄݇ܿ݁ܿ ܽ ݊݅ ݏ݅
݁ݏ݅ݓݎ݄݁ݐ݋ 0

Eq. (3-10)

 Because of the extra terms added on in Eq. (3-10) , equation Eq (3-9) does not apply

when ݇ א ௖, so we haveܧ

ܰ௠ሺן௞ሻ ൌ ௥ೖ
௣ೖןೖ ௠ܹሺן௞ሻ, א ݇ ௖ Eq. (3-11)ܧ\௖ܮ

 To account for errors among the check symbols, let ௖ܹሺݔሻ ൌ ∏ ሺݔ െ ן௜ሻ௜ א ா೎ be the

error locator polynomial for errors in check locations. Let

ܰሺݔሻ ൌ ܰ௠ሺݔሻ ௖ܹሺݔሻ and ܹሺݔሻ ൌ ௠ܹሺݔሻ ௖ܹሺݔሻ.

Since ܰሺן௞ሻ ൌ ܹሺן௞ሻ ൌ 0 for ݇ א ௖, we can writeܧ

ܰሺן௞ሻ ൌ ௥ೖ
௣ೖןೖ ܹሺן௞ሻ, א ݇ ௖ܮ ൌ ሼ0,1, . . , ݀ െ 2ሽ Eq. (3-12)

That is, the equation is now satisfied for all values of ݇ ݅݊ ܮ௖ . Eq (3-12) is the Welch-

Berlekamp (WB) Key equation, to be solved subject to the conditions

deg൫ܰሺݔሻ൯ ൏ deg ሺܹሺݔሻሻ deg൫ܹሺݔሻ൯ ൏ ሺd െ 1ሻ 2⁄

 The polynomial ܹሺݔሻ is the error locator polynomial, having roots at all the error

locators. We write Eq (3-12) as

ܰሺݔ௜ሻ ൌ ܹሺݔ௜ሻy୧ i ൌ 1,2, … , m ൌ 2t ൌ d െ 1 Eq. (3-13)

31

For points (ݔ௜, y୧ሻ ൌ ൫ן୧ିଵ, r୧ିଵ ൫p୧ିଵ ⁄୧ିଵ൯ן ൯, i ൌ 1,2, … , m ൌ 2t

 Hereafter we will refer to the ܰሺݔሻ and ܹሺݔሻ as ଵܰሺݔሻ and ଵܹሺݔሻ, referring to the

first (WB) derivation.

3.2.2 Derivation from the Conventional Key Equation

A WB-type key equation may also be obtained starting from the conventional key equation

and syndromes [1]. Let us denote the syndromes as

௜ܵ ൌ R൫ןୠା୧൯ ൌ r൫ןୠା୧൯ ൌ ෍ r୨൫ןୠା୧൯୨
ୢିଶ

୨ୀ଴

 , i ൌ 0,1, … , d െ 2

 The conventional error locator polynomial Λሺݔሻ ൌ ∏ ሺ1 െ ௜ܺݔሻ௩
௜ୀଵ ൌ Λ଴ ൅ Λଵx ൅

ڮ ൅ Λ୴x୴ where Λ଴ ൌ 1; the Welch-Berlekamp error locator polynomial is Wሺݔሻ ൌ

 ∏ ሺݔ െ ௜ܺሻ௩
௜ୀଵ ൌ W଴ ൅ Wଵx ൅ ڮ ൅ x୴ . These are related by Λ୧ ൌ W୴ି୧. The conventional

key equation can be written as

 ෍Λ୧

௩

௜ୀ଴

S୩ି୧ ൌ 0 ; ݇ ൌ ,ݒ ݒ ൅ 1, … , ݀ െ 2.

Writing this in terms of coefficients of W we have

 ෍ W୧

௩

௜ୀ଴

S୩ା୧ ൌ 0 ; ݇ ൌ 0,1, … , ݀ െ 2 െ .ݒ

or ∑ W୧
௩
௜ୀ଴ ∑ ௝ݎ

ௗିଶ
௝ୀ଴ ௝ሺ௕ା௞ା௜ሻߙ ൌ 0

Rearranging,

∑ ௝ݎ
ௗିଶ
௝ୀ଴ ൫∑ W୧α୨୧௩

௜ୀ଴ ൯ߙ௝ሺ௞ା௕ሻ ൌ 0 , k ൌ 0,1, … , d െ 2 െ v. Eq. (3-14)

Letting

௝݂ ൌ ௝௕, Eq. (3-15)ߙ௝ܹ൫α୨൯ݎ

32

Eq (3-14) can be written as

෍ ௝݂ߙ௝௞ ൌ 0, ݇ ൌ 0,1, … , ݀ െ 2 െ .ݒ
ௗିଶ

௝ୀ଴

which corresponds to the Vandermonde set of equations

ۏ
ێ
ێ
ێ
ۍ 1 1

1
1

ߙ
ଶߙ

ڮ
1 1

ௗିଷߙ

ଶሺௗିଷሻߙ
ௗିଶߙ

ଶሺௗିଶሻߙ

ڭ ڰ ڭ
1 ௗିଶି௩ߙ ڮ ሺௗିଶି௩ሻሺௗିଷሻߙ ےሺௗିଶି௩ሻሺௗିଶሻߙ

ۑ
ۑ
ۑ
ې

with ሺ݀ െ 1 െ ሻݒ ൈ ሺ݀ െ 1ሻ matrix ܸ. The bridge to the WB key equation is provided by the

following lemma.

Lemma 3-2[1]

Let ܸ a ݉ ൈ ݎ matrix ݎ ൐ ݉ having Vandermonde structure

൦

1
ଵݑ

1
ଶݑ

ڮ 1
௥ݑ

ڭ ڰ ڭ
ଵݑ

௠ିଵ ଶݑ
௠ିଵ ڮ ௥ݑ

௠ିଵ

൪

with the ሼݑ௜ሽ all distinct. For any vector z in the nullspace of V (satisfying ܸݖ ൌ 0), there

exists a unique polynomial ܰሺݔሻ of degree less than ݎ െ ݉ such that

௜ݖ ൌ Nሺ୳౟ሻ
F′ሺ୳౟ሻ

 , i ൌ 1,2, … , r,

where ܨሺݔሻ ൌ ∏ ሺݔ െ ௜ሻ௥ݑ
௜ୀଵ .

 Hereafter we will refer ܰሺݔሻ and ܹሺݔሻ as ଶܰሺݔሻ and ଶܹሺݔሻ, for the DB (Dabiri- Black)

method derivation.

3.3 Finding the Error Values

We begin with the key equation in the WB-form Eq (3-12). Assuming that the error locator

W(x) has been found it can be shown [1] that for WB Key equation error values ௜ܻ

corresponding to an error locator ௜ܺ can be computed as

33

ܻൣ ௝ܺ൧ ൌ ௞ݎ െ ௞݌ ௝ܺ
ଵܰ′ሺ ௝ܺሻ
ଵܹ′ሺ ௝ܺሻ

 For the DB form of WB equation, error values can be computed as follows

ܻሾܺ௞ሿ ൌ െ ଶܰሺן௞ሻ ௕ሺௗି௞ିଵሻן

ଶܹ
′ሺן௞ሻ݃ሺן௕ା௞ሻ

ൌ െ ଶܰሺܺ௞ሻܺ௞
ି௕ ௕ሺௗିଵሻן

ଶܹ
′ሺܺ௞ሻ݃ሺܺ௞ ௕ሻן

 ሺ݉݁ݏ݊݋݅ݐܽܿ݋݈ ݁݃ܽݏݏሻ

௞ܻሾܺ௞ሿ ൌ ௞ݎ െ ଶܰ′ሺן௞ሻ ௕ሺௗି௞ିଶሻן

ଶܹ
′ሺן௞ሻ݃′ሺן௕ା௞ሻ

ൌ ௞ݎ െ ଶܰ′ሺܺ௞ሻܺ௞
ି௕ ௕ሺௗିଶሻן

ଶܹ
′ሺܺ௞ሻ݃′ሺܺ௞ ௕ሻן

 ሺcheck locationsሻ

3.4 Rational Interpolation Problem

The key equation problem can be expressed as follows:

 Given a set of points ሺݔ௜, ,௜ሻݕ ݅ ൌ 1,2, . . , ݉ over some field ࣠, the problem of finding

polynomial N(x) and W(x) with d݁݃ሺܰሺݔሻሻ ൏ ݀݁݃ሺܹሺݔሻሻ satisfying

ܰሺݔ௜ሻ ൌ ܹሺݔ௜ሻݕ௜, ݅ ൌ 1,2, … , ݉. Eq. (3-16)

is called a rational interpolation problem[1,20]. Since in the case that ܹሺݔ௜ሻ ് 0, we have

௜ݕ ൌ
ܰሺݔ௜ሻ
ܹሺݔ௜ሻ

 A solution to the rational interpolation problem provides a pair ሾܰሺݔሻ, ܹሺݔሻሿ ,

satisfying Eq (3-16)

3.5 The Welch-Berlekamp Algorithm

Rational interpolation problem is structurally similar to the Berlekamp-Massey algorithm, in

that it provides a sequence of solution pairs which are updated in the event that there is a

discrepancy when a new point is considered. We are interested in a solution satisfying

d݁݃ሺܰሺݔሻሻ ൏ ݀݁݃ሺܹሺݔሻሻ and ݀݁݃൫ܹሺݔሻ൯ ൑ ݉/2.

Definition 3-1[1]

The rank of a solution ሾܰሺݔሻ, ܹሺݔሻሿ, is defined as

,ሻݔሾܰሺ݇݊ܽݎ ܹሺݔሻሿ ൌ maxሼ2 deg൫Wሺxሻ൯ , 1 ൅ 2deg ሺNሺxሻሻሽ

34

 We construct a solution to the rational interpolation problem of rank ൑ m and show that

it is unique. By the definition of the rank, the d݁݃ሺܰሺݔሻሻ ൏ ݀݁݃ሺܹሺݔሻሻ .

 The polynomial expression for the interpolation problem is useful . Let ܲሺݔሻ be an

interpolating polynomial such that ܲሺݔ௜ሻ ൌ , ௜ݕ i ൌ 1,2, … , m. For example, ܲሺݔሻ could be the

Lagrange interpolating polynomial ,

ܲሺݔሻ ൌ ෍ ௜ݕ
∏ ሺݔ െ ௞ሻ௠ݔ

௞ୀଵ,௞ஷ௜
∏ ሺݔ௜ െ ௞ሻ௠ݔ

௞ୀଵ,௞ஷ௜

௠

௜ୀଵ

 By the evaluation Homomorphism the equation ܰሺݔ௜ሻ ൌ ܹሺݔ௜ሻݕ௜ is equivalent to

ܰሺݔሻ ൌ ܹሺݔሻܲሺݔሻ ሺmod ሺ x െ x୧ ሻሻ

 Since it is true for each point ሺx୧, y୧ሻ, and since the polynomials ሺ x െ x୧ ሻ, i ൌ 1,2, … , m

are pairwise relatively prime, by the ring Isomorphism we can write using Chinese remainder

theorem,

ܰሺݔሻ ൌ ܹሺݔሻܲሺݔሻ ሺmod ∏ሺ x ሻሻ, Eq. (3-17)

where ∏ሺ x ሻ = ∏ ሺ x െ x୧ሻ௠
௜ୀଵ

Definition 3-2

Suppose ሾܰሺݔሻ, ܹሺݔሻሿ, is a solution to the rational interpolation problem, and that ܰሺݔሻ and

ܹሺݔሻ share a common factor ݂ሺݔሻ , such that ܰሺݔሻ ൌ ݊ሺݔሻ݂ሺݔሻ ܽ݊݀ ܹሺݔሻ ൌ ሻ. Ifݔሻ݂ሺݔሺݓ

 ሾ݊ሺݔሻ, ,ሻݔሻሿ, is also a solution to this problem, the solution ሾܰሺݔሺݓ ܹሺݔሻሿ, is said to be

Reducible. A solution which has no common factors of ݀݁݃݁݁ݎ ൐ 0 which may be factored

out leaving a solution is said to be Irreducible [1].

Lemma 3-3

There exists at least one irreducible solution to eq. Eq. (3-17) with rank ൑ m.

 The Welch-Berlekamp algorithm finds a rational interpolation of minimal rank by

building successive interpolants for increasingly larger set of points. First a minimal rank

rational interpolant is found for the single point ሺxଵ, yଵሻ. This is used to construct a minimal

polynomial for the pair of points { ሺxଵ, yଵሻ, ሺxଶ, yଶሻ }, and so on, until a minimal rank

interpolant for the entire set of points {ሺxଵ, yଵሻ, ሺxଶ, yଶሻ, … , ሺx୫, y୫ሻ} is found [1].

35

Definition 3-3

We say that ሾܰሺݔሻ, ܹሺݔሻሿ satisfy the interpolation problem if

ܰሺݔ௜ሻ ൌ ܹሺݔ௜ሻݕ௜ ݅ ൌ 1,2, … , ݇

 The Welch Berlekamp finds a sequence of solutions ሾܰሾ௞ሿ, ܹሾ௞ሿሿ of minimum rank

satisfying the interpolation (k) problem, for ݇ ൌ 1,2, … , ݉. We can express the interpolation

(k) problem as

ܰሺݔሻ ൌ ܹሺݔሻ ௞ܲሺݔሻ ሺ݉݀݋ Π୩ሺݔሻ ሻ

where Π୩ሺݔሻ ൌ ∏ ሺݔ െ ௜ሻ௞ݔ
௜ୀଵ and ௞ܲሺݔሻ is polynomial that interpolates (at least) the first ݇

points ܲሺݔ௜ሻ ൌ ,௜ݕ ݅ ൌ 1,2, … , ݇.

 As with Berlekamp-Massey algorithm, the Welch-Berlekamp algorithm propagates two

solutions, using one of them in the update of the other. For the Welch-Berlekamp algorithm,

the two sets of solution maintain the property that they are complements of each other.

Definition 3-4

Let ሾܰሺݔሻ, ܹሺݔሻሿ and ሾܯሺݔሻ, ܸሺݔሻሿ be two solutions of interpolation (k) such that

,ሻݔሾܰሺ ݇݊ܽݎ ܹሺݔሻሿ ൅ ,ሻݔሺܯሾ݇݊ܽݎ ܸሺݔሻሿ ൌ 2݇ ൅ 1

And

ܰሺݔሻܸሺݔሻ െ ሻݔሻܸሺݔሺܯ ൌ ݂Πሺݔሻ

For some scalar f. Then ሾܰሺݔሻ, ܹሺݔሻሿ and ሾܯሺݔሻ, ܸሺݔሻሿ are Complementary. The key

results to construct the algorithm are presented in following Lemmas [1].

Lemma 3-4

Let ሾܰሺݔሻ, ܹሺݔሻሿ be an irreducible solution to the interpolation (k) problem with ݇݊ܽݎ ൑ ݇.

Then there exists at least one solution to the interpolation (k) problem which is a complement

of ሾܯሺݔሻ, ܸሺݔሻሿ ሾ1ሿ.

36

Lemma 3-5

If ሾܰሺݔሻ, ܹሺݔሻሿ is an irreducible solution to the interpolation (k) problem and ሾܯሺݔሻ, ܸሺݔሻሿ is

another solution such that ݇݊ܽݎሾܰሺݔሻ, ܹሺݔሻሿ ൅ ,ሻݔሺܯሾ݇݊ܽݎ ܸሺݔሻሿ ൑ 2݇, then

ሾܯሺݔሻ, Vሺݔሻሿ can be reduced to ሾܰሺݔሻ, ܹሺݔሻሿ.

This Lemma implies that there exists only one irreducible solution to the interpolation

(k) problem with ݇݊ܽݎ ൑ ݇, and that this solution must have at least one complement ሾ1,20ሿ.

Lemma 3-6

If ሾࡺሺ࢞ሻ, ,ሺ࢞ሻࡹሺ࢞ሻሿ is an irreducible solution to the interpolation (k) problem and ሾࢃ ሺ࢞ሻሿ isࢂ

one of its complements, then for any ࢇ, א ࢈ ऐ , with ࢔ ് ૙, ሾࡹ࢈ሺ࢞ሻ െ ,ሺ࢞ሻࡺࢇ ሺ࢞ሻࢂ࢈ െ

 .ሺ࢞ሻሿ is also one of its complements [1]ࢃࢇ

We are now ready to state and prove the theorem describing the Welch-Berlekamp algorithm.

Theorem 3-1

Suppose that ൣܰሾ௞ሿ, ܹሾ௞ሿ൧ and ൣܯሾ௞ሿ, ܸሾ௞ሿ൧ are two complementary solutions of the

interpolation (k) problem. Suppose also that ൣܰሾ௞ሿ, ܹሾ௞ሿ൧ is the solution of lower rank. Let

ܾ௞ ൌ ܰሾ௞ሿሺݔ௞ାଵሻ െ ݕ௞ାଵܹሾ௞ሿሺݔ௞ାଵሻ

ܽ௞ ൌ ௞ାଵሻݔሾ௞ሿሺܯ െ ݕ௞ାଵܸሾ௞ሿሺݔ௞ାଵሻ

(These are analogous to the discrepancies of the Berlekamp-Massey algorithm). If ܾ௞ ൌ 0,

(the discrepancy is zero, so no update is necessary) then

 ൣܰሾ௞ሿ, ܹሾ௞ሿ൧ and ൣሺݔ െ ,ሻݔሾ௞ሿሺܯ௞ାଵ ሻݔ ሺݔ െ ሻ൧ݔ௞ାଵ ሻܸሾ௞ሿሺݔ

Are two complementary solutions of the interpolation (k+1) problem, and ൣܰሾ௞ሿ, ܹሾ௞ሿ൧ is the

solution of the lower rank.

If ܾ௞ ് 0, (the discrepancy is not zero, so an update is required), then

ൣሺݔ െ ,ሻݔ௞ାଵ ሻܰሾ௞ሿሺݔ ሺݔ െ ሻݔሾ௞ሿሺܯሻ൧ and ሾܾ௞ݔ௞ାଵ ሻܹሾ௞ሿሺݔ െ ܽ௞ܰሾ௞ሿሺݔሻ, ܾ௞ܰሾ௞ሿሺݔሻ െ

 ܽ௞ܹሾ௞ሿሺݔሻሿ

37

are two complementary solutions. The solution with lower rank is the solution to the

interpolation (k+1) problem [1,20,21].

Based on this theorem, the Welch-Berlekamp algorithm is shown in the figure below.

Algorithm 3-1[1,20]

Welch Berlekamp Interpolation

,௜ݔሺ :ݐݑ݌݊ܫ ,௜ሻݕ ݅ ൌ 1, … , ݉

,ሻݔሾ௠ሿሺܰൣ :ݏ݊ݎݑݐܴ݁ ܹሾ௠ሿሺݔሻ൧ ݈ܾ݉݁݋ݎ݌ ݊݋݅ݐ݈ܽ݋݌ݎ݁ݐ݊݅ ݄݁ݐ ݃݊݅ݕ݂ݏ݅ݐܽݏ ݇݊ܽݎ ݈ܽ݉݅݊݅݉ ݂݋

ሻݔሾ଴ሿሺܰ :݁ݖ݈݅ܽ݅ݐ݅݊ܫ ൌ 0; ܸሾ଴ሿሺݔሻ ൌ 0; ܹሾ଴ሿሺݔሻ ൌ ሻݔሾ଴ሿሺܯ ;1 ൌ 1;

݅ ݎ݋݂ ൌ ݉ ݋ݐ 0 െ 1

 ܾ௜ ൌ ܰሾ௜ሿሺݔ௜ାଵሻ െ ሻݕܿ݊ܽ݌݁ݎܿݏ݅݀ ݁ݐݑ݌݉݋ܥ௜ାଵሻ ሺݔ௜ାଵܹሾ௜ሿሺݕ

 ݂݅ሺܾ௜ ൌൌ 0ሻ ሺ݄݁ݐ ݊݅ ݄݁݃݊ܽܿ ݋݊ ݄݊݁ݐ ሾܰ, ܹሿ ݊݋݅ݐݑ݈݋ݏሻ

 ܰሾ௜ାଵሿሺݔሻ ൌ ܰሾ௜ሿሺݔሻ; ܹሾ௜ାଵሿሺݔሻ ൌ ܹሾ௜ሿሺݔሻ;

ሻݔሾ௜ାଵሿሺܯ ൌ ሺݔ െ ; ሻݔሾ௜ሿሺܯ௜ାଵሻݔ ܸሾ௜ାଵሿሺݔሻ ൌ ሺݔ െ ሻݔ௜ାଵሻܸሾ௜ሿሺݔ

 ሻݕܿ݊ܽ݌݁ݎܿݏ݅݀ ݎ݋݂ ݐ݊ݑ݋ܿܿܽ ݋ݐ ݁ݐܽ݀݌ሺܷ ݁ݏ݈݁

 ܽ௜ ൌ ௜ାଵሻݔሾ௜ሿሺܯ െ ݕ௜ାଵܸሾ௜ሿሺݔ௜ାଵሻ ;

ሻݔሾ௜ାଵሿሺܯ ൌ ሺݔ െ ; ሻݔ௜ାଵሻܰሾ௜ሿሺݔ ܸሾ௜ାଵሿሺݔሻ ൌ ሺݔ െ ; ሻݔ௜ାଵሻܹሾ௜ሿሺݔ

 ܰሾ௜ାଵሿሺݔሻ ൌ ܾ௜ܯሾ௜ሿሺݔሻ െ ܽ௜ܰሾ௜ሿሺݔሻ; ܹሾ௜ାଵሿሺݔሻ ൌ ܾ௜ܸሾ௜ሿሺݔሻ െ ܽ௜ܹሾ௜ሿሺݔሻ ;

,ሻݔሾ௜ାଵሿሺܰൣ ݇݊ܽݎ ሺ݂ܫ ܹሾ௜ାଵሿሺݔሻ൧ ൐ ,ሻݔሾ௜ାଵሿሺܯሾ ݇݊ܽݎ ܸሾ௜ାଵሿሺݔሻሿሻ

 (swap for minimal rank)

,ሻݔሺൣܰሾ௜ାଵሿሺ ݌ܽݓݏ ܹሾ௜ାଵሿሺݔሻ൧, ሾܯሾ௜ାଵሿሺݔሻ, ܸሾ௜ାଵሿሺݔሻሿሻ

 ݁݊݀ (if)

 ݁݊݀ (else)

݁݊݀ ሺ݂ݎ݋ሻ

38

CHAPTER 4

THE GURUSWAMI-SUDAN DECODING

ALGORITHM

In 1997 Madhu Sudan [19], building on previous work of Welch-Berlekamp[20] and others,

discovered a polynomial-time algorithm for decoding certain low-rate Reed-Solomon codes

beyond the classical ݀/2 error-correcting bound. Two years later Guruswami and Sudan [22]

published a significantly improved version of Sudan’s algorithm, which was capable of

decoding virtually every RS code at least somewhat, and often significantly, beyond the ݀/2

limit. The main focus of these seminal papers was to establish the existence of polynomial-

time decoding algorithms, and not on devising practical implementations. However, several

later authors, notably Koetter [23,24] and Roth-Ruckenstein[25] , were able to find low-

complexity (no worse than ܱሺ݊ଶሻ) realizations for the key steps in the GS algorithm, thus

making GS a genuinely practical engineering alternative in storage and transmission systems

requiring RS codes [7,8].

An ሺ݊, ݇ሻ Reed-Solomon code over ܨ ൌ ሻ, as given by Reed Solomon in theirݍሺܨܩ

original paper is defined as follows. Let ሺߙଵ, . . . , ,௡ሻ be a fixed list of n distinct elements of Fߙ

called the support set of the code[1,10]. The encoding process is that of mapping a vector

ሺ ଴݂, ଵ݂, . . . , ௞݂ିଵሻ of k information symbols into an n-symbol codeword ሺݔଵ, ,ଶݔ . . . , ௡ሻݔ by

polynomial evaluation, i.e.,

ሺݔଵ, ,ଶݔ . . . , ௡ሻݔ ൌ ሺ݂ሺߙଵሻ, . . . , ݂ሺߙ௡ሻሻ, Eq. (4-1)

where

݂ሺݔሻ ൌ ݂0 ൅ ൅ ݔ1݂ ・ ・ ・ ൅ ௞݂ିଵݔ௞ିଵ. Eq. (4-2)

The corresponding Reed-Solomon code consists of all n-vectors of the form in Eq. (

4-1) where f(x) is a polynomial of degree < k. It is well-known that this code has minimum

Hamming distance d = n − k +1 and is therefore capable of correcting up to

଴ݐ ൌ ቔ௡ ି ௞
ଶ

ቕ Eq. (4-3)

39

errors. Conceptually, this may be accomplished as follows. The decoder searches the

Hamming sphere of radius ݐ଴ centered at the received word for codewords. If the sphere

contains a unique codeword, that is the decoder’s output. Otherwise, the decoder reports

failure. (This strategy is called bounded distance decoding, (BDD) and dates back to

Shannon’s proof of the noisy-channel coding theorem. The conventional RS decoding

algorithms, e.g., Berlekamp, Berlekamp-Massey, Continued Fractions, or Euclidean

Algorithm-based are all BDD algorithms.) The decoding sphere cannot contain more than one

codeword, since the minimum distance of the code is ൐ ଴. If we attempt to correct moreݐ2

than ݐ଴ errors by increasing the decoding radius, it is possible for the decoding sphere to

contain more than one codeword, in which case the decoder will fail. For this reason,

conventional wisdom asserts that the code is not capable of correcting more than ݐ଴ errors.

Nevertheless, if we examine the probability that the decoding sphere will contain multiple

codewords, rather than the possibility, we may reach a different conclusion [7].

The Guruswami Sudan Decoder is capable of correcting more than ݐ଴ errors[7,22]. It is

a polynomial-time algorithm for correcting (in a certain sense) up to ீݐௌ errors, where ீݐௌ is

the largest integer strictly less than ݊ െ ඥሺ݇ െ 1ሻ݊, i.e.,

ௌீݐ ൌ ݊ െ 1 െ ሺ݇ െہ 1ሻ݊ۂ. Eq. (4-4)

It is easy to show that ீݐௌ ൒ ௌீݐ ଴ , and oftenݐ is considerably greater than ݐ଴ .

Asymptotically, for RS codes of rate ܴ, the conventional decoding algorithms will correct a

fraction ߬଴ ൌ ሺ1 െ ܴሻ/2 of errors, while the GS algorithm can correct up to ߬ீௌ ൌ 1 െ √ܴ.

The GS decoder has an adjustable integer parameter ݉ ൒ 1 called the interpolation

multiplicity[1]. Associated with the interpolation multiplicity ݉ is positive integer ݐ ൌ

 ሺ݉ሻ decoder returns aܵܩ ௠ called the designed decoding radius. Given a received word, theݐ

list which includes all codewords with Hamming distance ݐ௠ or less from the received word,

and perhaps a few others. The exact formula for ݐ௠ is a bit complicated, however following

relation holds

଴ݐ ൑ ଵݐ ൑ ଶݐ ൑ , ڮ

and there exists an integer ݉଴ such that

௠బݐ ൌ ௠బାଵ ݐ ൌ ・ ・ ・ ൌ .ௌீݐ

40

4.1 An Overview of the GS(m) Algorithm

Suppose ܥ ൌ ሺ݂ሺߙଵሻ, . . . , ݂ሺߙ௡ሻሻ, is the transmitted codeword, where ݂ሺݔሻ is a polynomial of

degree ൏ ݇ , and that C is received as ܴ ൌ ሺߚଵ, . . . , .௡ሻߚ Let ݌ሺݔሻ be any polynomial of

degree ൏ ݇ which maps to an RS codeword with Hamming distance ൑ ,.௠ from ܴ, i.eݐ

| ሼ݅ ׷ ௜ሻߙሺ݌ ് | ௜ሽߚ ൑ .௠ݐ

The ܵܩሺ݉ሻ decoder “finds” ݌ሺݔሻ as follows [8].

1. The interpolation step

Given the received vector ܴ ൌ ሺߚଵ, . . . , ௡ሻ, the decoder constructs a two-variableߚ

polynomial ܳሺݔ, ሻݕ ൌ ∑ ܽ௜௝ݔ௜ݕ௝
௜,௝

with the property that Qሺx, yሻ has a zero of multiplicity m at each of the points ሺα୧, β୧ሻ,

and for which the ሺ1, k െ 1ሻ weighted degree of Qሺx, yሻ is as small as possible.

2. The factorization step

The decoder then finds all factors of ܳሺݔ, ݕ ሻ of the formݕ െ ሻ is aݔሺ݌ ሻ, whereݔሺ݌

polynomial of degree ݇ െ 1 or less. Let

ࣦ ൌ ሼ݌ଵሺݔሻ, . . . , ሻሽݔ௅ሺ݌

be the list of polynomials produced by this step. The polynomials (codewords)

pሺxሻ א L are of three possible types:

 Type 1. The transmitted, or causal, codeword.
 Type 2. Codewords with Hamming distance ≤ tm from R, which we call plausible

 codewords.
 Type 3. Codewords with distance ൐ ௠ݐ from ܴ , which we call implausible

codewords.

Theorem 4-1

If the ܵܩሺ݉ሻ decoding algorithm is used, all plausible codewords will be in ࣦ. In particular,

the transmitted codeword will be in ࣦ if the number of channel errors is ൑ ௠. The list mayݐ

also contain implausible codewords, but the total number of codewords in the list, plausible

and implausible, will satisfy ܮ ൑ ௠ is conservatively estimated byܮ ௠, whereܮ

௠ܮ ൏ ሺ݉ ൅
1
2ሻට

݊
݇ െ 1

Let ܮതሺݐሻ is the average number of codewords in a randomly chosen sphere of radius t,

and which gives a heuristic upper bound on the probability that the decoding sphere will

contain a non-causal codeword [1,8,22].

41

4.2 Monomial Orders and Generalized Degree

This section provides an introduction to the algebraic fundamentals of two-variable

polynomials. These fundamentals include weighted monomial orderings, generalized degree

functions, and certain related combinatorial results [1].

If ࣠ is a field, we denote by ܨሾݔ, with coefficients from ݕ and ݔ ሿ the ring of polynomials inݕ

࣠. A polynomial ܳሺݔ, ሻݕ א ,ݔሾܨ ,ሿ is, by definition, a finite sum of monomialsݕ

ܳሺݔ, ሻݕ ൌ ∑ ܽ௜௝ݔ௜ݕ௝
௜,௝ஹ଴ Eq. (4-5)

where only a finite number of the coefficients ܽ௜௝ are nonzero. The summation in

Eq. (4-5) is two-dimensional, but often it is desirable to have a one-dimensional

representation instead. To do this, we need to have a linear ordering of set of

monomials ࣧሾݔ, ሿݕ ൌ ሼݔ௜ݕ௝ ׷ ݅, ݆ ൒ 0ሽ

It can be observed that the set ࣧሾݔ, ሿ is isomorphic to the set Գଶ of pairs of nonnegativeݕ

integers under the bijection ݔ௜ݕ௝ ՞ ሺ݅, ݆ሻ. A monomial ordering is a relation “ ൏ ” on

ࣧሾݔ, :ሿ (equivalently, on Գଶ) with the following three propertiesݕ

1. If ܽ1 ൑ ܾ1 and ܽ2 ൑ ܾ2, then ሺܽ1, ܽ2ሻ ൑ ሺܾ1, ܾ2ሻ.

2. The relation “ ൏ ” is a total ordering, i.e., if ࢇ and ࢈ are distinct monomials, either

൏ ࢇ ൏ ࢈ or ࢈ .ࢇ

3. If a ≤ b and c א Գଶ, then a + c ≤ b + c.

There are many possible monomial orderings, but the most important ones are the

weighted degree monomial orders [1]. A WD monomial order is characterized by a pair

࢝ ൌ ሺݑ, ሻ of nonnegative integers, not both zero. For a fixed w, the w-degree of theݒ

monomial ݔ௜ݕ௝ is defined as

௝ݕ௜ݔ࢝݃݁݀ ൌ ൅ ݅ݑ .݆ݒ

If we order ࣧሾݔ, ,ݔሿ by w-degree, i.e., declare that ߶ሺݕ ሻݕ ൏ ߶Ԣሺݔ, ,ݔሻ if ݀݁݃࢝ ߶ሺݕ ሻݕ ൏

݀݁݃࢝ ߶Ԣሺݔ, ሻݕ , we only get a partial order, since monomials with equal w-degree are

incomparable. It turns out that there are just two ways to break such ties so that Property (3) is

satisfied: w-lexicographic (w-lex) order, and w-reverse lexicographic (w-revlex) order [8].

Definition.

w-lex order is defined as follows:

x୧భy୨భ ൏ x୧మy୨మ

if either uiଵ ൅ vjଵ ൏ uiଶ ൅ vjଶ or uiଵ ൅ vjଵ ൌ uiଶ ൅ vjଶ and iଵ ൏ iଶ.

 w-revlex order is similar, except that the rule for breaking ties is iଵ ൐ iଶ.

42

 (In the special case w = (1, 1), these orderings are called graded-lex, or grlex, and reverse

graded-lex, or grevlex, respectively) [1].

Let “<” be a fixed monomial ordering:

1 ൌ ߶଴ሺݔ, ሻݕ ൏ ߶ଵሺݔ, ሻݕ ൏ ߶ଶሺݔ, ሻݕ ൏ ڮ

With respect to this ordering every nonzero polynomial in ܨሾݔ, ሿ can be expressedݕ

uniquely in the form

ܳሺݔ, ሻݕ ൌ ෍ ௝ܽ߶௝

௃

௝ୀ଴

ሺݔ, ሻݕ

for suitable coefficients ௝ܽ א ࣠ with ௝ܽ ് 0. The integer J is called the ݂݋ ݇݊ܽݎ ܳሺݔ, ,ሻݕ

and the monomial ߶௃ is called the leading monomial of ܳሺݔ, ሻ. We indicate this notationallyݕ

by writing ܴܽ݊݇ሺܳሻ ൌ ܬ and ܯܮሺܳሻ ൌ ߶௃ ሺݔ, ሻݕ . The relation ܲܯܮ ൌ ܳܯܮ is an

equivalence relation, which we denote by ܲ ؠ ܳ. We can extend the order “ ൏ ” to all of

,ݔሾܨ ሿ by declaring P < Q to mean LMP < LMQ. In this way, “<,” which is a total order onݕ

the set of monomials, becomes a partial order on ܨሾݔ, ሿ and a total order on the equivalenceݕ

classes under LM [1,8].

In the case of a WD order, the weighted degree of the leading monomial ߶௝ is also

called the weighted degree, or w-degree, of Q(x, y), denoted degw Q. Thus

݀݁݃௪ ܳሺݔ, ሻݕ ൌ ,ݔሼ݀݁݃௪ ߶ሺ ݔܽ݉ ሻݕ ׷ ௝ܽ ് 0ሽ

The w-degree function has the following basic properties:

݀݁݃௪ 0 ൌ െ∞

݀݁݃௪ሺܲܳሻ ൌ ݀݁݃௪ ܲ ൅ ݀݁݃௪ ܳ

݀݁݃௪ሺܲ ൅ ܳሻ ൑ ,ܲ ሺ݀݁݃௪ݔܽ݉ ݀݁݃௪ ܳሻ

݀݁݃௪ሺܲ ൅ ܳሻ ൌ ,ܲ ሺ݀݁݃௪ݔܽ݉ ݀݁݃௪ ܳሻ, ് ܲܯܮ ݂݅ .ܳܯܮ

If ߶଴ (x, y) < ߶ଵ(x, y) <… is a fixed monomial ordering, and ߶ ൌ ௝ is a particularݕ௜ݔ

monomial, the index of ߶, denoted Ind(ࣘ), is defined as the unique integer K such that ߶௄(x,

y) = ߶.

For (1, v) revlex order, the numbers ݀݊ܫሺݔ௄ሻ and ݀݊ܫሺݕ௅ሻare especially important, so

we introduce a special notation for them:

,ܭሺܣ ሻݒ ؜ ௄ሻݔሺ݀݊ܫ

,ܮሺܤ ሻݒ ؜ ௅ሻݕሺ݀݊ܫ

it being understood that the underlying monomial order is (1, v)-revlex [8].

43

We note that ݔ௄ is the first monomial of (1, v)-degree K, and ݕ௅ is the last monomial

of (1, v)-degree ܮݒ, so that

,ܭሺܣ ሻݒ ൌ | ሼሺ݅, ݆ሻ ׷ ݅ ൅ ൏ ݆ݒ | ሽܭ

,ܮሺܤ ሻݒ ൌ | ሼሺ݅, ݆ሻ ׷ ݅ ൅ ൑ ݆ݒ | ሽݒܮ െ 1.

4.3 Zeros and Multiple Zeros

In this section we consider bivariate polynomials, and focus on their notion of a zero, or a

multiple zero.

If ܳሺݔ, ሻݕ א ,ݔሾܨ ,ߙሿ, and ܳሺݕ ሻߚ ൌ 0, we say that Q has a zero at ሺߙ, .ሻߚ

Definition 4-1

We say that ܳሺݔ, ሻݕ ൌ ∑ ܽ௜௝ݔ௜ݕ௝
௜,௝ א ,ݔሾܨ ,ሿ has a zero of multiplicity, or order m at (0, 0)ݕ

and write

ሺܳ݀ݎ݋ ׷ 0, 0ሻ ൌ ݉,

If ܳሺݔ, ሻ involves no term of total degree less thanݕ ݉ , i.e., ܽ௜௝ ൌ 0 if ݅ ൅ ݆ ൏ ݉ .

Similarly, we say that ܳሺݔ, ,ߙሻ has a zero of order ݉ at ሺݕ ሻ, and writeߚ

ሺܳ݀ݎ݋ ׷ ,ߙ ሻߚ ൌ ݉,

if ܳሺݔ ൅ ,ߙ ൅ ݕ .ሻ has a zero of order m at (0, 0)ߚ

To calculate ݀ݎ݋ሺܳ ׷ ,ߙ ൅ ݔሻ, we need to be able to express ܳሺߚ ,ߙ ൅ ݕ ሻ as aߚ

polynomial in x and y. The following theorems, due to H. Hasse tell us one way to do this. We

begin with the one-variable version of Hasse’s theorem [1].

Theorem 4-2

If ܳሺݔሻ ൌ ∑ ܽ௜ݔ௜
௜ א א ߙ ሿ, then for anyݔሾܨ we have ,ܨ

 ܳሺݔ ൅ ሻߙ ൌ ∑ ܳ௥௥ ሺןሻݔ௥,

where ܳ௥ሺݔሻ ൌ ∑ ቀ݅
ቁ௜ݎ ܽ௜ݔ௜ି௥

which is called the ݄ݐݎ Hasse derivative of ܳሺݔሻ. Also,

ܳ௥ሺןሻ ൌ ሻן ൅ݔ௫ೝ ܳሺ݂݂݁݋ܥ ൌ ෍ ቀ݅
ቁݎ

௜

ܽ௜ ௜ି௥ן

and ܳሺݔሻ ൌ ∑ ܳ௥ሺןሻ௥ஹ଴ ሺݔെ ןሻ௥

Theorem 4-3

Let ܳሺݔ, ሻݕ ൌ ∑ ܽ௜,௝ݔ௜ݕ௝
௜,௝ א ,ݔሾܨ ,ߙሿ. For any ሺݕ ሻߚ א ࣠ଶ, we have

44

ܳሺݔ ൅ ,ߙ ൅ ݕ ሻߚ ൌ ∑ ܳ௥,௦ሺߙ, ௦ݕ௥ݔሻߚ
௥,௦

where

ܳ௥,௦ሺݔ, ሻݕ ൌ ෍ ቀ݅
ቁݎ ቀ݆

ቁݏ
௜,௝

ܽ௜,௝ݔ௜ି௥ݕ௝ି௦

which is called the ሺݎ, ,ݔHasse (mixed partial) derivative of ܳሺ ݄ݐሻݏ .ሻݕ

Also, an alternative equivalent formula is

ܳ௥,௦ሺߙ, ሻߚ ൌ ,ן ൅ݔ௫ೝ௬ೞ ܳሺ݂݂݁݋ܥ ݕ ൅ ሻߚ

and

ܳሺݔ, ሻݕ ൌ ෍ ܳ௥,௦ሺן, ሻߚ
௥,௦

ሺݔെ ןሻ௥ሺݕ െ ሻ௦ߚ

Corollary:

The polynomial ܳሺݔ, ,ߙሻ has a zero of order ݉ at ሺݕ ,ߙሻ if and only if ܳ௥,௦ሺߚ ሻߚ ൌ 0 for all ݎ

and ݏ such that 0 ൑ ൅ ݎ ൏ ݏ ݉ [8].

4.4 The Interpolation and Factorization Theorems

Two basics theorems of GS algorithm are stated as below.

4.4.1 The Interpolation Theorem

Suppose a nonnegative integer m(α) is assigned to each element α א ࣠, and we are asked to

construct a polynomial ݂ሺݔሻ of least degree which has a zero of multiplicity m(α), at ݔ ൌ ,ߙ

for all α א ࣠ . Clearly a minimum degree solution to this one-dimensional interpolation

problem is

݂ሺݔሻ ൌ ෑ ሺݔ െ ሻ௠ሺఈሻߙ

ఈ א ࣠

deg൫ ݂ሺݔሻ൯ ൌ ෍ ݉ሺߙሻ
ఈ א ࣠

We are interested in the analogous two-dimensional interpolation problem: Given a

required multiplicity m(α, β) for each (α, β) א ࣠ଶ, construct a low-degree polynomial ܳሺݔ, ሻݕ

which has zeros of the required multiplicity. This is a much harder problem, in general, but the

following theorem gives a useful upper bound on the minimum required degree [7,8].

45

Theorem 4-4

 Let ሼmሺα, βሻ ׷ ሺα, βሻ א ࣠ଶሽ be a multiplicity function as above and let Ԅ଴ ൏ Ԅଵ ൏ be ڮ

an arbitrary monomial order. Then there exists a non-zero polynomial Qሺx, yሻ of the form

ܳሺݔ, ሻݕ ൌ ෍ ܽ௜

஼

௜ୀ଴

Ԅ୧ሺx, yሻ

where ܥ ൌ ∑ ቀ݉ሺߙ, ሻߚ ൅ 1
2 ቁఈ,ఉ

which has a zero of multiplicity m(α, β), at (x, y) = (α, β), for all (α, β) א ࣠ଶ.

For any (u, v), there is a nonzero polynomial ܳሺݔ, ሻݕ with the required zero

multiplicities whose (u, v)-degree is strictly less than √2[22] ܥݒݑ.

4.4.2 The Factorization Theorem

If ܳሺݔ, ሻݕ א ࣠ሾݔ, ሻݔሿ, and ݂ሺݕ א ࣠ሾݔሿ, define the Q-score of f as
ܵொሺ݂ሻ ൌ ෍ :ܳ ሺ݀ݎ݋ ,ߙ ݂ሺߙሻሻ

ఈ࣠א

Suppose ݂ሺݔሻ א ௩࣠ሾݔሿ, ܳሺݔ, ሻݕ א ࣠ሾݔ, ሿ, andݕ

ܵொሺ݂ሻ ൐ ݀݁ ଵ݃,௩ܳ. Then y − f(x) is a factor of Q(x, y).

Lemma 4-1

If ݂ሺݔሻ א ௩࣠ሾݔሿ, then deg ሺܳሺݔ, ݂ሺݔሻሻ ൑ ݀݁݃ଵ,௩ ܳሺݔ, .ሻݕ

Lemma 4-2

ܳሺݔ, ݂ሺݔሻሻ ൌ 0 if and only if ሺݕ െ ݂ሺݔሻሻ|ܳሺݔ, .ሻݕ

Lemma 4-3

If ݀ݎ݋ሺܳ ׷ ,ߙ ሻߚ ൌ ሻߙand ݂ሺ ,ܭ ൌ െ ݔthen ሺ ,ߚ ,ݔሻ௄ |ܳ൫ߙ ݂ሺݔሻ൯ [8].

4.5 A Second Look at the Guruswami-Sudan Algorithm

Given a ሺ݊, ݇ሻ RS code over the finite field ࣠, with support set ሺߙଵ, . . . , ௡ሻ, and a positiveߙ

integer ݉ , the GS(m) decoder accepts a vector ߚ ൌ ሺߚଵ, . . . , א ௡ሻߚ ࣠୬ as input, and

produces a list of polynomials ሼ ଵ݂, . . . , ௅݂ሽ, as output. Here’s how:

46

The GS(m) Decoder. The GS(m) decoder constructs a nonzero two-variable polynomial

of the form ܳሺݔ, ሻݕ ൌ ∑ ௝ܽ߶௝ሺݔ, ሻ஼ሺ௡,௠ሻݕ
௝ୀ଴ ൌ 0 where ߶଴ < ߶ଵ <… is (1, v)-revlex monomial

order, such that Q(x, y) has a zero of order m at each of the n points ሺߙ௜, .௜ሻ, for i = 1, . . . , nߚ

(The Interpolation Theorem guarantees that such a polynomial exists.) The output of the

algorithm is the list of y-roots of Q(x, y), i.e.,

ൌ ܮ ሼ݂ሺݔሻ א ሿݔሾܨ ׷ ሺݕ െ ݂ሺݔሻሻ | ܳሺݔ, ሻሽݕ

Theorem 4-5

The output list contains every polynomial of degree ≤ v such that K(f, β) ≥ ܭ௠. Furthermore,

the number of polynomials in the list is at most ܮ௠.

4.6 Koetter’s Solution to the Interpolation Problem

In general terms, the interpolation problem is to construct a bivariate polynomial Q(x, y) with

minimal (1, v)-degree that satisfies a number of constraints of the form

,ߙ௥,௦ܳሺܦ ሻߚ ൌ 0,

where ሺݎ, ሻݏ א Գଶ and ሺߙ, ሻߚ א ࣠ଶ. It turns out that the mapping

ܳሺݔ, ሻݕ ՜ ,ߙ௥,௦ܳሺܦ ሻߚ

is an example of what is called a linear functional on ܨሾݔ, ሿ. We consider the more generalݕ

problem of constructing a bivariate polynomial Q(x, y) of minimal weighted-degree that

satisfies a number of constraints of the form

,ݔ௜ܳሺܦ ሻݕ ൌ 0, ൌ ݅ ݎ݋݂ 1, 2, . . .,

where each ܦ௜ is a linear functional. The goal of this section is to describe an algorithm for

solving the more general problem [23].

4.6.1 Linear Functionals F[x, y]

A mapping ܦ ׷ ,ݔሾܨ ሿݕ ՜ is called a linear functional if ܨ

൅ ܲߙሺܦ ሻܳߚ ൌ ሺܲሻܦߙ ൅ ሺܳሻܦߚ

for all ܲ, א ܳ ,ݔሾܨ ,ߙ ݈݈ܽ ሿ andݕ א ߚ ࣠. The primary example of a linear functional is the

mapping that evaluates a Hasse derivative:

ܳሺݔ, ሻݕ ՜ ,ߙ௥,௦ܳሺܦ ,ሻߚ

47

for fixed values of ሺݎ, ሻݏ א Գଶ and ሺߙ, ሻߚ א ࣠ଶ.

If we agree on a particular monomial order, say

߶଴ሺݔ, ሻݕ ൏ ߶ଵሺݔ, ሻݕ ൏ , ڮ

so that any polynomial ܳሺݔ, ሻ has a unique expansion of the formݕ

ܳሺݔ, ሻݕ ൌ ෍ ௝ܽ߶௝ሺݔ, ሻݕ
௃

௝ୀ଴

where ܽ௃ ് 0, then any linear functional can be expressed as

ሺܳሻܦ ൌ ෍ ௝ܽ ௝݀

௃

௜ୀ଴

where ௝݀ ൌ ,ݔሺ߶௝ሺܦ ሻሻ. The kernel of D is defined to be the setݕ

ൌ ܭ ൌ ܦݎ݁݇ ሼܳ ׷ ሺܳሻܦ ൌ 0ሽ

If D is a linear functional with kernel K, the corresponding bilinear mapping ሾܲ, ܳሿ஽ is

defined as

ሾܲ, ܳሿ஽ ؜ ሺܳሻܲ െܦ ሺܲሻܳܦ

This simple mapping is a crucial part of the algorithms presented below; its key

properties are given in the following lemma [23,24].

Lemma 4-4

For all P, Q in ܨሾݔ, ,ሿݕ ሾP, QሿD א kerD . Furthermore, if P >Q and Q ב K , then

RankሾP, QሿD ൌ Rank P.

4.6.2 Problem Statement

Let ܨ௅ሾݔ, ,ݔሾܨ ሿ denote the set of polynomials fromݕ ሿ whose y-degree is ≤ L, i.e., thoseݕ

of the form

ܳሺݔ, ሻݕ ൌ ෍ ௞ݕሻݔ௞ሺݍ
௅

௞ୀ ଴

where each ݍ௞ሺݔሻ א .ሿݔሾܨ We note that ܨ௅ሾݔ, ሿݕ is an F[x]-module, i.e., if ܳሺݔ, ሻݕ א

,ݔ௅ሾܨ ,ሿݕ

and ݌ሺݔሻ א ,ݔሻܳሺݔሺ݌ ሿ, thenݔሾܨ ሻݕ א ,ݔ௅ሾܨ .ሿ as wellݕ

Let ܦଵ, . . . , ஼ܦ be C linear functionals defined on ܨ௅ [x, y], and let ܭଵ, . . . , ஼ܭ be the

corresponding kernels, i.e.,

ൌ ݅ܭ ሼܳሺݔ, ሻݕ א ,ݔ௅ሾܨ ሿݕ ׷ ሺܳሻ݅ܦ ൌ 0ሽ

48

The cumulative kernels ܭ଴തതത, . . . , ,ݔ௅ሾܨ = ଴തതതܭ :஼തതതത are defined as followsܭ ሿ and for ݅ ൌݕ 1, . . . , ,ܥ

ഥܭ ௜ ൌ ഥ௜ିଵܭ ת ഥ௜ܭ

 ൌ ଵܭ ת ת … ௜ܭ

 ൌ ൛ܳሺݔ, ሻ൯ݕ א ,ݔ௅ሾܨ ଵሺܳሻܦ :ሿݕ ൌ ڮ ൌ ௜ሺܳሻܦ ൌ 0ሽ

4.6.3 Generalized Interpolation Problem

Construct a minimal element from ܭഥ஼ = ܭଵ ת ஼, i.e., calculateܭ ת …

ܳ଴ሺݔ, ሻݕ א ݉݅݊ ൛ܳሺݔ, ሻ൯ݕ א ,ݔ௅ሾܨ ଵሺܳሻܦ :ሿݕ ൌ ڮ ൌ ௜ሺܳሻܦ ൌ 0ሽ

Koetter’s Algorithm:

Koetter [12,13] noticed, in effect, that if the cumulative kernels are F[x]-modules, generalized

interpolation problem admits a less complex solution than the one afforded by the Feng-Tzeng

algorithm [1,7,23].

This observation applies to the GS interpolation problem, since if we enforce the

conditions ܦ௥,௦ሺߙ, ሻߚ ൌ ݏ ݎ݋݂ 0 ൅ ൏ ݎ ݉݅݊ an order in which (r−1, s) always precedes (r,

s), the cumulative kernels will be F[x]-modules. For example, (m − 1, 1) lex order, which

orders the pairs as (0, 0), (0, 1), . . . , (0,m − 1), (1, 0), (1, 1), . . . , (1,m − 2), . . . , (m − 1, 0)

has the desired property.

In Koetter’s algorithm, the set of monomials from ܨ௅ሾݔ, ,ሿݕ

௅ࣧሾݔ, ሿݕ ൌ ሼ ݔ௜ݕ௝ ׷ 0 ൑ ݅, 0 ൑ ݆ ൑ ሽ,ܮ

is partitioned according to the exponent of y: ௅ࣧሾݔ, ሿݕ ൌ ڂ ௝ࣧ
௅
௝ୀ଴

where ௝ࣧ ൌ ሼݔ௜ݕ௝: ݅ ൒ 0ሽ

This partition of ௅ࣧ induces a partition on ܨ௅ሾݔ, ,ݔ௅ሾܨ :,ሿݕ ,ሿݕ ൌ ܵ ଴ ׫ ・・ ・ ׫ ܵ௅, where

௝ܵ ൌ ሼܳ א ,ݔ௅ሾܨ ሿݕ ׷ ሺܳሻܯܮ א ௝ࣧ ሽ

Koetter’s algorithm generates a sequence of lists ܩ଴, ,ଵܩ . . . , ஼ܩ , with

௜ܩ ൌ ሺ݃௜,଴, . . . , ݃௜,௅ሻ,

where ݃௜,௝ is a minimal element of ܭపഥ ௝ܵ . The algorithm’s output is the polynomial ת

ܳ଴ሺݔ, ሻݕ ൌ min
଴ஸ୨ஸL

݃஼,௝ሺݔ, ሻݕ

which is a minimal rank element of ܭഥ஼.

Koetter’s algorithm is initialized as follows:

݃଴,௝ ൌ ݅ ,௝ݕ ൌ 0, … , ܮ

Given ܩ௜, :௜ାଵ is defined recursivelyܩ

଴ܬ ൌ ሼ݆ ׷ ௜ାଵሺ݃௜,௝ሻܦ ൌ 0ሽ

49

ଵܬ ൌ ሼ݆ ׷ ௜ାଵሺ݃௜,௝ሻܦ ് 0ሽ

If ܬଵ is not empty, among the polynomials ݃௜,௝ with ݆ א be the one with כଵ, let ݃௜,௝ܬ

minimal rank; and temporarily denote ݃௜,௝כ by f:

݂ ൌ min
௝ א௃భ

݃௜,௝

כ݆ ൌ argmin
௝ א௃భ

݃௜,௝

Then using the notation of linear functionals, ݃௜ାଵ,௝ is defined for ݆ ൌ 0, . . . , ,ܮ

݃௜ାଵ,௝ ൌ ቐ
݃௜,௝ ݂݅ ݆ א ଴ܬ

ሾ݃௜,௝, ݂ሿ஽೔ାଵ ݂݅ ݆ א ଵܬ
ሾ݂ݔ, ݂ሿ஽೔ାଵ ݂݅ ݆ ൌ כ݆

് ݆ ݐݑܾ כ݆

Theorem 4-6

For ݅ ൌ 0, . . . , we have ݃௜,௝ ,ܥ ൌ ݉݅݊ ሼ݃ ׷ א ݃ ഥ௜ܭ ת ݆ܵሽ ݂ݎ݋ ݆ ൌ 0, . . . , [1] .ܮ

Algorithm 4-1 : Koetter’s Interpolation for Guruswami-Sudan Decoder [1,8]

,௜ݔሺ ݏݐ݊݅݋ܲ :ݐݑ݌݊ܫ ,௜ሻݕ ݅
ൌ 1, … , ݊. ;௜݉ ݎ݁݀ݎ݋ ݊݋݅ݐ݈ܽ݋݌ݎ݁ݐ݊݅ ݄݁ܶ ܽ ሺ1, ;ݎ݁݀ݎ݋ ݈ܽ݅݉݋݊݋ሻ݉ݒ ܮ

:ݏ݊ݎݑݐܴ݁ ܳ଴ሺݔ, ݈ܾ݉݁݋ݎ݌ ݊݋݅ݐ݈ܽ݋݌ݎ݁ݐ݊݅ ݄݁ݐ ݃݊݅ݕ݂ݏ݅ݐܽݏሻݕ

:݁ݖ݈݅ܽ݅ݐ݅݊ܫ ݃௝ ൌ ݆ ݎ݋௝݂ݕ ൌ 0, … , .ܮ

݅ ݎ݋݂ ൌ ݅ ݉݋ݎ݂ ݋ሺ݃ ݊ ݋ݐ 1 െ ሻ݁݃ܽݐݏ ݄ݐ݅ ݋ݐ ݁݃ܽݐݏ ݐݏ 1

ܥ ൌ ሺ௠೔ା ଵሻ௠೔
ଶ

 ሺ݋݊ ݁ݐݑ݌݉݋ܥ. ሻ݀݁ݒ݈݋ݒ݊݅ ݏ݁ݒ݅ݐܽݒ݅ݎ݁݀ ݂݋

,ݎሺ ݎ݋݂ ሻݏ ൌ ሺ0,0ሻ ݋ݐ ሺ݉௜ െ 1,0ሻܾݕ ሺ݉௜ െ 1,1ሻ݈݁ܥ ݋ݐ 1 ݉݋ݎ݂ ݎ݁݀ݎ݋ ݔ

݆ ݎ݋݂ ൌ ܮ ݋ݐ 0

 Δ୨ ൌ Dሺ୰,ୱሻg୨ሺx୧, y୧ሻ

 ݁݊݀ ሺ݂ݎ݋ ݆ሻ

ܬ ൌ ൛݆ ׷ Δ୨ ് 0ൟ ሺܵ݁݊݋݊ ݂݋ ݐ െ ሻݏ݁݅ܿ݊ܽ݌݁ݎܿݏ݅݀ ݋ݎ݁ݖ

 ݂݅ ሺܬ ് ሻ׎

כ݆ ൌ arg min൛ ݃௝: ݆ א ሻ݁݁ݎ݃݁݀ ݀݁ݐ݄݃݅݁ݓ ݐݏ݈ܽ݁ ݂݋ ݈ܽ݅݉݋݊ݕ݈݋݌ൟ ሺܬ

 ݂ ൌ ݃௝כ ; Δ ൌ Δ୨כ

50

א ݆ ݎ݋݂ ܬ

 ݂݅ ሺ ݆ ് ሻכ݆

 ݃௝ ൌ Δ݃௝ െ Δ୨݂ ሺ݇݊ܽݎ ݊݅ ݄݁݃݊ܽܿ ݐݑ݋݄ݐ݅ݓ ݁ݐܽ݀݌ݑሻ

݆ ሺ ݂݅ ݁ݏ݈݁ ൌ ሻכ݆

 ݃௝ ൌ ሺx െ x୧ሻ݂ ሺ݇݊ܽݎ ݊݅ ݄݁݃݊ܽܿ ݄ݐ݅ݓ ݁ݐܽ݀݌ݑሻ

 ݁݊݀ሺ݂݅ሻ

 ݁݊݀ ሺ݂ܬ ݎ݋ሻ

 ݁݊݀ ሺ ݂݅ ܬሻ

 ݁݊݀ ሺ ݂ݎ݋ ሺݎ, ሻ ሻݏ

 ݁݊݀ ሺ݂ݎ݋ ݅ሻ

ܳ଴ሺݔ, ሻݕ ൌ min୨ ሼ ݃௝ሺݔ, ሻ ሽݕ ሺ݈݁ܽ݁݁ݎ݃݁݀ ݀݁ݐ݄݃݅݁ݓ ݐݏሻ

4.7 The Roth-Ruckenstein Solution to the Factorization Problem

The most efficient algorithm currently known for solving the factorization problem is due to

Roth and Ruckenstein [25].

The factorization problem is this: given a polynomial ܳሺݔ, ሻݕ א ,ݔሾܨ ,ሿݕ find all

polynomials ݂ሺݔሻ of degree ൑ ݒ such that ሺݕ െ ݂ሺݔሻሻ | ܳሺݔ, .ሻݕ Alternatively, find all

݂ሺݔሻ א ሿ such thatݔ௩ሾܨ

ܳሺݔ, ݂ሺݔሻሻ ؠ 0.

If this condition holds, we call ݂ሺݔሻ a y-root of ܳሺݔ, ሻ. This section describes an algorithmݕ

due to Roth and Ruckenstein [1] for finding y-roots.

If Q(x, y) is a two-variable polynomial such that ݔ௠ | ܳሺݔ, ௠ାଵݔ ሻ, butݕ ץ ܳሺݔ, ሻ,defineݕ

,ݔሺܳۃ ۄሻݕ ؜
ܳሺݔ, ሻݕ

௠ݔ

Although ܳሺ0, ,ሺ0ܳۃ ሻ might be identically zero, neverthelessݕ is a nonzero polynomial in ۄሻݕ

y.

Suppose

݂ሺݔሻ ൌ ܽ଴ ൅ ܽଵݔ ൅ ・ ・ ・ ൅ ܽ௩ݔ௩

is a y-root of Q(x, y). We will see that the coefficients ܽ଴, ܽଵ … , ܽ௩ can be “picked off,” one

at a time. As a start, the following lemma shows how to determine ܽ଴ [1,8].

51

Lemma 4-5

If ሺݕ െ ݂ሺݔሻሻ | ܳሺݔ, ൌ ݕ ሻ thenݕ ݂ሺ0ሻ ൌ ܽ଴ is a root of the equation ܳ଴ሺ0, ሻ = 0, whereݕ

ܳ଴ሺݔ, ሻݕ ൌ ,ݔሺܳۃ .ۄሻݕ

We now proceed by induction, defining three sequences of polynomials ௝݂ሺݔሻ, ௝ܶሺݔ, ,ሻݕ

ܽ݊݀ ܳ௝ሺݔ, ሻ,for ݆ ൌݕ 0, 1, . . . , .as follows ,ݒ

Initially, ଴݂ ൌ׷ ݂ሺݔሻ, ܳ଴ሺݔ, ሻݕ ൌ׷ ,ݔሺܳۃ .ۄሻݕ

For j ≥ 1 define

௝݂ሺݔሻ: ൌ ௝݂ିଵሺݔሻ െ ௝݂ିଵሺ0ሻ
ݔ ൌ ௝ܽ ൅ ・ ・ ・ ൅ ܽ௩ݔ௩ି௝

௝ܶሺݔ, ሻݕ ൌ׷ ܳ௝ିଵሺݔ, ൅ ݕݔ ௝ܽିଵሻ

ܳ௝ሺݔ, ሻݕ ൌ׷ ۃ ௝ܶሺݔ, ۄሻݕ

Theorem 4-7

Given ݂ሺݔሻ ൌ ܽ଴ ൅ ܽଵݔ ൅ ൅ ڮ ܽ௩ݔ௩ א ,ݔሿ, and ܳሺݔ௩ሾܨ ሻݕ א ,ݔሾܨ ሿ, define theݕ

sequences ௝݂ሺݔሻ and ܳ௝ሺݔ, ሻ as above. Then for any ݆ ൒ݕ 1, ሺݕ െ ݂ሺݔሻሻ | ܳሺݔ, ሻݕ

if and only if ሺݕ െ ௝݂ሺݔሻሻ | ܳ௝ሺݔ, .ሻݕ

Here is the “picking off” theorem. [7,8]

Corollary
If ሺݕ െ ݂ሺݔሻሻ | ܳሺݔ, ൌ ݕ ሻ thenݕ ௝ܽ is a root of the equation

ܳ௝ሺ0, ሻݕ ൌ ൌ ݆ ݎ݋݂ ,0 0, . . . , .ݒ

Corollary
If ݕ | ܳ௩ାଵሺݔ, ,ݔሻ, i.e., if ܳ௩ାଵሺݕ 0ሻ ൌ 0,, then ݂ሺݔሻ ൌ ܽ଴ ൅ ܽଵݔ ൅ ൅ ڮ ܽ௩ݔ௩ is a y-root of

ܳሺݔ, .ሻݕ

The following Lemma provides some insight into the all-important transformation

Q(x, y) → Q(x, xy + a)

Lemma 4-6

If ܳሺݔ, ሻݕ ൌ ∑ ሻ௜ݕ௜݃௜ሺݔ

 ൌ ෍ ௝݃௜ሺ0ሻܦ௝ݕ௜ݔ
௜,௝

Then ܳሺݔ, ݕݔ ൅ ܽሻ ൌ ∑ ௝݃௜ି௝ሺܽሻ௜,௝ܦ௝ݕ௜ݔ

where ܦ௜ denotes the ݅th one-dimensional Hasse derivative.

Symbolically, this lemma can be summarized as follows:

52

ܳሺݔ, ሻݕ ൌ ൦

݃଴ሺ0ሻ ଵ݃ሺ0ሻ ݃ଶሺ0ሻ ݃ଷሺ0ሻ
ଵ݃଴ሺ0ሻܦ ଵ݃ଵሺ0ሻܦ ଵ݃ଶሺ0ሻܦ ଵ݃ଷሺ0ሻܦ
ଶ݃଴ሺ0ሻܦ ଶ݃ଵሺ0ሻܦ ଶ݃ଶሺ0ሻܦ ଶ݃ଷሺ0ሻܦ

ڮ

ڭ

൪

ܳሺݔ, ݕݔ ൅ ܽሻ ൌ ൦

݃଴ሺܽሻ ଵ݃ሺܽሻ ݃ଶሺܽሻ ݃ଷሺܽሻ
0 ଵ݃଴ሺܽሻܦ ଵܦ ଵ݃ሺܽሻ ଵ݃ଶሺܽሻܦ
0 0 ଶ݃଴ሺܽሻܦ ଶ݃ଵሺܽሻܦ

ڮ

ڭ

൪

In words: if the entries of column j of Q(x, y) are interpreted as the coefficients of a

polynomial, say ݃௝ሺݖሻ, then the entries of the jth diagonal of Q(x, xy+a) are the coefficients

of the polynomial ݃௝ሺݖ ൅ ܽሻ [1,23].

A pseudocode representation of the RR algorithm is given below. It takes as input a

bivariate polynomial Q(x, y) and positive integer D, and returns as output the set of all y-roots

of Q(x, y) of degree ≤ D. The strategy adopted by the algorithm is “depth-first search,” as

described in [1,25].

4.8 Roth-Ruckenstein Pseudo code for Finding y-roots of Q(x,y) [1]

ݐݑ݌݊ܫ ׷ ܳሺݔ, ,ሻݕ ሻ ሻݔሺ݌ ݂݋ ݁݁ݎ݃݁݀ ݉ݑ݉݅ݔܽ݉ ݄݁ݐ ݏ݅ ܦ ݁ݎ݄݁ݓሺ ܦ

:ݐݑ݌ݐݑܱ ൑ ݁݁ݎ݃݁݀ ݂݋ ሻݔሺ݌ ݏ݈ܽ݅݉݋݊ݕ݈݋݌ ݂݋ ݐݏ݅ܮ ݕሺ ݐ݄ܽݐ ݄ܿݑݏ ܦ െ ,ݔሻ ሻ| ܳሺݔሺ݌ ሻݕ

 :݊݋݅ݐܽݖ݈݅ܽ݅ݐ݅݊ܫ

ሻݔሺ݌ ݐ݁ܵ ൌ 0 , ݑ ൌ degሺ݌ሻ ൌ െ1, ܦ ൌ ሻ݈ܾܽ݋݈݃ ݈ܽ݊ݎ݁ݐ݊݅ ݏܽ ݐ݁ݏሺ ݁݁ݎ݃݁݀ ݉ݑ݉݅ݔܽ݉

 .݀݁ݒܽݏ ݁ݎܽ ݏ݈ܽ݅݉݋݊ݕ݈݋݌ ݁ݎ݄݁ݓ ݐݏ݈݅ ݈݀݁݇݊݅ ݌ݑ ݐ݁ܵ

ൌ ݒ ݐ݁ܵ 0 ሺ݁݀݋݊ ݄݁ݐ ݂݋ ݎܾ݁݉ݑ݊ ݄݁ݐ; .ሻ݈ܾ݁ܽ݅ݎܽݒ ݈ܾܽ݋݈݃

,ݔሺ ܳሺ ݁݁ݎݐ݇ܿݑݎ݄ݐ݋ݎ ݈݈ܽܥ ,ሻݕ ,ݑ ሻ ݌

,ܳ ሺ ݁݁ݎݐ݇ܿݑݎ݄ݐ݋ݎ ݊݋݅ݐܿ݊ݑܨ ,ݑ ሻ݌

,ݔሺܳ :ݐݑ݌݊ܫ ,ሻݕ ሻ݌ ݂݋ ݁݁ݎሺ݀݁݃ ݑ ݀݊ܽ ሻݔሺ݌

:ݐݑ݌ݐݑܱ ݏ݈ܽ݅݉݋݊ݕ݈݋݌ ݂݋ ݐݏ݅ܮ

ൌ ݒ ݒ ൅ 1 ሺ݅݊ܿݎܾ݁݉ݑ݊ ݁݀݋݊ ݐ݊݁݉݁ݎሻ

,ݔሺ ܳሺ ݂ܫ ሻݕ ൌ 0 ሻ

 ݐݏ݈݅ ݐݑ݌ݐݑ݋ ݄݁ݐ ݋ݐ ሻݔሺ݌ ݀݀ܣ

݁݊݀ ሺ݂݅ሻ

53

൏ ݑ ሺ ݂݅ ݁ݏ݈݁ ሻ݁݁ݎݐ ݄݁ݐ ݂݋ ݄ܿ݊ܽݎܾ ݎ݄݁ݐ݋݊ܽ ݕݎݐሻ ሺܦ

 ܴ ൌ ,ሺ0ܳ ݂݋ ݏݐ݋݋ݎ ݂݋ ݐݏ݈݅ ሻݕ

א ן ݄ܿܽ݁ ݎ݋݂ ܴ

 ܳ௡௘௪ሺݔ, ሻݕ ൌ ܳሺݔ, ሻ݈ܽ݅݉݋݊ݕ݈݋݌ ݄݁ݐ ݐ݂݄݅ݏሻ ሺן൅ݕݔ

௨ାଵ݌ ൌ ן ሺ݊݁݌ ݂݋ ݐ݂݂݊݁݅ܿ݅݁݋ܿ ݓሺݔሻ ሻ

,ݔ௡௘௪ሺܳۃ ሺ ݁݁ݎݐ݇ܿݑݎ݄ݐ݋ݎ ݈݈ܽܥ ,ۄሻݕ ݑ ൅ 1, ሻ݈݈ܽܿ ݁ݒ݅ݏݎݑܿ݁ݎ ሻ ሺ ݌

 ݁݊݀ ሺ݂ݎ݋ሻ

݊݋݊ ݄ݐ݅ݓ ݄݀݁ܿܽ݁ݎ ݁݁ݎݐ ݂݋ ሺ݈݂݁ܽ ݁ݏ݈݁ െ ሻ݈ܽ݅݉݋݊ݕ݈݋݌ ݋ݎ݁ݖ

 ሺ݊ݐݑ݌ݐݑ݋ ݋ሻ

݁݊݀ ݂݅

݁݊݀

54

CHAPTER 5

DIRECT SEQUENCE SPREAD SPECTRUM

SYSTEMS AND CODE ACQUISITION

 Spread spectrum is a communication technique which is widely used in the radar, navigation

and telecommunication systems and playing a dominant role in the philosophy of the

forthcoming generation of systems and networks. The amount of interest and research effort

invested in this area is growing constantly especially after successful commercial success of

Code division multiple access (CDMA) mobile telephone (IS-95) and the use of CDMA as the

basic platform of 3G mobile radio [27].

The term Spread spectrum is today one of the most popular in the radio engineering

and communication community. At the same time, it appears difficult to formulate an

unequivocal and precise definition which distinguishes clearly between a spread spectrum and

non-spread spectrum system.

A rather frequent way to explain the concept consists in the statement that a system or

a signal is of spread spectrum type if its bandwidth significantly exceeds the minimum

bandwidth necessary to send the information.

The very idea of a minimum bandwidth of information or message is full of ambiguity

because there is no standard definition of bandwidth. A better definition is the one which

incorporates Gabor’s uncertainty principle [27].

A signal for which product of signal duration and bandwidth are of the order of 1 i.e.

they are tightly linked together is called a “Plain” or “Non-spread spectrum signal”. The only

way to widen the bandwidth of a plain signal is to increase its bandwidth. On the other hand a

deterministic signal for which time-bandwidth product is very greater than 1 and bandwidth

can be governed independently of duration is called Spread Spectrum one. A system

employing spread spectrum signals is a spread spectrum system.

55

An important difference that a spread spectrum modulated signal has over other

conventional modulation techniques is that in spread spectrum modulation, the most precious

resources of the communication channel i.e. bandwidth and power are sacrificed in order to

achieve the goal of secure communications [15].

An important advantage of a spread-spectrum communication system is that it can

provide immunity against externally generated (interfering) signals with finite power. The

interference can be intentional as well as un-intentional. Protection against jamming

waveforms is provided by purposely making the information bearing signal occupy a

bandwidth far in excess of the minimum bandwidth necessary to transmit it. This has the

effect of making the transmitted signal assume a noise-like appearance so as to blend into the

background. The transmitted signal is thus enabled to propagate through the channel

undetected by anyone who may be listening.

Spread spectrum systems were initially developed for military application, where

resistance to jamming was of major concern. However, there are non-tactical applications

which make use of beneficial attributes of a spread spectrum system. For example, it can be

used to provide multipath rejection in ground-based mobile radio environment. Another

application is in multiple-access communications in which a number of independent users are

required to share a common channel without an external synchronizing mechanism [14].

5.1 Pseudo-Noise Sequences

All spread spectrum signals utilize some kind of a code which is independent of the

data to spread the spectrum before transmission. These codes have special auto-correlation

and cross-correlation properties and are called Pseudo-random noise (PN) codes because these

sequences have white-noise like statistical properties while being obviously deterministic

[15,16]. Thus, the sequence is "nearly random". The method most frequently used to generate

pseudo-random codes is based on a feedback shift register.

Various spread spectrum systems can be classified based upon the exact point of usage

of the PN sequence. On the transmitter end, they are used to increase the signal spectrum and

hence called Spreading. On the receiver end, they are used to reduce the signal spectrum to

its original bandwidth and hence called Despreading. The factor by which bandwidth of the

signal is increased is called the Processing Gain of the system.

There are two categories regarding the length of codes:

56

5.1.1 Short codes

In this category, same PN-sequence is used for each data symbol i-e

௖ܰ . ௖ܶ ൌ ௌܶ

Where

௖ܰ is the length of sequence

௖ܶ is the chip period

ௌܶ is the symbol period

5.1.2 Long codes

For long codes, the PN-sequence period is much longer than that of the data symbol so that a

different chip pattern is associated with each symbol.

௖ܰ . ௖ܶ ب ௌܶ

5.2 Properties of PN-sequences

PN-sequences of maximal length have a number of special properties possessed by a truly

random binary sequence. A random binary sequence is a sequence in which the presence of

binary symbol 1 or 0 is equally probable [14, 15]. Some properties of such sequences are as

follows:

5.2.1 Balance property

In each period of the sequence the number of binary ones differs from the number of binary

zeros by at most one digit (for Nc odd).

Pn = +1 +1 +1 -1 +1 -1 -1 ∑ = +1

5.2.2 Run length Property

A “run” means a subsequence of identical symbols (1s or 0s) within one period of the

sequence. The length of these subsequences is the length of the run. For maximal length PN

sequences; among the runs of 1s and 0s in each period of a maximal-length sequence, one half

the runs of each kind are of length one, one fourth are of length two, one eighth are of length

three, and so on as long as these fractions represent positive number of runs. This property is

57

called Run property. For a maximal length sequence generated by a linear feedback shift

register of length ݉, the total number of runs is ሺܰ ൅ 1ሻ/2 where ܰ ൌ 2௠ െ 1.

5.2.3 Autocorrelation

The auto-correlation function of a maximal-length PN sequence is periodic and binary-

valued. The origin of the name pseudo-noise is that the sequence has an autocorrelation

function which is very similar to that of a white noise signal. The autocorrelation function for

the periodic sequence PN is defined as the number of agreements less the number of

disagreements in a term by term comparison of one full period of the sequence with a cyclic

shift (position τ) of the sequence itself.

ܴሺτሻ ൌ න p୬ሺtሻp୬ሺt ൅ τሻdt
NౙTౙ/ଶ

ିNౙTౙ/ଶ

The autocorrelation has a large peaked maximum only for perfect synchronization of

two identical sequences. For a period of the maximal-length sequence, the auto-correlation

function is somewhat similar to that of a random binary wave. The synchronization of the

receiver is based on this property.

Figure 5-1: Autocorrelation and Time/frequency domain representation of PN-sequence [14]

58

5.2.4 Frequency spectrum

Periodicity of the PN sequence in the time domain is transformed into uniform

sampling in the frequency domain. Its frequency spectrum has spectral lines which become

closer to each other with increasing sequence length ௖ܰ . Each line is further smeared by data

scrambling, which spreads each spectral line and further fills in between the lines to make the

spectrum more nearly continuous. The DC component is determined by the zero-one balance

of the PN-sequence.

5.2.5 Cross-correlation

Cross-correlation describes the interference between codes p୬୧ and p୬୨.

ܴ௖ሺ߬ሻ ൌ න p୬୧ሺtሻp୬୨ሺt ൅ τሻdt
NౙTౙ/ଶ

ିNౙTౙ/ଶ

It is a measure of agreement between two different codes p୬୧ and p୬୨. When the cross-

correlation ܴ௖ሺ߬ሻ is zero for all τ, the codes are called orthogonal. In multi-user environment,

users occupy the same RF bandwidth and transmit simultaneously. When the user codes are

orthogonal, there is no interference between the users after de-spreading and the privacy of the

communication of each user is protected.

In practice, codes are not perfectly orthogonal, hence the cross-correlation between

user codes introduces performance degradation (increased noise power after de-spreading),

which limits the maximum number of simultaneous users.

The construction or selection of proper sequences is not trivial. To guarantee efficient

Spread Spectrum communications, the sequences must respect certain rules, such as length,

auto-correlation, cross-correlation and bits balancing. The popular sequences include Barker,

M-Sequence, Gold, Walsh etc. Every sequence has its own characteristics like gold codes

have better cross-correlation properties so they are good for multi-user environment.

5.3 Types of Spread Spectrum Systems

Different Spread Spectrum techniques are distinguished according to the point in the

system at which a pseudo-random code is inserted in the communication channel. This is

illustrated in the figure below.

59

Figure 5-2: Spreading techniques [14]

If the PN sequence is inserted at the data level, we have the direct sequence form of

spread spectrum (DSSS). If the PRN acts at the carrier-frequency level, we have the frequency

hopping form of spread spectrum (FHSS). Applied at the local oscillator (LO) stage, FHSS

PN codes force the carrier to change or hop according to the pseudo-random sequence. If the

PRN acts as an on/off gate to the transmitted signal, we have a time hopping spread spectrum

technique (THSS). There is also the chirp technique, which linearly sweeps the carrier

frequency in time. Our topic of discussion for the rest of this chapter is the acquisition of

DSSS signals in the receiver.

5.4 Direct Sequence Spread Spectrum (DSSS)

Direct Sequence Spread Spectrum transmissions multiply the data being transmitted by

a "noise" signal. This noise signal is a pseudorandom sequence of 1 and −1 values, at a

frequency much higher than that of the original signal, thereby spreading the energy of the

original signal into a much wider band.

The resulting signal resembles white noise which can be filtered out at the receiving

end to recover the original data, by again multiplying the same pseudorandom sequence to the

received signal. Spreading operation can be summarized as:

The binary data ݀௧with symbol rate Rs = 1/Ts is multiplied with the pseudo-noise code

pnt with chip rate Rc = 1/Tc to produce the transmitted baseband signal txb.

txb = dt . pnt

The effect of multiplication of dt with the PN-sequence is to spread the baseband bandwidth

Rs of dt to a baseband bandwidth of Rc. Following figure illustrates this phenomenon.

60

Figure 5-3: DSSS transmitter end [14]

Figure 5-4: DSSS Spreading [14]

The bandwidth expansion factor or processing gain, being the ratio of chip rate Rc and

the data symbol rate Rs, is usually selected to be an integer in practical spread spectrum

systems.

ss c s
p c

d s c

BW R TG N
BW R T

= = = =

The de-spreading operation can be summarized as:

At the receiver, the received baseband signal rxb is multiplied with the PN-sequence

pnr. If pnr = pnt and synchronized to the PN-sequence in the received data, then the recovered

binary data is produced on dr.

61

Figure 5-5: DSSS Receiver end [14]

.
(.).
(.).

. 1

r b r

r t t r

r t t t r t

r t t t

d rx pn
d d pn pn
d d pn pn pn pn
d d pn pn

=

=
= =
= =

Q

Q

Last equation holds only if the sequences are perfectly synchronized with each other.

The effect of multiplication of the spread spectrum signal rxb with the PN-sequence pnt used

in the transmitter is to de-spread the bandwidth of rxb to Rs. This is illustrated in the following

figure.

Figure 5-6: Direct-Sequence de-spreading [14]

If pnr ≠ pnt, then there is no de-spreading action. The multiplier output becomes:

.
(.).

r b r

r t t r

d rx pn
d d pn pn

=

=

62

In the receiver, detection of the desired signal is achieved by correlation against a local

reference PN-sequence. For secure communications in a multi-user environment, the

transmitted data dt may not be recovered by a user that doesn’t know the PN-sequence pnt

used at the transmitter. Therefore the cross-correlation between all PN-sequences used for

multi-user transmission should be ideally zero. If this is achieved then the output of the

correlator used in the receiver is approximately zero for all except the desired transmission.

5.5 DSSS acquisition

One of the most characteristic problems in spread spectrum technology is measuring the time

of arrival and frequency of the received signal [27]. In the systems where spread spectrum

signals are used for ranging and measurement of object motion parameters (radar, sonar, and

navigation), time-frequency estimation is the main task. In spread spectrum communications,

it is the core of the timing recovery procedure. In fact to correctly demodulate the transmitted

data, a receiver of every digital communication system must know with sufficient accuracy

the border of symbols, frames etc. in the received data stream. In other words, the local

receiver clock should be properly synchronized with the received data stream. The initial

acquisition of the correct phase offset is referred to as the coarse acquisition. The subsequent

tracking, once coarse acquisition has been achieved is sometimes called fine acquisition.

Coarse acquisition consists of searching the time/frequency space illustrated in the figure

below.

Figure 5-7 Time/Frequency Search Space associated with coarse sync/ acquisition

63

In case of DSSS systems, fortunately, the carrier frequency is generally known in

advance and the search is needed only in the time dimension.[26] Coarse acquisition attempts

to adjust the phase offset of the locally generated pseudo random sequence to within a large

fraction of one chip time, ஼ܶ.

5.5.1 Search Strategies for Acquisition:

Irrespective of the code used, the code space must be searched in some fashion to find the

correct phase offset. There are several ways to accomplish this.

5.5.1.1 Serial Search

The simplest is a serial approach where one phase offset at a time is attempted and the

comparison with the threshold is made. If the sequence length is large, however, this approach

can be very slow if bounds on the search space are not available.[16]

5.5.1.2 Parallel Search

On the other hand, a fully parallel search which is the fastest way can also be performed. In

this architecture, N parallel matched filters would simultaneously search the code space, one

offset for each matched filter. The filter with the largest output would correspond to the

correct phase offset. If N is large, implementation would be prohibitive, however [16].

5.5.1.3 Multi-dwell Approach

Between these approaches, fully serial and fully parallel, there are compromises that can be

made. Instead of a fully parallel implementation, for example, some smaller number of

parallel matched filters could also be included.[26] Multi-dwell search is one such approach.

The first correlator implements a relatively low threshold with a short integration time. Its

purpose is to quickly eliminate offsets that are not acceptable. This stage would have a

relatively high false alaram rate but corresponding high probability of detection. The second

correlator implements a small false alarm rate and small probability of miss, and therefore a

large acquisition time. The goal is to have the first stage hand off to the second infrequently so

the overall acquisition time is minimized.

64

5.6 Correlation in Frequency Domain:

Time average cross-correlation of two sequences ݎሺ݊ሻ and ݌ሺ݊ሻ for a lag of ߬ is defined as

follows ܿሺ߬ሻ ൌ ∑ ሺ݊݌ሺ݊ሻݎ ൅ ߬ሻ

where the summation is taken over all the non-zero values of ݎሺ݊ሻ and ݌ሺ݊ሻ. Let the number

of such indices be ܰ. However, this correlation can be done with much less computations in

the frequency domain by following relationship

ܿሺ߬ሻ ൌ ሺ݊ሻሻݎሺ ܶܨܨ ሺ ܶܨܫ כ ሺ݊ሻ൯ ሻ݌തതതത൫ܶܨ

where IFFT denotes operation of inverse Fourier transform and FT means Forward Fourier

transform and a bar over it represents its complex conjugate. In order to compute correlation

for a single lag in time domain, we have to perform ܰଶ multiplications and ܰ െ 1 additions

while in the case of FFT based approach we can compute correlation for all the lags with only

ܰ logଶ ܰ complex additions and multiplications. So, computing correlation in frequency

domain is much simpler computationally when compared with time domain calculations.

Following section explains how this scheme is implemented.

5.7 Implementation Details:

For HDL implementation of DSSS acquisition, parallel search technique is used. Correlation

of the local reference signal with the received signal is performed in the frequency domain.

Length of the selected PN sequence is 512 chips. Received signal is stored in a read only

memory (ROM) having a depth of 1024 (corresponding of two periods of the PN sequence)

and width of 16 bits. Both real and imaginary parts of the conjugate of the Fourier Transform

of the local reference PN noise are also stored in two separate ROMs. Each of these ROMs

has a depth of 512 and precision of 16 bits. Correlation is performed for two periods of the PN

sequence. Overall block diagram is shown in Figure 5-8. FFT is computed by using the built-

in Xilinx Intellectual Property (IP) core in the Radix-2 Burst I/O mode of operation. For the

product specifications see [11]. The FFT result for the received sequence is shown in the

Figure 5-9.

65

Figure 5-8: Parallel search acquisition architecture for DSSS systems.

Figure 5-9 Fast Fourier Transform of the Received signal

The computed FFT of the received sequence and stored FFT of the local reference sequence

are multiplied together using a complex multiplier. Modelsim simulation waveform for the

product is shown in the Figure 5-10.

Product
 (Real part)

Product
(Imag. part)

FFT (Real part)

FFT (Imag. part)

Figure 5-10 Real and Imaginary Parts of the Complex Multiplier output

66

Then we take the inverse Fourier Transform of this product to get the result for the received

sequence cross-correlation with the local reference PN sequence. Modelsim waveform for this

computed correlation and its maximum correlation lag is shown in the Figure 5-11.

Figure 5-11: Cross-correlation of Received signal with Reference PN sequence

Once the maximum index of correlation is available, we add it to the address counter

of the received signal ROM to remove the offset of the two signals. This completes the

process of code acquisition.

67

CHAPTER 6

SIMULATION AND IMPLEMENTATION OF REED

SOLMON CODEC ARCHITECTURES

Area efficient and high speed VLSI architectures for encoding and decoding Reed–Solomon

codes with the Berlekamp–Massey algorithm are presented in this chapter. The speed

bottleneck in the Berlekamp–Massey algorithm is in the iterative computation of

discrepancies followed by the updating of the error-locator polynomial [6]. This bottleneck

can be eliminated via a series of algorithmic transformations that result in a fully systolic

architecture in which a single array of processors computes both the error-locator and the

error-evaluator polynomials. In contrast to conventional Berlekamp–Massey architectures in

which the critical path passes through two multipliers and 1 ൅ logଶڿ ݐ ൅ 1ሻۀ adders, the

critical path in reformulated inversion-less Berlekamp Massey architectures passes through

only one multiplier and one adder, which is comparable to the critical path in architectures

based on the extended Euclidean algorithm [3,4].

6.1 Arithmetic Operations in Galois Field

Before discussing Reed Solomon codec architecture, we discuss how addition and

multiplication is performed in the Galois Field GF(2m).

6.1.1 Addition in Galois Field GF(2m)

Addition and subtraction are same in GF(2m). Addition is performed by expressing both the

operands in the polynomial representation. Then we take bit- by bit exclusive-or (XOR) of the

corresponding bits to get the result of addition [1,10].

6.1.2 Multiplication in Galois Field GF(2m)

Multiplication of GF(2m) is bit more completed. We define the primitive polynomial of the

field and its root is known as the primitive element (we can express all the non-zero elements

of the field as powers of the primitive element.) We express both the multiplier and the

68

multiplicand as the powers of the primitive element. Let ߙ be the primitive element and ߙ௜

and ߙ௝ be the two operands. Then the product is defined as follows:

௟ߙ ൌ ௝ߙ௜ߙ ൌ ௜ା௝ߙ ൌ ሺ௜ା௝ሻ௠௢ௗሺଶ೘ିଵሻߙ

We present an example of the design of a GF(24) multiplier. Let ߙ be the primitive

element of the field corresponding to the primitive polynomial

݃ሺݔሻ ൌ 1 ൅ ݔ ൅ ସݔ

As ߙ is a root of the primitive polynomial and addition and subtraction are same

operation in the GF(2m), ߙସ ൌ ߙ ൅ 1

In order to develop an architecture for a GF(24) multiplier , we first consider an arbitrary field

element ܨܩ ߳ ߚሺ2௠ሻ which is to multiplied with the primitive element ߙ of the field.

Polynomial representation of ߚ in terms of ߙ is as follows

ߚ ൌ ܾ଴ ൅ ܾଵߙ ൅ ܾଶߙଶ ൅ ܾଷߙଷ

Multiplying it with ߙ, we get

ߚߙ ൌ ߙ כ ሺܾ଴ ൅ ܾଵߙ ൅ ܾଶߙଶ ൅ ܾଷߙଷሻ

ൌ ܾ଴ߙ ൅ ܾଵߙଶ ൅ ܾଶߙଷ ൅ ܾଷߙସ

But ߙସ ൌ ߙ ൅ 1

So, ߚߙ ൌ ܾ଴ߙ ൅ ܾଵߙଶ ൅ ܾଶߙଷ ൅ ܾଷሺߙ ൅ 1ሻ

ൌ ߚߙ ܾଷ ൅ ሺܾ଴ ൅ ܾଷሻߙ ൅ ܾଵߙଶ ൅ ܾଶߙଷ

This alpha–gain block is shown in Figure 6-1.

Figure 6-1: An alpha-gain block for GF(24)

Now we consider multiplying two arbitrary field elements ߚ and ߛ א ሺ2ସሻ expressed in theܨܩ
polynomial form as follows:

69

ߚ ൌ ܾ଴ ൅ ܾଵߙ ൅ ܾଶߙଶ ൅ ܾଷߙଷ

ߛ ൌ ܿ଴ ൅ ܿଵߙ ൅ ܿଶߙଶ ൅ ܿଷߙଷ

Their product can be expressed in the Horner notation as follows:

This expression and the alpha-gain multiplier can be used to design the multiplier for ܨܩሺ2ସሻ
shown in the Figure 6-2.

Figure 6-2: Parallel-in parallel-out GF (24) Multiplier

Addition and Multiplication tables for GF (24) are shown in Table 6-1.

 Table 6-1: Addition and Multiplication Tables for GF(16) [1]

6.2 An overview of Reed Solomon Codes

Let ሺ݀௞ିଵ, ݀௞ିଶ, … … … … . . , ݀ଵ, ݀଴ሻ denote k m-bit data symbols (bytes) that are to be

transmitted over a communication channel (or stored in memory). These bytes are regarded as

70

elements of the finite field (also called Galois field), GF (2௠), and encoded into a codeword

ሺܿ௡ିଵ, ܿ௡ିଶ, … … … … . . , ܿଵ, ܿ଴ሻ of n ൐ k bytes.

For Reed–Solomon codes over GF (2௠), ݊ ൌ 2௠ െ 1, and the code can ݀݀݋ ݏ݅ ݇

correct ݐ ൌ ሺ݊ െ ݇ሻ/2 byte errors. The encoding process is best described in terms of the

data polynomials

D(z) = ݀௞ିଵݖ௞ିଵ ൅ ݀௞ିଶݖ௞ିଶ ൅ … … ݀ଵݖ ൅ ݀଴

being transformed into a codeword polynomial

C(z) = ܿ௡ିଵݖ௡ିଵ ൅ ܿ௡ିଶݖ௡ିଶ ൅ … … ܿଵݖ ൅ ܿ଴.

All codeword polynomials C (z) are polynomial multiples of G (ݖ), the generator

polynomial of the code, which is defined as

ሻݖሺܩ ൌ ∏ ሺ ݖ െ ן௠బା௜ሻଶ௧ିଵ
௜ୀ଴ Eq. (6-1)

where ݉଴ is typically zero or one [1,6]. Since 2ݐ consecutive powers

,௠బן ,௠బାଵן … … , ן ௠బାଶ௧ିଵ ofן are roots ofܩሺݖሻ , and C(z)is a multiple of G(z), it

follows that ܥ൫ן௠బା௜൯ ൌ 0, 0 ൑ ݅ ൑ ݐ2 െ 1 Eq. (6-2)

Figure 6-3: Reed Solomon Systematic Encoder Architecture [1]

for all codeword polynomials C(z) . In fact, an arbitrary polynomial of degree less than n is a

codeword polynomial if and only if it satisfies Eq. (6-2).

A systematic encoding produces codewords that are comprised of data symbols

followed by parity-check symbols and is obtained as follows. Let Q(z) and P(z) denote the

quotient and remainder respectively when the polynomial ݖ௡ି௞ܦሺݖሻ of degree n-1 is divided

by G(z) of degree 2t = n - k . Thus, ݖ௡ି௞ܦሺݖሻ ൌ ܳሺݖሻܩሺݖሻ ൅ ܲሺݖሻ where deg൫ܲሺݖሻ൯ ൏

 ݊ െ ݇. Clearly, ܳሺݖሻܩሺݖሻ ൌ ሻݖሺܦ௡ି௞ݖ െ ܲሺݖሻ ൌ ,ሻ. Furthermoreݖሺܩ ሻ is a multiple ofݖሺܥ

71

since the lowest degree term in ݖ௡ି௞ܦሺݖሻ is ݀଴ݖ௡ି௞ while ܲሺݖሻ is of degree at most ݊ െ ݇ ൅

1 , it follows that the codeword is given by

ሺܿ௡ିଵ, ܿ௡ିଶ, … … , ܿଵ, ܿ଴ሻ

ൌ ሺ݀௞ିଵ, ݀௞ିଶ, … … … … . . , ݀ଵ, ݀଴,

െ݌௡ି௞ିଵ, െ݌௡ି௞ିଶ, … … … … . . , െ݌ଵ, െ݌଴ሻ

and consists of the data symbols followed by the parity-check symbols.

6.2.1 Decoding of Reed–Solomon Codes

Let C(z) denote the transmitted codeword polynomial and let R(z) denote the received word

polynomial. The input to the decoder is R(z) , and it assumes that

 R(z) = C(z) + E(z)

where, if e≥0 errors have occurred during transmission, the error polynomial E(z) can be

written as

E(z) = ଵܻݖ௜భ ൅ ଶܻݖ௜మ ൅ … … ൅ ௘ܻݖ௜೐

It is conventional to say that the error values ଵܻ, ଶܻ, … … , ௘ܻ , occurred at the error

locations ଵܺ ൌ ן௜భ, ܺଶ ൌ ן௜మ,……, ܺ௘ ൌ ן௜೐. Note that the decoder does not know E(z) ; in

fact, it does not even know the value of e. The decoder’s task is to determine E(z) from its

input R(z) , and thus correct the errors by subtracting off E(z) from R(z) . If e൑ then such ,ݐ

a calculation is always possible, that is t, or fewer errors can always be corrected [10].

The decoder begins its task of error correction by computing the syndrome values

௜ݏ ൌ ܴ൫ן௠బା௜൯ ൌ ௠బା௜൯ן൫ܥ ൅ ௠బା௜൯ן൫ܧ ൌ ௠బା௜൯ 0ן൫ܧ ൑ ݅ ൑ ݐ2 െ 1

Eq. (6-3)

If all 2ݐ syndrome values are zero, then R(z) is a codeword and it is assumed that C(z)

= R(z) that is, no errors have occurred. Otherwise, the decoder knows that and uses the

syndrome polynomial , which is defined to be

S(z) = ݏ଴ ൅ ݖଵݏ ൅ ڮ ൅ ଶ௧ିଵݖଶ௧ିଵݏ

to calculate the error values and error locations. Define the error-locator polynomial Λሺݖሻ of

degree ݁ and the error evaluator polynomial Ωሺݖሻ ݋f degree ݁ െ 1 at most to be

 Λ(z) = ∏ ሺ 1 െ ௝ܺݖሻ௘
௝ୀଵ = 1 ൅ߣଵݖ ൅ ଶݖଶߣ ൅ ڮ ൅ ௘ Eq. (6-4)ݖ௘ߣ

72

ષሺࢠሻ ൌ ∑ ࢏ࢄ࢏ࢅ
ࢋ૙࢓

ୀ૚࢏ ∏ ሺ ૚ െ ࢋሻࢠ࢐ࢄ
࢐ୀ૚,࢐ஷ࢏ = 1 ࣓૙ ൅ ࣓૚ࢠ ൅ ૛ࢠ૛ࣅ࣓ ൅ ڮ ൅ ૚ିࢋࢠ૚ିࢋ࣓

 Eq. (6-5)

These polynomials are related to S(z) through the key equation [1], [3]:

઩(z) S(z)ؠ ષሺࢠሻࢠ ࢊ࢕࢓૛࢚ Eq. (6-6)

Solving the key equation to determine both Λ(z) and Ωሺݖሻ from S(z) is the hardest part of the

decoding process. The BM algorithm and the eE algorithm can be used to solve

Eq. (6-6). If ݁ ൑ ݁ ሻ, but ifݖሻ and Ωሺݖthese algorithms find Λሺ ,ݐ ൐ then the algorithms , ݐ

almost always fail to find Λ(z) and Ωሺݖሻ. Fortunately, such failures are usually easily detected

[6].

Once Λሺݖሻ and Ωሺݖሻ have been found, the decoder can find the error locations by checking

whether Λ(ିן௝)= 0 for each ݆, 0 ൑ ݆ ൑ ݊ െ 1 . Usually, the decoder computes the value of

Λ(ିן௝)just before the ݆-th received symbol leaves the decoder circuit. This process is called a

Chien search [1]. If Λ(ିן௝)= 0 , then ן௝ is one of the error locations (say ௜ܺ). In other words,

 ௝is in error, and needs to be corrected before it leaves the decoder. The decoder can calculateݎ

the error value ௜ܻ to be subtracted from ݎ௝ via Forney’s error value formula [1]

௜ܻ ൌ െ ௑೔
షሺ೘బషభሻΩ൫௑೔

షభ൯
Λ′൫௑೔

షభ൯
ൌ െ ௭೘బΩሺ௭ሻ

୸Λ′ሺ௭ሻ
ቚ

௭ୀ ఈషೕ
 Eq. (6-7)

where Λ′ሺݖሻ ൌ ଵߣ ൅ ݖଶߣ2 ൅ ଶݖଷߣ3 … ൅ ሻ . Noteݖ௘ିଵdenotes the formal derivative of Λሺݖ௘ߣ݁

that the formal derivative simplifies to Λ′ሺݖሻ ൌ ଵߣ ൅ ଶݖଷߣ … since we are considering codes

over GF (2௠). Thus, zΛ′ሺߣ = (ݖଵݖ ൅ ଷݖଷߣ ൅ ሻݖwhich is just the terms of odd degree in Λሺ ڮ

. Hence, the value of zΛ′ሺݖሻ at ݖ ൌ ௝ିߙ can be found during the evaluation of Λ (z) at

ݖ ൌ ௝ିߙ and does not require a separate computation. Note also that Eq. (6-7) can be

simplified by choosing ݉଴ ൌ 0 .

6.3 Reed–Solomon Decoder Structure

In summary, a Reed–Solomon decoder consists of three blocks which are shown in Figure

6-4:

1. the syndrome computation (SC) block

2. the key-equation solver (KES) block

3. the Chien search and error evaluator (CSEE) block

73

Figure 6-4: Reed Solomon Decoder Block Diagram

These blocks usually operate in pipelined mode in which three blocks are separately

and simultaneously working on three successive received words.

6.3.1 Syndrome Computation Block

The SC block computes the syndromes via Eq. (6-3) usually as the received word is entering

the decoder. The SC architecture is shown in the Figure 6-5 which uses multiply accumulate

blocks. The incoming received word enters serially symbol by symbol and gets multiplied

with the roots of the generator polynomial and the result is accumulated for each clock cycle.

At the end of n clock cycles, last symbol of the received word enters the SC block and the

result is 2t syndrome values.

The syndromes are passed to the KES block which solves Eq (6-6) to determine the

error locator and error evaluator polynomials. KES block and its various architectures will be

discussed in detail in the following section.

74

Figure 6-5: Syndrome Computation (SC) Block [13]

6.3.2 Chein Search and Error-Evaluator Block

These polynomials are then passed to the CSEE block, which calculates the error locations

and error values via Eq. (6-7) and corrects the errors as the received word is being read out of

the decoder. Chein search block can be implemented as shown in the Figure 6-6

Figure 6-6: Chein Search (CS) Block [3]

Error-values are evaluated using Forney’s Formula. The numerator of the Forney’s

formula can be computed using block diagram of Figure 6-7.

75

Figure 6-7: Evaluation of Error-evaluator at reciprocal of Error-location [13]

It can be shown that both Chein search and Forney’s Formula computation can share

certain calculations. For example, the computation of the error locator polynomial’s formal

derivative is same as that of the odd powered terms of the Chein search if we both multiply

and divide Forney’s formula with inverse of the error location. Architecture of Figure 6-8

shows this computation.

Overall architecture for both Chein Search and Error-evaluation unit is shown in

Figure 6-9. Zero-detector is simply a NOR gate whose output goes high if it detects a zero at

the output of the Chein search unit i.e. a root and hence an error-location is found. It output is

thus called Error Locator Sequence (ELS) . The the reciprocal of the computed formal

derivative of the error-locator polynomial is taken by using an IROM look up table which has

inverses of GF elements tabulated. This is then multiplied with the error-evaluator polynomial

computed at inverse of the error-locators. This product represents the estimated error-values

which is then ‘anded’ with ELS (working as an enable signal) to get the error polynomial e(x).

e(x) may be added to a delayed version of the received word to get an estimate of the

transmitted codeword.

76

Figure 6-8: Combined Chein-Search and Formal Derivative of Error-locator Polynomial [13]

Figure 6-9: Combined Chein-Search and Error-evaluator Block [13]

6.3.3 Key Equation Solver (KES) Block

The throughput bottleneck in Reed–Solomon decoders is in the KES block which solves

Eq. (6-6). In contrast, the SC and CSEE blocks are relatively straightforward to implement.

Now we focus on high-speed architectures for the KES block. As mentioned earlier, the key

77

equation can be solved via the eE algorithm or via the BM algorithm. We discuss high-speed

architectures for a reformulated version of the BM algorithm because this reformulated

algorithm can be used to achieve much higher speeds than can be achieved by other

implementations of the BM and eE algorithms. Furthermore, these new architectures also

have lower gate complexity and a simpler control structure than architectures based on the eE

algorithm [6].

6.4 Berlekamp-Massey (BM) Architectures

In this section, we give a brief description of different versions of the Berlekamp–Massey

(BM) algorithm and then discuss a generic architecture for implementation of the algorithm.

6.4.1 The Berlekamp–Massey Algorithm

The BM algorithm is an iterative procedure for solving the Key equation. In the form

originally proposed by Berlekamp [1,10], the algorithm begins with polynomials Λ(0,z) =

1, Ωሺ0, zሻ ൌ 0 and iteratively determines polynomials Λ (r,z), ܽ݊݀ Ωሺr, zሻ satisfying the

polynomial congruence Λ(r,z) S(z)ؠ Ωሺݎ, ଶ௧ For r = 1,2,…,2t and, thus, obtains aݖ ݀݋ሻ݉ݖ

solution Λ(2t,z) and Ωሺ2ݐ, ሻto the key equation. Two “scratch” polynomials B(r,z) andݖ

Hሺݎ, ,ሻwith initial values B(0,z)= 1 and Hሺ0ݖ ሻݖ ൌ െ1 are used in the algorithm. For each

successive value of ݎ , the algorithm determines Λ (r,z), ܽ݊݀ Bሺr, zሻ from Λ (r-

1,z), ܽ݊݀ Bሺr െ 1, zሻ . Similarly, the algorithm determines Ωሺr, zሻ and Hሺݎ, ሻݖ from Ωሺr െ

1, zሻand Hሺݎ െ 1, ሻ . Since Sሺzሻhas degree 2t-1, and the other polynomials can have degreesݖ

as large as t, the algorithm needs to store roughly 6t field elements. If each iteration is

completed in one clock cycle, then 2t clock cycles are needed to find the error-locator and

error-evaluator polynomials.

In recent years, most researchers have used the formulation of the BM algorithm given

by Blahut in which only Λ (r,z), and Bሺr, zሻ are computed iteratively. Following the

completion of the 2t iterations, the error-evaluator polynomial Ωሺ2t, zሻis computed as the

terms of degree t-1or less in the polynomial product Ωሺ2t, zሻSሺzሻ . An implementation of this

version thus needs to store only 4t field elements, but the computation of Ωሺ2t, zሻ requires an

additional t clock cycles. Although this version of the BM algorithm trades off space against

time, it also suffers from the same problem as the Berlekamp version, viz. during some of the

iterations, it is necessary to divide each coefficient of Λ(r,z), by a quantity ߜ௥ . These divisions

are most efficiently handled by first computingߜ௥
ିଵ , the inverse of ߜ௥ , and then multiplying

78

each coefficient of Λ(r,z) by ߜ௥
ିଵ . Unfortunately, regardless of whether this method is used

or whether one constructs separate divider circuits for each coefficient of Λ(r,z) , these

divisions, which occur inside an iterative loop, are more time consuming than multiplications.

Obviously, if these divisions could be replaced by multiplications, the resulting circuit

implementation would have a smaller critical path delay and higher clock speeds would be

usable.

The inversion-nless BM (iBM) algorithm [3,4] is described by the pseudocode shown

below. The iBM algorithm actually finds scalar multiples ߚ.Λሺݖሻܽ݊݀ ߚ.Ωሺݖሻ instead of the

Λሺݖሻܽ݊݀ Ωሺݖሻ. However, it is obvious that the Chien search will find the same error locations

and it follows from Forney’s formula that the same error values are obtained. Hence, we

continue to refer to the polynomials computed by the iBM algorithm as Λሺݖሻܽ݊݀ Ωሺݖሻ.

Algorithm 6-1

 [6] ࢓ࢎ࢚࢏࢘࢕ࢍ࢒࡭ ࡹ࡮࢏ ࢋࢎࢀ

 :࢔࢕࢏࢚ࢇࢠ࢏࢒ࢇ࢏࢚࢏࢔ࡵ

଴ሺ0ሻߣ ൌ ܾ଴ሺ0ሻ ൌ ௜ሺ0ሻߣ ,1 ൌ ܾ௜ሺ0ሻ ൌ ݅ ݎ݋݂ ,0 ൌ 1,2, … , ሺ0ሻ݇ ,ݐ ൌ 0, ሺ0ሻߛ ൌ 1

,௜ ݏ :ݐݑ݌݊ܫ ݅ ൌ 0, 1 . . . ݐ2, െ 1.

ൌ ݎ ࢘࢕ࢌ 0 ׷ 1: ݐ2 െ ࢕ࢊ 1

 ࢔࢏ࢍࢋ࢈

.ࡹ࡮࢏ ࢖ࢋ࢚ࡿ ૚ ࢾሺݎሻ ൌ ሻݎ଴ሺߣ ௥ݏ ൅ ሻݎଵሺߣ ௥ିଵݏ ൅ ڮ ൅ ሻݎ௧ሺߣ ௥ି௧ݏ

.ࡹ࡮࢏ ࢖ࢋ࢚ࡿ ૛ ߣ௜ ሺݎ ൅ 1ሻ ൌ ሻ െݎ௜ሺߣሻݎሺߛ ሻ; ሺ݅ݎሻܾ௜ିଵ ሺݎሺߜ ൌ 0,1, … , ሻݐ

.ࡹ࡮࢏ ࢖ࢋ࢚ࡿ ૜ ݂݅ ሺߜሺݎሻ ് 0 ܽ݊݀ ݇ሺݎሻ ൒ 0 ሻ

 ࢔ࢋࢎ࢚

 ࢔࢏ࢍࢋ࢈

 ܾ௜ ሺݎ ൅ 1ሻ ൌ ,ሻݎ௜ ሺߣ ሺ݅ ൌ 0, 1, . . . , ሻݐ

൅ ݎሺߛ 1ሻ ൌ ൅ ݎሻ ݇ሺݎሺߜ 1ሻ ൌ െ ݇ሺݎሻ െ 1

 ࢊ࢔ࢋ

 ࢋ࢙࢒ࢋ

 ࢔࢏ࢍࢋ࢈

 ܾ௜ ሺݎ ൅ 1ሻ ൌ ܾ௜ିଵ ሺݎሻ, ሺ݅ ൌ 0,1, . . . , ሻݐ

൅ ݎሺߛ 1ሻ ൌ ൅ ݎሻ ݇ሺݎሺߛ 1ሻ ൌ ݇ሺݎሻ ൅ 1

 ࢊ࢔ࢋ

79

 ࢊ࢔ࢋ

ൌ ݅ ࢘࢕ࢌ 0 ׷ 1: ݐ െ ݋݀ 1

.ࡹ࡮࢏ ࢖ࢋ࢚ࡿ ૝ ߱௜ሺ2ݐ ሻ ൌ ሻݐ଴ሺ2ߣ ௜ݏ ൅ ሻݐଵሺ2ߣ ௜ିଵݏ ൅ … ൅ ሻݐ௜ሺ2ߣ ଴ݏ

;ሻݐ௜ ሺ2ߣ :࢚࢛࢖࢚࢛ࡻ ݅ ൌ 0, 1, . . . , ,ሻ ݐ௜ሺ2߱ .ݐ ݅ ൌ 0, 1, . . . , ݐ െ 1

For ݎ ൏ ݐ , Step iBM.1 includes terms ିݏଵ. ,ሻݎ௥ାଵሺߣ .ଶିݏ ,ሻݎ௥ାଶሺߣ … , .௥ି௧ݏ ሻݎ௧ሺߣ

involving unknown quantities. Fortunately, it is known that deg ሺΛ (r,z)) ൑ ݎ , so that

ሻݎ௥ାଵሺߣ ൌ ሻݎ௥ାଶሺߣ ൌ ڮ ൌ ௜ do not affect the value ofݏ ሻ=0 and therefore the unknownݎ௧ሺߣ

 ሻ .Notice also the similarity between Steps iBM.1 and iBM.4.These facts simplify theݎሺߜ

architecture that we describe next.

6.4.2 Architectures Based on the iBM Algorithm

Due to the similarity of Steps iBM.1 and iBM.4, architectures based on the iBM algorithm

need only two major computational structures as shown in Figure 6-10.

1. The discrepancy computation (DC) block for implementing Step iBM.1.

2. The error locator update (ELU) block which implements Steps iBM.2 and iBM.3 in

parallel.

The DC block contains latches for storing the syndromes ݏ௜, the GF (2௠) arithmetic units

for computing the discrepancy ߜሺݎሻand the control unit for the entire architecture. It is

connected to the ELU block, which contains latches for storing for Λ(r,z)and B(r,z) as well as

arithmetic units for updating these polynomials, as shown in Figure 6-10. During a clock

cycle, the DC block computes the discrepancy ߜሺݎሻ and passes this value together with ߛሺݎሻ

and a control signal ܥܯሺݎሻ to the ELU block which updates the polynomials during the same

clock cycle.

80

Figure 6-10: The iBM Architecture [6]

6.4.2.1 DC Block Architecture:

The DC block architecture shown in Figure 6-11 has 2ݐ latches constituting the DS shift

register that are initialized such that the latches ܦ ଵܵ, ,ଶܵܦ … … , ,ଶ௧ିଵܵܦ ଴ܵܦ contain the

syndromes ݏଵ, ݏଶ, … … , ݐ clock cycles, the ݐ଴, respectively. In each of the first 2ݏ ,ଶ௧ିଵݏ ൅ 1

multipliers compute the products in Step iBM.1. These are added in a binary adder tree of

depth ڿlogଶ ݐ ൅ 1ሻۀ to produce the discrepancy ߜሺݎሻ. Thus, the delay in computing ߜሺݎሻ is Tδ

= Tmult +ڿlogଶ ݐ ൅ 1ሻۀ.Tadd.

Figure 6-11: The Discrepancy Computation Block [6]

81

Figure 6-12: Control Block [6]

A typical control unit such as the one illustrated in Figure 6-12 has counters for the

variables ݎ and ݇ሺݎሻ, and storage for ߛሺݎሻ. Following the computation of ߜሺݎሻ, the control

unit computes the OR of the bits in order to determine whether ߜሺݎሻ is nonzero. This requires

݉ െ 1 two-input OR gates arranged in a binary tree of depth ڿlogଶሺ݉ሻۀ. If the counter for

݇ሺݎሻ is implemented in two’s-complement representation, then ݇ሺݎሻ ൒ 0 if and only if the

most significant bit in the counter is 0. The delay in generating ܥܯሺݎሻ signal is thus TMC = ఋܶ

logଶڿ+ ݉ሻۀ.Tor + ௔ܶ௡ௗ. Finally, once the signal ܥܯሺݎሻ is available, the counter for ݇ሺݎሻ can be

updated. Notice that a twos-complement arithmetic addition is needed if ݇ሺݎ ൅ 1ሻ ൌ ݇ሺݎሻ ൅

1 .On the other hand, negation in two’s-complement representation complements all the bits

and then adds one and, hence, the update ݇ሺݎ ൅ 1ሻ ൌ െ݇ሺݎሻ ൅ 1 requires only the

complementation of all the bits in the counter ݇ሺݎሻ. We note that it is possible to use ring

counters for ݎ and ݇ሺݎሻ, in which case ݇ሺݎሻ is updated just ௠ܶ௨௫ seconds after the signal

 .ሻ has been computedݎሺܥܯ

Following the 2ݐ clock cycles for the BM algorithm, the DC block computes the error-

locator polynomial Ωሺݖሻ in the next ݐ clock cycles. To achieve this, the ܵܦ௧, ,௧ାଵܵܦ

… … , ଶ௧ିଵ latches are reset to zero during the 2t-th clock cycle, so that, at the beginning ofܵܦ

the (2t+1)-th clock cycle, the contents of the DS register (see Figure 6-11) are ݏଵ , ଶݏ ,

… … , ,௧ିଵ, 0,0ݏ … . . , ଴. Also, the outputs of the ELU block are frozen so that these do notݏ

change during the computation of Ωሺݖሻ. From Step iBM.4, it follows that the “discrepancies”

computed during the next ݐ clock cycles are just the coefficients

߱଴ሺ2ݐሻ, ߱ଵሺ2ݐሻ , … … , ߱௧ିଵሺ2ݐሻ of Ωሺݖሻ.

82

Note that the total hardware requirements of the DC block are 2ݐ m-bit latches, ݐ ൅ 1

multipliers, ݐ adders, and miscellaneous other circuitry (counters, arithmetic adder or ring

counter, OR gates, inverters and latches), in the control unit. The critical path delay of the DC

block is

TୈC = ௠ܶ௨௟௧ ൅ ሺ1 ൅ logଶڿ ݐ ൅ 1ሻۀ ሻ. ௔ܶௗௗ+ ڿlogଶ ݉ሻۀ. ௢ܶ௥ + ௔ܶ௡ௗ.

6.4.2.2 ELU Block Architecture:

Following the computation of the discrepancy ߜሺݎሻ and the signal ܥܯሺݎሻ in the DC block, the

polynomial coefficient updates of Steps iBM.2 and iBM.3 are performed simultaneously in

the ELU block. The processor element PE0 (hereinafter the PE0 processor) that updates one

coefficient of λሺݖሻ and Bሺݖሻ is illustrated in

Figure 6-13.

83

Figure 6-13: The PE0 processor and ELU Block Diagram [6]

The complete ELU architecture is also shown in

Figure 6-13 where we see that signals ߜሺݎሻ, ߛሺݎሻ and ܥܯሺݎሻ are broadcast to all the

PE0 processors. In addition, the latches in all the PE0 processors are initialized to zero except

for PE૙૙, which has its latches initialized to the element 1 ߳ GF (2௠) . Notice that 2ݐ ൅

1 latches and multipliers, and ݐ ൅ 1 adders and multiplexers are needed. The critical path

delay of the ELU block is given by

T୉LU = ௠ܶ௨௟௧ ൅ ௔ܶௗௗ

6.4.2.3 iBM Architecture

Ignoring the hardware used in the control section, the total hardware needed to implement the

iBM algorithm is 4ݐ ൅ 2 latches, 3ݐ ൅ 3 multipliers, 2ݐ ൅ 1 adders, and ݐ ൅ 1 multiplexers.

The total time required to solve the key equation for one codeword is 3ݐ clock cycles.

Alternatively, if Ωሺ2ݐ, ሻݖ is computed iteratively, the computations require only 2ݐ clock

cycles. However, since the computations required to update Ωሺݎ, ሻ are the same as that ofݖ

Λሺݎ, ሻݖ , a near-duplicate of the ELU block is needed. This increases the hardware

requirements to 6ݐ ൅ 2 latches, 5ݐ ൅ 3 multipliers, 3ݐ ൅ 1 adders, and 2ݐ ൅ 1 multiplexers. In

either case, the critical path delay of the iBM architecture can be obtained as

T୍ BM = 2. ௠ܶ௨௟௧ ൅ ሺ1 ൅ logଶڿ ݐ ൅ 1ሻۀ ሻ. ௔ܶௗௗ ൐ 2. ሺ ௠ܶ௨௟௧ ൅ ௔ܶௗௗሻ

which is the delay of the direct path that begins in the DC block starting from the ࢏ࡿࡰ latches,

through a multiplier, an adder tree of height ڿlogଶ ݐ ൅ 1ሻۀ (generating the signal ߜሺݎሻ),

feeding into the ELU block multiplier and adder before being latched. We have assumed that

the indirect path taken by through the control unit (generating signal ܥܯሺݎሻ) feeding into the

ELU block multiplexer is faster than the direct path, i.e.,

௠ܶ௨௟௧ ൐ logଶڿ ݉ሻۀ ௢ܶ௥ ൅ ௔ܶ௡ௗ

This is a reasonable assumption in most technologies. Note that more than half of T୍ BM

is due to the delay in the DC block, and that this contribution increases logarithmically with

the error correction capability. Thus, reducing the delay in the DC block is the key to

achieving higher speeds. In the next section, we describe algorithmic reformulations of the

84

iBM algorithm that lead to a systolic architecture for the DC block and reduce its critical path

delay to ாܶ௅௎.

6.5 Reformulated Reed-Solomon Decoder Architectures

The critical path in iBM architecture passes through two multipliers as well as the adder tree

structure in the DC block. The multiplier units contribute significantly to the critical path

delay and hence reduce the throughput achievable with the iBM architecture. In this section,

we discuss decoder architectures that have a smaller critical path delay. These architectures

are derived via algorithmic reformulation of the iBM algorithm. This reformulated iBM

(riBM) algorithm computes the next discrepancy ߜሺݎ ൅ 1ሻ at the same time that it is

computing the current polynomial coefficient updates, that is, the ߣ௜ሺݎ ൅ 1ሻ ’s and the

ܾ௜ሺݎ ൅ 1ሻ’s. This is possible because the reformulated discrepancy computation does not use

the ߣ௜ሺݎ ൅ 1ሻ’s explicitly. Furthermore, the discrepancy is computed in a block which has the

same structure as the ELU block, so that both blocks have the same critical path delay

௠ܶ௨௟௧ ൅ ௔ܶௗௗ.

6.5.1 Reformulation of the iBM Algorithm

6.5.1.1 Simultaneous Computation of Discrepancies and Updates

Viewing Steps iBM.2 and iBM.3 in terms of polynomials, we see that Step iBM.2 computes

 ઩ሺ࢘ ൅ ૚, ሻࢠ ൌ .ሺ࢘ሻࢽ ઩ሺ࢘, ሻࢠ െ .ࢠ .ሺ࢘ሻࢾ ۰ሺ࢘, ሻ Eq. (6-8)ࢠ

while Step iBM.3 sets Bሺݎ ൅ 1, ሻݖ either to Λሺݎ, ሻݖ or to ݖ. ,ݎሺܤ ሻݖ . Next, note that the

discrepancy ߜሺݎሻ computed in Step iBM.1 is actually ߜ௥ሺݎሻ , the coefficient of ݖ௥ in the

polynomial product

Λሺݎ, .ሻݖ ܵሺݖሻ ൌ Δሺݎ, ሻݖ ൌ ሻݎ଴ሺߜ ൅ .ሻݎଵሺߜ ݖ ൅ ڮ ൅ .ሻݎ௥ሺߜ ௥ݖ ൅ Eq. (6-9) ڮ

Much faster implementations are possible if the decoder computes all the coefficients

of Δሺݎ, ሻݖ (and of Θሺݎ, ሻݖ ൌ ,ݎሺܤ .ሻݖ ܵሺݖሻ) even though only ߜ௥ሺݎሻ is needed to compute

Λሺݎ ൅ 1, ݎሺܤ ሻ and to decide whetherݖ ൅ 1, ,ݎሻ is to be set to Λሺݖ .ݖ ሻ or toݖ ,ݎሺܤ .ሻݖ

Suppose that at the beginning of a clock cycle, the decoder has available to it all the

coefficients of Δሺݎ, ሻ andݖ Θሺݎ, ,ݎሻ (and, of course, of Λሺݖ ,ݎሺܤ ሻ andݖ ,ሻ as well). Thusݖ

ሻݎሺߜ ൌ ሻis available at the beginning of the clock cycle, and the decoder can computeݎ௥ሺߜ

85

Λሺݎ ൅ 1, ሻݖ and ܤሺݎ ൅ 1, ሻݖ . Furthermore, it follows from ઩࢘൅૚,ࢠ ൌ .ሺ࢘ሻࢽ ઩ሺ࢘, ሻࢠ െ

.ࢠ .ሺ࢘ሻࢾ ۰ሺ࢘, ሻ Eq. (6-8) and Eq. (6-9) thatࢠ

Δሺݎ ൅ 1, ሻݖ ൌ Λሺݎ ൅ 1, .ሻݖ ܵሺݖሻ ൌ ሾߛሺݎሻ.Λሺݎ, ሻݖ െ .ݖ .ሻݎ௥ሺߜ ,ݎሺܤ .ሻሿݖ ܵሺݖሻ

ൌ ,ݎሻ.Δሺݎሺߛ ሻݖ െ .ݖ ,ݎሻ.Θሺݎ௥ሺߜ ሻݖ

while Θሺݎ ൅ 1, ሻݖ ൌ Bሺݎ ൅ 1, .ሻݖ ܵሺݖሻ is set to either Δሺݎ, ሻݖ ൌ Λሺݎ, .ሻݖ ܵሺݖሻ or to

,ݎΘሺ.ݖ ሻݖ ൌ .ݖ ,ݎሺܤ .ሻݖ ܵሺݖሻ. In short, Δሺݎ ൅ 1, ݎሻand Θሺݖ ൅ 1, ሻ are computed in exactly theݖ

same manner as are Λሺݎ ൅ 1, ݎሻand Bሺݖ ൅ 1, ሻ . Furthermore, all four polynomial updatesݖ

can be computed simultaneously, and all the polynomial coefficients as well as ߜ௥ାଵሺݎ ൅

1ሻare thus available at the beginning of the next clock cycle.

6.5.1.2 A New Error-Evaluator Polynomial

The riBM algorithm simultaneously updates four polynomials Λሺݎ, ,ሻݖ Bሺݎ, ,ݎሻ,Δሺݖ ሻ, andݖ

Θሺݎ, ሻݖ with initial values Λሺ0, ሻݖ ൌ Bሺ0, ሻݖ ൌ 1 and Δሺ0, ሻݖ ൌ Θሺ0, ሻݖ ൌ ܵሺݖሻ . The

2t iterations thus produce the error-locator polynomial Λሺ2ݐ, ሻ and also theݖ

polynomial Δሺ2ݐ, ሻݖ . Note that since Ωሺ2ݐ, ሻݖ ؠ Λሺ2ݐ, .ሻݖ ܵሺݖሻ݉ݖ ݀݋ଶ௧ it follows from

 Eq. (6-9) that the low-order coefficients of Δሺ2ݐ, ,ݐሻ are just Ωሺ2ݖ ሻ , that is, theݖ

2t iterations compute both the error-locator polynomial Λሺ2ݐ, ሻݖ and the error-evaluator

polynomial Ωሺ2ݐ, -iterations of Step iBM.4 are not needed. The high ݐ ሻ — the additionalݖ

order coefficients of Δሺ2ݐ, ,ݐሻ can also be used for error evaluation. Let Δሺ2ݖ ሻݖ ൌ Ωሺ2ݐ, ሻݖ ൅

.ଶ௧ݖ Ωሺ୦ሻሺݖሻ , where Ωሺ୦ሻሺݖሻ of degree at most e െ 1 contains the high-order terms. Since

X୧
ିଵ is a root of Λሺ2ݐ, ,ݐሻ, it follows from Eq. (6-9) that Δሺ2ݖ X୧

ିଵሻ ൌ Ωሺ2ݐ, X୧
ିଵሻ ൅

 X୧
ିଶ୲Ωሺ୦ሻሺX୧

ିଵሻ = 0. Thus, Forney’s error evaluation formula can be rewritten as

௜ܻ ൌ െ ௜ܺ
ିሺ௠బାଶ௧ିଵሻΩሺ୦ሻ൫ ௜ܺ

ିଵ൯
Λᇱ൫ ௜ܺ

ିଵ൯
ൌ െ

ሻݖ௠బାଶ௧Ωሺ୦ሻሺݖ
zΛᇱሺݖሻ ቤ

௭ୀ ௑೔
షభ

Eq. (6-10)

This variation of the error evaluation formula has certain architectural advantages. Note that

the choice ݉଴ ൌ െ2ݐ ൌ ݊ െ .is preferable if Eq. (6-10) is to be used ݐ2

86

6.5.1.3 Further Reformulation

Since the updating of all four polynomials is identical, the discrepancies can be calculated

using an ELU block. Unfortunately, for ݎ ൌ 0,1, … … ݐ2, െ 1, , the discrepancy ߜ௥ሺݎሻ is

computed in processor PE0r . Thus, multiplexers are needed to route the appropriate latch

contents to the control unit and to the ELU block that computes Λሺݎ ൅ 1, ݎሻand Bሺݖ ൅ 1, . ሻݖ

Additional reformulation of the iBM algorithm, as described next, eliminates these

multiplexers [6]. We use the fact that for any ݅ ൏ ,ݎ ሻ cannot affect the value ofݎ௜ሺߠ ሻ andݎ௜ሺߜ

any later discrepancy ߜ௥ା௝ሺݎ ൅ ݆ሻ. Consequently, we need not store ߜ௜ሺݎሻ and ߠ௜ሺݎሻ for ݅ ൏ .ݎ

Thus, for ൌ 0,1, … … ݐ2, െ 1 , define ߜመ௜ሺݎሻ ൌ ሻݎ௜ା௥ሺߜ and ߠ෠௜ሺݎሻ ൌ ሻݎ௜ା௥ሺߠ and the

polynomials

Δ෡ሺr, zሻ ൌ ෍ ௥ݖሻݎመ௜ሺߜ
ଶ୲ିଵ

୧ୀ଴

And

Θ෡ሺr, zሻ ൌ ෍ ௜ݖሻݎ෠௜ሺߠ
ଶ୲ିଵ

୧ୀ଴

with initial values Δ෡ሺ0, zሻ = Θ෡ሺ0, zሻ = S(z). It follows that these polynomial coefficients are

updated as ߜመ௜ሺݎ ൅ 1ሻ ൌ ݎ௜ାଵା௥ሺߜ ൅ 1ሻ ൌ .ሻݎሺߛ ሻݎ௜ାଵା௥ሺߜ െ .ሻݎሺߛ = ሻݎ௜ା௥ሺߠሻݎ௥ሺߜ ሻݎመ௜ାଵሺߜ െ

ሻݎ෠௜ሺߠሻݎመ଴ሺߜ while θన෡ ሺr ൅ 1ሻ ൌ θ୧ାଵା୰ሺr ൅ 1ሻ is set either to ߜ௜ାଵା௥ሺݎሻ ൌ ሻ or toݎመ௜ାଵሺߜ

ሻݎ௜ାଵሺߠ ൌ ௥ߜ ሻ . Note that the discrepancyݎ෠௜ሺߠ (r) = ߜመ଴ (r) is always in a fixed (zero-th)

position with this form of update. As a final comment, note this form of update ultimately

produces

Δ෡ሺ2t, zሻ ൌ ሻݐଶ௧ሺ2ߜ ൅ ݖሻݐଶ௧ାଵሺ2ߜ ൅ ڮ ൌ Ωሺ୦ሻሺ2ݐ, ሻݖ

and, thus, Eq. (6-10) can be used for error evaluation in the CSEE block. The riBM

algorithm is described by the following pseudo code.

Algorithm 6-2

 [6] ࢓ࢎ࢚࢏࢘࢕ࢍ࢒࡭ ࡹ࡮࢏࢘ ࢋࢎࢀ

 :࢔࢕࢏࢚ࢇࢠ࢏࢒ࢇ࢏࢚࢏࢔ࡵ

଴ሺ0ሻߣ ൌ ܾ଴ሺ0ሻ ൌ ௜ሺ0ሻߣ ,1 ൌ ܾ௜ሺ0ሻ ൌ ݅ ݎ݋݂ ,0 ൌ 1,2, … , ሺ0ሻ݇ ,ݐ ൌ 0, ሺ0ሻߛ ൌ 1

,௜ݏ :࢚࢛࢖࢔ࡵ ݅ ൌ 0, 1 . . . ݐ2, െ 1.

መ௜ሺ0ሻߜ ൌ ෠௜ሺ0ሻߠ ൌ ௜ ሺ݅ ൌݏ 0; . . . ; ݐ2 െ 1ሻ

87

ൌ ݎ ࢘࢕ࢌ ࢕ࢊ 1 ݐ2 ࢒࢏࢚࢔࢛ 1 ࢖ࢋ࢚࢙ 0

 ࢔࢏ࢍࢋ࢈

.ࡹ࡮࢏࢘ ࢖ࢋ࢚ࡿ ૚ ߣ௜ ሺݎ ൅ 1ሻ ൌ .ሻݎሺߛ ሻ; ሺ݅ ൌݎሻܾ௜ିଵ ሺݎመ଴ሺߜ ሻ െݎ௜ ሺߣ 0, … ݐ2, െ 1ሻ

ݎመ௜ሺߜ ൅ 1ሻ ൌ .ሻݎሺߛ ሻݎመ௜ାଵሺߜ െ .ሻݎመ଴ሺߜ ሻ; ሺ݅ ൌݎ෠௜ሺߠ 0, … ݐ2, െ 1ሻ

.ࡹ࡮࢏࢘ ࢖ࢋ࢚ࡿ ૛ ࢌ࢏ ሺ ߜመ଴ሺݎሻ ് ሻݎሺ݇ ࢊ࢔ࢇ 0 ൒ 0 ሻ

 ࢔ࢋࢎ࢚

 ࢔࢏ࢍࢋ࢈

 ܾ௜ ሺݎ ൅ 1ሻ ൌ ሻ; ሺ݅ ൌݎ௜ሺߣ 0, 1, . . . , ሻݐ

൅ ݎ෠௜ ሺߠ 1ሻ ൌ ;ሻݎመ௜ାଵሺߜ ሺ݅ ൌ 0, 1, . . . , ݐ2 െ 1ሻ

൅ ݎሺߛ 1ሻ ൌ ሻݎመ଴ ሺߜ

 ݇ሺݎ ൅ 1ሻ ൌ െ ݇ሺݎሻ െ 1

 ࢊ࢔ࢋ

 ࢋ࢙࢒ࢋ

 ࢔࢏ࢍࢋ࢈

 ܾ௜ ሺݎ ൅ 1ሻ ൌ ܾ௜ିଵሺݎሻ; ሺ݅ ൌ 0, 1, . . . , ሻݐ

൅ ݎ෠௜ ሺߠ 1ሻ ൌ ሻ; ሺ݅ ൌݎ෠௜ሺߠ 0, 1, . . . , ݐ2 െ 1ሻ

൅ ݎሺߛ 1ሻ ൌ ሻݎሺ ߛ

 ݇ሺݎ ൅ 1ሻ ൌ ݇ ሺݎሻ ൅ 1

 ࢊ࢔ࢋ

 ࢊ࢔ࢋ

ሻ; ሺ݅ ൌݐ௜ሺ2ߣ :࢚࢛࢖࢚࢛ࡻ 0, 1, . . . , ;ሻݐ ߱ሺ௛ሻሺ2ݐሻ ൌ ;ሻݐመ௜ሺ2ߜ ሺ݅ ൌ 0, 1, . . . , ݐ െ 1ሻ

Next, we consider architectures that implement the riBM algorithm.

6.6 High-Speed Reed–Solomon Decoder Architectures

As in the iBM architecture described in Section Error! Reference source not found., the

riBM architecture consists of a reformulated discrepancy computation (rDC) block connected

to an ELU block.

6.6.1 The rDC Architecture

 The rDC block uses processor PE1 shown in Figure 6-14 and the rDC architecture shown in

Figure 6-15. Notice that processor PE1 is very similar to processor PE0 of

Figure 6-13.

88

Figure 6-14: Processor Element 1 (PE1) [6]

Figure 6-15: The reformulated Discrepancy Computation (rDC) Architecture [6]

Obviously, the hardware complexity and the critical path delays of processors PE0 and

PE1 are identical, we get that ௥ܶ஽஼ ൌ ௠ܶ௨௟௧ ൅ ௔ܶௗௗ. Note that the delay is independent of

the error-correction capability ݐ of the code. The hardware requirements of the architecture in

Figure 6-15 are 2ݐ PE1 processors, that is, 4ݐ latches, 4ݐ multipliers, 2ݐ adders, and 2ݐ

multiplexers, in addition to the control unit, which is the same as that in iBM.

89

Figure 6-16: The Systolic riBM Architecture [6]

6.6.2 The riBM Architecture

The overall riBM architecture is shown in Figure 6-16 . It uses the rDC block of Figure 6-15

and the ELU block in

Figure 6-13. Note that the outputs of the ELU block do not feed back into the rDC block.

Both blocks have the same critical path delay of ௥ܶ஽஼ ൌ ாܶ௅௎ ൌ ௠ܶ௨௟௧ ൅ ௔ܶௗௗ and since

they operate in parallel, riBM architecture achieves the same critical path delay:

௥ܶ௜஻ெ ൌ ௠ܶ௨௟௧ ൅ ௔ܶௗௗ

which is less than half the delay ௜ܶ஻ெ of the enhanced iBM architecture [6].

At the end of the 2ݐ -th iteration,the ࡱࡼ૚ s, contain the coefficients of

Ωሺ୦ሻሺ2ݐ, ݐሻ which can be used for error evaluation. Thus, 2ݖ clock cycles are used to

determine both Λሺݖሻ and Ωሺ୦ሻሺݖሻ. Ignoring the control unit, the hardware requirement of this

architecture is 3ݐ ൅ 1 processors, that is, 6ݐ ൅ 2 latches, 6ݐ ൅ 2 multipliers, 3ݐ ൅ 1 adders,

and 3ݐ ൅ 1 multiplexers. This compares very favorably with the 6ݐ ൅ 2 latches, ݐ5 ൅ 3

multipliers, 3ݐ ൅ 1 adders, and 2ݐ ൅ 1 multiplexers needed to implement the enhanced iBM

architecture in which both the error-locator and the error-evaluator polynomial are computed

90

in 2ݐ clock cycles. Using only ݐ െ 1 additional multipliers and ݐ additional multiplexers, we

have reduced the critical path delay by more than 50%. Furthermore, the riBM architecture

consists of two systolic arrays and is thus very regular [6].

6.6.3 The RiBM Architecture

It is possible to eliminate the ELU block entirely, and to implement the BM algorithm in an

enhanced rDC block in which the array of 2ݐ PE1 processors are lengthened into an array of

૜࢚ ൅ ૚ PE1 processors as shown in Figure 6-17.

Figure 6-17: The homogeneous Systolic RiBM architecture [6]

In this completely systolic architecture, a single array computes both Λሺݖሻ and

Ωሺ୦ሻሺݖሻ. Since the 1+ ݐ PE0 processors eliminated from the ELU block re-appear as the 1+ ݐ

additional PE1 processors, the RiBM architecture has the same critical path delay as the

riBM architecture. However, its extremely regular structure offers some advantage in VLSI

circuit layouts.

An array of PE0 processors in the riBM architecture (see Figure 6-16) carries out the

same polynomial computation as an array of PE1 processors in the RiBM architecture (see

Figure 6-17), but in the latter array, the polynomial coefficients shift left with each clock

pulse. Thus, in the RiBM architecture, suppose that the initial loading of ࡱࡼ૚૙, ,૚૚ࡱࡼ

 ,૚૜࢚ି૚,are loaded with zerosࡱࡼ,… ,૚૛࢚ା૚ࡱࡼ ,૚૛࢚ࡱࡼ ૚૛࢚ି૚, is as in Figure 6-15, whileࡱࡼ,…

91

and the latches in ࡱࡼ૚૜࢚ are loaded with 1 א ሺ2௠ሻ . Then, as the iterations proceed, theܨܩ

polynomials Δ෡ሺݎ, ,ݎሻand Θ෡ሺݖ ሻ are updated in the processors in the left-hand end of the arrayݖ

(effectively Δሺݎ, ,ݎሻ, and Θሺݖ .(ሻ, get updated and shifted leftwardsݖ

After 2ݐ clock cycles, the coefficients of Ωሺ୦ሻሺݖሻare in processors ࡱࡼ૚૙–ࡱࡼ૚࢚ି૚ .

Next, note that ࡱࡼ૚૜࢚ contains Λሺ0, ,ሺ0ܤ ሻ andݖ ,ݎሻ, and as the iterations proceed, Λሺݖ ሻandݖ

Bሺݎ, ሻ andݎ௜ሺߣ ሻshift leftwards through the processors in the right-hand end of the array, withݖ

ܾ௜ሺݎሻ being stored in processor ࡱࡼ૚૜࢚ି࢘ା૚ . After 2ݐ clock cycles, processor ࡱࡼ૚࢚ା࢏ contains

ሻݐሻ and ܾ௜ሺ2ݐ௜ሺ2ߣ for ݅ ൌ 0,1, … , ݐ . Thus, the same array is carrying out two separate

computations. These computations donot interfere with one another. On the other hand, since

deg൫Δሺݎ, ሻ൯ݖ ൌ degሺ ܵሺݖሻሻ ൅ deg ሺΛሺݎ, ሻሻݖ , it follows that deg ቀΔ෡ሺݎ, ሻቁݖ ൑ ݐ2 െ 1 ൅ ݎ ൅

 ݈ሺݎሻ where ݈ሺݎሻ ൌ ௥ି௞ሺ௥ሻ
ଶ

 is known to be an upper bound on deg ሺΛሺݎ, ሻሻ. It is known thatݖ

݈ሺݎሻ is a non-decreasing function of ݎ and that it has maximum value ݈ሺ2ݐሻ ൌ ݁ if ݁ ൑

ݐerrors have occurred. Hence, 2 ݐ െ 1 ൅ ݎ ൅ ݈ሺݎሻ ൏ ݐ3 െ ,ݎand thus, as Λሺ ,ݎ for all ݎ ሻ andݖ

,ݎሺܤ ሻ shift leftwards, they do not over-write the coefficients of Δ෡ݖ ሺݎ, ,ݎሻ and Θ෡ሺݖ ሻ . Weݖ

denote the contents of the array in the RiBM architecture as polynomials

 Δ෡ ሺݎ, ሻ andݖ Θ෡ሺݎ, ሻ with initial values Δ෡ݖ ሺ0, ሻ andݖ Θ෡ሺ0, ሻݖ ൌ ܵሺݖሻ൅ ݖଷ௧ . The RiBM

architecture [6] implements the following pseudo code.

Algorithm 6-3

 [6] ࢓ࢎ࢚࢏࢘࢕ࢍ࢒࡭ ࡹ࡮࢏ࡾ ࢋࢎࢀ

 :࢔࢕࢏࢚ࢇࢠ࢏࢒ࢇ࢏࢚࢏࢔ࡵ

መଷ௧ሺ0ሻߜ ൌ 1. መ௜ሺ0ሻߜ ൌ ݅ ݎ݋݂ 0 ൌ ,ݐ2 … , ݐ3 െ 1. ݇ሺ0ሻ ൌ 0, ሺ0ሻߛ ൌ 1

, ௜ݏ :࢚࢛࢖࢔ࡵ ݅ ൌ 0, 1, . . . ݐ2, െ 1.

መ௜ሺ0ሻߜ ൌ ෠௜ሺ0ሻߠ ൌ ; ௜ݏ ሺ݅ ൌ 0, . . . , 1ሻ ݐ2

ൌ ݎ ࢘࢕ࢌ 0 ׷ ૚: ݐ2 െ ࢕ࢊ 1

 ࢔࢏ࢍࢋ࢈

.ࡹ࡮࢏ࡾ ࢖ࢋ࢚ࡿ ૚ ߜመ௜ሺݎ ൅ 1ሻ ൌ .ሻݎሺߛ ሻݎመ௜ାଵሺߜ െ .ሻݎመ଴ሺߜ ݅ ሻݎ෠௜ሺߠ ൌ ሺ0, . . . , ሻݐ3

.ࡹ࡮࢏ࡾ ࢖ࢋ࢚ࡿ ૛ ࢌ࢏ ሺߜመ଴ሺݎሻ ് ሻݎሺ݇ ࢊ࢔ࢇ 0 ൒ 0

 ࢔ࢋࢎ࢚

 ࢔࢏ࢍࢋ࢈

ݎ෠௜ሺߠ ൅ 1ሻ ൌ ሻ ሺ݅ ൌݎመ௜ାଵሺߜ 0; 1; . . . ; ሻݐ3

92

൅ ݎሺߛ 1ሻ ൌ ሻݎመ଴ሺߜ

݇ሺݎ ൅ 1ሻ ൌ െ ݇ሺݎሻ െ 1

 ࢊ࢔ࢋ

 ࢋ࢙࢒ࢋ

 ࢔࢏ࢍࢋ࢈

ݎ෠௜ሺߠ ൅ 1ሻ ൌ ሻ, ሺ݅ ൌݎ෠௜ሺߠ 0; 1; . . . ; ሻݐ3

൅ ݎሺߛ 1ሻ ൌ ሻݎሺߛ

݇ሺݎ ൅ 1ሻ ൌ ݇ሺݎሻ ൅ 1

 ࢊ࢔ࢋ

 ࢊ࢔ࢋ

6.7 Comparison of Architectures

Table 6-2 summarizes the complexity of the various architectures described so far. It can be

seen that, in comparison to the conventional iBM architecture (Berlekamp’s version), the

reformulated riBM and RiBM systolic architectures require more ݐ െ 1 multipliers and

 more multiplexers. All three architectures require the same numbers of latches and adders ݐ

and all three architectures require 2ݐ cycles to solve the key equation for a ݐ -error-correcting

code. The riBM and RiBM architectures require considerably more gates than the

conventional iBM architecture (Blahut’s version), but also require only 2ݐ clock cycles as

compared to the 3ݐ clock cycles required by the latter. Furthermore, since the critical path

delay in the riBM and RiBM architectures is less than half the critical path delay in either of

the iBM architectures, the reformulated architectures significantly reduce the total time

required to solve the key equation (and thus achieve higher throughput) with only a modest

increase in gate count. More important, the regularity and scalability of the riBM and RiBM

architectures creates the potential for automatically generating regular layouts (via a core

generator) with predictable delays for various values of ݐ and m . Nonetheless, a rough

comparison is that the riBM and RiBM architectures require three times as many gates as the

hypersystolic eE architecture, but solve the key equation in one-sixth the time.

93

Table 6-2: Comparison of Hardware complexity and Path Delay [6]

 It is possible to implement the eE algorithm with complex processor elements, as

described by Shao et al. [4]. Here, the four multiplications in each processor are computed

using four separate multipliers. The architecture described in [4] uses only 2ݐ ൅ 1 processors

as compared to the 3ݐ ൅ 1 PE0 or PE1 processors needed in the riBM and RiBM

architectures, but each processor in [4] has 4 multipliers, four multiplexers, and two adders.

As a result, the riBM and RiBM architectures compare very favorably to the eE architecture

of [4]—the reformulated iBM architectures achieve the same (actually slightly higher)

throughput with much smaller complexity.

All the multiplexers in the riBM and RiBM architectures receive the same signal and

the computations in these architectures is purely systolic in the sense that all processors carry

out exactly the same computation in each cycle, with all the multiplexers set the same way in

all the processors—there are no cell-specific control signals.

6.8 Simulation and Synthesis of iBM,riBM and RiBM Architectures

We have used Xilinx Integrated Simulation Environment (ISE) v9.2 for the design process of

RS codec. Simulation and synthesis are done using Xilinx ISE Simulator and Xilinx Synthesis

Tool(XST) respectively. Target selected was Spartan-3 Xc3s500 with a speed grade -5.

6.8.1 Simulation Results for Reed Solomon Codec

Process of systematic Reed Solomon encoding for (15,9) code (where n = 15, k = 9 and m =

4) over GF(24) are shown in Figure 6-18. The first and second waveforms of the clock and

94

reset signals respectively. On the positive edge o f the clock after the reset goes low, message

symbols (3rd waveform) start emerging and transition at the negative edge of the clock. The

message polynomial used in this example simulation is as follows:

݉ሺݔሻ ൌ 5 ൅ ݔ2 ൅ ଶݔ ൅ ଷݔ6 ൅ ସݔ8 ൅ ହݔ3 ൅ ଺ݔ10 ൅ 15ݔ଻ ൅ ଼ݔ4

And the encoded polynomial is

ܿሺݔሻ ൌ 5 ൅ ݔ4 ൅ ଶݔ9 ൅ ଷݔ8 ൅ ସݔ6 ൅ 2ݔହ ൅ ଺ݔ5 ൅ ଻ݔ2 ൅ ଼ݔ ൅ 6ݔଽ ൅ ଵ଴ݔ8 ൅ 3ݔଵଵ

൅ ଵଶݔ10 ൅ 15ݔଵଷ ൅ 4ݔଵସ

Figure 6-18: Systematic RS Encoding simulation waveform

For simulation purposes, it is assumed that 3 errors have occurred during the

transmission of the code-word as the received word is as follows:

ሻݔሺݎ ൌ 5 ൅ ݔ4 ൅ ଶതതതതതതതݔ13 ൅ 8ݔଷ ൅ ସݔ6 ൅ ହݔ2 ൅ ଺ݔ5 ൅ ଻ݔ2 ൅ തതതതത଼ݔ2 ൅ ଽݔ6 ൅ ଵ଴ݔ8 ൅ ଵଵݔ3

൅ 10ݔଵଶ ൅ ଵଷݔ15 ൅ 6ݔଵସതതതതതത

Symbols in errors are shown with a bar above them. Now, the task of the decoder is to

find out both the locations of the error and their corresponding values. i.e. the error

polynomial

݁ሺݔሻ ൌ ଶݔ4 ൅ ଼ݔ3 ൅ ଵସݔ2

Syndrome computation for this example is shown in simulation wave-form in Figure

6-19. The received word r(x) shown in the third row is input to the Syndrome Computation

95

module. As t = 3, for (15,9) code, there are 2t = 6 syndromes. Syndromes get evaluated one

cycle after the received word has entered completely into SC block. Computed syndromes are

ܵ ൌ ሼ13,3,5,4,8,5ሽ

SE_done goes high as the computation of the syndrome completes.

After the syndromes are calculated, the Key Equation Solver block computes the error-

locator and the error-evaluator polynomial. Simulation results for both iBM architecture and

RiBM architectures are presented for comparison in Figure 6-20 and Figure 6-21respectively.

It can be observed from the simulation waveforms that the error-locator and error-evaluator

polynomials are computed in about 50% less time (2t cycles) in RiBM and riBM as compared

with iBM (2t cycles). Coefficients of error-locator polynomial are indicated by lam_i and

those of error-evaluator polynomial as omg_i.

Figure 6-19: Syndrome Computation

96

Figure 6-20: Key Equation Solver Simulation for iBM Architecture

Figure 6-21: Key equation solver simulation for RiBM and riBM architecture

Figure 6-22: Error-correction

Figure 6-22 shows the results of Chein-search and Error-evaluator block. Error location

sequence indicates the location of error and err_sym are the values of the errors. CSEE_reset

enables the block and a delayed version of received signal rd_x is added with the error

sequence to get the decoded code-word symbols c_x.

6.8.2 Synthesis Results for Reed Solomon Codec:

Reed Solomon codec was synthesized for Spartan-3 speed grade-5 with various values of the

parameters n,k and t. This was accomplished by writing the Matlab code for a Verilog HDL

code generator application. Values of the parameters n and k are specified to the application

and it generates the required Verilog files in a directory ready to be synthesized by Xilinx ISE.

Synthesis report generated by XST contains details about the resource usage and maximum

attainable clock frequency which is the inverse of the critical path delay.

97

6.8.2.1 Synthesis results with changing Error-correction capability ‘t’:

Synthesis results for 4 different RS codec parameters are shown in Table 6-3 for RiBM.

RS Code
(n,k)

Slices Flip_Flops 4‐input LUTs Max.Freq in MHz.

(15,11) 164 118 300 198

(15,9) 234 162 427 204

(15,7) 302 205 551 206

(15,5) 368 247 672 208

Table 6-3: Area vs. Speed Comparison with increasing Error-correction capability (n=15)

It can be observed that as we increase the error-correction capability of the code

without changing the code-size (and hence the underlying Galois Field) there is an increase in

the area (resource consumption) however, the speed remains almost the same because we are

using same GF(16) and the critical path delay is the sum of the delays of adder and multiplier.

Results in the table are shown in the graph in Figure 6-23.

Figure 6-23: Area vs. Speed Comparison for (n,k) RS Code (n =15) for RiBM

98

Similar results are observed for n = 63. Tabulated data is as follows :

RS Code
(n,k)

Slices Flip_Flops 4‐input LUTs
Max.Freq(MHz

)

(63,55) 574 290 1057 164

(63,47) 1107 537 2034 160

(63,31) 2179 1123 4017 155

Table 6-4: Area vs. Speed Comparison with increasing Error-correction capability (n=63)

These results are displayed in the graph in Figure 6-24.

Figure 6-24: Area vs. Speed Comparison for (n,k) RS Code (n =63) for RiBM

As we increase the value of n, we operate in larger Galois Fields with multipliers having

greater critical path delays and lower maximum clock period. This can be observed by the

graph in Figure 6-25

99

Figure 6-25: Increase in critical path delay with increasing code size

Figure 6-26 compares three different inversion-less BM architectures. These architectures

when synthesized for (15,9) show that they use almost the same number of slices, flip-flops

and LUT (look up tables). However, the systolic and homogeneous architecture of RiBM

makes it the fastest i.e. with the minimum critical path delay.

Figure 6-26: Area-Speed comparison of iBM, riBM and RiBM architectures

This chapter concludes that application of algorithmic transformations to the

Berlekamp–Massey algorithm result in the riBM and RiBM architectures whose critical path

delay is less than half that of conventional architectures such as the iBM architecture. The

riBM and RiBM architectures use systolic arrays of identical processor elements.

100

CHAPTER 7

CONCLUSIONS AND FUTURE WORK

SUGGESTIONS

7.1 Conclusions

This work aimed at investigation, simulation and implementation of various Reed Solomon

encoding and decoding architectures as well as development of a code acquisition system for

Direct sequence spread spectrum communication systems. Simulation and programming was

done in Matlab while HDL implementation and synthesis were carried out in Xilinx Integrated

Simulation environment.

Reed Solomon decoding algorithms implemented in Matlab include Berlekamp-

Massey(BM) algorithm, Extended Euclidean (eE) algorithm, Berlekamp-Welch(BW) modular

decoding approaches, Guruswami-Sudan(GS) list decoding algorithm, Inversion-less

Berlekamp Massey algorithm (iBM), Reformulated versions of iBM i.e. riBM and RiBM.

Algorithms are compared based upon their structure, operational complexity, and critical path

delay and error-correction capability.

Guruswami-Sudan decoding algorithm can correct errors beyond half the minimum

bound but involves high computational cost. We observed that BM algorithm which requires

division in each iteration and results in irregular architectures can be transformed to an

inversionless form (iBM). However, iBM algorithm’s critical path delay is dependent upon

the error-correction capability of the code which is highly undesirable. Reformulated versions

of iBM i.e. riBM and RiBM have a very regular and systolic architecture having critical path

delay lowest among all the current decoding approaches. iBM and its reformulated forms were

implemented in Verilog HDL and their simulation was carried out using Modelsim and Xilinx

ISE. A Reed Solomon Codec depends upon three parameters n (block length), k (message

length) and t (no. of correctable errors) only two of which are independent. These parameters

101

may be required to change in any step during the receiver design. So, in order to add

flexibility for the system designer, a scalable and parameterizable code must be written.

Adding this flexibility in Verilog language directly is very tough if not impossible. Solution to

this problem is obtained by writing a Code generator in Matlab which is capable of generating

all the Verilog source files for the required set of parameters.

Second part of the work involves the implementation of a code acquisition system for

direct sequence spread spectrum (DSSS) systems. A parallel search acquisition strategy is

adopted and correlation is performed in frequency domain for computational efficiency. Built-

in efficient Xilinx cores for Fast-Fourier Transform and Complex Multiplier are used by this

design.

7.2 Future Work Suggestions

This thesis involved work on two very important components of a digital communication

receiver, that is, Synchronization and Channel Coding. The implemented schemes can be used

with other receiver modules to integrate into a functional receiver. For example, a DSSS

tracking system should accompany the Code acquisition system for fine synchronization.

Similarly, a concatenated channel coding scheme utilizing both Convolutional codes and Reed

Solomon codes can be implemented to get greater coding gains.

The critical path delay of Reed Solomon decoding architectures depends upon the

delay of the Galois Field (GF) multiplier. Use of an efficient and fast GF multiplier can

increase the speed of the implemented architectures substantially.

VLSI architectures for interpolation based Reed Solomon decoder architectures can be

derived and implemented for better error-correction capability. This work can also be

extended by utilizing soft-decision reliability information from the channel for better decoding

performance.

102

REFERENCES

[1] T.K. MOON, Error correction coding, mathematical methods and algorithms, New

Jersey, John Wiley and Sons, Inc., 2005.

[2] H. O. BURTON, Inversion-less Decoding of Binary BCH codes, IEEE Transactions on

Information Theory, Vol. IT-17, No. 4, July 1971, pp. 464-466.

[3] I.S. REED, M.T. SHIH, and T.K. TRUONG, VLSI design of inverse-free Berlekamp-

Massey algorithm, IEEE proceedings-E, Vol 138, No. 5. Sep. 1991, pp. 295-298.

[4] H. M. SHAO, T.K. TRUONG, L.J. DEUTSCH, J. H. YUEN, and I.S. REED, A VLSI

design of a Pipeline Reed-solomon decoder, IEEE transactions on Computers, Vol. c-

34, No. 5, May 1985.

[5] M. MEHNERT, D.F. DROSTE, and D. Schiel, VHDL implementation of a (255,191)

Reed Solomon Coder for DVB-H, IEEE 1-4244-0216-6/06, 2006.

[6] D.V. SARWATE and N.R. SHANBHAG, High-speed Architectures for Reed-Solomon

Decoders, IEEE Transactions on VLSI systems, Vol. 9, No. 5, Oct. 2001. pp. 641-655.

[7] W.J. GROSS, F.R. KSCHINCHANG, R. KOETTER, and P.G. GULAK, Towards a

VLSI architecture for Intepolation-based Soft-decision Reed-Solomon Decoders,

Springer Science, Journal of VLSI signal processing 39, 2005, pp. 93-111.

[8] R.J. McEleice, The Guruswami-Sudan Decoding Algorithm for Reed-Solomon Codes,

IPN progress report 42-153, May 2003.

[9] A. AHMED, R. KOETTER, and N. SHANBHAG, VLSI architectures for Soft-

decision decoding of Reed-Solomon Codes, Coordinated Science Lab., UIUC,

Draft,Feb. 2003

[10] R. BOSE, Information Theory, Coding and Cryptography, Tata Mc Graw-Hill, New

Delhi, 2003.

[11] Fast Fourier Transform v4.1, Product Specification, www.xilinx.com, DS260 Apr.

2007.

[12] N.A. MIR, F. ABBAS, Implementation of Reed Solomon Decoder and Optimization

for Tri-media Processor, Thesis, College of E&ME, Rawalpindi, 1997.

103

[13] A. IQBAL, Scalable VLSI architecture for Reed Solomon Codec, Thesis report,

College of E&ME, Rawalpindi, 2003.

[14] M. A. ATTA, Design and Implementation of Digital Transmitters, M.S. Thesis,

College of E&ME, Rawalpindi ,2001

[15] S. HAYKIN, Communication Systems, 4th Edition, John Wiley and Sons, New Jersey,

2001.

[16] B. SKLAR, Digital Communications Fundamentals and Applications, Pearson

Education Private Limited.

[17] W.H. TRANTER, K.S. SHANMUGAN, T.S. RAPPAPORT, and K.L. KOSBAR,

Principles of Communication Systems Simulation, Pearson Education, New Delhi,

2004.

[18] Wikipedia Encyclopedia, www.wikipedia.org.

[19] M. SUDAN, “Decoding of Reed-Solomon codes beyond the Error-correction bound,”

J. Complexity, vol.13, pp. 180-193, 1997.

[20] L.R. WELCH and E.R. BERLEKAMP, “Error correction for Algebraic block codes”,

U.S. Patent No. 4,633,470, Dec. 30, 1986.

[21] L.R. WELCH and R.A. SCHOLTZ, “Continual Fractions and Berlekamp’s Algorithm

,” IEEE Trans. On Information Theory, vol. 25, no. 1, pp. 19-27, Jan. 1979.

[22] V. GURUSWAMI and M.SUDAN, “Improved Decoding of Reed-Solomon codes and

Algebraic Geometry codes”, IEEE Trans. Info. Theory, vol. 45, no. 6, pp. 1757-

1767,Sep. 1999.

[23] R. KOETTER, On Algebraic Decoding of Algebraic-Geometric and Cyclic Codes,

Linkoping Studies in Science and Technology, no. 419 (Ph.D. Dissertation, Department

of Electrical Engineering), Linkoping U.,1996.

[24] R. KOETTER, “Fast Generalized Minimum-Distance Decoding of Algebraic-

Geometry and Reed-Solomon Codes”, IEEE Trans. Info. Theory, vol. 42, no. 3. pp.

721-736, May 1996.

[25] R. ROTH and G. RUCKENSTEIN, “Efficient Decoding of Reed-Solomon Codes

beyond Half the Minimum Distance,” IEEE Trans. Inform. Theory, vol. 46, no. 1, pp.

246-257, Jan. 2000.

104

[26] S. GLISIC and B. VUCETIC, “Spread spectrum CDM A systems for wireless

communications,” Artech house publications, London, 1997.

[27] V.P. IPATOV, “Spread spectrum and CDMA principles and applications”, John

Wiley & Sons, West Sussex, 2005.

	title.pdf
	chap0.pdf
	chap_1.pdf
	chap_2.pdf
	chap_3.pdf
	chap_4.pdf
	chap_5.pdf
	chap6.pdf
	chap7.pdf

