
Computer-Aided Diagnostic System for Liver Lesions

By

Sobia Nawaz
May, 2008.

A Thesis Submitted to the Faculty of the

DEPARTMENT OF COMPUTER ENGINEERING

in Fulfillment of the Requirements
for the Degree of

MASTERS OF SCIENCE

WITH A MAJOR IN SOFTWARE ENGINEERING

Supervised by:

Dr. Amir Hanif Dar

Thesis committee

Lt. Col. Sajid Nazir
Lt. Col. Dr. Farooque Azam

Dr. Shaleeza Sohail

Department of Computer Engineering,
College of E & ME

NUST

College of Electrical & Mechanical Engineering

National University of Science & Technology

Computer-Aided Diagnostic System for Liver Lesions

By

Sobia Nawaz
Nov, 2007.

A Thesis Submitted to the Faculty of the

DEPARTMENT OF COMPUTER ENGINEERING

in Fulfillment of the Requirements
for the Degree of

MASTERS OF SCIENCE

WITH A MAJOR IN SOFTWARE ENGINEERING

Supervised by:

Dr. Amir Hanif Dar

Thesis committee

?

Department of Computer Engineering,
College of E & ME

NUST

College of Electrical & Mechanical Engineering

National University of Science & Technology

Abstract

Liver diseases are among the leading causes of death worldwide. The most useful approach for

controlling the growth of disease to reach at severe condition is to treat these diseases at the

early stages. Early treatment requires early diagnosis, which needs an accurate and reliable

diagnostic procedure. The aim of this study is to develop a computer-aided diagnostic (CAD)

system to achieve aforementioned objective. Computed tomography (CT) is one of the most

common and robust imaging techniques for the detection of liver lesions such as hepatocellular

carcinoma. Although in recent years the quality of CT images has been significantly improved,

however in some cases image interpretation by human beings is often limited. So we tried to

develop an automated system to detect and classify liver anomalies using CT images. Region of

interest from CT images was segmented using Active contours (snakes) algorithm [2] and

segmented image is used to extract statistical features by co occurrence matrix [4]. To facilitate

the classification of hepatic lesions, Support Vector Machine [10] and neural networks are used.

The results show that it is possible to automatically identify patients with liver lesions like

Hemengioma, Hepatoma or Cirhhosis based on texture features and that the machine

performance is marvelous and can assist human experts.

TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION..4
1.1 Motivation...…..5
1.2 Background...6
1.3 Scope of the project..8
1.4 Summary...…..........................8

CHAPTER 2: IMAGE ACQUISITION AND PREPROCESSING.......................................9
2.1 Image Acquisition and Preprocessing..10
2.2 Computed Tomography...11
2.3 Image database...13
2.4 Summary..14

CHAPTER 3: IMAGE SEGMENTATION..15
3.1 Introduction...18
3.2 Goals and difficulties…………………..…….18
3.3 Edge based Segmentation....…………...18
3.4 Region-Based Segmentation..18
 3.4.1 Basic formulation...18
 3.4.2 Region Growing...18
 3.4.3 Region Splitting and Merging..22
3.5 Active contours..23
 3.5.1 Background..24
 3.5.2 Level Sets...25
 3.5.3 Active Contours without Edges...26
 3.5.4 Runtime Analysis...32
3.6 Summary..34

CHAPTER 4: TEXTURE ANALYSIS..35
 4.1 Introduction to Texture Analysis…..36
 4.1.1 Texture…..36
 4.1.2 Background...38
 4.2 Texture Feature Extraction methods...39
 4.2.1 Statistical Approaches...39
 4.2.1.1 Co-occurrence Matrix..42
 4.2.1.2 Problems with texture parameters in use..45
 4.2.2 Structural Approaches...…...................46
 4.2.3 Spectral Approaches...47
4.3 Summary...48

CHAPTER 5: CLASSIFICATION...49
5.1 Introduction..50
5.2 History..50

5.3 Supervised Classification...51
5.4 Classification Algorithms..52
 5.4.1 Traditional Techniques...52
 5.4.2 Large Margin Algorithms...54
5.5 Summary..56

CHAPTER 6: SUPPORT VECTOR MACHINE...57
6.1 Introduction..58
6.2 Formalization...60
6.3 Soft Margin..64
6.4 Nonlinear SVM..65
 6.4.1 The Kernel Trick..66
 6.4.2 Non-Separable Data...70
 6.4.3 Properties of Kernels...….........74
6.5 Standard choices for kernels.....................………………………..........................75
 6.5.1 Properties of kernels……........................………………………......................75
 6.5.2 Radial basis function as kernel................………………………......................75
6.6 Cross validation error…..75
6.7 Summary..80

CHAPTER 7: Back propagation Neural Net..81
7.1 Introduction…………………………………………..82

7.1.1 Architecture..83
7.1.2 Algorithm...84
7.1.3 Nomenclature...85
7.1.4 Activation Function...86
7.1.5 Training Algorithm..88

7.2 Random Initialization of weights...90
7.3 Training Period..................…...91
7.4 Number of Training pairs...........................…..91
7.5 Number of hidden layers..92
7.6 Performance of Net...93

7.6.1 Momentum..93
7.6.2 Batch Updating...93
7.6.3 Adaptive Learning Rate..94
7.6.4 Delta bar delta...94

7.7 Summary..94
CHAPTER 8: Results and conclusions..95
8.1 Introduction..96
8.2 Cross Validation...97
8.3 Findings…..100
8.4 Future Directions..101
8.5 Summary……...102
References...103
LIST OF FIGURES...…..iii
LIST OF TABLES..vi

Computer-Aided Diagnostic System for Liver Lesions

By

Sobia Nawaz
Nov, 2007.

A Thesis Submitted to the Faculty of the

DEPARTMENT OF COMPUTER ENGINEERING

in Fulfillment of the Requirements
for the Degree of

MASTERS OF SCIENCE

WITH A MAJOR IN SOFTWARE ENGINEERING

Supervised by:

Dr. Amir Hanif Dar

Thesis committee

Brig. Dr Muhammad Younas Javed
Dr. Shaleeza Sohail

Dr. Ghalib Assadullah Shah

Department of Computer Engineering,
College of E & ME

NUST

College of Electrical & Mechanical Engineering

National University of Science & Technology

Abstract

Liver diseases are among the leading causes of death worldwide. The most useful approach for

controlling the growth of disease to reach at severe level is to treat these diseases at the early

stages. Early treatment requires early diagnosis, which needs an accurate and reliable diagnostic

procedure. The aim of this study is to develop a computer-aided diagnostic (CAD) system to

achieve aforementioned objective. Computed tomography (CT) is one of the most common and

robust imaging techniques for the detection of liver lesions such as hepatocellular carcinoma.

Although in recent years the quality of CT images has been significantly improved, however in

some cases image interpretation by human beings is often limited. So we tried to develop an

automated system to detect and classify liver anomalies using CT images. Region of interest

from CT images was segmented using Active contours (snakes) algorithm [2] and segmented

image is used to extract statistical features by co occurrence matrix [4]. To facilitate the

classification of hepatic lesions, Support Vector Machine [10] and neural networks are used.

The results show that it is possible to automatically identify patients with liver lesions like

Hemengioma, Hepatoma or Cirhhosis based on texture features and that the machine

performance is marvelous and can assist human experts.

Overview of Chapters

Chapter one contains a brief described of the problem statement i.e. CAD System for liver

lesions.

Chapter two contains the introduction to the technique used for image acquisition i.e. Computed

Tomography (CT).

Chapter three contains the image segmentation techniques, indicated by the range of examples.

The method used in CAD system is based on Active contours.

Chapter four contains the description of the objects or regions that have been segmented out of

an image. Detail of the Haralick co-occurrence matrices is given as it is used in the feature

extraction of CAD system.

Chapter five contains various classification algorithms.

Chapter six contains the detailed introduction of Support Vector Machine, its formalization,

nonlinear SVM and Kernel functions.

Chapter seven contains the introduction to Backpropagation, and its derivation.

TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION..4
1.1 Motivation..….5
1.2 Background..….6
1.3 Scope of the project...…8
1.4 Summary...…8

CHAPTER 2: IMAGE ACQUISITION AND PREPROCESSING.......................................9
2.1 Image Acquisition and Preprocessing..10
2.2 Computed Tomography...11
2.3 Image database...13
2.4 Summary..14

CHAPTER 3: IMAGE SEGMENTATION..15
3.1 Introduction..18
3.2 Edge based Segmentation....…………...16
3.3 Region-Based Segmentation..18
 3.3.1 Basic formulation...18
 3.3.2 Region Growing...18
 3.3.3 Region Splitting and Merging..22
3.4 Active contours..23
 3.4.1 Background..24
 3.4.2 Level Sets...25
 3.4.3 Active Contours without Edges...26
 3.4.4 Runtime Analysis...32
3.5 Summary..34

CHAPTER 4: TEXTURE ANALYSIS..35
 4.1 Introduction to Texture Analysis…..36
 4.1.1 Texture…..36
 4.1.2 Background...38
 4.2 Texture Feature Extraction methods...39
 4.2.1 Statistical Approaches...39
 4.2.1.1 Co-occurrence Matrix..42
 4.2.1.2 Problems with texture parameters in use...45
 4.2.2 Structural Approaches...46
 4.2.3 Spectral Approaches..47
4.3 Summary..48

CHAPTER 5: CLASSIFICATION...49
5.1 Introduction..50

5.2 History..50
5.3 Supervised Classification...51
5.4 Classification Algorithms..52
 5.4.1 Traditional Techniques...52
 5.4.2 Large Margin Algorithms...54
5.5 Summary..56

CHAPTER 6: SUPPORT VECTOR MACHINE...57
6.1 Introduction..58
6.2 Formalization...60
6.3 Soft Margin..64
6.4 Nonlinear SVM..65
 6.4.1 The Kernel Trick...66
 6.4.2 Non-Separable Data...70
 6.4.3 Properties of Kernels...….........74
6.5 Standard choices for kernels.....................………………………..........................75
 6.5.1 Properties of kernels……........................………………………......................75
 6.5.2 Radial basis function as kernel................………………………......................75
6.6 Cross validation error…..75
6.7 Summary..80

CHAPTER 7: Back propagation Neural Net..81
7.1 Introduction…………………………………………..82

7.1.1 Architecture..83
7.1.2 Algorithm...84
7.1.3 Nomenclature...85
7.1.4 Activation Function...86
7.1.5 Training Algorithm..88

7.2 Random Initialization of weights...90
7.3 Training Period..................…...91
7.4 Number of Training pairs...........................…..91
7.5 Number of hidden layers..92
7.6 Performance of Net..93

7.6.1 Momentum...93
7.6.2 Batch Updating..93
7.6.3 Adaptive Learning Rate...94
7.6.4 Delta bar delta..94

7.7 Summary..94

LIST OF FIGURES...…..iii
LIST OF TABLES..vi

1

Chapter no 1

Introduction

2

1.1 Motivation

Liver diseases, especially liver cancers, are among the leading causes of death

worldwide. Primary liver cancer (cancer that starts in the liver) affects approximately

1,000,000 people each year [1]. The most useful approach for reducing deaths due to

liver diseases is to treat these diseases in the early stages. Early treatment requires early

diagnosis, which requires an accurate and reliable diagnostic procedure. Medical image

processing plays an essential role in early diagnosis. Nowadays, in modern medicine,

there is a growing need of medical image analysis systems and software, in particular

for computer-aided diagnosis. The overall objective of Computer Aided Diagnostic

(CAD) systems incorporating medical imaging systems or subsystems is to enable the

early diagnosis, disease monitoring, and better treatment. The advantages of these

systems can be summarized as follows:

 Standardization Diagnoses obtained from different laboratories using similar criteria

can be verified.

Sensitivity Findings on a particular subject may be compared with a database of normal

values and/or a decision can be made by a CAD system, that whether or not an

abnormality exists.

Specificity Findings may be compared with databases for various diseases and/or a

decision can be made by the CAD system with respect to the type of abnormality.

Equivalence Results from a series of examinations of the same patient may be

compared to decide whether there is evidence of disease progression or of response to

treatment. In addition, the findings of different CAD systems can be compared to

determine which are more sensitive and specific.

Efficacy The results of different treatments can be more properly evaluated. Medical

imaging provides vital information for CAD systems.

The evolution in medical image processing and artificial intelligence techniques has

given researchers the opportunity to investigate the potential of computer-aided

diagnostic (CAD) systems for the classification of liver tissues. Development of such

systems consists of few major steps like image capturing, preprocessing the image,

segmentation of the region of interest, texture analysis and extraction of the desired

features from segmented images and finally classification of the image into different

3

diseases. Several techniques can be used for these steps, the techniques used at each

step in this thesis are mentioned in the section 3.

Currently, the confirmed diagnosis used widely for the liver cancer is needle biopsy.

The needle biopsy, however, is an invasive technique. It has risks of bleeding and

infection and is generally not recommended. Therefore the examination of liver tissue

pathology is performed with various medical imaging modalities such as

ultrasonography (US), computed tomography (CT), or magnetic resonance imaging

(MRI). One of the most common and robust imaging techniques for the detection of

liver lesions such as hepatocellular carcinoma is CT. These medical images are

interpreted by radiologists. Although in recent years the quality of CT images has been

significantly improved, however in some cases image interpretation by human beings is

often limited due to the non-systematic search patterns of themselves, the presence of

structural noise in the image, and the presentation of complex disease states requiring

the integration of vast amount of image data and clinical information.

Recently, computer-aided diagnosis (CAD) systems’ output (from a computerized

analysis of medical images) is used by the radiologists as a ‘‘second opinion’’ in

detecting lesions, assessing extent of disease, and making diagnostic decisions, is being

used to improve the interpretation components of medical imaging . In addition,

computer-aided surgery (CAS) that is the future technology in which surgery is

performed on computerized surgical planning and image-guided surgery by analyzing

region-of-interest (ROI) in the medical image. Volume measurement is also of major

importance in different fields of medical imaging where physicians need some

quantitative assessments for surgical decisions. This thesis presents a technique for

computer-aided identification of few liver lesions.

1.2 Background

Various approaches for CAD systems have been proposed, most of them using US B-

scan, MR and CT images, based on different image characteristics, such as texture

features, estimated from first and second-order gray level statistics, fractal dimension

estimators and Gabor Texture. The usefulness of texture analysis for medical images

dates back to the 1970s, when images were first digitized. Suttan and Hall used texture

measures in pulmonary disease identification experiments to discriminate between

4

normal and abnormal lungs. Chien and Fu used texture measures for the classification

of lung diseases and Hall performed pneumoconiosis classification from radiographs of

coal workers [2]. These studies were mostly aimed at signifying the usefulness of

texture features to detect normal-abnormal class differences, combined with various

classifiers. Texture analysis of liver CT images based on the Spatial Gray Level

Dependence Matrix (SGLDM), has been applied to a probabilistic Neural Network

(NN) for the characterization of hepatic tissue (Hepatoma and Hemangioma) [3]. A

CAD to classify liver tissue has been proposed based on different sets of features and

using ensembles of neural network classifiers [4]. These techniques helped to reduce

the work load of radiologists, In this paper, a CAD system based on texture

features of liver CT images, using multiple SVM classification scheme, is presented

aiming to discriminating four hepatic tissue types: Normal, Hemangioma, Hepatoma

and Cirrhosis.

The Liver

The Liver is thought to be one of the most important organs in the body as it is not only

the largest organ in the human body but also plays a role in some vital bodily functions,

The liver regulates most chemical levels in the blood and excretes a product called bile,

which helps carry away waste products from the liver. All the blood leaving the

stomach and intestines passes through the liver. The liver processes this blood and

breaks down the nutrients and drugs into forms that are easier to use for the rest of the

body. More than 500 vital functions have been identified with the liver [5]. Some of

which include fuel management, nitrogen excretion, water balance and detoxification.

Interestingly the liver is the only organ that can regenerate itself when a portion is

removed. It is positioned in the upper right of the abdomen under the lower left ribs as

shown in the figure 1.1, and due to its softness will tend to be shaped differently in each

person. Almost a third of the total blood within the human body travels through the

liver each minute so it is essential that a surgeon take extreme care while operating, to

avoid the harm to major blood vessels [6].

5

Figure 1.1: Location of liver in the body

Research in CAD for both mammogram and chest radiographs is rapidly growing;

however, CAD research for liver lesions is to be insufficient because the liver

segmentation that plays an important role for CAD is difficult. CAD systems help to

reduce the work load of radiologists, as it is difficult, even for experienced doctors, to

make a 100% accurate diagnosis. In order to assist clinicians in diagnosis and to reduce

the number of required biopsies Computer Aided Diagnosis (CAD) systems for the

characterization of hepatic tissue can be employed [52].

1.3 Methodology

The generic design of a CAD system is presented in Figure.1. Regions of Interest

(ROIs) segmented by Active contour (energy minimizing) algorithm on CT images

were driven to a feature extraction module, where six different statistical texture feature

descriptors were measured on the co-occurrence matrices, which were calculated for

five different distances and four different angles. The full feature sets were fed to the

Support Vector Machine classifier. SVM classifier is trained and tested in hierarchical

order where the first SVM classifier was able to classify between normal and diseased

tissues, Image classified as diseased is then fed to the second SVM used to classify

between Hemangioma and other disease (Not Hemangioma), Image classified as other

disease is then fed to the third SVM which classifies between Hepatoma and Cirrhosis.

6

Figure 1.2: Generic design off CAD

1.4 Scope of the Project

• To provide an interface to the user to use CAD system.

• The user should be able to select an image file and segment its ROI.

• The user should be able to extract the features from ROI automatically.

• To provide the facility to train the system using support vector machine.

• To provide the facility to test the image for liver lesions.

1.5 Summary

The main purpose of the material presented in this chapter is to provide an introduction

of the CAD system, its need in the medical diagnostic systems, and a brief description

of the scope of the software, more importantly about past, current and future areas of

application of this technology.

7

Chapter no 2

IMAGE ACQUISITION AND PREPROCESSING

8

2.1 Introduction
To design the Computer Aided Diagnostic (CAD) system, a database of CT images was

acquired from human livers. The images were classified into different classes of liver

lesions based on traditional histological analysis. This chapter describes the image

acquisition methodology used, and how the database was created.

2.2 Image Acquisition
The study of medical imaging is concerned with the interaction of all forms of radiation

with tissue and the development of appropriate technology to extract clinically useful

information (usually displayed in an image format) from observation of this technology.

The examination of liver tissue pathology is performed with various medical imaging

modalities such as ultrasonography (US), computed tomography (CT), or magnetic

resonance imaging (MRI). One of the most common and robust imaging techniques for the

detection of liver lesions such as hepatocellular carcinoma is CT. Although in recent years

the quality of CT images has been significantly improved, however in some cases image

interpretation by human beings is often limited that’s why even experienced radiologists

resort to confirmation of diagnosis by administration of contrast agents or invasive

procedures. Computerized decision support systems can be employed to assist clinicians in

diagnosis and to reduce the number of required invasive procedures.

Figure 2.1: CT Scanning

9

 2.3 Computed Tomography (CT)
In the mid 1970s, computed axial tomography (CAT) scanners became available, thus

revolutionizing medical imaging. Cumbersome, expensive, and time consuming at first,

and images are acquired slice-by-slice. An X-ray tube is rotating around patient to acquire

a slice then patient is moved to acquire the next slice [7].

 Figure 2.2: Slice-by-slice scanning

Newer generations of CT scanners permit helical (or spiral) scans of complete organ

volumes within seconds. The fast scans allow images during breath-holding, thus

minimizing respiratory motion artifacts. This technology can also be applied to the chest,

abdomen, pelvis, brain and extremities. A patient is moved 10mm/s (24cm / single scan) to

get 1mm-1cm thick slices, no shifting of anatomical structures and slice can be

reconstructed with an arbitrary orientation with (a single breath) volume. We get better

spatial resolution (better reconstruction) by parallel system of detectors which generates a

large data of thin slices by capturing slices at a time.

10

Figure 2.3: CT suite and monitoring desk

Within the gantry, a row of radiation detectors encircles the patient, while a rotating x-ray

beam passes through the patient. The multiple transmitted beams are registered and back-

projected, so that a transaxial “slice” of high resolution and contrast can be generated.

Newer computational techniques have made it possible to create three-dimensional

renderings as well as coronal (front to back) and sagittal (side to side) plane slices [7].

Figure 2.4: Spiral (volume) scanning

11

CT is an imaging based on a mathematical formalism that states that if an object is viewed

from a number of different angles than a cross-sectional image of it can be computed

(reconstructed).

2.4 Image Database
CT images of liver used in this project are collected from CT is us [8]. CT is us an

organization created and maintained by The Advanced Medical Imaging Laboratory

(AMIL). The AMIL is part of the Department of Radiology at the Johns Hopkins Medical

Institutions in Baltimore, MD. AMIL is a multidisciplinary team dedicated to research,

education, and the advancement of patient care using medical imaging with a focus on

spiral CT and 3D imaging.

Each CT images is diagnosed by experience radiologists by traditional histological

analysis. Normally medical images are available in DICOM format and their format is

changed in order to use them in image processing, but images at CT is us are provided in

JPEG format. So these images are used without any changes in their format. A database of

160 gray scale CT images from different patients was developed.

A subset of exemplar images of each class was selected from the original set: 150 images

of (histology-verified) diseased tissue i.e. 50 images of Hemengioma, 50 images of

Hepatoma and 50 images of Cirhhosis, and 32 images of normal tissue. This dataset was

used to study texture classification schemes for liver lesions detection.

Figure 2.5: CT image containing liver

12

2.5 Summary
 The main purpose of the material presented in this chapter is to provide introduction to the

technique used for image acquisition i.e. Computed Tomography (CT). It’s a way of

capturing the image. After that detail of database used is provided.

13

Chapter no 3

Image Segmentation

14

3.1 Introduction
Segmentation subdivides an image into its constituent regions or objects. The level to

which the subdivision is carried depends on the problem being solved. That is the

segmentation should stop when the objects of interest in an application have been isolated.

Segmentation accuracy determines the eventual success or failure of computerized analysis

procedures. Image segmentation algorithms generally are based on one of two basic

properties of intensity values: discontinuity and similarity. In the first category, the

approach is to partition an image based on abrupt changes in intensity, such as points, lines

and edges in an image. The principal approaches in the second category are based on

partitioning an image into regions that are similar according to a set of predefined criteria.

Thresholding, region growing, region splitting and merging are examples of methods in

this category [9]. This thesis uses contour based techniques used for image segmentation,

given in detail below.

3.2 Discontinuities based Segmentation

There are several techniques for detecting the three basic types of gray-level discontinuities

in a digital image: points, lines and edges. The most common way to look for

discontinuities is to run a mask through the image.

The detection of isolated points in an image is straightforward in principle. Using the mask

shown in the Figure 3.1, we say that a point has been detected at the location on which the

mask is centered.

-1 -1 -1

-1 8 -1

-1 -1 -1

Figure 3.1: Point detection mask

An isolated point (a point whose gray level is significantly different from its background

and which is located in a homogenous or nearly homogenous area) will be quite different

15

from its surroundings, and thus be easily detectable by this type of mask. Note that the

mask coefficients sum to zero, indicating that the mask response will be zero in the area of

constant gray level [10].

Consider the masks shown in Figure 3.2, if the first mask was moved around an image, it

would respond more strongly to lines (one pixel thick) oriented horizontally. With a

constant background, the maximum response would result when the line passed through

the middle row of the mask. The second mask responds best to lines oriented at +45°; the

third mask to vertical lines; and the fourth mask to lines in the -45° direction. The preferred

direction of each mask is weighted with a larger coefficient (i.e., 2) than other possible

directions.

Figure 3.2: Line detection masks

Edge detection is the most common approach for detecting meaningful discontinuities in

gray level. An edge is a set of connected pixels that lie on the boundary between two

regions. First and second order derivatives are used for the detection of edges in an image.

The first derivative is positive at the points of transition into and out of the ramp as we

move from left to right along the profile; it is constant for the points in the ramp; and is

zero in the areas of constant gray level. The second derivative is positive at the transition

associated with the dark side of the edge, negative at the transition associated with the light

side of the edge, and zero along the ramp and in areas of constant gray levels.

Figure 3.3: Two regions separated by vertical edge

-1 -1 -1

2 2 2

-1 -1 -1

2 -1 -1

-1 2 -1

-1 -1 2

-1 2 -1

-1 2 -1

-1 2 -1

-1 -1 2

-1 2 -1

2 -1 -1

16

Magnitude of the first derivative is used to detect the presence of an edge at a point in an

image (i.e., to determine if a point is on a ramp). Similarly, the sign of the second

derivative can be used to determine whether an edge pixel lies on the dark or light side of

an edge.

3.3 Region-Based Segmentation
In this section we discuss segmentation techniques that are based on finding the regions

directly. Theses are region growing, region splitting and region merging.

3.3.1 Basic formulation

Let R represent the entire image region. We may view segmentation as a process that

partitions R into n subregions, R1,R2,….Rn, such that

 n

(a) URi = R.
 i=1

(b) R i is a connected region, i=1,2…., n.

(c) Ri∩Rj=Ø for all i and j, i ≠ j.

(d) P(Ri)= TRUE for i=1,2,3,…,n.

(e) P(Ri U Rj)=FALSE for i ≠ j.

Here, P(Ri) is a logical predicate defined over the points in set Ri and Ø is the null set.

Condition (a) indicates that the segmentation must be complete; that is, every pixel must be

in region. Condition (b) requires that points in a region must be connected in some

predefined sense. Condition (c) indicates that the region must be disjoint. Condition (d)

deals with the properties that must be satisfied by the pixels in a segmented region, for

example P(Ri)=TRUE if all pixels in Ri have the same gray level. Finally, Condition (e)

indicates that regions Ri and Rj are different in the sense of predicate P.

17

3.3.2 Region Growing

Region growing is a procedure that groups pixels or sub regions into larger regions based

on predefined criteria. The basic approach is to start with a set of “seed” points and form

these grow regions by appending to each seed those neighboring pixels that have properties

similar to the seed (such as specific range of gray level or color). Selecting a set of one or

more starting points often can be based on the nature of the problem. When a priori

information is not available, the procedure is to compute at every pixel the same set of

properties that ultimately will be used to assign pixels to regions during the growing

process. If the result of these computations shows clusters of values, the pixels whose

properties place them near the centriod of these clusters can be used as seeds [11].

The selection of similarity criteria depends not only on the problem under consideration,

but also on the type of image data available. For example the analysis of land-use satellite

imagery depends heavily on the use of color. This problem would be significantly more

difficult, or even impossible, to handle without the inherent information available in color

images. When the images are monochrome, region analysis must be carried out with the

set of descriptors based on gray levels and spatial properties (such as moments or texture).

Descriptors alone can yield misleading results if connectivity or adjacency information is

not used in the region-growing process. For example, visualize a random arrangement of

pixels with only three distinct gray-level values. Grouping pixels with the same gray level

to form a “region” without paying attention to connectivity would yield a segmentation

result that is meaningless in the context of this discussion.

Another problem in region growing is the formation of a stopping rule. Basically, growing

a region should stop when no more pixels satisfy the criteria for inclusion in the region.

Criteria such as gray level, texture, and color are local in nature and do not take into

account the “history” of region growth. Additional criteria that increase the power of

region-growing algorithm utilize the concept of size, likeness between candidate pixel and

the pixel grown so far(such as comparison of gray level of a candidate and the average

gray level of grown region), and the shape of the region being grown. The use of these

types of descriptors is based on the assumptions that a modal of expected results is at least

partially available.

18

Figure 3.4: (a) Image showing defective welds. (b) Seed points. (c) Result of region

growing. (d) Result after all the pixels in (c) were analyzed for 8-connectivity to the

seed points

Figure 3.5: Histogram of Fig. 3.4(a)

Figure 3.4(a) shows an X-ray image of a weld (the horizontal dark region) containing

several cracks and porosities (the bright, white streaks running horizontally through the

middle of the image). Region growing is used to segment the regions of weld failures.

These segmented features could be used for inspection, for inclusion in the database of

historical studies, for controlling an automated welding system, and for other numerous

applications. The first order of business is to determine the initial seed points. In this

a b

c d

19

application, it is known that the pixels of defective welds tend to have the maximum

allowable digit value (255 in this case). Based on this information, we selected as starting

points all pixels having values of 255 the points thus extracted from the original image are

shown in the Figure 3.4(b). Note that many of the points are clustered into seed regions.

The next step is to choose criteria for region growing. In this particular example we choose

two criteria for a pixel to be annexed to a region [12]:

(1) The absolute gray level difference between any pixel and the seed had to be less

than 65. This number is based on the histogram shown in the Figure 3.5 and

represents the difference between 255 and the location of the first major valley to

the left, which is representative of the highest gray level value in the dark region.

(2) To be included in one of the regions, the pixel had to be 8-connected to at least one

pixel in that region. If a pixel was found to be connected to more than one region,

the region was merged.

Figure 3.4(c) shows the regions that resulted by starting with the seeds in Figure 3.4(b) and

utilizing the criteria defined previously. Superimposing the boundaries of these regions on

the original image Figure 3.4(d) reveals that the region-growing procedure did indeed

segment the defective welds with an acceptable degree of accuracy. It is of interest to note

that it was not necessary to specify stopping rule in this case because the criteria for region

growing were sufficient to isolate the features of interest.

Problems having multimodal histograms are generally best solved using region-based

approaches. The histogram shown in Figure 3.5 is an excellent example of clean

multimodal histogram.

3.3.3 Region Splitting and Merging

The procedure just discussed grows region from a set of seed points. Another alternative is

to subdivide an image initially into a set of arbitrary, disjointed regions and then merge

and/or split the regions in an attempt to satisfy the conditions stated in section 3.2.1. A split

and merge algorithm that iteratively works toward satisfying these constraints is developed

next.

20

Let R represent the entire image region and select a predicate P. One approach for

segmenting R is to subdivide it successively into smaller and smaller quadrant regions so

that, for any region Ri, P(Ri) = TRUE. We start with the entire region. If P(R) = FALSE,

we divide the image into quadrants. If P is FALSE for any quadrant, we subdivide that

quadrant into subquadrant, and so on. This particular splitting technique has a convenient

representation in the form of a so called quadtree (that is, a tree in which nodes have

exactly four descendants), as illustrated in Figure 3.7. Note that the root of the tree

corresponds to the entire image and that each node corresponds to a subdivision. In this

case, only R4 was subdivided further.

R1

.

R2

R3

R41 R42

R43 R44

Figure 3.6: Partitioned image

Figure 3.7: Corresponding quadtree

If only splitting were used, the final partition likely would contain adjacent regions with

identical properties. This drawback may be remedied by allowing merging, as well as

splitting. Satisfying the constraints of section 3.2.1 requires merging only adjacent regions

whose combined pixels satisfy the predicate P. That is, two adjacent regions Rj and Rk are

merged only if P(Rj U Rk) = TRUE. The preceding discussion may be summarized by the

following procedure, in which, at any step we

21

1. Split into four disjoint quadrants any region Ri for which P(Ri) = FALSE.

2. Merge any adjacent regions Rj and Rk for which P(Rj U Rk) = TRUE.

3. Stop when no further merging or splitting is possible.

Several variations of the preceding basic theme are possible. For example one possibility is

to split the image initially into a set of blocks. Further splitting is carried out as described

previously, but merging is initially limited to groups of four blocks that are descendants in

the quadtree representation and that satisfy the predicate P. when no further mergings of

this type are possible, the procedure is terminated by one final merging of regions

satisfying step 2. At this point, the merged regions may be of different sizes. The principal

advantage of this approach is that it uses the same quadtree for splitting and merging, until

the final merging step.

3.4 Active contours
Active contours, or snakes, are computer-generated curves that move within images to find

object boundaries (note that the 3D version is often known as deformable models or active

surfaces in the literature). They are often used in computer vision and image analysis to

detect and locate objects, and to describe their shape. For example, a snake might be used

to automatically find a manufactured part on an assembly line; one might be used to find

the outline of an organ in a medical image; or one might be used to automatically identify

characters on a postal letter. The shape of many objects is not easily represented by rigid

primitives. For example natural objects, such as bananas, have similar recognizable shapes.

But no two bananas are exactly the same. In medical imaging, objects are similar but not

exact. And some objects, such as lips, change over time [13].

The segmentation of structure from 2D and 3D images is an important first step in

analyzing medical data. For example, it is necessary to segment the brain in an MR image,

before it can be rendered in 3D for visualization purposes. Segmentation can also be used

to automatically detect the head and abdomen of a fetus from an ultrasound image. The

boundaries can then be used to get quantitative estimates of organ sizes and provide aid in

any necessary diagnoses. Another important application is registration.

22

It may be easier or at least less error prone to segment objects in multiple images prior to

registration. This is especially true in images from different modalities such as CT and

MRI. Image-guided surgery is one other important application of segmentation. Recent

advances in technology have made it possible to acquire images of the patient while the

surgery is taking place. The goal is then to segment relevant regions of interest and overlay

them on an image of the patient to help guide the surgeon in his work. Segmentation is

therefore a very important task in medical imaging. However, manual segmentation is not

only a tedious and time consuming process, it is also inaccurate. It is therefore desirable to

use algorithms that are accurate and require as little user interaction as possible.

3.4.1 Background

Active contours or “snakes” can be used to segment objects automatically. The basic idea

is the evolution of a curve, or curves subject to constraints from the input data. The curve

should evolve until its boundary segments the object of interest. This framework has been

used successfully by Kass to extract boundaries and edges. One potential problem with this

approach is that the topology of the region to be segmented must be known in advance.

During evolution, curves may change connectivity and split. Although this topological

constraint may be reasonable in the segmentation of the liver, it would certainly be

undesirable when segmenting blood vessels in an MR image. An algorithm to overcome

these difficulties was first introduced by Osher and Sethian. They model the propagating

curve as a specific level set of a higher dimensional surface. It is common practice to

model this surface as a function of time. So as time progresses, the surface can change to

take on the desired shape [14].

3.4.2 Level Sets

Mathematical Formulation

Let Ω be a bounded open subset of R2, with ∂Ω as its boundary. Then a two dimensional

image u0 can be defined as u0: Ω R. In this case Ω is just a fixed rectangular grid. Now

consider the evolving curve C in Ω , as the boundary of an open subset ω ofΩ . In other

words, ω ⊆ Ω , and C is the boundary of ω (C = ω∂) [15].

23

Figure3.8: Intersection of higher dimensional surface with the data set results in a

level set

The main idea is to embed this propagating curve as the zero level set of a higher

dimensional function Φ. We define the function as follows:

 Φ(x, y, t = 0) = + d (3.1)

Where d is the distance from (x, y) to ω∂ at t = 0, and the plus (minus) sign is chosen if

the point (x, y) is outside (inside) the subset . Now, the goal is to produce an equation for

the evolution of the curve. Evolving the curve in the direction of its normal amounts to

solving the partial differential equation:

 0| |, (, ,0) (,)F x y x y
t
φ φ φ φ∂
= ∇ =

∂
 (3.2)

Where the set {(x, y), Φ0(x, y) = 0} defines the initial contour, and F is the speed of

propagation. For certain forms of the speed function F, this reduces to a standard

Hamilton-Jacobi equation. There are several major advantages to this formulation. The

24

first is that Φ(x, y, t) always remains a function as long as F is smooth. As the surface Φ

evolves, the curve C may break, merge, and change topology.

Another advantage is that geometric properties of the curve are easily determined from a

particular level set of the surface Φ. For example, the normal vector for any point on the

curve C is given by:

n φ= ∇
r

and the curvature K is obtained from the divergence of the gradient of the unit normal

vector to the front:

()

2 2

3
2 2 2

2xx y x y xy yy xk div
x y

φ φ φ φ φ φ φ φ
φ φ φ

⎛ ⎞∇ − +
= =⎜ ⎟⎜ ⎟∇⎝ ⎠ +

 (3.3)

Finally, another advantage is that we are able to evolve curves in dimensions higher than

two. The above formulae can be easily extended to deal with higher dimensions. This is

useful in propagating a curve to segment volume data.

There are different active contour models, one based on an edge-stopping function, while

other is an energy minimization algorithm. The first method can only detect objects

defined by a strong gradient, while the second method does not have this constraint. Both

methods can be put into a level-set framework using a Lipschitz function Φ for automatic

topology changes. Second model is implemented, so discussed in detail and validated with

numerical results.

3.4.3 Active Contours without Edges

As the curve C can be viewed as the boundary of an open subset ω of Ω (i.e. C = ω∂).

Denote the region ω by inside(C) and the region \ωΩ by outside(C). Now rather than

basing the model on an edge-stopping function, we will halt the evolution of the curve with

an energy minimization approach [16].

Consider a simple case where the image u0 is formed by two regions of piecewise constant

intensity. Denote the intensity values by 0
0u and 1

0u . Furthermore, assume that the object to

25

be detected has a region whose boundary is C0 and intensity 1
0u . Then inside (C0), the

intensity of u0 is approximately 1
0u , whereas outside (C0) the intensity of u0 is

approximately 0
0u . Then consider the fitting term:

2
1 2 0 1

inside(C)

2
0 2

outside(C)

F (C) + F (C) = |u (x,y) - c | dxdy

 + |u (x,y) - c | dxdy

∫

∫ (3.4)

Where C is a curve, and the constants c1, c2 are the averages of u0 inside and outside of C

respectively. Consider Figure 3.9. If the curve C is outside the object, then F1(C) > 0,

F2(C) ≈ 0. If the curve is inside the object, then F1(C) ≈ 0, F2(C) > 0. If the curve is both

inside and outside the object, then F1(C) > 0; F2(C) > 0. However, if the curve C is exactly

on our object boundary C0, then F1(C) ≈ 0; F2(C) ≈ 0, and our fitting term is minimized.

F1 (C)>0, F2(C)≈0 F1 (C) ≈0, F2(C) >0

F1 (C) >0, F2(C) >0 F1 (C) ≈0, F2(C) ≈ 0

Figure 3.9: All possible cases in position of the curve

26

We also consider adding some regularization terms. Therefore we will also try to minimize

the length of the curve and the area of the region inside the curve. So we introduce the

energy function E:

Where µ ≥ 0, v ≥ 0, λ1 > 0, λ2 > 0 are fixed parameters. So our goal is to find C; c1, c2 such

that E(C, c1, c2) is minimized. Mathematically, we want to solve:

inf E(C, c1
, c

2)
 C,c

1
,c

2

This problem can be formulated using level sets as follows. The evolving curve C can be

represented by the zero level set of the signed distance function φ as in (3.1). So we

replace the unknown variable C byφ . Now consider the Heaviside function H, and the

Dirac measure δ:

 (3.5)

We can rewrite the length of Φ = 0 and the area of the region inside (Φ = 0) using these

functions. The Heaviside function is positive inside our curve and zero elsewhere, so the

area of the region is just the integral of the Heaviside function of Φ. The gradient of the

Heaviside function defines our curve, so integrating over this region gives the length of the

curve. Mathematically:

 (3.6)

 (3.7)

 ((,)) | (,) |x y x y dxdyδ φ φ
Ω

= ∇∫ (3.8)

1 2

2
1 0 1

inside(C)

2
2 0 2

outside(C)

E(C,c ,c) = . Length(C) + . Area(inside(C))

 + . |u (x,y) - c | dxdy

 + . |u (x,y) - c | dxdy

µ ν

λ

λ

∫

∫

(0) ((,))Area H x y dxdyφ φ
Ω

= = ∫

(0) | ((,))|Length H x y dxdyφ φ
Ω

= = ∇∫

, () ()dz h z
dz

δ =1, 0
()

0, 0
if z

H z
if z

≥⎧ ⎫
= ⎨ ⎬<⎩ ⎭

27

Similarly, we can rewrite the previous energy equations so that they are defined over the

entire domain rather than separated into inside (C) = Φ > 0 and outside (C) = Φ < 0:

0 1 0 1
2 2| (,) | | (,) | ((,))

0
u x y c dxdy u x y c H x y dxdyφ

φ Ω
− = −∫ ∫

>
1 (3.9)

0 2 0 2
2 2| (,) | | (,) | (1 ((,)))

0
u x y c dxdy u x y c H x y dxdyφ

φ Ω
− = − −∫ ∫

>
 (3.10)

Therefore our energy function E(C, c1, Φ) can be written as:

 (3.11)

The constants c1
, c

2 are the averages of u0 in Φ ≥ 0 and Φ < 0 respectively.

So they are easily computed as:

 (3.12)

and

 (3.13)

Now we can deduce the Euler-Lagrange partial differential equation from (3.11). We

parameterize the descent direction by t ≥ 0, so the equation Φ(x, y, t) is:

1 2

2
1 0 1

2
2 0 2

E(C,c ,c) = ((x,y)) | (x,y)dxdy

 + ((x,y))dxdy

 + . |u (x,y) - c | H((x,y)) dxdy

 + . |u (x,y) - c | (1-H((x,y))) dxdy

H

µ δ φ φ

ν φ

λ φ

λ φ

Ω

Ω

Ω

Ω

∇∫

∫

∫

∫

0

1()

u (x,y) ((x,y))dxdy
c =

((x,y))dxdy

H

H

φ
φ

φ
Ω

Ω

∫

∫

0

2()

u (x,y)(1- ((x,y)))dxdy
c =

(1 ((x,y))dxdy

H

H

φ
φ

φ
Ω

Ω

−

∫

∫

2 2
1 0 1 2 0 2 = ()[() () ()] 0

| |
div v u c u c

t
φ φφ µ λ λ

φ
∂ ∇

∂ − − − + − =
∂ ∇

28

 (3.14)

In order to solve this partial differential equation, we first need to regularize H(z) and δ(z).

Chan and Vese propose:

 (3.15)

Implying that δ(z) regularizes to:

 (3.16)

It is easy to see that as ε 0, H ε(z) converges to H(z) and δε(z) converges to δ (z). The

authors mention that with these regularizations, the algorithm has the tendency to compute

a global minimizer. Chan and Vese give the following discretization and linearization of

(3.14):

 (3.17)

This linear system also depends on the forward differences of
1

,

n

i jφ
+

, which is an unknown.

However these can be solved using the Jacobi method. In practice, the number of iterations

until convergence was found to be small. The segmentation algorithm is [51]:

1 1() = + arctan()
2

zH zε
π ε

2 2

1() = . z
z

ε
εδ

π ε +

1

1 1

,
2 2 2 2 2

, , 1 , 1

, , ,
, 2 2 2 2 2

1, 1, ,

2 2
1 0, , 1 2 0, , 2

() /() () / (2)

 = [
() /(2) () / ()

(()) (())

n

n n n

n n

n n n

n n

x
i jx

x
i j i j i j

n y
i j i j i jn y

i j
y

i j i j i j

i j i j

h h h

t h h h

u c u c

ε

φµ

φ φ φ

φ φ φµδ φ
φ φ φ

ν λ φ λ φ

+

+ +

+ −

+ −

⎡ ⎛ ⎞∆ +⎢ ⎜ ⎟∆ −⎢ ⎜ ⎟∆ + + −⎝ ⎠
⎛ ⎞− ∆ +⎜ ⎟+ ∆ −
⎜ ⎟∆ − + ∆ +⎝ ⎠

− − − + −

⎣

⎤
⎥
⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎦

29

Algorithm 4: Energy Minimization Algorithm with Jacobi Method

Initialize Φ0 by Φ0, n = 0

for fixed number of iterations do

 Compute c1(Φn) and c2(Φn) by (3.12) and (3.13)

 Estimate forward differences of Φn+1 using Jacobi method

 Compute Φn+1 by (3.17)

end

Another way to discretize and linearize the system is to directly estimate the curvature K

from ,

n

i jφ using (3.3). This leads to a much simpler system where the Jacobi method is not

necessary:

 (3.18)

So the second simpler algorithm is:

Algorithm 5: Energy Minimization Algorithm

Initialize Φ0 by Φ0, n = 0

for fixed number of iterations do

 Compute c1(Φn) and c2(Φn) by (3.12) and (3.13)

 Compute curvature term K by (3.3)

 Compute Φn+1 by (3.18)

End

Figure 3.10: Objects with smooth contours can not be segmented by the edge-

stopping approach

1

, , 2 2
1 0, , 1 2 0, , 2, = [K (()) (())]

n

n n
n

i j i j n
i j i ji j u c u c

t
ε

φ φ
δ φ µ ν λ φ λ φ

+

−
− − − + −

∆

30

The curve will eventually collapse in on itself. However, using the energy minimization approach,

we achieve the desired segmentation.

Figure 3.11: Artificial image corrupted with Gaussian noise. Segmentation

using energy minimization.

3.4.4 Runtime Analysis

 Since we are dealing with sampled discrete data, it is unlikely that the signed distance

function (3.1) is ever exactly zero. So we need to form an approximation for the level set Φ

= 0. We define a pixel Φi,j to be on the zero level set if there is a change of sign within a 4

pixel neighborhood. Mathematically, the pixel is on the front if:

 (3.19)

and

 (3.20)

, 1, , 1 1, 1max(, , ,) 0i j i j i j i jφ φ φ φ+ + + + >

, 1, , 1 1, 1max(, , ,) 0i j i j i j i jφ φ φ φ+ + + + <

31

First, assume that an image to be segmented is n n. (It does not have to be square, but it

makes the analysis slightly easier). Finding the points on our curve will take O(n2) time. A

reasonable assumption is that the total number of pixels in our advancing curve is 0(n).

This bound stems from the fact that our curve lies on the border of our object.

 In practice, both energy minimization algorithms can be analyzed the same way, as

the Jacobi method converges in a small, constant number of time steps. Both algorithms

compute c1 and c2, which are essentially just the averages of u0 inside and outside the

region defined by C respectively. This can be done in O(n2) time. Then it is simply a

matter of updating each pixel in Φi,j for k iterations. This gives a time bound of O(kn2).

In all of the energy minimization experiments, the parameters were chosen as follows:

λ1 = λ2 = 1, h = 1; and ∆t = 0.1. Varying the value of v generally had little or no effect on

the segmentation results. The ε parameter for the regularized Heaviside and Dirac

functions was set to 1 as suggested by Chan and Vese. The length parameter µ was varied

between images. For images in which as many objects as possible have to be detected µ

should be small (i.e. µ ≈ 0.000 – 2552). For images in which we only wish to segment

larger objects, we choose µ ≈ 0.1 – 2552

 (a) (b)

Figure 3.12: CT images of lower abdomen containing liver

(a) Liver with Hemengioma (b) Liver with Hepatoma

32

Figure 3.13: Segmentation of the above images (a) and (b) respectively using

energy minimization

3.5 Summary

 Image segmentation is an essential preliminary step in most automatic pattern

recognition and scene analysis problems. As indicated by the range of examples presented

in this chapter, the choice of one segmentation technique over another depends on the

characteristics of the problem being considered. The method used in CAD system is based

on Active contours.

33

Chapter no 4

Texture Analysis

34

4.1 Introduction
Visually, texture refers to the variation in image intensities which form certain repeated

patterns. Texture is often used by physicians for diagnostic purposes. In medical image

processing, texture is especially important, because it is difficult to classify human body

organ tissues using shape or gray level information. This is because of the uncertainty

introduced by the unlimited variability in organ shape distortion and the potential absolute

gray level variability due to the imaging device. While gray levels purely describe point-

wise properties of images, texture uses these gray levels to derive some notion of spatial

distribution of tonal variations, surface orientation and scenic depth [50]. Furthermore,

contrary to the discrimination of morphologic information (shape, size), there is evidence

that the human visual system has difficulties in the discrimination of textural information

that is related to higher-order statistics or spectral properties in an image. Consequently,

texture analysis can potentially augment the visual skills of the radiologist by extracting

features that may be relevant to the diagnostic problem but they are not necessarily visually

extractable.

4.1.1 Texture

Texture may be defined as the local variation in intensity between pixels in a small region

of an image. If pixel intensity were represented as a surface (elevation) then texture would

describe the “roughness” of the surface.

Figure 4.1: Texture Visualization

35

Although there is no accepted mathematical definition for image texture, it can be thought

loosely of as repeated patterns of pixels. The addition of noise to the patterns and their

repetition frequencies result in textures that can appear to be random and unstructured.

Image texture can be used to:

• Recognize objects

• Determine the shape of objects

• Judge the condition of objects

• Detect diseases

Examples of texture

Following are the examples of 2-D textured images:

Figure 4.2: 2-D textured images

In digital images, texture refers to the spatial interrelationships and arrangement of image

pixel intensities or gray levels. The task of texture discrimination is often easy for humans

but is quite difficult to be modeled and performed by modern digital computers. At the

core of this problem is the need to mathematically model the cellular-level structure

present in these images as texture. Texture analysis is a way to achieve that; it results in a

set of feature metrics that describe the characteristics of different tissue patterns.

36

4.1.2 Background

A large number of schemes have been proposed for texture feature extraction and this

remains an active area of research. Some of the most popular methods are statistical

methods, Fourier power spectrum-based methods, Laws’ texture energy measures,

geometrical methods, and random field model-based methods. More recently, texture

features based on fractal-based models, Gabor and wavelet decomposition-based methods,

run-length encoding, and co-occurrence matrices have received significant attention. While

there has not been any conclusive study to prove the superiority of one method over the

other methods of capturing texture, These techniques have been successfully applied in

many fields including, remote sensing, industrial inspection, medical image analysis, and

document image processing. Computer based methods of texture analysis were originally

developed for use in satellite applications, geological surveys, remote sensing, and other

related applications. For medical applications, texture operations can aid in the detection of

small focal lesions against a uniform tissue background.

(a) (b)

Figure 4.3 (a) CT image of Hemangioma, (b) CT image of Hepatoma

In this study, texture features of the segmented images shown above, were extracted from

Haralick co-occurrence method, which is a well known, established method that has been

proven to correlate well with what experts generally look for in texture features. Also, it

has been used successfully to produce good results in classification studies of normal

tissues in CT images of chest and abdomen.

37

4.2 Texture Feature Extraction methods
A wide range of techniques, ranging from second order statistics to syntactic partitioning,

is in existence. These techniques are broadly categorized into three groups: statistical,

structural, and spectral. Statistical approaches yield characterization of textures as smooth,

coarse, grainy and so on. Structural techniques deal with the arrangement of image

primitives, such as the description of texture based on regularly spaced parallel lines [17].

Spectral techniques are based on properties of the Fourier spectrum and are used primarily

to detect global periodicity in an image by identifying high energy, narrow peaks in the

spectrum.

4.2.1 Statistical Approaches

One of the simplest approaches for describing texture is to use statistical moments of the

gray level histogram of an image or region [17]. Let z be a random variable denoting gray

levels and let P(zi), i = 0,1,2…,L-1, be the corresponding histogram

 P(zi) = h(zi) (4.1)

 N

where h(zi) is the image histogram, and N is the total number of pixels in the image. The

normalized image histogram can be thought of as a probability density function for the

gray levels of the image. If p(zi) denotes the probability of each gray-level value zi, the

following features can be calculated:

Mean estimates the value around which central clustering occurs:

 L-1

 µ = ∑ (zi)p(zi) (4.2)
 zi=0

where L = 2B is the number of quantized gray levels, where B is the number of bits.

Standard Deviation measures the variability about the mean and is computed as:

 L-1

 σ = [∑ (zi - µ)2 p(zi)] ½ (4.3)
 zi=0

38

The second moment [the variance σ2(z) = µ2(z)] is of particular importance in texture

description. It is a measure of gray-level contrast that can be used to establish descriptors

of relative smoothness. For examples, the measure

 2

11
1 ()

R
zσ

= −
+

 (4.4)

is 0 for areas of constant intensity (the variance is zero there) and approaches 1 for large

values of σ2(z). Because variance values tend to be large for gray scale images with values,

for example, in the range 0 to 255, it is a good idea to normalize the variance to the interval

[0, 1] for use in Eq. (4.4).This is done simply by dividing σ2(z) by (L-1)2 in

Eq. (4.4). The standard deviation, σ(z), also is used frequently as a measure of texture

because values of the standard deviation tend to be more intuitive to many people.

Coefficient of Variation is another measure of the deviation of a variable from its mean. It

is calculated as follows:

 η = σ (4.5)
 µ

Skewness or the third moment characterizes the degree of asymmetry of a distribution

around its mean. A positive value of skewness indicates a distribution with an asymmetric

tail extending out towards larger zi values; a negative value indicates a distribution whose

tail extends towards smaller zi values. Skewness is given by:

1

3 3

0
() ()

L

i i
i

skew z p zσ µ
−

−

=

= −∑ (4.6)

Kurtosis or the fourth moment measures the peakedness or flatness of a distribution

relative to a normal distribution. A positive kurtosis generally indicates a more peaked

distribution, termed leptokurtic, whereas a negative kurtosis indicates a more flat curve,

and is termed platykurtic. The conventional definition of kurtosis is

1

4 4

0
() () 3

L

i i
i

kurt z p zσ µ
−

−

=

= − −∑ (4.7)

39

The fifth and higher moments are not so easily related to histogram shape, but they do

provide further quantitative discrimination of texture content. Some useful additional

texture measures based on histograms include a measure of “uniformity,” given by

 L-1

 U = ∑ p2(zi) (4.8)
 i=0

and an average entropy measure is defined as

 L-1

 e = -∑ p(zi) log2 p(zi) (4.9)
 i=0

Because the p’s have values in the range[0,1] and their sum equals 1, measure U is

maximum for an image in which all gray levels are equal (maximally uniform), and

decreases from there. Entropy is a measure of variability and is 0 for a constant image.

a b c

Figure 4.4: The white square mark, from left to right, smooth, coarse, and regular

textures. These are optical microscope images of a superconductor, human

cholesterol, and a microprocessor respectively

Table 4.1 summarizes the values of the preceding measures for the three types of textures

(smooth, coarse and regular) highlighted in Figure 4.4. The mean just tells us the average

gray level of each region and is useful only as a rough idea of intensity, not really texture.

The standard deviation is much more informative; the numbers clearly show that the first

texture has significantly less variability in gray level (it is smoother) than the other two

textures. The coarse texture shows up clearly in this measure. As expected, the same

40

comments hold for R, because it measures essentially the same thing as the standard

deviation. The third moment generally is useful for determining the degree of symmetry of

histograms and whether they are skewed to the left (negative value) or the right (positive

value) [17].

Texture Mean

Standard

deviation R(normalized) Third moment Uniformity Entropy

Smooth 82.64 11.79 0.002 -0.10 0.026 5.434

Coarse 143.56 74.63 0.079 -0.151 0.005 7.738

Regular 99.72 33.73 0.017 0.750 0.013 6.674

Table 4.1: Texture measures for Smooth, Coarse and Regular images

This gives a rough idea of whether the gray levels are biased toward the dark or light side

of the mean. In terms of texture, the information derived from the third moment is useful

only when variations between measurements are large. Looking at the measure of

uniformity, we again conclude that the texture of smooth image is more uniform than the

rest and that the most random (lowest uniformity) corresponds to the coarse texture. This is

not surprising. Finally the entropy values are in the opposite order and thus lead us to the

same conclusions as the uniformity measure did. The smooth texture has the lowest

variation in gray level and the coarse texture the most. The regular is in between the two

extremes with respect to both these measures.

Measures of texture computed using only histograms suffer from the limitation that they

carry no information regarding the relative position of the pixels with respect to each other.

One way to bring this type of information into the texture analysis process is to use co-

occurrence matrix, which considers not only the distribution of intensities, but also the

positions of the pixels with equal or nearly equal intensity value.

41

4.2.1.1 Co-occurrence Matrix

A 2D co-occurrence matrix A, is an n x n matrix, where n is the number of gray levels

within an image. For reasons of computational efficiency, the number of gray levels can be

reduced if one chooses to bin them, thus reducing the size of the co-occurrence matrix. The

matrix acts as an accumulator so that A[i , j] counts the number of pixel pairs having the

intensities i and j. Pixel pairs are defined by a distance and direction which can be

represented by a displacement vector d = (dx, dy), where dx represents the number of

pixels moved along the x-axis, and dy represents the number of pixels moved along the y-

axis of the image slices [18].

1 1 2 2 5

3 2 3 1 1

0 1 1 0 1

3 2 4 0 1

2 1 1 2 2

For example for the above given 5 5 digital image matrix, a co-occurrence matrix is

developed as follows (E–W direction only). First, the number of different pixel values is

determined. Second, these pixel values are ranked, smallest to largest. Third, the digital

image is scanned in the direction noted (E–W in this case) to determine the frequency with

which one of these pixel values follows another. With respect to the digital image

presented earlier, six different pixel values are observed: 0–5. Hence, the co-occurrence

matrix is a 6 6 matrix (note that, in this case, the co-occurrence matrix is larger than the

input image); let this matrix be called [A]

42

[A] =

 0 1 2 3 4 5

0 0 3 0 0 0 0

1 1 4 2 0 0 0

2 0 1 2 1 1 1

3 0 1 2 0 0 0

4 1 0 0 0 0 0

5 0 0 0 0 0 0

Figure 4.5: co-occurrence matrix

The Haralick co-occurrence texture model and its texture descriptors capture the spatial

dependence of gray-level values and texture structures within an image. There are many

statistics that can be used; however, due to the redundancy and the high correlation in these

statistics, only ten statistics are advocated for feature representation in this application. We

are using the following ten descriptors given by Equations (4.10) through (4.19), where P

is the normalized co-occurrence matrix, (i, j) is the pair of gray level intensities i and j, and

M by N is the size of the co-occurrence matrix [19]:

 [,]log [,]
M N

i j

Entropy p i j p i j= −∑ ∑ (4.10)

 2[,]
M N

i j
Energy p i j= ∑ ∑ (4.11)

 2() [,]
M N

i j
Contrast i j p i j= −∑ ∑ (4.12)

[,]
1 | |

M N

i j

p i jHomogeneity
i j

=
+ −∑ ∑ (4.13)

43

1 (* [,] * [,]
2

M N

i j

SumMean i p i j j p i j= +∑ ∑ (4.14)

 2 21 (() [,] () [,]
2

M N

i j
Variance i p i j j p i jµ µ= − + −∑ ∑ (4.15)

,

,_ [,]M N
i jMaximum probability Max P i j= (4.16)

[,]_ _
| |

M N

k
i j

p i jInverse Difference Moment
i j

=
−∑ ∑ (4.17)

 _ (2) [,]
M N

k

i j

Cluster Tendency i j p i jµ= + −∑ ∑ (4.18)

 2

()() [,]M N

i j

i j p i jCorrelation µ µ
σ

− −
= ∑ ∑ (4.19)

These descriptors can be calculated at both local (pixel) and global (organ) level depending

on the tasks to be used for and the fundamental structures present in the images. Pixel level

properties are calculated to be able to isolate regional properties within an image, while

global-level features summarize the whole image and represent it as one entity [20].

While co-occurrence matrices are normally defined for a fixed distance and direction. To

compute features, the normalized co-occurrence matrices are calculated in four directions

(00, 450, 900, and 1350) and with five displacements (d = 1, 2, 4, 6, 8) generating twenty

matrices per segmented image. These rotations and displacements are only in-plane since

the images being considered are only 2-dimensional axial slices. For each of the twenty

matrices the Haralick features are calculated which can be related to specific characteristics

in the image. Then these values are averaged and recorded as a mean-based feature vector

44

for the corresponding segmented image. This vector is further used in the next step for

classification of liver lesions.

4.2.1.2 Problems with texture parameters in use

Once the neighborhood size is determined, a co-occurrence matrix is calculated for each

neighborhood within the corresponding region. While co-occurrence matrices are normally

defined for a fixed distance and direction when calculated at the global level, for the pixel-

level approach, we do not calculate the co-occurrence along fixed directions and

displacements. Instead we consider all pixel pairs within that neighborhood such that there

will be enough samples (pairs) for calculating the co-occurrence matrix in order to produce

statistically significant results. Thus, implementation produces a single co-occurrence

matrix for each pixel rather than for each choice of distance and direction. Then, for each

co-occurrence matrix (each pixel), Haralick features are calculated, which can be related to

specific characteristics in the image [21]. Figure 4.4 (b-d) illustrates the image

representations of different pixel-level texture features for the original CT image from

Figure 4.4 (a).

Figure 4.6: Texture features for the original CT image

45

4.2.2 Structural Approaches

As mentioned at the beginning of this chapter, a second major category of texture

description is based on the structural concepts. Suppose that we have a rule of the form

S aS, which indicates that the symbol S may be rewritten as aS (for example, three

applications of this rule would yield the string aaaS) [17]. If a represents a circle Figure

4.6(a) and meaning of “circles to the right” is assigned to a string of the form aaa …, the

rule S aS allows generation of the texture pattern shown in Figure 4.6(b).Suppose next

that we add some new rules to this scheme: S bA, A cA, A c, A bS, S a,

where the presence of a b means “circle down” and the presence of a c means “circle to the

left.” We can now generate a string of the form aaabccbaa that corresponds to a 3 * 3

matrix of circles. Larger texture patterns such as the one shown in figure 4.6(c), can be

generated easily in the same way [22].

The basic idea in the forgoing discussion is that a simple “texture primitive” can be used to

form more complex texture patterns by means of some rules that limit the number of

possible arrangements of the primitive(s).

a

b

c

Figure 4.7: (a) Texture primitive. (b) Pattern generated by the rule S aS.

(c) 2-D texture pattern generated by this and other rules

46

4.2.3 Spectral Approaches

Fourier spectrum is ideally suited for describing the directionality of periodic or almost

periodic 2-D pattern in an image. These global texture patterns, although easily

distinguishable as concentrations of high-energy bursts in the spectrum, generally are quite

difficult to detect with spatial methods because of the local nature of these techniques.

Three features of the Fourier spectrum are useful for texture description [23]:

(1) Prominent peaks in the spectrum give the principle direction of the texture patterns.

(2) The location of the peaks in the frequency plane gives fundamental spatial period of the

patterns.

(3) Eliminating any periodic components via filtering leaves nonperiodic image elements,

which can then be described by statistical techniques.

As spectrum is symmetric about the origin, so only half of the frequency plane needs to be

considered. Thus for the purpose of analysis, every periodic pattern is associated with only

one peak in the spectrum, rather than two.

4.3 Summary
The descriptions of the objects or regions that have been segmented out of an image are

early steps in the operation of most automated processes. These descriptions for example,

constitute the input to the object recognition methods developed in the following chapter.

As indicated by the range of the description techniques, the choice of one method is

determined by the problem under consideration. Detail of the Haralick co-occurrence

matrices is given as it is used in the feature extraction of CAD system.

47

Chapter No 5

Classification

48

5.1 Introduction
Artificial intelligence is a part of computer science that tries to make computers more

intelligent. One of the basic requirements for any intelligent behavior is learning. Most of

the researchers today agree that there is no intelligence without learning. Therefore

machine learning is one of the major branches of artificial intelligence. In unsupervised

learning one typically tries to uncover hidden regularities (e.g. clusters) or to detect

anomalies in the data (for instance some unusual machine function or a network intrusion).

In supervised learning, there is a label associated with each example. It is supposed to be

the answer to a question about the example. If the label is discrete, then the task is called

classification problem otherwise, for real valued labels we speak of a regression problem.

Based on these examples (including the labels), one is particularly interested to predict the

answer for other cases before they are explicitly observed. Hence, learning is not only a

question of remembering but also of generalization to unseen cases.

Classification algorithms have wide range of application in many areas. They are used in

medicine for drug trial analysis and MRI data analysis, in finance for share analysis and

index prediction, in data communication for signal decoding and error correction, in

computer vision for face recognition and pattern recognition applications, in voice

recognition, in management for market prediction and uncountable other areas [29].

In order to train classifier data is sometimes available e.g. data about correct diagnoses are

often available in the form of medical records in specialized hospitals or their departments.

All that has to be done is to input the patient records with known correct diagnoses into a

computer program to run a learning algorithm. This is of course an oversimplification, but

in principle, the medical diagnostic knowledge can be automatically derived from the

description of cases solved in the past. The derived classifier can then be used either to

assist the physician when diagnosing new patients order to improve the diagnostic speed,

accuracy and/or reliability, or to train students or physicians non-specialists to diagnose

patients in a special diagnostic problem [30].

49

5.2 History
The earliest known system of classification is that of Aristotle, who attempted in the 4th

century B.C. to group organisms into two classes i.e. plants and animals. The animal class

was further divided into blood and bloodless and was also divided into three sub classes

according to their movement i.e. walking, flying and swimming. Carolus Linnaeus,

Swedish scientist from 18th century modified the Aristotle system by classifying plants and

animals according to similarities in form. He divided living things into two kingdoms i.e.

plant kingdom and animal kingdom. Furthermore he divided each of the kingdoms into

smaller groups called genera and then divided each general into smaller groups called

species [31].

As soon as electronic computers came into use in the 1950s and 1960s, the algorithms

were developed that enabled modeling and analyzing large sets of data. From the very

beginning, three major branches of machine learning emerged. Classical work in symbolic

learning is described by Hunt [30]. Through the years, all three branches developed

advanced methods: statistical and pattern recognition methods, such as the k-nearest

neighbors, discriminate analysis, and Bayesian classifier, induction learning of symbolic

rules, such as top down induction of decision trees, decision rules and induction of logic

programs, and artificial neural networks, such as the multilayered feedforward neural

network with backpropagation learning, and the Hopfield’s associative memory. In the

previous chapter, methods for feature calculation have been described. This chapter

discusses how the selected features are used for classification. In particular, the theory of

machine classifiers applied in this study and the specific modifications made to these

classifiers. The machine learning algorithms applied is support vector machine.

5.3 Problem of classification
A classification problem deals with the association of a given input pattern to one of the

distinct classes. Patterns are specified by a number of features so it is natural to think of

them as d-dimensional vectors, where d is the number of different features. This gives rise

to a concept of feature space. Patterns are points in the d-dimensional space and classes are

sub-spaces. Classification problem task is to determine which of the regions a given

50

pattern falls into. If classes do not overlap they are said to be separable and, in principle,

one can design a decision rule which will successfully classify any input pattern. A

decision rule determines a decision boundary which partitions the feature space into

regions associated with each class [32]. It represents our best solution to the classification

problem.

Figure 5.1 illustrates a 2-dimensional feature space with three classes occupying regions of

the space. The goal is to design a decision rule which is easy to compute and yields the

smallest possible probability of misclassification of input patterns from the feature space.

Figure 5.1: Two Dimensional Feature Space with Three Classes

Our information about the classes is usually derived from some finite sample of patterns

with known class affiliations. This sample is called a training set. If we make a decision

boundary complex enough every pattern in the training set will be properly classified using

the underlying decision rule, even if the distributions of patterns overlap. Decision

boundary function is a tradeoff between function complexity and error/bias. If we make the

decision function complex then we can cover all or most of the samples in the training

data, other option is to decrease the complexity and live with errors. Many algorithms have

been developed which construct this decision boundary.

Classifiers are designed with a purpose of classifying unknown patterns and it is unlikely

that an overly complex decision boundary would provide good generalization as it was

51

tuned to perform extremely well on the training set. This is known as over-fitting the

training set [33]. Figure 5.2 shows a decision boundary over-fitting a training set

distributed according to the classes of the Figure 5.1.

Figure 5.2: Decision boundary between the classes

5.4 Supervised Classification
An important task in Machine Learning is classification, also referred to as pattern

recognition, where one attempts to build algorithms capable of automatically constructing

methods for distinguishing between different exemplars, based on their differentiating

patterns. Watanabe described a pattern as “the opposite of chaos; it is an entity, vaguely

defined, that could be given a name.” Examples of patterns are human faces, text

documents, handwritten letters or digits, EEG signals, and the DNA sequences that may

cause a certain disease. More formally, the goal of a (supervised) classification task is to

find a functional mapping between the input data X, describing the input pattern, to a class

label Y (e.g. -1 or +1), such that Y = f(X). The construction of the mapping is based on so-

called training data supplied to the classification algorithm in the form of {(X1 ,Y1), (X2

,Y2), (X3 ,Y3), …. (Xm ,Ym)}. Where Xi is a vector of n values, and Y is the class label. The

aim is to accurately predict the correct label on unseen data. A pattern (also: “example”) is

described by its features. These are the characteristics of the examples for a given problem.

52

For instance, in a face recognition task some features could be the color of the eyes or the

distance between the eyes. Thus, the input to a pattern recognition task can be viewed as a

two dimensional matrix, whose axes are the examples and the features [30].

Pattern classification tasks are often divided into several sub-tasks:

1. Data collection and representation.

2. Feature selection and/or feature reduction.

3. Classification.

Data collection and representation are mostly problem-specific. In broad terms, one should

try to find invariant features that describe the differences in classes as best as possible.

Feature selection and feature reduction attempt to reduce the dimensionality (i.e. the

number of features) for the remaining steps of the task. Finally, the classification phase of

the process finds the actual mapping between patterns and labels (or targets). In many

applications the second step is not essential or is implicitly performed in the third step [34].

5.5 Classification Algorithms
Although Machine Learning is a relatively young field of research, there exist more

learning algorithms. There are six common methods. The first four methods are traditional

techniques that have been widely used in the past and work reasonably well when

analyzing low dimensional data sets with not too few labeled training examples. Other two

methods (Support Vector Machines & Boosting) have received a lot of attention in the

machine learning community recently [35]. They are able to solve high-dimensional

problems with very few examples (e.g. fifty) quite accurately and also work efficiently

when examples are abundant (for instance several hundred thousands of examples).

5.5.1 Traditional Techniques

Nearest Neighbor

Nearest Neighbor classifier is the easiest and one of the effective classifier for any task.

The common feature of NN is that it stores all training instances in a memory structure,

and uses them directly for classification. The simplest form of memory structure is the

multi-dimensional space defined by the attributes in the instance vectors. Each training

53

instance is represented as a point in that space. The classification procedure includes

finding the distances of every point from the testing instance vector. The distances are

usually found out using the Euclidean formula. The class to which the majority of nearest

neighbors belongs is the predicted class for the testing example. Euclidean distance for a

testing vector X = (x1, x2, x3………xN) and training vector X` = (x`1, x`2, x`3………x`N)

can be found out as

2 2 2
1 1 22(,) () () ()Distance N NEuclidean X X x x x x x x′ ′ ′′ = − + − + + −

k-Nearest Neighbor Classification

Arguably the simplest method is the k-Nearest Neighbor classifier. Here the k points of the

training data closest to the test point are found, and a label is given to the test point by a

majority vote between the k points. This method is highly intuitive and attains – given its

simplicity – remarkably low classification errors, but it is computationally expensive and

requires a large memory to store the training data [36].

Linear Discriminant Analysis

Linear Discriminant Analysis computes a hyperplane in the input space that minimizes the

within-class variance and maximizes the between class distance. It can be efficiently

computed in the linear case even with large data sets. However, often a linear separation is

not sufficient. Nonlinear extensions by using kernels exist however, making it difficult to

apply it to problems with large training sets.

Decision Trees

Another intuitive class of classification algorithms is decision trees. These algorithms

solve the classification problem by repeatedly partitioning the input space, so as to build a

tree whose nodes are as pure as possible (that is, they contain points of a single class).

Classification of a new test point is achieved by moving from top to bottom along the

branches of the tree, starting from the root node, until a terminal node is reached. Decision

trees are simple yet effective classification schemes for small datasets. The computational

complexity scales unfavorably with the number of dimensions of the data [37]. Large

54

datasets tend to result in complicated trees, which in turn require a large memory for

storage. The C4.5 implementation by Quinlan is frequently used.

Figure 5.3: An example a decision tree

Neural Networks

Neural Networks are perhaps one of the most commonly used approaches to classification.

An artificial neural network is an information processing system that has certain

performance characteristic in common with biological neural networks [38]. Artificial

neural networks have been developed as generalization of mathematical models of human

cognition or neural biology, based on the assumption that:

1. Information processing occurs at many simple elements called neurons.

2. Signals are passed between neuron over connection links.

3. Each connection has associated weight, which in a typical neural net, multiplies the

signal transmitted.

4. Each neuron applies an activation function (usually nonlinear) to its net input (sum

of weighted input signals) to determine its output signal.

A simple scheme for a neural network is shown in Figure 5.4. A neural network is

characterized by its pattern of connection between the neurons (called its architecture). Its

55

method of determining the weights on the connection (called its training, or algorithm, or

learning) and its activation function.

Figure 5.4: A schematic diagram of a neural network. Each circle in the hidden and output

layer is a computational element known as a neuron

5.5.2 Large Margin Algorithms

Machine learning rests upon the theoretical foundation of Statistical Learning Theory

which provides conditions and guarantees for good generalization of learning algorithms.

Within the last decade, large margin classification techniques have emerged as a practical

result of the theory of generalization. Roughly speaking, the margin is the distance of the

example to the separation boundary and a large margin classifier generates decision

boundaries with large margins to almost all training examples. The two most widely

studied classes of large margin classifiers are Support Vector Machines (SVMs) and

Boosting.

Support Vector Machines

Support Vector Machines work by mapping the training data into a feature space by the aid

of a so-called kernel function and then separating the data using a large margin hyperplane.

Intuitively, the kernel computes a similarity between two given examples. Most commonly

used kernel functions are RBF kernels

56

2

2

|| ' ||(, ') exp x xk x x
σ

⎛ ⎞−
= ⎜ ⎟

⎝ ⎠

and polynomial kernels

 k(x,x’) =(x,x’)d

The SVM finds a large margin separation between the training examples and previously

unseen examples will often be close to the training examples. Hence, the large margin then

ensures that these examples are correctly classified as well, i.e., the decision rule

generalizes. For so-called positive definite kernels, the optimization problem can be solved

efficiently and SVMs have an interpretation as a hyperplane separation in a high

dimensional feature space. Support Vector Machines have been used on million

dimensional data sets and in other cases with more than a million examples. SVMs are

discussed in detail in the next chapter.

Boosting

The basic idea of boosting and ensemble learning algorithms in general is to iteratively

combine relatively simple base hypotheses, sometimes called rules of thumb, for the final

prediction. One uses a so-called base learner that generates the base hypotheses. In

boosting the base hypotheses are linearly combined. In the case of two-class classification,

the final prediction is the weighted majority of the votes. The combination of these simple

rules can boost the performance drastically. It has been shown that Boosting has strong ties

to support vector machines and large margin classification. Boosting techniques have been

used on very high dimensional data sets and can quite easily deal with hundred thousands

of examples.

5.6 Summary
Material in this chapter is introductory in nature i.e. fundamentals of machine learning

classifiers, their types and classification algorithms available under supervised learning

like decision trees, neural networks and support vector machine are the main topics.

57

Chapter no 6

Support vector machine

58

6.1 Introduction
A classifier is something that takes a feature set as an input and produces a class label.

Classifiers are built by taking a set of labeled examples and using them to come up with a

rule that assigns a label to any new example. Support vector machines map input vectors to

a higher dimensional space where a maximal separating hyperplane is constructed [39]. A

hyperplane is a concept in geometry. It is a higher-dimensional generalization of the

concepts of a line in Euclidean plane geometry and a plane in 3-dimensional Euclidean

geometry. The most familiar kinds of hyperplane are linear hyperplanes; less familiar is the

projective hyperplane. In a one-dimensional space (a straight line), a hyperplane is a point;

it divides a line into two rays. In two-dimensional space (such as the xy plane), a

hyperplane is a line; it divides the plane into two half-planes. In three-dimensional space, a

hyperplane is an ordinary plane; it divides the space into two half-spaces. This concept can

also be applied to four-dimensional space and beyond, where the dividing object is simply

referred to as a "hyperplane" [40].

Two parallel hyperplanes are constructed on each side of the hyperplane that separates the

data. The separating hyperplane is the hyperplane that maximizes the distance between the

two parallel hyperplanes. An assumption is made that the larger the margin or distance

between these parallel hyperplanes the better the generalisation error of the classifier will

be. Many linear classifiers (hyperplanes) separate the data. However, only one achieves

maximum separation.

Figure 6.1: Linear hyperplanes

59

Often we are interested in classifying data as a part of a machine-learning process. In the

field of machine learning, the goal of classification is to combine items that have similar

feature values, into groups. A linear classifier achieves this by making a classification

decision based on the value of the linear combination of the features. If the input feature

vector to the classifier is a real vector x
r

, then the output score is

(.) j j
j

y f w x f w x
⎛ ⎞

= = ⎜ ⎟
⎝ ⎠
∑

ur r
 (6.1)

Where w
ur

 is a real vector of weights and f is a function that converts the dot product of the

two vectors into the desired output. The weight vector w
ur

 is learned from a set of labeled

training samples. Often f is a simple function that maps all values above a certain threshold

to the first class and all other values to the second class. A more complex f might give the

probability that an item belongs to a certain class. For a two-class classification problem,

one can visualize the operation of a linear classifier as splitting a high-dimensional input

space with a hyperplanes: all points on one side of the hyperplane are classified as "yes",

while the others are classified as "no".

A linear classifier is often used in situations where the speed of classification is an issue,

since it is often the fastest classifier, especially when x
r

 is sparse. However, decision trees

can be also be faster. Also, linear classifiers often work very well when the number of

dimensions in x
r

 is large, as in document classification, where each element in x
r

 is

typically the number of counts of a word in a document.

In SVM each data point will be represented by a p-dimensional vector (a list of p

numbers). Each of these data points belongs to only one of the two classes. We are

interested in whether we can separate them with a "p minus 1" dimensional hyperplanes.

This is a typical form of linear classifier. There are many linear classifiers that might

satisfy this property. However, we are additionally interested in finding out if we can

achieve maximum separation (margin) between the two classes. It means we pick the

hyperplane so that the distance from the hyperplane to the nearest data point is maximized.

60

That is to say that the nearest distance between a point in one separated hyperplane and a

point in the other separated hyperplane is maximized. Now, if such a hyperplane exists, it

is clearly of interest and is known as the maximum-margin hyperplane and such a linear

classifier is known as a maximum margin classifier.

6.2 Formalization
A data set that can be successfully split by a linear separator is called linearly separable,

for example data points generated by two Gaussian distributions with different means but

with same standard deviation.

Let us assume that we are dealing with a two class classification problem where the y is

either 1 or −1, (i.e. y = {-1, +1}) a constant denoting the class to which the point Xi

belongs. Each Xi is a p-dimensional real vector, usually of normalised (normalizing

constant) [0,1] or [-1,1] values. The scaling is important to guard against variables

(attributes) with larger variance that might otherwise dominate the classification. We can

view this as training data, which denotes the correct classification which we would like the

SVM to eventually distinguish, by means of the dividing (or separating) hyperplane, which

takes the form as shown in Fig. 6.2.

Figure 6.2: Maximum-margin hyperplanes

If the data are separable by (w, b) then we can multiply both sides of equation by any

number without affecting the equality, so they are also separable by any (positive) multiple

61

of (w, b) and hence there exist an infinite number of representations for the same

separating hyperplane.

Figure 6.3: Linear classifier and margins

A linear classifier is defined by the normal vector w of a hyperplane and is an offset, and

proportional to perpendicular distance from origin to the separator, we consider b as a 0th

component of the weight vector w and its data vector x will always be equal to 1 i.e. x0 =1

and w0 = b i.e. so w.x = 0, the decision boundary is (solid line) as shown in figure 6.2

{ x | (wT x) + b = 0} (6.2)

Each of the two half spaces induced by this hyperplane corresponds to one class, i.e.

 f(x) = sgn((wT x) + b) (6.3)

The margin of a linear classifier is the minimal distance of any training point to the

hyperplane. For the case shown in the Fig. 6.3, it is the distance between the dotted lines

and the solid line. A hyperplane is defined as a function

f(x) = (wT x) + b (6.4)

Where w is normalized such that

Notice that none of the training examples produces an absolute output that is smaller than

one and the examples closest the hyperplane have exactly an output of one, i.e.

62

(wT x) + b = + 1

In above figures these are the objects (support vectors) which are connected to the decision

boundary (dashed lines). Since we assumed the sample to be linearly separable, we can

turn any f that separates the data into a hyperplane by suitably normalizing the weight

vector w and adjusting the threshold correspondingly.

The margin is defined to be the minimal Euclidean distance between any training example

xi and the separating hyperplane. Intuitively, the margin measures how good the separation

between the two classes by a hyperplane is, the margin can be measured by the length of

the weight vector w. If we subtract the perpendicular distance to the origin we get the

distance of x from hyperplane rather than from the origin. The distance measure from

hyperplane is signed. It is zero for the points on the hyperplane, positive for points in the

side of space towards which the normal vector points and negative for points on the other

side as shown in figure 6.2 (we can switch this direction if we take b = -1)

 Consider two support vectors x1 and x2 from different classes. The margin is given by the

projection of the distance between these two points on the direction perpendicular to the

hyperplane. We pick the separator which has maximum margin to its closest points on

either side. It reduces the variance of hypothesis. Placing the separator very close to

positive or negative points is a kind of overfitting and it makes the hypothesis very

dependent on input data. So pick margin to the closest positive and negative points be 1.

We compute the distance between the hyperplanes by combining +1(w.x+ + b) = 1 and

+1(w.x- + b) = 1. Then dividing by length of w gives perpendicular distance i.e. 2/|w|,

1 2
2()

|| || || ||

Tw x x
w w

⎛ ⎞
− =⎜ ⎟

⎝ ⎠
 (6.5)

The smaller the norm of the weight vector w, the larger the margin, so we want to

minimize |w|.

63

A particularly important insight is that the complexity only indirectly depends on the

dimensionality of the data. This is very much in contrast to e.g. density estimation, where

the problems become more difficult as the dimensionality of the data increases. For SVM

classification, if we can achieve a large margin the problem remains simple.

Figure 6.4: Large and small margins

We can see that why a large margin reduces the complexity of a linear hyperplane

classifier. If we choose hyperplanes with a large margin, there is only a small number of

possibilities to separate the data. On the contrary, if we allow smaller margins there are

more separating hyperplanes. Maximum-margin hyperplanes for a SVM trained with

samples from two classes. Samples along the hyperplanes are called the support vectors.

w . x – b = 0

The vector w points perpendicular to the separating hyperplane. Adding the offset

parameter b allows us to increase the margin. In its absence, the hyperplane is forced to

pass through the origin, restricting the solution. As we are interested in the maximum

margin, we are interested in the support vectors and the parallel hyperplanes (to the

optimal hyperplane) closest to these support vectors in either class.

64

6.3 Soft Margin
In 1995, Cortes and Vapnik suggested a modified maximum margin idea [39] that allows

for mislabeled examples. If there exists no hyperplane that can split the "yes" and "no"

examples, the Soft Margin method will choose a hyperplane that splits the examples as

cleanly as possible, while still maximizing the distance to the nearest cleanly split

examples. This work popularized the expression Support Vector Machine or SVM. The

method introduces slack variables, ξi, which measure the degree of misclassification of the

datum xi

 (.) 1i i ic w x b ξ− ≥ − 1 i n≤ ≤ (6.6)

The parameters of the maximum-margin hyperplane are derived by solving the

optimization. There exist several specialized algorithms for quickly solving the QP

problem that arises from SVMs, mostly reliant on heuristics for breaking the problem

down into smaller, more-manageable chunks. The objective function is then increased by a

function which penalises non-zero ξi, and the optimisation becomes a trade off between a

large margin, and a small error penalty. If the penalty function is linear, the equation

becomes:

 2min || || i
i

w C ξ+ ∑ such that (.) 1i i ic w x b ξ− ≥ − 1 i n≤ ≤ (6.7)

We are now at the point to merge the ideas into a single algorithm, Support Vector

Machines, suitable for a wide range of practical application. The main goal of this

algorithm is to find a weight vector w separating the data with the largest possible margin.

Assume that the data are separable. Our goal is to find the smallest possible w without

committing any error. This can be expressed by the following quadratic optimization

problem:

2

,

1 || ||min 2w b
w

65

subject to yi ((wT xi) + b ≥ 1, 1,.....,i M∀ = (6.8)

The constraints in (6.10) assure that w and are chosen such that no example has

a distance to the hyperplane smaller than one. The problem can be solved directly by using

a quadratic optimizer. Notice that the optimal solution renders a hyperplane. In contrast to

many neural networks one can always find the global minimum. In fact, all minima

of (6.10) are global minima, although they might not be unique as e.g. in the case when

M< N, where N is the dimensionality of the data.

In the formulation (6.10), referred to as the primal formulation, we are bound to use the

original data x. These constraints (in 6.10) along with the objective of minimizing |w| can

be solved by incorporating the constrained as an additional term and using Lagrange

multipliers [41]. We obtain the following Lagrangian:

2

1

1(, ,) || || ((()) 1)
2

M
T

i i i
i

L w b w y w x bα α
=

= − + −∑ (6.9)

The task is to minimize (6.9) with respect to w, b and to maximize it with respect to iα . At

the optimal point, we consider alphas as constant for now and figure out what values of w

and b would optimize L for those fixed alphas, we can solve this by taking partial

derivatives of L with respect to w and b and setting them to zero, getting two constraints.

We have the following equations:

0L
b
∂

=
∂

 and 0L
w
∂

=
∂

We get two more constraints

1

0
M

i i
i

yα =

=
∑ and

1

M

i i i
i

w y xα
=

=∑ (6.10)

Here w is a weighted sum of the input points, by substituting this expression in L, we get L

as a function of alphas. Now we have an expression involving only alphas and x’s and y,s.

This function is known as dual langrangian.

66

From the right equation of (6.12), we find that w is contained in the subspace spanned by

the xi in the training set. By substituting (6.12) into (6.11), we get the dual quadratic

optimization problem:

1 , 1

1max ()
2

M M
T

i i j i j ji
i i j

y y x x
α

α α α
= =

−∑ ∑ (6.11)

 subject to 0iα ≥ , i = 1,…..,M (6.12)

1

0
M

i i
i

yα =

=
∑ (6.13)

In solution most of the alphas will be zero, corresponding to data points that do not provide

binding constraints on the choice of the weights. A few of the data points will have their

alphas be nonzero, they will satisfy their constraints with equality (that is, their margin is

equal to 1). These are called support vectors and they are the ones used to define the

maximum margin separator. We can remove all the other data points and still get the same

separator. This learning method is called a support vector machine, or SVM. Thus, by

solving the dual optimization problem, one obtains the coefficients αi, i = 1,…., M, which

one needs to express the solution w. This leads to the decision function:

f(x) = sgn((wT x) + b)

1

sgn ()
M

T
i i i

i
y x x bα

=

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
∑ (6.14)

Learning depends only on dot products of sample pair. Recognition depends only on dot

products of unknown with samples. It means given an unknown vector u, predict class (1

or -1) as follows:

1
() sgn .

M
i

i i
i

h u y x u bα
=

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
∑

67

The sum is over M support vectors, the classifier depends only on the support vectors, not

on all training points. The maximum margin constraint helps reduce the variance of the

SVM hypotheses, minimum magnitude weight vector drasitically cuts down on the size of

the hypothesis class and helps avoid overfitting. SVM traing process gaurantees a unique

global maximum.

When Straight Lines Go Crooked

The simplest way to divide two groups is with a straight line, flat plane or an N-

dimensional hyperplane. But if the points are separated by a nonlinear region such as

shown below. In this case we need a nonlinear dividing line as shown in the figure below.

Figure 6.5: Nonlinear dividing line

6.4 Non-linear SVM

The original optimal hyperplane algorithm proposed by Vladimir Vapnik in 1963 was a

linear classifier. However, in 1992, Bernhard Boser, Isabelle Guyon and Vapnik suggested

a way to create non-linear classifiers by applying the kernel trick (originally proposed by

Aizerman) to maximum-margin hyperplanes [42]. Its an important advantage of the SVM

that it is not necessary to implement this transformation and to determine the separating

hyperplane in the possibly very-high dimensional feature space, instead a kernel

representation can be used, where the solution is written as a weighted sum of the values of

certain kernel function evaluated at the support vectors. The resulting algorithm is formally

68

similar, except that every dot product is replaced by a non-linear kernel function. This

allows the algorithm to fit the maximum-margin hyperplane in the transformed feature

space. The transformation may be non-linear and the transformed space is high

dimensional; thus the classifier is a hyperplane in the high-dimensional feature space it

may be non-linear in the original input space.

If the kernel used is a Gaussian radial basis function, the corresponding feature space is a

Hilbert space of infinite dimension. Maximum margin classifiers are well regularized, so

the infinite dimension does not spoil the results.

6.4.1 The Kernel Trick

Rather than fitting nonlinear curves to the data, SVM handles this by using a kernel

function to map the data into a different space where a hyperplane can be used to do the

separation.

Figure 6.6: Data in different space

The basic idea of the so called kernel-methods is to first preprocess the data by some non-

linear mapping Φ and then to apply the same linear algorithm as before but in the image

space of Φ as shown in Fig. 6.7. More formally we apply the mapping as

: NR εΦ → , ()x x→Φ

to the data x1, x2, ….., xM Є X, and consider our algorithm in ε instead of X, i.e. the sample

is preprocessed as

1 1,, 1{((), (),)} ()M
Mx y x y yεΦ Φ ⊆ ×

69

Figure 6.7: Three different views on the same two class separation problem

(a) A linear separation of the input points is not possible without errors. Even allowing

misclassification of one data point results in a small margin. (b) A better separation is

provided by a non-linear surface in the input space. (c) This non-linear surface corresponds

to a linear surface in a feature space. Data points are mapped from input space to feature

space by the function Φ induced by the kernel function k. The kernel function may

transform the data into a higher dimensional space to make it possible to perform the

separation. Separation may be easier in higher dimensions.

Figure 6.8: Separation in low and higher domain

In certain applications we might have sufficient knowledge about our problem such that we

can design an appropriate Φ by hand. If this mapping is not too complex to compute and

the spaceε is not too high-dimensional, we might just explicitly apply this mapping to our

data. Something similar is done for (single hidden layer) neural networks, radial basis

70

networks or Boosting algorithms, where the input data are mapped to some representation

given by the hidden layer, the RBF bumps or the hypotheses space, respectively. The

difference with kernel-methods is that for a suitably chosen Φ we get an algorithm that has

powerful non-linearities but is still very intuitive and retains most of the favorable

properties of its linear input space version.

The problem with explicitly using the mapping Φ to construct a feature space is that the

resulting space can be extremely high-dimensional. As an example consider the case when

the input space X consists of images of 16 * 16 pixels, i.e. 256 dimensional vectors, and we

choose 5th order monomials as non-linear features. The dimensionality of such space

would be

10
5 256 1

10
5

+ −⎛ ⎞
≈⎜ ⎟

⎝ ⎠

Such a mapping would clearly be intractable to carry out explicitly. We are not only facing

the technical problem of storing the data and doing the computations, but we are also

introducing problems due to the fact that we are now working in an extremely sparse

sampled space. The problems concerning the storage and the manipulation of the high

dimensional data can be avoided. It turns out that for a certain class of mappings we are

well able to compute scalar products in this new space even if it is extremely high

dimensional. Simplifying the above example of computing all 5th order products of

256 pixels to that of computing all 2nd order products of two ''pixels'', i.e.

x = (x1, x2) and 2 2
1 2,1 2() (, 2)x x x x xφ =

the computation of a scalar product between two such feature space vectors can be readily

reformulated in terms of a kernel function k:

(() ())Tx zφ φ

71

2
1 2 1, 2((,)())Tx x z z=

2()Tx z=

: (,)k x z=

This finding generalizes: For x, z N∈� , and d N∈ the kernel function, computes a scalar

product in the space of all products of d vector entries of x and z.

(,) ()T dk x z x z=

The kernel trick is to take the original algorithm and formulate it such, that we only use

Φ(x) in scalar products. Then, if we can efficiently evaluate these scalar products, we do

not need to carry out the mapping Φ explicitly and can still solve the problem in the huge

feature spaceε . Furthermore, we do not need to know the mapping Φ but only the kernel

function.

Algorithm: The Support Vector Machine with regularization parameter C.

Given labeled sequences (x1, y1), . . . , (xm, ym) (x X and y {-1, +1}) and a

kernel k, the SVM computes a function

where the coefficients iα and b are found by solving the optimization problem

minimize
, 1 1

(,)
m m

i j i
i j i j ik s s Cα α ε

= =
+∑ ∑ subject to () 1i i iy f x ε≥ −

6.5 Standard choices for kernels
Now we need to find some mappings from low to high dimensional space, which have

convenient kernel function associated with them. The simplest case is one where phi is the

identity function and K is just the dot product i.e. linear kernel given in table 6.1. One such

other kernel function called polynomial kernel given in table 6.1. It is the dot product

raised to a power; the actual power is a parameter of the learning algorithm that determines

∈ ∈

1
() (,)

m

i i
i

f s k x x bα
=

= +∑

72

the properties of the solution. Another popular kernel function is Radial basis kernel, an

exponential of the square of the distance between vectors, divided by sigma squared given

in the table below. This is the formula for a Gaussian bump in the feature space, where

sigma is the standard deviation of the Gaussian. Sigma is a parameter of the learning that

determines the properties of the solution. Table 6.1 lists some of the most widely used

basic kernel functions.

Linear kernel Φ(xi).Φ(xk) = K(xi , xk) = xi . xk

Polynomial kernel (nth order) K(xi ,xk) = (1+ xi .xk)n

Radial basis kernel

Table 6.1: Common kernel functions

6.5.1 Properties of Kernels

Besides being useful tools for the computation of dot products in high or infinite

dimensional spaces, kernels possess some additional properties that make them an

interesting choice in algorithms. Using a particular positive definite kernel corresponds to

an implicit choice of a regularization operator. For translation-invariant kernels, the

regularization properties can be expressed conveniently in Fourier space in terms of the

frequencies. For example, Gaussian kernels correspond to a general smoothness

assumption in all k-th order derivatives. Vice versa, using this correspondence, kernels

matching a certain prior about the frequency content of the data can be constructed so as to

reflect our prior problem knowledge [45].

2

2

|| , ||(,)
2

i k
i k x xk x x e

σ
−

=

73

Another particularly useful feature of kernel functions is that we are not restricted to

kernels that operate on vectorial data. In principle, it is also possible to define positive

kernels for e.g. strings or graphs, i.e. making it possible to embed discrete objects into

a metric space and apply metric-based algorithms [43]. Furthermore, many algorithms can

be formulated using so called conditionally positive definite kernels, which are a superclass

of the positive definite kernels considered so far. They can be interpreted as generalized

non-linear dissimilarity measures (opposed to just the scalar product) and are applicable

e.g. in SVM and kernel PCA.

6.5.2 Radial Basis Function(RBF) as kernel

Normally a Gaussian is used as the RBF, Figure 6.9 shows a two-dimensional version of

such a kernel. From eqn 6.20, the output of the kernel is dependent on the Euclidean

distance of xj from xi (one of these will be the support vector and the other will be the

testing data point). The support vector will be the centre of the RBF and will determine

the area of influence this support vector has over the data space [44].

 (6.20)

Figure 6.9: The Radius Basis Function kernel

2

2

|| , ||(,)
2

i k
i k x xk x x e

σ
−

=

74

A larger value of will give a smoother decision surface and more regular decision

boundary. This is because an RBF with large will allow a support vector to have a strong

influence over a larger area. Figures 6.10 and 6.11 show the decision surface and

boundaries for two different σ values. A larger σ value also increases theα value (the

Lagrange multiplier) for the classifier. When one support vector influences a larger area,

all other support vectors in the area will increase in α -value to counter this influence.

Hence all α -values will reach a balance at a larger magnitude. A larger σ -value will also

reduce the number of support vectors. Since each support vector can cover a larger space,

fewer are needed to define a boundary.

Figure 6.10: Decision surface of small σ

75

Figure 6.11: Decision surface of large σ

This means that the estimate of ||w|| will increase. The estimation of the VC dimension of

the SVM depends on the norm of w and also on the radius of the sphere that encompasses

all the data as σ increases, the value of R will decrease. This will balance the increase in

||w||. The experiments on the effect of different σ -values show that the expected risk

loosely corresponds to the accuracy of the classifier tested on testing data.

6.6 Cross Validation error

We can estimate the error on new data by computing the cross-validation error on the

training data. If we look at the linearly separable case, it is easy to see that the expected

value of leave-one-out cross-validation error is bounded by the proportion of support

vectors. If we take a data point that is not a support vector from the training set, the

computation of the separator will not be affected and so it will be classified correctly. If we

take a support vector out, then the classifier will in general change and there may be an

error. So, the expected generalization error depends on the number of support vectors and

not on the dimension.

Note that using a radial basis kernel with very small sigma gives us a high expected

number of support vectors and therefore a high expected cross-validation error, as

expected. Yet, a radial basis kernel with large sigma, although of similar dimensionality,

76

has fewer expected support vectors and is likely to generalize better. We shouldn't take this

bound too seriously; it is not actually very predictive of generalization performance in

practice but it does point out an important property of SVMs, that generalization

performance is more related to expected number of support vectors than to dimensionality

of the transformed feature space.

6.7 Summary

One key point is that SVMs have a training method that guarantees a unique global

optimum. This eliminates many problems in other approaches to machine learning. The

other advantage of SVMs is that there are relatively few parameters to be chosen: the

constant used to trade off classification error and width of the margin; and the kernel

parameter, such as sigma in the radial basis kernel. And, last is the kernel trick. That is, the

whole process depends only on the dot products of the feature vectors, which is the key to

the generalization to non-linear classifiers.

 81

Chapter No 7

 Backpropagation Neural Net

 82

7.1 Introduction

 The demonstration of the limitations of neural network was a significant factor

in the decline of interest in neural network in 1970’s.The discovery and widespread

dissemination of an effective general method of training a multi-layer neural

network play a major role in the emergence of neural network as a tool for solving a

wide variety of problems.

Backpropagation or generalized delta rule is simply a gradient descent

method to minimize the total squared error of the output computed by the net.

The very general nature of the backpropagation training method means that a

backpropagation net (multilayer, feedforward net trained by the backpropogation)

can be used to solve many problems in many areas.

A back-propagation neural network is only practical in certain situations. Here are

some situations where a BP NN might be a good idea:

A large amount of input/output data is available, but you're not sure how to relate it

to the output.

The problem appears to have overwhelming complexity, but there is clearly a

solution.

It is easy to create a number of examples of the correct behavior.

The solution to the problem may change over time, within the bounds of the given

input and output parameters (i.e., today 2+2=4, but in the future we may find that

2+2=3.8).

Outputs can be "fuzzy", or non-numeric.

One of the most common applications of NNs is in image processing. Some

examples would be: classifying the diseases in a CAD system, identifying hand-

written characters; matching a photograph of a person's face with a different photo

in a database; performing data compression on an image with minimal loss of

content. Other applications could be: voice recognition; stock market prediction. All

of these problems involve large amounts of data, and complex relationships between

the different parameters.

 83

It is important to remember that with a NN solution, you do not have to understand

the solution at all! This is a major advantage of NN approaches. With more

traditional techniques, you must understand the inputs, and the algorithms, and the

outputs in great detail, to have any hope of implementing something that works.

With a NN, you simply show it: "this is the correct output, given this input". With an

adequate amount of training, the network will mimic the function that you are

demonstrating. Further, with a NN, it is OK to apply some inputs that turn out to be

irrelevant to the solution - during the training process; the network will learn to

ignore any inputs that don't contribute to the output. Conversely, if you leave out

some critical inputs, then you will find out because the network will fail to converge

on a solution.

If your goal is stock market prediction, you don't need to know anything

about economics, you only need to acquire the input and output data. There are

several ways to do so for neural recognizers.

7.1.1 Architecture

A multilayer network with one layer of hidden units (the Z unit) is shown in figure.

The output units (the y units) and the hidden units also may have biases (as

shown).The bias on a typical output unit Yk is denoted by w0k: the bias on a typical

hidden unit Zj is denoted by voj.

 84

Figure 7.1: Backpropagation neural network with one hidden layer

 The bias terms act like weights on connection from units whose output is

always 1.Only the direction of information flow for the feed forward phase of

operation is shown. During the back propagation phase of learning, signals are sent

in the reverse direction.

Following is the algorithm for one hidden layer which is adequate for large number

of applications especially for handwritten character recognition.

7.1.2 Algorithm

Training a network by back propagation involves three stages:

• The feedforward of the input training pattern

• The backpropagation of the associated error

• The adjustment of weights.

During feed forward, each input unit (Xi) receives an input signal and broadcasts this

signal to each of the hidden units Z1, Z2, ……… Zp.

 85

Each hidden unit then computes its activation and sends its signal (zj) to each output

unit. Each output unit (Yk) computes its activation (yk) to form the response of the

net for the given input unit.

 During training, each output unit compares its computed activation yk with its

target value tk to determine the associate error for that pattern with that unit. Based

on this error, the factor δk (k=1…….m) is computed, δk is used to distribute the error

at the output Yk back to all units in the previous layer (the hidden units that are

connected to Yk).It is also used (later) to update the weights between the output and

the hidden layer. In a similar manner the factor δj (j=1…….p) is computed for each

hidden unit Zj. It is not necessary to propagate the error back to the input layer, but

δj is used to update the weights between the hidden layer & the input layer.

 After all of the δ factors have been determined, the weights for all layers are

adjusted simultaneously. The adjustment to the weight wjk (from hidden unit Zj to

output unit Yk) is based on the factor δk and the activation zj of the hidden unit Zj.

The adjustment to the weight vij (from input unit Xi to hidden unit Zj) is based on

the factor δj and the activation vij of the input unit.

7.1.3 Nomenclature

The nomenclature, we use in the training algorithms for the backpropogation net is

as follows.

x Input training vector

x = (x1, x2,……xi…….xn)

t Output target vector

t = (t1, t2,……..tk…….tm)

δk Portion of the correction weight adjustment for wij that is due to an

error that output unit Yk, also the information about the error at unit

Yk that is propagated back to the hidden unit that feed into unit Yk.

δj Portion of the correction weight adjustment for vij that is due to

backpropagation of information from the output layer to the hidden

Zj.

α Learning rate

Xi Input unit i

 86

 For an input unit, the input signal and output signal are the same,

namely xi

 voj Bias on hidden unit j

 Zj Hidden unit j

 The net output to the Zj is denoted by z_inj

 z_inj = vok + Σxivij

 The output signal (activation) of Zj is denoted zj

 zj = f (z_inj)

wok Bias on output unit k

 Yk Output unit k

 The net output to the Yk is denoted by y_ink

 y_ink = wok + Σziwik

 The output signal (activation) of Yk is denoted yk

 yk= f (y_ink)

7.1.4 Activation Function

The activation function for a backpropagation net should have several

important characteristics. It should be continuous, differentiable and monotonically

non- decreasing. Furthermore for computational efficiency, it is desirable that its

derivative be easy to compute. For the most commonly used activation functions the

value of the derivative (at a particular value of the independent variable) can be

expressed in terms of the value of the function(at the value of independent

variable),the function is expected to saturate i-e approach finite maximum and

minimum values asymptotically.

One of the most typical activation functions is the binary sigmoid function, which

has range (0, 1) and is defined as

 f1(x) =1/1+exp (-x)

with

f'1(x)=f1(x)[1-f'1(x)]

 87

Figure 7.2: Binary sigmoid

Another common activation function is bipolar sigmoid, which has range of (-1, 1)

and is defined as

 f2(x) = [2/1+exp (-x)]-1

with

f'2(x) =1/2[1+f2(x)][1-f2(x)]

Figure 7.3: Bipolar sigmoid

Note that bipolar sigmoid function is closely related to the function

 Tanh(x) = ex - e-x/ex + e-x

The sigmoid function explained above can be translated to the right or left by the use

of an additive constant on the independent variable. However this is not necessary,

since the trainable bias serves the same role.

The steepness of the logistic sigmoid can be modified by a slope parameter σ.

This more general sigmoid function (with range between (0 and 1) is

f(x)=1/1+exp(-σ x)

with

 88

f'(x)=σ f(x) [1-f'(x)]

7.1.5 Training algorithm

 Either of the activation function can be used in the standard back propagation

algorithm. The form of data (especially the target values) is an important factor in

choosing appropriate function. Note that because of the simple relationship between

the value of the function and its derivative, no additional evaluations of the

exponential are required to compute the derivatives needed during the

backproagation phase of algorithm.

The algorithm is as follows

Step 0 Initialize weights

 (Set to small random values)

Step1 While stopping condition is false, do step 2-9

 Step2 For each training pairs do Steps 3-8

 Feedforward

Step 3 Each input unit (Xi, i=1, 2………n) receives input signal xi,

and broadcasts this signal to all units in the layer above the

hidden units)

 Step4 Each hidden unit (Zj, j=1, 2……..p) sums its weighted input

signals

 z_ini = voj +Σxivij

 applies its activation function to compute its output

 signals

zj = f(z_inj)

and sends the signal to all units in the layer above (output

units).

 Step5 Each output unit (Yk, k=1, 2……..p) sums its

 weighted input signals

 y_ink=wok + Σziwik

and applies its activation function to compute its output

signals

yk = f (y_ink)

Backpropogation of error:

 89

Step6: Each output unit (YK, k=1…..m) receives a target

pattern corresponding to the input training pattern,

computes its error information term

 δk = (tk - yk) f’(y_ink)

calculates its weight correction term (used to update

wjk later)

∆wjk = α δk zj

Calculates its bias correction term (used to update wok

later)

∆wok = αδk

And sends δk to units in the layer below.

Step7: Each hidden unit (Zj, j=1…..p) sums delta inputs

(from units in the layer above)

 δ_ink= Σ δk wjk

multiplies by the derivative of its activation function

to calculate its error information term

 δj= δ_inj f'(zj)

and calculates its weight correction term(used to

update voj later)

∆vij = α δj xi

And calculates its bias correction term used to update

voj, later

∆voj = αδj

Update weights and biases

Step8 Each output unit (Yk,k=1…….m)updates its bias and

weights (j=1………p)

 wjk (new)=wjk(old)+ ∆wjk

Each hidden unit (Zj:j=1………p) updates its bias

 and weights (i=0,……n)

 vij(new)=vij(old)+ ∆vij

 Step9 Test stopping condition

In implementing this algorithm, separate arrays will be used for the deltas for

the output units(step6,δk) and the deltas for the hidden units(step7,δj)

 90

An epoch is one cycle through the entire set of training vectors. Typically many

epochs required for training backpropagation neural net.

 The mathematical bias for the backpropagation algorithm is the optimization

technique known as gradient descent. The gradient of the function (in this case the

function is the error and the variables are the weights of the net) gives the direction

in which the function increases more rapidly; the negative gradient gives the

direction in which the function decreases more rapidly.

7.2 Random Initialization of weights

 The choice of initial weights influence whether the net reaches a global or only

local minimum of the error & if so, how quickly it converges. The update of the

weight between two units depends on both the derivative of the upper unit’s

activation function & the activation of lower unit. For this reason it is important to

avoid the choices of initial weights that would make it likely that either activations

or derivative of activation are zero. The values for the initial weights must not be too

large, or the initial input signals to each hidden or output unit will be likely fall in

the region where the derivative of sigmoid function has a very small value (the so-

called saturation region).On the other hand, if the initial weights are too small, the

net input to a hidden or output unit will be close to zero, which also causes

extremely slow learning.

 A common procedure to initialize the weights (and biases) to random values

between -0.5 and 0.5(or between -1 and +1 or some other suitable interval).The

values may be positive or negative because the final weights after training may be of

either sign also.

 Nguyen-Widrow Initialization

 This approach is based on a geometrical analysis of the response of the hidden

neurons to single input. Weights from the hidden units to the output input are

initialized to random values between 0.5 and 0.5(or between -1 and +1) , as

commonly the case .

 The initialization of the weights from the input unit to the hidden units is

designed to improve the ability of the hidden units to learn. This is accomplished by

 91

distributing the initial weights, for each input pattern, it is likely that the net input to

one o the hidden units will be in the range in which that hidden neuron will learn

them most readily.

n number of input unit

p number of hidden unit

β scale factor

β = 0.7(p) 1/n

Initialize its weight vectors (from the input unit)

Compute || vj(old) || = (v1j(old)2 + v2j(old)2 + ….. + vnj(old)2) ½

Reinitialize weights: vij = βvij(old) / || vij(old)||

7.3 Training period

Since the usual motivation for applying backpropogation net is to achieve a

balance between correct response to new input patterns (i.e. the balance between

memorization or generalization), it is not necessarily advantageous to continue

training until the total squared error actually reaches the minimum. Hecht-Neilson

(1990) suggests using two sets of data during training patterns and a set of training-

testing patterns. These two sets are disjoint .Weight adjustments are based on the

training pattern; however at intervals during training the error is computed using

training-testing patterns. As long as training the error begins to decrease training

continues .When the error begins to increase, the net is starting to memorize the

training patterns too specifically (and starting to lose its ability to generalize).At this

point training is terminated.

 7.4 Number of training pairs

 A relationship among the number of training patterns available P, the number

of weights to be trained W, and the accuracy of classification expected e, is

summarized in the following rules of thumb

 W/P = e

 92

 P = W/e

Where

P = No of training patterns

W = Number of weights to be trained

E = Accuracy of classification

7.5 Number of hidden layers

 Although a single hidden layer is sufficient to solve any function

approximation problem, some problems may be easier to solve using net with two

hidden layers. For handwritten character recognition, two hidden layer will be used.

You may not need any hidden layers at all. Linear and generalized linear models are

useful in a wide variety of applications (McCullagh and Nelder 1989). And even if

the function you want to learn is mildly nonlinear, you may get better generalization

with a simple linear model than with a complicated nonlinear model if there is too

little data or too much noise to estimate the non-linearities accurately. If we have

only one input, there seems to be no advantage to using more than one hidden layer.

But things get much more complicated when there are two or more inputs.

The best number of hidden units depends in a complex way on:

• the numbers of input and output units

• the number of training cases

• the amount of noise in the targets

• the complexity of the function or classification to be learned

• the architecture

• the type of hidden unit activation function

• the training algorithm

• regularization

In most situations, there is no way to determine the best number of hidden

units without training several networks and estimating the generalization error of

each. If you have too few hidden units, you will get high training error and high

generalization error due to under-fitting and high statistical bias. If you have too

many hidden units, you may get low training error but still have high generalization

error due to high variance. Many NN programs may actually need closer to 100

hidden units to get zero training error.

 93

7.6 Performance of Net

 Several modifications can be made to the backpropagaion algorithm which

may improve its performance in some situations. The modification involves changes

to the weight update procedure.

7.6.1 Momentum

 A simple way to improve the standard back propagation learning algorithm is

to smooth the weight changes by over relaxation i.e. by adding the momentum. In

backpropagation with momentum , the weight change is in a direction that is a

combination of current gradient and previous gradient .This is a modification of

gradient descent whose advantage arise chiefly when some training data are very

different from the majority of the data (and possibly even incorrect) . It is desirable

to use small learning rate to avoid a major disruption of the direction of learning

when a very unusual pair of training pattern is presented. However it is also

preferable to maintain training at fairly rapid pace as long as the training data are

relatively similar

The momentum term may improve the convergence rate and the steady state

performance of the algorithm. In order to use momentum, weight (or weight

updates) from one or more previous raining pattern must be saved.

7.6.2 Batch Updating

 In some cases it is advantageous to accumulate the weight correction term for

several patterns (or even an entire epoch if there are not too many parameters) and

make a single weight adjustment (equal to the average of the weight correction term)

for each weight rather than updating the weight rather than updating the weights

after each pattern is presented. This procedure has smoothing effect on the

correction term. In some cases this smoothing may increase the chance of

convergence to local minimum.

 94

7.6.3 Adaptive Learning Rate

Researches have attempted to improve the speed of training by changing the

learning rate during training. The adapted learning attempts to heap learning rate at

each iterative steps large as possible while keep the learning process stable.

 7.6.4 Delta Bar Delta

 The general approach of delta bar delta algorithm is to allow each weight to

have its own learning rate to let the learning rates by vary the time as training

progresses. If the weight change is in the same direction for several time steps, the

learning rate for that weight should be increased. However if the direction if the

weights change alternates, the learning rate should be decreased.The delta bar delta

consists of a weight upgrade rule and a learning update rule.

7.7 Summary

 The topics covered are the fundamental to understanding Backpropagation

feedforward Neural Network. Basically its architecture, algorithm, characteristics of

activation functions and training methods are discussed in detail.

76

Chapter 7

Experiments and Results

77

7.1 Introduction

This chapter contains description of the experiments conducted along with their results.

The evaluation measure mainly used was accuracy. Results were compiled for evaluation

of normal or diseased liver. Data is trained and tested with the help of cross validation. At

the end of this chapter observations based on the results are presented, which are carried

out with the help of Operating Characteristics of ROC.

7.2 Cross Validation
In cross validation we randomly split the set of labeled training samples data into two

parts: one is used as the traditional training set for adjusting model parameters in the

classifier. The other set the validation set is used to estimate the generalization error [46].

Since our ultimate goal is low generalization error, we train the classifier until we reach a

minimum of this validation error, as sketched in Fig. 7.1.

Figure 7.1: Cross Validation

In cross validation, the data set D is split into two parts. The first (e.g., 90% of the patterns)

is used as a standard training set for setting free parameters in the classifier model; the

other (e.g., 10%) is the validation set and is meant to represent the full generalization task.

For most problems, the training error decreases monotonically during training, as shown in

black in above figure. Typically, the error on the validation set decreases, but then

78

increases, an indication that the classifier may be overfitting the training data. In cross

validation, training or parameter adjustment is stopped at the first minimum of the

validation error.

Cross validation can be applied to virtually every classification method, where the specific

form of learning or parameter adjustment depends upon the general training method. For

example, in neural networks of a fixed topology, the amount of training is the number of

epochs or presentations of the training set. Alternatively, the number of hidden units can be

set via cross validation. Likewise, an optimal value of k in the k-nearest neighbor classifier

can be set by cross validation [47].

Cross validation is heuristic and cannot give improved classifiers in every case.

Nevertheless, it is extremely simple and for many real-world problems is found to improve

generalization accuracy. There are several heuristics for choosing the portion γ of D to be

used as a validation set (0 < γ < 1). Nearly always, a smaller portion of the data should be

used as validation set (γ < 0.5) because the validation set is used merely to set a single

global property of the classifier (i.e., when to stop adjusting parameters) rather than the

large number of classifier parameters learned using the training set. If a classifier has a

large number of free parameters or degrees of freedom, then a larger portion of D should

be used as a training set, i.e., γ should be reduced. A traditional default is to split the data

with γ = 0.1, which has proven effective in many applications. Finally, when the number of

degrees of freedom in the classifier is small compared to the number of training points, the

predicted generalization error is relatively insensitive to the choice of γ.

A simple generalization of the above method is m-fold cross validation. Here the training

set is randomly divided into m disjoint sets of equal size n/m, where n is again the total

number of patterns in D. The classifier is trained m times, each time with a different set

held out as a validation set. The estimated performance is the mean of these m errors. In

the limit where m = n, the method is in effect the leave-one-out approach.

Cross validation is a heuristic and may be not work on every problem. Indeed, there are

problems for which anti-cross validation is effective, halting the adjustment of parameters

when the validation error is the first local maximum. As such, in any particular problem

79

designers must be prepared to explore different values of γ, and possibly abandon the use

of cross validation altogether if performance cannot be improved.

Cross validation is, at base, an empirical approach that tests the classifier experimentally.

Once we train a classifier using cross validation, the validation error gives an estimate of

the accuracy of the final classifier on the unknown test set. If the true but unknown error

rate of the classifier is p, and if k of the ń independent, randomly drawn test samples are

misclassified, then k has the binomial distribution

()' '() (1)n k n k
kp k p p −= −

Thus, the fraction of test samples misclassified is exactly the maximum likelihood estimate

for p.

7.3 Experimental Setup

We used m folds cross validation in our experiments, where m is 10. The data set was

divided into ten parts and then the experiments were repeated ten times, each time

reserving different part for the testing and the remaining nine for the training purposes. All

the results were then averaged over the entire set of experiments.

Two sets of experimental setup were used for the liver classification. In the first set of

experiments the data was trained and tested with support vector machine. All the classes

were trained and tested using the features set of for normal, Hepatoma, Hemangioma and

Cirrhosis respectively.

SVM is trained three times in a hierarchical order, first time it is trained to classify

between normal and diseased liver, which includes liver infected with Hemengioma,

Hepatoma, or cirrhosis. Data for training is provided in such a way that 20 positive

examples are provided for normal liver and rest of the 75 is negative (25 for each disease).

Disease type cannot be classified at this stage. For this purpose we trained the second

80

SVM, which is trained to classify between Hemangioma and other disease (not

Hemangioma) i.e., any other disease but other disease cannot be identified at this stage.

Training set for second SVM includes 25 positive examples for Hemangioma and 50

negative examples for rest of the two diseases. Now this SVM is able to classify between

Hemangioma and other disease (not Hemangioma). Third SVM is trained to classify

between Hepatoma and Cirhhosis, where 25 positive and 25 negatives examples are used

for Hepatoma and Cirrhosis respectively. Data sets used at each training stage are arranged

in files and shown in hierarchical order in the Fig. 7.2.

Normal/ Diseased

Normal
Diseased (Hepatoma

/ Cirrhosis/
Hemengioma)

Hemengioma Hepatoma /
Cirrhosis

Hepatoma Cirrhosis

Figure 7.2: Hierarchy of CV training sets

Tables 7.1, 7.2 and 7.3 summarize the results of experimental setup. Table 7.1 shows

results of classifying normal or diseased liver. Average cross validation error is about

18.9% and standard deviation is 15.8 for kernel parameters 0.4, 0.44, 0.484 and 0.5324.

81

Classification accuracy for diseased liver is 98.65% and for that of normal liver is 100%.

As we increase the kernel parameter average cross validation error and standard deviation

start decreasing, for kernel parameter 0.644204, 0.708624 and 0.779487 average cross

validation error is 16.7% and standard deviation is 14.1033 and it gives 100% correct

results for diseased liver and 93.8% for normal liver It shows best accuracy as it is more

important to get more accurate results for diseased liver than normal, as already mentioned

that identifying the disease at early stage is particularly important to cure it, and it’s the

key objective of CAD system.

Table 7.2 shows results of classifying Hemengioma. Average cross validation error is 30%

and standard deviation is about 17 for kernel parameter 0.4, and shows 91.3% results for

Hemangioma and about 70% for other diseases (not Hemangioma). As we increase kernel

parameters average cross validation error and standard deviation increase. Classification

accuracy for Hemengioma decreases to 89.13%, but increases for that of the other diseases

(any other than Hemangioma).

Kernel
parameter

Avg CV error Std deviation Avg. Confusion matrix for predicted class

 TP FN TN FP
0.4 18.889% 15.7571 98.65% 1.35% 100.00% 0.00%
0.44 18.889% 15.7571 98.65% 1.35% 100.00% 0.00%
0.484 18.889% 15.7571 98.65% 1.35% 100.00% 0.00%
0.5324 18.889% 15.7571 98.65% 1.35% 100.00% 0.00%
0.58564 17.778% 14.9989 98.65% 1.35% 93.75% 6.25%
0.644204 16.667% 14.1033 100.00% 0.00% 93.75% 6.25%
0.708624 16.667% 14.1033 100.00% 0.00% 93.75% 6.25%
0.779487 16.667% 14.1033 100.00% 0.00% 93.75% 6.25%

Table 7.1: Results of Experimental Setup for classifying Normal and diseased liver

82

Kernel
parameter

Avg CV error Std deviation Avg. Confusion matrix for predicted class

 TP FN TN FP
0.4 30.000% 17.1031 91.30% 8.70% 70.83% 29.17%
0.44 31.429% 18.8080 91.30% 8.70% 75.00% 25.00%
0.484 31.429% 18.8080 91.30% 8.70% 75.00% 25.00%
0.5324 32.857% 19.1071 89.13% 10.87% 75.00% 25.00%
0.58564 32.857% 19.1071 89.13% 10.87% 75.00% 25.00%
0.644204 32.857% 19.1071 89.13% 10.87% 75.00% 25.00%
0.708624 32.857% 19.1071 89.13% 10.87% 75.00% 25.00%
0.779487 32.857% 19.1071 89.13% 10.87% 75.00% 25.00%

Table 7.2: Results of Experimental Setup for classifying Hemengioma and other

disease (not Hemangioma)

Table 7.3 shows results of classifying Hepatoma and cirrhosis. This time results are not

extraordinary. As average cross validation error remains between 58 to 60%, which is very

high. Standard deviation varies from 14 to 18. Classification accuracy for Hepatoma and

cirrhosis is around 50%, which is not very promising.

Kernel
parameter

Avg CV error Std deviation Avg. Confusion matrix for predicted class

 TP FN TN FP
0.4 58.000% 14.7573 40.00% 60.00% 56.00% 44.00%
0.44 58.000% 14.7573 40.00% 60.00% 56.00% 44.00%
0.484 60.000% 16.3299 36.00% 64.00% 56.00% 44.00%
0.5324 58.000% 14.7573 40.00% 60.00% 56.00% 44.00%
0.58564 58.000% 14.7573 40.00% 60.00% 56.00% 44.00%
0.644204 58.000% 14.7573 44.00% 56.00% 60.00% 40.00%
0.708624 60.000% 13.3333 44.00% 56.00% 64.00% 36.00%
0.779487 60.000% 18.8562 44.00% 56.00% 64.00% 36.00%

Table 7.3: Results of Experimental Setup for classifying Hepatoma & Cirrhosis

83

7.4 Evaluation of Performance

In order to measure the performance of the ensemble of classifiers few operating

characteristics based on ROC methodology were calculated, which use the information

collected by cross validation. Whole process opted, is described in detail bellow.

7.4.l Receiver Operating Characteristic (ROC) Methodology
A simple way to asses the classification accuracy of a classifier is by measuring the

average error or misclassification rate. Traditionally, assessment of classification

performance in diagnostic systems is performed using ROC analysis because classifiers

will tend to achieve a low misclassification rate by sacrificing the more rare class.

Consider, for example, a scenario in which only 5% of samples are diseased, and the

remaining is normal. A classifier that always blindly states that the disease is absent will be

correct 95% of the time. As this is undesirable in medical applications, because if we

neglect the misclassification for a diseased image and classify it as a normal image then

disease may grow to the next stage which can be severe and may be hard to treat, so a

method to modify the classifier’s performance in favor of the disease class is needed. An

ROC curve is helpful in achieving this goal.

Specifically, it allows visualization of the tradeoff between true-positive decisions and

false-positive decisions for an ensemble of classifier configurations. Table 7.4 shows the

list of possible outcomes of diagnostic tests.

Test Result Disease Status
 Present Absent

Positive True Positive (TP) False Positive (FP)
Negative False Negative (FN) True Negative (TN)

Table 7.4: Possible outcomes of diagnostic tests

Consider a classifier that outputs a scalar value for a given pattern vector x showing the

likelihood of the pattern belonging to the positive class. This scalar likelihood value,

output from the classifier, is denoted here as g(x). Fig. 7.3 shows a typical distribution of

84

classifier outputs for a two-class dataset. Typically, classifiers assign category labels to test

patterns by computing their likelihood score and comparing that score to a pre-determined

threshold. For example, in a linear discriminant classifier the output discriminant score is

often compared to zero. Depending on the convention used, if the discriminant score is

greater than zero then the test pattern is assigned a positive class label, otherwise it is

assigned a negative class label. One of the goals of ROC analysis is to provide a threshold

(other than zero) that will favor the detection of the positive class.

Figure 7.3: Typical distribution of classifier output g(x) on a two-class dataset.

At a given threshold value, there are two quantities that can be defined: sensitivity and

specificity. Sensitivity, also known as the true positive fraction (TPF), is the fraction of

positively labeled test data classified as being in the positive class. In Fig. 7.3, this is the

shaded area under the positive class density curve, to the right of the decision threshold

(zero), excluding the darkened region. On the other hand specificity, also known as the true

negative fraction (TNF), is the fraction of negatively labeled samples classified as being in

the negative class [48].

Along with specificity and sensitivity other characteristics like positive predictivity and

negative predictivity of the classifier is also calculated. These commonly used operating

characteristics quantities of diagnostic tests are mathematically defined in Table 7.4

bellow.

85

Characteristic

Formula

Definition

Sensitivity (TPF)

TP
TP FN+

Proportion of people with condition who test

positive.

Specificity (TNF)

TN
TN FP+

Proportion of people without condition who

test negative.

Positive Predictivity

TP
TP FP+

Proportion of people with positive test who

have condition.

Negative Predictivity

TN
TN FN+

Proportion of people with negative test who do

not have condition.

Table 7.5: Operating Characteristics of diagnostic tests

The receiver operating characteristic curve is a plot of TPF versus FPF (False Negative

Fraction) for a range of values. The receiver can operate at any point on the curve by using

an appropriate decision threshold. In general, it is better to operate on the lower left part of

the ROC curve to keep the FPF small, even at the expense of a low TPF. Fig. 7.4 shows a

few example ROC curves. The diagonal straight line in the figure is what would be

obtained by “biased” random guessing [49].

Figure 7.4 Example ROC curves.

86

In the context of ROC curves, the accuracy of a classifier is estimated by computing the

area under the ROC curve. The value summarizes the quality of classification over an

ensemble of misclassifications [49].The greater the area, the higher the classification

accuracy.

7.4.2 Performance Measure
To determine the efficacy of each SVM classifier, the performance is estimated via ROC

analysis. Results obtained from the classifiers are used for calculating the operating

characteristics shown in table 7.5, where the total accuracy was computed by calculating

the ratio of the number of correct responses to the total number of images. Some of the

quantities have been previously described in Table 7.4.

Characteristic

Values
for

ker.par.
0.4

Values
for

ker.par.
0.44

Values
for

ker.par.
0.484

Values
for

ker.par.
0.5324

Values
for

ker.par.
0.58564

Values
for

ker.par.
0.644204

Values
for

ker.par.
0.708624

Values
for

ker.par.
0.779487

TP
 98.65% 98.65% 98.65% 98.65% 98.65% 100.00% 100.00% 100.00%

FN
 1.35% 1.35% 1.35% 1.35% 1.35% 0.00% 0.00% 0.00%

TN
 100.00% 100.00% 100.00% 100.00% 93.75% 93.75% 93.75% 93.75%

FP
 0.00% 0.00% 0.00% 0.00% 6.25% 6.25% 6.25% 6.25%

Sensitivity
(TPF)

98.65% 98.65% 98.65% 98.65% 98.65% 100% 100% 100%

Specificity
(TNF)

100% 100% 100% 100% 93.75% 93.75% 93.75% 93.75%

Positive
Predictivity

100% 100% 100% 100% 94.11% 94.11% 94.11% 94.11%

Negative
Predictivity

98.66% 98.66% 98.66% 98.66% 100% 100% 100% 100%

Table 7.6: Results of SVM classifier trained for normal and diseased liver

87

To reduce biases in the classifiers due to case selection, training and testing were repeated

several times, each with a different training and test dataset. Test values were averaged to

provide a measurement of the effectiveness of that classifier.

Characteristic

Values
for

ker.par.
0.4

Values
for

ker.par.
0.44

Values
for

ker.par.
0.484

Values
for

ker.par.
0.5324

Values
for

ker.par.
0.58564

Values
for

ker.par.
0.644204

Values
for

ker.par.
0.708624

Values
for

ker.par.
0.779487

TP
 91.30% 91.30% 91.30% 89.13% 89.13% 89.13% 89.13% 89.13%

FN
 8.70% 8.70% 8.70% 10.87% 10.87% 10.87% 10.87% 10.87%

TN
 70.83% 75.00% 75.00% 75.00% 75.00% 75.00% 75.00% 75.00%

FP
 29.17% 25.00% 25.00% 25.00% 25.00% 25.00% 25.00% 25.00%

Sensitivity
(TPF)

91.30% 91.30% 91.30% 89.13% 89.13% 89.13% 89.13% 89.13%

Specificity
(TNF)

70.83% 75.00% 75.00% 75.00% 75.00% 75.00% 75.00% 75.00%

Positive
Predictivity

75.78% 78.50% 78.50% 65.71% 65.71% 65.71% 65.71% 65.71%

Negative
Predictivity

89.06% 89.60% 89.60% 87.346% 87.34% 87.34% 87.34% 87.34%

Table 7.7: Results of SVM classifier trained for Hemangioma and other diseased (not
Hemangioma) liver

88

Characteristic

Values
for

ker.par.
0.4

Values
for

ker.par.
0.44

Values
for

ker.par.
0.484

Values
for

ker.par.
0.5324

Values
for

ker.par.
0.58564

Values
for

ker.par.
0.644204

Values
for

ker.par.
0.708624

Values
for

ker.par.
0.779487

TP 40.00% 40.00% 36.00% 40.00% 40.00% 44.00% 44.00% 44.00%

FN 60.00% 60.00% 64.00% 60.00% 60.00% 56.00% 56.00% 56.00%

TN 56.00% 56.00% 56.00% 56.00% 56.00% 60.00% 64.00% 64.00%

FP 44.00% 44.00% 44.00% 44.00% 44.00% 40.0% 36.00% 36.00%

Sensitivity
(TPF)

40.00% 40.00% 36.00% 40.00% 40.00% 44.00% 44.00% 44.00%

Specificity
(TNF)

56.00% 56.00% 56.00% 56.00% 56.00% 60.00% 64.00% 64.00%

Positive
Predictivity

47.61% 47.61% 45.00% 47.61% 47.61% 52.38% 40% 40%

Negative
Predictivity

48.27% 48.27% 46.66% 48.276% 48.27% 51.72% 53.33% 53.33%

Table 7.8: Results of SVM classifier trained for Hepatoma and Cirrhosis

Results of sensitivity and specificity show that classifiers perform well at lower kernel

parameters except few cases where these characteristics measures start improving in

performance. As we already observed that the performance of third SVM is not very

promising.

89

7.5 SUMMARY
In this chapter the detailed results of the experiments were presented. The results were

compiled using ensemble of classifiers i.e. three sets of SVMs. Cross validation was used

to train and test the classifiers and to calculate the errors. ROC characteristics are

calculated for different kernel parameters.

	title page.pdf
	Abstract & TOC.pdf
	First page2.pdf
	chap1.pdf
	chap 2.pdf
	chap 3 Active contours theory2.pdf
	chap 4 Texture Analysi1.pdf
	Chap 5 Classifiers.pdf
	chap 6 svm2modified.pdf
	chap7 Backpropagation.pdf
	chap 8 modified.pdf

