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ABSTRACT 

Fine-scale soil spatial variability mapping is one of the prerequisites for adopting precision 

agriculture. This study used a hyperspectral radiometer and satellite remote sensing data for 

fine-scale surface soil texture and organic matter. A total of 626 surface soil samples (7cm 

depth) were collected and analyzed for soil texture and organic matter in the Lab. Multiple 

linear regression (MLR) statistics were used to relate soil spectral data derived from 

multispectral LandSat-8 OLI imagery data and hyperspectral remote sensing data of ASD 

FieldSpec Spectroradiometer with sand, silt, clay, and organic matter data. The MLR analysis 

of Multispectral data of Landsat-8 OLI satellite showed a significant relationship (p < 0.05) 

with band-5, band-7, and band-11 with sand% (R2 = 0.558), clay% (R2 = 0.589) and O.M.% 

(R2 = 0.687). The MLR analysis of hyperspectral remote sensing data of ASD Field Spec 

spectroradiometer showed a relationship with a different significant level of wavelength 

X1362, X1366, X1843, and X1856 with sand% (R2 = 0.370), wavelength X1830, X1839, 

X1873 and X1882 with clay% (R2 = 0.317) and wavelength X 1363, X1833, X1886 and X1909 

with O.M.% (R2 = 0.440). A soil texture map of the entire study area was developed in GIS 

using the USDA-ARS soil texture triangle. The findings imply that remote sensing and 

geographical information system approaches might be employed to map the soil surface texture 

and O.M. over a wider area at a fine scale. 
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Chapter 1 

1 INTRODUCTION 

1.1 Importance of Study 

One significant soil characteristic that affects stormwater infiltration rates is soil texture. Sand, 

silt, and clay content together make up a soil's textural class. The four main textural classes of 

soils are (1) sands class, (2) silts class, (3) loams class, and (4) clays class. The significance of 

the texture of the soil, various methods for determining the texture of the soil, and the 

significance of soil texture in managerial choices. 

                         Several soil properties are impacted by texture, including Drainage, water 

holding- Capacity on the surface, Aerating, Erosion of soil, Organic matter, and pH in the soil. 

The speed at which water permeates soggy soil depends on the texture of the soil; Sandier soils 

allow water to flow more freely than clayey ones do. The amount of water that is available to 

the plant when the field's capacity is reached depends on the soil's texture; clay can hold more 

moisture than sandy soils. Furthermore, soils with good soil aeration—a condition in which the 

drained soil air is related to that in the atmosphere are frequently well-drained. This air is 

beneficial for plants’ root development and, consequently, crop health. A soil's erodibility 

(susceptibility to erosion) varies according to its soil texture; In the same conditions, silt and 

clay-rich soils are more erodible than sandy soils. Organic matter breaks down more rapidly in 

sandy soils than in good soils under similar environmental conditions, tillage practices, as well 

as fertility management due to the greater oxygen available for the procedure in the sandy soils. 

The percentage of clay and organic matter affects the soil's ability to exchange cations, and 

these two factors also affect a soil's ability to buffer pH changes brought on by incorporating 

lime. SOM in the soil is an important part of the soil. It contains nutrition for crops as it 
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decomposes and contributes to the cation complex necessary to hold imposed nutrients in the 

soil. Improved soil aggregation from higher organic matter content maintains the structure of 

the soil, drains, and oxygenation, all of which are necessary for high crop yields. Increased 

moisture retention and, as a result, the crop's ability to withstand drought are two additional 

effects of soil organic matter. An adequate amount of organic matter in the soil will make it 

easier to work with and plough, less erodible, and better at retaining nutrients. Other benefits 

include improved crop yields, higher fertility, better crop root growth, and resistance to soil 

crusting and compaction. Organic residues must be added to the soil to improve and maintain 

it. Excessive tillage, contemporary monoculture, and reduction rotation cropping are examples 

of fact matter amounts to fall below optimal levels. Row cropping also leaves behind less 

organic matter in the soil than is traditionally needed to keep acceptable levels. Grass forages 

and legumes, in contrast to row crops, have thick, fibrous root systems that produce a 

significant amount of organic residue. Forage or legume-based crop rotations will help to 

maintain SOM, enhance the soil content, and consequentially should increase the yields of 

crop. A good source of organic residue is manure, which enhances soil quality. A large amount 

of research has been done using Remote Sensing Images to predict soil properties, Interpolation 

techniques are common way to map soil properties for large area from a limited data set, with 

advancement in Geo-Spatial sensors and machines, new methods have evolved, among which 

spectro-radiometry is common technique. Below we will see some examples by which soil 

studies have been done using GIS & Remote Sensing.  In research published in Geoderma 

Journal titled “Using hyperspectral images and field measurements in multivariate regression 

modelling, high resolution topsoil mapping” found the effective utilization of hyperspectral 

remote sensing image to estimate Organic matter of the soil and texture of the soil. It also 

explored estimation of sand content, clay content, organic carbon content, and the nitrogen (N) 

predicted using PLSR and MLR. 
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1.2 Background Information 

All over the world, sustainable agriculture sector is the most important objective. Even 

though agricultural productivity has increased significantly over the past 50 years, rapid 

population expansion, natural disasters, and climate change continue to pose a threat to global 

food security. (Ren et al., 2019) An important part of getting healthy soil and a good crop yield 

is treating the soil properly for healthy growth. Considering the rising demands for both 

temporal and spatial resolution regarding soil surface characteristics in the multiple different 

applications for precision agriculture, conventional research lab techniques to be proving to be 

insufficient. This has been the key focus for soil researchers and environmental stakeholders 

during recent decades. (Ehsani et al., 1999) Furthermore, compared to more conventional 

techniques, the expenses of soil analysis using precision agriculture technologies are relatively 

high. (Ge et al., 2011) Crop yield is strongly affected by the elimination of nutrients from soil, 

which has an impact on a nation's economy. Nowadays, it is common practice to monitor crops' 

health and productivity using remote sensing technology. (Rembold et al., 2015) To 

efficiently investigate soil texture and organic matter (O.M.) properties and to suggest a 

solution to improve crop production by enhancing the effectiveness of soil physical properties 

in an efficient way, a different approaches and techniques have been developed. In this regard, 

various techniques for exploring soil properties can be investigated within the field of remote 

sensing. (Galvaoet al., 1997) A field's soil characteristics may demonstrate fine-scale spatial 

patterns that can be determined through remote sensing. (Mulla et al., 2000) The technology 

has accelerated traditional soil surveying by significantly decreasing the amount of field work. 

(Manchanda et al., 2002) Unless the soils are completely covered by massive shrubs and thick 

canopy trees, optical technologies including aerial imagery, multispectral imagers, and 

hyperspectral sensor systems can be employed to capture the reflectance signatures for 

investigating topsoil attributes. (Jensen, 2000) Several soil-related parameters, comprising 
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surface soil condition, soil texture, organic matter, colour, mineralogy, iron and iron oxide 

content, soil moisture, influence the spectral response of soil. (Dwivedi, 2001) Beginning in 

the early 1980s, spectral signature reflectance data used to analyse the soil characteristics. 

(Krishnan et al., 1981) and (Pitts et al., 1986) studied soil organic matter using near infrared 

reflectance (NIR). (Ben-Dor and Banin. 1995) Several soil parameters, including specific 

surface area, clay content, hygroscopic moisture, cation-exchange capacity (CEC), calcium 

carbonate concentration, and O.M. were determined using NIR spectroscopy of soils. 

(Viscarra-Rossel and Mcbratney 1998) Clay content, soil moisture, and O.M. were analysed in 

Soil Samples taken Australia. To analyse these parameters, they employed the spectral 

signature determined from 1300 nm to 2500 nm at 2nm intervals. They found that clay and 

moisture concentrations could be predicted most accurately at 2100 nm, While the low 

accuracy both parameters was found at 1600 nm. These wavelengths did not reveal any 

conclusive association with O.M. The study of soil properties has consistently made use of 

satellite remote sensing data. (Hong et al. 2002) By examining the associations between 

signatures of spectral reflectance and variables of soil using geo-statistical analyses, such as 

Multiple Regression, Simple Correlation, and Principal Component analysis (PCA), 

investigated capability of hyperspectral data to calculate the soil's EC and fertility levels. The 

satellite RS data were compared to field estimated soil properties. For Mg and CEC, the 

correlations to the hyperspectral band were found to be the strongest. PCA revealed that PC 2 

and PC 4 were highly effective in elucidating soil variation for cation-exchange capacity, 

magnesium, Organic Matter, potassium, and pH. (Shepherd and Walsh 2002) used a 

Spectroradiometer library to determine the qualities of soil. They used diffusion reflectance 

spectroscopy analysis as the foundation for their work. (Nanni and Dematte 2006) studied the 

characteristics of topsoil of Brazilian using the soil satellite reflectance measurements from 

Landsat TM imagery. Chemical analysis of samples of soil taken from the surface (0–20 cm) 
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even below (80–100 cm) soils was followed by Statistical analysis using the reflectance values 

of the soil to generate Multiple Regression Analysis. Most soil characteristics, including clay, 

iron oxides (Fe203), and titanium dioxide, may be predicted by these regression equations 

(Ti02). (Hashemi et al. 2007) 63 samples of soil (10 cm depth) were taken using Global position 

System, and satellite images from the year 2002 were used to develop a soil mapping model 

for the Sarvestan plain in Iran using Landsat TM satellite images and field measurements. Band 

6 and gypsiferous soil were shown to be strongly correlated in the study, as well as the spectral 

ratios (band 3-band 4-band 2-band 4) and soil EC in the area. Utilizing ILWIS software's 

statistical methods, supervised classification was accomplished. Gypsum and EC maps both 

have overall accuracy of 80.56% and 78.57%, respectively. One essential factor of soil's 

physical property is its texture. It affects numerous additional soil characteristics that are 

essential for crop yield and research area treatment. (Brown, 2003) Physical properties of soil 

distribution have a significant impact based on its reflection characteristics. (Hoffer. 1978) 

assumed that the key variable influencing soil reflectance was its silt concentration. He 

observed that as the silt percent decreases, the soil reflectance also decreases. (Baumgardner et 

al. 1986) For all wavelengths between 0.4 and 1.0 μm, it was shown that a substantial 

exponential growth is detected due to a reduction in particle size. (Palacios-Orueta and Ustin 

1998) By investigating correlation between soil characteristics and radiometer reflectance 

signature data obtained with the AVIRIS (Advanced Visible/Infrared Imaging Spectrometer), 

it was discovered soil surface texture, organic matter, and iron levels was the key elements 

determining the spectral signature curve of soil. (Okin and Painter 2004) used the same data to 

determine visible surface reflection to analyse the useful sand grain size in sand plumes at a 

location in the Mojve Desert. They observed an influential negative association between sand 

particle size in plumes and reflectance signature values. As per correlation study, the most 

important wavelength for predicting is short wave infrared. A key determinant of soil fertility 
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and health is soil O.M. The availability of organic matter in the Soil has influential effect on 

the colour of the soil’s properties. In general, the amount of organic matter in the soil appears 

to increase as the darker colour of a soil. A research project by (Coleman and Montgomery 

1987) indicated that a decrease in reflectance values is generally caused by an increase in 

moisture in the soil and O.M. They observed that band 1 (450–520 nm) as well as band 4 are 

the best wavelength bands for predicting O.M. (760- 900 nm), utilising a multi - band 

radiometer with a band configuration corresponding to the Landsat Satellite sensor. 

(Mirzaee et al., 2016) In agronomical and environmental studies, it’s crucial to estimate organic 

matter in soils (SOM) in areas that haven't been sampled. Geostatistical techniques like 

Ordinary Kriging (OK), Simple Kriging (SK), and Cokriging (CK), as well as composite 

techniques like Regression-Simple Kriging (RSK)/-Ordinary Kriging (ROK), and Artificial 

Neural Network-Simple Kriging (ANNSK)/-Ordinary Kriging (ANNOK), were examined for 

their ability to investigate soil organic matter characteristics. The derived models was evaluated 

using three performance criteria: coefficient of determination, root mean square error, and 

mean error R2.It was determined that data from Landsat ETM+ images could be used as 

ancillary variables for improving spatial prediction and monitoring soil Organic matter, and 

generating accurate soil organic matter maps, this is the first stage in the site-specific 

management of soil. (Liao et al., 2013) The purpose of this study used a small sample of soil 

that was collected from a site in the Chinese city of Pingdu to analyze Landsat (ETM) remote 

sensing imagery as ancillary parameters for spatial estimate of surface soil texture. The given 

approaches to measuring surface soil texture variation were examined: (1) Based on the 

correlation among soil surface sand, silt, and clay compositions and remote sensing data, 

multiple multiple regression analysis (MSR) was performed. (2) Sand, silt, and clay 

composition of surface soil are correlated with remote sensing data.  When kriging and multiple 

stepwise regression (MSR) are used with remote sensing data, estimations of surface soil 
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texture are significantly improved. (Bousbih et al., 2019) For the estimation and mapping of 

soil content (texture), using data of radar and remotely sensed optical data from Sentinel-1 (S-

1) and Sentinel-2 (S-2). (Ahmed & Iqbal, 2014) In this study the potential for Remote Sensing 

and (GIS) methods in examining the variation of surface soil in space properties is explored. 

Surface soil characteristics and spectral data from the Landsat TM5 satellite were related using 

a multivariate linear regression (MLR) analysis technique. The results show that RS and GIS 

approaches can be employed to map the soil texture and Organic matter over a larger area at a 

fine scale. (Shahriari et al., 2019) This study's goal was to evaluate how the percentages of 

sand, silt, and clay will be spatial distributed over the Sistan floodplain. The soil texture 

components were mapped using the Random Forest (RF), Regression Kriging-Neural Network 

Residual Kriging (RKNNRK), Neural Network Residual Kriging (NNRK), Regression Kriging 

(RK), and Cokriging (COK) methods. The results demonstrated that Neural Network Residual 

Kriging (NNRK) and Regression Kriging-Neural Network Residual Kriging (RKNNRK) 

models produce more accurate results combined with data from remote sensing and can 

therefore use for suitable mapping of soil particles at the regional and floodplain scales. (Song 

et al., 2017) To forecast the geospatial variation of soil organic matter (472 samples at 0-20 

cm) in Shaanxi, China, an Extreme Learning Machine-Ordinary Kriging (ELMOK) hybrid geo-

statistical technique was presented. Remote Sensing data and environmental factors used to 

generate a total of 14 auxiliary variables (predictors). Conventional geo-statistical techniques, 

such as Simple-Kriging (SK) and Ordinary-Kriging (OK), as well as hybrid-geostatistical 

approaches like Regression-Ordinary Kriging (ROK) and Artificial Neural Network-Ordinary 

Kriging, were compared to the suggested method (ANNOK). The results showed that principal 

components (PCs) were used as input parameters in the extreme learning machines (ELM) 

model. They performed better in both Artificial-Neural-Network (ANN) and Multiple-Linear-

Regression (MLR) models. The ELMOK model showed the minimum Root-Means-Square-
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Error (RMSE = 1.402 g kg1) and the Maximum co-efficient of determination (R2 = 0.671) 

when compared to geo-statistical and hybrid-geostatistical prediction techniques of soil organic 

matter spatial distribution. In conclusion, factors derived from remotely sensed data have 

improved our comprehension of the spatial variability of SOM contents. (Vibhute, Dhumal, et 

al., 2018) SOM assessment is a time-consuming process because of its extensive 

spatial variability and chemical processing. Without using nasty chemicals, Visible-Near 

Infrared (VNIR) Reflectance Spectroscopy (RS) has traditionally been used to measure the 

soil’s organic content. The Analytical-Spectral-Device (ASD) Field Spec 4 spectroradiometer 

was used in the current study to collect the reflectance spectra of thirty soil samples taken from 

the study area in the Aurangabad region of Maharashtra, India's Phulambri Tehsil. This method 

was used to locate the 400-2450 nm wavebands' absorption channels. The Savitzky-Golay (SG) 

technique with First-derivative transformation was used to smooth the spectra (FDT). By 

performing an analysis among spectral signatures reflectance and soil organic matter contents, 

the Partial Least Squares Regression (PLSR) model used to anticipate the mean-Square Error 

(RMSE) for the pretreatment co-efficient of determination both was before and after 

determinate 0.66 and 0.77 respectively. SOM was shown to have sensitive channels 

wavelengths of 441nm, 517nm, 527nm, 648, and 1000nm. Study will help with decision-

making and efficient, economical farming. (Alexakis et al., 2019) Along with salinization, 

compaction, a loss in soil organic material and soil erosion is a major risk in the Mediterranean 

region and one of the main causes of degradation. Several soil characteristics, including 

calcium carbonate equivalent (CaCO3), Organic Matter of soil, texture of soil, and 

permeability, can be used to evaluate soil erosion. In this study, the potential for numerous 

cutting-edge techniques Satellite Imagery, Field spectroscopy, Soil Lab analysis, and GIS) to 

monitor soil organic matter, calcium carbonate, and soil erosion (K-factor) of the Akrotiri cape 

in Crete, Greece, was examined. Mapping of soil organic matter, calcium carbonate, and soil 
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erosion was made possible via lab analysis and soil spectral reflectance signature in the VIS-

NIR using Landsat-8, Sentinel-2, or field spectroscopic data, Machine Learning, and geo-

statistics. Finally, to evaluate the potential contribution of various ways in calculating soil 

erosion rates, Ordinary-Least-Square-Regression (OLSR) and Geographical-Weighted-

Regression (GWR) procedures used. The resulting maps accurately depicted the spatial 

distribution of the Soil organic matter, calcium carbonate, and soil erosion in the GIS 

environment. Findings can help in the design of effective erosion control strategies and sensible 

planning for land use in the study area. (Bousbih et al., 2019) The prediction and soil texture 

mapping with remotely sensed optical and radar data is explored in this work. The analysis 

relies on Sentinel-1 and sentinel-2 data collected across a semi-arid region of around 3000 km2 

in central Tunisia from July to the beginning of December 2017. Techniques based on the 

random forest (RF) and vector support machine (SVM) methods are proposed for the 

classifying and visualizing (Mapping) of clay content. Both methods are evaluated using a 

three-fold cross-validation. The indicator for soil moisture obtained sentinel 1 and sentinel 2 

data results in the classification with the best performance, with overall accuracy (OA) values 

of support vector machine and random forest classifications of 63% and 65%, respectively. 

(Nanni & Demattê, 2006) Traditional soil analyses can produce environmental pollutants and 

are costly and time-consuming. This study's goal was to create and assess an approach for 

measuring soil properties by using reflectance spectral signature as a substitute to conventional 

techniques. To predict soil attributes using radiometric data, geo-statistical analysis and 

multiple linear regression equations were developed. Band-22 and 13 RIDs from various 

optical spectrum ranges of wavelengths were employed in laboratory data. Although, the 

satellite imagery data is only used for the reflectance of the Landsat-TM bands. Surface and 

subsurface Soil layers were used to generate multiple regression equations. Laboratory spectral 

analysis made it possible to estimate some tropical soil physical properties. (Ge et al., 2011) 
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An effective and precise method for identifying soil properties on the farm is essential to the 

success of precision agriculture (PA). Applications ranged from bench-top spectrometer-based 

laboratory examination of soil samples to hyper-spectral satellite imagery-based field-scale soil 

mapping. The three most popular techniques used for data analysis are MLR, PCR, and PLSR. 

This article also discussed the limitations and opportunities of employing RS to evaluate 

agricultural soil properties. (Levy et al., 2014) In the McMurdo Dry Valleys of Antarctica, soil 

moisture is a spatially heterogeneous quantity that has a significant impact on the local 

biological population and the permafrost's thermal condition. This study’s objective was to 

look into whether soil moisture status in the Dry Valleys might be determined using 

hyperspectral remote sensing methods. We evaluated the spectrum reflectance parameters of 

wet soil samples from the Dry Valleys under the influence of natural light, and we connected 

diagnostic spectral features to the moisture content of the soil's topmost layer. These findings 

imply that soil moisture maps of the Dry Valleys could be generated using non-invasive remote 

sensing methods using airborne hyperspectral imaging of this environment. (Yu et al., 2018) 

For the management of forestry, agriculture, and the environment, it is essential to map soil 

attributes quickly and precisely. In this research, a novel hyperspectral remote sensing techniq 

of predicting soil properties in northwest of the Qinghai-Tibet Plateau, in Shenzha County of 

the Qiangtang Plateau, was developed and evaluated in Stipa purpurea-dominated alpine 

grasslands. Analysis was done on the relationships between the soil characteristics and the 

bands and improved spectral parameters obtained from both field and satellite hyperspectral 

data. To map the soil properties, regression models that investigate the Correlations were 

expanded upon. Findings demonstrated that accurate spatial variation of the soil parameters 

was generated by stepwise regression models based on enhanced spectral parameters derived 

from hyperspectral Satellite images. According to this study, the hyperspectral data-based 

approach has a significant deal of potential for predicting the characteristics of the soil. 



12 
 

(Vibhute, Kale, et al., 2018) In soil science, it is difficult and challenging to identify soil 

physicochemical attributes (SPAs) with accuracy and reliability. The complexity of nature 

allows for spatial and temporal variations in the SPA.  In the past, SPA detection was 

accomplished using standard soil physical and chemical laboratory analysis. These laboratory 

techniques, however, suffer from a lack of rapid requirement. Diffuse reflectance spectroscopy 

(DRS) is therefore a preferable method for nondestructively detecting and evaluating soil 

physical properties. The VNIR spectrum's quantitative analysis was carried out. The Field Spec 

4 spectroradiometer from Analytical Spectral Device (ASD) was used to record the spectra of 

aggregated agricultural soils. To obtain pure spectra that served as the input for regression 

modelling, the soil spectral signatures in the VNIR area were preprocessed. The calibration 

models were built using the Partial-Least-Squares-Regression (PLSR) method and each one 

was individually verified for the estimation of SPA from the soil spectrum. A study of the 

correlation between reflected spectral signature and determined SPAs served as the premise for 

the computed model. The following SPAs were found sand content, silt content, clay content, 

phosphorus nutrients, potassium nutrients, iron nutrients, electrical conductivity (EC), pH 

values, Soil Organic Carbon, nitrogen nutrients, Soil Organic Matter. The experimental 

findings showed that the VNIR-DRS was more effective at detecting SPA and at making 

predictions for SPA. The methods examined here, in summary, provided quick and novel SPA 

detection from reflectance spectroscopy. Finding will be useful for decision-making and 

precision farming. (Vibhute, Dhumal, et al., 2018) Along with good farming practices and soil 

quality, soil organic matter is important for the development of plants. Using the Analytical-

Spectral-Device (ASD) Field spec 4 spectroradiometer, For the purpose of this investigation, 

the spectral signature of thirty soil samples collected in the Phulambri Tehsil of Maharashtra, 

India's Aurangabad region, were calculated. By performing a analysis between spectral 

signature reflectance and soil organic matter content, the Partial-Least-Squares-Regression 
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(PLSR) model was used to forecast the SOM. The study will help with decision-making and 

efficient, economical farming. (Virgawati et al., 2018) One of the soil characteristics that 

affects the majority of soil science processes is texture of soil. To supporting agronomic 

decisions for farm management, information on soil texture is essential. The goal of the study 

is to create a soil texture map using inverse distance weighted (IDW) interpolation and lab Vis-

NIR (Visible - Near Infra-Red) spectroscopy. We measured the soil reflectance using an ASD 

Fieldspec 3 with a 350 to 2500 nm spectral range. To measure the silt content, clay content, 

and sand content, a pipette method was employed. To create a prediction model for soil texture, 

partial least square regression (PLSR) was used. The predicted values were visualized on a 

map, revealing details about the temporal and spatial variability of soil texture. 

1.3 Objectives of Study 

The objectives of the study were to: 

a. Relate surface soil texture and organic matter with hyperspectral ASD 

Filedspec and Landsat-8 OLI data. 

b. Map surface soil texture and organic matter of the study area. 
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Chapter 2 

2 MATERIALS AND METHODS 

2.1 Study Area 

The area of the study, which occupies an area of about 1060 km2, is a subunit of Shakar 

Garh district in Narowal, Punjab, Pakistan in (Figure 2.1) describes in detail. Ravi River in the 

south and the Jammu-Kashmir border in the north increase’s importance from strategic 

viewpoint. From this, Pakistani Standard Time is calculated (Haider et al., 2016). Major crops 

grown in these abundant include wheat, rice, guava, citrus, and mango and fertile lands with 

loam clay soil and plain topography. Water tables range in depth from 40 to 50 feet, and tube 

wells are the primary source of irrigation (Tariq, et al., 2013). According to (Ali, et al.2020) 

the peak temperature in the summer is (42 oC) and the lowest recorded annual rainfall is (4 oC) 

(Punjab Development statistics). Shakargarh became tehsil in 1853. It’s literacy rate is percent. 

Sialkot tehsil of sialkot district was transferred to Gurdaspur District and it remained an 

administrative subdivision of Gurdaspur district until partaion in 1947.Under the Radcliffe 

Award, there of the four tehsil of Gurdaspur distrcit on the easten bank of the Ujh river – 

Gardaspur, Batala and Pathankot – were awarded to India and only one, Shakargarh, was 

assigned to Pakistan. After the creation of Pakistan, Shakargarh became a part of Sialkot district 

one again. In July 1991, two teshsils (Narowal and Shakargarh) were spilt off from Sialkot 

district and Shakargarh became a tehsil of the newly formed Narowal district. Later, in July 

2009, Tehsil Zafrwal was created. At present, Narowal is functioning as a separate 

administrative district with effect from July 01, 1991. 
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Figure 2.1. Location map of the study area (Tehsil Shakargarh, District Narowal, Punjab).
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2.2 Methodology and Data Set  

 Soil samples are collected from predefined areas in a field on the bases of Soil variation 

and sent to Lab for analysis of soil parameters (Soil Texture and Organic Matter). After that 

detected the Radiometry reflectance values (Soil Texture & O.M.) of these samples through 

Spectroradiometer. The Multispectral LandSat-8 OLI image downloaded from USGS earth 

explorer and after downloaded then image pre-processing done by using Erdas Imagine 

software, this image used to remotely sense surface attribute of soils. Multiple linear 

Regression Analysis Spatial Modelling is used to generate soil texture and Organic Matter 

Maps. Figure 2.2 depicts a general overview of methodology used in later sections in detail and 

Figure 2.3 explains in detail a list of software’s, and data sets used in the research. The data set 

and software which are used for this study mentioned figure 2.3. Firstly, soil chemical 

properties data are required which are collected from filed and then analyzed in the soil lab for 

Organic matter and soil texture. Secondly Remote sensing data (Imagery and Non-Imagery) 

are required. Imagery data Multispectral satellite Imagery Landsat-8 having 30-m spatial 

resolution, 11 bands (430 nm to 1251 nm) acquire from USGS earth explorer, Non-Imagery 

Hyperspectral remote sensing data acquire using ASD FieldSpec4 having spectral range 356 

nm to 2500 nm with 1 nm band width. 

ArcGIS pro (Esri, 2023) software is used for geospatial analysis, and Erdas Imagine is 

used for satellite imagery analysis. SAS (Statistical Analysis System) statistical software used 

for statistical analysis. 
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Data Description Source 

Soil Chemical 

Properties 

Soil samples collected from the field, 

analyzed in the lab for soil O.M and 

soil texture 

Field survey 

Multispectral 

Satellite Imagery -

Landsat 8 

30-m spatial resolution, with 11 bands 

(430nm to 1251nm) 

United States Geological 

Survey 

https://earthexplorer.usgs.gov/ 

Hyperspectral 

non-imaging 

remote sensing 

data 

Spectral rang 356 nm to 2500 nm with 

1 nm band width 

ASD-Field Spec4(Handheld 

Spectroradiometer) 

Software Used 

ArcGIS Pro Geospatial analysis ESRI 

Erdas Imagine Satellite imagery analysis Intergraph and ESA 

Table 1. Detailed list of software, and data sets used in the research. 

Figure 2.2. Methodological workflow of the study. 

https://earthexplorer.usgs.gov/
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2.3 Data Processing and Analysis 

2.3.1 Surface Soil Sampling 

Soil samples have been collected from the field. Every reference field is, 3 to 5 surface 

ground samples were taken inside a 20 feet diameter of circle from the surface soil (7 cm depth) 

based on an examination of soil profile textural changes visually and then make 1 composite 

sample. For decrease the possibility of bias and make sure the sample is distributed evenly, we 

have used stratified randomly sampling techniques for each reference field. Standard 

precautionary measures adopted while performing sampling. Figure 2.3 depicts a sampling 

Activity show. 

Instruments from the Geo-Tech Lab, NUST Institute of Civil Engineering, and Narowal 

Soil fertility Department were used to collect soil samples. Below are the instrument details. 

• Core Cutter  

• Ramer  

• Balance  

• Digging tool  

• Soil Auger 

 

Different Obstacles were encountered during the survey because local protests blocked the 

roads. A soil survey sheet was created and is attached as Annexure A. The heat during this task 

was a significant challenge. 

2.3.2 Soil Laboratory Analysis 

To determine soil texture, soil samples were brought to the lab in airtight bags and 

treated to the oven dry method (Zhang, 2011), sieve crushing (Beuselinck, et al., 1998), and 

hydrometer analysis (Wen, et al., 2002). The Walkley-Black chromic acid wet oxidation 

method (Schumacher & B.A, 2002) was used to calculate soil organic matter (OM). The 

relative proportion of sand, silt and clay in soils determines soil texture and affects soil 
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characteristics such as nutrients retention and leaching and water holding capacity and 

drainage.  The hydrometer method of particle size analysis determines the following classes: 

sand content (2000 - 50 m), silt content (50 - 2.0 m), and clay content 2.0 m based on the size 

distribution of these soil particles physically as determined by their rates of taking place in an 

aqueous solution. This method makes use of an ASTM 152H-Type hydrometer and assumes a 

standard temp of 20 Celsius and a density of 2.65 g cm-3the measurements are given in terms 

of grammes of soil for every liter. Hydrometer diagram, Figure 2.4  

Calculations 

Report results to the nearest 0.1% content: 

1. Sand % = ((oven dry soil mass) – (Rsand – RC1)) / (oven dry soil mass) x 100 

2. Clay % = (Rclay – RC2) / (oven dry soil mass) x 100 

3. Silt % = 100 – (Sand % + Clay %)                     (Gavlak, R. et al., 2005) 

 

                When sulfuric acid is present, OM is oxidized with a known quantity of 

chromatic., the amount of oxidizable organic matter that results is measured using the 

Walkley-Black method. At a wavelength of 600 nm, the remaining chromate is identified 

spectrophotometrically. The organic carbon calculation is based on organic matter having 

a carbon content of 58%. The method has a detection limit of approximately 0.10% and, on 

homogenous sample material, is generally limit of approximately within 8%. Samples with 

concentration greater than 15% O.M. are best tested by the Loss-on-Ignition (OM_LOI) 

method (1934; Walkley, A.J.; Black, I.A.). Figure 2.5 shows the soil fertility laboratory's 

analysis of the organic matter and soil texture. 
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Figure 2.4. (a) and (b) Soil texture and organic matter analysis in lab. 

Figure 2.3. (a), (b) and (c) Sampling activities. 

(a) (b) 

(c) 

(a) (b) 
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Figure 2.5. Hydrometer diagram. 

Source: https://d3jlfsfsyc6yvi.cloudfront.net/image/mw:1024/q:85/https%3A%2F%2Fhaygot.s3.amazonaws.com%3A443%2Fcheatsheet%2F10670.jpg 
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2.3.3 Remote Sensing Imagery Data 

Remote sensing of soil surface attributes was conducted using multispectral Landsat-8 

OLI data. Multiple factors went into the selection of the spectral data. First, the images were 

checked for atmospheric disturbance. The entire study area was made sure to be clear of any 

clouds, haze, or fog. Second, In the study area's maximum pixels of bare soil was intended to 

be extracted. The existence of vegetation features, water features, and other land contents 

affects the spectral behavior of soil. Satellite Landsat images were collected for the month of 

May 2021 to have the least amount of vegetation. The maximum amount of fallow land is 

available during this period between Rabbi and Kharif. 

2.3.3.1 Data pre-processing 

The image was taken during the maximum of the fallow season, the Erdas Imagine 

software's nearest neighbor algorithm was used to suppress pixels of sparse vegetation by 

primarily using pixels of bare soil. The image was processed through a 3x3 haze reduction filter 

as part of a spatial enhancement process.  The radiometric calibration of bands-1 to band-11 

was executed using the suggested techniques by (Czapla-Myers et al., 2015). The proposed 

operational algorithm was used to produce reflectance images of bands 2 to 7, 10, and 11 after 

atmospheric correction. The Digital number values in the necessary bands also were calibrated 

from 0 to 100 to be used with the reflective values of the other bands. 

2.3.3.2 Extraction of vegetation and Water 

The Normalized Difference Vegetation Index (NDVI) was used to extract the 

vegetation pixels that were left after the Neighborhood Algorithm application. Normalized 

Difference Vegetation Index is an indicator that uses the electromagnetic spectrum's red and 

near-infrared reflection to find vegetation. It is based on the monitoring that in plants that are 
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actively growing, chlorophyll in the leaf absorbs light in the visible (RED) region of the 

spectrum while the leaf's mesophyll structure highly reflects light in the near infrared (NIR) 

region. The most important sign of healthy vegetation is this variation in reflection. Eq. (1) 

(Karaburun, 2010) provides the NDVI calculation formula.     

NDVI = (NIR-Red) / (NIR+Red) ………...    Eq. (1). 

where: 

NIR = reflection in NIR region. 

R = reflection in RED region.  

The NDVI value can theoretically range from -1 to +1. However, NDVI values of -1 to 0 

indicate the presence of water, snow and cloud, Values 0 to 0.2 indicate the presence of Barren 

Land, built up and rock and values 0.2 to 1 indicate the presence of vegetation. Figure 2.6 

shown the vegetation and water.  

2.3.3.3 Preparing the non-analysis mask 

The existence of water, vegetation water, and other land features has a significant 

impact on the reflectance characteristics of soil. Results from such land features' reflection data 

may have mixed spectra. By creating a non-analysis mask in ArcGIS, such different features 

in land were thus excluded from the analysis. Using NDVI, natural vegetation and water bodies 

were extracted. Land use maps generated by the National survey organization; the study area's 

exact built-up area boundaries were digitally recorded. (i.e., Survey of Pakistan). Thus, by 

combining these datasets, a non-analysis mask was generated that included water, natural 

vegetation, built up areas and forests. Figure 2.7 depicts a bare soil map. 
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  Figure 2.6. Extraction of vegetation and water. 
 

 

 

 

 

 

 

 

 
 
 
 
 

  

 

 

  Figure 2.7. Bare soil map. 
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2.3.4 Remote Sensing Non-Imagery Data 

The ASD Fieldspec 4 hyperspectral spectroradiometer provides performance across the 

3nm VNIR, 8 nm SWIR spectral resolution and the full-spectrum solar irradiance (350 - 2500 

nm). For the detection and identification of substances having specific spectral characteristics 

at longer wavelengths, such as alteration minerals, atmospheric analysis, and gases, the 

improved spectral resolution in the SWIR range (1000 - 2500 nm) is particularly helpful. The 

ASD Fieldspec 4 hyperspectral spectroradiometer is a solid solution for ground truthing, 

spectral library building, sensor validation, and calibration because it has an 8 nm resolution 

that is equal to or greater than the spectral resolution of the most of hyper-spectral sensors. The 

ASD Fieldspec 4 hyperspectral spectroradiometer can be employed as a high-resolution 

spectro-meter for extremely precise measurements of contact reflectance, just like all other 

ASD Field Spec Spectroradiometers. 

2.3.4.1 Soil Sample Preparation 

Soil samples are left to dry, ground, and sieved before analysis.  A homogeneous 

mixture for analysis should be produced by the grinding and sieving processes. Samples of soil 

are dried in cardboard boxes at 50°C. In a mechanical mortar and pestle, the dried soil is 

crushed after being run through a 12-mesh (approximately 2 mm) screen. Any debris that is 

produced into the fine soil is removed by sieving. 

2.3.4.2 Spectral Signatures of soil by using ASD FieldSpec 4 

Optical instruments ASD FieldSpec 4 spectroradiometer was used to take the 

reflectance spectra for studying soil characteristics. The spectral response of soil is determined 

by several soil related characteristics such surface condition, soil texture and organic matter.          

Figure 2.8 Shows the soil spectral signature activities and Figure 2.9 Shows the Spectral 

signature Soil Graph. 
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Figure 2.8. (a) and (b) Spectral Signature of Soil using ASD FiledSpec. 

 

 

Figure 2.9. Spectral Signatures of soil. 

(a) (b) 
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2.3.4.3 Statistical Analysis 

A multiple linear regression (MLR) analysis was performed in SAS to establish a 

relationship between the properties of the surface soil and satellite imagery spectral data at 

various wavelengths. [SAS Institute Inc., 1999]. In MLR analysis, the predictor variables are 

frequently chosen in earlier.it is essential to limit the set of independent variables to those that 

may have a physical connection to the dependent variables as including many independent 

variables can significantly bias the value of R2 (Rencher and Pun, 1980). 

2.3.4.4 Correlation Matrix 

The Pearson Product Moment Coefficient, also known as Pearson's r, was calculated to 

find the potential predictors for the dependent variable. The coefficient provides a value 

between -1 and +1 and shows the degree of association between two variables. A strong 

negative or positive correlation is indicated by values that are close to extreme values. The 

significance of "r," however, is based on the size of the sample space and the level of 

significance (Lomax, 2007).  

2.3.4.5 Multicollinearity 

The significance of the predictor variables was then confirmed, and then check the 

multicollinearity statistics in data. When the predictor variables have a high degree of 

correlation with one another, the situation is described to as multicollinearity. When 

determining the contribution of each individual predictor, multicollinearity is a problem. The 

regression coefficient's variance may increase as a result, or the coefficient may have the 

incorrect signs.  (Greene 2008). Any inference is therefore unreliable, and the confidence 

interval widens. Multi - collinearity can be found by calculating the tolerance and variance 

inflation factor (VIF). Eq. (2) and (3) provide the formulas for the two variables. 
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tolerance =1− Rj2       ……………… Eq. (2). 

VIF = (1 / tolerance) ……………….  Eq. (3). 

where: 

The regression coefficient for a jth predictor on all other predictor variables is Rj2. In general, 

a multicollinearity issue is present when the tolerance is less than 0.20 and/or the VIF is higher 

than 7.5.  (Peat and Barto, 2005). 

2.3.4.6 Multivariate Linear Regression (MLR) analysis 

Multiple linear regression is used to determine the relationship between several 

explanatory factors and a single dependent factor, multiple linear regression is used. The 

variables Independent or explanatory variables are the variables we use to make predictions 

about the value of the dependent variable, whereas the dependent variable is the variable we 

are trying to predict. 

Formula and Calculation of Multiple Linear Regression 

𝑦 = 𝑏1𝑥1 + 𝑏2𝑥2…+ 𝑏𝑛𝑐𝑛 + 𝑐 ……………… . . 𝐸𝑞. (4).  

Where: y is the dependent variable, x1 is the explanatory variables, c is the slop 

coefficient for each explanatory variable. Multiple linear regression is a function that allows 

an analyst or statistician to make predictions about variable based on the information that is 

known about others variable. Multiple linear regression can be used when one dependent 

variable and several explanatory variables. The independent variables are the parameter that is 

used to calculate the dependent variable or outcome. 
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2.3.5 Implementation of USDA Textural triangle in GIS 

The surface soil texture variables and soil OM were spatially modelled using the 

multivariate regression equations that the statistical analysis produced. The USDA textural 

triangle was implemented in a GIS domain to create a soil surface texture map from the sand, 

silt, and clay textural variables. 

The procedure was completed in the following steps: The first step involved defining 

the upper and lower bounds for each textural class's variables. The three textural variables in 

the USDA textural triangle define the boundaries for each class. We essentially define the area 

that a specific textural class grasp within the textural triangle by applying the boundary 

conditions. Table 1 shows the three textural variables' limiting values for the eight textural 

classes that define the area of the triangle. But for some classes, the boundary lines behave 

differently than the normal boundary lines of the soil textural variables which is passing 

through the triangle, such as when the "sandy loam" class is specified. The area that the three 

textural variables' boundary conditions for the sandy loam class have defined is shown in 

Figure 2.10. it can be seen, the special area for the sandy loam class also includes some portions 

of many other classes. This is due to the boundary lines' deviation from the normal boundary 

lines of sand percent passing through the triangle. We must therefore research the boundary 

lines' deviating behaviors to precisely define the area of such textural classes. Similar issues 

arise when defining the regions classified as "loamy sand," "silt loam," and "sand." In these 

classes, numerical meanings were assigned to the boundary line deviating behaviors, as shown 

in Table 2 and boundary conditions of soil textural classes in USDA textural triangle for special 

cases, as shown in Table 3. 
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Source:https://www.researchgate.net/publication/279631053/figure/fig2/AS:340509945024517@1458195305579/USDA-Soil-Texture-

Triangle.png

Figure 2.10. USDA soil texture 

triangle.  



31 
 

     Table 2. Limiting values of textural variables for eight textural classes. 

Textural Class Sand% Silt% Clay% 

Clay 0 to 45 0 to 40 40 to 100 

Sandy Clay 5 to 65 0 to 20 35 to 55 

Silt Clay 0 to 20 40 to 60 40 to 60 

Sandy clay loam 45 to 80 0 to 28 20 to 35 

Clay loam 20 to 45 14 to 53 27 to 40 

Silt clay loam 0 to 20 40 to 74 27 to 40 

Loam  23 to 53 27 to 50 7 to 27 

Silt 0 to 20 80 to 100 0 to 12 

 

Table 3. Boundary conditions of soil textural classes in USDA textural triangle for special 

cases. 

Textural Class Condition 1 Condition 2 

Sand a) sand (%): ≥ 85 

b) [silt (%) + 1.5*clay (%)] ≤ 15 

 

Loamy sand a) sand (%): 85 – 90 

b) [silt (%) + 1.5*clay (%)] ≥ 15 

a) sand (%): 70 – 85 

b) [silt (%) + 2.0*clay (%)] ≤30 

Sandy loam a) clay (%): ≤ 20 

b) sand (%): ≥ 52 

c) [silt (%) + 2.0*clay (%)] ≤ 30 

a) clay (%): < 7 

b) silt (%): < 50 

c) sand (%): 43 – 52 

Silt loam a) silt (%): ≥ 50 

b) clay (%): 12 – 27 

a) silt (%): 50-80 

b) clay (%): < 12 
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Then, from the raster surfaces variable (i.e., sand%, silt%, clay%, (silt% + 1.5*clay%), and 

(silt% + 2.0*clay%)) that met the requirements for a specific soil textural class, the pixels that 

satisfied those criteria were extracted. 

- The following step involved choosing those extracted variable pixels where 

each boundary condition for a specific textural class was satisfied. ArcGIS 

software employed the Boolean operator "AND" for this. 

- The takeout variable pixels were first re-classified and given the value "1" in 

order to use the Boolean operator. After that, a specific textural class extracted 

and reclassified variable pixels were combined using the "AND" operator. This 

had the effect of causing all the variable pixels to have the value "1," or only 

those pixels to have a true value. The textural class for which the process was 

performed received the pixels with a value of "True" as a result. In this way, 

each textural class's pixel was carefully examined. 

- Finally, A single soil texture map was generated by combining the pixels under 

each textural class. In ArcGIS software, a final surface (a depth of 7cm) soil 

texture map was created. 
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Chapter 3 

3 RESULTS AND DISCUSSION 

3.1 Descriptive Statistics of Soil Properties 

In descriptive statistics, summary statistics are used to provide an overview of the sample 

data and the main points of the information. Table 4 shows the descriptive statistics of the data.   

In table 3 the descriptive statistics show that the min, max, mean standard deviation and 

skewness values calculated. A lower standard deviation (SD) indicates that the soil data are 

aggregated over all the mean, whereas a highest SD shows that the soil data are more scattered. 

In contrast, a low or high SD suggest that the data points are above or below the mean 

respectively. A SD that is close to zero shows that the soil data points are closer to the mean. 

According to the conclusion the data appear to be symmetrical if the skewness ranges from -

0.5 to 0. The data are moderately skewed, If the skewness is between -1 and -0.5 or between 

0.5 and 1, The data are considered highly skewed if the skewness is greater than or equal to 1. 

In our data only Organic matter data 0.0186 close to mean and normally distributed expected 

other variables sand% content, silt% content and clay% content with values of 3.960, 0.9454 

and 3.889 respectively. Silt variable value 1.3733 shows that is positively skewed but the 

organic matter, sand and clay values -1.0540, 3.464 and -3.549 respectively shows that data are 

negatively skewed. 

3.2 Statistical Modeling of Hyperspectral Spectroradiometer Data 

3.2.1 Test of Association 

In table 5 shows the results of Pearson correlation coefficient calculated for soil percent 

sand, clay and O.M. with the spectral values ASD FieldSpec spectroradiometer. 
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Table 4. Summary statistics of soil. 

Variable Min Max Mean Std Dev Skewness 

OM (%) 0.34 0.87 0.605 0.0186 -1.0540 

Sand (%) 30 54 33.585 3.960 3.464 

Silt (%) 36 42 37.618 0.9454 1.3733 

Clay (%) 9 31 28.797 3.889 -3.549 

 

Table 5. Pearson correlation coefficient between soil percent sand, clay and O.M. with the 

spectral values ASD FieldSpec spectroradiometer. 

Variable 

Name 

Sand Clay O.M. 

Correlation 

Coeff. 

P-value Correlation 

Coeff. 

P-value Correlation 

Coeff. 

P-value 

X1362 0.9628 0.004 - - - - 

X1366 0.4770 0.0582 - - - - 

X1843 0.8781 0.0026 - - - - 

X1856 0.9348 0.0009 - - - - 

X1830 - - 0.8875 0.0022 - - 

X1839 - - 0.6799 0.0169 - - 

X1873 - - 0.8291 0.0047 - - 

X1882 - - 0.4940 0.0530 - - 

X1363 - - - - 0.5173 0.0465 

X1833 - - - - 0.9964 0.0000 

X1886 - - - - 0.9318 0.0010 

X1909 - - - - 0.6989 0.0148 
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The percent sand variables showed a highly positive correlation with the reflection in X1362, 

X1366, X1843 and X 1856 at different significant levels and a strong positive correlation with 

the reflection in X1830, X1839, X1873 and X1882 at different significant levels. Similarly, the 

percent O.M. showed strong positive correlations with soil reflections in X1363, X1833, 

X1886 and X1909 at different significant levels. 

3.2.2 Multicollinearity Test 

In table 6 shows the tolerance and VIF values for multicollinearity statistics that were 

determined for the independent variables of sand, clay, and Organic Matter percentages. VIF 

of the percent sand, clay and Organic Matter predictor variables and tolerance values were well 

below the threshold points, so all the variables used for modeling equations. 

3.2.3 Multivariate Linear Regression Equations 

Multiple linear regression equations were developed using the variables that were found 

to be free of the multicollinearity problem. A ‘stepwise 'method was used in Statistical Analysis 

System for selection of variables. The multivariate regression equations that resulted are given 

table 7. 

The notably high values of R2 examined for all soil characteristics show the importance 

of ASD FielsSpec spectroradiometer data in modelling variability of soil surface properties. 

The differences between the values of R - squared and adjusted R - squared, which is also very 

small, shows that the predictor variables fully account for the variability in the dependent 

variables. (Nanni and Dematte 2006) conducted a study to investigate the characteristics of the 

soil. (Thomasson et al. 2001), (Hong et al. 2002) and (Maselli et al. 2008), also taken similar 

statistical approach for the modelling of soil surface attributes. 
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Table 6. Tolerance and variance inflation factor (VIF) calculated for variables having 

significant correlations with the soil attributes under study. 

Variable 

Name 

Sand Clay O.M. 

VIF Tolerance VIF Tolerance VIF Tolerance 

X1362 2.0463 0.488 - - - - 

X1366 2.0338 0.4917 - - - - 

X1843 1.1612 0.8612 - - - - 

X1856 1.1912 0.8395 - - - - 

X1830 - - 1.5133 0.6608 - - 

X1839 - - 1.0736 0.9314 - - 

X1873 - - 1.0239 0.9767 - - 

X1882 - - 1.4012 0.7137 - - 

X1363 - - - - 1.1385 0.8784 

X1833 - - - - 1.2064 0.7936 

X1886 - - - - 15903 0.3712 

X1909 - - - - 1.1655 0.1420 

 

 

Table 7. Resulting multivariate linear regression equations. 

Variables Equation R Adjusted R RMSE 

Sand (%) Sand (%) =24.58 + (0.48 * X1362) – (0.23 * X1366) – 

(0.072 *X1843) + (0.08 * X1856) 

0.3700 0.3140 5.8143 

Silt (%) Silt (%) =34.87– (0.018 * X1837) – (0.010 *X1912) 0.4447 0.3953 2.0231 

Clay (%) Clay (%) =39.04 – (0.077 * X1830) + (0.065 * X1839) + 

(0.072 *X1873) + (0.041 * X1882) 

0.3165 0.2557 6.3892 

O.M. (%) OM (%) =0.98 – (0.004 * X1363) + (0.0022 *X1833) – 

(0.0011 * X1886) + (0.001 * X1909) 

0.4402 0.3904 0.1336 

 



37 
 

3.3 Statistical Modeling of LandSat-8 OLI  

3.3.1 Test of Association 

The results of the Pearson correlation coefficient calculated for the percentages of sand, 

clay, and O.M. in the soil and the spectral values of the Landsat-8 OLI bands are shown in 

Table.8. 

In all bands, the percent sand and clay parameters showed a significant (p < 0.05) 

positive correlation with the explanation. A similar methodology was taken by Salisbury and 

(D’ Aria 1992), (Coleman et al. 1993) and (Barnes and Baker 2000). However, there were 

significant (p < 0.05) negative correlations between the percent O.M. and soil reflection in 

bands. The negative association of surface soil organic matter for each band is because as the 

percent of organic matter in soil increases, the soil appears darker in color, reducing overall 

reflectance. (Coleman and Montgomery 1987), (Galvao and Vitorello 1998), (Barnes et al. 

2003), and (Ladoni et al. 2010) all reported similar findings. 

3.3.2 Multicollinearity Test 

In table 9 shows the tolerance and VIF values for multicollinearity statistics that were 

determined for the predictor variables of sand, clay, and O.M. percentages. The variance 

inflation factor and tolerance values for the dependent variables of percent sand, clay and O.M 

were estimated for band-2, band-3, band-4 and band-6 exceed the limits, implying a 

multicollinearity issue. The variance inflation factor and tolerance values for the 

dependent variables of percent sand, clay and O.M. were well within the limits for band 5,7 

and 11. Consequently, these variables were removed from the analysis, and MLR analysis was 

performed using the remaining variables. 
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3.3.3 Multivariate Linear Regression Equations 

Multiple linear regression equations were developed using the variables that were found 

to be free of the multicollinearity problem. A ‘stepwise 'method was used in Statistical Analysis 

System for selection of variables. The multivariate regression equations that resulted are given 

in Table 10.  The notably high values of R2 examined for all soil characteristics show the 

importance of Landsat-8 OLI data in modelling variability of soil surface properties. The 

differences between the values of R - squared and adjusted R - squared, which is also very 

small, shows that the predictor variables fully account for the variability in the dependent 

variables. (Nanni and Dematte 2006) conducted a study to investigate the characteristics of the 

soil. (Thomasson et al. 2001), (Hong et al. 2002) and (Maselli et al. 2008), also taken similar 

statistical approach for the modelling of soil surface attributes. The use of LandSat-8 OLI data, 

they also done multiple linear regression analysis and investigated R2 values of 0.589 and 0.687 

for clay % content and soil organic matter % content respectively. (Thomasson et al. 2001), 

(Hong et al. 2002) and (Maselli et al. 2008), also created similar statistical methods for 

simulating soil attributes. 



39 
 

Table 8. Pearson correlation coefficient (r) between Landsat-8 OLI bands spectral values and percent sand, clay, and O.M. 

Variable Name Clay Sand O.M. 

Band2 0.696 0.627 -0.513 

Band3 0.724 0.492 -0.447 

Band4 0.742 0.495 -0.359 

Band51 0.509 0.245 -0.308 

Band6 0.732 0.567 -0.319 

Band7 0.648 0.523 -0.366 

Band11 -0.275 0.118 -0.023 

At significance level (p< 0.05)
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Table 9. Tolerance and Variance Inflation Factor (VIF) calculated for variables having 

significant correlations with the soil attributes under study. 

Variable 

Name 

Sand Clay O.M. 

VIF Tolerance VIF Tolerance VIF Tolerance 

Band2 18.498 0.054 18.498 0.054 18.498 0.054 

Band3 56.846 0.018 56.846 0.018 56.846 0.018 

Band4 36.521 0.027 36.521 0.027 36.521 0.027 

Band5 5.023 0.199 5.023 0.199 5.023 0.199 

Band6 12.192 0.082 12.192 0.082 12.192 0.082 

Band7 6.707 0.149 6.707 0.149 6.707 0.149 

Band11 1.868 0.535 1.868 0.535 1.868 0.535 

(Values in bold exceed the threshold values > 7.5). 

 

Table 10. Resulting multivariate linear regression equations. 

Variables Equation R2 Adjusted 

R2 

RMSE 

Sand (%) Sand(% )= 28.86(1.50*band_5)-(3.18*band_7) +(1.05*band_11) 0.558 0.553 0.432 

Clay (%) Clay(%) = 28.05-(3.18*band_5)-(2.61*band_7) +(1.38*band_11) 0.589 0.584 0.287 

O.M. (%) OM_N = 0.48-(5.66*band_5) -(2.23*band_7) +(1.68*band_11) 0.687 0.683 0.010 
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3.4 Spatial Modeling 

As a result, clay, sand, and O.M. multivariate regression equations are used to 

spatial model these spatial variables. Figure 3.1 Shows the spatial variable bare soil band 5, 

Figure 3.2 shows the spatial variable bare soil band 7 and Figure 3.3 shows the spatial variable 

bale soil band11. The results indicated that the percent sand observed ranged from 30 to 54 % 

in the study area. here we check that maximum value fall in range of 30.12 to 33.31 in the north 

and mid of the study area and values 39.69 to 53.34 in south side of the study area this is due 

to river side, in clay map values varied from 9 to 31 and maximum values spread in between 

28.47 to 30.98 all over the study area, in silt map values varied  from 36.01 to 41.76 and 

maximum value varied from 36.01 to 37.96 in this study area . Figure 3.4 shows the sand 

percent map. Figure 3.5 shows the clay percent map and Figure 3.6 shows silt percent map. 

3.5 Generate Soil Texture Map by Using USDA Textural Triangle 

study area's soil texture map was created by combining the soil texture factors. The 

"clay loam" class was the most prevalent textural class inside the study area, followed by the 

"loam" class, according to the values of number of pixels count for the measured textural 

classes. Figure 3.7 despite the Spatial soil surface texture distribution. 

                      The soil texture-values distribution graph shows the soil of Shakargarh. The "clay 

loam" class was the most prevalent textural class inside the study area, followed by the "loam" 

class, according to the values of number of pixels count for the observed textural classes. The 

soil of the study area is densely compacted together with each other with very little or no 

airspace. This soil seems to have excellent water storage characteristics and makes it hard for 

air and moisture to penetrate it. It is very moist to the touch when moisture but soft when dried. 
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  Figure 3.1. Spatial variable bare soil band 5. 

 

 

 

 

 

 

 

 

 

 

 

  Figure 3.2. Spatial variable bare soil band 7. 
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  Figure 3.3. Spatial variable bare soil band 11. 

 

 
   Figure 3.4. Sand percent map. 
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   Figure 3.5. Clay percent map.                        
 

 
    Figure 3.6. Silt percent map. 
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3.6   Generate Soil Organic Matter Map 

Organic matter map of the study area prepared by using spatial model. Values varied in 

the organic matter map from 0.34 to 0.87. Most extensive values in the North were found to 

range from 0.3 to 0.41 percent, organic matter in this area is very low condition, and in the 

South side values spread in this area from 0.42 to 0.87 percent. Organic matter in this area is 

some batter condition.  The spatial variability of soil organic matter is shown in Figure 3.8. 

3.7 Data Validation 

To assess the accuracies of spatial modelling, 25 evenly distributed soil surface samples 

(not part of the analysis) were selected for validation. It was attempted to compare the measured 

values of the soil profile characteristics to the calculated results. RMS error was calculated for 

each of the soil parameter models. The measured RMS errors for percent sand, clay, and O.M. 

were found to be 0.432, 0.287, and 0.010, respectively. 
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  Figure 3.7. Spatial distribution of surface soil texture. 
 

 

 

 

 

 

 

 

 

 

 

 

  Figure 3.8. Spatial distribution of surface soil O.M 
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Chapter 4 

4 CONCLUSION AND RECOMMENDATIONS 

Fine level spatial variation analysis and modelling of large area soil surface 

characteristics are possible using remote sensing satellite data (imagery and non-imagery), as 

most of these soil surface characteristics, such as soil texture and O.M., influence soil 

reflectance directly or indirectly. The spectral reflectance values data can be used instead of 

the conventional techniques to identify soil attributes. A MLR techniques has been except for 

studying the relationship between soil surface properties and hyperspectral non-imagery data 

which revealed wavelength X1362, X1366, X1843 and X1856 as the best predictors of percent 

sand, wavelength X1830, X1839, X1873 and X1882 as the most accurate predictors of clay 

content, wavelength X1837 and 1912 as the best predictors of percent silt and wavelength 

X1363, X 1833, X1886 and X1909 as the best predictors of percent O.M. The best predictors 

of the percentage of sand, clay, and O.M. were bands 5, 7 and 11, according to the relationship 

between soil surface properties and soil reflectance. The USDA soil textural triangle has been 

used to perform spatial modelling of soil texture. The findings identified "clay loam" and 

"loam" as the two primary soil texture classes in the study area. Additionally, very little (>1%) 

O.M. status was found in the study area. 

4.1 RECOMMENDATIONS 

i. Traditional practices for soil mapping are outdated and must be replaced by Remote 

Sensing approaches.  

ii. Modelling approaches for soil prediction must be replaced by Geospatial Statistics, 

GIS Models and Artificial Neural Network. 

iii. Satellite Images with high spectral and spatial resolution can further improve this 

research subjected to cost. 
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