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Abstract 

An Absorption Chiller stands out as a promising technology, particularly in regions where 

consistent power availability cannot be guaranteed. It boasts versatility in being operable with 

various fuel sources, including waste heat, natural gas, biomass, and solar energy. Notably, its 

environmental impact is commendable: An Absorption Chiller using the LiBr-H2O 

combination, with water as the refrigerant, has no Global Warming Potential (GWP) and no 

Ozone Depletion Potential (ODP). This is a significant advancement compared to Electric 

Chillers using CFCs. 

Historically, predicting the Coefficient of Performance (COP) has often relied on system 

simulation. However, this method's effectiveness hinges on constructing an accurate system 

model through component-level modelling, a process prone to time-consuming complexity and 

convergence challenges due to oversimplification of the inherently nonlinear problem. An 

alternative approach garnering interest is system-based Artificial Neural Network (ANN) 

modelling. In this study, Back Propagation Neural Network (BPNN) and Feed Forward Neural 

Network were used to predict the COP. Training these networks with data from an operational 

pharmaceutical plant in Karachi, Pakistan, allowed for prediction validation via benchmarking 

against an EES thermodynamic model—a trusted tool for precise thermodynamic evaluations. 

 

The input dataset for the Feed Forward BPNN Learning Algorithm included variables like 

Chilled Water Supply Temperature, Chilled Water Return Temperature, Cooling Water Supply 

Temperature, Cooling Water Return Temperature, and Gas Consumption at the Burner Inlet. 

Through a comprehensive energy analysis, predicted results were compared to actual data. 

Encouragingly, the study shows that the FFBPNN method provided highly accurate predictions 

of absorption chiller performance, supported by a strong correlation indicated by a high R-

squared value approaching 1. The neural network predictions closely matched actual COP 

values within a ±5% margin of error. Additionally, the study extended to analysing a Double 

Effect Absorption Chiller using an EES-based thermodynamic model 

Keywords: BPNN, Energy, Exergy, Absorption Chiller, Parallel Flow, COP, EES, MATLAB
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Chapter 1. Introduction 

1.1. Introduction 

HVAC systems contribute to 12% of global energy demand worldwide which in turn produces 

2 billion tons of CO2 [1, 3]. Furthermore, it consumes of up to 40% [1,2] of energy in 

Commercial, Residential and Industrial Buildings. With a projected CAGR of 6.6% of the 

HVAC Global Market by 2026[2], the need to curb Carbon emissions, provide a sustainable 

future and avoid a paradoxical cycle of rising global temperatures leading to increased HVAC 

demand is of great importance. The Figure 1.1 below the market growth rate in different regions 

of the world. 

   

 

 

 

 

 

 

 

 

Figure 1.1: Absorption Chiller Market by Region (Adapted from [7]) 

At present there are several technologies in the HVAC space that constitute 40% of energy 

consumption in a typical building. Fans consume the most energy standing at 34% followed by 

cooling equipment such as chillers and packaged units at 27%, then heating equipment stands 

at 17% with Pumps and Cooling Towers forming as associative equipment for the above 

Heating and Cooling machines rounding up the energy mix at 16% and 6%[5,7]. Figure below 

shows the energy consumption distribution in pie chart. 
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Building Energy Distribution in a Typical Office 
Building

HVAC Lighting Equipment Lifts Domestic Hot Water Other

 

 

 

 

 

 

 

 

    

Figure 1.2: Energy Consumption Distribution in an office building (Adapted from[6]) 

In addition, of the 27% energy consumed, approximately 70% is made up by refrigerant based 

cooling equipment such as Packaged Rooftop Units, Split Air Conditioners, VRF based Room 

Air Coolers etc[5,7]. The reason could understandably be the ease of installation, maintenance 

and intelligent controls makes it an attractive prospect especially when compared to the Initial 

Capital cost of Chilled water-based Cooling Systems. On the other hand, however as per 

ASHRAE, median life of these systems are far lesser than Chilled water-based systems so they 

will continuously be required to be replaced. The operational cost and resultant capital cost in 

retrospect will eventually equal or exceed that of Chilled Water based systems in the long run.  

In contrast, Cooling based on provision chilled water-based systems constitutes to around 28% 

mostly based on Electrically Driven Chillers. This profoundly impacts the energy mix and leads 

to high dependency on fossil fuels to provide sufficient electricity for operation.   

Thus, we need to look at Renewable technologies in this space to mitigate adverse impacts on 

the environment. One such technology has been in existence for decades, however despite it 

serving as a viable alternative to Electric Operated Chillers, never really has gained much 

traction until recent years. The Global Market for Absorption Chillers stands at approximately 

1.5 billion USD and will reach to 2.4 billion USD until 2032[3,4]. Absorption chillers barely 

contributes to 2% of the energy which means it serves as viable alternative and the only 

renewable technology fundamentally [1].  
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1.1.1. Some of the key advantages of using Absorption chillers are: 

1. Does not have Electrically Driven Compressor as it operates on the Vapor Absorption 

cycle. As a result, it possesses the capability to operate using various fuel sources, 

including residual heat generated by industrial operations, Bagasse, Solar Thermal 

Energy, Natural Gas, Steam, and more. 

2. Lower operating costs due to lesser moving parts. A well-maintained Absorption 

Chiller can outlast an electrically driven chiller with expected lifetime of above 25 

years. 

3. Working fluid is free from CFC’s which can damage the Ozone layer especially in the 

case of LiBr-H2O based Absorption chillers where water acts as the refrigerant. Thus, 

the working substance does not contribute to Global Warming Potential (GWP) or 

Ozone Depletion Potential (ODP). 

4. Quieter Operation due to absence of compressor. This can reduce noise pollution 

especially in commercial and residential buildings. 

5. There is no Start and Stop operation cycling loss during which electrically driven 

chillers are notorious for producing excessive waste heat. 

6. Efficient at utilization of Low-grade heat sources. [8] 

1.1.2. Disadvantages of Absorption chillers: 

1. Higher Capital cost due to use of expensive components in manufacturing and LiBr can 

sway the decision towards Electrically Driven Chillers. 

2. Cost of and Complexity of Maintenance is significantly higher. This is because one of 

the major drawbacks is the issue of crystallization of the LiBr salt when it’s the machine 

is operated at near the saturation temperature of the LiBr Salt which causes it to solidify. 

This in turn becomes extremely corrosive and significantly impacts the life of the Heat 

Exchangers within the machine. 

3. Absorption chillers are typically larger in size and weight which can make them 

difficult for shifting operations. 

4. They have significantly lower COP than Electrically driven chillers which is one of the 

major drawbacks of absorption chillers. They are also less efficient at converting energy 

into heat extraction potential unlike electrically driven chillers. 

5. Vacuum Leaks are extremely damaging for an Absorption chiller. Any points of entry 

of air can cause rapid rate of corrosion when combined with the salt and water[8].   
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Nevertheless, many of the modern Absorption chillers have been incorporated with modern 

electronic controls and purge systems so any criticality or limiting factors of the Absorption 

have been nearly eliminated. This has made them more viable with the exception of COP which 

cannot be matched to that of electrically driven chillers. Nevertheless, numerous research 

endeavours have sought to improve the Coefficient of Performance (COP) of Absorption 

Chillers., and this will be explored in detail in Chapter 2. 

1.1.3. Major use cases for Absorption Chillers: 

2. One of the key applications of an Absorption Chiller is to provide process cooling water 

for various industrial purposes using waste heat from exhaust/flue gases. 

3. They can also be used for application where non-stop cooling or chilled water is 

required for instance, in sectors like pharmaceuticals, refrigerated storage facilities, 

data centres, and district energy plants, among others. 

4. They can also be used for residential applications due to the nature of low noise during 

operation especially during night time. 

5. It can be used in areas where electricity availability is limited and/or can be expensive. 

6. Can be used as standby or backup during enhanced cooling load requirement or act as 

a failsafe. 

Keeping in view of the above applications and the annual growth rate of the absorption chiller 

market, it would be helpful to investigate and study all the techniques that may enhance the 

operational ability of the Absorption Chiller. This in turn will help motivate a greater rate of 

transition towards its use by increasing its efficacy [8]. 

1.2. Purpose of the Thesis: 

With the current advent and rapid development of Machine Learning and Deep Learning 

methods. One such approach is to employ Artificial Neural Networks and use the Data Driven 

Model to make intelligent decisions with respect to improving efficiencies by predicting 

optimal conditions from real time data and then generating control strategies.  

Fault diagnosis, prediction and maintenance schedules can be done not just based on the rated 

life of equipment or as per OEM guidelines but anomalous behaviour from historic data and 

normal operating patterns especially when integrated with Condition based health monitoring 

tools. Then, inform the operator before time leading to proactive maintenance rather than 

reactive maintenance.  
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Absorption chillers can have varying designs. Also, the manufacturers themselves do not 

mention the internal working parameters of the absorption chiller. Therefore, it is not possible 

to predict the internal efficiencies of components. With the help of Neural Networks, we can 

link the external data provided by the manufacturers with that of the internal data by training it 

to form nonlinear complex relationships to accurately predict parameters such as COP, energy 

and exergy using base parameters derived from the operation of the Absorption Chiller. 

Additionally, using traditional analytical models to predict COP requires oversimplification 

and assumptions. With the help of real time datasets being analysed and trained to predict the 

COP, it can eliminate the assumptions and will be in close proximity the actual COP of the 

system. There might also be cases where missing data and/or corrupt data may cause issues 

with regards to operation parameters and prediction of COP. Neural networks can extrapolate 

from historic data to still make meaningful predictions. This can help to increase energy 

efficiency and improve fuel savings. 

1.3. Research Objective: 

• Develop an AI based data driven model and optimize the efficiency of the 

absorption chiller. 

• Conduct an examination that encompasses Exergy, Exergo-economic, and Energy, 

and analyses of the planned absorption chiller system utilizing the EES software 

• To compare the developed model with simulation results. 

1.4. Machine Learning and Artificial Neural Networks: 

Neural Networks constitute the foundational framework of Deep Learning, which falls under 

the umbrella of Machine Learning. They are structured with layers of interconnected nodes, 

akin to algorithms mimicking human brain functionality. These networks recognize data 

patterns through sequential layers, comprising an input layer, one or more hidden layers, and 

an output layer. Within each layer, distinct nerve cell executes computations on input data, 

relaying outcomes to subsequent layers for further analysis. 

Neural connections are allocated weights according to user-defined parameter priorities. 

During the learning phase, as the network is exposed to input data and corresponding output 

labels, these weights are adjusted. The aim is to reduce the difference or variance between the 

network's predictions and the target output labels. This iterative process is referred to as 

Backpropagation. 
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In the context of Artificial Intelligence, Machine Learning serves as a subset. Its core focus lies 

in crafting models and algorithms these methods empower computers to independently learn 

from data and enhance their performance progressively, all without the need for explicit 

programming. The overarching aim of Machine Learning is to empower computers to 

anticipate future events, identify trends, and execute tasks by leveraging discerned patterns and 

insights extracted from data. 

Machine learning can be categorized into three distinct groups: 

 

Figure 1.3: Machine Learning Facets 

a. Supervised Learning: In this method, input characteristics and associated output 

(target) values are provided, and the machine learning model is trained on labelled data. 

In order to be able to predict outcomes from new, unforeseen data, the model must first 

learn to map inputs to outputs. 

b. Un-supervised Learning: In unsupervised learning, the model is qualified on data that 

has not been assigned a label, and its objective is to find structures or patterns in the 

data. Techniques like dimensionality reduction and clustering are included. 

c. Reinforcement-learning: Teaching an agent to engage with its surroundings and gain 

knowledge from the feedback it receives. In order to maximize cumulative rewards over 

time, the agent acts in the environment and is rewarded or penalized as a result. 

There are many methods and sub classifications which will be further discussed in Chapter 2 

and Chapter 4 pertaining to which Neural Networks and what Machine Learning algorithms 

have been used in the past to estimate certain parameters of an Absorption Chiller and its 

efficacy while doing so. 



7 
 

1.5. Working Principle of Absorption Chillers 

1.5.1. The Process of Absorption 

The foundational absorption process unfolds as two distinct fluids, each in differing states, 

convene within the absorber. Through this interaction, they merge to emerge as a singular phase 

and state. A defining feature of this process involves the disparate saturation temperatures 

exhibited by the two fluids. Specifically, one fluid's saturation temperature surpasses that of 

the other. Within this dynamic, the fluid characterized by the lower saturation temperature 

undertakes the role of the refrigerant. The selection of this refrigerant is contingent upon both 

its compatibility with the other fluid and the intended operational environment. Such 

considerations optimize the absorption process, with outcomes contingent upon the cooling 

requisites of the application, spanning from standard cooling to Sub-Zero Temperature 

refrigeration. 

Prominent among the fluid pairs employed in absorption processes are LiBr-H2O and NH3-

H2O. In the former, water functions as the refrigerant, while ammonia serves this purpose in 

the latter. LiBr-H2O finds application in cooling scenarios where temperatures remain above 

freezing. This choice is substantiated by its commendable Coefficient of Performance (COP), 

low toxicity, and simplified handling. Conversely, NH3-H2O proves indispensable for 

refrigeration due to ammonia's remarkably low boiling point of -77.7°F. 

The subsequent Table 1 enumerates the predominant properties that underpin the efficacy of 

the aforementioned fluid pairs. It serves as a guide to the extent to which these properties are 

met by the respective fluid combinations: 

Table 1: Common properties of fluids-Behaviour 

Properties of Refrigerant Pair Ammonia/Water Water/Lithium Bromide 

Refrigerant 

Moderate vapor pressure 5 6 

Low viscosity 2 2 

High latent heat 2 1 

Low freezing temperature 1 4 

Absorbent 
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Note: The Numbers represented above are identified as 1-Excellent 2-Good 3-Poor 4-Limited 

Application 5-Too High 6-Too Low.  

1.5.2. Fundamental Absorption Cycle 

The operation of an absorption chiller is underpinned by six fundamental subsystems, In this 

context, the focus is on illustrating a Single Effect Absorption Refrigeration System for clarity 

1. Absorption of Refrigerant: The cycle commences within the absorber, housing a 

blend of Lithium Bromide (Absorbent) and Water (Refrigerant). The heated refrigerant 

from the evaporator mixes with the diluted solution in the absorber.. This merging, 

which is an exothermic procedure, emits heat to the environment. 

2. Generator: The potent solution advances to the generator or desorbed. Here, an 

external heat source like natural gas or steam warms the solution. As a result, the 

refrigerant separates and vaporizes from the potent solution, emerging as saturated 

vapor at elevated pressure. 

3. Condenser: The saturated vapor proceeds to the condenser, interacting with cooling 

water from the cooling tower. This interaction triggers condensation, Conversion into 

high-pressure vapor liquid refrigerant as it undergoes the transition, marking a phase 

change. 

4. Expansion: The high-pressure liquid refrigerant journeys through an expansion valve, 

where abrupt pressure alteration causes partial Evaporation during expansion. 

5. Evaporator: The heated chilled water loop interfaces with the partially vaporized 

refrigerant in the evaporator. This prompts another phase shift, transforming the 

refrigerant into a superheated, low-pressure state. 

Low viscosity 2 2 

Low vapor pressure 3 1 

Mixture 

High affinity between refrigerant and 
absorbent 

2 2 

No solid phase 1 4 

Low toxicity 3 2 
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6. Solution Heat Exchanger: Typically, The heat exchanger aids in the exchange of 

thermal energy between the diluted solution returning from the generator and the 

concentrated solution directed to the generator.This internal exchange doesn't entail 

phase transition. It optimizes energy utilization, curbing waste heat and reducing 

generator heat input. 

Subsequently, the weakened solution, following the solution heat exchanger, traverses an 

expansion valve, attaining parity with the absorber's pressure level as a two-phase vapor-liquid 

solution stream. This cyclical process repeats, constituting the elemental operational cycle for 

the Single Effect Absorption Chiller. 

The preceding discourse provides a high-level glimpse into the functionality of an absorption 

chiller. This overview lays the groundwork for comprehending the system under scrutiny in 

the present study. 

1.6 Organization of Thesis: 

The research work presented in this manuscript adopts a methodical and well-structured 

approach, wherein each CHAPTER and subsequent section is dedicated to distinct facets of 

study. The main emphasis of this research centres on the prediction and optimization of COP 

using Back propagation Neural Network from real time data available. Following which 

benchmark, it with EES model and that of the real-world COP. 

Literature Review: CHAPTER 02 encompasses historical research works that have been 

carried with respect to enhancing the Absorption Chillers’ capability either through novel 

design or through software-based approaches such as the use of Data Driven Models. 

Moreover, there were several areas in the past research work which could benefit from ancillary 

studies forming part of future research.  

System Description: CHAPTER 03 discusses the current system under study and the reason 

for this specific system to be chosen. Further a detailed analysis was also carried to best select 

the Neural Network to employ on the selected system and residual justification duly stated. 

Thermodynamic Analysis: CHAPTER 04 outlines the mass balance, energy balance, 

irreversibility’s using exergetic analysis and finally the Exergoeconomic analysis of the stated 

system under study. This was done to conform to objectives and verify the results of the EES 

model. 
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Results and Discussion: CHAPTER 05 illustrates the outcome of both ML based Model and 

EES model. These are outcomes are exhibited both through analytical representations as well 

as in graphical/tabulated forms. To assess the validity and significance of the findings, the 

results are benchmarked with historical works in the field.  

Conclusion: The conclusion of the research, analysis, and experimental findings based on the 

data gathered throughout the study are presented in the manuscript's CHAPTER 6 . This section 

highlights the ramifications and importance of the research while summarizing the major 

findings. It also offers recommendations for future research, detailing possible lines of inquiry 

and advancement in the area. The conclusion also addresses gaps and restrictions in the current 

research, highlighting areas that need focus and more research in subsequent studies. 

Citations and References: The work follows strict guidelines for citations and references. The 

document concludes with a complete list of references that includes all the sources consulted 

during the research. These citations are used to give due credit and recognition to the original 

authors and works that helped shape the study. Additionally, proper in-text citations are used 

all throughout the work to provide accurate attributions for particular facts or ideas that were 

taken from other sources. This permits the verification of claims made in the study and ensures 

academic integrity, authenticity, and transparency in the depiction of the research.  
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Chapter 2. Literature Review 

2.1.  Performance Enhancement of Absorption Chillers 

Rasoul Nikbakhti et.al comprehensively reviewed several methods and studies that have 

improved the Absorption Chiller Technology’s’ performance and efficiency. The flowchart in 

Figure 2.1 below summarizes the key areas of the absorption cycle where improvements have 

been made including reconfiguring the absorption cycle itself. 

 

Figure 2.1: Major Approaches for Improving the Energy Performance for a VAC System 

The first part of his research focused on cycle improvements which starts from a basic single effect 

cycle all the way to seven effect cycle. 
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Figure 2.2:Absorption cycle types and COP-Comparison 

As indicated in Figure 2.2 above and inferred from existing literature, there exists an 

unswerving association between the number of stages and the COP (Coefficient of 

Performance). Amplifying the number of stages yields improved COP values. However, this 

enhancement comes at a substantial cost, introducing elevated operational intricacies into the 

cycle. Moreover, the returns on performance become progressively marginal. This escalation 

in the machine's size is coupled with the requirement for higher generator temperatures in 

multi-stage cycles to attain heightened COPs. Yet, this is often unattainable given the typical 

usage scenarios of absorption chillers, primarily designed to leverage low-grade heat sources 

for cooling. 

In the subsequent section of the report, strategies to augment the single-effect absorption cycle 

are explored, primarily focusing on heat recovery methods, particularly the Generator-

Absorber Heat Exchange (GAX) cycles. Among these, the Regeneration cycle, an advanced 

form of heat recovery, stands out, manifesting a notable 30% performance boost compared to 

conventional GAX cycles. 

Furthermore, fluid pairs like water/sodium hydroxide, water/sulfuric acid, and 

ammonia/sodium thiocyanate, while possessing untapped potential, have not gained significant 

market traction. Their limited adoption is attributed to their expensiveness, reliance on 

specialized equipment, and operation-altering modifications, rendering the Absorption Chiller 

excessively intricate to maintain and operate. This underscores the continued prominence of 

Ammonia-Water and Aqueous Lithium Bromide fluid pairs due to their inherent advantages. 

The incorporation of sub-components such as Solution Heat Exchangers, Flash Tanks, and 

Distillation Columns can tangibly enhance the COP without necessitating increased 
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complexity. Cascade Absorption Compression systems, similarly, hold promise in significantly 

elevating COP values, approaching those of Vapor Compression Refrigeration systems. 

Notably, in contrast to other internal components of the Absorption Chiller, variations in 

generator temperatures exert a critical influence on the COP. The rule of thumb dictates that 

higher Generator Temperatures correspond to greater COP values. 

Arnas et al. introduced a pioneering Absorption-Chiller system, the solo double-effect 

absorption-chiller, powered by solar energy. This innovative approach adapts to varying solar 

energy availability due to seasonal changes. The study recommends a hybrid method, using 

Single Effect for 50% of peak cooling load and Double Effect for the remaining 50%. This 

strategy optimizes part-load performance during off-peak cooling demands while harnessing 

maximal solar energy during peak cooling requirements. Moreover, the Double Effect mode 

which can run with a higher-grade heat source such as natural gas etc. and becomes a fall back 

when solar energy is insufficient, thus ensuring consistent and efficient operation. The system 

contains a total of 7 main components namely: 

a) Chilled-Water Evaporator. 

b) Solution-Absorber. 

c) Special-Temperature-Generator. 

d) Advanced-Condenser. 

e) High-Temperature Generator. 

f) Low-Temperature Generator. 

g) Condenser. 

The system can use all the components when it’s in Single-Double Effect mode or it can use 

only the 4 components when in Single effect mode, or 5 components when in Double effect 

mode. The cooling water flow path is what differentiates the Single-Double effect mode from 

either of the two individual systems. 

Finally, using advanced optimal control strategies to deduce optimal operation points. The COP 

of the entire Cycle can be improved by 5%.[33] 

In 2013, Labus, Jerko, Joan Carles Bruno, and Alberto Crowns embraced an exhaustive 

examination utilizing different displaying ways to deal with assess the exhibition of little limit 

retention chillers. Their review incorporates a careful assessment and correlation of clear yet 

exceptionally exact consistent state models for little limit retention chillers. The models are 

created in view of carefully assembled trial information from a cutting edge test seat 
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highlighting a twelve-kW retention chiller. These models hold promising potential for 

coordination into far reaching displaying and re-enactment instruments, as well as control 

procedures for cooling frameworks in view of retention chillers. The study includes a complete 

evaluation of various demonstrating systems for anticipating the exhibition of retention 

chillers. Four tentatively grounded models were utilized in this unique circumstance: 

• Adjusted Gordon-Ng model (GNA) 

• Trademark condition model (Δ Δt') 

• Multivariable polynomial model (MPR) 

• Counterfeit brain network model (ANN) 

Each of these models underwent extensive testing using experimental data. The report 

encompasses various statistical metrics and tests aimed at facilitating the choice of the most 

appropriate model. The impressive statistical metrics include a coefficient of determination 

surpassing 0.99 and a coefficient of variation at 5% strongly suggest the feasibility of 

constructing highly accurate empirical models utilizing solely the input parameters related to 

external water circuit variables. [16] 

In 2010, a conference presentation by Mr. Farshi, L., and Mohand Mahmoudi compared three 

variants of double-effect-liquid/water absorption-refrigeration-systems. The study aimed to 

assess and contrast the performance of these three configurations: 

Series 2. Parallel 3. Reverse parallel, with similar refrigeration capacity.  

A novel set of mathematically streamlined equations has been employed to model the thermal 

characteristics of Li-Br configurations at equilibrium, enabling the depiction of system 

performance. Utilizing simulation results, the study delves into the influence of operational 

factors, encompassing HPG (high-pressure generator), evaporator, condenser, etc., The study 

assesses crucial metrics including COP (Coefficient of Performance), peak COP, and the ideal 

HPG temperature for achieving maximum COP. It also delves into the effects of factors like 

the effectiveness of the solution heat exchanger, pressure differentials (Pdrop1) between the 

evaporator and absorber, and (Pdrop2) between the low-pressure generator (LPG) and the 

condenser. Furthermore, the impact of introducing low-grade external heat to the LPG on 

system performance is explored. 
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The findings furnish insights of value for system planning, management, and configuration 

evaluation. The research underscores that elevating THPG (temperature of high-pressure 

generator) up to a certain threshold enhances COP across all three systems. Beyond this point, 

the COP exhibits marginal variations with rising THPG. Notably, decreasing Tcon (=Tabs) and/or 

increasing Teva contributes to lowering the optimal THPG for maximum COP while elevating 

both COP and its pinnacle value. 

Comparing the three systems, it becomes evident that parallel systems exhibit higher COPs 

than series systems, akin to the scenario in reverse parallel systems. Among the design 

parameters, PHPG (pressure at high-pressure generator) assumes critical importance, with 

proximity to atmospheric pressure being optimal. For series flow setups, PHPG responds 

favorably to augmented THPG and Tcon or reduced Teva. In parallel and antiparallel setups, PHPG 

is enhanced by lowering Teva and raising both THPG and Tcon. Improving the heat exchanger's 

efficacy as LTE (Low-Temperature Evaporator) leads to a more efficient boost in COP for all 

three systems. 

An important factor is the pressure drop between the evaporator and absorber, as reducing this 

drop is crucial to maintaining a high COP. Additionally, using the low-pressure generator 

(LPG) becomes beneficial when there's a source of low-grade waste heat.[8] 

In 2011, a comprehensive evaluation of an absorption refrigeration system (ARS) performance 

was carried out by Myat, A., and co-workers. This evaluation employed entropy generation 

analysis as a method to assess the system's efficiency and effectiveness... They developed an 

algebraic model that predicts the absorption cycle's performance during transient conditions, 

including entropy generation calculations at various heat source temperatures. The dynamic 

variations in the lithium bromide solution's characteristics, This model also considers 

properties like concentration, density, vapor pressure, and overall heat transfer coefficients. 

They employed a genetic algorithm (GA) for optimization, aiming to determine system 

minimums for varying temperatures for the heat source and the cooling water. They presents 

entropy generation values for each chiller component at various hot water temperatures, along 

with simulated parameters for a 35 kW nominal capacity absorption chiller in their study. Their 

findings suggest the potential for optimizing a network of interconnected heat-sensitive 

appliances to maximize the conversion of waste heat into valuable outcomes. [32] 

In the 2013 study conducted by Xu, Z et al, put forth the idea that a temperature range of 110°C 

to 140°C for power generation can have a dual positive impact. As the traditional LiBr-water 
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absorption cycle is known to function at temperatures much greater than, for a single-effect 

cycle. The researchers introduced an innovative oval LiBr-water-absorption cycle with an 

Absorber-Generator heat exchanger (AGX). This AGX absorption cycle utilizes condensation 

heat at high pressures across various temperature ranges, resulting in variable levels of 

supplementary refrigeration. This innovation leads to a multi-effect (1.n-effect) refrigeration 

process. 

This distinct cycle operates effectively within the temperature spectrum of 85 to 150 degrees 

Celsius. It encompasses specific temperature parameters: evaporation temperatures of 5 

degrees Celsius, absorption temperatures of 35 degrees Celsius, and condensation temperatures 

of 40 degrees Celsius. Simulation outcomes showcased the oval cycle's capability to function 

in diverse modes: single-effect mode, single-effect mode with intercooling (for generating 

temperatures ranging from 85°C to 93°C and 93°C to 140°C, respectively), and double-effect 

mode (for generating temperatures of 140°C to 150°C). The corresponding Coefficients of 

Performance (COPs) for these modes are 0.75, 0.75 to 1.08, and 1.08 to 1.25. 

Through a comparative analysis against an existing cycle that operates within similar 

temperature ranges for power generation, the researchers highlighted the superior performance 

of their proposed cycle. Due to its wide operational range, this cycle also holds promise for 

utilization with medium-temperature solar collectors in solar cooling applications [35]. 

In a 2019 study at Universitas Indonesia, Aisyah et al developed an Artificial Neural Network 

(ANN) model to forecast a solar-driven absorption chiller's performance. They carefully 

selected input parameters, including temperatures, flow rates, and used Principal-Component-

Analysis (PCA) to streamline variables and enhance prediction efficiency. The resultant hybrid 

model, termed "ANN + PCA," combines the ANN model with the integrated PCA approach. 

This hybrid model showcases exceptional performance and demonstrates error rates 

comparable to those of the standard ANN model. More specifically, the ANN + PCA model is 

configured with 9 neurons in the hidden layer, 6 input variables, and 2 output variables. It 

manages to achieve a remarkable root mean square error of 0.0145 in predicting the Coefficient 

of Performance (COP).[36] 

 

2.2. Optimization of Absorption Chiller 

In October 2012, Velimir Congradac and Filip Kulic conducted research that validates the 

effectiveness of employing artificial intelligence methods to enhance the operation of chillers. 
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Their validation procedure encompassed both a simulated office building model within Energy 

Plus software and practical experiments conducted in an office building that featured an 

integrated Building Management System (BMS). Their study's primary aim was to optimize 

chiller performance using artificial neural networks and genetic algorithms. 

The research methodology included training an artificial neural network using data obtained 

from an actual chiller, which subsequently enabled the creation of accurate chiller models. The 

study's paper not only establishes a foundational understanding of artificial neural networks 

but also meticulously outlines the essential principles underpinning their operation. 

Additionally, the researchers delve into the development of specialized chiller models designed 

specifically for evaluating the results derived from the evolutionary algorithm, thereby omitting 

the aspect of age optimization. 

Furthermore, the research offers valuable insights into the optimal conditions for implementing 

the evolutionary algorithm, shedding light on the criteria that yield optimal outcomes in the 

pursuit of chiller optimization.[11] 

Vapor absorption refrigeration systems have gained significant popularity due to their 

utilization of cost-effective energy sources and environmentally friendly operating fluids. A 

comprehensive exergy investigation of vapor absorption refrigeration systems, specifically 

focusing on double-effect parallel flow, direct-fired, and indirect-fired configurations 

employing lithium bromide-water as the working medium, was conducted by Azhar and 

Siddiqui. This extensive study involves the parametric optimization of temperatures in key 

components like the main generator, intermediate generator, and condenser. The findings of 

this research were presented at a journal conference in the year 2020. 

Furthermore, the study employs the Exergetic coefficient of performance (ECOP) and the 

exergy destruction rate (EDR) as crucial metrics for optimizing the distribution ratio of 

solutions. By maintaining uniform operational conditions, a comparative analysis is performed 

between parallel and series flow topologies. The investigation also delves into exploring the 

impact of temperature differences between the intermediate generator and intermediate 

condenser on both cycle types. 

The results of the research exhibit that the ECOP of the parallel flow DEAC cycle was 

consistently 3-6% greater than compared to the series flow DEAC cycle. Additionally, the 

study reveals that the lowest EDR is approximately 4% lower in Parallel flow configuration. 
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As a valuable resource for design engineers, the research provides optimal specifications for 

both series and parallel flow cycles.[19] 

In 2017, Azhar, M., and Siddiqui, M. A. conducted comprehensive exergy and energy analyses 

on the double-effect lithium bromide-water vapor absorption cycle with the aim of amplifying 

the exergetic efficiency and COP in the Low Pressure Generator and the secondary generator/ 

condenser. The key approach involved adjusting temperatures within these components to 

achieve the optimization. Given the presence of two generators in the Double-Effect 

Absorption Cycle, the optimization process is carried out in two distinct phases. The study also 

assesses the influence of varying temperatures in ancillary components, namely the absorber, 

primary condenser, and evaporator. 

The research unveils the optimal conditions required to maximize both COP and exergetic 

efficiency. This encompasses identifying the ideal temperatures for the primary generator, 

secondary generator, and condenser, in addition to determining the appropriate LiBr-Salt 

concentrations within the two generators. To facilitate the replication of the cycle, a dedicated 

computer software is developed. 

The outcomes of the investigation reveal a significant correlation between the main generator 

temperature (Tg) and both COP and exergetic efficiency. As Tg increases, both COP and 

exergetic efficiency experience improvements up to a certain threshold value of Tg. 

Additionally, the study finds that while the COP increases with the rise in evaporator 

temperature (Te), the exergetic efficiency experiences a decline. [23] 

A Double-Effect Parallel flow Aqueous LiBr Absorption Refrigeration Cycle, was in-depthly 

evaluated by Bagheri, B. S., et. al in their 2019 research study using intensive exercise-based 

evaluations. In order to conduct a more thorough investigation, the exergy consumption of each 

device was estimated. With consideration for the distribution ratio variable, the study used the 

Golden Section technique to optimise the system's performance for the lowest performance and 

energy efficiency coefficients. The maximum coefficient of performance (COP) of 1.195 and 

maximum energy efficiency of 0.225 were achieved at 169.6 °C, the temperature of the high-

pressure generator. Employing sophisticated exergy analysis, the study not only identified 

sources of irreversibility but also distinguishable preventable irreversibility. The analysis 

revealed that focusing on component efficiency is key for system enhancement due to the 

significantly higher endogenous portion of exercise destruction compared to the external 

portion. While inevitable exercise destruction remained larger than the preventable portion, the 
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study showcased a distinct hierarchy of component significance. Moreover, it demonstrated 

that the system's overall endogenous exergy destruction exceeded its exogenous counterpart, 

indicating reduced interdependence between components. Notably, the exogenous preventable 

energy destruction surpassed the endogenous one in low and high-temperature heat exchangers 

and expansion valves, suggesting potential reductions in energy destruction by enhancing other 

components. Further, the sophisticated exergy analysis highlighted that most exergy 

destruction in system components is endogenous and inevitable, with exceptions in low and 

high-temperature heat exchangers.[24] 

In 2002, Chow, T. T., Zhang, G. Q., Lin, and Song, C. L. conducted a research study that 

emphasized the optimal utilization of fuel and electricity within a direct-fired absorption chiller 

system for practical operational purposes. In contrast to earlier research endeavors that 

primarily focused on localized feedback regulation of control scheme components, this study 

introduced an innovative system-based control strategy that takes into account the 

interconnected relationship among the building, the plant, and relevant influencing factors. 

Departing from conventional approaches, the research proposed a novel control methodology 

by combining a neural network (NN) with a genetic algorithm (GA) to achieve the most 

effective control of an absorption chiller system. In this context, a neural network was 

employed to represent the inherent properties of the system, utilizing its capacity for pattern 

recognition and learning from data. Additionally, a genetic algorithm was harnessed as a tool 

for comprehensive optimization, enabling the system to be fine-tuned for maximum efficiency. 

To demonstrate the practical application of this approach, the researchers utilized a commercial 

absorption unit as their basis. The neural network served as a means to encapsulate the complex 

system properties, while the genetic algorithm played a pivotal role in facilitating holistic 

optimization, ensuring that the entire system functions optimally in terms of resource utilization 

and overall performance. [26] 

In the year 2019, a comprehensive investigation was carried out by Park, S., Ahn, K. U., 

Hwang, S., Choi, S., and Park, C. S., focusing on the integration of hybrid machine learning 

techniques in enhancing the performance of a turbo chiller system installed within an office 

building. The study involved a comparison between two distinct modelling approaches: firstly, 

an artificial neural network (ANN) model, and secondly, a hybrid machine learning model that 

combined the ANN model with the physical properties of the chiller. 
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To facilitate this analysis, the researchers employed a Gaussian mixture model to pre-process 

the observed data. The ANN model was then applied to the chiller's operational data. For the 

hybrid-machine-learning model, the ANN model was coupled with physics-based regression 

equations, resulting in a comprehensive hybrid system model. 

Notably, the hybrid-system model exhibited impressive predictive capabilities in estimating 

chiller power consumption. Moreover, this model showcased the advantage of requiring a 

reduced number of input parameters as compared to the standalone ANN model. Remarkably, 

both the ANN model and the hybrid-machine-learning model led to comparable energy 

savings, highlighting the effectiveness of the hybrid approach in achieving accurate predictions 

while offering potential efficiencies in input data requirements.[27] 

Chahartaghi, Golmohammadi, and Shojaei, A. F. investigated two innovative series and 

parallel flow designs for double-effect lithium bromide-water absorption chillers. They 

evaluated the influence of numerous crucial factors that affect the coefficient of performance 

(COP). The study considered components such as heat exchangers, condensers, evaporators, 

absorbers, and generators. Through the application of energy balance equations, concentration, 

and, mass the systems' performances were assessed under various circumstances, with the 

constraint of avoiding lithium bromide crystallization. The study explored how temperature 

and mass flow rate variations in the generator's intake vapor and absorber's inlet water affected 

cooling capacity, heat transfer rate, and COP. Additionally, two parameters were introduced 

and their impacts on system functionality were studied based on the mass ratio of the solution 

splitters. According to the results, the series cycle in high-temperature generators (HTG) 

displayed greater coefficients of performance (COP) than the parallel cycle up to 150 °C. The 

COP increased in both cycles with an increase in mass-flow amount of absorber intake water 

and inlet vapor temperature to HTG. Additionally, the COP exhibited an initial rise, reached a 

maximum value, and then declined. The study also utilized Genetic Algorithm (GA) 

optimization to optimize the scheme COP in both parallel and series cycles.[28] 

2.3. Thermodynamic Analysis of Absorption Chiller: 

Joan Carles Bruno and colleagues conducted a study that investigated and delineated two 

distinct approaches employing the characteristic equation to describe chiller performance, as 

originally devised by Hellman and others. This approach was built upon a simple model 

incorporating energy balances, relationships pertaining to heat and mass transfer 

characteristics, and the thermophysical properties of working fluids. Among the two 
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approaches identified, one aimed at streamlining operational characteristics, simplifying them 

into an algebraic equation. 

The proposed method based on the characteristic equation introduced the utilization of an 

arbitrary temperature function, with parameter fitting conducted through multiple regression 

techniques. This approach was effectively employed to fit real-world data from both single and 

double effect absorption chillers. Additionally, the researchers undertook a case study to assess 

the efficacy of the proposed approach against the conventional practice of using an average 

coefficient of performance (COP) for comparing the performances of two solar cooling plants 

equipped with absorption chillers. 

The outcomes of this research revealed that the model employing the proposed approach 

yielded results that closely aligned with actual data, outperforming the use of an average COP. 

Consequently, this novel approach demonstrates its capability in avoiding the employment of 

overly simplistic and impractical constant and average COP calculations for chiller cooling 

production across varying operational conditions. Moreover, it mitigates the necessity for an 

in-depth domain understanding and the development of intricately complex models to achieve 

satisfactory outcomes. [13] 

Gomri conducted a comparative study applying thermodynamic principles to analyze single 

and double effect absorption chillers. The study used simulation to explore the impact of 

operational parameters on key metrics like Coefficient of Performance (COP), thermal loads, 

exergetic efficiency, and overall exergy change.The results showed an optimal generator 

temperature, where both systems minimized exergy change, maximized exergetic efficiency, 

and COP. Parameters included evaporator temperatures ranging from 4°C to 10°C, and 

condenser and absorber temperatures from 33°C to 39°C. 

For single effect chillers, COP ranged from 0.73 to 0.79, with exergetic efficiency between 

12.5% and 23.5%. In contrast, the double effect system had a COP between 1.22 and 1.42, with 

exergetic efficiency from 14.3% to 25.1%. This difference, despite the double effect system's 

higher COP, may be due to its greater heat source requirements. [14] 

Gomri and Hakimi applied second law analysis on a double effect vapor absorption cooler 

system which uses lithium bromide-water based working pair. The Double Effect Vapor 

absorption system effectively operates between three pressure states due to the addition of a 

Low pressure generator and addition of a solution heat exchanger. A new set of 
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computationally efficient formulas were developed for the evaluating the thermodynamic 

properties of the Lithium Bromide-Water Solution.  

In this study the typically used condenser and absorber cooling water temperatures used were 

27ᵒC /32ᵒC and Chilled water temperatures used were 12ᵒC /7ᵒC. The computationally efficient 

formulas were run through fortran. The output identified key components of the system 

whereby exergy destruction was found to be the highest. The most exergy was lost through the 

Absorber, followed by the High Pressure and Temperature Generator (HPG) and Solution Heat 

Exchanger at High Pressure. 

It was found that for this particular system, the best COP and exegetic efficiency that were 

achieved was when the LPG temperature varied between 78ᵒC and 81 o C and HPG Temperature 

varied between 125 ᵒC and 135 ᵒC.[15] 

Yang, Laura and Volker developed three double effect absorption chiller models. One for 

parallel flow and two were for series flow. The flows indicating series and parallel are part of 

a solution circuit that indicates the direction of flow between absorber and the regenerators. All 

three models were assigned the same cooling capacity (16kW), same set of environmental 

conditions (Room at 9ᵒC and Environment a 40ᵒC), condensing and regeneration temperatures 

(160ᵒC from heat source). COP was taken at 5.5. All three models were developed in EES 

software package. The models were derived based on the Carnot and Reverse Carnot Cycle to 

form an idealized absorption cycle. The relative mass and energy balances were taken with 

reasonable assumptions.  

The results indicated the following: 

 The exergy destruction from the Absorber, High temperature generator and High 

Temperature Solution Heat Exchanger accounts for nearly 70% of the total exergy 

destruction. 

 The first model where Lithium Bromide-Water Solution flows to the low temperature 

regenerator first has the highest COP at 1.119. However, the solution temperature was 

at 77.89ᵒC and at 63.89% mass fraction. When the aqueous lithium bromide phase 

diagram was reviewed it revealed that this kind of solution is susceptible to 

crystallization which is not favourable. 

Hence, the parallel flow double effect absorption exhibits the ideal and best behaviour with 

COP at 1.022 and no occurrence of crystallization. [20] 
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This study encompassed a thermodynamic simulation of a double effect series flow absorption 

refrigeration system that employed water and lithium bromide as the working fluid pair. The 

primary objective was to conduct a parametric analysis in order to scrutinize the influence of 

operating temperatures on multiple aspects, including the heat capacity and exergy destruction 

of the high-pressure generator (HPG), the coefficient of performance (COP) of the system, and 

the mass flow rate of three distinct heat sources. 

As anticipated, the study found that higher heat source temperatures correlated with increased 

energy destruction. However, it was observed that the required flow rates of the heat sources 

decreased accordingly. Notably, the flow rate of hot water needed to be lower compared to that 

of hot air. The study also demonstrated that elevating the operating temperatures of the HPG 

led to a reduction in its exergy destruction. 

When observing the effects of source temperatures, the results indicated that at the lowest 

source temperature, there was a decrease of approximately 40% for hot air, 42.8% for steam, 

and roughly 45.6% for hot water in terms of exergy destruction for the HPG. Similarly, a rise 

in the operating temperature of the low-pressure generator (LPG) was found to contribute to a 

decrease in the exergy destruction of the HPG. At the lowest source temperature, the exergy 

destruction reductions were approximately 41.5% for hot air, 41.8% for steam, and around 

42.2% for hot water. 

Furthermore, the study revealed that with an increase in the condenser and absorber 

temperatures, the exergy destruction rate of the HPG also increased. Similarly, a slight increase 

in the exergy destruction of the HPG was observed when the evaporator temperature was 

raised. 

In order to effectively illustrate the contrasting utilization of various heat sources, the study 

provided absolute exergy destruction values within the figures associated with each respective 

heat source. [21] 

A study similar to the previous ones was conducted by Kaushik and Arora, focusing on both a 

single effect system and a series flow double effect system. The outcomes of this study were 

consistent with those previously observed. For instance, the study confirmed that elevating the 

generator temperature directly results in an increase in both the Coefficient of Performance 

(COP) and exergetic efficiency. Notably, the COP of the double effect system exhibited an 

impressive increase of almost 70% compared to that of the single effect system. 
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However, the study uncovered critical insights regarding the optimal temperature points and 

the maximal achievable exergetic efficiency for both systems. Specifically, the maximum 

exergetic efficiency for a double effect system was found to be around 130°C, while the 

corresponding value for a single effect system was approximately 80°C. Beyond these optimal 

points, the exergetic efficiency for both systems experienced a decline. 

Moreover, the research highlighted that reducing the absorber temperature led to a 

corresponding decrease in the optimal generator temperature. This reduction, in turn, had a 

positive impact by increasing both the COP and exergetic efficiency, with the maximum values 

for these metrics also being affected positively. 

However, the study also underscored that enhancing the evaporator temperature had a 

contrasting effect. While it led to an increase in the COP, it simultaneously caused a reduction 

in exergetic efficiency. 

Finally, the research deduced that elevating the absorber temperature and pressure drop had a 

notably adverse impact on both the COP and exergetic efficiency, particularly in the case of 

double effect systems. This was attributed to the fact that the absorber is where the highest 

entropy generation occurs within the system.[16] 

Tugba and Arzu most recently conducted and energy and exergy analysis of a parallel flow 

double effect absorption refrigeration system. In much the same manner, there results validated 

what we have already come to know from previous studies, that a majority of the exergy 

destruction revolves emanates from the Absorber and High Temperature generator. However, 

they also explored a new avenue where they identified Unavoidable and Avoidable Exergy 

Destruction. It was found out that approximately 76% of Exergy destruction was avoidable 

while nearly 24% of Exergy destruction is avoidable by increasing the  the value of temperature 

for HTRG, reducing the absorber temperature and condenser temperature but only uptill a 

certain optimal temperature.[22] 

Jianke et. al conducted a comprehensive performance evaluation of Double-Effect Absorption 

Chiller Systems, examining two distinct configurations: series flow and parallel flow. Both 

configurations had identical capacities of 400kW and utilized the Lithium Bromide-Water 

working pair. The report will delve into a detailed explanation of the parallel flow system in 

CHAPTER 3. 

The primary difference between the series flow and parallel flow setups in a Double Effect 

Absorption Chiller lies in the treatment of the strong solution from the absorber. In the parallel 
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flow cycle, this solution is divided into two segments. One segment is directed towards the 

Low Temperature Generator, while the other segment follows the traditional flow convention, 

akin to the series flow chiller, leading to the High Temperature Generator. 

The assessment entailed an Energy and Exergy analysis performed through an empirical model 

based on energy and mass balance principles. This analysis was undertaken to comprehensively 

evaluate the performance of the two configurations and to discern their respective strengths 

and weaknesses.[35] 

Overall, the following conclusions were derived from the entire exercise: 

Parallel flow Absorption chillers exhibit higher COP and Exergetic efficiency when compared 

to series flow. The annual operational, however, is 19% greater than of the series flow system. 

The Heat Transfer Area of the High Temperature HEX is marginally lower than the one in 

series flow system. The results showed that the highest exergy destruction in a series flow 

absorption chiller takes place in the Absorber, however same is not true for parallel flow which 

shows a slightly higher Exergy destruction percentage at the Low temperature Generator. 

It was found after the sensitivity analysis, the parameters that had a profound effect on both the 

chillers were increase in temperatures at the HTG. However only up to a certain optimum point 

after which exergetic efficiency starts decreasing. The decrease in Cooling water Inlet 

Temperature increases energy and exergy performance, while increase in Chilled Water 

Temperature improves heat transfer, increases COP and economic performance but reduces 

Exergetic Efficiency. 

Lastly the solution allocation ratio which basically refers to the concentration of the strong 

solution should not go beyond 0.54 due to crystallisation issues. The 0.54 concentration value 

provides the lowest Cost and Heat transfer Area while keeping within the thermo physical 

limits of the refrigerant pair.[38] 

2.4. Application of ANN for Absorption Refrigeration Systems: 

Mohanraj, Jayaraj and Muraleedharan did an extensive study on the applications of ANN in 

HVAC domain. The conventional approaches to model RACHP (Refrigeration, Air 

Conditioning and Heat pump) done using complex analytical equations and theoretical 

assumptions led to inaccuracies and oversimplification which was undesirable. To add to that, 

real time studies were time consuming and expensive. Use of ANN models has been gaining 

ground over previous decades in all aspects and certainly now in estimating various parameters 
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of RACHP systems. Its faster than conventional approaches, due to its ability to extract 

nonlinear relationships from training data as well as solve multivariable problems without 

requiring any analytical equations.  

Among the most widely network architectures in the field of RACHP are the following: 

1. Radial biased function: Similar to an MLFFN (Multi-Layer Feedforward Neural 

Network), this structure encompasses an input layer, a hidden layer, and an output layer. 

However, a distinctive feature sets it apart: the relationship between the input layer, 

comprising source nodes, and the hidden layer is conceptual or hypothetical in nature. 

In contrast, the connection between the hidden layer and the output layer is 

characterized by weighting. The Gaussian transfer function is applied to process the 

weighted inputs, while the activation function utilizes radial biased function that 

operates within the hidden layer. Meanwhile, the output layer utilizes a linear transfer 

function. This modified structure proves to be more dependable compared to the 

conventional MLFFN. It not only demonstrates enhanced reliability but also exhibits 

quicker convergence during training. Moreover, its capacity to yield smaller 

extrapolation errors outperforms the standard MLFFN. 

 

 

Figure 2.3:Radial Biased Function (image released as public domain [23]) 

2. Multi-layer feed forward: This architecture comprises an input layer, which is 

followed by one or more hidden layers, and ultimately an output layer. The 

incorporation of nonlinear transfer functions within this network empowers it to discern 

and establish correlations spanning both linear and nonlinear connections between input 

and output vectors.The iterative deployment of the back propagation learning algorithm 

characterizes the training process for the Multi-Layer Feedforward Neural Network 

(MLFFN). In this approach, the network is progressively fine-tuned using specific 

parameters such as the number of neurons in the hidden layer, the momentum factor, 
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learning rate, and the chosen transfer function. Primarily recognized for its efficacy in 

the analysis and prediction of RAHCP (Refrigeration, Air Conditioning, and Heat 

Pump) systems, this architecture is extensively employed for assessing system 

performance and making predictions within this domain. 

 

Figure 2.4:multi-layer feed forward (image released as public domain [23]) 

3. Generalized regression neural networks: Contrasting the prior two architectures, the 

General Regression Neural Network (GRNN) introduces a distinctive division of the 

hidden layer into a pattern layer and a summation layer. This model is founded upon 

principles of nonlinear regression theory. The summation layer itself consists of two 

distinctive processing units, namely summation units and a solitary division unit. 

Diverging from the training parameters such as momentum factor and learning rate seen 

in BPFFN (Back Propagation Feedforward Neural Network), GRNN employs an 

alternate approach. Following the network's training, a smoothing factor is applied. 

Every output unit establishes a dedicated connection with both a summation unit and a 

division unit. Notably, the normalization of the output vector is executed within the 

summation and output layers.The architecture employs linear transfer functions within 

the output layer, while the hidden layers operate with Radial Base functions. This 

nuanced approach sets GRNN apart from its predecessors, offering a distinctive 

structure and learning mechanism for data analysis and prediction tasks. 
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Figure 2.5:Generalized regression neural networks (image released as public domain [24]) 

4. Adaptive neuro fuzzy systems: Incorporating the reasoning capacity of fuzzy logic 

with the learning abilities of a neural network, ANFIS (Adaptive Neuro-Fuzzy 

Inference System) is a MLFFN variety that outperforms the capabilities of each 

approach when employed independently. There are Five layers of ANFIS structure that 

amplify prediction capabilities. 

i. Fuzzy Layer: Containing square nodes, the fuzzy layer is responsible for 

determining the membership strength of input data to a variety of linguistic 

terms. Represented by adjustable nodes, this initial layer is known for its fuzzy 

nature. 

ii. Input Layer: This layer is responsible for receiving the initial data input and 

transmitting it to the fuzzy layer. It assigns the input values to the membership 

functions depending on their respective degrees of membership. 

iii. Consequent Layer: is responsible for computing the ANFIS system's ultimate 

outcome. The nodes in this layer are illustrated as circles, and they integrate the 

fuzzy layer's outputs and their corresponding parameters. 

 

Figure 2.6:Adaptive neuro fuzzy systems (image released as public domain [25]) 

The contribution of each rule's output is adjusted by the Normalization Layer, which calculates 

the necessary normalization factors. Based on the combination of rule outputs from the 

previous layers, the ultimate output of the ANFIS system is generated by the final layer. Using 

back propagation techniques, ANFIS can alter its parameters while learning. ANFIS combines 

neural networks' learning abilities with fuzzy logic's linguistic handling to produce excellent 

outcomes in intricate systems, forecasts, and data analysis tasks, effectively processing both 

quantitative and qualitative information to make informed choices. 
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2.4.1. Applications  

In Vapor Compression Systems performance prediction and assessment of chillers, heat 

pumps, refrigeration systems, compressors, thermophysical properties of refrigerants. 

In Vapor Absorption Systems: Performance of multi effect absorption chiller, Optimization of 

Absorption Chiller Parameters, Chiller Fault Diagnosis. 

In HVAC Components control of Evaporators, Control of AHUs, Control of Fans, 

Performance of Cooling towers, Control and Performance of Chilled Water Pumps, Static and 

Transient response of Heat Exchangers. 

In HVAC design Energy consumption of buildings, Cooling Load forecasting, Thickness of 

Insulation to be used in a building. 

In Advanced Heating and Cooling performance of gas cooler in Carbon Dioxide Heat Pump, 

Heating and Cooling performance of vortex tube, temperature prediction inside refrigerators, 

performance analysis of indirect evaporative cooling systems 

 

Figure 2.7:Process flowchart of Modelling ANN( Adapted from [22]) 
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The above figure summarizes the entire process of modelling ANN for HVAC and generally 

for any other applications given.  

The paper further goes on to identify the limitations of ANN namely: 

a.) Overtraining: Large number of training cycles required to reach precision target. As 

well as avoiding over fitting so as to not degrade prediction performance 

b.) Extrapolation: The range of the training data must represent the range of operating 

data so as to set the maximum and minimum values from experimental runs. 

c.) Optimization: Selection of optimum network parameters that actually influence the 

system. 

Conclusively, Mohanraj, Jayaraj and Muraleedharan reviewed just over ninety published 

papers at their time of writing. There were several applications of ANN as were discussed 

above which not only showed their use cases but also exhibited their efficacy and reliability. 

The limitation and future works were also discussed in the field of RACHP. 

Lukas et al applied ANN to predict the Absorption Chillers performance which utilizeded Solar 

energy as the heating source. Approaches of ANN were utilized from previous works on the 

topic but Back propagation MLFFN model was used to predict the performance (outlet 

temperature of cooling, hot and chilled water temperatures). Data for the ANN network was 

used from four different locations with cooling capacities ranging from 880kW to 1750kW. 

The input parameters used were Chilled Water Return Temperature, Cooling Water Return 

Temperature, Ambient Temperatures and Hot Water Temperatures (Some use cases required 

Hot Water). The time delay and number of nodes were varied to predict the optimum values of 

the above stated values. The results showed good agreement with that of Real-world Data with 

R2 values of 95%.[29] 

2.5. Machine Learning Algorithms employed for prediction of COP for 

Absorption Chillers: 

Manohar et. al embarked on a groundbreaking research endeavor, potentially the first of its 

kind, focusing on the application of Artificial Neural Networks (ANN) to a Double Effect 

Absorption Chiller powered by steam, an unconventional heat source. The architecture was 

constructed upon a Multi-Layer Feedforward Neural Network (MLFFN) employing back 

propagation for training. The inputs encompassed key parameters: Chilled Water Inlet and 
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Outlet Temperatures, Cooling Water Inlet and Outlet Temperatures, and Steam Pressure. The 

specific chiller examined possessed a capacity of 805kW and operated as a Series flow unit. 

The training dataset incorporated a year's worth of real-world operational data. To expedite 

learning, a "flat spot elimination" technique was introduced. This technique addressed the issue 

of stagnant weights by modifying the derivative of the sigmoid function. By adding a constant 

value of 0.1 to the derivative, a functional error signal that could be back propagated was 

maintained as the unit's output neared 1.0. The research further incorporated variable biases, 

which involved adding a constant value node of 1 to each layer (excluding the output layer). 

This dynamic adaptation aided the learning algorithm in fine-tuning biasing values. 

 

Upon establishing a consistent learning rate, the researchers conducted iterations to identify the 

point where the minimum R2 values were achieved. With 10,000 iterations, and subsequently 

extending to 12,000 iterations, a 0.3% increase in R2 value was observed. The network 

architecture implemented in this study followed a 6-6-9-1 configuration, with four layers. The 

initial layer consisted of the input parameters along with a time node. Two hidden layers were 

employed, demonstrating optimal results without a significant increase in computational time 

compared to a single hidden layer. The output layer's role was to predict the Coefficient of 

Performance (COP) of the absorption chiller. 

Upon completion of the training, testing, and prediction phases, the study showcased highly 

promising outcomes. The predicted results closely aligned with actual COP values, with an R2 

value approaching an impressive 99.9753% and an error margin of approximately ±1.2%. This 

underscores the accuracy and efficacy of the developed ANN model in predicting the 

performance of the steam-powered Double Effect Absorption Chiller. [18] 

Jee et. Al used ANN to forecast the energy consumption of an Absorption Chiller and Air 

Handling Unit of a particular facility and an.  The inputs used for prediction of energy 

consumption of the Absorption Chiller were Cooling Water Supply and Inlet Temperature 

Ambient Air Conditions, Dry Bulb (DB) Temperature and Relative Humidity (RH). The 

Chiller Capacity was approximately 2100kW.The ANN architecture was 5-5-1 with just one 

hidden layer. However, despite proper modelling of the system the ANN was not able to predict 

Energy Consumption with high accuracy due to inconsistencies in the normalization of input 

data as well the data itself not being representative of the system to a high degree. The CV 

(RMSE) values reached approximately 30% which was undesirable owing to the reasons 
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mentioned. Also, the error rate reached a maximum of 15.18% due to high variance-low bias 

issue. [30] 

Another study conducted by Jee et. Al considered predicting the Absorption Heat Pumps 

Energy consumption with 12 multilayer shallow neural network (MLNN) training algorithms. 

The results of the algorithms were compared and evaluated with that of real-world data for a 

month. All the algorithms were based on back propagation. The ANN architecture consisted of 

20 neurons and 3 hidden layers. The input parameters used were Historical Energy Use, 

Seasonality Data, Dry Bulb Temperature and Relative Humidity as Ambient Condition Data 

and Finally Cooling water Supply rate and Temperature as operating condition. 

 

 

 

 

Table 2: Max and Min Standard Deviation 

Neural 
Network 

Algorithms 

Error Rate CvRMSE 

Minimum 

(%) 

Maximum 

(%) 

Standard 

Deviation 

(SD) 

Minimum 

(%) 

Maximum 

(%) 

Standard 

Deviation 

(SD) 

BR 0.41 5.05 1.68 21.98 30.00 2.33 

RP 0.59 13.59 4.91 24.31 28.12 1.27 

SCG 0.04 15.16 5.07 24.29 29.30 1.45 

CGB 0.07 10.14 2.99 24.33 29.49 1.49 

CGP 0.13 5.73 1.76 24.89 29.97 1.48 

BFG 0.95 9.78 2.82 23.13 27.92 1.75 

LM 0.09 5.76 1.94 22.04 28.88 2.17 

BR 0.41 5.05 1.68 21.98 30.00 2.33 

CGF 0.58 15.58 4.81 21.08 30.69 3.13 
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GDX 0.92 17.40 5.75 26.16 37.11 3.66 

OSS 0.03 26.07 8.16 24.76 38.05 4.13 

GDM 0.30 41.77 14.82 32.25 53.20 7.11 

GD 3.89 27.52 6.98 33.20 58.85 9.08 

 

The above table summarizes the results and the success rate of the 12 algorithms employed in 

predicting the Absorption Heat Pumps’ energy consumption. The most successful and typically 

utilized models for nonlinear regression predictions which were the LM (Levenberg-

Marquardt) and BR (Bayesian Regularization) achieved agreeable results if not the most 

accurate results.[34] 

Panahizadeh et al.  Used multilayer perceptron ANN with error backpropagation algorithm in 

conjunction with hyperbolic tangent as the excitation function and Levenberg-Marquardt 

Learning Method with 15285 data points. The inputs for the ANN were cooling water inlet 

temperature, chilled water inlet temperature, inlet steam temperature, outlet chilled water 

temperature and Solution Heat Exchanger Efficiency Respectively. The outputs of the ANN 

were COP and the thermal energy input required.  The Capacity of the Single Effect Absorption 

Chiller was 4775 kW. The network architecture was 2-10-5 with a single hidden layer. The 

prediction was successful as the results were highly accurate as the mean square error came out 

to be approximately 3.2 x 10-7 for COP and 7.5 x 10-8 for Thermal energy consumption.[37] 
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Chapter 3. System Description 

3.1. System Description  

The system proposed for this research study is that of a Direct Fired Parallel Flow Absorption 

Chiller. The main reason for the selection of such a system was that it is the most commercially 

available system with the highest COP. Advanced multi effect systems especially Triple Effect 

Absorption Refrigeration Systems and Cascade refrigeration systems that use both compressors 

and heat generators have also been studied and are under further study. These systems have 

shown both increased COP and much greater Exergetic efficiency. Furthermore, they have 

exhibited greater part load performances. However, the above-mentioned systems are much 

too complex to operate and maintain. Not to mention the high investment cost associated with 

them at this point in time. Conversely, the decision to focus this study on Double effect parallel 

flow systems was also that the real world data, that was needed, was also relatively easily 

available with which validation of both the Energy and Exergy Model and Machine Learning 

Model could be done.  

Firstly, we shall delve into the system specifics and working principle The Double Effect 

Absorption Chiller System which from this point forward shall be referred to as DEAC system. 

Then we shall conduct First (Energy) and Second (Exergy) law Analysis of the DEAC System. 

Many studies have previously been done on the Energy and Exergy Analysis of the DEAC 

System both in series flow and parallel flow and other novel configurations or combinations as 

discussed in CHAPTER-2. This shall form the basic framework for the EES model from which 

we shall determine the theoretical COP of the DEAC System. 

3.2. Working Principle: 

The DEAC system is an advancement of the Single Effect Absorption Chiller System which 

can utilize energy from higher grade heat sources more efficiently.  
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Figure 3.1:Duhring Plot Parallel flow DEAC (Adapted from [29]) 

 

Figure 3.2: Schematic of Parallel Flow DEAC (Adapted from [30]) 

In Figure 3.2, a schematic representation of a parallel flow Double Effect Absorption Chiller 

(DEAC) is shown, while Figure 3.1 displays the Duhring Plot depicting the same cycle. The 

DEAC system utilizes two Solution Heat Exchangers, designated for the High and Low 

Temperature Disrobers/Regenerators. Operating at three pressures and three temperatures, the 

DEAC system's operational stages are as follows: 

1. The strong LiBr-H2O solution exits the absorber (state 1) and enters the pump as a 

saturated liquid. 
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2. The high-pressure saturated liquid from the pump enters the Low Temperature Solution 

Heat Exchanger (LTX) for preheating by interacting with the returning weak solution 

from state 4. 

3. After leaving the LTX, the preheated solution splits into two streams. The first stream 

(state 11) goes to the High Temperature Solution Heat Exchanger (HTX) at state 12. 

Similarly, this solution undergoes further preheating by interacting with the returning 

weak solution from state 13 within the HTX. 

Within the High Temperature Generator, the preheated strong solution stream of the LiBr-H2O 

refrigerant pair undergoes boiling, fueled by an external heat source – in this case, a Natural 

Gas Fired Burner. This process results in complete separation of the mixture, with the exiting 

stream typified as pure water at state 17. The refrigerant stream is then condensed in condenser 

2, utilizing its heat for the Low Temperature Generator to form a saturated vapor at state 7. The 

vapor-liquid mixture from state 17 passes through an expansion valve, reducing its pressure to 

the level of the Low Generator (LG), resulting in a vapor-liquid mixture at state 19. Both the 

solution streams from state 7 and state 19 release heat to the cooling water in condenser 1. The 

refrigerant's temperature is equilibrated with that of the absorber by passing through another 

expansion valve. This cooled stream extracts heat from the returning chilled water stream 

sourced from HVAC or Process Returned Water. 

The less concentrated solution of aqueous LiBr originating from state 15 undergoes a decrease 

in pressure via an expansion valve to attain the same pressure level as the Low Generator (LG), 

denoted as state 16. During this process, heat is released to the stronger solution, leading to its 

transformation into state 4. This further-diluted solution subsequently proceeds through the 

Low Temperature Solution Heat Exchanger (LTX), releasing heat to the stronger solution. 

Ultimately, after relinquishing the remaining heat to the incoming concentrated solution, the 

weaker solution reaches state 5. A subsequent passage through another expansion valve brings 

it to state 6, marking its entry into the absorber. In the absorber, it mingles with the vapor 

stream from state 10 and the concentrated solution already present. The heat is released from 

the absorber and transferred to the cooling water stream as part of the cooling process.  
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3.3. Specifications of the Proposed System 

The Table below outlines the key specifications of the actual DEAC System upon which this 

study is based. The effective USTR is 500 for DEAC system of the particular system under 

study even though its actual capacity is 560 USTR.  

However, over the course of time, fouling in the heat exchangers, reduced pump efficiency and 

lack thereof proper maintenance has had an adverse effect on capacity. 

Table 3: Key specifications of the actual DEAC System 

 

 

 

Figure 3.3:OEM Process flow of the Proposed DEAC System (available to public domain [42]) 

Model WCDN056SK61 

Cooling-Capacity 560 USTR/1969 kW (Effectively 500 USTR) 

Chilled-Water-Flow Rate 1333 USGPM 

Cooling-Water-Flow Rate 2465 USGPM 

Fuel Consumption Rate 161.7 Nm3/h 

Electrical Consumption Data 14.9 kW 



38 
 

The above figure shows the actual system schematic of the proposed system under study. The 

main thing to observe is that in a Direct Fired DEAC system, the high temperature generator is 

basically a fire tube heat exchanger. The strong solution mixture is passed through the tubes 

which are exposed to the Combustion Chamber. This heats the solution and separates the 

refrigerant mixture. 

3.3.1. Purge System 

The purge system in an absorption chiller refers to a subsystem or mechanism that helps remove 

non-condensable gases (NCGs) from the chiller's refrigerant-absorbent solution. Non-

condensable gases are gases that cannot be easily condensed into liquid form and can 

accumulate within the chiller system over time. The presence of these gases can negatively 

impact the chiller's efficiency and performance, leading to reduced cooling capacity and 

increased energy consumption. The purge system is designed to address this issue and maintain 

the optimal functioning of the absorption chiller.[45] 

The key components and functioning of a purge system in an absorption chiller are as follows: 

1. Purge Unit: The purge unit is a dedicated component or subsystem within the absorption 

chiller that is responsible for removing non-condensable gases. It is usually located at a 

strategic point within the chiller system, often in the generator or another high-temperature part 

of the cycle. 

2. Purge Valve: A purge valve is integrated into the purge unit. This valve is opened 

periodically to release a controlled amount of refrigerant-absorbent solution along with the 

accumulated non-condensable gases. The released mixture is sent to the atmosphere or a 

designated disposal system. 

 

3. Purge Timing: The timing of purging is crucial. The purge valve is typically operated during 

periods when the chiller system is not in active cooling mode. This ensures that purging does 

not interfere with  

4. Purge Control: Purging is controlled by the chiller's control system. Sensors and detectors 

are used to monitor the concentration of non-condensable gases within the refrigerant-

absorbent solution. When the concentration exceeds a certain threshold, the control system 

triggers the purge valve to open. 
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5. Purge Efficiency: The efficiency of the purge system is important. Effective purging ensures 

that the concentration of non-condensable gases remains at an acceptable level, minimizing 

their impact on the chiller's operation. 

3.3.2. Benefits of Purging: 

The removal of non-condensable gases through purging helps maintain the chiller's heat 

transfer efficiency by preventing the build-up of insulating gases. This, in turn, enhances the 

chiller's performance, improves its coefficient of performance (COP), and reduces energy 

consumption. 

3.4. Crystallization 

 

Figure 3.4: Temperature Vs Pressure Plot Indicating DEAC Parallel flow Thermodynamics above Crystallization line 
(adapted from [27]) 

The illustration in Figure 3.4 clearly shows that the parallel flow configuration's operating 

conditions are considerably more distant from the crystallization line of the LiBr-H2O solution 

in comparison to the series flow arrangement. Moreover, owing to the significantly diminished 

solution flow rate directed towards the high temperature generator, there is a substantial 



40 
 

decrease in both the generator's internal pressure and its elevation. Crystallization in an 

absorption chiller refers to the formation of solid crystals within the chiller's refrigerant-

absorbent solution. This phenomenon occurs when certain components of the solution, such as 

the absorbent material (e.g., lithium bromide), start to crystallize due to changes in temperature, 

concentration, or other operating conditions. Crystallization can have detrimental effects on the 

chiller's performance, efficiency, and overall operation. 

 

3.4.1.1. Adverse effects of Crystallization on the Absorption Cycle: 

1. Reduced Heat Transfer: Crystals that form within the solution can hinder the flow of the 

liquid and disrupt heat transfer processes. This can lead to decreased efficiency in heat 

exchange within the chiller's components, such as the evaporator, absorber, and generator. 

2. Flow Restrictions: Crystals can accumulate and create blockages or restrictions in the flow 

paths of the solution. This can result in reduced flow rates, increased pressure drop, and uneven 

distribution of the solution, affecting the chiller's overall performance. 

3. Reduced Cooling Capacity: Crystallization can lead to a decrease in the amount of absorbent 

available in its liquid form. This reduction in the effective concentration of the absorbent can 

result in a lower capacity to absorb refrigerant vapor, leading to reduced cooling capacity and 

lower coefficient of performance (COP). 

4. Corrosion and Erosion: Crystals can contribute to the erosion of surfaces within the chiller's 

components. As crystals flow through the system, they can cause abrasion and wear on 

surfaces, potentially leading to corrosion and damage over time. 

5. System Shutdown: Severe crystallization can lead to the chiller's shutdown or even damage 

to its components. For instance, if crystals accumulate in the heat exchangers or other critical 

parts, they can interfere with proper heat exchange, causing overheating and potential system 

failure. 

6. Maintenance and Cleaning: To mitigate the effects of crystallization, maintenance 

procedures may be required to clean out or remove crystals from the chiller's components. This 

can result in downtime and increased maintenance costs. 
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Preventing or managing crystallization in an absorption chiller involves careful design, 

operation, and maintenance strategies. These can include: 

Operating Conditions: Maintaining stable operating conditions, such as temperature and 

pressure, can help prevent or minimize crystallization. Adequate insulation of components can 

also prevent temperature fluctuations. 

Absorbent Concentration: Keeping the concentration of the absorbent within a suitable range 

can prevent crystallization. Dilution or replenishment of the solution may be necessary in some 

cases. 

Anti-Crystallization Additives: Some absorption chiller systems may use additives or 

chemicals to inhibit or control crystallization within the solution. 

Regular Maintenance: Regular inspection and maintenance of the chiller's components can 

help detect and address crystallization issues before they become severe.[45] 

3.5. Thermodynamic Analysis of the DEAC System: 

3.5.1. General Equations: 

Mass-Balance: 

 

 �̇� =  �̇�௨௧ (1) 

 

Where �̇� and  �̇�௨௧ represent mass flow rate of a pure substance entering and exiting a 

control volume. 

 

Mixture-Balance:  

 

 �̇�𝑋 =  �̇�௨௧𝑋௨௧ (2) 

 

Where �̇�𝑋 and  �̇�௨௧𝑋௨௧ represent mass flow rate of a mixture entering and exiting a 

control volume. 
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Energy-Conservation: 

 

 𝑄 ̇ −   𝑊 ̇ =   �̇�௨௧ ℎ௨௧ −   �̇� ℎ   (3) 

 

 

The energy balance equation for the components of the system ignoring effects of Kinetic and 

Potential Energy due to steady state conditions. Where: 

Where 𝑄 ̇ represents the sum of all Heat rates entering or exiting the system. 

Where 𝑊 ̇ represents the sum of all Work rates entering or exiting the system. 

Where 𝑚  ̇ represents the sum of all mass flow rates entering or exiting the system. 

Where ℎ represents the sum of all enthalpies entering or exiting the system. 

 

3.5.2. Heat-Transfer-Equation: 

 

𝑄 ̇ =  𝑈𝐴∆𝑇ெ்   (3.1) 

 

∆𝑇ெ் =  
൫𝑇ு, − 𝑇,௨௧൯ − (𝑇ு,௨௧ − 𝑇,)

𝑙𝑛൫𝑇ு, − 𝑇,௨௧൯/(𝑇ு,௨௧ − 𝑇,)
 

(4) 

 

The heat transfer eqn used to determine the heat exchanged between two fluids. 

Where 𝑄 ̇ represents the Heat rate entering or exiting the system. 

Where 𝑈 represents the Heat Transfer Coefficient. 

Where ∆𝑇ெ் represents the mean temperature difference. 

Where 𝐴 represents the Heat Transfer Surface Area. 

Where 𝑇ு, represents the Inlet Temperature of Hot Fluid. 
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Where 𝑇ு,௨௧ represents the Outlet Temperature of Hot Fluid. 

Where 𝑇, represents the Inlet Temperature of Cold Fluid. 

Where 𝑇,௨௧ represents the Outlet Temperature of Cold Fluid. 

 

 

Pump-Work: 

�̇� =
�̇�. 𝑉. (𝑃 − 𝑃)

𝜂௨
 

(5) 

 

Where �̇� represents the Pump work rate. 

Where 𝑉 represents the specific volume of the fluid being pumped. 

Where 𝜂௨ represents the efficiency in converting electrical work to mechanical energy. 

 𝑃 & 𝑃 Represents the final and initial pressures of the working fluid.       

Exergy-Destruction: 

 

�̇�𝐷𝑖 =   �̇� −  �̇�௨௧ − ቈ ቆ𝑄 ̇ ൬1 −
𝑇

𝑇
൰ቇ



+   ቆ𝑄 ̇ ൬1 −
𝑇

𝑇
൰ቇ

௨௧

 −  �̇� 
(6) 

 

�̇�𝐷𝑖 Represents the Rate of Exergy Destruction occurring in the process occurring in the 

component. 

∑ �̇� − ∑ �̇�௨௧ Represents the exergy of the fluid streams entering and exiting the control 

volume. 

The third and fourth terms represent the sum of the exergy of streams associated with heat 

transfer from the source maintained at constant Temperature 𝑇 and is equal to the work 

obtained by a Carnot engine operating between 𝑇 & 𝑇 entering and leaving the control volume. 

The final term is the mechanical work rate being done in the control volume. 
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Energy-Efficiency: 

 

�̇� =
�̇�. 𝑉. (𝑃 − 𝑃)

𝜂௨
 

(5) 

 

𝐶𝑂𝑃 =
�̇�

(�̇� + �̇�)
 

(6) 

 

COP is the Coefficient of Performance is the the ratio of useful cooling to the sum of the energy 

input. 

�̇� is the cooling load at the evaporator. 

�̇� is the heat input in the High Temperature Generator. 

�̇� is the work input of solution pumps and other electrical auxiliaries. 

Exergetic-Effciency: 

 

𝜂௫ =  
�̇� ቚቀ1 −

𝑇

𝑇
ቁቚ

�̇� ൬1 −
𝑇

𝑇
൰ + �̇� 

 

(7) 

 

𝜂௫ is the exergetic efficiency of the systems which exhibits the effectiveness of a system 

relative to its performance in reversible conditions. 

�̇� is the cooling load at the evaporator. 

�̇� is the heat input in the High Temperature Generator. 

�̇� is the work input of solution pumps and other electrical auxiliaries. 

𝑇 is the initial ambient temperature. 

𝑇 is the evaporator temperature. 

𝑇 is the High temperature Generator. 
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Cost of Cooling using Exergo-economic analysis: 

 

 

�̇� = 1144.3 ൫�̇�൯ + 3%(1144.3 ൫�̇�൯) (8) 

 

Where �̇� is the cooling load at the evaporator. 

 

3.5.3. Equations for Heat Exchangers: 

Absorber: 

�̇� =  𝑈𝐴

൫𝑇௦௧,௦ − 𝑇,௨௧൯ − (𝑇௪,௦ − 𝑇,)

ln ൬
𝑇௦௧,௦ − 𝑇,௨௧

𝑇௪,௦ − 𝑇,
൰

 
(9) 

 

Condenser-1: 

�̇�,ଵ =  𝑈𝐴,ଵ

൫𝑇ௐோ − 𝑇,௨௧൯ − (𝑇ௐௌ − 𝑇,)

ln ൬
𝑇ௐோ − 𝑇,௨௧

𝑇ௐௌ − 𝑇,
൰

 
(10) 

 

Evaporator: 

 

�̇� =  𝑈𝐴

൫𝑇ுௐோ − 𝑇௩,௩൯ − (𝑇ௐௌ − 𝑇,)

ln ൬
𝑇ௐோ − 𝑇,௨௧

𝑇ௐௌ − 𝑇,
൰

 
(11) 
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Heat Rate of Burner: 

 

 

 

3.6. Component wise break down of mass balance, energy balance and 

Exergy Destruction: 

Table 4: Component wise break down of mass balance, energy balance and Exergy Destruction: 

System Components Mass Balance Energy Balance Exergy Destruction 

Absorber 
�̇�ଵ𝑥ଵ =  �̇�𝑥 +

�̇�ଵ𝑥ଵ  

�̇� =  �̇�ℎ +

�̇�ଵℎଵ − �̇�ଵℎଵ   

𝐸�̇�ௗ௦௧, =  �̇�𝑒𝑥 +

�̇�ଵ𝑒𝑥ଵ − 𝐸�̇�௧, −

 �̇�ଵ𝑒𝑥ଵ    

𝐸�̇�௧, = ቀ1 − బ்

்ೌ
ቁ �̇�   

𝑒𝑥ଵ = (ℎଵ − ℎ) −

𝑇(𝑠ଵ − 𝑠)  

𝑒𝑥 = (ℎ − ℎ) −

𝑇(𝑠 − 𝑠)  

𝑒𝑥ଵ = (ℎଵ − ℎ) −

𝑇(𝑠ଵ − 𝑠)  

 

Solution Pump-1 �̇�ଵ =  �̇�ଶ  
�̇�ଵ =

̇భ.భ.(మିభ)

ఎುೠ
 / 

�̇�ଵ =  �̇�ଶℎଶ −  �̇�ଵℎଵ  

𝐸�̇�ௗ௦௧, = �̇�ଵ𝑒𝑥ଵ +

�̇�ଵ − �̇�ଶ𝑒𝑥ଶ    

𝑒𝑥ଵ = (ℎଵ − ℎ) −

𝑇(𝑠ଵ − 𝑠)  

�̇�ுீ =  
𝐺𝑎𝑠 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 

𝐺𝑟𝑜𝑠𝑠 𝐶𝑎𝑙𝑜𝑟𝑖𝑓𝑖𝑐 𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 𝐹𝑢𝑒𝑙 
𝑋 𝜂௨ 

 

(12) 
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𝑒𝑥ଶ = (ℎଶ − ℎ) −

𝑇(𝑠ଶ − 𝑠)  

LTX (Low Temperature 

Heat Exchanger)  
�̇�ଶ +  �̇�ସ =  �̇�ଷ + �̇�ହ   

�̇�ଶℎଶ  +  �̇�ସℎସ

=  �̇�ଷℎଷ  

+  �̇�ହℎହ 

𝑒𝑥ଶ = (ℎଶ − ℎ) −

𝑇(𝑠ଶ − 𝑠)  

𝑒𝑥ସ = (ℎସ − ℎ) −

𝑇(𝑠ସ − 𝑠)  

𝑒𝑥ଷ = (ℎଷ − ℎ) −

𝑇(𝑠ଷ − 𝑠)  

𝑒𝑥ହ = (ℎହ − ℎ) −

𝑇(𝑠ହ − 𝑠)  

𝐸�̇�ௗ௦௧,் = �̇�ଶ𝑒𝑥ଶ  +

 �̇�ସ𝑒𝑥ସ  − �̇�ଷ𝑒𝑥ଷ −

�̇�ହ𝑒𝑥ହ  

LG (Low Pressure 

Generator) 

�̇�ଶ +   �̇�ଵ  =  �̇� +

 �̇�ସ    

�̇�ீ =  �̇�ଶ  

  

 �̇�ீ =  �̇�ଶℎଶ +

  �̇�ଵℎଵ − �̇�ℎ −

 �̇�ସℎସ  

𝐸�̇�ௗ௦௧,ீ = �̇�𝑒𝑥 +

 �̇�ସ𝑒𝑥ସ  −  �̇�ଶ𝑒𝑥ଶ −

 �̇�ଵ𝑒𝑥ଵ −  𝐸�̇�௧,ீ     

𝐸�̇�௧,ீ = ቀ1 −

బ்

்ಽಸ
ቁ �̇�ீ    

𝑒𝑥ସ = (ℎସ − ℎ) −

𝑇(𝑠ସ − 𝑠)  

𝑒𝑥 = (ℎ − ℎ) −

𝑇(𝑠 − 𝑠)  

𝑒𝑥ଵ = (ℎଵ − ℎ) −

𝑇(𝑠ଵ − 𝑠)  

𝑒𝑥ଶ = (ℎଶ − ℎ) −

𝑇(𝑠ଶ − 𝑠)  
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Solution Pump-2 �̇�ଵଵ =  �̇�ଵଶ   

�̇�ଶ =
̇భభ.భభ.(భమିభభ)

ఎುೠ
 / 

�̇�ଶ =  �̇�ଵଶℎଵଶ −

 �̇�ଵଵℎଵଵ  

𝐸�̇�ௗ௦௧,ଶ = �̇�ଵଵ𝑒𝑥ଵଵ +

�̇�ଵ − �̇�ଵଶ𝑒𝑥ଵଶ    

𝑒𝑥ଵଵ = (ℎଵଵ − ℎ) −

𝑇(𝑠ଵଵ − 𝑠)  

𝑒𝑥ଵଶ = (ℎଵଶ − ℎ) −

𝑇(𝑠ଵଶ − 𝑠)  

HTX (High Temperature 

Heat Exchanger) 

�̇�ଵଶ +  �̇�ଵସ =  �̇�ଵଷ +

 �̇�ଵହ     

�̇�ଵଶℎଵଶ  +  �̇�ଵସℎଵସ =

 �̇�ଵଷℎଵଷ  +  �̇�ଵହℎଵହ  

𝑒𝑥ଵଶ = (ℎଵଶ − ℎ) −

𝑇(𝑠ଵଶ − 𝑠)  

𝑒𝑥ଵସ = (ℎଵସ − ℎ) −

𝑇(𝑠ଵସ − 𝑠)  

𝑒𝑥ଵଷ = (ℎଵଷ − ℎ) −

𝑇(𝑠ଵଷ − 𝑠)  

𝑒𝑥ଵହ = (ℎଵହ − ℎ) −

𝑇(𝑠ଵହ − 𝑠)  

𝐸�̇�ௗ௦௧,் =

�̇�ଵଶ𝑒𝑥ଵଶ  +  �̇�ଵସ𝑒𝑥ଵସ  −

�̇�ଵଷ𝑒𝑥ଵଷ − �̇�ଵହ𝑒𝑥ଵହ  

HG (High Pressure 

Generator) 
�̇�ଵଷ =  �̇�ଵସ +  �̇�ଵ    

�̇�ுீ =  �̇�ଵସℎଵସ +

 �̇�ଵℎଵ − �̇�ଵଷℎଵଷ  

𝐸�̇�ௗ௦௧,ீ =   �̇�ଵଷ𝑒𝑥ଵଷ +

 𝐸�̇�௧,ீ − �̇�ଵ𝑒𝑥ଵ −

�̇�ଵସ𝑒𝑥ଵସ    

𝐸�̇�௧,ுீ = ቀ1 −

బ்

்ಹಸ
ቁ �̇�ுீ    

𝑒𝑥ଵଷ = (ℎଵଷ − ℎ) −

𝑇(𝑠ଵଷ − 𝑠)  

𝑒𝑥ଵସ = (ℎଵସ − ℎ) −

𝑇(𝑠ଵସ − 𝑠)  
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𝑒𝑥ଵ = (ℎଵ − ℎ)

− 𝑇(𝑠ଵ

− 𝑠) 

Condenser-2 �̇�ଵ =  �̇�ଵ଼  

�̇�ଶ =  �̇�ீ  

 

�̇�ଶ =  �̇�ଵ଼ℎଵ଼ −

�̇�ଵ ℎଵ  

 

𝐸�̇�ௗ௦௧,ଶ = �̇�ଵ𝑒𝑥ଵ +

𝐸�̇�௧,ீ −  �̇�ଵ଼ℎଵ଼    

𝑒𝑥ଵ = (ℎଵ − ℎ)

− 𝑇(𝑠ଵ

− 𝑠) 

𝑒𝑥ଵ଼ = (ℎଵ଼ − ℎ)

− 𝑇(𝑠ଵ଼

− 𝑠) 

Condenser-1 �̇�ଵଽ =  �̇�଼   
�̇� =  �̇�଼ℎ଼ −

�̇�ଵଽℎଵଽ   

𝐸�̇�ௗ௦௧,ଵ = �̇�଼𝑒𝑥଼ +

𝐸�̇�௧,ଵ −  �̇�ଵଽℎଵଽ    

𝑒𝑥଼ = (ℎ଼ − ℎ) −

𝑇(𝑠଼ − 𝑠)  

𝑒𝑥ଵଽ = (ℎଵଽ − ℎ) −

𝑇(𝑠ଵଽ − 𝑠)  

Evaporator �̇�ଽ =  �̇�ଵ  �̇�ா =  �̇�ଵℎଵ − �̇�ଽℎଽ  

𝐸�̇�ௗ௦௧,ா =   �̇�ଽ𝑒𝑥ଽ +

 𝐸�̇�௧,ா − �̇�ଵ𝑒𝑥ଵ   

𝐸�̇�௧,ா = ቀ1 − బ்

்ಶ
ቁ �̇�ா    

𝑒𝑥ଽ = (ℎଽ − ℎ) −

𝑇(𝑠ଽ − 𝑠)  

𝑒𝑥ଵ = (ℎଵ − ℎ) −

𝑇(𝑠ଵ − 𝑠)  

 

Solution Expansion 

Valve-1 
�̇�ହ =  �̇�  �̇�ହℎହ =  �̇�ℎ  

𝐸�̇�ௗ௦௧,ௌா,ଵ =

  �̇�ହ𝑒𝑥ହ − �̇�𝑒𝑥  
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Solution Expansion 

Valve-2 
�̇�ଵହ = �̇�ଵ    �̇�ଵହℎଵହ =  �̇�ଵℎଵ  

𝐸�̇�ௗ௦௧,ௌா,ଶ =

  �̇�ଵହ𝑒𝑥ଵହ − �̇�ଵ𝑒𝑥ଵ  

Refrigerant Expansion 

Valve-1 
�̇�ଵ଼ =  �̇�ଵଽ   �̇�ଵ଼ℎଵ଼ =  �̇�ଵଽℎଵଽ   

𝐸�̇�ௗ௦௧,ோா,ଵ =

  �̇�ଵ଼𝑒𝑥ଵ଼ − �̇�ଵଽ𝑒𝑥ଵଽ  

Refrigerant Expansion 

Valve-2 
�̇�଼ =  �̇�ଽ   �̇�଼ℎ଼ =  �̇�ଽℎଽ   

𝐸�̇�ௗ௦௧,ோா,ଶ =

  �̇�଼𝑒𝑥଼ − �̇�ଽ𝑒𝑥ଽ  

 

 

The above table forms the basis of this studies’ Thermodynamic EES from which theoretical 

COP shall be calculated. 

 

Table 5: Theoretical COP Calculation Parameters. 

State 

Points 
State Remarks 

1 
Saturated Liquid 

Mixture 
Assumed Vapor Quality set to 0 

2 
Subcooled Liquid 

Mixture 
Determined from Pump model 

3 
Subcooled Liquid 

Mixture 
Determined from LTX model 

4 
Saturated Liquid 

Mixture 
Assumed Vapor Quality set to 0 

5 
Subcooled Liquid 

Mixture 
Determined from LTX model 

6 
Liquid, Vapor 

Mixture 
Quality of Vapor Determined from SEV-1 Model 

7 
Superheated Water 

Vapor 
Assumed to be pure water 



51 
 

8 
Saturated Liquid 

Water 
Assumed Vapor Quality set to 0 

9 
Vapor, Liquid water 

state 
Quality of Vapor Determined from REV-1 Model 

10 
Saturated Water 

Vapor 
Assumed Vapor Quality set to 1 

11 
Saturated Liquid 

Mixture 
Assumed Vapor Quality set to 0 

12 
Subcooled Liquid 

Mixture 
Determined from Pump model 

13 
Subcooled Liquid 

Mixture 
Determined from HTX model 

14 
Saturated Liquid 

Mixture 
Assumed Vapor Quality set to 0 

15 
Subcooled Liquid 

Mixture 
Determined from HTX model 

16 
Liquid, Vapor 

Mixture 
Quality of Vapor Determined from SEV-2 Model 

17 
Superheated Water 

Vapor 
Assumed to be pure water 

18 
Saturated Liquid 

water 
Assumed Vapor Quality set to 0 

19 
Vapor, Liquid water 

state 
Quality of Vapor Determined from REV-2 Model 

20 
Subcooled Liquid 

Mixture 
Determined from LTX model 
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Chapter 4. Overview of Machine Learning Methods 

It has already been discussed in CHAPTER 2 at length, of the applications and merits of using 

Machine Learning and Artificial Neural Networks (ANN) in the HVAC domain. However, the 

main focus of this CHAPTER is to deliver an indication of the Algorithms used in ANN. 

Additionally, the proposed Machine Learning model used for determining the COP of the 

DEAC system used in this study, will be discussed detail regarding the process of developing 

this proposed network architecture. 

4.1. Overview of Machine Learning Models & ANN Algorithms: 

 

Figure 4.1:Machine Learning (Adapted from [37]) 
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Machine Learning is a subset of AI (Artificial Intelligence) which focuses on the development 

of advanced algorithms that enable computers to learn intelligently and make accurate 

predictions. The key objective is the correlation of non-linear relationships saves time without 

the need of advanced empirical formulations and deep domain knowledge [39, 41]. The above 

Figure 4.1 depicts the three major areas of classification and their subcategories as explained 

below: 

Supervised Learning: The model is proficient on a labelled dataset. The input and 

corresponding output data are fed into the model. The model will learn to correlate output data 

with the provided input data by virtues of altering weights and biases and error correction and 

optimization techniques. The trained model fixes the weights when the agreeable accuracy is 

achieved. Then the model will make predictions on new input data [42, 48]. 

 There are two sub-classifications of supervised learning [51]: 

 Classification: This pertains to sorting of input data into present classification 

parameters known as categorical labels. For example predicting whether a student will 

Pass or Fail based on his past academic performance. Typically used algorithms for 

classification are Naïve-Bayes, Support Vector Machines, and Logistic Regression etc. 

 .Regression: This pertains to predicting as certain continuous numerical value such as 

predicting the COP of a DEAC System based on the given input parameters.  Typically 

used algorithms for regression are Ensemble Methods, Linear Regression, and Decision 

Trees etc. 

Unsupervised Learning: Unlike supervised learning, in this approach, unlabelled data is fed 

to the model that must find correlational patterns on its own. Dimensionality reduction and 

Clustering are common tasks used for unsupervised learning.  

Dimensionality Reduction: Technique used in machine learning to reduce the number of 

features i.e. inputs in a dataset. Too many dimensions can increase noise in the output signal, 

increase processing time or increase redundancy which was not required.  

There are 2 broader subcategories: 

Feature Selection: This involves selecting the most informative and influential features of a 

subset and eliminate unnecessary dimensions. The three methods used for this are Filter 

methods, Wrapper Methods and Embedded Methods. 
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Feature Extraction: It creates new features derived from the provided feature subset to reduce 

dimensions by combining or transformation of the original input signals. It uses techniques like 

Principle Component Analysis (PCA), Linear Discriminant Analysis (LDA), t-Distributed 

Stochastic Neighbour embedding (t-SNE) and Auto encoders. 

Clustering: It is the assignment of a set of objects with similar characteristics (clusters) into 

subsets. There are 5 key concepts: 

Data Points: Samples of the input dataset. 

Features: Dimensions that describes the data point. 

Distance Metric: A metric used to quantify the similarity or lack thereof between data points. 

Euclidean Distance, Cosine Similarity and Manhattan Distance are typical metrics used. 

Cluster: The actual clustering based on previous three concepts and similarities of data points. 

Centroid: The mean of the features or dimensional values of the data points in a cluster. 

The popular algorithms used for clustering are K-Means, Hierarchical, DBSCAN, Mean 

Shift, Gaussian Mixture Modelling, Spectral, Agglomerative etc.[13,48] 

Reinforcement Learning: As the name suggests, it is a reward based learning model. It 

involves an agent interacting with the environment and being presented with different 

scenarios. The agent makes a series of decisions to achieve a long term objective by being 

rewarded for every correct decision. The following are the key components of Reinforcement 

Learning. 

 Agent: The entity which performs the action to gain rewards. 

 Environment: The Scenario faced by the Agent. 

 State: The situation of the Environment. 

 Action: Choice made by the agent for interaction with the environment. Dependent on 

the policy 

 Policy: Strategy applied by the agent to decide next action based on current state being 

faced to maximize cumulative award. 

 Reward: Numerical value received by the agent either positive of negative as an 

outcome of the decision taken by the agent. The agents’ goal is to maximize cumulative 

rewards over time.  

 Value Function: A function that estimates the expected cumulative reward an agent 

can achieve froma given state according to specific policy. It assists the agent in 
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evaluating the desirability of the various states. Some of   the key concepts of  

Reinforcement learning are Exploration vs Exploitation, Markov Decision Process 

(MDP), Policy Optimization, Value Based Methods, Policy Based Methods and Model-

Based Vs. Model Free methods.[42,47] 

4.1.1. Artificial Neural Networks: 

Artificial Neural Networks are computational algorithms which mimic the structure and 

function of Neurons in a human brain. It is the fundamental building block of both Machine 

Learning and Deep Learning. 

 Figure below shows structure of a conceptual ANN with the key components further discussed 

below. 

 

Figure 4.2: Structure of a Neuron(available to public domain [46]) 

 

 

4.1.2. Components of ANN: 

1. Node (Neuron): This the essential foundational block that forms the basis of ANN. 

Each and every neuron takes an input dataset, performs complex mathematical 

computations and returns an output. 
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2. Weights and Biases: These represent the strength of the interlinkages between nodes. 

Each neuron has a bias that shifts the output to the desired state. 

3. Activation Function: The main objective of ANNs’ is to correlate nonlinear 

relationships and produce a desired result. However, an activation function reduces the 

non-linearity to enable ANNs’ to determine and achieve desired results. 

4. Layers: There are three layers in an ANN: 

5. Input: This layer receives points to the raw input feature data and passes it along the 

subsequent layers. 

6. Hidden Layer: This is the processing layer which performs complex arithmetic 

calculations and feature extraction while extrapolating and manipulating the input data 

from the input layer. 

7. Output Layer: This layer is responsible for producing an output of the computational 

results received from the hidden layer or layers. 

There are several key processes that take place between the layers and within the layers 

themselves to bring about the desired results. Outlined below is a brief description of these 

processes: 

1. Forward Propagation: The input data is passed along through the network layer by 

layer, computations at each node produces an output which forms the prediction. 

2. Loss Function: This can be counted as a metric of the difference between the predicted 

output and the desired targeted results. The key objective here is to minimize this 

difference during training. 

3. Backpropagation: This is the process through which weights and biases are adjusted 

for training of the ANN. In an order to reduce the error or difference percentage between 

actual and predicted results, weights and biases are sensitively adjusted in every pass 

through of the dataset through the neural network. This enhances the reliability and 

accuracy of the prediction model. 

4. Optimization: Mathematical techniques optimize the loss function iteratively while 

reducing time consumption and processing power to quickly achieve reliable 

results.[41,42] 
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Figure 4.3:Types of Neural Networks (available to public domain [48]) 

Figure 4.3 pragmatically shows the different types of Neural Networks. For the sake of this 

study only Backpropagation Feed Forward Network will be discussed as it was found to be the 

most effective Regression model to predict the COP of the proposed DEAC System. 

4.1.3. Backpropagation Neural Network [41, 42]: 

The Backpropagation Learning Rule was discovered as early as 1974. It has been the network 

architecture of choice for a vast majority of applications. This because it has been extensively 

studied experimentally and theoretically. 

There are two facets to the operation Backpropagation neural networks. The forward 

propagation of activation producing an output and the backward propagation of error which is 

essential for learning. 

The Conventional BPNN Algorithm is trained through a 5-step process: 

 Weights are assigned to the initial input values 

 Feed Forward Operation using GDM (Gradient Descent Method) 

 Backpropagation of errors using loss functions 

 Adjustment of weights and biases to achieve desired outcome 

 Optimization of Weights and Biases using Levenberg-Marquardt Method[49] 
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The input layer performs no processing and serves merely to disseminate the input values to 

the first processing layer. The layers maybe defined as 𝑖 for input layer, ℎ for hidden layer and 

𝑜 for output layer Where 𝑥 denotes the input vector in the input layer. The summation function 

𝑎 in the hidden layer is the dot product of the weight vector 𝑤 of the node with the 𝑥 input 

vector.𝜃 is the bias term for the node and 𝑛 is the number of synapses for the node. Below Eqn 

shows the relationship as described: 

𝑎 =   𝑤𝑥 +  𝜃



ୀଵ

 
(13) 

 

Next is the node output, which is determined from passing the net input of the node through 

the transfer function. A sigmoidal transfer activation function such as the one in the Eqn below 

is commonly used where 𝑜 is the node output and 𝑎 is the result of the summation function 

from the Eqn 13 above. 

 

𝑜 = 𝑓(𝑎) =
1.0

1.0 + 𝑒ି
 

(14) 

The above function is nonlinear in nature and it limits the values between 0 and 1. This 

normalization process avoids the domination effects of large input values and provides 

nonlinearity in the outputs. 

The signal from the activation function is forwarded to the output layer 

𝑧 = 𝑓(𝑎) (15) 

 

The signal 𝑧 is multiplied by the weight of the hidden and output layer 𝑆 

𝑎 =   𝑆 𝑧 + 𝑐 (16) 

 

This then becomes a function 𝑎 represented as 

𝑎 = 𝑓(𝑎) (17) 
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The error function is generated after all the output nodes have received the processed input 

signal from the hidden layer where 𝛿 is the output unit error. The Eqn below describes the 

error function: 

𝛿 = (𝑏 − 𝑎)𝑓(𝑎) (18) 

 

In Backpropagation the unit error 𝛿 is sent back through the hidden layers, the Eqn describing 

this process. The repeated iteration of errors adjusts the weights and biases and minimizes the 

error which continues until the desired output is achieved. Δ 𝑆 is the difference function 

between the output error from the previous iteration and the resultant output error after being 

sent back into network through the hidden layers. 

𝑆(𝑛𝑒𝑤) =  𝑆 (𝑜𝑙𝑑) + Δ 𝑆 (19) 

 

Δ 𝑆 Is also defined as: 

Δ 𝑆 =  𝛼𝛿𝑧 

 

(20) 

𝛼 Varies between 0 and 1 

Another aspect to tackle in Machine Learning is Overfitting where a model learns the training 

data too well and captures noise or random fluctuations present in the data, rather than the 

underlying patterns. This can lead to poor generalization and reduced performance on new, 

unseen data. 

In overfitting, a model becomes overly complex, fitting the training data's idiosyncrasies rather 

than learning the true relationships. As a result, it may exhibit high accuracy on the training 

data but struggle to perform well on validation or test data. Overfitting often occurs when a 

model is too flexible or when it's trained on too few data points relative to its complexity. 

Key indicators of overfitting include: 

1. Low Training Error, High Validation/Test Error: The model achieves very low error on the 

training data but performs poorly on validation or test data. 

2. Large Model Complexity: Models with a large number of parameters, such as deep neural 

networks with many layers or high-degree polynomial regression, are prone to overfitting. 
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3. Memorization: The model starts to memorize the training data instead of learning general 

patterns, resulting in poor performance on new data. 

 

To address overfitting, several strategies can be employed: 

1. Regularization: Introduce penalties or constraints on the model's parameters during training 

to discourage overly complex solutions. Common regularization techniques include L1 and L2 

regularization. 

2. Cross-Validation: Divide the data into training, validation, and test sets. Cross-validation 

helps assess the model's performance on unseen data and select hyper parameters that lead to 

better generalization. 

3. Early Stopping: Monitor the validation error during training and stop when it starts to 

increase, indicating that the model is beginning to overfit. 

4. Feature Selection: Choose relevant features and remove irrelevant or redundant ones to 

simplify the model's complexity. 

5. Reduce Model Complexity: Use simpler model architectures with fewer parameters to avoid 

capturing noise. 

6. Data Augmentation: Introduce variations to the training data to provide the model with a 

more diverse set of examples. 

7. Ensemble Methods: Combine predictions from multiple models to reduce overfitting by 

leveraging the wisdom of the crowd. 

Overfitting is a crucial concern in machine learning, and striking a balance between model 

complexity and the amount of available data is key to achieving models that generalize well to 

new data. 

4.1.4. Proposed Algorithm for prediction of COP: 

The steps below were used to develop the architecture of the BPNN for this study: 

1. Splitting the dataset for training, testing and validation in an optimal ratio with a 

majority of the data points being used to train the BPNN. 

2. The Feature (Dimension) Selection to be used as inputs. 
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3. Number of Neurons in the Hidden Layer that are efficient and sufficient to produce 

the desired outcome. 

4. Initialize random weights 𝑎,𝑆, bias 𝜃 and minimum error 𝛿 for priming the 

network. 

5. Begin Training process by feeding the network with input data points for computation 

output and loss function. 

6.  The training should terminate when 𝛿 becomes greater than𝛿 . This will lock in 

the weights and biases. 

7. When the Mean Squared Error converges to a value closest to 1 at that point the most 

accurate prediction will have been made. Below is the Eqn used to Calculate MSE: 

𝑀𝑆𝐸 =  
1

𝑁
(𝑦 − 𝑦ො)

ଶ

ே

ୀଵ

 
(21) 

Where 𝑁 is the number of data points in the set? 

 𝑦 Is the actual target value for the 𝑖 Th data point? 

𝑦ො  Is the prediction of BPNN for the 𝑖 Th data point 

8. The final step is to feed the BPNN novel data and use the prediction for validation 

with that of the actual output and theoretical output from EES model.[42,49] 

Steps defining the Process of BPNN to Predict COP of DEAC System: 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4:Process Flowchart of BPNN to Predict COP of DEAC System 



62 
 

 

Chapter 5. Results and Discussions 

This chapter covers the Energy, Exergy, and Exergoeconomic Analysis of the Parallel Effect 

DEAC system. It also discusses the convergence and efficiency of the BPNN Machine 

Learning Model during training. Furthermore, a comparison between the EES model and the 

ML model has been made against the actual values 

5.1. Energy, Exergy and Exergoeconomic analysis: 

As discussed in chapter 3 the Mass, Energy and Exergy balance equations were outlined in the 

Table formed the basis of the EES model. Several assumptions were made as listed below to 

determine the values of enthalpies, Exergetic Efficiency and COP. 

 All Calculations were done under steady state conditions. i.e., effects of Kinetic and 

Potential Energies were ignored. 

 Pressure Loses and, in the pipelines, and all heat exchangers are negligible. 

 Friction heat gain in the coils and impact of fouling have been ignored. 

 Heat exchange between the system and surroundings with the exception of heat transfer 

at HG, Evaporator, Condenser-2 and Absorber does not occur. 

 The reference ambient conditions at which To and Po have been considered are 25 ᵒC 

and 100 kPa. 

 All Heat exchangers reject heat with the exception of the HG, to a water exchange loop.  

 All state point condition assumptions have already been stated in Table__. 

 Pumps are isentropic and have 𝜂𝑝= 95%. 

 The Burner Efficiency is taken at 85%. 

 Both Solution Heat Exchangers have same effectiveness. 

 Pressures changes only through Expansion Valves (which are also adiabatic) and 

Pumps. 

 The outlet Temperatures from the absorber and from the two generators correspond to 

equilibrium conditions of mixing and separation. 

The Table outlines the input values used for determination of the Enthalpies and subsequent 

Exergy calculation: 



63 
 

 

Table 6: input values used for determination of the Enthalpies and subsequent Exergy 

Inputs 

Parameters Denoted by Symbol Value 

Capacity 𝑄𝑒 1760 kW (500 Tons) 

Evaporator Temperature 𝑇𝑒 5 ᵒC 

Desorber Solution Exit 

Temperature 
𝑡14 170 ᵒC 

Condenser-1/ LG 

Temperature 
𝑡1, 𝑡8 42.3 ᵒC 

Solution Heat Exchanger 

Effectiveness 
𝜀 0.6 

Mass flow rate of Chilled 

Water 
𝑚𝐶𝐻𝑊𝑅 5035 kg/s 

Gas Consumption Rate of 

DEAC 
𝜆𝑓𝑢𝑒𝑙 165 Nm3/hr 

Mass flow rate of Cooling 

Water 
𝑚𝐶𝑤𝑟 4578 kg/s 

Cooling Water Supply 𝑇25 32.2 ᵒC 

Cooling Water Return 𝑇26 37.8 ᵒC 

Chilled Water Supply 𝑇27 6 ᵒC 

Chilled Water Return 𝑇28 11ᵒC 

  

The following Table 7 and Table 8 shows the results retrieved from EES model which has 

calculated the both the Energy consumption as well as Exergy destruction of each component. 
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Table 7: EES model Energy calculation 

State Points h, (J/g) 
Mass flow 

rate, (kg/s) 
Temp, ( ᵒC) 

Pre,( kPa) X, % LiBr S, (J/g ᵒC) 

0 358.5 - 40 101.6 - 1.143 

1 120.2 9.55 42.4 0.89 - 0.2386 

2 120.2 9.55 42.4 8.34 59.5 0.2386 

3 184.6 9.55 75.6 8.34 59.5 0.4315 

4 252.4 8.80 97.8 8.34 64.6 0.5149 

5 177 8.80 58.8 8.34 64.6 0.3162 

6 177 8.80 53.2 0.89 64.6 0.285 

7 2659 0.32 85.7 8.34 0 8.456 

8 177 0.75 42.4 8.34 0 0.6043 

9 177 0.75 5.1 0.89 0 0.6388 

10 2509 0.75 5.1 0.89 0 9.022 

11 204.5 5.5 75.6 8.34 59.5 0.4878 

12 204.5 5.5 75.6 111.8 59.5 0.4878 

13 305.6 5.5 136.7 111.8 59.5 0.7533 

14 385.5 5.1 170.7 111.8 64.6 0.8464 

15 276.4 5.1 110.9 111.8 64.6 0.5783 

16 276.4 5.1 99.1 0.89 64.6 0.5208 

17 2787 0.43 155.7 111.8 0 7.587 

18 431 0.43 102.8 111.8 0 1.339 

19 431 0.43 42.4 0.89 0 0.6043 

20 182 4.05 75.6 8.34 59.5 0.4048 

 

 

 

 

 

 

 



65 
 

 

Energy and Exergy Analysis of Components in DEAC: 

Table 8: EES Model Exergy calculations 

Parameters Symbol Energy (kW) Symbol Exergy 

Destruction kJ/kg 

Absorber 𝑄𝑎 2333 𝐸�̇�𝑑𝑒𝑠𝑡,𝑎 1931 

Solution Pump-1 𝑊𝑝 negligible 𝐸�̇�𝑑𝑒𝑠𝑡,𝑝 negligible 

LTX (Low 
Temperature Heat 
Exchanger)  

- - 𝐸�̇�𝑑𝑒𝑠𝑡,𝐿𝑇𝑋 11.34 

LG (Low Pressure 
Generator) 

𝑄𝐿𝐺 1022 𝐸�̇�𝑑𝑒𝑠𝑡,𝐿𝐺 79.18 

Solution Pump-2 𝑊𝑝2 negligible 𝐸�̇�𝑑𝑒𝑠𝑡,𝑝2 negligible 

HTX (High 
Temperature Heat 
Exchanger) 

- 3091 𝐸�̇�𝑑𝑒𝑠𝑡,𝐻𝑇𝑋 4.497 

HG (High Pressure 
Generator) 

𝑄𝐻𝐺 1484 𝐸�̇�𝑡ℎ,𝐻𝐺 2471 

Condenser-2 𝑄𝑐𝑑2 1022 𝐸�̇�𝑑𝑒𝑠𝑡,𝐶𝐷2 984.7 

Condenser-1 𝑄𝑐𝑑1 904 𝐸�̇�𝑑𝑒𝑠𝑡,𝐶𝐷1 602.6 

Evaporator 𝑄𝑒 1760 𝐸�̇�𝑑𝑒𝑠𝑡,𝐸 122.47 

Solution 
Expansion Valve-
1 

- - 𝐸�̇�𝑑𝑒𝑠𝑡,𝑆𝐸𝑉,1 negligible 

Solution 
Expansion Valve-
2 

- - 𝐸�̇�𝑑𝑒𝑠𝑡,𝑆𝐸𝑉,2 negligible 

Refrigerant 
Expansion Valve-
1 

- - 𝐸�̇�𝑑𝑒𝑠𝑡,𝑅𝐸𝑉,1 negligible 

Refrigerant 
Expansion Valve-
2 

- - 𝐸�̇�𝑑𝑒𝑠𝑡,𝑅𝐸𝑉,2 negligible 

 

As can be observed from the above Table, the highest exergy destruction takes place in the HG 

which is almost 30% higher than the Exergy destruction in the Absorber. Together, the highest 

exergy destruction takes place in the High Temperature Generator and the Absorber making 

up 70% of the total exergy destruction. These results agree with those studies that have been 

discussed at length in Chapter 2. 
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Crucially, the major value we sought after was the COP of the DEAC which came out to be 

1.18. The work energy of pumps was considered to be negligible when compared to Heat Input 

of the Generator.  

 

    

 

 

 

 

 

Figure 5.1: Tgen vs Exergetic Efficiency 

The above Figure illustrates the negative trend of reduction of Exergetic Efficiency with respect 

to increasing the Generator Temperature. This is because the limiting factor is the size of heat 

exchanger which remains the same. Therefore, as higher heat input is unable to be transferred 

to the cycle the exergetic efficiency decreases. 

  

 

 

 

 

 

 

 

Figure 5.2: Tgen vs COP 

Again the same trend can be seen as previously seen, the energy efficiency decreases as well 

due to the size of the heat exchanger remaining the same. Likewise all other parameter such as 

exergy destruction follow suit in the same trend. 
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5.2. Exergoeconomic Analysis: 

It is imperative to understand the Exergoeconomic aspect of the DEAC system. Below is the 

Total Equipment Cost, Operation and Maintenance Cost and Cost of Cooling per kW 

Using the Equations from Chapter 3, the following calculation yielded the result: 

�̇�𝑒𝑞($) = 1144.3 (1760)0.67 

Hence the Total Cost of the proposed DEAC is approximately, �̇�𝑒𝑞 = $171,000. 

The operation and maintenance cost is 3% of the Total Cost of DEAC, �̇�𝑂𝑃𝑀 = $5130 

The Exergetic Cost of Cooling is then computed to be  

𝑐𝑐𝑜𝑜𝑙 =  
171000 + 5130

122.47
= 1435.45 $/𝑘𝑊 

The Exergetic Cost of Cooling comes out to be approximately 1435.45 $/𝑘𝑊. As per general 

market dynamics, this value is similar to most DEAC systems being installed in Pakistan. 

BPNN to predict the COP of DEAC System: 

The main focus of this study was to validate the EES model with that of the ANN Model and 

Real World Data. The real world data was obtained from a Pharmaceutical Plant whereby the 

tolerance for Chilled Water Supply temperature was only 1ᵒ C. Effectively there wasn’t much 

variance in the Cooling Load due to the tolerance restriction. The reason behind this was that 

the Chilled Water requirement was not required for space cooling but instead was required for 

Process Cooling in Gel Manufacturing Department.  

However, variations in the Cooling Water Temperature are were possible due to changes in the 

performance of the Cooling Tower which in turn is heavily dependent on the wet bulb 

temperature of the Ambient Environment. Changes in Gas Consumption rate were also needed 

to be considered due to inconsistencies in Natural Gas Supply Pressures this changes the Heat 

Input Rate into the High Temperature Generator Range. 

It is important to note that the Data was acquired through the Absorption Chillers HMI 

(Human-Machine Interface) logic control system. The Dataset range was of 6 months from 

October 2020 till June 2021. Data for the period of November 2020, December 2020 and 

January 2020 was not available due to Plant Maintenance shut down during this period. The 6 

Input parameters that influence the the DEACs’ COP the most are listed as follows: 
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1. Chilled Water Supply Temperature 

2. Chilled Water Return Temperature 

3. Cooling Water Supply Temperature 

4. Cooling Water Return Temperature 

5. High Generator Temperature 

6. Gas Consumption Rate 

The data was divided into 70: 15:15 ratio which effectively translates to 5 months required for 

Training and Testing and 1 months’ worth of data for Validation or predictions. There were 

too many data points in these 6 Feature sets because the Chiller operation was of 24 hours and 

there was hourly data. Therefore, daily averages of the dataset were taken to reduce the data 

points to 181. This would result in less computational power required during training as well 

as reduce time consumption and risk of noise or over fitting. 

The entire process of training the BPNN was iterative. MATLAB ANN App tool were an 

effective way to model the DEAC system. The Feed Forward Back Propagation option was 

used and LM was used to optimize the error function. 

The iterative process required tweaking various aspects such as the number of neurons in layer, 

readjustment of weights and biases, alter learning rate and other aspects, although only the 

mentioned three facets were changed. 

The neurons were changed in increments of 10. The best result was recorded at 20 neurons. 

The below diagram shows the pictorial model of the BPNN architecture which was 6-20-1.  

 

 

 

 

 

 

 

             Figure 5.3:Optimal Neural Network Architecture for COP Prediction of DEAC (Adapted from [28]) 
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In each iteration, weights and biases were initialized over an input range. The 6 input features 

produce an input signal and are assigned the weights and biases in the hidden layer containing 

the selected number of neurons. Conversely, an error is calculated of the loss function. The 

error is backpropagated through the hidden layer. The sigmoidal transfer functions uses LM to 

optimize the output signal all while reducing the error rate every time back propagation is done. 

The number of cycles where the most reliable value of R2is reached after which no more 

convergence is possible is known as Epoch.  

Table 9: Results of Iterations Summarized 

 

The above table represents the iterative runs that were done in increments of 10 neurons. We 

can observe from the table above that as the number of parameters as mentioned previously are 

tweaked as well as with the increase in the number of neurons the value of R reaches closer 

and closer to 1 only upto a certain point after which the both the MSE and R2 value become 

divergent. Which means the correlation between the predicted output data and target becomes 

stronger only till a certain point until overfitting increases the backpropagated errors and 

divergence causes reduction in the output accuracy.  

S.No. Neurons 
in 

hidden 
layer 

MSE No. of 
epochs 

R2 value 
- 

Training 

R2 value - 
Validation 

R2 value 
- Testing 

R2 value 
- Overall 

1 10 0.0361289 660 0.99998 1 0.99988 0.99995 

2 20 0.000106056 19 1 1 1 1 

3 30 0.0056134 100 1 1 1 1 

4 40 0.0005873 50 1 1 1 1 

5 50 0.041425 7 1 1 1 1 

6 60 0.116241 1000 0.99896 0.99177 0.99382 0.99516 

7 70 1.002346 37 0.99999 0.99977 0.997657 0.99897 

8 80 5.1832 500 0.99979 0.98992 0.99919 0.99465 

9 90 133.2475 28 0.99993 0.99991 0.95897 0.99750 

10 100 8000.6393 1 0.705832 0.894034 0.61567 0.70434 
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However, the best performance observed where R = 1 was at 20 neurons and MSE 0.00016056 

as can be seen from the Figures below. The predicted output dataset in the testing, training and 

validation charts show convergence towards the regression line. 

 

 

 

 

 

 

 

 

Figure: Mean Squared Error at best validation performance 

 

 

 

 

 

 

 

 

 

 

 

   

       Figure: R value at best validation performance 
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5.3. Validation of Predictive Results with EES Mode and Actual Values 

After the BPNN model was trained, When R=1, the input values used for modelling of EES 

while in the steady state were T25, T26, T27 and T28 temperatures which were actually Chilled 

Water and Cooling water Supply and Return temperatures. 

Table 10: COP Comparison of Actual vs. ANN model vs. EES model 

Actual COP Predicted COP EES Model COP 

1.12 1.18 1.18 

 

Table 10 illustrates the results of the two models ANN and EES versus the actual COP which 

shows a slight difference. This could be due to the fact that the OEM provided COP takes 

into account a plethora of factors such as variations in Ambient Temperatures, Vacuum 

Losses, Fouling Effects, and Degradation of HEX Coils etc. 
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Chapter 6. Conclusion & Future Work 

6.1. Conclusion 

To sum up, this study focused on covering the key objectives as outlined which was to carry 

out an Energy, Exergy and Exergoeconomic analysis of the Parallel flow DEAC system, 

Develop an AI based data driven model to predict the COP of the proposed DEAC system and 

Finally validate the results with the actual COP and the COP calculated from the 

thermodynamic simulation. 

The EES model was developed using classical mass, energy and exergy balance equations. 

Several assumptions were made and outlined in order to generate viable values from the 

thermodynamic model. The results reinforced the past studies and also validated the 

performance of this study’s model in that the Exergy destruction was found to be the highest 

in the High Temperature Generator. Moreover the Exergy destruction from the Absorber and 

HG accounted for 70% of the total Exergy destruction of the system. Finally, the COP and 

Exergetic Efficiency were also computed in the steady state condition. The results showed that 

the Higher the Temperature of the High pressure generator, the lower the COP and Exergetic 

Efficiency due to the fixed size of the Heat Exchanger. Furthermore, the Exergoeconomic 

analysis revealed the Cost of Cooling in USD per kW was within market norms.  

In the second part of this report, various ANN models were studied and it was concluded to 

proceed with Backpropagation Neural Network or BPNN with Levenberg-Marquardt 

Optimization technique for predicting the COP of the parallel flow DEAC system. The feature 

selection for the input values of the model was done based on the most influential and easily 

available parameters such as the Chilled Water and Cooling Water Supply and Return 

Temperatures in addition to the High Pressure Generator Temperature and Gas Consumption 

Rate. The BPNN model was trained with 70% percent of the sample dataset, tested with 15% 



73 
 

of the sample dataset and finally validated with the remaining 15%. The iterative process of 

changing neurons, readjustment of weights and biases and altering the learning rate was time 

consuming but fruitful. The best variation of the BPNN model was deduced from the various 

iteration as having MSE of 0.00016056 at 19 Epochs with a network architecture of 6-20-1. 

Also the R value converged at 1 indicating a strong correlation between the target value and 

the predicted output value. 

Finally, the COP of the EES model, Actual COP and Predicted COP were in close agreement 

to each other and the reason for their differences were discussed. Hence, we can confidently 

hypothesize that ANN and Machine Learning models can correlate Non Linear data without 

the use of complex empirical and/or thermodynamic models by using complex statistical and 

intelligent algorithms, which themselves are developing day by day based on the use case and 

efficacy of the system. Additionally, thermodynamic models require the use of assumptions 

which leads to oversimplification especially in the case of Non-Steady Systems. 

6.2. Future Work 

The application of machine learning in the field of absorption chillers holds several promising 

avenues for future research and development. Some potential areas of future work include: 

1. Advanced Control Strategies: Machine learning can be used to develop more advanced and 

adaptive control strategies for absorption chillers. These strategies could optimize the operation 

of the chiller system in real-time, considering variables like ambient conditions, load demand, 

and energy costs. 

2. Fault Detection and Diagnostics: Machine learning algorithms can be employed to detect 

and diagnose faults in absorption chiller systems. This would enable early identification of 

issues and facilitate proactive maintenance, improving overall system reliability and efficiency. 

3. Optimal Sizing and Configuration: Machine learning techniques can aid in determining the 

optimal sizing and configuration of absorption chiller systems based on specific application 

requirements and constraints. This could lead to more efficient and cost-effective designs. 

4. Predictive Maintenance: Using historical data and sensor information, machine learning 

models can predict when maintenance is likely to be required, minimizing downtime and 

reducing maintenance costs. 

5. Integration with Renewable Energy Sources: Absorption chillers can be integrated with 

renewable energy sources like solar or waste heat. Machine learning algorithms can help 
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optimize the operation of these hybrid systems to make the most efficient use of available 

energy sources. 

 

6. Energy Demand Forecasting: Machine learning can contribute to accurate forecasting of 

energy demand, allowing absorption chiller systems to proactively adjust their operation to 

meet varying loads and optimize energy consumption. 

7. Efficiency Improvement: Machine learning algorithms can be applied to optimize heat and 

mass transfer processes within absorption chillers, potentially leading to improved overall 

efficiency. 

8. Multi-Objective Optimization: Machine learning can assist in finding trade-offs between 

various performance metrics such as Coefficient of Performance (COP), energy consumption, 

and environmental impact, leading to more sustainable design and operation. 

9. Hybrid Models: Combining physics-based models with machine learning approaches can 

create hybrid models that leverage the strengths of both approaches for more accurate 

predictions and system optimization. 

10. Data-Driven Insights: Machine learning can uncover insights from large datasets that might 

not be apparent through traditional analysis, contributing to a deeper understanding of 

absorption chiller behavior and performance. 

11. Real-time Decision Support: Implementing machine learning in real-time decision support 

systems can aid operators in making optimal decisions for chiller system operation. 

12. Lifecycle Analysis and Optimization: Machine learning can assist in performing lifecycle 

analysis of absorption chiller systems, optimizing their design, operation, and retirement phases 

for maximum efficiency and sustainability. 

In summary, the future of machine learning in absorption chillers lies in creating smarter, more 

adaptive, and efficient systems through advanced control, diagnostics, optimization, and 

integration with emerging technologies.  
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