
 
IMPLEMENTATION & VISUALIZATION OF 

EDMOND KARP MAXIMUM FLOW FINDING 
ALGORITHM 

 
By 
 

Waleed Ahmed 
 

 
 
 

Submitted to the Department of Computer Engineering  
in fulfillment of the requirements for the degree of  

Masters of Science 
In 

Computer Software Engineering 
 
 

Thesis Supervisor 
 

Brig. Dr. Muhammad Younus Javed 
 
 
 

  
College of Electrical & Mechanical Engineering  

National University of Sciences & Technology  

2009 



 

 I

Implementation and Visualization of  

Edmond Karp Maximum Flow Finding Algorithm 
 

By 
 

Waleed Ahmed 

2003-NUST-MS-PhD-CSE-230 
 

 
 

Submitted to the Department of Computer Engineering  

in fulfillment of the requirements for the degree of  

Masters of Science 
 

In 

Computer Software Engineering 

 

 

Thesis Supervisor 
 

Brig. Dr. Muhammad Younus Javed 

 

 

 

College of Electrical & Mechanical Engineering  

National University of Sciences & Technology 

2009 

 

 



 

 II

ACKNOWLEDGEMENTS 
 

Firstly, I thank to Almighty ALLAH for enabling me to complete my research 

work. 
  
Secondly, I would like to express my deepest gratitude to my dissertation 

supervisor and mentor Brig. Dr. Muhammad Younus Javed, without his guidance, 

encouragement, patience, and inspiration, the research for this dissertation never 

would have taken place. I am also grateful to my thesis committee. I am also 

especially grateful to Dr. Rafique and Dr. Shoaib khan. This exceptional faculty 

has taught me so much over the years, and has contributed significantly to my 

intellectual and professional development. 
 

I am extremely grateful to my parents and my loving family for all the love and 

support they have given me over the years. Without their support, I would never 

have the chance to succeed. 
 

I will always have many fond memories of wonderful events during the study 

period over the past years. They have provided lasting friendship, enlightenment, 

encouragement, and entertainment. I am also indebted to Naeem Akbar and Amir 

Bukharri for their computer wizardry support. I wish to thank to all those people 

who support me to achieve the glory.  

Last, but certainly not the least, I would like to thank my best friends. 

 

 

 
 
 
 
 
 
 
 
 



 

 III

 

 

 

 

 

 

 

 

 

 

 

 

Dedicated to my parents and teachers 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 IV

ABSTRACT 
 

Graph is an effective data structure to solve the complex problems in Computer 
Sciences. Maximum Flow Problem is one of those problems, which are based on 
Graph data structure. The basic problem of finding a maximal flow in a network 
occurs not only in transportation and communication networks but also in 
currency arbitrage, image enhancement, machine scheduling and many other 
applications. 
 

There are many algorithms designed to solve the maximum flow problems. The 
Edmond Karp algorithm is also included in the list of those algorithms, which 
provides the efficient and optimal solution for the maximum problems. It is 
upgraded version of Ford Fulkerson Method. The performance of the Edmond 
Karp algorithm is better than the Ford Fulkerson Method regarding to searching 
of paths in network graph. Edmond Karp algorithm uses the Breadth-first search 
(BFS) algorithm to find the augmenting paths in the network graph [6]. 
In this research, the performance of the Edmond Karp algorithm is analysed and 
evaluated through a given conditions in the form of input data. For this purpose, 
simulation is designed to monitors the efficiency of the algorithm in respect of 
different output parameters, like running time, number of paths and maximum 
flow. 
 

The concept of the busy node is also elaborated in this research work. Busy node 
is the particular node in the network graph, which is existed in maximum number 
of augmenting paths. Normally it contains maximum share of the flow in the 
graph. The idea of the busy node can be utilized for optimal solutions of image 
processing and network related problems. 
 

The simulation uses datasets for the experimental evaluation of the Edmond Karp 
algorithm. These datasets are collected through different methods: first one 
includes “Auto Generated Random Graphs” and other is “User Defined Graphs”. 
 

The simulation is also stored the experiment results to observe the behaviour of 
the algorithm. At the end of this report, cumulative average time is calculated 
from the experiment results. These cumulative average times indicate the best as 
well as worst case scenarios of the algorithm. In best case, it produces 2.851ms 
and in worst case 19.7143ms.  
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Motivation 

The study of maximum flow problem is a matter of interest to a wide range of 

researchers. It is due to the widespread occurrence of such networks in practice 

and challenges involved in solving of associated problems. In many real-time 

systems such as airports, production facilities, highways and data networks, the 

costs of finding maximum flow may be very high. 

Although a vast literature exists on the analysis of maximum flow finding 

algorithms yet its solution exists only for a very small set of problems, as several 

assumptions are required to make a network graph mathematically tractable to 

obtain exact solutions or near to exact solutions. Since many real-world systems 

are dynamic in nature so that their evaluation study is difficult. Therefore, it 

motivates the need to present a visual simulator to observe and analyse the 

performance of maximum flow finding algorithm on different data inputs. 
 

Objectives of the Study 

Graph is a pervasive data structure in computer sciences, and algorithms are 

fundamental to the relevant field for working with them. There are hundreds of 

interesting computational problems defined in terms of graphs. One of them is 

elaborated in this research work. 
 

In this work, analysis about the computation of maximum flow of the material in 

a network graph having a specified source of material, a sink, and capacities for 

the mount of material that can traverse each directed edge through 

implementation of Edmond-Karp Algorithm. The problem of maximum flow 

arises in many forms and a good algorithm for computing maximum flow can be 

used to solve these problems efficiently in terms of outputs, i.e maximum flow, 

augmenting paths and running time of the algorithm.  
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       CHAPTER  1 
Introduction 

 

1.1.  Introduction 
There are many different types of networks used in our everyday life; including 

electrical circuits, telephone exchange, cable, highways, railways and computer 

networks. Networks consist of special points called nodes and links connecting 

pairs of nodes called arcs. Some examples of networks are shown in the following 

Table–1.1. In all these networks, it is desired to send some material, which is 

generically called as ‘flow’, from one node to another and do so as efficiently as 

possible. Network flow theory is the study of designing efficient algorithms to 

solve such problems.  
 

 

Networks Nodes Arcs Flows 
Communication Telephone, Exchanges,

computers, satellites. 
Cables, fiber optics, 
Microwave relays. 

Voice, Video,  
packets. 

Circuits Gates, Registers, 
Processors 

Wires 
 

Current 
 

Mechanical Joints Rods, Beams, springs Heat, energy 
Hydraulic Reservoirs, Pumping 

stations, lakes 
Pipelines 
 

Fluid, Oil 
 

Financial Stocks, Currency 
 

Transactions 
 

Money 
 

Transportation Airports, Rail yards, 
Street intersections. 

Highways, Railbeds, 
Airway routes. 

Freight, Vehicles,
passengers. 

Chemical Sites Bonds Energy 
Table – 1.1: Some Network Flows Examples 

 

For this purpose, the performance and efficiency of the Edmond Karp Algorithm 

is analysed through simulation. Typical simulation consists of visual environment 

development, algorithm execution and data results analysis. Visual environment 

development stage involves the creation of graph canvas, where directed graphs 
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are designed and visualized. It also shows the map of augmenting paths built after 

the execution of the algorithm. Simulation includes datasets analysis and results 

logging facility. The potential use of this facility is to observe the behavior and 

performance of the maximum flow finding algorithm on different datasets given 

by the user or generated by the simulator.  
 

Performance of the simulation depends upon visual presentation, correct 

implementation of the algorithm, which produces required results and maintains 

the results in the data file.  

 

1.2.  Design and Implementation 
It is very important to understand the concept of the algorithm before its 

successful implementation. First of all, understand the concept of Edmond Karp 

maximum flow finding algorithm. It establishes a number of algorithmic 

techniques: augmenting paths, residual networks and cuts [2]. There are many 

applications that benefit from this solution, including network routing, highway 

design and circuit design. The Edmond Karp Algorithm builds on other algorithm 

and data structures such as breadth-first search algorithm, queues and graphs. 
 

After the conceptual understanding, Simulation is designed to run Edmond Karp 

Algorithm under a set of given conditions in the form of input data. At run time, it 

monitors and records the performance of algorithm. Resultantly it generates data 

which is used for analysis and performance evaluation of the algorithm. 

Experimentation with the system and resultant analysis of the data has confirmed 

that the results are in conformity with the established facts and principles of the 

science of algorithms.         
 

The design of algorithm is developed for its best implementation which contains 

the development of searching function, queue and constraints of the subjected 

algorithm. Next step is the selection of developing tool for the implementation of 

designed structure of the algorithm. After the development phase it is tested 

through different datasets to analyses the produced results by the simulation. 

Subsequently, if some bottlenecks are observed, its design structure is refined 

through readjustment in its implementation phase. It is also strived to improve its 
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working mechanism, so that, it can extract more efficient form of the maximum 

flow finding algorithm.  

 

1.3.  Initial Requirements of the Simulation 
The goal of the research is to provide an analysis of the results that elaborates 

the efficiency of Edmond Karp Algorithms for the applications in the vision. It 

compares the running time of several datasets, as well as visual presentation of 

the said algorithm. The performance of simulation depends on different 

parameters like selection of graph datasets, machine/hardware where algorithm 

should be executed for its implementation methodology. Three main external 

factors affect the performance of the simulation in respect of its running time as 

shown in figure -1.1. These factors are described as under: 
 

 
Figure – 1.1: Implementation Factors 

 

1. Hardware includes execution machine, which consists of Processor, RAM, 

and Space etc. 
 

2. Platform includes operating system, where simulation runs like Windows 

9x/XP/2000. GUI based operation systems (OS) have more visual presentation 

support than other platforms. Our simulation tested on the Windows XP/2000.  
 

3. Development Tools include, simulation development tools, which are used to 

implement the algorithm. In this scenario, Visual Basic 6.0 is used for the 

implementation of Edmond Karp maximum flow finding algorithm. 

 
 
 
 
 
 

HARDWARE 
 

includes execution 
machine which 

consists Processor, 
RAM and Space. 

 

PLATFORM 
 

includes Platform/OS 
where algorithm runs 

like Windows 
9x/XP/2000 

 

DEVELOPING TOOL 
 

includes development 
tools, which are used 

to implement the 
algorithm. 
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1.4.  Objectives of the Simulation 
Presently no system is available to offer an efficient, graphical and user friendly 

simulation environment on a PC based Platform for the maximum flow find 

algorithm. There is need for such a system, which could analysis of Maximum 

Flow Finding Algorithm, either for the purpose to design a system for the real 

world problems or as a tool to study the science of design and theory of 

Algorithms. The system has been designed to fulfill the gap and it offers GUI 

base environment for the analysis of the Edmond Karp algorithm. 
 

 

The main objectives of the simulation are the visual representations of the work 

flow and performance analysis of the Edmond Karp maximum flow finding 

algorithm on different datasets. With the help of GUI based environment, it can 

be observed the selection criteria of the augmenting paths in the directed graphs 

without violating the constraints of the algorithm.    

 
 
 
 
 
 
 
 
 
 
 
 
 



National University of Sciences & Technology        MS Dissertation  

 -  - 6

CHAPTER  2 
Algorithms 

 
2.1.  Introduction  
 

An algorithm is a recipe or a well-defined procedure for transforming some input 

into a desired output [2]. Perhaps the most familiar algorithms are those used for 

the adding and multiplying integers. In this scenario, Edmond Karp algorithm 

runs on the directed graphs, which contains nodes |V| and edges |E| to calculate 

the flow f as maximum as possible. There are few basic questions about algorithm 

as mentioned below: 

 

2.1.1.  Does it halt?  

It is observed whether the algorithm halts with required results. It means that the 

algorithm should end its execution or not, when it achieves its core objective, like 

here it’s desired to calculate the maximum flow in the graph as, 

 

Value of flow f :  | f | = f(s,V) = f(V,t) 

 

2.1.2.  Is it correct? 

Analysis of the algorithm is to find that whether it correctly computes the 

maximum flow f without violation of constraints defined in Edmond Karp 

algorithm. It means that all the flows f from u to v (where u ≠ s,t) will be 

initialized by 0 and constraints that satisfy the Flow f : V x V → R are: 

 

Capacity  : f(u,v) ≤ c(u,v) for all u,v 

Skew Symmetry : f(u,v) = -f(v,u) for all u,v 

Value of flow f : | f | = f(s,V) = f(V,t) 
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Thus, the algorithm is just the doing of the standard behavior, which is required 

for the desired outputs. It is most important that implemented algorithm should 

produce optimal results or close to optimal solutions.  

 

2.1.3.  How much time does it take? 

It is observed that the algorithm is as fast as the standard algorithm. (How does it 

implement the search technique, which seems to play vital role in the algorithm).  

Execution time of the algorithm is also inspired by the implementation technique, 

hardware and software used to developing and testing of the algorithm.  

Ford and Fulkerson were presented a basic algorithm for maximum flow problem 

which offer O(V3) time for the large networks. Edmond and Karp were made 

improvements in the Ford Fulkerson algorithm to enhance its performance 

regarding running time. It offers O(VE2) for the large networks which making 

some unexpected applications possible [6]. 

 

2.1.4.  How much memory does it use?  

(When cache-aware algorithms are observed, then question arises that what kind 

of memory is used, e.g. cache, main memory, etc.) 

Memory consumption depends on the implementation technique and presentation 

of the application. As implementation of Graph data structure is required a large 

capacity of memory. Graph data-structure is implemented through two methods, 

one is array based and another is pointer based. Array based structure required 

more memory consumption then the pointer based structure.   

 

2.2.  Measuring Efficiency of Algorithm 
Efficiency of the algorithm is measured on the basis of worst-case complexity 

[1],[2] i.e., the maximum number of machine operations that the algorithm 

requires to complete any problem instance of a given size. For network flow 

problems, the size depends on the number of edges m, the number of vertices n, 

and the integer value C used to represent capacities of the edges. A network flow 

algorithm is called a polynomial time algorithm if its worst-case complexity is 
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bounded by a polynomial function of m, n, and log2 C [2]. It uses log2 C because 

it represents the number of bits needed to store the integer C on a computer. 

Comparing the performance of algorithms based on their worst-case complexity 

has gained widespread acceptance over the past three decades. For a given 

problem, the goal is to design a polynomial-time algorithm with the smallest 

worst-case complexity. There are many reasons to justify such a goal. First, this 

provides a mathematical framework in which it can compare different algorithms. 

Second, there is strong computational evidence suggesting a high correlation 

between an algorithm's worst-case complexity and its practical performance [2].  

There are two approaches used to categorize the algorithms, which are mentioned 

under: 

 

2.2.1.  Approximation Approach 

For many practical optimization applications, it is often satisfied with solutions 

that may not be optimal, but are guaranteed to be “close" to optimal. For example, 

if the input data to the in a problem is only known to a certain level of precision, 

then it is often acceptable to produce a solution of the same level of precision. A 

second important reason is that it can often tradeoff solution quality for 

computational speed; in many applications it can find a provably high quality 

solution in substantially less time than it would take to find an optimal solution. 
 

Researchers are designed both exact and approximation algorithms for the 

generalized maximum flow problem. It presents a family of Є -approximation 

algorithms for every Є > 0. It means that to find nearly optimal solutions of any 

prescribed level of precision. For example, when Є = 0.01 our approximation 

algorithms are faster than their exact algorithms by roughly a factor of m, where 

m is the number of arcs in the underlying network. 
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2.2.2.  Combinatorial Approach 

Since the generalized flow problem can be formulated as a linear program, it can 

be solved by general purpose; linear programming methods include simplex, 

ellipsoid, and interior point methods. These continuous optimization methods are 

grounded in linear algebra. 
 

This problem can also be solved by combinatorial methods. Combinatorial 

methods exploit the discrete structure of the underlying network, often using 

graph search, shortest path, maximum flow, and minimum cost flow computations 

as sub-routines. These methods have led to superior algorithms for many 

traditional network flow problems including the shortest path, maximum flow, 

minimum cost flow, and matching problems [2]. More recently, combinatorial 

methods have been used to develop fast approximation algorithms for packing 

and covering linear programming problems, including maximum flow and multi-

commodity flow. 
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CHAPTER  3 
Searching Techniques 

 
3.1.  Introduction 
 

Searching is a process of considering possible sequences of actions, first it has to 

formulate a goal and then use the goal to formulate a problem. 

A problem consists of four parts: the initial state, a set of operators, a goal 

test function and a path cost function. The environment of the problem is 

represented by a state space. A path through the state space from the initial 

state to a goal state is a solution [2]. 

In real life most problems are ill-defined, but with some analysis, many 

problems can fit into the state space model. A single general search algorithm 

can be used to solve any problem; specific variants of the algorithm embody 

different strategies. 

Search algorithms are judged on the basis of completeness, optimality, time 

complexity and space complexity. Complexity depends on b, the branching 

factor in the state space, and d, the depth of the shallowest solution [1], [2]. 

Completeness : Is the strategy guaranteed to find a solution when there is   

one? 

Time complexity : How long does it take to find a solution? 

Space complexity : How much memory does it need to perform the search? 

Optimality :  Does the strategy find the highest-quality solution when    

there are several different solutions? 
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3.2. Searching Techniques 
Some common searching techniques are given below: 
 
 

3.2.1.  Breadth-first search (BFS) expands the shallowest node in the search 

tree first. It is complete, optimal for unit-cost operators, and has time and space 

complexity of O(bd). The space complexity makes it impractical in most cases 

[1], [2]. 
 

Using BFS strategy, the root node is expanded first, and then all the nodes 

generated by the root node are expanded next, and their successors, and so on. In 

general all the nodes at depth d in the search tree are expanded before the nodes 

at depth d+1. 
 

3.2.2.  Uniform-cost search (UCS) expands the least-cost leaf node first. It is 

complete, and unlike breadth-first search is optimal even when operators have 

differing costs. Its space and time complexity are the same as for BFS [1]. 
 

BFS finds the shallowest goal state, but this may not always be the least-cost 

solution for a general path cost function. UCS modifies BFS by always 

expanding the lowest-cost node on the fringe [1], [2]. 
 

3.2.3.  Depth-first search (DFS) expands the deepest node in the search tree 

first. It is neither complete nor optimal, and has time complexity of O(bm) and 

space complexity of O(bm), where m is the maximum depth. In search trees of 

large or infinite depth, the time complexity makes this impractical [1], [2]. 
 

DFS always expands one of the nodes at the deepest level of the tree. Only when 

the search hits a dead end (a non-goal node with no expansion) then the search 

goes back and expands nodes at shallower levels. 
 

3.2.4.  Depth-limited search (DLS) places a limit on how deep a depth-first 

search can go. If the limit happens to be equal to the depth of shallowest goal 

state, then time and space complexity are minimized. 
 

DLS stops to go any further when the depth of search is longer than defined 

depth limits. 



National University of Sciences & Technology        MS Dissertation  

 -  - 12

3.2.5.  Iterative deepening search (IDS) calls depth-limited search with 

increasing limits until a goal is found. It is complete and optimal, and has time 

complexity of O(bd). 
 

IDS is a strategy that sidesteps the issue of choosing the best depth limit by 

trying all possible depth limits: first depth 0, then depth 1, then depth 2, and so 

on. In effect, IDS combines the benefits of DFS and BFS. 
 

3.2.6.  Bidirectional search (BDS) can enormously reduce time complexity, 

but is not always applicable. Its memory requirements may be impractical. 
 

BDS simultaneously search both forward form the initial state and backward 

from the goal, and stop when the two searches meet in the middle, however 

search like this is not always possible [2]. 
 

Edmond Karp Algorithm uses the Breadth-first Search technique to search the 

augmenting paths in the directed graphs. Thus working mechanism of the BFS is 

elaborated onward. 
 

3.3.  Breadth First Search (BFS) 
 

Breadth-first search expands the shallowest node in the search tree first. It is 

complete, optimal for unit-cost operators, and has time and space complexity of 

O(bd). The space complexity makes it impractical in most cases [2]. 
 

Using BFS strategy, the root node is expanded first, and then all the nodes 

generated by the root node are expanded next, and their successors, and so on. In 

general, all the nodes at depth d in the search tree are expanded before the nodes 

at depth d+1. 

3.3.1  Algorithm: 

BFS(G,s) { 

       initialize vertices; 

      Q = {s}; 

      while (Q not empty) { 

                u = Dequeue(Q); 

                for each v adjacent to u do { 
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                      if (color[v] == WHITE) { 

                         color[v] = GRAY; 

                         d[v] = d[u]+1; // compute d[] 

                         p[v] = u;  // build BFS tree 

                         Enqueue(Q,v); 

                                                             } 

                                                          } 

  color[u] = BLACK; 

} 

BFS runs in O(V+E) 

Note: BFS can compute d[v] = shortest-path distance from s to v, in terms of 

minimum number of edges from s to v (un-weighted graph). Its breadth-first tree 

can be used to represent the shortest-path. 

 

3.3.2  BFS Function in Simulation 
 
Public Function BFS(START As Integer, TARGET As Integer) As Long ‘BFS function for search 

    ‘ 
    Dim U, V As Integer   ‘COUNTER VARIABLES 
     
    For U = 0 To Val(CMBNODES.Text) – 1  ‘INITIALIZATION OF NODES COLOR FLAG 
        COLORS(U) = 0 
    Next U 
     
    HEAD = 0 
    TAIL = 0 
     
    ENQUEUE (START) 
     
    PRED(START) = -1 
     
    Do While (HEAD <> TAIL)    ‘EXECUTE TILL ALL NODES ARE VISITED 
        U = DEQUEUE() 
        For V = 0 To Val(CMBNODES.Text) – 1 
     ‘AGLORITHM CONSTRAINT IS CHECKED HERE. 
            If COLORS(V) = 0 And (CAPACITY(U, V) - FLOW(U, V)) > 0 Then 
                ENQUEUE (V) 
                PRED(V) = U 
            End If 
        Next V 
    Loop 
 
    If COLORS(TARGET) = 2 Then  ‘IF ALL NODES ARE VISITED  
        BFS = COLORS(TARGET)       ' RETURN VALUE 
    End If 
‘ 
 End Function 
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3.3.3  Working Mechanism 

The following steps explain the working mechanism of the Breadth-first search. 
 

• Form a one-element queue consisting of the root node. 
 

Until the queue is empty or the goal has been reached, determine if the first 

element in the queue is the goal node do nothing (or may stop, depends on the 

situation). If the first element is not the goal node, remove the first element from 

the queue and add the first element's children, if any, to the back of the queue. 

ENQUEUE and DEQUEUE procedures are used for adding and removing node 

from the queue, which are mentioned below: 
 

Sub ENQUEUE(X As Integer)  ‘Procedure for add nodes in the Queue.  

    Q(TAIL) = X 

    TAIL = TAIL + 1 

    COLORS(X) = 1        'GRAY 

End Sub 
 

Public Function DEQUEUE() As Long ‘Function for pop-up node from the Queue. 

    Dim X As Integer 

    X = Q(HEAD) 

    HEAD = HEAD + 1 

    COLORS(X) = 2         ' BLACK 

    DEQUEUE = X            ' RETURN VALUE 

End Function 

• If the goal node has been found, announce success, otherwise announce 
failure. 

Note: This implementation differs with DFS in insertion of first element's 
children; DFS starts from FRONT, while BFS starts from BACK. The worst 
case for DFS is the best case for BFS and vice versa. 

If COLORS(TARGET) = 2 Then 
        BFS = COLORS(TARGET)       ' RETURN VALUE – Target node reached. 
    End If 

• The side affects of BFS: 

1. Memory requirements are a bigger problem for BFS than the execution 
time. 

2. Time is still a major factor, especially when the goal node is at the 
deepest level. 
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The working mechanism of the BSF technique as shown in the Table-3.1 

 
S # Breadth-first Searching Technique 

INPUT 
1 • A graph G = (V, E) (directed or undirected) 

• A source vertex s ∈ V 

IDEA 
2 • Explore the edges of G to “discover” every vertex reachable 

from s, taking the ones closest to s first 

OUTPUT 
3 • d[v] = distance (smallest # of edges, or shortest path) from s 

to v, for all v ∈ V 
• BFS tree 

Table 3.1: Breadth-first Searching Technique 

 

3.3.4. Complexity 

Whereas depth first search required spaces proportional to the number of 
decisions, breadth first search requires space exponential in the number of 
choices. If there are c choices at each decision and k decisions have been made, 
then there are ck possible boards that will be in the queue for the next round. 
This difference is quite significant to the given space restrictions of some 
programming environments. 
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CHAPTER  4 
Maximum Flow Problem 

 

4.1.  Network Flows 
A network flow graph G = (V, E) is a directed graph with two special vertices: 

the source vertex s, and the sink (destination) vertex t. Each vertex represents a 

point, where material is sent or received. An edge (u,v) in the graph means that 

there is a link from u to v. Each edge has an associated capacity c(u,v), always 

finite, representing the amount of capacity available on this edge/arc. For 

simplicity, it is assumed that there can only one edge (u,v) for vertices u and v, 

but it does allow reverse edges (v,u), [3]. The concept of the network flow can be 

explained with a practical example (as explained in 4.3). 

 

4.2.  Some Traditional Network Flow Problems 
In this section, it is formally defined the shortest path, minimum mean cycle, 

maximum flow, minimum cut, and minimum cost flow problems. It is also stated 

the best known complexity bounds. These subroutines are used in generalized 

flow algorithms. Some traditional network flow problems are mentioned below: 
 

4.2.1  Shortest Path Problem 

In the shortest path problem, the goal is to find a simple path between two nodes, 

so as to minimize the total length. An instance of the shortest path problem is a 

network G = (V,E, s,l), where s  is a distinguished node called the source, and l is 

a length function. The problem is NP-hard if negative length cycles are allowed 

[2]. In networks with no negative length cycles, there are a number of polynomial 

time algorithms for the problem, e.g. Bellman-Ford [1], [2]. There are faster 

specialized algorithms for networks with nonnegative arc lengths, e.g., Dijkstra. 

We let SP(m,n) denote the complexity of solving a shortest path problem in a 

network with m arcs, and n nodes, and nonnegative lengths. 
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4.2.2.  Minimum Mean Cycle Problem 

In the minimum mean cycle problem, the goal is to find a cycle whose ratio of 

length to number of arcs is minimum. That is, want to find a cycle that minimizes 

length function. An instance of the minimum mean cost cycle problem is a 

network G = (V,E,l), where l is a length function. Although it is NP-hard to find a 

cycle of minimum length, it is possible to find a minimum mean cycle in 

polynomial-time [2]. Virtually all known algorithms are based upon a shortest 

path computation in a network where negative length arcs are allowed. 
 

4.2.3.  Minimum Cut Problem 

The s-t minimum cut problem is intimately related to the maximum flow problem. 

The input is the same as for the maximum flow problem. The goal is to find a 

partition of the nodes that separates the source and sink, so that the total capacity 

of arcs going from the source side to the sink side is minimum. Formally, it is 

defined an s-t cut [S,T] to be a partition of the nodes V = [S,T] so that s 2 S and t 2 

T. The capacity of a cut is defined to be the sum of the capacities of \forward" 

arcs in the cut: u[S,T] = X v2S,w2T u(v,w): (cut capacity). The goal is to find an s-

t cut of minimum capacity. It is easy to see that the value of any flow is less than 

or equal to the capacity of any s-t cut. Any flow sent from s to t must pass through 

every s-t cut, since the cut disconnects s from t. Since flow is conserved, the value 

of the flow is limited by the capacity of the cut. A cornerstone result of network 

flows is the much celebrated max-flow min-cut theorem of Ford and Fulkerson 

[6]. It captures the fundamental duality between the maximum flow and minimum 

cut problems. 
 

Theorem: The maximum value of any flow from the source s to the sink t in a 

capacitated network is equal to the minimum capacity among all s-t cuts.  

Proof: It is sufficient to show that the capacity of some s-t cut equals the value of 

some flow. Let f be a maximum flow. Choose S to be the set of nodes reachable 

from the source using only residual arcs in Gf. It is showed that [S,T] is an s-t cut 

of capacity. By the definition of S, flow f saturates every forward arc in the cut, 

and does not send flow along any backward arcs in the cut. Thus, the net flow 
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crossing the cut is u[S,T]. By flow conservation, the net flow sent across any s-t 

cut is equal to the value of the flow. 
 

4.2.4.  Minimum Cost Flow Problem 

In the minimum cost flow problem, the goal is to send flow from supply nodes to 

demand nodes as cheaply as possibly, subject to arc capacity constraints. An 

instance of the minimum cost flow problem is a network G = (V,E, b, u, c), where 

b : V is a supply function, u is a capacity function, and c is a cost function. We say 

node v 2 V has supply if b(v) > 0 and demand if b(v) < 0. We assume that the total 

supply equals the total demand, otherwise the problem is infeasible. Let f be a 

flow. If there exists a negative cost residual cycle in Gf, then it can improve f by 

sending flow around the cycle. 
 

4.2.5.  Maximum Flow Problem 

In the maximum flow problem, the goal is to send as much flow as possible 

between two nodes, subject to arc capacity limits. An instance of the maximum 

flow problem is a network G = (V,E, s, t, u), where s is a distinguished node 

called the source, t is a distinguished node called the sink, and u is a capacity 

function. A flow is a pseudo flow that satisfies and the flow conservation 

constraints as mentioned in [2], [3]. 

 This says that for all nodes except the source and sink, the net flow leaving that 

node is zero. It does not have to distinguish between flow entering and leaving 

node v because of the anti-symmetry constraints. The value of a flow f is the net 

flow into the sink. 
 

The objective is to find a flow of maximum value. An augmenting path is a 

residual s-t path. Clearly if there an augmenting path exists in graph Gf, then it can 

improve f by sending flow along this path. 
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4.3.  Maximum Flow Problem Analogy 
Imagine that a courier service wants to deliver some cargo from one city to 

another. Company can deliver them using various flights from cities to cities, but 

each flight has a limited amount of space that company can use. An important 

question is, how much of cargo can be shipped to the destination using the 

different flights available? To answer this question, it explores what is called a 

network flow graph, and show how it model different problems using such a 

graph as shown in figure – 4.1. 

 

 

 

 

 

Figure – 4.1: A simple capacity network flow graph. 

 

In context of the above example, company wants to know how much maximum 

cargo they can ship from s to t. Since the cargo “flows” through the graph from s 

to t, it is called as maximum flow problem. A straight forward solution is to do 

the following: keep finding paths from s to t where it can send flow along, send as 

much flow f as possible along each path fp,, and update the flow graph afterwards 

to account for the used space. The following figure-4.2 shows an arbitrary 

selection of a path on the above graph. 

 

 

 

 

 

Figure – 4.2: The number on each edge is the flow, and the second is the capacity. 

 

In Figure 4.2, it is picked a path s → u → v → t. The capacities along this path 

are 3, 3 and 4 respectively, which means it has a bottleneck capacity of 3 – it can 

send at most 3 units of flow along this path. Now it sent 3 units of flow along this 
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path, and tries to update the graph. How should it do? An obvious choice would 

be to decrease the capacity of each edge used by 3 – it has used up 3 available 

spaces along each edge, so the capacity on each edge must decrease by 3. 

Updating this way, the only other path left from s to t is s → v → t. The edge (s,v) 

has capacity 2, and the edge (v,t) now has capacity 1, because of a flow of 3 from 

the last path. Hence, with the same update procedure. Algorithm execution is 

ends, but with non-optimal solution as shown in figure-4.3. 

 

 

 

 

 

 

Figure - 4.3: Using path s → v → t. Algorithm ends, but this is not optimal. 
 

Algorithm now ends, because it cannot find anymore augmenting paths from s to t 

(remember, an edge that has no free capacity cannot be used). However, can it do 

better? It turns out it can. If it only sends 2 units of flow (u,v), and diverge the 

third unit to (u,t), then it opens up a new space in both the edges (u,v) and (v,t). It 

can now send one more unit of flow on the path s → v → t, increasing our total 

flow to 5, which is obviously the maximum possible flow in the residual network 

graph. The optimal solution is shown in the following figure-4.4: 

 

  

 

 

 

 

Figure – 4.4: Optimal solution. 
 

So, what is wrong with working mechanism of algorithm? One problem was that 

it picked the paths in the wrong order. If it had picked the paths s → u → t first, 
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optimal solution. One solution is to always pick the right ordering or paths; but 

this can be difficult. Can it resolve this problem without worrying about which 

paths it picks first and which ones it picks last? 
 

Comparing Figure-4.3 and Figure-4.4, it is observed that the difference between 

these two are in the edges (s,v), (v,u) and (u,t). In the optimal solution in Figure 

4.4, (s,v) has one more unit of flow, (u,v) has one less unit, and (u,t) has one more 

unit. If it is examined that these three edges and form a path s → v → u → t, then 

it can interpret the path like this: first try to send some flow along (s,v), and there 

are no more edges going away from v that has free capacity. Now, it can push 

back flow along (u,v), telling others that some units of flow that originally came 

along (u,v) can now be taken over by flow coming into v along (s,v). After it 

pushes flow back to u, it can explore for new paths, and the only edge can be used 

is (u,t). The three edges have a bottleneck capacity of 1, due to the edge (s,v), and 

so it pushes one unit along (s,v) and (u,t), but push back one unit on (u,v). Think 

of pushing flow backwards as using a backward edge that has capacity equal to 

the flow on that edge. 
 

It turns out that this small fix yields a correct solution to the maximum flow 

problem. First associates a capacity function along each edge c(u,v), that tells 

how many units of flow can go from u to v. Initially, c(u, v) is set to the 

maximum capacity for each edge (u, v). Now, it keeps finding paths from s to t (it 

refers to these paths as augmenting paths). When an augmenting path is found, it 

adjusts the capacity for each edge in the path. The algorithm ends when no more 

paths are found. Intelligent selection of the augmenting paths depend on the 

searching technique, which used to choose the more appropriate paths, like the 

worst scenario of the DFS is the best for the BFS search. Here analysis the 

preliminaries of the network flow problems. Now execute this example on the 

simulator to observe the maximum possible flow available in this graph as shown 

in figure – 4.5. 
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Figure – 4.5: Simulation result for optimal solution 

 

Many practical examples are available to understand maximum flow problem, 

like transferring of data from one computer node to another in computers 

network, transferring of oil from source well to destination sink through pipelines, 

sending signals from one point to another through cables in telecom network, etc. 
 

4.4.  Preliminaries of Network Flow Problems 
 

In this part, several fundamental of network flow problems are reviewed. It 

formally defines the generalized maximum flow problem and reviews some basic 

facts that are used in the design and analysis of Edmond Karp maximum flow 

finding algorithm. 
 

4.4.1.  Basic Definitions 

All of the problems are defined on a directed graph (V,E) where V is an n-set of 

nodes and E is an m-set of directed arcs. For notational convenience, it is assumed 

that the graph has no parallel arcs; this allows to uniquely specify an arc by its 

endpoints. Edmond Karp algorithm easily extends to allow for parallel arcs, and 
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the complexity bounds are remained valid. It considers only simple directed paths 

and cycles. 
 

4.4.1.1. Capacities:  
 

The maximum flow, minimum cost flow, and generalized maximum flow 

problem use a capacity function [2]. The capacity c(v,u) limits the amount of 

flow; it is permitted to send into arc (v,u). There is capacity constraints, which 

should not violated for the accurate execution of the Edmond Karp maximum 

flow finding algorithm as: 
 

 

Proof of capacity constraint: 
 

Here:  f’ = f + fp is valid flow in G (f a flow in G, fp a flow in residual network) 

with a value | f’| = | f | + | fp|. 
 

Thus, 

   cf(p)  if (u,v) is on p 

 fp(u,v) =        -cf(p)  if (v,u) is on p 

0  otherwise 

cf(p) = min{cf(u,v): (u,v) is on p} 

cf(u,v) = c(u,v) – f(u,v) 
 
  

For all u,v є V, we require (f+fp)(u,v) ≤ c(u,v) 
 

Proof: fp(u,v) ≤ cf(u,v) = c(u,v)  - f(u,v) 

 (f+fp)(u,v) = f(u,v) + fp(u,v) ≤ c(u,v) 
 

 

4.4.1.2. Symmetry:  
 

For the maximum flow problems, it assumes the input network is symmetric. This 

is without loss of generality, since it could always add the opposite arc and assign 

it zero capacity. Without loss of generality, it is also assumed that costs are 

antisymmetric, i.e., c(v,u) = -c(u, v) for every arc (v,u). 
 

It means that all the flows f from u to v (where u ≠ s,t) will be initialized by 0 and 

constraints that satisfy the Flow f : V x V → R are: 
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a) Skew symmetry: For all u,v є V, it requires, (f+fp) = -(f+fp)(v,u) 

b) Flow conservation: For all u є V – {s,t}, it requires,∑v  v(f+fp)(u,v)= 0 
 

Proof of (a): (f+fp)(u,v)  =    f(u,v) + fp(u,v) 

    = - f(v,u) – fp(v,u) 

    = - (f(v,u) + fp(v,u)) 

    = - (f + fp)(v,u), done. 
 

Proof of (b): Let u є V – {s,t}, then 

 ∑vv (f + fp)(u,v) = ∑v v (f(u,v) + fp(u,v)) 

    = ∑v v f(u,v) + ∑v v fp(u,v) 

    = 0 + 0 = 0, done 
 

The main objective of the algorithm is to maximize the flow: 
 

 Value of flow f: |f|  =  f(s,V) = f(V,t) 
 

4.4.1.3. Residual Networks:  
 

With respect to a pseudo-flow f in network Gf, the residual capacity function cf : E 

!<0  is defined by cf (v,u) = c(v,u) - f(v,u). The residual network is Gf =  (V,E,cf). 

Note that the residual network may include arcs with zero residual capacity, and 

still satisfies the symmetry assumption [2]. 
 

For example, if c(v,w) = 20; c(w, v) = 0, and  -f(w,v) = 17, then arc (v.w) has 3 

units of residual capacity, and arc (w, v) has 17 units of residual capacity. It 

defines Ef = f(v,w), where E: cf (v,w) > 0 to be the set of all arcs in Gf with 

positive residual capacity. A residual arc is an arc with positive capacity. A 

residual path (cycle) is a path (cycle) consisting entirely of residual arcs. 
 

Residual capacities : cf(u,v) = c(u,v) – f(u,v) 

Residual network : Gf = (V,Ef), where 

   Ef = {(u,v) ∈ V x V : cf(u,v) > o} 
 

4.4.1.4. Augmenting Path:  
 

If there is some flow in the residual network and can be find a path p from source 

s to sink/destination t, in such a way that, there is units of flow a, which is greater 

then zero (a > 0), and for each edge (u,v) in p, we can add units are added in  

flow: f(u,v) + a  ≤ c(u,v), such path p is called augmenting path [3],[4].  
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CHAPTER  5 
 

EDMOND KARP MAXIMUM FLOW ALGORITHM 

 
5.1.  Maximum Flow in Network  

The basic problem of finding a maximal flow in a network occurs not only in 

transportation and communication networks, but also in currency arbitrage, 

image enhancement, machine scheduling and many other applications.  

Improvements in the basic algorithm are presented by Richard Edmonds and 

Karp [6]. The improved form of algorithm offers O(VE2) time which is better for 

large networks, making some of these unexpected applications possible. 

The algorithms used to determine maximal flow are based on Max-Flow/Min-

Cut theorem [2]. It is the property that defines the minimum cut in a flow 

network of a directed graph as a bottleneck that limits the maximum flow.  Ford 

and Fulkerson have proved mathematically that these two forms were equivalent 

– the maximum flow goes through the minimum cut, to maximize the flow [5]. 

 

5.2.  Max-Flow / Min-Cut Theorem 
 

A cut is a set of edges separating s and t such that s ∈ X , t ∈ X,  V = {X+X)  

and the capacity of the cut is c(X,X).  Suppose a cut is a bottleneck or choke 

point, the maximum flow cannot be greater than the minimum of all the cuts; 

hence the intuition behind the min cut is to maximize the flow as in [6]. 
 

For any network the maximum flow from source s to sink t is equal to the 

minimum cut capacity of all cuts separating s and t. 

 

 

. 
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Lemma :  f(X,X) – f(X,X) ≤ c(X,X) 

Cormen  :  - The following statements are equivalent 

   - f is a maximal flow in G 

   - The residual network Gf has no augmenting path 

   - │f│ = c(X,X) for some cut (X,X) of G 

 

5.3.  Maximum Flow as a Linear Programming Problem: 
Richard Edmonds and Karp noted that the network flow problem could be 

formulated as a linear programming problem, either in Primal or Dual form [6]. 

 

Maximize:  v the value of the total flow. 

Subject to:  Σf(u,v)-Σf(v,u) = 0  for all u,v in {G-s,t}  

  Σf(s,u) – v   = 0  for all successor nodes to source s 

  Σf(u,t) – v   = 0  for all predecessor nodes to sink t 

  0 ≤ f(u,v)      ≤  c(u,v) for all edges (u,v) 

 

The network flow algorithm has much better performance for any large network 

application. In other words, some linear problems can be solved more 

effectively with flow algorithms. 
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5.4.  Edmond Karp Maximum Flow Finding Algorithm 
 

The Edmond Karp Algorithm represents a basic insight formalized into a 

maximum flow finding algorithm [6] that guarantees finding of a maximal flow 

for networks with non-negative capacities (c(u,v) ≥ 0), while capacities are 

rational numbers.   

Edmond Karp finds augmenting flows on simple path from source to sink and 

increases flow along the path up to the minimum of c(u,v) - f(u,v) for all u,v in 

the path.  

The original algorithm did not deal with negative or irrational valued flows in 

edges.  Its performance depends on the value of the maximum flow, since each 

augmenting path might add only a small increment of flow.  Performance of the 

algorithm is O(E│f*│), where f* represents the flow of the graph. 

The analysis of the running time of the algorithm on a given graph G = (V,E) 

usually measures the size of the input in terms of the number of vertices |V| and 

the number of edges |E| of the graph. There are two parameters describing the size 

of the input, not just one. 

 

5.4.1.  Basic Concept 
 

Edmond-Karp Algorithm uses an approach that tags each vertex and scans 

neighbouring vertices to find a possible existing path (p) from source (s) to sink 

(t).  If it finds a path (p) without violating constraint f(u,v) < c(u,v) for all edges in 

the path, it uses that additional flow to augment the current flow value [6].  When 

no augmenting flow path can be found among source (s) and sink (t) then 

algorithm terminates.  Edmond-Karp proved that the algorithm only terminates 

when a maximum flow has been found [6]. Edmond-Karp Algorithm is also 

known as upgraded version of the Ford Fulkerson method. Its performance is 

better than that of Ford Fulkerson Method by using of BFS searching technique 

(BFS algorithm is greedy in nature, it always explore the shortest paths first).  
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5.4.2.  Algorithm 
 

 

Edmond-Karp(G,s,t)   (G = Graph, s = Source node, t = Destination node) 

 Initialize flow f to 0 everywhere 

 while there is an augmenting path p do 

  augment flow f along p 

 return f 
 

Edmond Karp maximum flow finding algorithm can be expanded as: 
 

EdmondKarp(G,s,t) 

1. For each edge (u,v) ∈ E (G) 

2. do  f(u,v) = 0 

3.       f(v,u) = 0 

4. while there exist a path p from s to t in the residual network Gf 

5.  do cf(p) = min{cf(u,v): (u,v) ∈ p} 

6.   for each edge (u,v) in p 

7.    do f(u,v) =  f(u,v) + cf(p) 

8.         f(v,u) = -f(u,v) 
 

5.4.3. Function of Edmond Karp Algorithm in Simulator 

The function used in the Edmond Karp Algorithm is mentioned below: 
 

Public Function FF(Source As Integer, SINK As Integer) As Long 

    Dim I, J, U, W, L As Integer   'Counter Variables 

    Dim INCRE As Long          'Incremental Counters  

    Dim MAX_FLOW As Long 

    Dim T1, T2    ‘Execution time checker variables 

    MAX_FLOW = 0    L = 0     

T1 = DateTime.Timer 

    For W = 0 To 499 

        AGT(W) = -1 

    Next W      

 W = 0 

    For I = 0 To Val(CMBNODES.Text) - 1 

     For J = 0 To Val(CMBNODES.Text) – 1  
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           FLOW(I, J) = 0 

         Next J 

     SKEW(I) = 0 

    Next I 

        If CMBSEARCH.ListIndex = 0 Then 

       Do While (BFS(Source, SINK) = 2) 

          INCRE = 1000000 

          U = Val(CMBNODES.Text) - 1 

          Do While (PRED(U) >= 0) 

             INCRE = MINI(INCRE, (CAPACITY(PRED(U), U) - FLOW(PRED(U), U))) 

             U = PRED(U) 

             AGT(W) = U 

             W = W + 1 

          Loop 

          U = Val(CMBNODES.Text) - 1 

          Do While (PRED(U) >= 0) 

             FLOW(PRED(U), U) = FLOW(PRED(U), U) + INCRE 

             FLOW(U, PRED(U)) = FLOW(U, PRED(U)) - INCRE 

             U = PRED(U) 

          Loop 

          MAX_FLOW = MAX_FLOW + INCRE 

          SKEW(L) = INCRE 

          L = L + 1 

       Loop 

    ElseIf CMBSEARCH.ListIndex = 1 Then 

       Do While (DFS(Source, SINK) = 2) 

          INCRE = 1000000 

          U = Val(CMBNODES.Text) - 1 

          Do While (PRED(U) >= 0) 

             INCRE = MINI(INCRE, (CAPACITY(PRED(U), U) - FLOW(PRED(U), U))) 

             U = PRED(U) 

             AGT(W) = U    

         W = W + 1 

          Loop 

          U = Val(CMBNODES.Text) - 1 

          Do While (PRED(U) >= 0) 

             FLOW(PRED(U), U) = FLOW(PRED(U), U) + INCRE 

             FLOW(U, PRED(U)) = FLOW(U, PRED(U)) - INCRE 
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             U = PRED(U) 

          Loop 

          MAX_FLOW = MAX_FLOW + INCRE 

          SKEW(L) = INCRE     

        L = L + 1 

       Loop 

    End If 

    T2 = DateTime.Timer 

    LBLTIME.Caption = Round(Abs(T2 - T1), 8) * 100 

    AUG_PATH 

    PATH_FLOW 

    FF = MAX_FLOW 

End Function 

 

5.4.4. Approach 
 

Edmond-Karp maximum flow finding algorithm conceptually is divided into three 

portions, as: 
 

i. Initialization and constraints 
 

First, initialize the flow f in the G = (v.u) in such a way that; 
 

  ∑ f(u,v) = f(u,V) =  0 for all u ≠ s,t 
            v∈V   
 

It means that all the flows f from u to v (where u ≠ s,t) will be initialized by 0 

and constraints that satisfy the Flow f : V x V → R are: 

 

  Capacity    : f(u,v) ≤ c(u,v) for all u,v 
 

  Skew Symmetry : f(u,v) = -f(v,u) for all u,v 
 

  Value of flow f   : |f| = f(s,V) = f(V,t) 
 

 

 

ii. Searching for augmenting paths in residual network of vertices/nodes 
 

   Edmond-Karp Algorithm searches for the shortest augmenting paths from 

source s to sink t by using Breadth First Searching technique (BFS), which 

makes its performance more efficient than Ford Fulkerson Method [6]. 
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Using BFS strategy firstly, the root node (source node) is expanded, and then 

all the nodes generated by the root node are expanded next and their 

successors and so on. In general, all the nodes at depth d in the search tree 

are expanded before the nodes at depth d+1. BFS can compute d[v] = 

shortest-path distance from source s to edge v, in terms of minimum number 

of edges from s to v. 
 

iii. Calculating Maximum Flow 
 

The main objective of algorithm is to get the maximize value of the flow |f|. 

Therefore, after each iteration or searching augmenting path of the accessed 

flow f should be added in Flow |f| as: 

  
|f| = ∑ f(s,v) = f(s,V) =  f(V,t) 

             v∈V   

 
5.5. Complexity 
By adding the flows of augmenting paths to the maximum flow already 

established in the graph, the maximum flow will be reached when no more flows 

of augmenting paths can be found in the graph. However, there is no certainty that 

this situation will ever be reached, so the best scenario is when it is guaranteed 

that answer will be correct if an algorithm terminates. If the algorithm runs 

forever, the flow might not even converge towards the maximum flow.  
 

 

This situation only occurs with irrational flow values. When the capacities are 

integers, the runtime of Edmond Karp algorithm is bounded by O(E*f), where E is 

the number of edges in the graph and f  is the maximum flow in the graph. This is 

because each augmenting path can be found in O(E) time and increases the flow 

by an integer amount which is at least 1. 
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Example: 
 

According to figure-5.1, a Graph contains 

4 nodes, where A represents the source 

node and D represents the sink node. The 

inefficient behaviour of the Ford-

Fulkerson Method can be observed by 

executing the method on the graph (shown 

in figure-5.1). Ford Fulkerson Method 

uses depth-first searching (DFS) technique 

for the searching of augmenting paths in 

the residual network [2],[5]. The 

augmenting paths are found with a depth-first-search, where neighbouring nodes 

are visited in alphabetical order (DFS searches the deepest nodes first) and find 

minimum capacity edge on priority basis. So it picks first path as A→B→C→D, 

which has the minimum capacity of 1. Second augmenting path is selected as 

A→C→B→D, which again contains minimum capacity flow 1 due to symmetry 

of the edge (C,B). This process is continued till no augmenting path is found in 

the directed graph. 
 

This example shows the worst-case behavior of the Ford Fulkerson Method. In 

each step, only a flow of 1 is sent across the network. At the end, after 2000 

augmenting paths maximum flow is calculated, which is 2000. On the other hand 

in Edmond Karp Algorithm, this utilizes the breadth-first search technique [6] for 

searching of 2 augmenting paths, to find out the maximum flow of 2000. 
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FIGURE – 5.1: Complexity
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5.6. Busy Node 
Busy node indicates that specific node in the network (excluding source and 

destination nodes), which exists in maximum number of augmenting paths of the 

directed graph. If two or more nodes exist in equal number of augmenting paths 

then criteria for selection of busy node depends upon the share in maximum flow 

of these nodes. It means the node which contains maximum share of the flow will 

be declared as busy node in the network. It can be explained with the help of an 

example (Graph is adopted from [8]).  

 
Figure – 5.2: Busy node Identification 

 

 

The concept of busy node can be understand by implementing the Edmond-Karp 

algorithm on graph as shown in figure-5.2, which contains 25 vertices (V) with 80 

edges (E). After execution, it is observed that 23 augmenting paths are existed in 

the graph with maximum flow of 90. According to the definition of crucial node 

(as mentioned above), vertex number 22 exist in 10 augmenting paths and vertex 

17 exists in 9 augmenting paths with maximum flow share of 30 and 29 

respectively. It indicates that vertex 22 is the busy node in the graph. The concept 

of busy node can be utilized for optimization of many image processing and 

network based applications. 
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CHAPTER  6 
Simulation Design and Implementation 
 

6.1. Introduction 
The goal of this research is to provide an experimental analysis of Edmond Karp 

Maximum Flow Finding Algorithm. It compares the running time of given 

datasets as well as visual presentation of the outputs produced by simulation. The 

focus of the Edmond Karp algorithm is to find optimal solution for the maximum 

flow problem.  
 

6.2. Design and Implementation 
It is most important to understand the concept of the algorithm before its 

successful implementation. First of all, understand the concept of the Edmond 

Karp maximum flow finding algorithm. It establishes a number of algorithmic 

techniques: augmenting paths, residual networks, and cuts. There are many 

applications that benefit from this solution, including network routing, highway 

design, path finding for multiple units, and circuit design. The Edmond Karp 

algorithm builds on algorithms and data structures that can be observed as 

breadth-first search, queues (used in BFS), and graphs. 

The simulator for maximum flow finding algorithm has been designed with a 

view to develop a software tool, which can be used for the study and evaluation of 

maximum flow in the network graph. This software has been developed as a 

comprehensive software package, which runs a simulation, generates useful data 

to be used for performance evaluation of algorithm and provides a user friendly 

environment. Software design strategy is functional oriented and design is 

modular in nature. The system is designed to run on a personal Computer as a 

windows application. The system is required to simulate creation of directed 

graphs and execution of the algorithm. It should maintain data of the created 

graphs in data files. It is also required to record the outputs of the simulation. The 

system should use the data to compute algorithm evaluation parameters and to 
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ascertain behavior of the algorithm. A user friendly and mouse driven graphical 

user interface (GUI) to be integrated, in order to provide a user the opportunity to 

run the algorithm from the displayed menu as shown in figure-6.5. 
 

6.2.1. Design of Edmond Karp Algorithm 
 

In Edmond Karp Algorithm first initialize the flows for all the edges as: 
  
Initialize the flow f in the G = (v,u) in such a way that; 

  ∑ f(u,v) = f(u,V) =  0 for all u ≠ s,t 
            v∈V   

 

After the initialization of the flows, algorithm searches for the augmenting paths 
in the residual network, without violating the constraints of the algorithm as 
cf(u,v) ≤ c(u,v), where u,v ≠ s,t. Edmond Karp algorithm utilizes Breadth-first 
Searching algorithm to search augmenting paths in residual network. With each 
augmenting path algorithm calculate the minimum flow capacity of the path 
through minimization function. At the end, it updates the flows for all the edges 
and returns the final calculated maximum flow |f|. The module of the Edmond 
Karp algorithm in the simulation is given below: 
 

Public Function FF(Source As Integer, SINK As Integer) As Long 

   Do While (BFS(Source, SINK) = 2) 

          INCRE = 1000000 

          U = Val(CMBNODES.Text) - 1 

          Do While (PRED(U) >= 0) 

             INCRE = MINI(INCRE, (CAPACITY(PRED(U), U) - FLOW(PRED(U), U))) 

             U = PRED(U) 

             AGT(W) = U    W = W + 1 

          Loop 

          Do While (PRED(U) >= 0) 

             FLOW(PRED(U), U) = FLOW(PRED(U), U) + INCRE 

             FLOW(U, PRED(U)) = FLOW(U, PRED(U)) - INCRE 

             U = PRED(U) 

          Loop 

          MAX_FLOW = MAX_FLOW + INCRE 

          SKEW(L) = INCRE     L = L + 1 

       Loop 

    LBLTIME.Caption = Round(Abs(T2 - T1), 8) * 100 

    FF = MAX_FLOW 

End Function 
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Working mechanism of the Edmond Karp algorithm is also demonstrated by the 
following flow chart (Figure-6.1). 
 

Figure-6.1: Flow Chart of  
Edmond Karp 

Algorithm Module 
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6.2.2. Working Mechanism of Breadth-first Search (BFS) in Simulation 
 

Edmond Karp algorithm uses the Breadth-first Search (BFS) technique to find out 
the possible augmenting paths in the residual network of the graph. BFS 
technique utilizes queue structure to store and retrieve the nodes. For this purpose, 
it performs with the special functions ENQUEUE and DEQUEUE in the 
simulation. The work flow of the BFS is also explained through flow chart as 
shown in the figure-6.3. The module for BFS in the simulation is mentioned 
below: 
 
• Main  module of the Breadth-first search in Simulation:  
 

Public Function BFS(START As Integer, TARGET As Integer) As Long ‘BFS function for search 

    ‘ 
    Dim U, V As Integer   ‘COUNTER VARIABLES 
     
    For U = 0 To Val(CMBNODES.Text) – 1  ‘INITIALIZATION OF NODES COLOR FLAG 
        COLORS(U) = 0 
    Next U 
     
    HEAD = 0 
    TAIL = 0 
     
    ENQUEUE (START) 
     
    PRED(START) = -1 
     
    Do While (HEAD <> TAIL)    ‘EXECUTE TILL ALL NODES ARE VISITED 
        U = DEQUEUE() 
        For V = 0 To Val(CMBNODES.Text) – 1 
     ‘AGLORITHM CONSTRAINT IS CHECKED HERE. 
            If COLORS(V) = 0 And (CAPACITY(U, V) - FLOW(U, V)) > 0 Then 
                ENQUEUE (V) 
                PRED(V) = U 
            End If 
        Next V 
    Loop 
 
    If COLORS(TARGET) = 2 Then  ‘IF ALL NODES ARE VISITED  
        BFS = COLORS(TARGET)       ' RETURN VALUE 
    End If 
 
 End Function 
 
• Form a one-element queue consisting of the root node. 

Until the queue is empty or the goal has been reached, it determines if the first 

element in the queue as the goal node do nothing (or may stop depending on the 

situation). If the first element is not the goal node, remove the first element from 

the queue and add the first element's children (if any) to the tail of the queue. 

ENQUEUE and DEQUEUE procedures are used to add and remove node from 

the queue, which are mentioned as under: 



National University of Sciences & Technology        MS Dissertation  

 -  - 38

Sub ENQUEUE(X As Integer)  ‘Procedure for add nodes in the Queue.  

‘ 

    Q(TAIL) = X 

    TAIL = TAIL + 1 

    COLORS(X) = 1        'GRAY 

‘ 

End Sub 
 

 

Public Function DEQUEUE() As Long ‘Function for pop-up node from the Queue. 

‘  

   Dim X As Integer 

    X = Q(HEAD) 

    HEAD = HEAD + 1 

    COLORS(X) = 2         ' BLACK 

    DEQUEUE = X            ' RETURN VALUE 

‘ 

End Function 

 

 

• If the goal node has been found, announce success, otherwise announce 
failure as. 

 
If COLORS(TARGET) = 2 Then 
 
        BFS = COLORS(TARGET)       ' RETURN VALUE – Target node reached. 
 
    End If 
 
 

BFS function can be explained through flow chart, shown in figure-6.2 
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Figure-6.2: Flow chart of BFS 
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6.2.3. Minimization function in Simulation 
 

Edmond Karp Algorithm searches the augmenting path in the residual network 
graph. If algorithm gets a path p from s to t, then it tries to get the minimum value 
of the capacity flow cf to maintain the constraint validation of the algorithm. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure – 6.3: Flow chart of minimization function 
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6.2.4. Working of the Simulation 

Simulator is designed on GUI based environment, so the user can easily handle 

and control its operations. The flow chart of the simulator is shown in the figure-

6.4. According to the flow chart of the simulator, it is started with main window, 

where user has three main options for the operations: 
 

a. New 

b. Open 

c. Result Sheet 
 

a. New: This option is used to create or generate the network graph on the graph 

canvas. New option is further divided into sub-options, one is to select the number 

of nodes from the list and draw the graph on the graph canvas, and other is used to 

generate the graph through ‘Auto Generation Interface’. When the algorithm is 

executed on the graph, it produces desired outputs as: 
 

o Augmenting paths (with their respective flows) 

o Execution time (in milliseconds) 

o Identify busy node  

o Value of maximum flow of the graph 

 

The data of Graphs and experiment results can be saved in the data files (if 

required) for the analysis purpose. 
 

b. Open: It is used to open the existing saved graphs from the data files. If graph 

data exists then it is loaded into the memory. Otherwise it is ended with error 

message. The rest of the procedure is the same as performed in the ‘New’ option. 
 

c. Result Sheet: This option is used for showing the experimental results as well 

as for saving of them in result data file. If the proper results data file does not 

exist, then it will show the error message and ends.  
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Figure-6.4. - Flow Chart of Simulation 
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6.3. Performance of the Simulation 
 

The performance of the simulation depends on following parameters, which are 

as under: 
  

o Selection of graph datasets 

o Hardware/Machine (where simulation is executed) 

o Platform (for visual support) 

o Developing tools.  
 

• Selection of graphs datasets: Simulation is designed to run Edmond Karp 

Algorithm under a set of given conditions in the form of input data. These 

inputs are also used to evaluate the performance of the simulation in respect of 

workload. For this purpose three different datasets are selected as input data, 

which are mentioned below: 
 

o User-defined Graphs 

o Auto generated Graphs (with random number of Edges) 

o Auto generated Graphs (with maximum number of Edges) 
 

• Hardware: Performance of the simulation is also depends on the hardware 

where it is executed. Hardware includes execution machine, which consists of 

processor, RAM and space etc. Execution time and efficient visual support 

depends on the fast and high speed processor, large memory capacity and 

huge space. Onward follow experiment results have been collected by 

Simulator, which is executed on 1.7 GHz Processor, 256 MB RAM and 20 

GB hard disk based-machine. 
 

• Platform: Platform provides the supportive services for the Simulator. It can 

also affect the performance of the simulation. Platform includes operating 

system, where simulation runs like Windows 9x/XP/2000. GUI based on 

operation systems (OS) has more graphical support than other platforms. The 

simulation is tested on the Windows XP/2000. The experiments results are 

mentioned in this report are collected on the Window XP based operating 

system. 
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• Development Tool:  Includes Visual Basic 6.0, which is used to implement 

the Edmond Karp maximum flow finding algorithm. File system is used for 

the preservation of experiment results log file. These log files and graph data 

sheets are saved in a plain text file.  

 
 

6.4. Simulation Features 
 

Simulation is designed to run Edmond Karp Algorithm under a set of given 
conditions in the form of input data. Simulator is provided a user friendly and 
mouse driven graphical user interface (GUI) to be integrated, in order to provide a 
user the opportunity to run the algorithm from the displayed menu. Simulator 
design is based on menu-driven interface as shown in figure-6.5. 
 

 
Figure 6.5 : Main Window of the Simulator 
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The main window of the simulator is divided into separate portions according to 

their functions, which are described as: 
 

• Graph Canvas / Result Sheet is used to create graphs or display the 

Results Sheet. Graphs can be designed by user or generated by the ‘Auto 

Generation Interface’. 

• Initialize Graph list is populated when graph data is loaded into the 

memory. It shows the list of all present edges in the graph along with their 

respective capacities. 

• Augmenting Paths list is used to indicate all possible augmenting paths 

existing in the graph. Augmenting Paths list also shows the respective 

flows of the available paths. 

 

6.4.1. Input of the System 

System takes input data in three different methods, which are explained below: 

 

6.4.1.1. Input from User: 

In this method, user creates graph on the Graph Canvas with selected number of 

nodes. These graphs contain two special nodes, which are highlighted in yellow 

colour as shown in figure – 6.6. The system also ensures the correctness of the 

data by imposing checks on input values.  The capacities of the edges should be 

some positive values. User can program the system to simulate the hundreds of 

nodes-based graphs. 
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Figure – 6.6: Draw a Graph from Input  
 

 

6.4.1.2. Input from Saved Files 

System also takes data from the saved graph data files as shown in Figure-6.7. 

These data files are based on plain text files structure, which contain the 

capacities of the edges and coordinates of the nodes. If the correct graph data file 

is selected from the files list, then it is loaded into the memory and initialize 

Graph list of the main window. Otherwise error message (Graph data not found) 

will be popped-up on the screen.  
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Figure – 6.7: Open a Graph from a data file. 

 
6.4.1.3. Input from System 

The performance of the Edmond Karp Algorithm is also tested on random 

generated datasets. The inputs of data graphs are generated by the system through 

“Auto Generation Interface” as shown in figure-6.8. In auto generation interface, 

user defines some parameters as under: 

 

• Number of nodes 

• Selection criteria of edges (maximum or random number of edges) 

• Range of the edges capacities. 
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Figure – 6.8: Interface for Random Generation of Graph 

 
 
6.4.2. Output of System 
 
The main objective of the simulation is to produce outputs for performance 

evaluation of the Edmond Karp Maximum Flow Finding Algorithm. System can 

preserve simulation data at run time in data files. A user can store complete graph 

history as well as performance factor in the data file. The data is essential for: 

 

• The performance evaluation of the algorithm 

• Detailed analysis of the algorithm for the purpose of research 

• User can run any saved simulation any time 

  

There are two types of data files which are used to save simulation data: 

1. User can save the executed outputs of the simulation in the form of 

Results Sheet which contains the tabular presentation of the results for 

analysis purpose, as shown in the figure-6.9. 
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Figure – 6.9: Experiment Result Sheet View (Results Log file) 

 

2. Designed/Generated Graph data can also be stored into a data as shown in 

figure-6.10. Graph data contain the capacities of the edges alongwith the 

coordinates of the vertices. 
 

 
Figure – 6.10: Save the Graph in graph data file. 
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6.4.3. Data Storage 
 
Simulator uses the file system to store the data of the created or generated graphs 

as well as the data of the result data file. File system helps to enhance the 

performance of the simulator. If database storage technique is compared with file 

system technique, then it is observed that database requires connectivity drivers, 

database engine and extra time to access the data from concerned database (it 

means system becomes depended). But in case of file system, it is easy to store 

and get the data from the text file without any kind of dependency. The structure 

of the file is shown in figure-6.11. 

 
 

 
 

Figure – 6.11: Text File for data storage 
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CHAPTER   7 
 

RESULTS AND DISCUSSION 
 

7.1.  Results 
 

This section contains the analysis of experimental results of Edmond Karp 

maximum flow finding algorithm. These results are prepared on the desktop 

(Window XP based platform) computer with a 1.7 GHz Pentium IV processor and 

1GB of RAM.  

 

7.1.1 Dataset Selection Criteria 

The inputs used in experiments are combination of user-defined and auto 

generated datasets. These datasets are instances of the maximum flow 

optimization problem, and correspond to the sets of data forms.  
 

In addition, auto generated datasets are further divided into two sub-datasets on 

the basis of number of edges (random and maximum). The simulator computes 

the number of augmenting paths existed in the different graph datasets. It also 

calculates the optimal solution of maximum flow by using Edmond Karp 

algorithm. The purpose of these datasets is to examine whether any underlying 

structure of the problems is affecting the relative running time of the algorithm. 

Cumulative Average Time is used to analyse the average running time of the 

algorithm in different data inputs. The data selection criteria can be defined as: 

• User-Defined Graphs Data 

• Auto Generated Graph Data (with Random Number of Edges) 

• Auto Generated Graph Data (with Maximum Number of Edges) 
 

7.1.2. Experiment Results 

The results of experiments of datasets are mentioned below: 
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7.1.2.1. Experiment 1: 
 

EXPERIMENT RESULTS (USER DEFINED GRAPHS) 

S # 
Number of 

Vertices 
Number 
of Edges 

Number 
of Paths 

Maximum 
Flow 

*Busy 
Node 

Number of 
Maximum Edges 

Running  
Time (ms) 

1 5 13 5 88 3 (3) 18 0 
2 10 22 6 145 2 (3) 88 0 
3 20 45 5 55 1 (3) 378 0 
4 30 99 20 1467 8 (7) 868 1.5625 
5 40 106 14 358 10 (7) 1558 1.6075 
6 50 121 21 270 30 (9) 2448 3.125 
7 60 158 32 785 4 (17) 3538 4.6875 
8 70 170 30 511 12 (12) 4828 6.25 
9 100 205 23 1326 22 (4) 9898 7.2250 

*Node (Number of maximum paths) 
 

Table-7.1: Experiment Results of User-defined Graphs – Experiment 1 
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Figure-7.1: Graphical representation of User-defined Graphs – Experiment 1 
 

EXPERIMENT RESULTS (AUTO GENERATED GRAPHS WITH RANDOM EDGES) 

S # 
Number of 

Vertices 
Number 
of Edges 

Number 
of Paths 

Maximum 
Flow 

*Busy 
Node 

Number of 
Maximum Edges 

Running  
Time (ms) 

1 5 10 3 1279 1 (6) 18 0 
2 10 44 4 1955 5 (1) 88 1.4625 
3 20 164 13 2141 12 (12) 378 2.0625 
4 30 497 36 8243 13 (66) 868 3.0255 
5 40 1266 71 15157 38 (9) 1558 4.6875 
6 50 1846 73 18095 2 (18) 2448 7.8125 
7 60 2823 96 20697 4 (7) 3538 14.0625 
8 70 3394 99 19473 4 (6) 4828 18.75 
9 80 3499 87 22256 62 (8) 6318 20.3125 

10 90 4394 119 23076 16 (8) 8008 32.8125 
11 100 6899 154 31065 39 (16) 9898 43.75 

* Node (Number of maximum paths) 
Table-7.2: Experiment Results of Auto Generated Graphs with Random Edges)  
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Figure-7.2: Graphical representation of Auto Generated Graphs with Random Edges 
 
 
 

EXPERIMENTAL RESULTS (AUTO GENEREATED GRAPHS WITH MAXIMUM EDGES) 

S # 
Number of 

Vertices 
Number 
of Edges 

Number 
of Paths 

Maximum 
Flow 

*Busy 
Node 

Number of 
Maximum Edges 

Running  
Time (ms) 

1 5 18 3 860 1 (1) 18 0 
2 10 88 15 4096 4 (5) 88 0.5625 
3 20 378 40 9147 14 (7) 378 1.5662 
4 30 868 55 12015 20 (9) 868 3.125 
5 40 1557 79 20594 28 (9) 1558 6.25 
6 50 2446 100 23327 36 (7) 2448 10.9375 
7 60 3536 109 24939 46 (6) 3538 15.625 
8 70 4824 120 28325 25 (8) 4828 21.875 
9 80 6315 172 39485 69 (9) 6318 39.0625 

10 90 8005 172 42190 6 (8) 8008 46.875 
11 100 9894 207 51651 2 (7) 9898 70.312 

* Node (Number of maximum paths) 
 

Table-7.3: Experiment Results of Auto Generated Graphs with Maximum Edges) 
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Figure-7.3: Graphical representation of Auto Generated Graphs with Maximum Edges  
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Figure-7.4: Graphical representation of Experiment 1  
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7.1.2.2. Experiment 2: 
 

EXPERIMENTAL RESULTS (USER DEFINED GRAPHS) 

S # 
Number of 

Vertices 
Number 
of Edges 

Number 
of Paths 

Maximum 
Flow 

*Busy 
Node 

Number of 
Maximum Edges 

Running 
Time (ms) 

1 5 10 3 439 1 (4) 18 0 
2 10 24 6 861 7 (4) 88 0 
3 20 53 11 1006 8 (7) 378 0.8625 
4 30 107 16 2549 1 (16) 868 1.5625 
5 40 116 18 861 9 (16) 1558 1.8625 
6 50 129 22 3060 48 (9) 2448 3.342 
7 60 182 29 3749 3 (9) 3538 4.6875 
8 70 145 30 524 2 (18) 4828 6.1534 
9 100 198 27 1357 21 (6) 9898 7.8125 

 

* Node (Number of maximum paths) 
 

Table-7.4: Experiment Results of User-defined Graphs) – Experiment 2 
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Figure-7.5: Graphical representation of User-defined Graphs – Experiment 2 
 

EXPERIMENTAL RESULTS (AUTO GENERATED GRAPHS WITH RANDOM EDGES) 

S # 
Number of 

Vertices 
Number 
of Edges 

Number 
of Paths 

Maximum 
Flow 

*Busy 
Node 

Number of 
Maximum Edges 

Running  
Time (ms) 

1 5 8 2 357 2 (2) 18 0 
2 10 53 10 1954 4 (30) 88 0 
3 20 152 15 3838 13 (5) 378 1.4225 
4 30 508 30 4828 20 (6) 868 2.5635 
5 40 1258 67 15585 29 (6) 1558 6.25 
6 50 1846 73 18095 2 (9) 2448 7.8125 
7 60 2846 91 19989 4 (8) 3538 12.5 
8 70 3366 109 22982 40 (7) 4828 18.75 
9 80 3499 87 22256 62 (8) 6318 20.3125 

10 90 4008 105 17657 1 (7) 8008 29.6875 
11 100 6904 157 35758 64 (8) 9898 51.5625 

* Node (Number of maximum paths) 
Table-7.5: Experiment Results of Auto Generated Graphs with Random Edges) – Expriment2 
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Experiment Results 
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Figure-7.6: Graphical representation of Auto Generated Graphs with Random Edges 
 

EXPERIMENTAL RESULTS (AUTO GENERATED GRAPHS WITH MAXIMUM EDGES) 

S # 
Number of 

Vertices 
Number 
of Edges 

Number 
of Paths 

Maximum 
Flow 

*Busy 
Node 

Number of 
Maximum Edges 

Running  
Time (ms) 

1 5 18 4 1439 1 (2) 18 0 
2 10 88 11 2096 3 (6) 88 0.0625 
3 20 378 31 8151 13 (7) 378 1.8725 
4 30 868 62 14729 13 (8) 868 3.125 
5 40 1557 66 16170 19 (6) 1558 4.6875 
6 50 2445 102 23731 7 (6) 2448 10.9375 
7 60 3535 115 28736 13 (8) 3538 15.625 
8 70 4827 139 30905 20 (9) 4828 25.0265 
9 80 6315 179 37755 22 (8) 6318 39.0625 

10 90 8006 170 37529 9 (8) 8008 46.875 
11 100 9893 211 50864 52 (8) 9898 70.3125 

* Node (Number of maximum paths) 
 

Table-7.6: Experiment Results of Auto Generated Graphs with Maximum Edges) – Experiment2 
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Figure-7.7: Graphical representation of Auto Generated Graphs with Maximum Edges 
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Experiment Results of Experiment 2
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Figure-7.8: Graphical representation of Experiment 2 
 
 

7.1.2.3. Cumulative Average Running Time 
Dateset Types Average Running Time (ms) Cumulative Average 

Running Time (ms) Experiment 1 Experiment 2 

User Defined Graphs 2.7158 2.9224 2.8571 
Auto Generated  

(with Random Edges) 13.5216 13.7146 13.6181 

Auto Generated  

(with Maximum Edges) 19.6537 19.7749 19.7143 
 

Table 7.7: Cumulative Average Running Time (ms)   

 
Dateset Types Vertices Edges Cum. Avg. Running Time 

(ms) 

User Defined Graphs 5-100 10-205 2.8571 

Auto Generated  

(with Random Edges) 
5-100 10-6904 13.6181 

Auto Generated  

(with Maximum Edges) 
5-100 18-9894 19.7143 

 

Table 7.8: All Datasets Input Ranges   
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The cumulative average running time of these two experiments are shown in 

Table-7.7. According to the cumulative average time, Edmond Karp algorithm is 

shown as worst case scenario in Auto generated graphs (with maximum number 

of edges). In these datasets algorithm traversed in maximum number of time to 

search out the existing paths in directed graphs.  
 

7.2. Discussion 
Following is the discussion and explanation of experimental results achieved by 

simulation of the Edmond Karp Algorithm. 
 

 

 

7.2.1. Running Time Complexity 

Analysis about the running time of Edmond Karp Algorithm on a given directed 

graph G(V,E), it usually measures the size of the input in terms of the number of 

vertices |V| and the number of edges |E| of the graph, i.e, there are two parameters 

described the size of the input and not just one.  

The performance of the Edmond Karp algorithm is observed through these 

experiment results, regarding to the number of augmenting paths, maximum flow 

and execution time. Simulation is behaved normally in all three categories of the 

two experiments.   
 

7.2.2. Factors affect the Running Time of the Algorithm 
 

The factors which affect the running time of the maximum flow finding algorithm 

are mentioned below: 
 

7.2.2.1. Inputs of the Graph  

The running time of the Edmond Karp maximum flow finding algorithm is 

O(VE2). It means that the running time of the algorithm is influenced by the graph 

inputs, which are vertices (V) and edges (E). It is explained with the help of an 

example. Kindly refer to experiment 1, inputs of the graphs at serial no. 7, 8 and 9 

of Table-7.1, which shows the increase in running time with the increase in inputs 

of the graphs data G(V,E) between serial no. 7 & 8, and serial no. 8 & 9. When 

number of edges is increased then algorithm has to traverse among all the edges to 

find out the augmenting paths without violating constraints of the algorithm, 
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which required more running time and vise-versa. It shows that the inputs of the 

graph are directly proportional to execution time of the algorithm to some extent. 

The density of the graph data is also one of the causes for the increase in 

execution time of the algorithm. Same behavior of running time is observed in all 

two experiments. 

 

7.2.2.2. Number of Augmenting Paths  

The strategy of Edmond Karp Algorithm is to search the augmenting paths, to 

augment alongwith these paths in residual network, to update residual capacities 

cf(u,v), respective edge flows f(u,v) and to delete the saturated edges (zero 

capacity edges) until sink is no longer reachable from the source. Total number of 

paths describes that how many times algorithm is traversed in the residual 

network for the searching of augmenting paths. It is also observed by these 

experiments that the running time of the algorithm is also affected due to the 

number of augmenting paths in the directed graphs. For example, in Table 7.3 of 

experiment 1 graphs at serial no. 7, 8 and 9 contain the 109, 120 and 172 

augmenting paths and their running times are 15.625, 21.875, 39.062 ms 

respectively. It is also observed that the influence of fluctuation in the number of 

paths is also reflected in their respective running time.      
 

7.2.2.3. Influence of Searching Technique 

Edmond Karp utilizes breadth-first search (BFS) technique for searching of 

augmenting paths. BFS always tries to search the shortest paths on priority basis 

for achieving its target. The level of graph G(V,E) is directed breadth-first search 

to start with the root source vertex with sideways and back edges to search a path. 

The level of a destination vertex is the length of the shortest path from s to t in 

G(V,E). If the destination vertex is at the deepest level of the graph, then it 

becomes the worst case scenario of the Breadth-first Search. So the search 

technique also affects the performance of the Edmond Karp algorithm regarding 

its running time and space complexity. 
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7.2.2.4. Symmetry Edges 
 

For the maximum flow problems, it is assumed that the input network is 

symmetric. If the graph G contains more symmetric edges and less shortest-paths 

p for the Breadth-first Search, then running time of the maximum flow finding 

algorithm is increased to some extent. Therefore, the execution time of the 

maximum flow algorithm can be increased or visa-versa. 

 

7.2.2.5. Calculation of large capacity Edges 

Arithmetic operations are also involved to calculate the maximum flow of the 

directed graph G(V,E). It is also observed that if graph G(V,E) contains large 

capacities c(u,v) values then it may affect the execution time of the algorithm in 

respect of its arithmetic operations, it can be analysed by results shown in Table 

7.3. Graphs at serial no. 10 and 11, their maximum flows are 42190 and 51651 

with the running time of 46.875 and 70.312 ms respectively.  
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CHAPTER  8 
Conclusions and Future Enhancements 

 
8.1. Conclusions 
 

Through this research, behavior of the Edmond Karp maximum flow finding 

algorithm is observed and the idea of busy node is elaborated. These test results 

produced by the simulator shows the efficiency and performance of the Edmond-

Karp algorithm. Breadth first Searching (BFS) technique performed the vital role 

in the performance of the said algorithm. Ford-Fulkerson runs in polynomial time 

O(E│f*│) and depends on the maximum flow f*, but Edmonds-Karp runs in 

O(VE2) time by modifying Ford-Fulkerson Method to use breadth first search to 

identify augmenting flows. This algorithm can also be analysed by using other 

searching techniques and simulation can be further enhanced for the concept of 

multiple sources and destination based graphs or the gain factor involved in 

maximum flow finding algorithms. 
 

Computer network systems are using the maximum flow algorithms to control the 

congestion of the network traffic. One of the objectives of maximum flow finding 

algorithm is to maximize flow in the network to achieve optimal solution for the 

practical applications implementations. Efficient maximum flow finding 

algorithm depends on efficient techniques to search out the augmenting paths in 

the network. 
 

Maximum flow is an important aspect of network traffic optimization and image 

processing enhancement. As network graphs are the most important resource, to 

analysis the performance of Edmond Karp algorithm. Many algorithms have been 

designed to implement maximum flows in the networks. Design methods include 

analytic modeling, deterministic modeling and simulations. Simulation being the 

most accurate of all is commonly employed for system’s performance evaluation 
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despite the fact that they require complex programming for developing an 

efficient simulator. 

This work involves development of a simulator for proposed Edmond Karp 

maximum flow finding algorithm with analysis for the optimized performance of 

Edmond Karp algorithm in different datasets. Using this simulator deterministic 

evaluation of Edmond Karp algorithm can also be performed. Implementation and 

visual presentation of Edmond Karp can be used for the understanding and 

training of the students. It provides the following as outputs: 
 

• Optimal Augmenting Paths found in the residual network. 

• Indicate the Busy node in the network. 

• Calculate the optimal solution for the maximum flow. 

• Calculate the running time of the different datasets in milliseconds. 

• Save the Graphs and experiment results for analysis purposes. 

This work presents a simulator that uses graphical animation to convey the 

concepts of Edmond Karp maximum flow find algorithm for the different 

datasets. The simulator is unique in a number of respects. First, it uses a more 

realistic model that can be configured easily by the user. Second, it graphically 

highlights the each augmenting path and its respective flow obtained from it. 

Using this representation, it becomes much easier to understand concept and 

performance of the implemented algorithm for different datasets. The simulator 

can be used by students in algorithms and design courses or by anyone interested 

in learning maximum flow finding algorithms in an easier and a more effective 

way. The system is designed to mimic the dynamic behavior of the system over 

time related to calculate maximum flow. It runs self driven simulations and uses a 

synthetic workload that is artificially generated to resemble the expected 

conditions in the modeled system.  
 

A user friendly and mouse driven Graphical User Interface (GUI) has been 

integrated .It provides the user an opportunity to save the input of all graphs either 

designed by user or generated by simulator. It also provides the user an 

opportunity to generate a report sheet, which shows graphical as well as analytical 

results. It uses file system design to save the graphs and results data, which makes 



National University of Sciences & Technology        MS Dissertation  

 -  - 63

the system faster as compared to the use of database for storage of results. This 

feature makes the system attractive for experimental analysis as academic use.  

In simulation, it is difficult to impose time management, since scenarios can be 

changed according to the graph structure. However, in this case datasets are pre-

defined before simulation starts, time management policy can be defined. 

 

8.2. Future Enhancements  
The following future enhancements are suggested: 
 

• Multiple Source and Sink Nodes 

This simulation can be enhanced for the concept of multiple source and 

sink / destination nodes as shown in Figure – 8.1. 

 

 

 

 

 

 

 

Figure – 8.1: Multiple source and sink nodes graph 

 

 

• Analysis Gain Factor (GF) in Maximum Flow 

Simulation can further enhanced to analysis the affect of the gain factor 

on the maximum flow problems [9]. Gain Factor represents the lost 

portion of the flow during the traversal in the directed graph. 

 

• Utilize other Searching Techniques in Edmond Karp Algorithm 

Edmond Karp algorithm can be tested by some other available searching 

techniques, like uniform-cost search or bidirectional search. 
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