
i

Event Scheduling:
An Ant-Inspired Hybrid Approach

By

Naveed Ejaz
2003-NUST-MS PhD-CSE-218

Submitted to the Department of Computer Engineering
In fulfillment of the requirements for the degree of

Master of Science
In

Computer Software Engineering

Thesis Supervisor
Dr. Muhammad Younus Javed

PhD (CS), UK

College of Electrical & Mechanical Engineering
National University of Sciences & Technology

2009

ii

iii

ACKNOWLEDGMENTS

 All praise to Allah (The Almighty) who enlightened me with the requisite

knowledge to accomplish this task.

 I extend my deepest gratitude to all the people whose help and support enabled

me achieve my goal. I am thankful to my parents for being a constant source of

encouragement, to my wife for her patience and support, and to my brother, Khalid for

his assistance and useful suggestions.

 I thank the faculty members of Computer Engineering Department for their

assistance and cooperation, especially Dr. Farooque Azam, Dr. Shaleeza Sohail and

Dr. Ghalib Asadullah Shah.

 Special thanks to my thesis supervisor Dr. Muhammad Younus Javed who has

been a constant source of inspiration for me. Without his guidance, encouragement

and support, this task would not have been possible.
.

iv

Dedicated to my parents for their love, trust and care!

v

ABSTRACT

 In the present day’s fast-paced world, there is a great emphasis on organized and

efficient use of resources and scheduling has become an important part of daily life; be

it work, education, transport or entertainment. In many real-world cases, particularly

where resources are not in abundance, and domain-specific requirements are complex,

the construction of usable and effective schedules can be a very challenging task. Due

to its importance and complexities involved in its construction, automation of

scheduling is an imperative task for every sizable organization, to enable it to make the

most out of its time and resources.

 Event scheduling is a combinational optimization problem which belongs to a

class of NP-complete problems along with other ‘difficult-to-solve’ problems like

Traveling Salesman Problem, Bin-packing and Graph-coloring. In these problems, only

surety to find best solution is by checking all the possible solutions using brute-

force/exhaustive search, which is not practically possible due to very high

computational costs. Being an NP-Complete problem, a time-bound solution for

Scheduling problems can not be guaranteed by any of the algorithms. Therefore, new

ideas and approaches for the solution provide new opportunities towards more complete

and better working algorithms. In addition, different scenarios have different constraint-

sets, which need different approaches towards solution; therefore, devising a general

framework which can cater for different scenarios may be helpful in many application

areas.

 In this thesis, a hybrid two-stage framework has been presented. The approach is

inspired by the mutual-aid and persistent/die-hard behavior of ants exhibited when

faced with difficult scenario while collecting food, thus named “Die-Hard Co-Operative

Ant Behavior Approach” (DCABA). An initial assignment of events is obtained with

the help of a set of heuristics and it is evolved by searching promising areas of search-

space by finding the problematic events instead of random search. The search space is

limited by defining some more heuristics. In the first stage, a feasible solution is

constructed and in the second stage, optimizer functions improve quality of the

vi

obtained solution. Many different heuristics and techniques may be used within this

framework. The approach has been applied on a set of University Course Scheduling

Instances and promising results have been obtained. This approach may also be used for

the solution of job shop scheduling, traveling salesman problem and vehicle route

scheduling problem.

 This research work is useful for a host of scenarios where automation of

scheduling can help improve performance, efficiency and time management.

vii

TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION………………….…………………...… 9
1.1 Background and Motivation…………………………………...................... 10
1.2 Areas of Application………………………………………………………. 11
1.3 Introduction to Event Scheduling…………………………………………. 11

1.3.1 Timetabling……………………………………………………………... 12
1.3.2 Sequencing…………………………………………….………………... 12
1.3.3 Rostering…………………………………………………….………….. 13
1.3.4 Scheduling…………………………………………………………….... 13

1.4 Constraints involved in Event Scheduling………………………………… 13
1.4.1 Hard constraints……………………………………………………….. 13
1.4.2 Soft constraints…………………………………………………………. 14
1.4.3 Classification of Event Scheduling Constraints…………………….. 14

1.4.3.1 Unary Constraints ………………………………………………. 15
1.4.3.2 Binary Constraints……………………………………………………. 15
1.4.3.3 Capacity Constraints…………………………………………………. 15
1.4.3.4 Event Spread Constraints……………………………………………. 15
1.4.3.5 Agent Constraints…………………………………………………….. 15

1.5 NP-Complete nature of Event Scheduling Problems……………………… 16
1.6 Graph Coloring Model for Event Scheduling…………………………….. 16
1.7 Academic Scheduling…………………………………………………….. 18

1.7.1 School Scheduling……………………………………………………… 18
1.7.2 Examination Scheduling……………………………………………… 19
1.7.3 Course Scheduling…………………………………………………….. 19
1.7.4 Constraints involved in Course Scheduling………………………… 20

1.8 Problem Formulation……………………………………………………… 20
1.8.1 Problem Specification………………………………………………….. 21
1.8.2 Specification of Goals………………………………………………….. 22
1.8.3 Solution Evaluation……………………………………………………. 22

CHAPTER 2: LITERATURE SURVEY………………………………….. 24
2.1 Overview of Research in Academic Scheduling………………………….. 25
2.2 Approaches to Automated Scheduling……………………………………. 25

2.2.1 Sequential Methods …………………………………………………… 25
2.2.2 Constraint Based Methods……………………………………………. 26
2.2.3 Knowledge Based Methods…………………………………………… 26
2.2.4 Local Search Methods…………………………………………………. 27
2.2.5 Cluster Methods………………………………………………………... 28
2.2.6 Hyper-Heuristic Methods…………………………………………….. 28
2.2.7 Decomposition Methods……………………………………………… 29

2.3 Meta-Heuristic Methods………………………………………………….. 29
2.3.1 Tabu Search…………………………………………………………….. 29
2.3.2 Simulated Annealing………………………………………………….. 30
2.3.3 Genetic/Evolutionary Algorithms…………………………………… 31
2.3.4 Ant Algorithms……………………………………………………….... 31
2.3.5 Classification of Meta-Heuristic Methods…………………………... 32

2.3.5.1 One-Stage Optimization Algorithms………………………………… 32
2.3.5.2 Two-Stage Optimization Algorithms………………………………… 33
2.3.5.3 Algorithms that allow Relaxations…………………………………… 33

2.4 Comparison of Scheduling Approaches…………………………………… 33
2.5 Summary…………………………………………………………………... 34

viii

CHAPTER 3: DIE-HARD COOPERATIVE ANT BEHAVIOR APPROACH. 36
3.1 Overview and Inspiration………………………………………………….. 37
3.2 DCABA Modeling………………………………………………………… 39

3.2.1 DCABA Modeling for Phase-1 (Allocation)…………………………….. 39
3.2.2 Functions and Operators in Phase 1…………………………………….. 41

3.2.2.1 Heuristic-Selection Operator……………………………………….. 41
3.2.2.2 Allocation Operator………………………………………………….. 42
3.2.2.3 Helper Functions……………………………………………………. 42
3.2.2.4 Random-Shuffle Operator………………………………………….. 43
3.2.2.5 Selective-Shuffle Operator…………………………………………. 43

3.2.3 DCABA Modeling for Phase-2 (Optimization)………………………... 43
3.2.4 Functions and Operators in Phase 2…………………………………….. 44

3.2.4.1 Steepest-Ascent Hill Climbing……………………………………… 44
3.2.4.2 Optimization-Operator………………………………………………. 44
3.2.4.2 Least-Penalty-Shuffle Operator…………………………………….. 44

3.3 Important characteristics of DCABA……………………………………… 45

CHAPTER 4: DCABA IMPLEMENTATION…………………………... 46
4.1 Implementation Details……………………………………………………. 47
4.2 Input/Output……………………………………………………………….. 47
4.3 Experimental Setup……………………………………………………….. 48

4.3.1 Study 1: Allocation + Optimization……………………………………... 48
4.3.1.1 Problem Instances…………………………………………………… 49
4.3.1.2 Mechanism for Obtaining Results………………………………….. 49

4.3.2 Study 2: Allocation………………………………………………………... 50
4.3.2.1 Problem Instances…………………………………………………… 50
4.3.2.2 Mechanism for Obtaining Results………………………………….. 54

4.3.3 Study 3: Effect of using Individual Heuristic Operators……………… 54
4.3.3.1 Problem Instances…………………………………………………… 55
4.3.3.2 Mechanism for Obtaining Results………………………………….. 55

Chapter 5: Discussion of Results and Future Work…………………… 56
5.1 Study 1……………………………………………………………………. 57

5.1.1 Results…………………………………………………………………………. 57
5.1.2 Legend…………………………………………………………………………. 57
5.1.3 Findings……………………………………………………………………….. 58

5.2 Study 2……………………………………………………………………. 59
5.2.1 Results…………………………………………………………………………. 59
5.2.2 Legend………………………………………………………………………… 59
5.2.3 Findings………………………………………………………………………. 60

5.3 Study 3……………………………………………………………………. 61
5.3.1 Overall Results……………………………………………………………….. 61
5.3.2 Findings (Overall)…………………………………………………………….. 61
5.3.3 Results of Large Instances……………………………………………………. 62
5.3.4 Findings (Large Instances)…………………………………………………… 62
5.3.5 Results of Medium Instances……………………………………………….. 63
5.3.6 Findings (Medium Instances)……………………………………………..… 63
5.3.7 Results of Small Instances……………………………………………………. 64
5.3.8 Findings (Small Instances)…………………………………………………… 64
5.3.9 Random Behaviors……………………………………………………………. 65

5.4 Conclusions……………………………………………………………….. 66
5.5 Future Work……………………………………………………………….. 67

APPENDIX-A: RESEARCH PUBLICATION………………………….. 68
APPENDIX-B: FLOW CHART…………………………………………... 75
APPENDIX-C: REFERENCES…………………………………………… 79

ix

APPENDIX-B FLOW CHARTS

__

76

SelectShortestPath

SolutionSeeking

Process

Helper

Orientation
Changer

Solution Found /
Time-limit over

Failure

Failure

Success

Success

Solution
So far

Failure

B.1 DCABA Model for Event Scheduling

APPENDIX-B FLOW CHARTS

__

77

Heuristic-Selection Operator

Allocation
Operator

HelperFunctions

Random-Shuffle
Operator

Failure

Success

Solution
So far

Success

Selective-Shuffle
Operator

Success

Failure

Failure

Failure

Open Next Period

Solution Found /
Time-limit over

B.2 DCABA Model for Allocation Phase

APPENDIX-B FLOW CHARTS

__

78

Select SteepestAcsent HillClimbing

Optimizer
Function-1

Least-Penalty
Shuffle Operator

Failure
Success

Success

Solution
So far

Failure

Optimizer
Function-2

Failure

Success

 B.3 DCABA Model for Optimization Phase

CHAPTER 1 INTRODUCTION

__

10

Chapter 1: Introduction
1.1 Background and Motivation

 Scheduling has become an important part of today’s organized and modern

world. Schedules, timetables and agenda are everywhere in many areas of daily life.

These schedules often need to be updated and re-made on a regular basis. Given

this fact and the importance of schedules in the daily lives of the people, automation

of scheduling problems attracts a lot of interest and effort from researchers. In many

cases, particularly where there is an emphasis on efficient use of resources, the

problem of constructing usable and effective schedules can be a demanding task.

 From a researcher’s perspective, generally all variants of scheduling problems

belong to the class of NP-complete problems, as will be discussed in detail later. So

there is no known deterministic polynomially bounded algorithm for solving them.

Secondly, different scheduling problems also become complicated due to the needs

and priorities of the users. For example, different organizations will have their own

thinking of what is a usable and good schedule, and will therefore have their own set

of constraints. Therefore an approach that is successful for one particular problem

may not be suitable for other scenarios. As the scheduling problems in different

scenarios can not be generalized due to these constraints, there is a need for

diversity in the available approaches in research.

 In the perspective of computer science, scheduling is generally modeled as a

Combinatorial Optimization Problem. The objective in such problems, in the context

of scheduling, is to find an assignment of timeslots for each of the events, so that the

solution is optimal according to the given criteria. It means the problem is to find the

best possible solution out of all possible solutions. So a brute-force approach which

visits all possible solutions is best suited for scheduling problems; however, such

approach is only applicable in a very small problem instance. As the problem size

gets bigger, the search space grows exponentially, thus making this approach in-

feasible. Therefore, other approaches must be considered, which can provide a

solution in polynomial time. The resulting solution may not be the best possible, but

may be usable for practical purpose.

CHAPTER 1 INTRODUCTION

__

11

 The above discussion implies that new ideas and approaches for solving

scheduling problems provide more opportunities towards better solutions. Keeping in

view this motivation, the approach presented in this thesis is an attempt towards

solving scheduling problems using the concept of evolution. This approach provides

a general framework and may be used for solution of a number of scheduling

problems. For the course of this thesis, the university course scheduling problem is

considered.

1.2 Areas of Application
 The areas of application include the following:

• Job and process scheduling in industries and production facilities,

• Course and examination scheduling in educational institutes,

• Vehicle route and tour scheduling in transportation systems,

• Frequency allocation in wireless and mobile networks,

• Rostering in military establishments and hospitals,

• Employee scheduling,

• Sporting events and tournament scheduling.

1.3 Introduction to Event Scheduling

 A generalized definition of event scheduling derived from the literature is: ‘the

allocation of resources to events in timeslots, in such a way that given constraints

are not violated’.

 Different words have been used to describe scheduling problems in daily life

scenarios. A timetable describes when a particular event has to take place, for

instance i) in transportation system, a timetable is a statement of when journeys are

taken by vehicles on different routes. ii) In schools where a sole teacher carries out

all the events of a class and where these events take place in the same room a

timetable represents a sequence in which these events take place. Iii) Whereas in a

university, a timetable shows the sequences of events keeping in view the availability

of teachers and resources. iv) An examination schedule assigns locations on the

basis of sizes of classes and facilities needed to undertake the examination. v) In

CHAPTER 1 INTRODUCTION

__

12

hospitals and military establishments, rosters define the assignment of duties to

personnel’s in a specific pattern.

 All the activities related to development of such timetables, schedules or

sequences are examples of event scheduling.

 Timetable, schedule, roster and sequence are often considered synonymous,

but literature makes certain distinctions among these terms. A timetable generally

shows when (in term of time) particular events are to take place. A sequence is an

order in which activities take place. A roster is assignment of resources to timeslots

in a rotating pattern. A schedule includes all the specific information necessary for

an activity to take place. This specific information includes:

• times at which activities are to take place,

• the order in which they take place,

• the assignment of required resources,

• any special needs of individuals or resources.

 The above-mentioned terms can be formally defined as follows:

1.3.1 Timetabling

 Timetabling is the allocation, subject to constraints, of given resources to

objects being placed in space-time, so that a set of desirable objectives is satisfied

as nearly as possible. Examples of timetabling are school class and examination

timetabling and some forms of resource-to-personnel allocation.

1.3.2 Sequencing

 Sequencing is the construction, subject to constraints, of an order in which

activities are to be carried out or objects are to be placed in some representation of a

solution. Examples of sequencing are simple job-shop scheduling. For example,

order of jobs being carried out in a factory is a sequence if jobs go through each

machine in the same order.

CHAPTER 1 INTRODUCTION

__

13

1.3.3 Rostering
 Rostering is the placing, subject to constraints, of resources into slots in a

pattern. One may seek to minimize some objective, or simply to obtain a feasible

allocation. Often the resources will rotate through a roster.

1.3.4 Scheduling
 Scheduling is the allocation, subject to constraints, of resources to objects

being placed in space-time in such a way as to minimize the total cost of some set of

the resources used. Common examples of scheduling are university course and

examination scheduling in which many courses, labs, exams or tutorials are to be

assigned, keeping in view the availability of students, teachers and other resources.

Another example is transport scheduling or vehicle routing which seeks to minimize

the number of vehicles or drivers. Another example is job shop scheduling which

may seek to minimize the number of time periods used, and the physical resources.

 Some of the above-mentioned problems may fit to more than one of the

definitions, resulting in these terms often being used loosely; however, all these

problems lie in the broad scope of a schedule. Therefore, we can generalize a

schedule to constitute the characteristics of timetable, sequence, roster and that of

any other constraints that may be involved.

1.4 Constraints involved in Event Scheduling
 As discussed above, the goal of scheduling is to solve problems relating to

the allocation of resources to objects being placed in space-time. The problems often

involve the satisfaction of certain pre-defined conditions or objectives. These

conditions are called constraints in terms of scheduling and are generally classified

in two broad categories [1].

1.4.1 Hard constraints

 These constraints must not be violated as a violation makes the schedule

useless. e.g., allocation of two events needing the same resources in one timeslot is

an example of hard constraint violation. Hard constraints are described as follows:

• No resource can be demanded for more than one place at any single time.

CHAPTER 1 INTRODUCTION

__

14

• For each time period there should be sufficient resources available for all

the events that have been scheduled for that time period.

1.4.2 Soft constraints

 These conditions should be satisfied if possible as violations decrease the

quality of schedule. e.g., putting too much burden on one resource by using it in

adjacent timeslots is an example of soft constraint violation. In real-world situations it

is usually impossible to satisfy all soft constraints. These constraints represent those

conditions that are desirable but not absolutely essential for a schedule. A number of

soft constraints may be encountered in different scheduling problems. These soft

constraints are generally categorized as under:

• Time assignment: An event may need to be scheduled in a particular

time period.

• Time constraints between events: One event may need to be scheduled

before or after the other.

• Spreading events out in time: Events may need to be scheduled in

periods not consecutive to each other or on different days.

• Coherence: People may prefer to have the events related to them,

scheduled in a number of working days and to have a number of free

days.

• Resource assignment: Events may need some resource at a particular

time or an event may need to be placed at a particular place which

contains a particular resource.

• Continuity: Any constraints whose main purpose is to ensure that certain

features of timetables are constant or predictable. For example, related

events should be scheduled in the same room, or at the same time of day

in every week.”

1.4.3 Classification of Event Scheduling Constraints

 Keeping in view the wide variety of constraints that may be encountered in

different scheduling problems, scheduling constraints (both hard and soft) have been

categorized into five classes [2].

CHAPTER 1 INTRODUCTION

__

15

 1.4.3.1 Unary Constraints

 These are constraints that involve just one event, such as the constraint

“event a, must not take place on a Tuesday”, or the constraint “event a, must occur

in timeslot b”. Both of these examples can be hard or soft constraints.

1.4.3.2 Binary Constraints

 These sorts of constraints concern pairs of events, such as the event-clash

constraint which states that two events can not be scheduled at one time even in

different places, or those that involve the ordering of events such as the constraint

“event a must take place before event b”. These constraints can also be hard or soft.

1.4.3.3 Capacity Constraints

 These are constraints that are governed by room capacities, etc. For example

“All events should be assigned to a room which has a sufficient capacity”. This

particular example is usually a hard constraint.

1.4.3.4 Event Spread Constraints

 These are the constraints that concern requirements such as the “spreading-

out” or “clumping-together” of events within the timetable in order to ease workload,

and/or to agree with timetabling policy of an organization. This is usually a soft

constraint.

1.4.3.5 Agent Constraints

 These are the constraints that are imposed in order to promote the

preferences of the people who will use the timetables, such as the constraint

“lecturer x likes to teach event a”, or “lecturer y likes to have n free mornings per

week”. This can be a hard or soft constraint.

 There is an infinitely wide range of constraints that may be encountered in

scheduling problems. From practical point of view, this is understandable as different

scheduling situations are likely to have their own specific needs and policies. For

example, an airline may specify that more and more flights to one destination be

scheduled during a specific period in order to cater for an occasion; at other time,

however, it may prefer the flights to be as few as possible. For example, PIA needs

to schedules more flights to Saudi Arabia for Hajj.

CHAPTER 1 INTRODUCTION

__

16

 From a research point of view, this nature of scheduling makes it very difficult

to formulate useful generalizations about the problem. The above-mentioned

difficulties make the scheduling problems NP-complete in almost all variants.

1.5 NP-Complete nature of Event Scheduling Problems
 Event scheduling has been known to belong to the class of problems called

NP-complete, i.e., no method of solving it in a reasonable (polynomial) amount of

time is yet known [1]. In [3], Cooper and Kingston have shown a number of proofs to

demonstrate the NP-complete nature of scheduling problems. They provided

polynomial bounded transformations from well-known NP-complete problems such

as graph coloring, bin-packing, and three-dimensional matching to many different

variants of the scheduling problem. In [4], Itai, Even and Shamir have also shown a

transformation of the NP-complete 3-SAT problem into a scheduling problem.

 The NP-complete nature means that if we want to obtain a workable schedule

in a reasonable time, this will depend very much on the nature of the problem

instance being tackled. Some universities, for example, may have scheduling

requirements that are fairly loose: for example, there is a large number of rooms, or

only a very small number of events that need to be scheduled. In these cases,

maybe there is a lot of good schedules within the total search space, of which one or

more can be found quite easily. On the other hand, requirements of some university

might be much more demanding, and perhaps only a very small proportion of the

search space will be occupied by workable schedules. In practice, the combination of

constraints may often result in problems that are impossible to solve unless some of

the constraints are relaxed. In case of these harder scheduling problems, more

powerful methods are needed for obtaining reasonable solutions.

 Scheduling problems are often compared with the Graph-coloring problem

which is a benchmark NP-complete problem. A generalization of scheduling as a

graph-coloring problem proves the NP-complete nature of scheduling problems.

1.6 Graph Coloring Model for Event Scheduling

 A general reduction of a simple scheduling problem is given as follows:

CHAPTER 1 INTRODUCTION

__

17

 Given a simple and undirected graph G comprising a set of vertices V and a

set of edges E which join various pairs of different vertices; the graph coloring

problem involves finding an assignment of “colors” for each vertex in V such that

(a) no pair of vertices with a common edge are assigned the same color,

(b) the number of colors being used is minimal.

 A scheduling problem can be converted into this graph coloring problem by

considering each event as a vertex, and then adding edges between any pair of

vertices that correspond to pairs of events that can not be assigned to the same

timeslot. Each timeslot that is available in the scheduling problem then corresponds

to a color, and the problem is to find a solution that uses no more colors than number

of available timeslots.

 In graph coloring, the term “chromatic number” is used to refer to the

minimum number of colors that are needed to feasibly color a problem instance. In

simple scheduling problems this also represents the minimum number of timeslots

that are needed for possibly a clash-free schedule. Identifying chromatic number is

an NP-hard problem. The NP-complete version of this problem defines a similar task,

but in the form of a decision problem, i.e., given G = (V, E) and a positive integer k <

n; is it possible to assign a color to each vertex in V such that no pair of adjacent

vertices has the same color, and by only using k colors?

Figure 1.1: Graph coloring model for solving a simple scheduling problem

(with event-clash constraint only)

Given a scheduling problem,
it is first converted to graph
coloring equivalent. In this
example, there are 10 events
(10 vertices are to be
colored).

A solution is then found for
this graph coloring problem.

The solution is then converted
back to a schedule, such that each
color represents a timeslot.

CHAPTER 1 INTRODUCTION

__

18

 Another similarity between these problems involves the identification of

features known as cliques (A clique is a collection of vertices that are mutually

adjacent, such as vertices 1, 3, 4, 6, and 7 in fig. 1.1, which is a clique of size 5.).

Graph coloring problems that reflect real-world scheduling instances will often

contain large cliques. This is because in many problems there may be a large

collection of events that must not be scheduled together. In the equivalent graph

coloring problem, the vertices that represent these events will form a clique, and no

two vertices in this clique may be assigned the same color (all of the corresponding

events will need to be assigned to different timeslots). Thus, if we are given a graph

coloring instance that has a maximum clique size of C, then at least C colors will be

needed to color the graph legally. The task of identifying the maximally-sized clique

is also an NP-hard problem [5]. This conversion to pure graph coloring problems only

exists when we are considering constraints regarding conflicting events such as the

event-clash constraint. When other sorts of constraints are also being considered

then this will add extra complications. Regardless of this, all scheduling problems still

include graph coloring problem in some form or another.

1.7 Academic Scheduling

 Academic scheduling involves the task of assigning a number of events, such

as classes, exams, labs, tutorials etc., to a limited set of timeslots and rooms, in

accordance with a set of constraints. There are three main classes of academic

timetables [6].

1.7.1 School Scheduling
 The weekly scheduling for all the classes of a school, avoiding a teacher

taking two classes in the same time, and vice versa. This schedule is a timetable

describing when each class is taught a particular subject/lesson and in which room it

is held. Each class is a set of students and generally a specific teacher is assigned

to carry out all the activities of the class. Teachers are allocated the classes before

scheduling. Classes are assigned specific rooms. The problem is to arrange the

meetings of teachers with classes in particular time periods. Each class or teacher

may be engaged in one subject at a time. Some soft constraints may be involved.

This is the simplest form of academic scheduling.

CHAPTER 1 INTRODUCTION

__

19

1.7.2 Examination Scheduling

 It is the scheduling for the exams of a set of courses, avoiding overlapping

exams of different courses having common students, and spreading the exams for

the students as much as possible. An exam schedule defines when each class

undertakes examination of all its subjects. There is only one exam for each subject

and the subjects having common students must be scheduled in different timeslots.

All examinations are to take place in limited number of rooms and during a limited

time period. There is a limit on number of examinations that a student should be

asked to take in a single day. More than one class can take exam of different

subjects in one room.

 The problem requires assignment of exams to rooms and timeslots within a

given amount of total time, keeping in view student clashes. In universities where

there is a large number of courses, and students are allowed to take courses from a

number of electives, the task of exam scheduling becomes very complex.

1.7.3 Course Scheduling

 It is the weekly scheduling for all the lectures of a set of university courses,

minimizing the overlaps of lectures of courses having common students. This

schedule describes when and where each course is taught, keeping in view student-

clashes and all other involved constraints. The problem consists of scheduling a set

of lectures for each course, within a given number of rooms and in given time

periods.

 The main difference with the school problem is that university courses can

have common students, whereas school classes are disjoint sets of students. If two

classes have common students then they conflict, and they cannot or should not be

scheduled at the same period. In addition, in the university problem, availability of

rooms, their size and equipment play important roles, whereas in the high school

problem each class has its own room.

 Course scheduling differs from exam scheduling as in latter, multiple events

can be scheduled in the same room at the same time provided seating-capacity

allows, while in the former case, only one event is allowed in a room at one time. A

CHAPTER 1 INTRODUCTION

__

20

second common difference between the two concerns the timeslots. The course

timetabling problems generally involve assigning events to a fixed set of timeslots,

while exam timetabling problems might sometimes allow some flexibility in the

number of timeslots being used.

1.7.4 Constraints involved in Course Scheduling

 A number of hard and soft constraints are involved, especially in the exam

and course scheduling problems. As discussed earlier, hard constraints have a

higher priority than soft, and must be satisfied for the schedule to be usable. Soft

constraints normally define the quality of a schedule as per the policies of the

institution.

 The most common hard constraint in academic scheduling is the “event-clash”

constraint. This constraint states that a person is required to be present in a pair of

events, then these events conflict, and therefore, must not be assigned to the same

timeslot as such assignment will result in this person having to be in two places at

one time. This particular constraint can be found in all the university scheduling

problems. However, a great number of other constraints, both hard and soft, are

involved in academic scheduling. Different universities and institutions have their

own sets of specific constraints, keeping in view their policies and routines. Because

of this diversity in constraint set, different instances of scheduling problems have

varying level difficulty to solve.

1.8 Problem Formulation

 In this thesis, the focus is on an academic scheduling scenario, generally

known as the university course scheduling problem. The version of this problem

being considered was originally defined in 2001 by the “Meta-heuristics Network” [7].

In 2002, it was also used for an International Timetabling Competition [8]. The

problem has since become a benchmark for research in the field of course

scheduling. It is a simplified form of typical real-world timetabling problems, including

their common aspects. A formal description of the problem is given in the next

section.

CHAPTER 1 INTRODUCTION

__

21

1.8.1 Problem Specification

 A problem instance consists of a set E of n events that are to be scheduled

into a set of timeslots T and a set of m rooms R, each with an associated seating

capacity. A set of students S is also given, and each student in S is required to

attend some subset of E. Events are said to conflict with each other when a student

is required to attend them simultaneously. Finally, a set of room features F is given,

which are intended to represent real-world features such as writing board, computing

facilities, audio-visual facility etc. Certain features are required by each event and

are satisfied by certain rooms.

 A set of constraints applies to the problem, consisting each of three hard and

soft constraints. The hard constraints are described as follows:

HC1: No student is required to attend more than one event at any one time.

i.e., conflicting events should not be assigned to the same timeslot;

HC2: All events are to be assigned to suitable rooms. i.e., all of the features

required by an event are satisfied by its very room, which must also have an

adequate seating capacity;

HC3: Only one event is assigned to any one room in any timeslot. i.e. no

double-booking of rooms is allowed.

 In addition to the hard constraints listed above, there are also three soft

constraints to be considered. These are as follows:

SC1: No student should be required to attend an event in last timeslot of day;

SC2: No student should attend more than two events in a row;

SC3: No student should have a single event in a day.

 In order for a schedule to be feasible, it is necessary that every event e1,…,en

is assigned to exactly one room r1,…,rm and exactly one of t timeslots (where in all

cases t ≤ 45, which is to be interpreted as five days of nine timeslots), such that the

three hard constraints are satisfied. A solution is perfect if (a) it is feasible and (b) it

has no violations of the three soft constraints.

CHAPTER 1 INTRODUCTION

__

22

 The notions used in problem specification are summarized in the following

table.

Name Description

n Number of events in the problem instance.

m Number of rooms in the problem instance.

t Maximum number of timeslots in a feasible solution (in all cases, t
is a constant 45, comprising five days of nine timeslots).

Feasible
schedule

A schedule in which all courses are assigned to timeslots and
rooms and no hard constraint is violated.

Perfect
schedule

A schedule which is feasible and in which no soft constraint is
violated.

Table 1.1: Notions used in Problem Specification

1.8.2 Specification of Goals
 Following goals and conditions have been defined for the formulated problem:

Goal 1: Allocation
To develop a feasible solution.

Goal 2: Optimization
Take this feasible solution as close to the perfect solution as possible.

Conditions:

• These goals must be achieved in a pre-defined time limit.

• A feasible solution with more soft constraint violations has a higher

priority than an in-feasible solution with less soft constraint violations.

1.8.3 Solution Evaluation

 A solution is judged by the number of constraint violations it contains. In the

case of hard constraints, the term distance-to-feasibility is used to evaluate the

solution. Different functions are used to calculate distance-to-feasibility, keeping in

view the problem instances in use, most common being the number of courses

remaining un-allocated. For soft constraints, the evaluation is done by calculating the

CHAPTER 1 INTRODUCTION

__

23

total number of penalty points in the solution. Penalty points are calculated in the

following way:

• For SC1, if a student has a class in the last timeslot of the day, it is

counted as one penalty point. i.e., if there are x students in this class, x

number of penalty points are counted.)

• For SC2, if one student has three events in a row, it is considered as one

penalty point. If a student has four events in a row, two points are counted,

and so on.

• For SC3, each time a student is encountered with a single event on a day,

one penalty point is counted.

CHAPTER 2 LITERATURE SURVEY

__

25

Chapter 2: Literature Survey
 Due to its significance, scheduling has become an application area with rich

knowledge and experience. A number of studies have been carried out and many

algorithms have evolved for scheduling problems. In this chapter, a survey of different

techniques is presented. As the approach presented in this thesis lies in the meta-

heuristic framework, main part of this chapter is devoted to meta-heuristic approaches

and their classifications in literature.

2.1 Overview of Research in Academic Scheduling
 Many early techniques used in scheduling algorithms were directly derived from

graph-based heuristics, because of their obvious similarities [9]. An early example of

such algorithm was provided in [10]. This approach was used for several years at the

University of Ottawa in the 1970’s, and it is said to be capable of scheduling 390

events involving 16,000 students into 25 timeslots. Another early example is the

EXAMINE timetabling system documented in [11]. In this paper, the system is applied

to a set of real-world exam timetabling problems taken from a number of different

universities. These problem instances are now referred to as the Carter Instances and

have been used in many exam timetabling papers. Another heuristic based approach

that models scheduling problem on graph-coloring theme is given in [12].

 Other early approaches to scheduling problems have involved using constraint-

based techniques [13] and also integer programming [14]. In the near past, research

in scheduling problems has been mainly focused on meta-heuristic based techniques

in which intuitive problem-specific heuristics have been used to reduce the number of

solutions processed. Some of these techniques considered in this thesis are Fuzzy

Heuristic Ordering by Asmuni and Burke in [15], Graph-Based Hyper Heuristic by

Rong Qu and Burke in [16], Variable Neighborhood Search by Abdullah and Burke in

[17], Tabu-search Hyper Heuristic by Kendall, Soubeiga and Burke in [18], Local

search by Socha in [19], Ant Algorithms by Socha in [20] and Genetic Grouping by

Ben Paetcher in [21].

2.2 Approaches to Automated Scheduling

2.2.1 Sequential Methods
 These methods order events using problem-specific heuristics and then assign

the events sequentially into timeslots so that no events in the period are in conflict with

CHAPTER 2 LITERATURE SURVEY

__

26

each other [Car86]. In sequential methods, timetabling problems are usually

represented as graphs, and construction of a conflict-free timetable can be modeled

as a graph coloring problem. Some of the earliest works towards automated

scheduling have used this approach. As indicated above, algorithm in [10] operates by

using largest-first type heuristic to select the events for assignments, keeping in view

the event-clash constraint and new timeslots are opened when needed. Different

heuristics are used to minimize the soft constraints. The EXAMINE timetabling system

[11] is also based on a backtracking sequential-assignment. A number of variants are

tested by the authors, and best performance is usually gained when two procedures

are followed: firstly, when those events are inserted into the timetable first which have

the highest number of colors adjacent to them; and secondly, when an additional

algorithm is also used to identify large cliques in the problem, so that the events within

these cliques can then be given priority. The backtracking feature of algorithm enables

it to undo previous assignments of events to timeslots when no feasible timeslot there

remains for an un-assigned event.

2.2.2 Constraint Based Methods
 In these methods a scheduling problem is modeled as a set of variables

(events) to which values (resources such as rooms and timeslots) have to be

assigned to satisfy a number of constraints [6, 13, 22]. Usually many rules are defined

for assigning resources to events. When no rule is applicable to the current partial

solution, a backtracking is performed until a solution is found that satisfies all

constraints. Another constraint based technique [23] models scheduling problems as

Constraint Satisfaction Problems because of large number of complex constraints

involved.

2.2.3 Knowledge Based Methods
 The objective of using knowledge based techniques is to model the human

knowledge for solution of computational problems. An early approach using

knowledge based techniques and constraint networks on real-world employee

scheduling was presented in [24]. The problems were explicitly represented on some

constraints in the constraint based processing and rules were incorporated into the

scheduling process. The preliminary results showed that the explicit representation

and the ordering heuristic are efficient for solving employee timetabling problems. In

CHAPTER 2 LITERATURE SURVEY

__

27

[25], the authors designed a timetable scheduler that used the knowledge modeled as

rules, incorporated with heuristics, within course scheduling process to schedule data

that was stored in separate bases. The results so obtained were promising for real

world scheduling problems and authors claimed that the scheduler was flexible and

general and was applicable to other course scheduling problems with the use of an

object-oriented methodology. In [26], the authors proposed a conceptual model within

which knowledge was modeled into heuristics that applied the rules to guide

scheduling process for course scheduling problems. Recent knowledge based

techniques have used expert system to model knowledge of scheduling as rules.

2.2.4 Local Search Methods
 A large number of studies have used local search for scheduling problems. The

term local search or neighborhood search expresses the idea that these algorithms

modify an inconsistent assignment to move to a better assignment. During iterations,

only assignments from the neighborhood of the current assignment are considered

and one of them is picked [27]. In general, local search algorithms are incomplete and

do not guarantee of finding a complete assignment satisfying all the constraints.

Therefore, they have generally been used in conjunction within hybrid frameworks.

These algorithms may be more efficient with respect to response time as they are

guided by heuristics. Local search approach adopted by [19] has showed impressive

results.

 There are many ways to define neighborhood of an assignment [28]. Two basic

local search algorithm schemes, hill-climbing and min-conflict, usually start from a

randomly or heuristically selected assignment which repeatedly performs local steps

to their neighborhood till a solution is found or the time limit exceeds. But, they differ in

the manner how the neighbor assignments are selected. Hill-climbing always selects a

better assignment out of all the neighbors (the assignment which minimizes the

number of violated constraints). When an assignment better than the current one is

not available, the search is stuck in a local optimum and the algorithm usually restarts

from another initial randomly selected assignment. A variation steepest-ascent hill

climbing, selects the best possible assignment out of all the neighbors.

CHAPTER 2 LITERATURE SURVEY

__

28

 On the other hand, min-conflict algorithm chooses the best assignment only

from a subset of the neighbor assignments. Usually, it randomly selects any variable

that is involved in an unsatisfied constraint, and then picks a value which minimizes

the number of violated constraints. If no such value exists, it randomly picks a value

that does not increase the number of violated constraints. If algorithm reaches a strict

local minimum, it does not perform any move at all and it does not get terminated. To

deal with this problem, a variation, Min-conflict Random Walk Algorithm is used in

literature.

2.2.5 Cluster Methods
 In these methods the set of events is split into groups which satisfy hard

constraints and then the groups are assigned to time periods to fulfill the soft

constraints. Different optimization techniques have been employed to solve the

problem of assigning the groups of events into time periods. The main drawback of

these approaches is that the clusters of events are formed and fixed at the beginning

of the algorithm and that may result in a poor quality timetable.

2.2.6 Hyper-Heuristic Methods
 Hyper-heuristics are “heuristics that choose heuristics” [29]. The main

difference between hyper-heuristics and the widely used meta-heuristics in scheduling

is that hyper-heuristics is a method of selecting heuristics from a variety of different

heuristics that may include meta-heuristics. So hyper-heuristics are more general

purpose methods. In [21], the authors have obtained good results by using genetic

algorithms to select from a set of heuristics encoded in the search space. An

approach was presented in [2], on open-shop scheduling problems using genetic

algorithms to search a space of abstractions of solutions to “evolve the heuristic

choice”. In a real-world scheduling problem, genetic algorithms are used to construct a

schedule builder that chooses the optimal combinations of heuristics [30]. Another

approach in [31] has used a genetic algorithm selecting the heuristic to order the

exam in a sequential approach for exam timetabling. Another approach using fuzzy

logic to apply an ordering of heuristics has been developed by Asmuni and Burke in

[15].

CHAPTER 2 LITERATURE SURVEY

__

29

2.2.7 Decomposition Methods
 Real-world scheduling problems are generally very large and complex. To

address this problem, decomposition and partition techniques have also been studied

with some success. The basic idea is to decompose the problem into a set of sub-

problems that are small enough to be solved by using simple approaches. Then these

sub-solutions are combined for the original problems. In [32], an algorithm has been

presented which decomposes the course scheduling problems into a series of easier

assignment-type sub-problems. An approach of decomposing the timetabling data to

produce shorter flexible length timetables was also studied in [33]. In [34], the authors

have employed a multi-stage algorithm in an evolutionary approach using graph

coloring heuristics to solve examination timetabling problems that were decomposed,

and while the sub-problems were solved by using a memetic approach.

2.3 Meta-Heuristic Methods
 According to the Meta-heuristics Network, a meta-heuristic is a general

framework which may be applied to different optimization problems with some

modifications needed according to specific problem scenarios. Due to this generalized

nature, these techniques have become increasingly popular in trying to solve

scheduling problems. In the recent past, a number of meta-heuristic techniques such

as simulated annealing, tabu search, iterated local search, evolutionary and genetic

algorithms, ant colony optimization and other hybrid approaches have been

investigated for scheduling. These techniques begin with one or more initial solutions

and employ search strategies that try to avoid local optima. These algorithms have

produced good solutions on different problem instances.

2.3.1 Tabu Search
 Tabu search uses local search along with a mechanism to avoid getting

trapped in a local minimum. The mechanism is based on a tabu list, which is a special

short term memory containing pairs of variable and values, which is used to maintain

a history of previously encountered assignments. The assignments in the tabu list are

not considered for the next iterations. This mechanism prevents the search from being

trapped in local optima.

CHAPTER 2 LITERATURE SURVEY

__

30

 In course scheduling, tabu Search was mainly investigated on real-world

problems in different institutions with specific requirements. Good results were

reported with different variations of tabu list, initial solutions and objective functions,

etc [35]. In [36], the authors have developed a tabu search based general problem

solver for a range of constraint satisfaction problems including a high school

timetabling problem. Results achieved were competitive as compared with others.

Approaches that integrated tabu search with other techniques were also investigated.

In [18], a tabu search hyperheuristic has been developed for timetabling and rostering.

The results obtained were better than using either method alone. Research on

examination timetabling problems was carried out in [37], which studied different

aspects (length of tabu lists, representations and initialisation methods of solutions) of

utilising tabu search.

2.3.2 Simulated Annealing
 This method simulates the physical process of annealing. In annealing, a

material is heated and then cooled, usually for softening and making the material less

fragile. Simulated annealing exposes a solution to ‘heat’ and then to ‘cool’ it for

producing more optimal solution, i.e. an in-feasible solution is taken and random

variations are applied to achieve good solution. A worse variation is accepted as the

new solution with a probability that decreases as the computation proceeds. The

search tries to avoid local minima by jumping out of them early in the computation.

Toward the end of the computation, when the temperature or probability of accepting

a worse solution is nearly zero, this simply seeks the bottom of the local minimum.

The chance of getting a good solution can be traded off with computation time by

slowing down the cooling schedule. The slower the cooling, the higher is the chance

of finding the optimum solution, but the longer the run time. Thus effective use of this

technique depends on finding a cooling schedule that gets good enough solutions

without taking too much time. Literature suggests that the implementation is highly

dependent on various settings and parameters (e.g. solution space, cooling schedule,

neighborhood generation, cost function) on both examination and course/school

scheduling problems thus careful selection of parameters and settings on this

algorithm are needed.

CHAPTER 2 LITERATURE SURVEY

__

31

2.3.3 Genetic/Evolutionary Algorithms
 An evolutionary algorithm is a generic population-based meta-heuristic

optimization algorithm. An evolutionary algorithm uses some mechanisms inspired by

biological evolution: reproduction, mutation, recombination, and selection. Candidate

solutions to the optimization problem play the role of individuals in a population, and

the fitness function determines the environment within which the solutions live.

Evolution of the population then takes place after the repeated application of the

above operators. Usually, an initial population of randomly generated candidate

solutions comprises the first generation. The fitness function is applied to the

candidate solutions and to any subsequent offspring. In selection, parents for the next

generation are chosen with a bias towards higher fitness. The parents reproduce by

copying with recombination and/or mutation. Recombination acts on the two selected

parents (candidates) and results in one or two children (new candidates). Mutation

acts on one candidate and results in a new candidate. These operators create the

offspring (a set of new candidates). These new candidates compete with old

candidates for their place in the next generation (survival of the fittest). This process

can be repeated until a candidate with sufficient quality is found or a previously

defined computational limit is reached.

 Genetic and evolutionary algorithms have been widely studied by researchers

in scheduling, concerning different aspects of timetabling problems. In course

scheduling, [38] investigated a parallel genetic algorithms that greatly reduced the

execution time to solve the problem. Approaches that hybridise genetic algorithms

with local search techniques during the evolution, which are known as Memetic

Algorithms have been investigated and promising results have been obtained [39].

Initialization is one of the important issues in genetic algorithms and evolutionary

algorithms. In [21], Ben Paechter has used different methods like group-based

operators to achieve good result on some instances.

2.3.4 Ant Algorithms
 In these algorithms, artificial ants try to solve a problem by adopting the

behavior of real ants [40]. The inspiration behind ant algorithms is the ability of ant

groups or colonies to perform well coordinated activities. Foraging behavior and

capability of ants to find shortest path between food and home has been adopted for

CHAPTER 2 LITERATURE SURVEY

__

32

solution of many problems of combinational and computational nature. [41] Describes

that ants communicate to each other with the help of a scent called pheromone. When

ants search for food, they form a path by leaving behind the pheromone. An ant going

on the shortest path between food and home, will deposit more pheromone than an

ant going on longer path, as it moves to and fro, on the path more for number of times.

Other ants, when encounter a more pheromone-rich path than their current path,

divert to this path. Thus, all ants are directed to the shortest path. Ant algorithms work

on a common memory space which is taken as pheromone trail. All ants update their

knowledge on this memory. Good solution receives more pheromone and bad

solutions are eliminated by pheromone evaporation. This shared memory allows the

ants to find solutions rapidly. Pheromone evaporation provides a way to escape

deadlocks. Soch, Knowles and Samples [42] have used max-min ant system to

achieve best known results on benchmark instances of the course timetabling problem

by simulating a colony of ants, wherein each ant constructs a complete candidate

timetable by placing courses one-by-one in a predefined order. The selection of

timeslot to assign is done keeping in view the pheromone level. One candidate

timetable is then selected on basis of a fitness function from the set of timetables

generated by the ants. Pheromone levels are updated. This process is iterated till the

time limit and finally the best solution is selected.

2.3.5 Classification of Meta-Heuristic Methods
 In [43], R. Lewis categorizes meta-heuristic algorithms for scheduling into three

categories. An overview of each category and various algorithms which have used

these approaches are described as follows:

2.3.5.1 One-Stage Optimization Algorithms
 Scheduling algorithms of this type allows the violation of both hard and soft

constraints, with an aim to search for a solution that has a sufficient satisfaction of

both. Some mechanism of weight-age has to be used to give hard constraints higher

priorities than that to soft constraints. This kind of approach is generally easy to

implement as any type of constraint may be easily incorporated in the problem by

defining a suitable priority-weighing function. Such implementation is also easy

because only a single weighing function is to be used for searching a solution.

CHAPTER 2 LITERATURE SURVEY

__

33

Because of the convenience to incorporate a complex set of constraints, this approach

has been used in a large number of scheduling algorithms.

2.3.5.2 Two-Stage Optimization Algorithms
 The characteristics of two-stage optimization algorithms for scheduling may be

summarized as follows:

 In stage-one, the soft constraints are generally ignored, and only the hard

constraints are considered i.e. only a feasible solution are required. In the next stage,

assuming feasibility has been found; attempts are made to minimize the number of the

soft constraint violations. In this step, violation of hard constraints is not allowed. An

immediate benefit of this technique is that there is no need to define a weight-age

function. Such approach seems more reasonable, as achieving a feasible schedule is

the main aim, and no compromise is made on hard constraint violation when reducing

soft constraints. Majority of the above-mentioned algorithms fall in the class of two-

stage algorithms.

2.3.5.3 Algorithms that allow Relaxations
 In these methods, some aspect of the problem is relaxed so that the soft

constraints may be satisfied but not at the expense of violating any of the hard

constraints. Two common ways to provide relaxation are:

• Events that cannot be feasibly assigned to any place in the current schedule

are left unplaced. The algorithm then attempts to satisfy the soft constraints

and tries to assign these unplaced events to somewhere in the schedule at a

later stage.

• Extra timeslots are opened in order to deal with events that have no existing

feasible timeslot available. The algorithm then tries to reduce the number of

timeslots down to the required amount, while taking into consideration the

satisfaction of the soft constraints.

2.4 Comparison of Scheduling Approaches
 Comparisons concerning a range of issues in heuristic and meta-heuristic

methods for timetabling have been carried out. In [44], Ross and Corne compared

genetic algorithms, simulated annealing and stochastic hill climbing on a collection of

CHAPTER 2 LITERATURE SURVEY

__

34

real scheduling problems, concerning the solution quality and number of useful

solutions. The conclusions were that the stochastic algorithms perform generally well

with respect to the solution quality. Some other comparisons among simulated-

annealing, tabu search, genetic algorithms and memetic algorithm (genetic algorithms

with local search) have suggested that tabu search generally obtains the best result,

and genetic algorithm with local search is capable of giving a set of good quality

solutions thus is much flexible to users who may have a variety of objectives.

However, different algorithms within specific circumstances may perform differently on

particular scheduling problems. In general, genetic/evolutionary algorithms are able to

give a number of useful distinct solutions thus in real-world problem solving, they may

be more flexible on providing the users solutions that satisfy different aspects of

requirements.

 A comprehensive comparison of different meta-heuristics for course scheduling

has been presented by Rossi-Doria et al. [45] who provided a comparison between

proposed five different meta-heuristic based algorithms (evolutionary algorithms, ant

colony optimization, iterated local search, simulated annealing, and tabu search).

Some of these algorithms attempted satisfaction of both hard and soft constraints

simultaneously. Other algorithms, such as the iterated local search and simulated

annealing approaches employed two separate steps for hard and soft constraints. In

this comparison, it was observed that in the cases where feasibility was generally

achieved, the algorithms using two steps tended to produce better results. Keeping in

view their observations, the authors offered two conclusions:

• “The performance of meta-heuristic, with respect to satisfying hard

constraints and soft constraints, may be different;

• “A hybrid algorithm consisting of at least two phases, one for taking care of

feasibility, and the other for taking care of minimizing the number of soft

constraint violations, is a promising direction.”

2.5 Summary

 A number of studies has been carried out and many algorithms have evolved

for scheduling problems; both problem-specific and generalized. Problem-specific

approaches, such as graph theory and integer programming, can produce reasonable

CHAPTER 2 LITERATURE SURVEY

__

35

solutions for smaller scheduling problems. However, they are generally not capable of

dealing with problems with larger size and complex constraints. More generalized

techniques such as meta-heuristics (simulated annealing, evolutionary algorithms, and

tabu search etc.) have been reported to obtain better results on a wide range of

problems of different sizes. Problem- specific heuristics must be used in their support

to reduce the number of possible solutions processed and to fit them into specific

problem scenarios. Some important observations are as follows:

• No particular approach is superior to any other on all occasions. It is likely

that certain approaches might be more suited to certain types of problems

and certain types of user requirements.

• The performance of a meta-heuristic, with respect to satisfying hard

constraints and soft constraints may be different. Therefore, hybrid

algorithms consisting of separate stages and techniques for hard and soft

constraint satisfaction provide better chance of a good solution.

• There is a better chance of achieving a good solution, when events are

inserted into timeslot in some order, e.g. which have the highest number of

common resources.

• A mechanism to provide relaxation is helpful to avoid dead-end.

CHAPTER 3 DIE-HARD COOPERATIVE ANT BEHAVIOR APPROACH

__

37

Chapter 3: Die-hard Cooperative Ant Behavior Approach
3.1 Overview and Inspiration
 As observed in the literature survey, an approach comprising of two stages;

first allocation and then optimization, performs better on course scheduling

problems. Keeping in view this observation, this two-stage framework is devised,

based on a typical ant behavior. Different techniques are used within this framework.

The resulting algorithm is named “Die-hard Cooperative Ant Behavior Approach”

(DCABA). This approach is different from the ant approaches previously used for

solving scheduling problems. The main inspiration of this approach is the following

ant behavior:

• Ants explore the surroundings of their colony in search of food by roaming

about randomly. When ants find food, they try to take it home. If one ant

can pick up the piece of food, it takes it alone. If food is heavy, more ants

try to pick it. If food is too heavy, ants break the piece of food and then

start trying again.

 In this exercise, ants show persistence and cooperation. A piece of food once

approached is never left, neither for other ants nor for a later time. This approach

has been adopted for the solution of course scheduling problem. A problem once

encountered is emphasized upon and it is tried that it may be overcome positively.

Similarly, if a prospective place is encountered, all available mechanisms are

activated to take advantage of it. The approach results in a two-stage hybrid

framework in which a number of heuristics and techniques may be used. In the first

stage, allocation of courses is attempted. In the second stage, the quality of obtained

solution is improved by optimization.

 In allocation stage, a quick but less powerful mechanism starts placing

courses in time space according to some simple heuristics. If it gets stuck

somewhere and is unable to allocate courses any further, a set of diverse helper

functions are invoked which try to overcome the bottleneck. Once they take the

solution out of trap, main function starts again. If they fail to overcome the problem,

the problem scenario is changed by using an operator. In optimization stage,

CHAPTER 3 DIE-HARD COOPERATIVE ANT BEHAVIOR APPROACH

__

38

optimizer function starts improving the solution obtained from first stage. As in

allocation stage, a helper mechanism is present to take care of bottlenecks. If it fails,

another mechanism changes the scenario on the time space table and optimizer

function takes charge again. The process continues till a pre-defined time limit.

Figure 3.1: Ants carrying food

CHAPTER 3 DIE-HARD COOPERATIVE ANT BEHAVIOR APPROACH

__

39

3.2 DCABA Modeling
 The ant behavior to be modeled can be elaborated as follows:

a) Ants roam about randomly and find food. Shortest path to food is found by

using pheromone trail.

b) Ants start taking food to home using the shortest route.

c) If an ant finds a heavy piece of food which it can not carry, it waits for help.

When another ant reaches it by following the trail, both the ants try to pick

the food. If both fail, they wait for more ants, and so on.

d) If a group is able to take the food home, each of these ants start working

separately as before.

e) If a specific number of ants is unable to pick the food, the ants break the

food into pieces and repeat the above process.

 This behavior is modeled for our scenario as follows:

a) A mechanism is selected to be used as the shortest path towards solution

(SelectShortestPath).

b) Process of seeking solution is started using the shortest path mechanism

(SolutionSeekingProcess).

c) If some bottleneck is encountered during the SolutionSeekingProcess, a

helping mechanism is invoked (Helper).

d) If the helper mechanism succeeds, the SolutionSeekingProcess takes

over, and advances.

e) If the helper mechanism fails, orientation of the scenario is changed by

invoking some suitable mechanism (OrientationChanger) and the

SolutionSeekingProcess takes over. (Break of the food into pieces by ants

is taken as changing the orientation of the problem).

3.2.1 DCABA Modeling for Phase-1 (Allocation)
 Keeping in view the behavior modeling above, the following mechanism has

been used in the allocation phase:

Step 1: Finding Shortest path for complete allocation:
 A set of initial solutions is developed using a Heuristic-Selection Operator.

Each solution in the set is developed by using a specific heuristic. The solutions are

CHAPTER 3 DIE-HARD COOPERATIVE ANT BEHAVIOR APPROACH

__

40

evaluated by an evaluator and the heuristic which gives the best initial solution is

selected for use in the allocation step. Each heuristic is applied by sorting the list of

courses and rooms and then starting allocation by selecting courses and rooms one-

by-one from the sorted lists.

Step 2: Allocation step
 An Allocation Operator starts allocating the courses in the time-space. The

heuristic selected in the previous step is used to select courses and rooms for the

next allocation. One period (that is one period in each day, in this case, 5 periods as

number of days is 5) is opened and each course is tried to place in its feasible room

in the slots opened so far. If a place is found such that placing this course here

doesn’t result in any clash, the course is placed, and next course is selected. If no

such place is found for any of the courses in the timeslots opened so far, a set of

helper functions is invoked.

Step 3: Helper Functions
 The set of Helper Functions try to take the solution out of deadlock by trying

to allocate the courses left from previous step. These functions basically work on

local search. No violation of hard constraints is allowed at any instance of time while

their execution. After running these helper functions, one more period is opened and

allocation operator starts again.

Step 4a: Change orientation of problem space by random-shuffling
 When helper functions fail to allocate all the courses, the orientation of the

solution is changed by invoking a Random-Shuffle Operator and allocation

operator starts again.

Step 4b: Change orientation of problem space by selective-shuffling

 If after opening all the allowed number of periods, some courses are left un-

allocated, the orientation is changed by a Selective-Shuffle Operator and allocation

operator starts again. These steps are repeated till all the courses are allocated or

time limit is over.

CHAPTER 3 DIE-HARD COOPERATIVE ANT BEHAVIOR APPROACH

__

41

3.2.2 Functions and Operators in Phase 1
3.2.2.1 Heuristic-Selection Operator
 This operator uses heuristics to obtain a set of initial solutions. The solutions

are then evaluated to find a solution in which maximum number of courses has been

allocated. The heuristic which developed this solution is selected for use. The

following heuristics are used:

• Start allocation from those courses which have least number of feasible
rooms available. This was achieved by attaching a list of feasible rooms

with each course and then the list of courses was sorted, with the course

having lowest number of feasible rooms coming in the first place, and the

course having highest number of feasible rooms coming in the last place.

• Start allocation from those courses which need most number of features
in rooms. A list of features needed by a course was attached with the

course. The list of courses was then sorted, with the course needing most

number of features coming in the first place and the course needing least

number of features coming in the last place.

• Start allocation from the course which has most number of attending
students. The list of courses was sorted by number of attending students

in descending order.

• Start allocation from courses which clash with most number of courses

(that is, it shares one or more of its attending students with those courses).

List of courses was sorted such that a course which clashes with most

number of courses comes first and the course which clashes with least

number of other courses comes at the last place.

• Start allocation from the course which shares most number of its
attending students with some other courses. The list of courses was

sorted such that the course sharing most number of attending students

with other courses comes first, and so on.

• Start allocation from the course which has the highest ratio of clashing
courses to students (number of clashing students / number of clashing

courses). The list of courses is sorted in descending order of this ratio.

CHAPTER 3 DIE-HARD COOPERATIVE ANT BEHAVIOR APPROACH

__

42

• Start allocating the courses from those rooms which are feasible for
most number of total courses. A list of feasible rooms for each course is

attached with it. This list is sorted such that the room which is feasible for

most number of courses comes first and so on.

3.2.2.2 Allocation Operator

 This operator selects the next course and room for allocation from the list

generated by heuristic-selection operator and places the courses in the spaces

opened so far in a 3-dimensional timetable-array (periods x days x rooms). It

ensures that no hard constraint is violated by checking only the empty and feasible

spaces for a course under consideration. If an empty feasible place is found, the

operator puts the course identifier in the 3-D array, thus indicating an allocation.

3.2.2.3 Helper Functions

 These functions try to allocate courses by finding feasible places using local

searches. Each local search is limited by a criterion. No violation of hard constraints

is allowed at any instance of time during their execution. Following mechanism

describes the working of this set of functions:

Function 1: Try to move an allocated course X to an empty feasible place Rx which

is not accepting the un-allocated courses C, if it is occupying a place Rc which can

accommodate the un-allocated course C.

a) Find an occupied feasible room Rc for C, where course X is already

allocated.

b) Find an empty feasible room Rx for X.

c) If X can be moved to Rx:

i. Move X to the Rx,

ii. Allocate C to Rc.

d) If X can’t be allocated to Rx because of a clashing course CX:

i. Try to find an empty feasible room for CX,

ii. If a room is found, move CX to that room,

iii. Move X to Rx,

iv. Allocate C to Rc.

CHAPTER 3 DIE-HARD COOPERATIVE ANT BEHAVIOR APPROACH

__

43

Function 2: Find an empty place, and locate the allocated course CC which is not

allowing any un-allocated courses C to be placed there (due to student-clash). Try to

move this clashing course CC to somewhere else.

a) Find an empty feasible room Rc where C was not placed due to a clashing

course CC in the same timeslot.

b) Find a feasible room for CC.

c) If found; move CC there.

d) Allocate C on Rc

3.2.2.4 Random-Shuffle Operator

 This operator changes the orientation of solution space by shuffling courses in

one the following ways:

• Each allocated course is tried to move to an empty feasible place.

• Each allocated course is tried to be swapped with another allotted course.

3.2.2.5 Selective-Shuffle Operator
 This operator changes the orientation of solution space by moving allocated

courses placed at the feasible places of any unallocated courses to some empty

feasible places which can accommodate these allocated courses.

3.2.3 DCABA Modeling for Phase-2 (Optimization)
 Keeping in view the behavior modeling above, the following mechanism has

been used in the optimization phase:

Step 1: Finding Shortest path for optimization:
 It is assumed that the solution can be reached fairly fast, if those moves are

favored which decrease most number of problems as compared to other optimizing

moves possible in a certain scenario. So Steepest-Ascent Hill Climbing is used as

the shortest path towards solution.

Step 2: Optimization step
 An Optimization-Operator starts searching the solution space for

improvements using steepest-ascent hill climbing.

Step 3: Helper Mechanism
 The optimization-operator in step-2 comprises of two functions. Each of these

functions is run as long as it can improve the solution. If it fails to improve the

CHAPTER 3 DIE-HARD COOPERATIVE ANT BEHAVIOR APPROACH

__

44

solution, second function is called and vice versa. So both functions help each other

by jumbling the solution and providing new scenario to other function when they

perform moves to improve solution.

Step 4: Change orientation of solution space
 When the optimization-operator and helper mechanism fail to improve the

solution any further, orientation of problem is changed by introducing a Least-

Penalty-Shuffle Operator.

3.2.4 Functions and Operators in Phase 2
3.2.4.1 Steepest-Ascent Hill Climbing

 This is a local search approach which favors the next prospective solution

which is closest to the desired/optimal solution. In the case of optimization in course

scheduling problem, it means favoring a move which decreases most number of soft

constraint violations from the set of all moves.

3.2.4.2 Optimization-Operator
 This operator consists of two functions. These functions are similar to the

neighborhood operators used by Abdullah, Burke and McCollum [17] in their Variable

Neighborhood Search.

• Function 1 swaps entire periods in a day with other periods in any day.

These moves can not result in introducing hard constraints as the whole

cluster of allocated courses in a period in a day is swapped. All swapping

moves are evaluated and only that move is committed which decreases

most number of problems.

• Function 2 shuffles each allocated course with other allocated courses

keeping in view the hard constraints. The shuffle move, which decreases

most number of problems, is committed after evaluating all possible

moves.

3.2.4.3 Least-Penalty-Shuffle Operator

 This function changes the orientation of solution space with the help of an

analyzer agent. This agent analyzes the timetable array and finds out which

allocated courses are causing problem. The least-penalty-shuffle operator then

moves these problem courses to a different slot by shuffling with already placed

CHAPTER 3 DIE-HARD COOPERATIVE ANT BEHAVIOR APPROACH

__

45

course or an empty place. The violation of hard constraints is always checked and

avoided by only looking for candidate place for shuffling in the list of feasible places

of the problem course under consideration. For each course, all possible moves are

evaluated and the move which introduces least number of problems is selected.

3.3 Important characteristics of DCABA
• DCABA works on a hybrid framework in which many heuristics and

techniques may be used. This can give more diversity in options to solve

multi-constrained problems where different techniques specific for certain

constraints may be designed.

• DCABA may be customized to meet the needs of a specific university, as

helper functions of different capability may be tailor-made to suit some

specific constraints or to give more priority to a specific requirement (e.g.

allocation capability may need to be more powerful than optimization in

some scenarios).

• In optimization phase, a solution which is better than previous solutions is

saved. It ensures that the best solution which is reached at some instance

of time in optimization phase is available when the algorithm stops. It is

helpful as the least-penalty-shuffle may result in a more problematic

solution than a previously reached better solution.

• One period at a time is opened up and allocation is tried for as many

courses as possible (i.e. emphasis on using least number of periods). So

at the end, it is probable that one soft constraint (class scheduled in the

last period of day), is satisfied.

• At the end of allocation phase, a function tries to move classes in the last

period of all days to first periods. This works as the first optimization step

as it tries to decrease the last period problem.

CHAPTER 4 DCABA IMPLEMENTATION

__

47

Chapter 4: DCABA Implementation
4.1 Implementation Details
 A simulator based on DCABA is developed in C#. Some important

characteristics of the implementation are as follows:

• A three-dimensional matrix/array [i x j x k] is used to represent the

schedule.

o i rows represent periods,

o j columns represent days,

 i x j is a timeslot.

o k rooms available in a timeslot.

• Each cell represents a room in a timeslot.

• Course allocation is done by assigning a number corresponding to a

course to a cell in the matrix. -1 represents an empty cell. This way, it is

ensured that more than one course cannot be assigned to a cell, which

means one of the hard constraints is never violated.

• At the start of execution, a data structure related to the problem instance

being input is created. This data structure contains following matrices:

o Course-student matrix indicates which students are registered for a

course.

o Course-room matrix indicates which rooms are feasible for a

course.

o Course-feature matrix indicates which features are required for a

course.

o Student-course matrix indicates which courses a student is taking.

o Room-feature matrix indicates which features are provided by a

room.

• Search space is limited with the help of these matrices, e.g. when

searching for a feasible place for a course, only its feasible rooms are

searched.

4.2 Input/Output
 As given in the problem specification, total number of available timeslots is 45

(5 days of 9 hours each) and it is hard-coded in the implementation. Problem

CHAPTER 4 DCABA IMPLEMENTATION

__

48

instances are provided in the form of text files. Each instance contains the following

information:

• Set of courses to be scheduled.

• Set of rooms in which courses can take place.

• Size of each room.

• Set of students attending the courses.

• Set of features satisfied by rooms.

• Set of features required by courses.

 The solution is also output as a text file containing the allocation of courses in

timeslots and rooms. Each problem instance and solution is represented by separate

text files.

4.3 Experimental Setup
 Three studies are performed on the simulator. First study tests the overall

capability of the algorithm in both phases; allocation and optimization, while the

second study tests only the allocation capability. The third study investigates the

effect of using individual Heuristic Operators on the allocation capability. Study-2

and 3 use same problem instances while study-1 has its own set of problem

instances. A limited time is available to the simulator to run the instances, according

to the characteristics of individual instance sets. There are different methods of

evaluating the solution for all the three studies.

4.3.1 Study 1: Allocation + Optimization

 In this study, both phases of the algorithm are tested. The available time has

to be managed to first achieve a feasible solution and then optimize it. Eleven

instances are run in this study. Details about these instances are given next. Results

are compared with Fuzzy Heuristic Ordering by Asmuni and Burke [15], Graph-

Based Hyper Heuristic by Rong Qu and Burke [16], Variable Neighborhood Search

by Abdullah and Burke [17], Tabu-search Hyper Heuristic by Kendall, Soubeiga and

Burke [18], Local search by Socha [19] and Ant Algorithm by Socha [20].

CHAPTER 4 DCABA IMPLEMENTATION

__

49

4.3.1.1 Problem Instances

 These Instances are designed to test both allocation and optimization

capability of algorithms.

In
st

an
ce

N

am
e

C
ou

rs
es

R
oo

m
s

Fe
at

ur
es

S
tu

de
nt

s

A
ve

ra
ge

S

tu
de

nt
/c

ou
rs

e

A
ve

ra
ge

C

ou
rs

e/
S

tu
de

nt

A
ve

ra
ge

R

oo
m

O

pt
io

n

C
ou

rs
es

W

ith
 O

ne

R
oo

m

op
tio

n

small1 100 5 5 80 7 9 1 48

small2 100 5 5 80 8 10 1 61

small3 100 5 5 80 7 9 2 52

small4 100 5 5 80 5 6 2 25

small5 100 5 5 80 9 11 2 34

medium1 400 10 5 200 8 17 4 21

medium2 400 10 5 200 8 17 3 24

medium3 400 10 5 200 8 17 3 21

medium4 400 10 5 200 8 17 3 27

medium5 400 10 5 200 8 17 2 88

large 400 10 10 400 17 17 1 288

Table 4.1: 11 Problem Instances for Study 1

4.3.1.2 Mechanism for Obtaining Results

 In this study, the aim is, to first find a feasible solution and then optimize it to

make perfect solution (with no soft constraint violations). So, the quality of a solution

can be judged by the number of soft constraints in it. If number of soft constraints is

zero, the solution is perfect. As the number goes higher the quality of solution is

lower. It also means that hard constraint violations are not allowed. Thus, if a

solution has any hard constraint violations or any courses are unplaced, then it is left

out of the competition as even the allocation is in-complete.

 A benchmarking utility [46] is also provided with the problem instances to

judge the quality of solution. The solution, in the form of text file, is input to this utility

CHAPTER 4 DCABA IMPLEMENTATION

__

50

and it returns a number corresponding to the number of soft constraint violation left

in the solution. An infeasible solution is not accepted by the utility. Another

benchmarking utility [47] is provided with the problem instances used for determining

the time for which an algorithm may run on the simulating CPU.

4.3.2 Study 2: Allocation

 Only allocation capability of the algorithm is tested in this study. i.e., phase-1

of the algorithm is run only and all available time is utilized in attempt of allocation of

courses. Sixty instances are run in this study. Details about these instances are

given next. Results are compared with Heuristic Search Algorithm and Grouping

Genetic Algorithm of Rhydian Lewis and Ben Paechter [21].

4.3.2.1 Problem Instances

 These are Hard-to-Solve Instances [48] with respect to allocation and are

generated by a problem generator by “Rhydian Lewis and Ben Paechter” to check

allocation capability of their algorithms mentioned above. The instances are divided

into three sizes:

Instance Average
Number

Of
Courses

Average
Features
Required

per Course

Average
Number of
Students

per Course

Average
Number of
Clashing
Students

Avg. Number of
Courses
with only

One Room Option

Small 211.5 0.9 79.15 728.94 62.1

Medium 403.25 1.9 37.1 572.1 177.8

Large 1023.75 4.15 21 565.45 617.3

Table 4.2: Characteristics of Instances for Study 2

 Following observations are made about these instances:

• Small Instances have fewer courses, low feature requirements and large

number of clashing students.

• Medium instances have fewer courses, medium number of clashing

students and less feasible rooms.

• Large Instances have large number of courses, more features needed and

less feasible rooms.

CHAPTER 4 DCABA IMPLEMENTATION

__

51

In
st

an
ce

N

am
e

C
ou

rs
es

R
oo

m
s

Fe
at

ur
es

S
tu

de
nt

s

A
ve

ra
ge

S

tu
de

nt
/c

ou
rs

e

A
ve

ra
ge

C

ou
rs

e/
S

tu
de

nt

A
ve

ra
ge

R

oo
m

O

pt
io

n

C
ou

rs
es

W

ith
 O

ne

R
oo

m

op
tio

n

Big1 1000 28 20 1000 15 15 1 763

Big2 1000 25 20 1000 17 17 1 803

Big3 1000 25 20 900 15 17 1 710

Big4 1050 25 20 800 15 20 2 648

Big5 1075 25 20 1000 18 20 1 818

Big6 1075 25 20 1000 20 22 1 841

Big7 1050 25 20 1100 25 24 1 948

Big8 1025 25 20 1000 19 20 1 608

Big9 1050 25 20 800 15 20 2 678

Big10 1075 25 20 1000 18 20 1 673

Big11 1075 25 20 1000 18 20 1 827

Big12 1000 26 25 1000 18 18 2 723

Big13 1000 25 25 1000 19 19 2 738

Big14 1000 25 25 1000 19 19 2 712

Big15 1000 25 25 1000 23 23 1 744

Big16 1000 25 10 1000 22 22 4 208

Big17 1000 25 10 1200 36 30 5 85

Big18 1000 25 10 1000 30 30 3 244

Big19 1000 25 10 1000 28 28 3 212

Big20 1000 25 10 1000 30 30 2 363

Table 4.3: 20 Large Problem Instances for Study 2

CHAPTER 4 DCABA IMPLEMENTATION

__

52

In
st

an
ce

N

am
e

C
ou

rs
es

R
oo

m
s

Fe
at

ur
es

S
tu

de
nt

s

A
ve

ra
ge

S

tu
de

nt
/c

ou
rs

e

A
ve

ra
ge

C

ou
rs

e/
S

tu
de

nt

A
ve

ra
ge

R

oo
m

O

pt
io

n

C
ou

rs
es

W

ith
 O

ne

R
oo

m

op
tio

n

Medium1 400 10 10 400 17 17 1 321

Medium2 390 10 10 400 18 17 1 235

Medium3 390 10 10 400 20 20 1 267

Medium4 410 10 9 400 19 20 1 214

Medium5 410 10 9 450 21 20 1 221

Medium6 410 11 10 450 23 21 1 281

Medium7 410 11 10 450 27 25 1 268

Medium8 400 10 10 400 22 22 1 284

Medium9 400 10 10 400 27 27 1 337

Medium10 400 10 8 500 22 17 5 75

Medium11 400 10 8 800 35 17 4 110

Medium12 400 10 8 800 39 19 3 117

Medium13 400 10 8 800 46 23 4 121

Medium14 400 10 8 1000 44 17 4 106

Medium15 425 10 8 500 23 20 4 111

Medium16 400 10 8 1000 70 28 5 66

Medium17 400 10 8 800 48 24 4 117

Medium18 400 10 8 1000 75 30 4 93

Medium19 410 10 8 1000 73 30 4 85

Medium20 410 10 8 1000 73 30 3 127

Table 4.4: 20 Medium Problem Instances for Study 2

CHAPTER 4 DCABA IMPLEMENTATION

__

53

In
st

an
ce

N

am
e

C
ou

rs
es

R
oo

m
s

Fe
at

ur
es

S
tu

de
nt

s

A
ve

ra
ge

S

tu
de

nt
/c

ou
rs

e

A
ve

ra
ge

C

ou
rs

e/
S

tu
de

nt

A
ve

ra
ge

R

oo
m

O

pt
io

n

C
ou

rs
es

W

ith
 O

ne

R
oo

m

op
tio

n

Small1 200 5 5 200 17 17 2 45

Small2 210 6 5 400 34 18 2 19

Small3 200 6 5 400 50 25 3 16

Small4 200 5 8 500 47 18 2 42

Small5 200 5 8 500 50 20 2 72

Small6 200 5 3 1000 61 12 2 38

Small7 200 5 3 800 76 19 1 84

Small8 225 5 10 1000 88 20 1 95

Small9 225 5 10 900 100 25 2 130

Small10 220 5 10 1000 113 25 1 144

Small11 200 5 4 1000 81 16 2 61

Small12 225 5 10 1000 55 12 1 159

Small13 225 5 10 1000 88 20 1 146

Small14 225 5 3 1000 88 20 3 24

Small15 200 5 3 900 95 21 2 0

Small16 200 5 3 900 95 21 3 24

Small17 200 5 3 900 135 30 2 29

Small18 225 5 3 1000 111 25 2 35

Small19 225 5 3 1000 124 28 3 40

Small20 225 5 3 1000 75 17 2 39

Table 4.5: 20 Small Problem Instances for Study 2

CHAPTER 4 DCABA IMPLEMENTATION

__

54

s

Ci
f

s

i
∑
== 1

2)(

4.3.2.2 Mechanism for Obtaining Results

 In this study, the aim is to find feasible solutions. So, the quality of a solution

can be judged by measuring the level of feasibility achieved. If all courses are

assigned, there will be zero clashes. If courses remain un-assigned, it means their

assignment must be creating clashes. This number of clashes is counted, which tells

how far from feasibility the solution is. The algorithms being compared have used the

following cost function to measure the total distance-from-feasibility:

 Where s is the target number of timeslots, Ci is conflict-degree of timeslot i.

i.e, for each event in timeslot i, the number of unallocated events with which it

creates clashes.

4.3.3 Study 3: Effect of using Individual Heuristic Operators
 This study investigates the effect of using individual heuristic operators on the

allocation capability of the algorithm. The aim is to find out the effect of using

different heuristics. Instead of using Heuristic Selector Operator, each heuristic is

selected one-by-one manually and results are obtained for all instances. The

following heuristics are tested:

• MostClashingCourses: courses which clash with most number of other

courses allocated first.

• MostClashingStudents: course sharing most number of attending students

with other courses allocated first.

• MostClashingCourses&Students: course with the highest ratio of clashing

courses and students allocated first.

• MostFeatureNeeded: courses needing most number of features allocated

first.

• MostStudents: course having most number of attending students allocated

first.

CHAPTER 4 DCABA IMPLEMENTATION

__

55

• MostFeasibleRoom: rooms which are feasible for most number of courses

allocated first.

4.3.3.1 Problem Instances

 The same instances from Study-2 are used in this study.

4.3.3.2 Mechanism for Obtaining Results

 The same cost function as in Study-2 is used to measure the total distance-

from-feasibility. Value of the cost function is measured within iterations after

specified time intervals for each of the problem instances to obtain the results.

CHAPTER 5 DISCUSSION OF RESULTS & FUTURE WORK

__

57

Chapter 5: Discussion of Results and Future Work
5.1 Study 1
5.1.1 Results

Solution Quality (Number of problems remaining)

Instance FHO GB
HH VNS TS

HH LS AA DCABA

Small1 10 6 0 1 8 1 5

Small2 9 7 0 2 11 3 5

Small3 7 3 0 0 8 1 3

Small4 17 3 0 1 7 1 3

Small5 7 4 0 0 5 0 0

Med1 243 372 242 146 199 195 176

Med2 325 419 161 173 202 184 154

Med3 249 359 265 267 - 248 191

Med4 285 348 181 169 177 164.5 148

Med5 132 171 151 303 - 219.5 166

Large 1138 1068 - 1166 - 851.5 798

Table 5.1: Results for Study 1

5.1.2 Legend
• A smaller number means better result, zero means perfect solution, no value

denotes that the allocation is not achieved.

• Bold figures represent previous best solutions.

• Bold and highlighted figures represent new best solutions.

• Abbreviations:

o FHO: Fuzzy Heuristic Ordering by Asmuni and Burke
o GB-HH: Graph-Based Hyper Heuristic by Rong Qu and Burke
o VNS: Variable Neighborhood Search by Abdullah and Burke
o TS-HH: Tabu-search Hyper Heuristic by Kendall, Soubeiga and Burke
o LS: Local search by Socha
o AA: Ant Algorithm by Socha

CHAPTER 5 DISCUSSION OF RESULTS & FUTURE WORK

__

58

Figure 5.1: Results for Study 1

5.1.3 Findings

• Allocation has been achieved on all the instances and better results are

achieved on 5 instances.

• DCABA gives better results on medium and large instances, where problem

size is large, with respect to number of courses and students. This is inline

with the nature of the helper and orientation changing mechanism in phase 2,

which have more chance of success where time space is larger and it has

more options to shuffle and swap the courses.

• Results show a strong allocation capability, as in all instances, allocation has

been achieved and enough time is available for optimization phase. This

finding is further investigated in Study-2.

0

200

400

600

800

1000

1200

Med1 Med2 Med3 Med4 Med5 Large

N
o.

 o
f P

ro
bl

em
s

FHO GBHH VNS TSHH LS AA DCABA

CHAPTER 5 DISCUSSION OF RESULTS & FUTURE WORK

__

59

5.2 Study 2
5.2.1 Results

Solution Quality (Distance-to-feasibility)

Instance

Small Instances Medium Instances Large Instances

GGA HSA DCABA GGA HSA DCABA GGA HSA DCABA

1 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 30 8 0

5 0 0 0 0 0 0 24 30 9

6 0 0 0 0 0 0 71 77 78

7 0 0 0 34 14 31 145 150 0

8 4 0 3 9 0 0 30 5 0

9 0 0 7 17 2 17 18 3 0

10 0 0 0 0 0 0 32 24 10

11 0 0 0 0 0 0 37 22 0

12 0 0 0 0 0 0 0 0 0

13 0 0 5 3 0 3 10 0 0

14 3 0 11 0 0 0 0 0 0

15 0 0 0 0 0 0 98 0 37

16 0 0 0 30 1 34 100 19 38

17 0 0 0 0 0 0 243 163 263

18 0 0 0 0 0 61 173 164 132

19 0 0 9 0 0 49 253 232 223

20 0 0 0 0 3 47 165 149 159

Table 5.2: Results for Study 2

5.2.2 Legend

• A smaller number means better result, zero means feasible solution, any

value greater than zero means allocation is not achieved.

CHAPTER 5 DISCUSSION OF RESULTS & FUTURE WORK

__

60

0

15

30

45

60

75

Small Medium Large

D
is

ta
nc

e-
to

-F
ea

si
bi

lit
y

GGA HSA DCABA

• Bold figures represent previous best solutions.

• Bold and highlighted figures represent new best solutions.

• Abbreviations:

o HSA: Heuristic Search Algorithm by Rhydian Lewis and Ben Paechter
o GGA: Grouping Genetic Algorithm by Rhydian Lewis and Ben Paechter

Figure 5.2: Results for Study 2

5.2.3 Findings

• DCABA has given comparable results on most of the small and medium

instances. Better results are achieved on large instances, where a better

solution has been achieved on 9 large instances.

• This supports the finding from Study-1. In allocation phase, DCABA has also

given better results where problem size has been large, with respect to

number of courses and students.

CHAPTER 5 DISCUSSION OF RESULTS & FUTURE WORK

__

61

5.3 Study 3
5.3.1 Overall Results

 Graph shows number of times each heuristic provides best result in term of
reaching close to feasibility

 Figure 5.3: Results Summary for Study 3

5.3.2 Findings (Overall)
• MostClashingCourse has given best results 17 times.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

MostClashingCourses

MostClashingStudents

MostFeatureNeeded

MostStudents

MostFeasibleRoom

Most Clashing Courses&Students

Number of times each heuristic provided best solution

Small Medium Large

CHAPTER 5 DISCUSSION OF RESULTS & FUTURE WORK

__

62

 5.3.3 Results of Large Instances

 Graph shows average distance-from-feasibility on large Instances.

Figure 5.4: Results for Study 2 (Large Instances)

5.3.4 Findings (Large Instances)

• MostClashingCourse overall gives most of the best result but has given worst

result here.

• Initially, MostFeasibleRoom started well but later MostClashingC&S has given

best result on large instances. This is inline with the characteristics of large

instances (more courses, more students, more features needed, less feasible

rooms, thus more conflicts).

• A combination of both these Room & Course selection heuristics gives better

results.

150

200

250

300

350

400

450

500

550

600

0 100 200 300 400 500 600 700 800 900

Time

D
is

ta
nc

e-
fro

m
-fe

as
ib

ili
ty

MostFeasibleRoom MostClashingCourses MostClashingStudents
Most Clashing Courses&Students MostFeatureNeeded MostStudents

CHAPTER 5 DISCUSSION OF RESULTS & FUTURE WORK

__

63

5.3.5 Results of Medium Instances

 Graph shows average distance-from-feasibility on medium Instances.

Figure 5.5: Results for Study 2 (Medium Instances)

5.3.6 Findings (Medium Instances)

• No Conflict avoidance heuristic (which select next candidate based on

conflict-degree. e.g. MostClashingStudents, MostClashingCourses&Students,

MostClashingCourses) has performed well here. The reason seems to be the

less conflicting nature of instances.

• MostStudents & MostFeasibleRoom has given best results. i.e, these

heuristics have successfully focused on less no. of rooms available.

0

20

40

60

80

100

120

140

160

0 25 50 75 100 125 150 175 200 225 250

Time

D
is

ta
nc

e-
fr

om
-f

ea
si

bi
lit

y

MostFeasibleRoom MostClashingCourses MostClashingStudents
Most Clashing Courses&Students MostFeatureNeeded MostStudents

CHAPTER 5 DISCUSSION OF RESULTS & FUTURE WORK

__

64

5.3.7 Results of Small Instances

 Graph shows average distance-from-feasibility on small Instances.

Figure 5.6: Results for Study 2 (Small Instances)

5.3.8 Findings (Small Instances)

• MostClashingStudents & MostStudents have performed well in these

instances.

• Like the large instances, a combination of these heuristics has given good

results.

• FeaturesNeeded has been the worst, as feature requirements were negligible

in small instances.

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30 35 40 45 50

Time

D
is

ta
nc

e-
fr

om
-fe

as
ib

ili
ty

MostFeasibleRoom MostClashingCourses MostClashingStudents
Most Clashing Courses&Students MostFeatureNeeded MostStudents

CHAPTER 5 DISCUSSION OF RESULTS & FUTURE WORK

__

65

5.3.9 Random Behaviors

Some graphs to show the random behavior of heuristics in small instance.

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

180.00

0 10 20 30 40 50 60

Time

D
is

ta
nc

e-
fro

m
-fe

as
ib

ili
ty

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

180.00

0 10 20 30 40 50 60

Time

D
is

ta
nc

e-
fr

om
-fe

as
ib

ili
ty

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

180.00

0 10 20 30 40 50 60

Time

Di
st

an
ce

-fr
om

-fe
as

ib
ili

ty

CHAPTER 5 DISCUSSION OF RESULTS & FUTURE WORK

__

66

5.4 Conclusions

• This work has been presented as an attempt to provide a diverse

approach towards event scheduling. The presented approach has shown

promising results. The approach is stronger in the allocation phase than in

optimization phase. It has been noted that in most of the instances,

allocation was completed easily.

• It has been clearly seen that different heuristics have potential to provide

good result in some scenario. Instead of using one heuristic throughout

execution, using heuristics suitable for specific scenarios arising while

execution may give better results. Instance-specific heuristics, however,

have shown potential when they are defined more specifically in

accordance to the instance characteristics. Further, instead of relying

totally on conflict avoidance heuristic, as in general practice, definition of

some more elaborate heuristics clearly shows improvement.

• A combination of heuristics, both for selection of candidate event to be

assigned and selection of timeslot gives better results.

• It is a clear finding that selection of heuristics plays an important role on

the quality of solution but at the same time, no generalization is observed

in this regard either in this thesis or in literature, which identifies the factors

responsible for different performance, while using the same algorithm on

instances having similar characteristics.

CHAPTER 5 DISCUSSION OF RESULTS & FUTURE WORK

__

67

5.5 Future Work

In the following areas, there is potential work for future:

• Improvement of helper and orientation-changing mechanisms.

• Effects of using helper and orientation-changing mechanisms of different

capabilities.

• Effects of using different combination of the heuristics.

• Hybridization with other approaches. e.g., fusion with the ant approaches

already in research for a broader ant-based framework.

• Modeling this approach for the solution of other assignment and

combinatorial optimization problems like Traveling Salesman problem,

Minimum Spanning Tree problem, Job Shop scheduling, Vehicle Route

Scheduling problems and Bin-packing problem.

• Studying the reason why specific algorithms perform better than others, to

identify the factors involved in different results obtained using same

algorithm on instances with similar characteristics.

• Attempting an intelligent meta-heuristic algorithm, which analyzes the

scenario while execution and select the appropriate heuristic to use.

	Title Pages.pdf
	Table of Contents.pdf
	Flow Charts.pdf
	CHAPTER-1 - Introduction.pdf
	CHAPTER-2 - Literature Survey.pdf
	CHAPTER-3 - DCABA.pdf
	CHAPTER-4 - DCABA Implementation.pdf
	CHAPTER-5 - Simulation Results & Discussion.pdf

