
i 

 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Event Scheduling: 
An Ant-Inspired Hybrid Approach 

 
By 

Naveed Ejaz 
2003-NUST-MS PhD-CSE-218 

Submitted to the Department of Computer Engineering 
In fulfillment of the requirements for the degree of 

 

Master of Science 
In 

Computer Software Engineering 
 

Thesis Supervisor 
Dr. Muhammad Younus Javed 

PhD (CS), UK 
 

College of Electrical & Mechanical Engineering 
National University of Sciences & Technology 

2009 



ii 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



iii 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ACKNOWLEDGMENTS 
 
 

   All praise to Allah (The Almighty) who enlightened me with the requisite 

knowledge to accomplish this task.  

 

   I extend my deepest gratitude to all the people whose help and support enabled 

me achieve my goal. I am thankful to my parents for being a constant source of 

encouragement, to my wife for her patience and support, and to my brother, Khalid for 

his assistance and useful suggestions. 

 

   I thank the faculty members of Computer Engineering Department for their 

assistance and cooperation, especially Dr. Farooque Azam, Dr. Shaleeza Sohail and 

Dr. Ghalib Asadullah Shah.  

 

   Special thanks to my thesis supervisor Dr. Muhammad Younus Javed who has 

been a constant source of inspiration for me. Without his guidance, encouragement 

and support, this task would not have been possible. 
.  



iv 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Dedicated to my parents for their love, trust and care! 

 



v 

 

ABSTRACT 
 

   In the present day’s fast-paced world, there is a great emphasis on organized and 

efficient use of resources and scheduling has become an important part of daily life; be 

it work, education, transport or entertainment. In many real-world cases, particularly 

where resources are not in abundance, and domain-specific requirements are complex, 

the construction of usable and effective schedules can be a very challenging task. Due 

to its importance and complexities involved in its construction, automation of 

scheduling is an imperative task for every sizable organization, to enable it to make the 

most out of its time and resources. 

 
   Event scheduling is a combinational optimization problem which belongs to a 

class of NP-complete problems along with other ‘difficult-to-solve’ problems like 

Traveling Salesman Problem, Bin-packing and Graph-coloring. In these problems, only 

surety to find best solution is by checking all the possible solutions using brute-

force/exhaustive search, which is not practically possible due to very high 

computational costs. Being an NP-Complete problem, a time-bound solution for 

Scheduling problems can not be guaranteed by any of the algorithms. Therefore, new 

ideas and approaches for the solution provide new opportunities towards more complete 

and better working algorithms. In addition, different scenarios have different constraint-

sets, which need different approaches towards solution; therefore, devising a general 

framework which can cater for different scenarios may be helpful in many application 

areas. 

 
   In this thesis, a hybrid two-stage framework has been presented. The approach is 

inspired by the mutual-aid and persistent/die-hard behavior of ants exhibited when 

faced with difficult scenario while collecting food, thus named “Die-Hard Co-Operative 

Ant Behavior Approach” (DCABA). An initial assignment of events is obtained with 

the help of a set of heuristics and it is evolved by searching promising areas of search-

space by finding the problematic events instead of random search. The search space is 

limited by defining some more heuristics. In the first stage, a feasible solution is 

constructed and in the second stage, optimizer functions improve quality of the 
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obtained solution. Many different heuristics and techniques may be used within this 

framework. The approach has been applied on a set of University Course Scheduling 

Instances and promising results have been obtained. This approach may also be used for 

the solution of job shop scheduling, traveling salesman problem and vehicle route 

scheduling problem. 

 

   This research work is useful for a host of scenarios where automation of 

scheduling can help improve performance, efficiency and time management. 
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Chapter 1: Introduction 
1.1 Background and Motivation 

   Scheduling has become an important part of today’s organized and modern 

world. Schedules, timetables and agenda are everywhere in many areas of daily life. 

These schedules often need to be updated and re-made on a regular basis. Given 

this fact and the importance of schedules in the daily lives of the people, automation 

of scheduling problems attracts a lot of interest and effort from researchers. In many 

cases, particularly where there is an emphasis on efficient use of resources, the 

problem of constructing usable and effective schedules can be a demanding task. 

 
   From a researcher’s perspective, generally all variants of scheduling problems 

belong to the class of NP-complete problems, as will be discussed in detail later. So 

there is no known deterministic polynomially bounded algorithm for solving them. 

Secondly, different scheduling problems also become complicated due to the needs 

and priorities of the users. For example, different organizations will have their own 

thinking of what is a usable and good schedule, and will therefore have their own set 

of constraints. Therefore an approach that is successful for one particular problem 

may not be suitable for other scenarios. As the scheduling problems in different 

scenarios can not be generalized due to these constraints, there is a need for 

diversity in the available approaches in research. 

 

   In the perspective of computer science, scheduling is generally modeled as a 

Combinatorial Optimization Problem. The objective in such problems, in the context 

of scheduling, is to find an assignment of timeslots for each of the events, so that the 

solution is optimal according to the given criteria. It means the problem is to find the 

best possible solution out of all possible solutions. So a brute-force approach which 

visits all possible solutions is best suited for scheduling problems; however, such 

approach is only applicable in a very small problem instance. As the problem size 

gets bigger, the search space grows exponentially, thus making this approach in-

feasible. Therefore, other approaches must be considered, which can provide a 

solution in polynomial time. The resulting solution may not be the best possible, but 

may be usable for practical purpose. 
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   The above discussion implies that new ideas and approaches for solving 

scheduling problems provide more opportunities towards better solutions. Keeping in 

view this motivation, the approach presented in this thesis is an attempt towards 

solving scheduling problems using the concept of evolution. This approach provides 

a general framework and may be used for solution of a number of scheduling 

problems. For the course of this thesis, the university course scheduling problem is 

considered. 

 
1.2 Areas of Application 
   The areas of application include the following: 

• Job and process scheduling in industries and production facilities, 

• Course and examination scheduling in educational institutes, 

• Vehicle route and tour scheduling in transportation systems, 

• Frequency allocation in wireless and mobile networks, 

• Rostering in military establishments and hospitals, 

• Employee scheduling, 

• Sporting events and tournament scheduling. 

 
1.3 Introduction to Event Scheduling 

   A generalized definition of event scheduling derived from the literature is: ‘the 

allocation of resources to events in timeslots, in such a way that given constraints 

are not violated’. 

 

   Different words have been used to describe scheduling problems in daily life 

scenarios. A timetable describes when a particular event has to take place, for 

instance i) in transportation system, a timetable is a statement of when journeys are 

taken by vehicles on different routes. ii) In schools where a sole teacher carries out 

all the events of a class and where these events take place in the same room a 

timetable represents a sequence in which these events take place. Iii) Whereas in a 

university, a timetable shows the sequences of events keeping in view the availability 

of teachers and resources. iv) An examination schedule assigns locations on the 

basis of sizes of classes and facilities needed to undertake the examination. v) In 
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hospitals and military establishments, rosters define the assignment of duties to 

personnel’s in a specific pattern. 

   All the activities related to development of such timetables, schedules or 

sequences are examples of event scheduling. 

 

   Timetable, schedule, roster and sequence are often considered synonymous, 

but literature makes certain distinctions among these terms. A timetable generally 

shows when (in term of time) particular events are to take place. A sequence is an 

order in which activities take place. A roster is assignment of resources to timeslots 

in a rotating pattern. A schedule includes all the specific information necessary for 

an activity to take place. This specific information includes: 

 
• times at which activities are to take place,  

• the order in which they take place,  

• the assignment of required resources, 

• any special needs of individuals or resources. 

 

   The above-mentioned terms can be formally defined as follows: 

 

1.3.1 Timetabling 

   Timetabling is the allocation, subject to constraints, of given resources to 

objects being placed in space-time, so that a set of desirable objectives is satisfied 

as nearly as possible. Examples of timetabling are school class and examination 

timetabling and some forms of resource-to-personnel allocation.  

 

1.3.2 Sequencing 

   Sequencing is the construction, subject to constraints, of an order in which 

activities are to be carried out or objects are to be placed in some representation of a 

solution. Examples of sequencing are simple job-shop scheduling. For example, 

order of jobs being carried out in a factory is a sequence if jobs go through each 

machine in the same order. 
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1.3.3 Rostering 
   Rostering is the placing, subject to constraints, of resources into slots in a 

pattern. One may seek to minimize some objective, or simply to obtain a feasible 

allocation. Often the resources will rotate through a roster.  

 

1.3.4 Scheduling 
   Scheduling is the allocation, subject to constraints, of resources to objects 

being placed in space-time in such a way as to minimize the total cost of some set of 

the resources used. Common examples of scheduling are university course and 

examination scheduling in which many courses, labs, exams or tutorials are to be 

assigned, keeping in view the availability of students, teachers and other resources. 

Another example is transport scheduling or vehicle routing which seeks to minimize 

the number of vehicles or drivers. Another example is job shop scheduling which 

may seek to minimize the number of time periods used, and the physical resources. 
 

   Some of the above-mentioned problems may fit to more than one of the 

definitions, resulting in these terms often being used loosely; however, all these 

problems lie in the broad scope of a schedule. Therefore, we can generalize a 

schedule to constitute the characteristics of timetable, sequence, roster and that of 

any other constraints that may be involved. 
 

1.4 Constraints involved in Event Scheduling 
   As discussed above, the goal of scheduling is to solve problems relating to 

the allocation of resources to objects being placed in space-time. The problems often 

involve the satisfaction of certain pre-defined conditions or objectives. These 

conditions are called constraints in terms of scheduling and are generally classified 

in two broad categories [1]. 
 

1.4.1 Hard constraints 

   These constraints must not be violated as a violation makes the schedule 

useless. e.g., allocation of two events needing the same resources in one timeslot is 

an example of hard constraint violation.  Hard constraints are described as follows: 

• No resource can be demanded for more than one place at any single time. 
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• For each time period there should be sufficient resources available for all 

the events that have been scheduled for that time period. 

1.4.2 Soft constraints 

   These conditions should be satisfied if possible as violations decrease the 

quality of schedule. e.g., putting too much burden on one resource by using it in 

adjacent timeslots is an example of soft constraint violation. In real-world situations it 

is usually impossible to satisfy all soft constraints. These constraints represent those 

conditions that are desirable but not absolutely essential for a schedule. A number of 

soft constraints may be encountered in different scheduling problems. These soft 

constraints are generally categorized as under: 
 

• Time assignment: An event may need to be scheduled in a particular 

time period.  
 

• Time constraints between events: One event may need to be scheduled 

before or after the other.  
 

• Spreading events out in time: Events may need to be scheduled in 

periods not consecutive to each other or on different days.  
 

• Coherence: People may prefer to have the events related to them, 

scheduled in a number of working days and to have a number of free 

days. 
 

• Resource assignment: Events may need some resource at a particular 

time or an event may need to be placed at a particular place which 

contains a particular resource. 
 

• Continuity: Any constraints whose main purpose is to ensure that certain 

features of timetables are constant or predictable. For example, related 

events should be scheduled in the same room, or at the same time of day 

in every week.” 
 

1.4.3 Classification of Event Scheduling Constraints 

   Keeping in view the wide variety of constraints that may be encountered in 

different scheduling problems, scheduling constraints (both hard and soft) have been 

categorized into five classes [2]. 
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 1.4.3.1 Unary Constraints  

   These are constraints that involve just one event, such as the constraint 

“event a, must not take place on a Tuesday”, or the constraint “event a, must occur 

in timeslot b”. Both of these examples can be hard or soft constraints.  
 

1.4.3.2 Binary Constraints 

   These sorts of constraints concern pairs of events, such as the event-clash 

constraint which states that two events can not be scheduled at one time even in 

different places, or those that involve the ordering of events such as the constraint 

“event a must take place before event b”. These constraints can also be hard or soft. 
 

1.4.3.3 Capacity Constraints 

   These are constraints that are governed by room capacities, etc. For example 

“All events should be assigned to a room which has a sufficient capacity”. This 

particular example is usually a hard constraint.  
 

1.4.3.4 Event Spread Constraints 

   These are the constraints that concern requirements such as the “spreading-

out” or “clumping-together” of events within the timetable in order to ease workload, 

and/or to agree with timetabling policy of an organization. This is usually a soft 

constraint.  
 

1.4.3.5 Agent Constraints 

   These are the constraints that are imposed in order to promote the 

preferences of the people who will use the timetables, such as the constraint 

“lecturer x likes to teach event a”, or “lecturer y likes to have n free mornings per 

week”. This can be a hard or soft constraint. 

 

   There is an infinitely wide range of constraints that may be encountered in 

scheduling problems. From practical point of view, this is understandable as different 

scheduling situations are likely to have their own specific needs and policies. For 

example, an airline may specify that more and more flights to one destination be 

scheduled during a specific period in order to cater for an occasion; at other time, 

however, it may prefer the flights to be as few as possible. For example, PIA needs 

to schedules more flights to Saudi Arabia for Hajj. 
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   From a research point of view, this nature of scheduling makes it very difficult 

to formulate useful generalizations about the problem. The above-mentioned 

difficulties make the scheduling problems NP-complete in almost all variants. 

 

1.5 NP-Complete nature of Event Scheduling Problems 
   Event scheduling has been known to belong to the class of problems called 

NP-complete, i.e., no method of solving it in a reasonable (polynomial) amount of 

time is yet known [1]. In [3], Cooper and Kingston have shown a number of proofs to 

demonstrate the NP-complete nature of scheduling problems. They provided 

polynomial bounded transformations from well-known NP-complete problems such 

as graph coloring, bin-packing, and three-dimensional matching to many different 

variants of the scheduling problem. In [4], Itai, Even and Shamir have also shown a 

transformation of the NP-complete 3-SAT problem into a scheduling problem. 

 

   The NP-complete nature means that if we want to obtain a workable schedule 

in a reasonable time, this will depend very much on the nature of the problem 

instance being tackled. Some universities, for example, may have scheduling 

requirements that are fairly loose: for example, there is a large number of rooms, or 

only a very small number of events that need to be scheduled. In these cases, 

maybe there is a lot of good schedules within the total search space, of which one or 

more can be found quite easily. On the other hand, requirements of some university 

might be much more demanding, and perhaps only a very small proportion of the 

search space will be occupied by workable schedules. In practice, the combination of 

constraints may often result in problems that are impossible to solve unless some of 

the constraints are relaxed. In case of these harder scheduling problems, more 

powerful methods are needed for obtaining reasonable solutions. 

 

   Scheduling problems are often compared with the Graph-coloring problem 

which is a benchmark NP-complete problem. A generalization of scheduling as a 

graph-coloring problem proves the NP-complete nature of scheduling problems. 

 

1.6 Graph Coloring Model for Event Scheduling 

   A general reduction of a simple scheduling problem is given as follows:  
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   Given a simple and undirected graph G comprising a set of vertices V and a 

set of edges E which join various pairs of different vertices; the graph coloring 

problem involves finding an assignment of “colors” for each vertex in V such that  

(a) no pair of vertices with a common edge are assigned the same color,  

(b) the number of colors being used is minimal. 

 

   A scheduling problem can be converted into this graph coloring problem by 

considering each event as a vertex, and then adding edges between any pair of 

vertices that correspond to pairs of events that can not be assigned to the same 

timeslot. Each timeslot that is available in the scheduling problem then corresponds 

to a color, and the problem is to find a solution that uses no more colors than number 

of available timeslots. 

 

   In graph coloring, the term “chromatic number” is used to refer to the 

minimum number of colors that are needed to feasibly color a problem instance. In 

simple scheduling problems this also represents the minimum number of timeslots 

that are needed for possibly a clash-free schedule. Identifying chromatic number is 

an NP-hard problem. The NP-complete version of this problem defines a similar task, 

but in the form of a decision problem, i.e., given G = (V, E) and a positive integer k < 

n; is it possible to assign a color to each vertex in V such that no pair of adjacent 

vertices has the same color, and by only using k colors? 

 

 
Figure 1.1: Graph coloring model for solving a simple scheduling problem 

(with event-clash constraint only) 

Given a scheduling problem, 
it is first converted to graph 
coloring equivalent. In this 
example, there are 10 events 
(10 vertices are to be 
colored). 

A solution is then found for 
this graph coloring problem. 

The solution is then converted 
back to a schedule, such that each 
color represents a timeslot. 
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   Another similarity between these problems involves the identification of 

features known as cliques (A clique is a collection of vertices that are mutually 

adjacent, such as vertices 1, 3, 4, 6, and 7 in fig. 1.1, which is a clique of size 5.). 

Graph coloring problems that reflect real-world scheduling instances will often 

contain large cliques. This is because in many problems there may be a large 

collection of events that must not be scheduled together. In the equivalent graph 

coloring problem, the vertices that represent these events will form a clique, and no 

two vertices in this clique may be assigned the same color (all of the corresponding 

events will need to be assigned to different timeslots). Thus, if we are given a graph 

coloring instance that has a maximum clique size of C, then at least C colors will be 

needed to color the graph legally. The task of identifying the maximally-sized clique 

is also an NP-hard problem [5]. This conversion to pure graph coloring problems only 

exists when we are considering constraints regarding conflicting events such as the 

event-clash constraint. When other sorts of constraints are also being considered 

then this will add extra complications. Regardless of this, all scheduling problems still 

include graph coloring problem in some form or another.  

 

1.7 Academic Scheduling 

   Academic scheduling involves the task of assigning a number of events, such 

as classes, exams, labs, tutorials etc., to a limited set of timeslots and rooms, in 

accordance with a set of constraints. There are three main classes of academic 

timetables [6]. 

 
1.7.1 School Scheduling 
   The weekly scheduling for all the classes of a school, avoiding a teacher 

taking two classes in the same time, and vice versa. This schedule is a timetable 

describing when each class is taught a particular subject/lesson and in which room it 

is held. Each class is a set of students and generally a specific teacher is assigned 

to carry out all the activities of the class. Teachers are allocated the classes before 

scheduling. Classes are assigned specific rooms. The problem is to arrange the 

meetings of teachers with classes in particular time periods. Each class or teacher 

may be engaged in one subject at a time. Some soft constraints may be involved. 

This is the simplest form of academic scheduling. 
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1.7.2 Examination Scheduling 

   It is the scheduling for the exams of a set of courses, avoiding overlapping 

exams of different courses having common students, and spreading the exams for 

the students as much as possible. An exam schedule defines when each class 

undertakes examination of all its subjects. There is only one exam for each subject 

and the subjects having common students must be scheduled in different timeslots. 

All examinations are to take place in limited number of rooms and during a limited 

time period. There is a limit on number of examinations that a student should be 

asked to take in a single day. More than one class can take exam of different 

subjects in one room.  

 
   The problem requires assignment of exams to rooms and timeslots within a 

given amount of total time, keeping in view student clashes. In universities where 

there is a large number of courses, and students are allowed to take courses from a 

number of electives, the task of exam scheduling becomes very complex. 

 

1.7.3 Course Scheduling 

   It is the weekly scheduling for all the lectures of a set of university courses, 

minimizing the overlaps of lectures of courses having common students. This 

schedule describes when and where each course is taught, keeping in view student-

clashes and all other involved constraints. The problem consists of scheduling a set 

of lectures for each course, within a given number of rooms and in given time 

periods. 

 
   The main difference with the school problem is that university courses can 

have common students, whereas school classes are disjoint sets of students. If two 

classes have common students then they conflict, and they cannot or should not be 

scheduled at the same period. In addition, in the university problem, availability of 

rooms, their size and equipment play important roles, whereas in the high school 

problem each class has its own room.  

 

   Course scheduling differs from exam scheduling as in latter, multiple events 

can be scheduled in the same room at the same time provided seating-capacity 

allows, while in the former case, only one event is allowed in a room at one time. A 
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second common difference between the two concerns the timeslots. The course 

timetabling problems generally involve assigning events to a fixed set of timeslots, 

while exam timetabling problems might sometimes allow some flexibility in the 

number of timeslots being used.  

 

1.7.4 Constraints involved in Course Scheduling 

   A number of hard and soft constraints are involved, especially in the exam 

and course scheduling problems. As discussed earlier, hard constraints have a 

higher priority than soft, and must be satisfied for the schedule to be usable. Soft 

constraints normally define the quality of a schedule as per the policies of the 

institution. 
 

   The most common hard constraint in academic scheduling is the “event-clash” 

constraint. This constraint states that a person is required to be present in a pair of 

events, then these events conflict, and therefore, must not be assigned to the same 

timeslot as such assignment will result in this person having to be in two places at 

one time. This particular constraint can be found in all the university scheduling 

problems. However, a great number of other constraints, both hard and soft, are 

involved in academic scheduling. Different universities and institutions have their 

own sets of specific constraints, keeping in view their policies and routines. Because 

of this diversity in constraint set, different instances of scheduling problems have 

varying level difficulty to solve.  

 

1.8 Problem Formulation 

   In this thesis, the focus is on an academic scheduling scenario, generally 

known as the university course scheduling problem. The version of this problem 

being considered was originally defined in 2001 by the “Meta-heuristics Network” [7]. 

In 2002, it was also used for an International Timetabling Competition [8]. The 

problem has since become a benchmark for research in the field of course 

scheduling. It is a simplified form of typical real-world timetabling problems, including 

their common aspects. A formal description of the problem is given in the next 

section.  
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1.8.1 Problem Specification 

   A problem instance consists of a set E of n events that are to be scheduled 

into a set of timeslots T and a set of m rooms R, each with an associated seating 

capacity. A set of students S is also given, and each student in S is required to 

attend some subset of E. Events are said to conflict with each other when a student 

is required to attend them simultaneously. Finally, a set of room features F is given, 

which are intended to represent real-world features such as writing board, computing 

facilities, audio-visual facility etc. Certain features are required by each event and 

are satisfied by certain rooms.  
 

   A set of constraints applies to the problem, consisting each of three hard and 

soft constraints. The hard constraints are described as follows:  
 

HC1: No student is required to attend more than one event at any one time. 

i.e., conflicting events should not be assigned to the same timeslot; 
 

HC2: All events are to be assigned to suitable rooms. i.e., all of the features 

required by an event are satisfied by its very room, which must also have an 

adequate seating capacity; 
 

HC3: Only one event is assigned to any one room in any timeslot. i.e. no 

double-booking of rooms is allowed. 
 

   In addition to the hard constraints listed above, there are also three soft 

constraints to be considered. These are as follows: 
 

SC1: No student should be required to attend an event in last timeslot of day; 
 

SC2: No student should attend more than two events in a row; 
 

SC3: No student should have a single event in a day. 
 

   In order for a schedule to be feasible, it is necessary that every event e1,…,en 

is assigned to exactly one room r1,…,rm and exactly one of t timeslots (where in all 

cases t ≤ 45, which is to be interpreted as five days of nine timeslots), such that the 

three hard constraints are satisfied.  A solution is perfect if (a) it is feasible and (b) it 

has no violations of the three soft constraints. 
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   The notions used in problem specification are summarized in the following 

table. 
 

Name Description 

n Number of events in the problem instance. 

m Number of rooms in the problem instance. 

t Maximum number of timeslots in a feasible solution (in all cases, t 
is a constant 45, comprising five days of nine timeslots). 

Feasible 
schedule 

A schedule in which all courses are assigned to timeslots and 
rooms and no hard constraint is violated. 

Perfect 
schedule 

A schedule which is feasible and in which no soft constraint is 
violated. 

 
Table 1.1: Notions used in Problem Specification 

 

1.8.2 Specification of Goals 
   Following goals and conditions have been defined for the formulated problem: 

 

Goal 1: Allocation 
To develop a feasible solution. 
 

Goal 2: Optimization 
Take this feasible solution as close to the perfect solution as possible. 
 

Conditions: 

• These goals must be achieved in a pre-defined time limit. 

• A feasible solution with more soft constraint violations has a higher 

priority than an in-feasible solution with less soft constraint violations. 

 

1.8.3 Solution Evaluation 

   A solution is judged by the number of constraint violations it contains. In the 

case of hard constraints, the term distance-to-feasibility is used to evaluate the 

solution. Different functions are used to calculate distance-to-feasibility, keeping in 

view the problem instances in use, most common being the number of courses 

remaining un-allocated. For soft constraints, the evaluation is done by calculating the 
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total number of penalty points in the solution. Penalty points are calculated in the 

following way: 

 
• For SC1, if a student has a class in the last timeslot of the day, it is 

counted as one penalty point. i.e., if there are x students in this class, x 

number of penalty points are counted.) 

• For SC2, if one student has three events in a row, it is considered as one 

penalty point. If a student has four events in a row, two points are counted, 

and so on.  

• For SC3, each time a student is encountered with a single event on a day, 

one penalty point is counted. 
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Chapter 2: Literature Survey 
   Due to its significance, scheduling has become an application area with rich 

knowledge and experience. A number of studies have been carried out and many 

algorithms have evolved for scheduling problems. In this chapter, a survey of different 

techniques is presented. As the approach presented in this thesis lies in the meta-

heuristic framework, main part of this chapter is devoted to meta-heuristic approaches 

and their classifications in literature. 
 

2.1 Overview of Research in Academic Scheduling 
   Many early techniques used in scheduling algorithms were directly derived from 

graph-based heuristics, because of their obvious similarities [9]. An early example of 

such algorithm was provided in [10]. This approach was used for several years at the 

University of Ottawa in the 1970’s, and it is said to be capable of scheduling 390 

events involving 16,000 students into 25 timeslots. Another early example is the 

EXAMINE timetabling system documented in [11]. In this paper, the system is applied 

to a set of real-world exam timetabling problems taken from a number of different 

universities. These problem instances are now referred to as the Carter Instances and 

have been used in many exam timetabling papers. Another heuristic based approach 

that models scheduling problem on graph-coloring theme is given in [12]. 
 

   Other early approaches to scheduling problems have involved using constraint-

based techniques [13] and also integer programming [14]. In the near past, research 

in scheduling problems has been mainly focused on meta-heuristic based techniques 

in which intuitive problem-specific heuristics have been used to reduce the number of 

solutions processed. Some of these techniques considered in this thesis are Fuzzy 

Heuristic Ordering by Asmuni and Burke in [15], Graph-Based Hyper Heuristic by 

Rong Qu and Burke in [16], Variable Neighborhood Search by Abdullah and Burke in 

[17], Tabu-search Hyper Heuristic by Kendall, Soubeiga and Burke in [18], Local 

search by Socha in [19], Ant Algorithms by Socha in [20] and Genetic Grouping by 

Ben Paetcher in [21]. 
 

2.2 Approaches to Automated Scheduling 

2.2.1 Sequential Methods  
   These methods order events using problem-specific heuristics and then assign 

the events sequentially into timeslots so that no events in the period are in conflict with 
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each other [Car86]. In sequential methods, timetabling problems are usually 

represented as graphs, and construction of a conflict-free timetable can be modeled 

as a graph coloring problem. Some of the earliest works towards automated 

scheduling have used this approach. As indicated above, algorithm in [10] operates by 

using largest-first type heuristic to select the events for assignments, keeping in view 

the event-clash constraint and new timeslots are opened when needed. Different 

heuristics are used to minimize the soft constraints. The EXAMINE timetabling system 

[11] is also based on a backtracking sequential-assignment. A number of variants are 

tested by the authors, and best performance is usually gained when two procedures 

are followed: firstly, when those events are inserted into the timetable first which have 

the highest number of colors adjacent to them; and secondly, when an additional 

algorithm is also used to identify large cliques in the problem, so that the events within 

these cliques can then be given priority. The backtracking feature of algorithm enables 

it to undo previous assignments of events to timeslots when no feasible timeslot there 

remains for an un-assigned event.  
 

2.2.2 Constraint Based Methods 
   In these methods a scheduling problem is modeled as a set of variables 

(events) to which values (resources such as rooms and timeslots) have to be 

assigned to satisfy a number of constraints [6, 13, 22]. Usually many rules are defined 

for assigning resources to events. When no rule is applicable to the current partial 

solution, a backtracking is performed until a solution is found that satisfies all 

constraints. Another constraint based technique [23] models scheduling problems as 

Constraint Satisfaction Problems because of large number of complex constraints 

involved. 
 

2.2.3 Knowledge Based Methods 
   The objective of using knowledge based techniques is to model the human 

knowledge for solution of computational problems. An early approach using 

knowledge based techniques and constraint networks on real-world employee 

scheduling was presented in [24]. The problems were explicitly represented on some 

constraints in the constraint based processing and rules were incorporated into the 

scheduling process. The preliminary results showed that the explicit representation 

and the ordering heuristic are efficient for solving employee timetabling problems. In 



CHAPTER 2               LITERATURE SURVEY 
 

__________________________________________________________________________________________ 
    

27 

[25], the authors designed a timetable scheduler that used the knowledge modeled as 

rules, incorporated with heuristics, within course scheduling process to schedule data 

that was stored in separate bases. The results so obtained were promising for real 

world scheduling problems and authors claimed that the scheduler was flexible and 

general and was applicable to other course scheduling problems with the use of an 

object-oriented methodology. In [26], the authors proposed a conceptual model within 

which knowledge was modeled into heuristics that applied the rules to guide 

scheduling process for course scheduling problems. Recent knowledge based 

techniques have used expert system to model knowledge of scheduling as rules. 

 

2.2.4 Local Search Methods 
   A large number of studies have used local search for scheduling problems. The 

term local search or neighborhood search expresses the idea that these algorithms 

modify an inconsistent assignment to move to a better assignment. During iterations, 

only assignments from the neighborhood of the current assignment are considered 

and one of them is picked [27]. In general, local search algorithms are incomplete and 

do not guarantee of finding a complete assignment satisfying all the constraints. 

Therefore, they have generally been used in conjunction within hybrid frameworks. 

These algorithms may be more efficient with respect to response time as they are 

guided by heuristics. Local search approach adopted by [19] has showed impressive 

results. 

 
   There are many ways to define neighborhood of an assignment [28]. Two basic 

local search algorithm schemes, hill-climbing and min-conflict, usually start from a 

randomly or heuristically selected assignment which repeatedly performs local steps 

to their neighborhood till a solution is found or the time limit exceeds. But, they differ in 

the manner how the neighbor assignments are selected. Hill-climbing always selects a 

better assignment out of all the neighbors (the assignment which minimizes the 

number of violated constraints). When an assignment better than the current one is 

not available, the search is stuck in a local optimum and the algorithm usually restarts 

from another initial randomly selected assignment. A variation steepest-ascent hill 

climbing, selects the best possible assignment out of all the neighbors. 
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   On the other hand, min-conflict algorithm chooses the best assignment only 

from a subset of the neighbor assignments. Usually, it randomly selects any variable 

that is involved in an unsatisfied constraint, and then picks a value which minimizes 

the number of violated constraints. If no such value exists, it randomly picks a value 

that does not increase the number of violated constraints. If algorithm reaches a strict 

local minimum, it does not perform any move at all and it does not get terminated. To 

deal with this problem, a variation, Min-conflict Random Walk Algorithm is used in 

literature. 

 

2.2.5 Cluster Methods 
   In these methods the set of events is split into groups which satisfy hard 

constraints and then the groups are assigned to time periods to fulfill the soft 

constraints. Different optimization techniques have been employed to solve the 

problem of assigning the groups of events into time periods. The main drawback of 

these approaches is that the clusters of events are formed and fixed at the beginning 

of the algorithm and that may result in a poor quality timetable.  

 

2.2.6 Hyper-Heuristic Methods 
   Hyper-heuristics are “heuristics that choose heuristics” [29]. The main 

difference between hyper-heuristics and the widely used meta-heuristics in scheduling 

is that hyper-heuristics is a method of selecting heuristics from a variety of different 

heuristics that may include meta-heuristics. So hyper-heuristics are more general 

purpose methods. In [21], the authors have obtained good results by using genetic 

algorithms to select from a set of heuristics encoded in the search space. An 

approach was presented in [2], on open-shop scheduling problems using genetic 

algorithms to search a space of abstractions of solutions to “evolve the heuristic 

choice”. In a real-world scheduling problem, genetic algorithms are used to construct a 

schedule builder that chooses the optimal combinations of heuristics [30]. Another 

approach in [31] has used a genetic algorithm selecting the heuristic to order the 

exam in a sequential approach for exam timetabling. Another approach using fuzzy 

logic to apply an ordering of heuristics has been developed by Asmuni and Burke in 

[15].  

 



CHAPTER 2               LITERATURE SURVEY 
 

__________________________________________________________________________________________ 
    

29 

2.2.7 Decomposition Methods 
   Real-world scheduling problems are generally very large and complex. To 

address this problem, decomposition and partition techniques have also been studied 

with some success. The basic idea is to decompose the problem into a set of sub-

problems that are small enough to be solved by using simple approaches. Then these 

sub-solutions are combined for the original problems. In [32], an algorithm has been 

presented which decomposes the course scheduling problems into a series of easier 

assignment-type sub-problems. An approach of decomposing the timetabling data to 

produce shorter flexible length timetables was also studied in [33]. In [34], the authors 

have employed a multi-stage algorithm in an evolutionary approach using graph 

coloring heuristics to solve examination timetabling problems that were decomposed, 

and while the sub-problems were solved by using a memetic approach.  

 

2.3 Meta-Heuristic Methods 
   According to the Meta-heuristics Network, a meta-heuristic is a general 

framework which may be applied to different optimization problems with some 

modifications needed according to specific problem scenarios. Due to this generalized 

nature, these techniques have become increasingly popular in trying to solve 

scheduling problems. In the recent past, a number of meta-heuristic techniques such 

as simulated annealing, tabu search, iterated local search, evolutionary and genetic 

algorithms, ant colony optimization and other hybrid approaches have been 

investigated for scheduling. These techniques begin with one or more initial solutions 

and employ search strategies that try to avoid local optima. These algorithms have 

produced good solutions on different problem instances.  

 

2.3.1 Tabu Search 
   Tabu search uses local search along with a mechanism to avoid getting 

trapped in a local minimum. The mechanism is based on a tabu list, which is a special 

short term memory containing pairs of variable and values, which is used to maintain 

a history of previously encountered assignments. The assignments in the tabu list are 

not considered for the next iterations. This mechanism prevents the search from being 

trapped in local optima. 
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   In course scheduling, tabu Search was mainly investigated on real-world 

problems in different institutions with specific requirements. Good results were 

reported with different variations of tabu list, initial solutions and objective functions, 

etc [35]. In [36], the authors have developed a tabu search based general problem 

solver for a range of constraint satisfaction problems including a high school 

timetabling problem. Results achieved were competitive as compared with others. 

Approaches that integrated tabu search with other techniques were also investigated. 

In [18], a tabu search hyperheuristic has been developed for timetabling and rostering. 

The results obtained were better than using either method alone. Research on 

examination timetabling problems was carried out in [37], which studied different 

aspects (length of tabu lists, representations and initialisation methods of solutions) of 

utilising tabu search. 

 

2.3.2 Simulated Annealing 
   This method simulates the physical process of annealing. In annealing, a 

material is heated and then cooled, usually for softening and making the material less 

fragile. Simulated annealing exposes a solution to ‘heat’ and then to ‘cool’ it for 

producing more optimal solution, i.e. an in-feasible solution is taken and random 

variations are applied to achieve good solution. A worse variation is accepted as the 

new solution with a probability that decreases as the computation proceeds. The 

search tries to avoid local minima by jumping out of them early in the computation. 

Toward the end of the computation, when the temperature or probability of accepting 

a worse solution is nearly zero, this simply seeks the bottom of the local minimum. 

The chance of getting a good solution can be traded off with computation time by 

slowing down the cooling schedule. The slower the cooling, the higher is the chance 

of finding the optimum solution, but the longer the run time. Thus effective use of this 

technique depends on finding a cooling schedule that gets good enough solutions 

without taking too much time. Literature suggests that the implementation is highly 

dependent on various settings and parameters (e.g. solution space, cooling schedule, 

neighborhood generation, cost function) on both examination and course/school 

scheduling problems thus careful selection of parameters and settings on this 

algorithm are needed. 
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2.3.3 Genetic/Evolutionary Algorithms 
   An evolutionary algorithm is a generic population-based meta-heuristic 

optimization algorithm. An evolutionary algorithm uses some mechanisms inspired by 

biological evolution: reproduction, mutation, recombination, and selection. Candidate 

solutions to the optimization problem play the role of individuals in a population, and 

the fitness function determines the environment within which the solutions live. 

Evolution of the population then takes place after the repeated application of the 

above operators. Usually, an initial population of randomly generated candidate 

solutions comprises the first generation. The fitness function is applied to the 

candidate solutions and to any subsequent offspring. In selection, parents for the next 

generation are chosen with a bias towards higher fitness. The parents reproduce by 

copying with recombination and/or mutation. Recombination acts on the two selected 

parents (candidates) and results in one or two children (new candidates). Mutation 

acts on one candidate and results in a new candidate. These operators create the 

offspring (a set of new candidates). These new candidates compete with old 

candidates for their place in the next generation (survival of the fittest). This process 

can be repeated until a candidate with sufficient quality is found or a previously 

defined computational limit is reached. 

   Genetic and evolutionary algorithms have been widely studied by researchers 

in scheduling, concerning different aspects of timetabling problems. In course 

scheduling, [38] investigated a parallel genetic algorithms that greatly reduced the 

execution time to solve the problem. Approaches that hybridise genetic algorithms 

with local search techniques during the evolution, which are known as Memetic 

Algorithms have been investigated and promising results have been obtained [39]. 

Initialization is one of the important issues in genetic algorithms and evolutionary 

algorithms. In [21], Ben Paechter has used different methods like group-based 

operators to achieve good result on some instances. 

 

2.3.4 Ant Algorithms 
   In these algorithms, artificial ants try to solve a problem by adopting the 

behavior of real ants [40]. The inspiration behind ant algorithms is the ability of ant 

groups or colonies to perform well coordinated activities. Foraging behavior and 

capability of ants to find shortest path between food and home has been adopted for 
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solution of many problems of combinational and computational nature. [41] Describes 

that ants communicate to each other with the help of a scent called pheromone. When 

ants search for food, they form a path by leaving behind the pheromone. An ant going 

on the shortest path between food and home, will deposit more pheromone than an 

ant going on longer path, as it moves to and fro, on the path more for number of times. 

Other ants, when encounter a more pheromone-rich path than their current path, 

divert to this path. Thus, all ants are directed to the shortest path. Ant algorithms work 

on a common memory space which is taken as pheromone trail. All ants update their 

knowledge on this memory. Good solution receives more pheromone and bad 

solutions are eliminated by pheromone evaporation. This shared memory allows the 

ants to find solutions rapidly. Pheromone evaporation provides a way to escape 

deadlocks. Soch, Knowles and Samples [42] have used max-min ant system to 

achieve best known results on benchmark instances of the course timetabling problem 

by simulating a colony of ants, wherein each ant constructs a complete candidate 

timetable by placing courses one-by-one in a predefined order. The selection of 

timeslot to assign is done keeping in view the pheromone level. One candidate 

timetable is then selected on basis of a fitness function from the set of timetables 

generated by the ants. Pheromone levels are updated. This process is iterated till the 

time limit and finally the best solution is selected. 

 

2.3.5 Classification of Meta-Heuristic Methods 
   In [43], R. Lewis categorizes meta-heuristic algorithms for scheduling into three 

categories. An overview of each category and various algorithms which have used 

these approaches are described as follows: 

 

2.3.5.1 One-Stage Optimization Algorithms 
   Scheduling algorithms of this type allows the violation of both hard and soft 

constraints, with an aim to search for a solution that has a sufficient satisfaction of 

both. Some mechanism of weight-age has to be used to give hard constraints higher 

priorities than that to soft constraints. This kind of approach is generally easy to 

implement as any type of constraint may be easily incorporated in the problem by 

defining a suitable priority-weighing function. Such implementation is also easy 

because only a single weighing function is to be used for searching a solution. 
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Because of the convenience to incorporate a complex set of constraints, this approach 

has been used in a large number of scheduling algorithms.  

 

2.3.5.2 Two-Stage Optimization Algorithms 
   The characteristics of two-stage optimization algorithms for scheduling may be 

summarized as follows:  
 

   In stage-one, the soft constraints are generally ignored, and only the hard 

constraints are considered i.e. only a feasible solution are required. In the next stage, 

assuming feasibility has been found; attempts are made to minimize the number of the 

soft constraint violations. In this step, violation of hard constraints is not allowed. An 

immediate benefit of this technique is that there is no need to define a weight-age 

function. Such approach seems more reasonable, as achieving a feasible schedule is 

the main aim, and no compromise is made on hard constraint violation when reducing 

soft constraints. Majority of the above-mentioned algorithms fall in the class of two-

stage algorithms. 
 

2.3.5.3 Algorithms that allow Relaxations 
   In these methods, some aspect of the problem is relaxed so that the soft 

constraints may be satisfied but not at the expense of violating any of the hard 

constraints. Two common ways to provide relaxation are: 
 

• Events that cannot be feasibly assigned to any place in the current schedule 

are left unplaced. The algorithm then attempts to satisfy the soft constraints 

and tries to assign these unplaced events to somewhere in the schedule at a 

later stage.  
 

• Extra timeslots are opened in order to deal with events that have no existing 

feasible timeslot available. The algorithm then tries to reduce the number of 

timeslots down to the required amount, while taking into consideration the 

satisfaction of the soft constraints. 
 

2.4 Comparison of Scheduling Approaches 
   Comparisons concerning a range of issues in heuristic and meta-heuristic 

methods for timetabling have been carried out. In [44], Ross and Corne compared 

genetic algorithms, simulated annealing and stochastic hill climbing on a collection of 
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real scheduling problems, concerning the solution quality and number of useful 

solutions. The conclusions were that the stochastic algorithms perform generally well 

with respect to the solution quality. Some other comparisons among simulated-

annealing, tabu search, genetic algorithms and memetic algorithm (genetic algorithms 

with local search) have suggested that tabu search generally obtains the best result, 

and genetic algorithm with local search is capable of giving a set of good quality 

solutions thus is much flexible to users who may have a variety of objectives. 

However, different algorithms within specific circumstances may perform differently on 

particular scheduling problems. In general, genetic/evolutionary algorithms are able to 

give a number of useful distinct solutions thus in real-world problem solving, they may 

be more flexible on providing the users solutions that satisfy different aspects of 

requirements.  

 

   A comprehensive comparison of different meta-heuristics for course scheduling 

has been presented by Rossi-Doria et al. [45] who provided a comparison between 

proposed five different meta-heuristic based algorithms (evolutionary algorithms, ant 

colony optimization, iterated local search, simulated annealing, and tabu search). 

Some of these algorithms attempted satisfaction of both hard and soft constraints 

simultaneously. Other algorithms, such as the iterated local search and simulated 

annealing approaches employed two separate steps for hard and soft constraints. In 

this comparison, it was observed that in the cases where feasibility was generally 

achieved, the algorithms using two steps tended to produce better results. Keeping in 

view their observations, the authors offered two conclusions: 

• “The performance of meta-heuristic, with respect to satisfying hard 

constraints and soft constraints, may be different; 

• “A hybrid algorithm consisting of at least two phases, one for taking care of 

feasibility, and the other for taking care of minimizing the number of soft 

constraint violations, is a promising direction.” 

 

2.5 Summary 

   A number of studies has been carried out and many algorithms have evolved 

for scheduling problems; both problem-specific and generalized. Problem-specific 

approaches, such as graph theory and integer programming, can produce reasonable 



CHAPTER 2               LITERATURE SURVEY 
 

__________________________________________________________________________________________ 
    

35 

solutions for smaller scheduling problems. However, they are generally not capable of 

dealing with problems with larger size and complex constraints. More generalized 

techniques such as meta-heuristics (simulated annealing, evolutionary algorithms, and 

tabu search etc.) have been reported to obtain better results on a wide range of 

problems of different sizes. Problem- specific heuristics must be used in their support 

to reduce the number of possible solutions processed and to fit them into specific 

problem scenarios. Some important observations are as follows: 

 

• No particular approach is superior to any other on all occasions. It is likely 

that certain approaches might be more suited to certain types of problems 

and certain types of user requirements.  

• The performance of a meta-heuristic, with respect to satisfying hard 

constraints and soft constraints may be different. Therefore, hybrid 

algorithms consisting of separate stages and techniques for hard and soft 

constraint satisfaction provide better chance of a good solution. 

• There is a better chance of achieving a good solution, when events are 

inserted into timeslot in some order, e.g. which have the highest number of 

common resources. 

• A mechanism to provide relaxation is helpful to avoid dead-end. 
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Chapter 3: Die-hard Cooperative Ant Behavior Approach 
3.1 Overview and Inspiration 
   As observed in the literature survey, an approach comprising of two stages; 

first allocation and then optimization, performs better on course scheduling 

problems. Keeping in view this observation, this two-stage framework is devised, 

based on a typical ant behavior. Different techniques are used within this framework. 

The resulting algorithm is named “Die-hard Cooperative Ant Behavior Approach” 

(DCABA). This approach is different from the ant approaches previously used for 

solving scheduling problems. The main inspiration of this approach is the following 

ant behavior: 

 
• Ants explore the surroundings of their colony in search of food by roaming 

about randomly. When ants find food, they try to take it home. If one ant 

can pick up the piece of food, it takes it alone. If food is heavy, more ants 

try to pick it. If food is too heavy, ants break the piece of food and then 

start trying again. 

 
   In this exercise, ants show persistence and cooperation. A piece of food once 

approached is never left, neither for other ants nor for a later time. This approach 

has been adopted for the solution of course scheduling problem. A problem once 

encountered is emphasized upon and it is tried that it may be overcome positively. 

Similarly, if a prospective place is encountered, all available mechanisms are 

activated to take advantage of it. The approach results in a two-stage hybrid 

framework in which a number of heuristics and techniques may be used. In the first 

stage, allocation of courses is attempted. In the second stage, the quality of obtained 

solution is improved by optimization. 

 

   In allocation stage, a quick but less powerful mechanism starts placing 

courses in time space according to some simple heuristics. If it gets stuck 

somewhere and is unable to allocate courses any further, a set of diverse helper 

functions are invoked which try to overcome the bottleneck. Once they take the 

solution out of trap, main function starts again. If they fail to overcome the problem, 

the problem scenario is changed by using an operator. In optimization stage, 
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optimizer function starts improving the solution obtained from first stage. As in 

allocation stage, a helper mechanism is present to take care of bottlenecks. If it fails, 

another mechanism changes the scenario on the time space table and optimizer 

function takes charge again. The process continues till a pre-defined time limit. 

 

 

 

 

 
Figure 3.1: Ants carrying food 
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3.2 DCABA Modeling 
   The ant behavior to be modeled can be elaborated as follows: 

a) Ants roam about randomly and find food. Shortest path to food is found by 

using pheromone trail. 

b) Ants start taking food to home using the shortest route. 

c) If an ant finds a heavy piece of food which it can not carry, it waits for help. 

When another ant reaches it by following the trail, both the ants try to pick 

the food. If both fail, they wait for more ants, and so on. 

d) If a group is able to take the food home, each of these ants start working 

separately as before. 

e) If a specific number of ants is unable to pick the food, the ants break the 

food into pieces and repeat the above process. 
 
   This behavior is modeled for our scenario as follows: 

a) A mechanism is selected to be used as the shortest path towards solution 

(SelectShortestPath). 

b) Process of seeking solution is started using the shortest path mechanism 

(SolutionSeekingProcess). 

c) If some bottleneck is encountered during the SolutionSeekingProcess, a 

helping mechanism is invoked (Helper). 

d) If the helper mechanism succeeds, the SolutionSeekingProcess takes 

over, and advances. 

e) If the helper mechanism fails, orientation of the scenario is changed by 

invoking some suitable mechanism (OrientationChanger) and the 

SolutionSeekingProcess takes over. (Break of the food into pieces by ants 

is taken as changing the orientation of the problem). 
 

3.2.1 DCABA Modeling for Phase-1 (Allocation) 
   Keeping in view the behavior modeling above, the following mechanism has 

been used in the allocation phase: 

 

Step 1: Finding Shortest path for complete allocation: 
   A set of initial solutions is developed using a Heuristic-Selection Operator.  

Each solution in the set is developed by using a specific heuristic. The solutions are 
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evaluated by an evaluator and the heuristic which gives the best initial solution is 

selected for use in the allocation step. Each heuristic is applied by sorting the list of 

courses and rooms and then starting allocation by selecting courses and rooms one-

by-one from the sorted lists.  

 
Step 2: Allocation step 
   An Allocation Operator starts allocating the courses in the time-space. The 

heuristic selected in the previous step is used to select courses and rooms for the 

next allocation. One period (that is one period in each day, in this case, 5 periods as 

number of days is 5) is opened and each course is tried to place in its feasible room 

in the slots opened so far. If a place is found such that placing this course here 

doesn’t result in any clash, the course is placed, and next course is selected. If no 

such place is found for any of the courses in the timeslots opened so far, a set of 

helper functions is invoked. 

 
Step 3: Helper Functions 
   The set of Helper Functions try to take the solution out of deadlock by trying 

to allocate the courses left from previous step. These functions basically work on 

local search. No violation of hard constraints is allowed at any instance of time while 

their execution. After running these helper functions, one more period is opened and 

allocation operator starts again. 

 

Step 4a: Change orientation of problem space by random-shuffling 
   When helper functions fail to allocate all the courses, the orientation of the 

solution is changed by invoking a Random-Shuffle Operator and allocation 

operator starts again. 

 
Step 4b: Change orientation of problem space by selective-shuffling  

   If after opening all the allowed number of periods, some courses are left un-

allocated, the orientation is changed by a Selective-Shuffle Operator and allocation 

operator starts again. These steps are repeated till all the courses are allocated or 

time limit is over. 
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3.2.2 Functions and Operators in Phase 1 
3.2.2.1 Heuristic-Selection Operator 
   This operator uses heuristics to obtain a set of initial solutions. The solutions 

are then evaluated to find a solution in which maximum number of courses has been 

allocated. The heuristic which developed this solution is selected for use. The 

following heuristics are used: 
 

• Start allocation from those courses which have least number of feasible 
rooms available. This was achieved by attaching a list of feasible rooms 

with each course and then the list of courses was sorted, with the course 

having lowest number of feasible rooms coming in the first place, and the 

course having highest number of feasible rooms coming in the last place. 
  

• Start allocation from those courses which need most number of features 
in rooms. A list of features needed by a course was attached with the 

course. The list of courses was then sorted, with the course needing most 

number of features coming in the first place and the course needing least 

number of features coming in the last place. 
 

• Start allocation from the course which has most number of attending 
students. The list of courses was sorted by number of attending students 

in descending order. 
 

• Start allocation from courses which clash with most number of courses 

(that is, it shares one or more of its attending students with those courses). 

List of courses was sorted such that a course which clashes with most 

number of courses comes first and the course which clashes with least 

number of other courses comes at the last place. 
 

• Start allocation from the course which shares most number of its 
attending students with some other courses. The list of courses was 

sorted such that the course sharing most number of attending students 

with other courses comes first, and so on. 
 

• Start allocation from the course which has the highest ratio of clashing 
courses to students (number of clashing students / number of clashing 

courses). The list of courses is sorted in descending order of this ratio. 
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• Start allocating the courses from those rooms which are feasible for 
most number of total courses. A list of feasible rooms for each course is 

attached with it. This list is sorted such that the room which is feasible for 

most number of courses comes first and so on. 

 

3.2.2.2 Allocation Operator 

   This operator selects the next course and room for allocation from the list 

generated by heuristic-selection operator and places the courses in the spaces 

opened so far in a 3-dimensional timetable-array (periods x days x rooms). It 

ensures that no hard constraint is violated by checking only the empty and feasible 

spaces for a course under consideration. If an empty feasible place is found, the 

operator puts the course identifier in the 3-D array, thus indicating an allocation.  

 

3.2.2.3 Helper Functions 

   These functions try to allocate courses by finding feasible places using local 

searches. Each local search is limited by a criterion. No violation of hard constraints 

is allowed at any instance of time during their execution. Following mechanism 

describes the working of this set of functions: 
 

Function 1: Try to move an allocated course X to an empty feasible place Rx which 

is not accepting the un-allocated courses C, if it is occupying a place Rc which can 

accommodate the un-allocated course C. 

a) Find an occupied feasible room Rc for C, where course X is already 

allocated. 

b) Find an empty feasible room Rx for X. 

c) If X can be moved to Rx: 

i. Move X to the Rx, 

ii. Allocate C to Rc. 

d) If X can’t be allocated to Rx because of a clashing course CX: 

i. Try to find an empty feasible room for CX, 

ii. If a room is found, move CX to that room, 

iii. Move X to Rx, 

iv. Allocate C to Rc. 
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Function 2: Find an empty place, and locate the allocated course CC which is not 

allowing any un-allocated courses C to be placed there (due to student-clash). Try to 

move this clashing course CC to somewhere else. 

a) Find an empty feasible room Rc where C was not placed due to a clashing 

course CC in the same timeslot. 

b) Find a feasible room for CC. 

c) If found; move CC there. 

d) Allocate C on Rc 
 
3.2.2.4 Random-Shuffle Operator 

   This operator changes the orientation of solution space by shuffling courses in 

one the following ways: 

• Each allocated course is tried to move to an empty feasible place. 

• Each allocated course is tried to be swapped with another allotted course. 
 

3.2.2.5 Selective-Shuffle Operator 
   This operator changes the orientation of solution space by moving allocated 

courses placed at the feasible places of any unallocated courses to some empty 

feasible places which can accommodate these allocated courses. 
 

3.2.3 DCABA Modeling for Phase-2 (Optimization) 
   Keeping in view the behavior modeling above, the following mechanism has 

been used in the optimization phase: 
 

Step 1: Finding Shortest path for optimization: 
   It is assumed that the solution can be reached fairly fast, if those moves are 

favored which decrease most number of problems as compared to other optimizing 

moves possible in a certain scenario. So Steepest-Ascent Hill Climbing is used as 

the shortest path towards solution. 
 

Step 2: Optimization step 
   An Optimization-Operator starts searching the solution space for 

improvements using steepest-ascent hill climbing.  
 

Step 3: Helper Mechanism 
   The optimization-operator in step-2 comprises of two functions. Each of these 

functions is run as long as it can improve the solution. If it fails to improve the 
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solution, second function is called and vice versa. So both functions help each other 

by jumbling the solution and providing new scenario to other function when they 

perform moves to improve solution. 
 

Step 4: Change orientation of solution space 
   When the optimization-operator and helper mechanism fail to improve the 

solution any further, orientation of problem is changed by introducing a Least-

Penalty-Shuffle Operator. 

 
3.2.4 Functions and Operators in Phase 2 
3.2.4.1 Steepest-Ascent Hill Climbing 

   This is a local search approach which favors the next prospective solution 

which is closest to the desired/optimal solution. In the case of optimization in course 

scheduling problem, it means favoring a move which decreases most number of soft 

constraint violations from the set of all moves. 
 

3.2.4.2 Optimization-Operator 
   This operator consists of two functions. These functions are similar to the 

neighborhood operators used by Abdullah, Burke and McCollum [17] in their Variable 

Neighborhood Search. 

• Function 1 swaps entire periods in a day with other periods in any day. 

These moves can not result in introducing hard constraints as the whole 

cluster of allocated courses in a period in a day is swapped. All swapping 

moves are evaluated and only that move is committed which decreases 

most number of problems. 

• Function 2 shuffles each allocated course with other allocated courses 

keeping in view the hard constraints. The shuffle move, which decreases 

most number of problems, is committed after evaluating all possible 

moves. 
 

3.2.4.3 Least-Penalty-Shuffle Operator 

   This function changes the orientation of solution space with the help of an 

analyzer agent. This agent analyzes the timetable array and finds out which 

allocated courses are causing problem. The least-penalty-shuffle operator then 

moves these problem courses to a different slot by shuffling with already placed 
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course or an empty place. The violation of hard constraints is always checked and 

avoided by only looking for candidate place for shuffling in the list of feasible places 

of the problem course under consideration. For each course, all possible moves are 

evaluated and the move which introduces least number of problems is selected. 

 

3.3 Important characteristics of DCABA 
• DCABA works on a hybrid framework in which many heuristics and 

techniques may be used. This can give more diversity in options to solve 

multi-constrained problems where different techniques specific for certain 

constraints may be designed. 

• DCABA may be customized to meet the needs of a specific university, as 

helper functions of different capability may be tailor-made to suit some 

specific constraints or to give more priority to a specific requirement (e.g. 

allocation capability may need to be more powerful than optimization in 

some scenarios).  

• In optimization phase, a solution which is better than previous solutions is 

saved. It ensures that the best solution which is reached at some instance 

of time in optimization phase is available when the algorithm stops. It is 

helpful as the least-penalty-shuffle may result in a more problematic 

solution than a previously reached better solution. 

• One period at a time is opened up and allocation is tried for as many 

courses as possible (i.e. emphasis on using least number of periods). So 

at the end, it is probable that one soft constraint (class scheduled in the 

last period of day), is satisfied. 

• At the end of allocation phase, a function tries to move classes in the last 

period of all days to first periods. This works as the first optimization step 

as it tries to decrease the last period problem. 
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Chapter 4: DCABA Implementation 
4.1 Implementation Details 
   A simulator based on DCABA is developed in C#. Some important 

characteristics of the implementation are as follows: 

• A three-dimensional matrix/array [ i x j x k ] is used to represent the 

schedule.  

o i rows represent periods, 

o j columns represent days, 

 i x j  is a timeslot. 

o k rooms available in a timeslot.  

• Each cell represents a room in a timeslot. 

• Course allocation is done by assigning a number corresponding to a 

course to a cell in the matrix. -1 represents an empty cell. This way, it is 

ensured that more than one course cannot be assigned to a cell, which 

means one of the hard constraints is never violated. 

• At the start of execution, a data structure related to the problem instance 

being input is created. This data structure contains following matrices: 

o Course-student matrix indicates which students are registered for a 

course. 

o Course-room matrix indicates which rooms are feasible for a 

course. 

o Course-feature matrix indicates which features are required for a 

course. 

o Student-course matrix indicates which courses a student is taking. 

o Room-feature matrix indicates which features are provided by a 

room. 

• Search space is limited with the help of these matrices, e.g. when 

searching for a feasible place for a course, only its feasible rooms are 

searched. 
 

4.2 Input/Output 
   As given in the problem specification, total number of available timeslots is 45 

(5 days of 9 hours each) and it is hard-coded in the implementation. Problem 
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instances are provided in the form of text files. Each instance contains the following 

information: 

 
• Set of courses to be scheduled. 

• Set of rooms in which courses can take place. 

• Size of each room. 

• Set of students attending the courses. 

• Set of features satisfied by rooms. 

• Set of features required by courses. 

 

   The solution is also output as a text file containing the allocation of courses in 

timeslots and rooms. Each problem instance and solution is represented by separate 

text files. 

 
4.3 Experimental Setup 
   Three studies are performed on the simulator. First study tests the overall 

capability of the algorithm in both phases; allocation and optimization, while the 

second study tests only the allocation capability. The third study investigates the 

effect of using individual Heuristic Operators on the allocation capability.  Study-2 

and 3 use same problem instances while study-1 has its own set of problem 

instances. A limited time is available to the simulator to run the instances, according 

to the characteristics of individual instance sets. There are different methods of 

evaluating the solution for all the three studies. 

 

4.3.1 Study 1: Allocation + Optimization 

   In this study, both phases of the algorithm are tested. The available time has 

to be managed to first achieve a feasible solution and then optimize it. Eleven 

instances are run in this study. Details about these instances are given next. Results 

are compared with Fuzzy Heuristic Ordering by Asmuni and Burke [15], Graph-

Based Hyper Heuristic by Rong Qu and Burke [16], Variable Neighborhood Search 

by Abdullah and Burke [17], Tabu-search Hyper Heuristic by Kendall, Soubeiga and 

Burke [18], Local search by Socha [19] and Ant Algorithm by Socha [20]. 
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4.3.1.1 Problem Instances 

   These Instances are designed to test both allocation and optimization 

capability of algorithms.  
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small1 100 5 5 80 7 9 1 48 

small2 100 5 5 80 8 10 1 61 

small3 100 5 5 80 7 9 2 52 

small4 100 5 5 80 5 6 2 25 

small5 100 5 5 80 9 11 2 34 

medium1 400 10 5 200 8 17 4 21 

medium2 400 10 5 200 8 17 3 24 

medium3 400 10 5 200 8 17 3 21 

medium4 400 10 5 200 8 17 3 27 

medium5 400 10 5 200 8 17 2 88 

large 400 10 10 400 17 17 1 288 
 

Table 4.1: 11 Problem Instances for Study 1 

 
4.3.1.2 Mechanism for Obtaining Results 

   In this study, the aim is, to first find a feasible solution and then optimize it to 

make perfect solution (with no soft constraint violations). So, the quality of a solution 

can be judged by the number of soft constraints in it. If number of soft constraints is 

zero, the solution is perfect. As the number goes higher the quality of solution is 

lower. It also means that hard constraint violations are not allowed. Thus, if a 

solution has any hard constraint violations or any courses are unplaced, then it is left 

out of the competition as even the allocation is in-complete.  

   A benchmarking utility [46] is also provided with the problem instances to 

judge the quality of solution. The solution, in the form of text file, is input to this utility 
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and it returns a number corresponding to the number of soft constraint violation left 

in the solution. An infeasible solution is not accepted by the utility. Another 

benchmarking utility [47] is provided with the problem instances used for determining 

the time for which an algorithm may run on the simulating CPU.  
 

4.3.2 Study 2: Allocation 

   Only allocation capability of the algorithm is tested in this study. i.e., phase-1 

of the algorithm is run only and all available time is utilized in attempt of allocation of 

courses. Sixty instances are run in this study. Details about these instances are 

given next. Results are compared with Heuristic Search Algorithm and Grouping 

Genetic Algorithm of Rhydian Lewis and Ben Paechter [21]. 
 

4.3.2.1 Problem Instances 

   These are Hard-to-Solve Instances [48] with respect to allocation and are 

generated by a problem generator by “Rhydian Lewis and Ben Paechter” to check 

allocation capability of their algorithms mentioned above. The instances are divided 

into three sizes: 
 

Instance Average 
Number 

Of 
Courses 

Average 
Features 
Required 

per Course

Average 
Number of 
Students 

per Course

Average 
Number of 
Clashing 
Students

Avg. Number of 
Courses 
with only 

One Room Option

Small 211.5 0.9 79.15 728.94 62.1 

Medium 403.25 1.9 37.1 572.1 177.8 

Large 1023.75 4.15 21 565.45 617.3 
 

Table 4.2: Characteristics of Instances for Study 2 
 

   Following observations are made about these instances: 

• Small Instances have fewer courses, low feature requirements and large 

number of clashing students. 

• Medium instances have fewer courses, medium number of clashing 

students and less feasible rooms. 

• Large Instances have large number of courses, more features needed and 

less feasible rooms. 
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Big1 1000 28 20 1000 15 15 1 763 

Big2 1000 25 20 1000 17 17 1 803 

Big3 1000 25 20 900 15 17 1 710 

Big4 1050 25 20 800 15 20 2 648 

Big5 1075 25 20 1000 18 20 1 818 

Big6 1075 25 20 1000 20 22 1 841 

Big7 1050 25 20 1100 25 24 1 948 

Big8 1025 25 20 1000 19 20 1 608 

Big9 1050 25 20 800 15 20 2 678 

Big10 1075 25 20 1000 18 20 1 673 

Big11 1075 25 20 1000 18 20 1 827 

Big12 1000 26 25 1000 18 18 2 723 

Big13 1000 25 25 1000 19 19 2 738 

Big14 1000 25 25 1000 19 19 2 712 

Big15 1000 25 25 1000 23 23 1 744 

Big16 1000 25 10 1000 22 22 4 208 

Big17 1000 25 10 1200 36 30 5 85 

Big18 1000 25 10 1000 30 30 3 244 

Big19 1000 25 10 1000 28 28 3 212 

Big20 1000 25 10 1000 30 30 2 363 
 

Table 4.3: 20 Large Problem Instances for Study 2 
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Medium1 400 10 10 400 17 17 1 321 

Medium2 390 10 10 400 18 17 1 235 

Medium3 390 10 10 400 20 20 1 267 

Medium4 410 10 9 400 19 20 1 214 

Medium5 410 10 9 450 21 20 1 221 

Medium6 410 11 10 450 23 21 1 281 

Medium7 410 11 10 450 27 25 1 268 

Medium8 400 10 10 400 22 22 1 284 

Medium9 400 10 10 400 27 27 1 337 

Medium10 400 10 8 500 22 17 5 75 

Medium11 400 10 8 800 35 17 4 110 

Medium12 400 10 8 800 39 19 3 117 

Medium13 400 10 8 800 46 23 4 121 

Medium14 400 10 8 1000 44 17 4 106 

Medium15 425 10 8 500 23 20 4 111 

Medium16 400 10 8 1000 70 28 5 66 

Medium17 400 10 8 800 48 24 4 117 

Medium18 400 10 8 1000 75 30 4 93 

Medium19 410 10 8 1000 73 30 4 85 

Medium20 410 10 8 1000 73 30 3 127 
 

Table 4.4: 20 Medium Problem Instances for Study 2 
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Small1 200 5 5 200 17 17 2 45 

Small2 210 6 5 400 34 18 2 19 

Small3 200 6 5 400 50 25 3 16 

Small4 200 5 8 500 47 18 2 42 

Small5 200 5 8 500 50 20 2 72 

Small6 200 5 3 1000 61 12 2 38 

Small7 200 5 3 800 76 19 1 84 

Small8 225 5 10 1000 88 20 1 95 

Small9 225 5 10 900 100 25 2 130 

Small10 220 5 10 1000 113 25 1 144 

Small11 200 5 4 1000 81 16 2 61 

Small12 225 5 10 1000 55 12 1 159 

Small13 225 5 10 1000 88 20 1 146 

Small14 225 5 3 1000 88 20 3 24 

Small15 200 5 3 900 95 21 2 0 

Small16 200 5 3 900 95 21 3 24 

Small17 200 5 3 900 135 30 2 29 

Small18 225 5 3 1000 111 25 2 35 

Small19 225 5 3 1000 124 28 3 40 

Small20 225 5 3 1000 75 17 2 39 
 

Table 4.5: 20 Small Problem Instances for Study 2 
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4.3.2.2 Mechanism for Obtaining Results 

    In this study, the aim is to find feasible solutions. So, the quality of a solution 

can be judged by measuring the level of feasibility achieved. If all courses are 

assigned, there will be zero clashes. If courses remain un-assigned, it means their 

assignment must be creating clashes. This number of clashes is counted, which tells 

how far from feasibility the solution is. The algorithms being compared have used the 

following cost function to measure the total distance-from-feasibility: 
 

 

 

 

 
 

  Where s is the target number of timeslots, Ci is conflict-degree of timeslot i. 

i.e, for each event in timeslot i, the number of unallocated events with which it 

creates clashes. 
 
4.3.3 Study 3: Effect of using Individual Heuristic Operators 
   This study investigates the effect of using individual heuristic operators on the 

allocation capability of the algorithm. The aim is to find out the effect of using 

different heuristics. Instead of using Heuristic Selector Operator, each heuristic is 

selected one-by-one manually and results are obtained for all instances. The 

following heuristics are tested:  

• MostClashingCourses: courses which clash with most number of other 

courses allocated first.  

• MostClashingStudents: course sharing most number of attending students 

with other courses allocated first. 

• MostClashingCourses&Students: course with the highest ratio of clashing 

courses and students allocated first. 

• MostFeatureNeeded: courses needing most number of features allocated 

first. 

• MostStudents: course having most number of attending students allocated 

first. 
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• MostFeasibleRoom: rooms which are feasible for most number of courses 

allocated first. 

4.3.3.1 Problem Instances 

   The same instances from Study-2 are used in this study. 

 

4.3.3.2 Mechanism for Obtaining Results 

   The same cost function as in Study-2 is used to measure the total distance-

from-feasibility. Value of the cost function is measured within iterations after 

specified time intervals for each of the problem instances to obtain the results. 
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Chapter 5: Discussion of Results and Future Work 
5.1 Study 1 
5.1.1 Results 
 

Solution Quality (Number of problems remaining) 

Instance FHO GB 
HH VNS TS 

HH LS AA DCABA 

Small1 10 6 0 1 8 1 5 

Small2 9 7 0 2 11 3 5 

Small3 7 3 0 0 8 1 3 

Small4 17 3 0 1 7 1 3 

Small5 7 4 0 0 5 0 0 

Med1 243 372 242 146 199 195 176 

Med2 325 419 161 173 202 184 154 

Med3 249 359 265 267 - 248 191 

Med4 285 348 181 169 177 164.5 148 

Med5 132 171 151 303 - 219.5 166 

Large 1138 1068 - 1166 - 851.5 798 
 

Table 5.1: Results for Study 1 
 

5.1.2 Legend 
• A smaller number means better result, zero means perfect solution, no value 

denotes that the allocation is not achieved. 
 

• Bold figures represent previous best solutions. 

• Bold and highlighted figures represent new best solutions. 

• Abbreviations: 

o FHO: Fuzzy Heuristic Ordering by Asmuni and Burke 
o GB-HH: Graph-Based Hyper Heuristic by Rong Qu and Burke 
o VNS: Variable Neighborhood Search by Abdullah and Burke 
o TS-HH: Tabu-search Hyper Heuristic by Kendall, Soubeiga and Burke 
o LS: Local search by Socha 
o AA: Ant Algorithm by Socha 
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Figure 5.1: Results for Study 1 

 
 
5.1.3 Findings 
 

• Allocation has been achieved on all the instances and better results are 

achieved on 5 instances. 

• DCABA gives better results on medium and large instances, where problem 

size is large, with respect to number of courses and students. This is inline 

with the nature of the helper and orientation changing mechanism in phase 2, 

which have more chance of success where time space is larger and it has 

more options to shuffle and swap the courses. 

• Results show a strong allocation capability, as in all instances, allocation has 

been achieved and enough time is available for optimization phase. This 

finding is further investigated in Study-2. 
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5.2 Study 2 
5.2.1 Results 
 

Solution Quality (Distance-to-feasibility) 

Instance 
# 

Small Instances Medium Instances Large Instances 

GGA HSA DCABA GGA HSA DCABA GGA HSA DCABA 

1 0 0 0 0 0 0 0 0 0 

2 0 0 0 0 0 0 0 0 0 

3 0 0 0 0 0 0 0 0 0 

4 0 0 0 0 0 0 30 8 0 

5 0 0 0 0 0 0 24 30 9 

6 0 0 0 0 0 0 71 77 78 

7 0 0 0 34 14 31 145 150 0 

8 4 0 3 9 0 0 30 5 0 

9 0 0 7 17 2 17 18 3 0 

10 0 0 0 0 0 0 32 24 10 

11 0 0 0 0 0 0 37 22 0 

12 0 0 0 0 0 0 0 0 0 

13 0 0 5 3 0 3 10 0 0 

14 3 0 11 0 0 0 0 0 0 

15 0 0 0 0 0 0 98 0 37 

16 0 0 0 30 1 34 100 19 38 

17 0 0 0 0 0 0 243 163 263 

18 0 0 0 0 0 61 173 164 132 

19 0 0 9 0 0 49 253 232 223 

20 0 0 0 0 3 47 165 149 159 
 

Table 5.2: Results for Study 2 
 

5.2.2 Legend 
 

• A smaller number means better result, zero means feasible solution, any 

value greater than zero means allocation is not achieved. 
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• Bold figures represent previous best solutions. 

• Bold and highlighted figures represent new best solutions. 

• Abbreviations: 

o HSA: Heuristic Search Algorithm by Rhydian Lewis and Ben Paechter 
o GGA: Grouping Genetic Algorithm by Rhydian Lewis and Ben Paechter 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5.2: Results for Study 2 

 
 
5.2.3 Findings 

• DCABA has given comparable results on most of the small and medium 

instances. Better results are achieved on large instances, where a better 

solution has been achieved on 9 large instances. 

• This supports the finding from Study-1. In allocation phase, DCABA has also 

given better results where problem size has been large, with respect to 

number of courses and students. 
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5.3 Study 3 
5.3.1 Overall Results 
 
   Graph shows number of times each heuristic provides best result in term of 
reaching close to feasibility 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 Figure 5.3: Results Summary for Study 3 

 

5.3.2 Findings (Overall) 
• MostClashingCourse has given best results 17 times. 
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 5.3.3 Results of Large Instances 
   
   Graph shows average distance-from-feasibility on large Instances. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.4: Results for Study 2 (Large Instances) 

 
5.3.4 Findings (Large Instances) 

• MostClashingCourse overall gives most of the best result but has given worst 

result here. 

• Initially, MostFeasibleRoom started well but later MostClashingC&S has given 

best result on large instances. This is inline with the characteristics of large 

instances (more courses, more students, more features needed, less feasible 

rooms, thus more conflicts). 

• A combination of both these Room & Course selection heuristics gives better 

results. 
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5.3.5 Results of Medium Instances 
 
   Graph shows average distance-from-feasibility on medium Instances. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.5: Results for Study 2 (Medium Instances) 

 
5.3.6 Findings (Medium Instances) 
 

• No Conflict avoidance heuristic (which select next candidate based on 

conflict-degree. e.g. MostClashingStudents, MostClashingCourses&Students, 

MostClashingCourses) has performed well here. The reason seems to be the 

less conflicting nature of instances. 

• MostStudents & MostFeasibleRoom has given best results. i.e, these 

heuristics have successfully focused on less no. of rooms available. 
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5.3.7 Results of Small Instances 
 
   Graph shows average distance-from-feasibility on small Instances. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 5.6: Results for Study 2 (Small Instances) 

 
5.3.8 Findings (Small Instances) 
 

• MostClashingStudents & MostStudents have performed well in these 

instances. 

• Like the large instances, a combination of these heuristics has given good 

results. 

• FeaturesNeeded has been the worst, as feature requirements were negligible 

in small instances. 
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5.3.9 Random Behaviors 

Some graphs to show the random behavior of heuristics in small instance. 
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5.4 Conclusions 
 

• This work has been presented as an attempt to provide a diverse 

approach towards event scheduling. The presented approach has shown 

promising results. The approach is stronger in the allocation phase than in 

optimization phase. It has been noted that in most of the instances, 

allocation was completed easily. 

• It has been clearly seen that different heuristics have potential to provide 

good result in some scenario. Instead of using one heuristic throughout 

execution, using heuristics suitable for specific scenarios arising while 

execution may give better results. Instance-specific heuristics, however, 

have shown potential when they are defined more specifically in 

accordance to the instance characteristics. Further, instead of relying 

totally on conflict avoidance heuristic, as in general practice, definition of 

some more elaborate heuristics clearly shows improvement.  

• A combination of heuristics, both for selection of candidate event to be 

assigned and selection of timeslot gives better results.  

• It is a clear finding that selection of heuristics plays an important role on 

the quality of solution but at the same time, no generalization is observed 

in this regard either in this thesis or in literature, which identifies the factors 

responsible for different performance, while using the same algorithm on 

instances having similar characteristics. 
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5.5 Future Work 
 

In the following areas, there is potential work for future: 

• Improvement of helper and orientation-changing mechanisms. 

• Effects of using helper and orientation-changing mechanisms of different 

capabilities. 

• Effects of using different combination of the heuristics. 

• Hybridization with other approaches. e.g., fusion with the ant approaches 

already in research for a broader ant-based framework. 

• Modeling this approach for the solution of other assignment and 

combinatorial optimization problems like Traveling Salesman problem, 

Minimum Spanning Tree problem, Job Shop scheduling, Vehicle Route 

Scheduling problems and Bin-packing problem. 

• Studying the reason why specific algorithms perform better than others, to 

identify the factors involved in different results obtained using same 

algorithm on instances with similar characteristics. 

• Attempting an intelligent meta-heuristic algorithm, which analyzes the 

scenario while execution and select the appropriate heuristic to use. 
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