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Abstract 
 

Maintenance is one of the key phases of software development life cycle, for long 

term effective use of any software. It can become very lengthy and costly for large 

software systems, especially when subsystem boundaries are not clearly defined. 

System evolution, lack of up to date documentation and high turnover rate of software 

professionals (leading to non availability of original designers of the software 

systems) can complicate the system structure many folds by making the subsystem 

boundaries ambiguous. Automated software module clustering helps software 

professionals to recover high-level structure of the system by decomposing the system 

into smaller manageable subsystems, containing interdependent modules. We treat 

software clustering as an optimization problem and propose a technique to get near 

optimal decompositions of relatively independent subsystems, containing 

interdependent modules. We propose the use of self adaptive Evolution Strategies to 

search a large solution space consisting of modules and their relationships. We 

compare our proposed approach with a widely used genetic algorithm based approach 

on a number of test systems. Our proposed approach shows considerable 

improvement in terms of quality and effectiveness and consistency of the solutions for 

all tests cases. 
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Chapter One: Introduction 
 

In today’s advanced world, software has gained a large share in the expenses and 

gains of market shares not only for purely software dominated domains such as 

communications and management information systems, but also in other conventional 

technology realms like aviations, electronics engineering, astronomy and media 

industry. The share of software in production for these conventional technology 

domains measured up to 30 to 50 percent. The average fortune-100 company has 35 

millions lines of code in operation with a growth of 10 percent per year [1].  

 

Case studies dealing with software costs reveal that software evolution takes 60-80% 

of the total cost of a software product [2]. Interestingly though, the academia and the 

industry have made insufficient efforts to deal with the problems of software 

evolution as compared to efforts put in to the software development area. It was the 

“Y2K problem” that brought software evolution into the limelight. However, even 

this example of a mass change has not changed the situation very much [3]. More than 

50% of the time needed for program evolution is spent in understanding the program 

before the actual change can be designed and realized, as several case studies have 

shown [4].  The main reason behind this is the unavailability of the complete and 

meaningful documentation required for the task. In the absences of correct 

information, the developers responsible for the maintenance, who are already under 
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strict time constraints, have to fix the problem locally rather than finding the origin of 

the problem and fixing it at the root. These local code fixes that treat the problem only 

phenotypically instead of being the real solution, not only disrespect the intended 

design but also become source of error at other sites of the software systems. This also 

complicates the understanding of the software system in the future. Such circle 

continues, and unless appropriate deterrent policies are adopted, the software system 

becomes virtually impossible to maintain. 

1.1 The Importance of Software Architecture 

Large software systems are compromised of many subsystems. The architecture of a 

software system is composed of these subsystems, sometimes referred to as 

components, and the dependencies existing among these components. Most of the 

attributes of a software system depend upon the architecture of the system. Hence 

software architecture is key asset. If the architecture is inappropriate or it gets 

deteriorated, one way or another, it can have catastrophic effects on the 

maintainability of the software system. The software architecture can have major 

impact on the following aspects of a system as describe by Garlan and Perry [5]. They 

have described the impact with a development point of view. We present these aspects 

from the view point of a person responsible for maintaining a software system. 

 

Understandability: The software architecture presents a system at a higher level of 

abstraction. This representation depicts the high-level constraints on system design 

that a maintainer has to observe. This also helps more focused searching on 
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architectural information. Many design decisions and the penalties on their violation 

become only clear at this level. 

 

Reuse: It is through the architecture that a maintainer can identify the reusable 

components and their dependencies to other parts of the system that need to be 

handled before the components can be reused. Current work on reuse is generally 

limited to component libraries. Architectural design supports not only the reuse of 

large components but also frameworks into which components can be integrated.  

Architecture recovery is also vital for product line scenario where common 

architectural components of a class of systems are integrated and generalized into a 

generic architectural framework for a particular domain; the architectures of the actual 

systems in this domain can then be realized as instantiations of the general framework 

[6]. 

 

Evolution: The software architecture is the skeleton of the system. The software 

architecture description empowers the maintainer to identify the bottle-neck and 

potentially weak parts that need to be carefully tackled as the system goes through 

evolution phase. Also, the availability of information of a component’s dependencies 

enables the maintainer to modify the component in a manner that does not affect other 

parts of the system. It also helps to modify the dependencies in order to deal with 

concerns regarding reuse, performance and interoperability. The architectural 

information enables the maintainer to fix the errors where they were cause rather than 

where they appear, through the identification of responsible components or the 

undocumented dependencies and constraints. 
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Analysis: Documenting the recovered architecture provides new opportunities for 

analysis. This includes analysis of high-level system consistency, abidance to the pre-

agreed architectural style and conformance to quality attributes. In addition, the 

architectural description can be used to keep the check that changes to the system do 

not violate the design principles of the architecture. 

 

Management: Maintenance tasks can be assigned and managed made on the basis of 

subsystems. Furthermore, the software architecture allows relatively precise risk and 

cost estimation of a modification. The quality of a system can be evaluated by 

estimating the stress-bearing capacity of its architecture. Weak parts can be isolated 

and procedures to overcome these weaknesses can be chalked out and examined. 

Components with many problems may have to be reengineered. Reengineering of 

large systems is a viable option if it is done at subsystem basis. For such an approach,  

The information of component dependencies and the plan for packaging of not yet 

reengineered components must be available. As all the above mentioned factors play 

an important role during the evolution of the system, software architecture recovery 

becomes an important task. Once the architecture is recovered, the documentation 

should be kept up-to-date with future changes and the need for recovery should never 

arise again in the future. However, it may still be important to examine the 

architecture to identify and analyze differences from the documented architecture. 

Moreover, the maintainer may need to explore the architecture if its description has 

been abstracted from certain details. Recovering and exploring the software 
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architecture is costly and the only available automated support in practice often a 

simple debugger to trace the system at a low level. 

1.2 Research in Architecture Recovery 

Architecture recovery includes the detection of components (the computational parts) 

and connectors (the means and points of communication) of systems. It is aimed at 

supporting the process of program comprehension for software maintenance and 

evolution. 

 

Component Recovery: A major research area in component recovery is detection of 

subsystems [7]; another one is recovery of objects and abstract data types. Though 

abstract data type and object detection is commonly driven by reuse or object-

orientation, it does support architecture recovery at a lower level of components. 

 Subprograms, types, and global variables are the bases elements. With these base 

elements we can form the architectural concepts of abstract data types and objects. 

Other examples can be hybrid components or collection of related subprograms. Such 

low-level components solely built from types, variables, and subprograms as referred 

to as atomic components. 

 

Connector Recovery: Connectors for concurrent and distributed systems have been 

the primary target of connector recovery [8], [9]. Nevertheless, most software 

systems, especially the legacy software systems, are sequential and monolithic. A 

primitive connector for such software systems is the Function Call. Shared global 

variables are another means of communication among different components. At the 
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next higher level of connectors, we come across atomic components. For instance, a 

pipe may be the means of communicate between two architectural components, where 

the pipe is as an abstract data type. This implies that atomic components themselves 

can be connectors at a higher level of architecture.  

Hence, their detection can assist in understanding the communication among larger 

components 

 

The focus of this thesis is to developing an automated technique to facilitate the task 

of recovering the structure of software systems. Before describing our work in detail 

we first present an introduction to the software clustering problem. 

1.3 The Software Clustering Problem 

The large size and complexity of industrial software systems make the understanding 

of their structure a difficult task. A typical software system usually consists of 

thousands of entities (procedures, classes, modules) that are integrated in various 

ways (procedure calls, inheritance relations). In practice, usually the documentation is 

either obsolete or non-existent. This means that the software system’s architecture is 

limited to the system architects and developers involved. This knowledge is often lost 

when these knowledgeable people switch to another project or another company. For 

many of the legacy software systems currently deployed around the world, this 

knowledge has been lost years ago.  

 

The fact that the need to modify existing industrial software systems is quire frequent 

is backed by the number of software reengineering projects. A variety of reasons exist 
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that require such modifications. These include, but are not limited to, migration to 

new hardware platforms or operating systems, compliance with new industry 

standards, or change in user requirements. 

 

The software reengineering research is aimed at dealing with the difficult problems of 

understanding, re-documenting, and modifying software systems. A main factor that 

makes these problems tough to address is the large size of these software systems.  

Researchers in other realms of science and technology have also been faced with large 

amounts of data.  The approach they usually adopt to address this complexity is to 

develop a taxonomy, i.e. categorize objects that exhibit similar features or properties.  

A variety of techniques have been proposed in the literature to discover such 

categories (commonly referred to as clusters). The field of cluster analysis [10, 11, 

12, 13, 14] emerged from the study of these techniques.  

 

In software context, several software researchers have developed similar techniques 

either by adapting existing cluster analysis techniques, or by proposing new ones. The 

objective of all the approaches presented in the literature is to decompose large 

software systems into smaller and manageable subsystems that are easier to 

understand. Such techniques are collectively referred to as software clustering 

techniques.  

 

Numerous software clustering approaches exist in the software engineering literature. 

All these approaches deal with the software clustering problem from a different 

perspective, either by trying to compute a similarity measure between software 

entities[15]; deducing clusters from file and procedure names [16]; utilizing the 
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connectivity between software objects[17, 18, 19] or looking at the problem at hand 

as an optimization problem [20]. 

1.4 Our Approach for Software Clustering 

Based on the goals they try to achieve, the software clustering approaches can be 

categorized in three different classes: 

 

1. Re-modularization Approaches. These approaches strive to re-modularize (group 

the system’s resources in a different way) in order to improve certain attributes of 

the software system such as its maintainability or evolvability. 

 

2. Objectification Approaches. Many of the software reengineering projects are 

aimed at the migration of the source code from a procedural language to an object-

oriented one. The objectification approaches attempt to identify the entities that 

would be candidates for classes.  

 

3. Comprehension approaches. The goal of these approaches is to decompose the 

software system into smaller, manageable subsystems in a way that will assist in 

understanding the architecture of the software system.  

 

The thesis focuses on a software clustering approaches directed towards re-

modularization. For convenience, the term software clustering approach will be used 

to refer to an approach directed towards re-modularization. 
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Software clustering is aimed at categorizing large systems into smaller manageable 

subsystems containing modules of similar features. Thus clustering facilitates better 

comprehension of the system. The decomposition is based on the relationships among 

the modules. These relationships are usually represented in the form of module 

dependency graph where modules are represented as nodes and the relationships as 

the edges between these nodes. The software clustering problem can be seen as 

partitioning of this graph into clusters containing interdependent modules. However, 

the number of possible partitions can be very large even for a small number of nodes 

[20]. Moreover, the fact that even small differences between two partitions can 

generate quite different results, enhances the problem domain. Hence finding the best 

clustering for a given set of modules has been proved to be a NP-hard problem [21]. 

 

 In this thesis, we propose Evolution Strategy Based Automated Software Clustering 

Approach (ESBASCA) that treats the clustering problem as an optimization problem 

with the goal of finding near optimal partitions. We define the criteria for near 

optimal partitioning in Chapter 5. Our approach searches the large solution space that 

consists of all the possible partitions and after a number of iterations finds the near 

optimal partitioning for the given system. The inherent quality of Evolution Strategies 

(ES)s [22], [23] is the self adaptability which makes sure that as the number of 

iterations are increased ESBASCA always gets same or better result than before and 

never lose local optimal value during the execution. To show the effectiveness of our 

approach we have compared it with Genetic Algorithm (GA) [24], [25] based 

clustering approach and results show considerable improvement by ESBASCA. The 

improvement is due to two main factors that GA suffers from when compared to ES: 



10 

 

 

   

•  Reproduction can eliminate good solutions in GAs while good solutions 

always survive into the next generation in ES. 

•  In GA the strategy parameters (e.g., mutation strength) remain constant so it 

may remain stuck at local optima. Self adaptive ES on the other hand promises 

better results because self adaptation helps faster convergence and fine tuning 

of the search along the fitness landscape. 

Figure 1.1 presents the MDG of a small software system and Figure 1.2 shows a 

sample decomposition generated by our clustering approach. 

M0

M2

M3

M1

M4

 
Figure 1.1: An Example MDG 

 

For any optimization algorithms we cannot achieve exactly similar result in different 

executions of the algorithm on same data. However, the results should be close to 

each other without any major variations. One of the most desirable properties of any 

working algorithm is the consistency in its results. Hence, an important measure while 

evaluating the performance of any clustering algorithm is the consistency of the 

results produced by it. Keeping this in mind we conducted a comparative study on the 

consistency in results produced by ESBASCA and GA based approaches. We found 
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that ESBASCA gives far more consistent results as compared to the GA based 

approach.  

M0 M1

M3

M4

Cluster 0

Cluster 1

M2

A Sample 
Decomposition  

Figure 1.2: A Sample Decomposition of the Example MDG  

1.5 Thesis Outline 

In this chapter we introduced the software clustering problem, and presented an 

overview of our approach to addressing this problem. The remainder of this section 

provides an outline of rest of the chapters in this thesis. 

 

Chapter 2- Literature Survey 

This chapter surveys the software clustering techniques. It examines clustering 

approaches in the software domain. The chapter concludes with a discussion of 
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research challenges related to software clustering, providing motivation and 

perspective for our research. 

 

Chapter 3- Overview of Software Clustering 

This chapter presents and overview of the software clustering process. It discusses the 

sourced code entity representation, similarity measures and clustering algorithms. It 

also encompasses the topics of source code analysis and graph visualizations. 

 

Chapter 4- Evolution Strategies 

This chapter introduces the evolution strategies. It discusses the basic operators 

involved in evolution strategies. The important aspect of self adaptation and a generic 

evolution strategies algorithm is also presented in this chapter. 

 

Chapter 5- ES based Software Clustering Approach 

This chapter presents the instantiation of ES Algorithm for the software clustering 

problem. Besides the ideas of bringing software clustering problem into a 

representation on which evolution strategies can be applied, an objective function for 

the same is also defined and explained in this chapter. 

 

Chapter 6- Implementation 

This chapter is dedicated to the implementation of our software clustering tool. It 

presents the working environment and the architectural design of our tool. 

 

Chapter 7- Experimental Results and Analysis 

This chapter presents the experimental settings, results obtained and a detailed 

analysis of the results. 
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Chapter 8- Conclusion and Future Research Direction 

This chapter concludes the thesis and points our future research directions. It also 

presents our research contributions. 
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Chapter Two: Literature Survey 
 

There has been considerable research activity in the field of reverse engineering over 

the past few years. Several reasons account for this activity. First, immediately prior 

to the year 2000, information technology professionals spent a great deal of effort and 

time verifying that their software will work into the new century. Many software 

developers, who had no access to the original designers of the system under their 

consideration, had to remedy the software so that it would work after the year 2000. 

Second, the software development processes have gone through rapid changes. 

Software systems have migrated from two-tiered, to three-tiered, to n-tiered 

client/server architectural models in the past few years. Development approaches have 

varied from procedural, to object oriented, to component based. Developers have to 

strive to port the earlier version of their software to fit the new one each time the 

system architecture goes through a change. In these situations, software professionals 

are being forced to understand, and in some cases, re-modularize huge code bases. 

Tools for software clustering can help these professionals by providing automated 

support for recovering the abstract structure of such large and complex systems. 

 

In the earliest days of computing, the need for clustering procedures into modules was 

identified. The popular work of David Parnas [26] first suggested that the “secrets” of 

a program should be hidden behind module interfaces. The information hiding 

principles based on this concept advocated that modules should be designed in a 

manner that design decisions of the module are hidden from all other modules. Parnas 
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suggested that module interfaces should be created in order to provide a well-defined 

mechanism for communicating with the modules' internal logic. Parnas proposed that 

procedures acting on common data structures should be grouped (clustered) into 

common modules. Parnas's ideas were a foundation for object-oriented design 

techniques. 

 

Objected-oriented techniques provide a primitive clustering by grouping related data, 

and functions that operate on the data, into classes. Booch [27] suggests that during 

the design process a system should be decomposed into autonomous objects that 

collaborate with one another to provide higher-level system behavior. Booch 

emphasizes the importance of abstraction, encapsulation, modularization and 

organizing design abstractions into hierarchies. Abstraction focuses on the similarities 

between related entities. Encapsulation provides information hiding. Organizing 

design abstractions into hierarchies is aimed at simplifying program understanding. 

Modularization promotes strong cohesion and loose coupling between classes. Almost 

all research in software clustering concentrates on one or more of these concepts. 

 

Given the importance of recovering and understanding the architecture of source 

code, the remainder of this chapter will present work performed by researchers in the 

area of software clustering. The research work on software clustering is classified into 

bottom-up, top-down, data mining, and concept analysis clustering techniques. In the 

end of this chapter, we present miscellaneous approaches that have been applied by 

researchers to the software clustering problem. 
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2.1 Bottom-Up Software Clustering Techniques 

Following sections present some important bottom-up clustering approaches. 

2.1.1 Data Binding  

In an early paper on software clustering, Hutchens and Basili [17] have presented the 

concept of a data binding. A data binding categorizes the similarity of two procedures 

on the basis of common variables in the static scope of these procedures. Because of 

their ability to cluster the procedures and variables into modules, data bindings are 

useful for modularizing software systems (e.g., helpful for migrating a program from 

COBOL to C++). The authors of this paper have presented several remarkable aspects 

of software clustering. First, they identify the importance of maintaining a consistency 

between the systems’ reverse engineered model and the designer's mental model of 

the system's structure. The authors also claim that software systems are best 

considered as a hierarchy of modules and they have focused on clustering methods 

that demonstrate their results in this fashion. Finally, the paper addresses the software 

maintenance problem by presenting the benefits of clustering technologies to verify 

how the structure of a software system deteriorates over time. 

2.1.2 Semi Automated Clustering  

1. ARCH. A semi-automatic approach to software clustering is provides in 

Robert Schwanke's tool Arch [7]. Arch is intended to help software 

professionals to understand, reorganize and document system structure, 

integrate system architects’ opinion and to monitor compliance with the 

recovered architecture. Schwanke's clustering heuristics are based on the 
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software engineering principles of cohesion and coupling. They are based on 

maximizing the cohesion of procedures present in the same module while 

minimizing the coupling between procedures that reside in different modules. 

Arch also provides an innovative feature called maverick analysis which 

redefines modules by locating misplaced procedures and placing them in most 

appropriate modules. Schwanke also explored the use of neural networks and 

classifier systems to modularize software systems [28]. 

 

2. RIGI. Hausi Muller in his work adopted a more abstract software structure i.e. 

the subsystem as the basic building block of a cluster rather than a module. 

Muller's tool, Rigi [29], implements many heuristics that guide software 

engineers during the clustering process. The heuristics presented and discussed 

by Muller vastly focus on measuring the “strength" of the interfaces between 

subsystems. Omnipresent module is an exclusive aspect of Muller's work. 

While examining the structure of a software system, often modules acting like 

libraries or drivers are found. These modules either provide services to other 

subsystems, or consume the services of other subsystems. Muller classifies 

these modules as omnipresent and stressed that they should be ignored during 

cluster analysis because they add ambiguity to the system's structure. Another 

feature of his work is the concept that the module names themselves can be 

used as a clustering criterion. Later in this section we discuss a paper by 

Anquetil and Lethbridge [30], which investigates this technique at length. 

The research of Schwanke and Muller resulted in semi-automatic clustering tools that 

require significant user input and feedback to obtain meaningful results.  
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2.1.3 Resource Based Clustering  

Choi and Scacchi's [19] paper presents a fully-automatic clustering technique based 

on maximizing the cohesion of subsystems. Their clustering algorithm starts with a 

resource flow diagram (RFD) that actually is a directed graph and forms a hierarchy 

of subsystems using the articulation points of the RFD. If a module A provides one or 

more resources to module B, an arc is placed from A to B in the RFD. Articulation 

points are nodes in the RFD that divide the RFD graph into two or more connected 

components. Their algorithm searches for these articulation points. Each articulation 

point and connected component of the RFD is used as the starting point of forming 

subsystems. Choi and Scacchi specified resultant design of the system using the 

NuMIL [31] architectural description language.  

2.1.4 Optimization Techniques  

Mancoridis, Mitchell et al. [20, 32, 33, 34] treat the software clustering problem as a 

search problem. An important aspect of their clustering technique is that they do not 

try to cluster the native source code entities directly into subsystems. Instead, they 

start by generating a random subsystem decomposition of the software entities. Then 

they apply heuristic searching techniques to shift software entities either between the 

randomly generated clusters or in some cases they even create new clusters, to 

produce improved subsystem decomposition. This process is iterated until no further 

improvement is possible. The search is guided by an objective function based on 

software engineering concepts of cohesion and coupling. Their algorithm rewards 
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high cohesion and low coupling. They have used several heuristic search approaches 

based on hill-climbing and genetic algorithms. 

Their tool, Bunch, clusters source code into subsystems automatically. The fully 

automatic capability of Bunch that distinguishes it from related tools that require 

significant user input to guide the clustering process. However, they have extended 

Bunch over the past few years to integrate other useful features that have been 

described and/or implemented by other researchers. For instance they added Orphan 

Adoption techniques [35] for incremental structure maintenance, Omnipresent 

Module support [29], and user directed clustering to complement Bunch's automatic 

clustering engine.  

2.2 Top-Down Clustering Techniques 

In the following subsections we present some key top down clustering techniques. 

2.2.1 Software Reflexion Model  

Most software clustering techniques work in a bottom-up manner. These techniques 

provide high-level architectural views of a software system from system's source 

code. Murphy's work with Software Reflexion Models [43] works in a top-down 

manner. The goal of the Software Reflexion Model is to recognize the differences 

between a designer's mental model of the system structure and the actual organization 

of the source code. Once these differences are identified and understood, either the 

designer can update his model or the source code can be modified to comply with the 

designer’s understanding. This technique is valuable to prevent the system to drift 

away from the intended structure as it undergoes maintenance. 
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2.2.2 Static and Dynamic Analysis 

Eisenbarth, Koschke and Simon [44] used concept analysis to develop a technique to 

map system's externally visible behavior to relevant parts of the source code. Their 

technique uses static and dynamic analysis to enable the users to understand a 

system's implementation without much knowledge about its source code. Profiling is 

done to collect data while the program is execution. Concept analysis is then used to 

process this data in order to identify a minimal set of feature-specific modules that 

participated in the execution of the feature. Static analysis is then performed against 

the results of the concept analysis to identify further feature-specific modules. The 

goal is to reduce the set of modules that participated in the execution of the feature to 

a small set of the most relevant modules in order to simplify program understanding. 

Their case study was based on two open source web browsers whose various features 

were investigated which were then mapped to a small fraction of software system 

modules. 

2.3 Concept Analysis Clustering Techniques 

Concept Analysis Clustering can be classified into two main categories namely 

Modularization Concept Analysis and Objectification Concept Analysis. We discuss 

each of them in the following subsections. 

2.3.1 Modularization Concept Analysis  

Lindig and Snelting [26] used mathematical concept analysis [37] to develop a 

software modularization technique. Conceptually, their work resembles that of 
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Hutchens and Basili [17] i.e. the goal is to cluster procedures and variables into 

modules based on variable dependencies between procedures. They first generate a 

variable usage table. This table captures the shared variables that are used by each 

procedure in the system. The authors then use a technique for converting the table into 

a concept lattice which is a convenient way to visualize the variable relationships 

between the procedures in the system. Their technique then methodically modifies the 

procedure interfaces to remove global data dependencies. This is done by passing the 

variable through the procedure’s interface. This is aimed at transforming the concept 

lattice into a tree-like structure. As soon as this transformation is achieved, the 

modules are realized from the concept lattice.  Modularization by interface resolution 

and modularization by block relation are the two techniques used by the authors to 

achieve this transformation: Due to performance problems, the authors failed to 

modularize two large systems as part of their case study. Furthermore, their technique 

is only useful for analyzing systems that are developed using programming languages 

liked COBOL and FORTRAN that rely on global data as a means for information 

sharing. Thus, their technique is not for object-oriented programming languages, 

based on the concept of encapsulation. 

2.3.2 Objectification Concept Analysis  

Van Deursen and Kuipers [38] investigated the use of clustering and concept analysis 

techniques to identify objects from COBOL code automatically. Their approach to 

object comprises the following steps:  

1. Categorize the COBOL records as objects,  

2. Categorize the procedures or programs as methods 
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3. Use clustering technique to decide the best object for each method  

Their algorithm starts by creating a usage matrix that cross references the relations 

between modules and variables. Once this matrix is created, a hierarchical 

agglomerative clustering algorithm [39] similar to ARCH [7] is used. Euclidian 

distance between the variables in the usage matrix is used to calculate dissimilarity 

measurement. Clusters are formed on the basis of this dissimilarity measurement. 

 

The authors also explored the use of concept analysis to determine clusters from the 

variables in the usage table. In this technique, the usage table is transformed into a 

concept table by considering the items (variable names) and features (usage of 

variables in modules). After identifying the items and features, they locate the 

maximal collection of items sharing common features which determines the concepts. 

 

Similar to the Lindig and Snelting's approach, the concepts can be represented as a 

lattice. Clusters can be determined at various granularity levels by moving from the 

bottom to the top of the lattice. 

2.4 Data Mining Clustering Techniques 

Visual Representation Model and Graph Annotation are the main clustering 

techniques based on data mining. Each one of them is described in the following 

subsections. 
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2.4.1 Visual Representation Model  

Montes de Oca and Carver [40] present a formal visual representation model for 

deriving and presenting subsystem structures. Their work uses data mining techniques 

to form subsystems. They claim that data mining techniques are complementary to the 

software clustering problem. More importantly: 

 

1. In database management, data mining has been used to find non-trivial 

relationships between elements. Software clustering in a similar manner forms 

subsystem relationships based on non-obvious relationships between the 

source code entities. 

 

2. Data mining can discover interesting relationships in databases without much 

knowledge of the objects being studied. One of the salient features of software 

clustering is that it can be used to promote program understanding.  

 

3. Data mining techniques operate on a large amount of information. Thus, the 

study of data mining techniques may advance the state of current software 

clustering tools that usually suffer from performance problems due to the large 

amount of data that needs to be processed. 

The authors form subsystems on the basis of dependencies of procedures on shared 

files. They have not explained the working of their similarity mechanism because 

their research was primarily aimed at developing a formal visualization model. 

However, they presented a good set of requirements for visualizing software 

clustering results. For example, their visualization approach supports hierarchical 
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nesting, and singular programs, which are programs that do not belong to a 

subsystem. The concept of singular programs is very similar in concept to Muller's 

omnipresent modules [29]. 

2.4.2 Graph Annotation  

Sartipi et al. [41, 42] also explored the software clustering problem through the data 

mining approach. Their technique used data mining to annotate nodes in a graph 

representing the structure of a software system with association strength values. These 

association strength values are then used to partition the graph into clusters. 

2.5 Other Software Clustering Techniques 

Besides the techniques discussed earlier in this chapter, the techniques presented in 

the following subsections are also significant. 

2.5.1 Clustering Based on Naming Conventions  

Anquetil, Fourrier and Lethbridge [45], investigated several hierarchal clustering 

algorithms. The primary objective of their research was to evaluate the effects of 

varying the clustering parameters while applying clustering algorithms to software re-

modularization problems. They presented three quality measures to compare the 

results of their experiments. The most important measure is the precision and recall 

measure that computes the difference between two clustering results. This is typically 

used to match the decompositions produced by a clustering algorithm with the 

decompositions produced by some expert (e.g. the original designer of the system). 

Precision measures how much the clustering results agree with the expert 
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decomposition. While Recall measures the agreement between the expert and the 

clustering method. The authors found that many clustering algorithms yielded good 

precision and poor recall. 

 

Anquetil et al. also state that clustering algorithms impose the system structure rather 

that discovering it. They further state that an important decision is to select a 

clustering technique that best suits a particular system. Their statement is generally 

believed to be correct. In case of software maintenance, where the objective is to 

understand a software system’s structure, it is usually desirable to impose a structure 

conforming to the information hiding principle of software engineering. This is the 

reason that many similarity measures are based on maximizing cohesion and 

minimizing coupling.  

 

Anquetil and Lethbridge [30] also proposed a clustering technique based on naming 

conventions. Such techniques cluster entities with similar source code file names and 

procedure names. They claimed that this technique often produces better results as 

compared to the techniques based on extracting information from the source code. 

They presented case studies based on name similarity as the clustering criterion that 

showed promising results (high precision and high recall). 

This technique, however, is very subjective. If developers organize their source files 

into directories, and name source code files that perform a related function in a similar 

way, then this technique will show good results. However when there are 

inconsistencies in naming, e.g. when a system has undergone maintenance by 

developers who did not understand the system's structure thoroughly, this technique 
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might not work well. In contrast, clustering based on source code always provide 

accurate information as this information is directly extracted from the source code. 

2.5.2 Comprehension Driven Clustering 

Tzerpos' and Holt's ACDC clustering algorithm [46] uses patterns having good 

program comprehension properties to determine the system decomposition. They have 

presented seven subsystem patterns and their clustering algorithm that applies these 

patterns to the software structure. This places most but not all of the modules into the 

subsystems. ACDC then uses orphan adoption [35] to assign the remaining modules 

to appropriate subsystems.  

2.5.3 Koschke's Clustering Research 

Koschke's Ph.D. thesis [47] presents 23 different clustering techniques and classifies 

them into following categories 

1. connection-based 

2. metric-based 

3. graph-based 

4. concept-based  

16 out of the 23 techniques in his work are fully automatic while 7 are semi-

automatic. The author also developed a semi-automatic clustering framework based 

on modified versions of the fully-automatic techniques. This framework enables a 

mutual session with the user. The clustering algorithm does the processing, and the 

user validates the results. 



27 

 

 

   

2.6 Consistency of Clustering Techniques 

We were hardly able to find any research works in Software Clustering literature that 

has formally compared the consistency of the results generated by different software 

clustering approaches. In this manner, our effort is one of the very first ones in this 

domain that compares consistency in results, an important and desirable property of 

any algorithm. To show the importance of our work we present some earlier work 

from Software Engineering field that highlights the significance of consistency in 

results.  

 

Consistency is an important step toward stability of the clustering algorithm. Tzerpos 

and Holt [48] defined a stable clustering algorithm as one whose output does not 

change significantly when its input software system is slightly modified. From this 

definition it is clear that an inconsistent algorithm, that is showing large variations 

even for the same input in different runs, can not be stable; hence, consistency is 

important for stability. The results presented in this thesis have shown the consistency 

of our approach, ESBASCA.  

 

Olson and Wolform [49] explained the importance of consistency in Information 

Architecture. They presented an approach to indexing that selects names and topic in 

manner that gives consistent and effective retrieval.  

 

Monge, Marco and Cervigón [50] discuss the significance of consistency in context of 

Software Measurement Methods. They have defined a homogeneous statistic that 
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indicates how consistent a software measurement method is. They also provided a 

statistical analysis that compares given measurement methods and tells which one is 

more consistent. 
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Chapter Three: Overview of Software Clustering 
Process 

 

This chapter presents an overview of software clustering techniques based on source 

code. Using source code as input to the clustering process is a good idea because 

source code is usually the most up-to-date documentation of a software system. 

A survey paper by Wiggerts [51] describes three fundamental issues that need to be 

addressed while designing clustering techniques: 

1. Representation of the entities. 

2. Criteria for measuring the similarity between the entities. 

3. Clustering algorithms.     

3.1 Representation of Source Code Entities 

While clustering software systems, a variety of decisions have to be taken in order to 

determine the representation of entities and relationships in the software system.  

First, one has to decide the granularity level of the recovered system design i.e. 

whether the entities would be procedures (methods) or modules (classes). Next 

decision is whether the relationships among the entities should be weight or not. 

Weights are helpful to signify certain special types of dependencies among the 

software system entities. 

For instance, whether two entities are more related if they use a common global 

variable? How should the weight of such relationship compare to a pair of entities that 
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have a relationship that is based on one entity using the public interface of another 

entity? 

In the RIGI tool, the user has the option to lay down the criteria to calculate the 

weight of the relationships among entities. 

3.2 Similarity Measurements 

After establishing the type of entities and relationships of the software system, the 

next step is to determine the similarity criteria among the entities. For this purpose 

similarity measures are used. Large values of these similarity measures depict a 

stronger similarity between the entities. 

 

Based on the in their input, the similarity measures can be categorized in two groups: 

1. Object Relationships. In this case, graph representation can be used, where the 

nodes are the objects and the edges are the relations between the objects. In case of 

more than one relation the graph will have multiple kinds of edges. Generally the 

similarity measures dealing with such cases are the number of edges in the path 

between two objects, the length of shortest path between the objects or the weights of 

different types of edges. Another important factor is whether the graph is directed or 

undirected. 

2. Score of objects on different Edges. Similarity in this case, is commonly usually 

measured by means of association coefficients. Number of features available for each 

object is used to specify these association coefficients. That is why these coefficients 

are of binary type i.e. they reflect whether a feature is available or not. 

Table 3.1 is used to compute various coefficients between two objects i and j:  
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 Object j 1 Object j 0

Object i 1 a b 

Object i 0 c d 

Table 3.1: Classification of Software Features 

 

In the table 3.1, the variable a, specifies the count of features present for both objects, 

b denotes the number of features present only for object i and so on. Different 

coefficients deal with 0—0 matches (whose number is given by d) in different 

manner. 

 Similarly different coefficients use different weights for of the four entries of the 

table. The most common coefficients are:  

1. Simple Matching Coefficient: (a+d) / (a+b+c+d) 

2. Jacard Coefficient: a / (a+b+c) 

An extensive study of coefficients can he found elsewhere [10].  

 

Other similarity measurements can be categorized as: 

• Distance Measures: determine the dissimilarity between two entities. 

• Correlation Coefficients: use statistical correlation to determine the 

similarity between two entities. 

• Probabilistic Measures: assign significance to rare features shared among 

entities 
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3.3 Clustering Algorithms 

After discussing and the representation and similarity measures in the previous 

sections, we focus or attention, in this section, on describing some common software 

clustering algorithms. 

Most of the software clustering algorithms found in literature can be classified in the 

following three classes: 

1. Hierarchical Algorithms. 

2. Partitional Algorithms. 

3. Graph-based Algorithms. 

In the following subsections we present each class in detail.   

3.3.1 Hierarchical Algorithms  

The hierarchical algorithms yield a nested sequence of partitions. One extreme of this 

sequence is the partition where every entity lies is in a different cluster and at the 

other extreme is the partition where all the entities are placed in the same cluster. 

Starting from the first extreme, at each step clusters are joined together until the other 

extreme is reached. Figure 3.1 shows an example partition sequence for four entities 

M0, M1, M2 and M3. 

 

Figure 3.1: An Example Partition Sequence 
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The hierarchical structure is usually represented by a dendrogram. The example 

partition sequence is represented in a dendrogram in Figure 3.2.   

M0 M1 M2 M3

 

Figure 3.2: Dendrogram for the Example Partition Sequence  

 

All the partitions in a sequence do not have equal significance. Rather, only a few 

of them (maybe only one) are of use. Finding the desired partitions is commonly 

termed as finding cut points of the dendrogram. Prior knowledge of the structure 

and parameters driving the clustering such as maximum number of clusters or the 

number of entities in a cluster, are the factors the impact the selection of cut point.  

 

Two subclasses of hierarchical algorithms are: 

1. Agglomerative Algorithms. 

2. Divisive Algorithms. 

 

1. Agglomerative Algorithms. These algorithms start with all entities as 

separate partitions and then iteratively keep on join the most similar 

clusters based on the similarity measure. A point of debate in such 
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algorithms is about evaluating the similarity between a newly formed 

cluster and the rest of the already formed clusters. This is known as the 

update rule problem. Researchers have proposed different solutions for this 

problem.  

Single Link Update Rule states that the similarity of the newly formed 

cluster to an existing cluster C is the maximum of the similarities of its 

constituents to C.  

Complete Link Update Rule states that the similarity of the newly formed 

cluster to an existing cluster C is the minimum of the similarities of its 

constituents to C. 

 

2. Divisive Algorithms. These start with all entities in a singular partition and 

try to iteratively split the partition until all entities are placed as different 

partitions. Computational performance is a major concern for these 

algorithms as exponential numbers of partitions are possible at every step. 

For this reason these algorithms have failed to achieve much popularity. 

3.3.2 Partitional Algorithms 

Partitional algorithms generally start with an initial partition and try to modify it in a 

bid to optimize the quality of a given partition. Different criteria can be used to define 

the quality of a partition and this is highly subjective. It usually is domain dependant. 

Example of such a criterion is maximization mathematical expression depending upon 

the maximization of cohesion and minimization coupling among the clusters. A major 

challenge faced by these algorithms is that the number of possible partitions is very 
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large. For example, there are 34,105 partitions of ten objects into four clusters, but 

this number explodes to approximately 11,259,666,000 if the number of objects is 

increased to 19 [21].  

The common workaround to this problem is to heuristically select an initial partition 

and attempt to optimize the quality criterion by modifying that partition in an 

appropriate way. Such hill-climbing algorithms [10] do converge to the local optima. 

Therefore, the choice of the initial partition is vital for the success of the algorithm.  

ISODATA [10] is popular partitional algorithm. Well calculated initial choice of 

value for seven parameters, controlling the factors such as the number of expected 

clusters, the number of entities in a cluster, is the basis of its effectiveness. Then, 

depending on closeness of the actual values of the current partition to the chosen 

parameters, the algorithm iteratively improves the initial partition by operations such 

as joining or splitting the clusters. Software clustering literature contains several 

variations of this method. 

3.3.3 Graph-based Algorithms 

Another important class of software clustering algorithms is of those based on the 

ideas of graph theory. Several categories of such techniques exist depending on the 

perspective [51, 52]. Some of them are presented here: 

1.  Minimum Spanning Tree Algorithms. These algorithms start by computing 

the minimum spanning tree (MST) of the given graph. Then, they either 

iteratively join the two closest nodes into a cluster or split the graph into 

clusters by removing inconsistent edges. Researchers have differences over the 
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definition of an inconsistent edge. But it is generally agreed that they usually 

carry considerably larger weight than the rest of the edges of the MST.  

 

2. Clique Algorithms. These algorithms either treat the maximal complete sub 

graphs (cliques) of the given graph as clusters or use them as the basis for 

other algorithms.  

 

3. Local Connectivity Algorithms. These algorithms use the number of edge or 

vertex disjoint paths of a specified length between two points as the criterion 

to decide which entities (represented as nodes in the graph) to place in the 

same cluster. For instance as described in [53], rather than only using single 

edges (paths of length 1) as a measure of similarity, multiple edges (e.g. paths  

of length 2) can also be used. 

 

4. Aggregation Algorithms. These algorithms join nodes into aggregate nodes 

which can either be used as clusters or can be used as input for a new iteration 

to find higher level aggregates. Gregor in [54] presents Graph reduction, an 

aggregation technique, based on the concept of node’s neighbourhood. Bi-

components and strongly connected components have also been used for this 

purpose [55]. 

 

5. Heuristic Approaches. As already discussed in earlier sections, the large 

number of possible partitions means the graph partitioning problem is almost 

impossible to solve optimally. This is where heuristic approaches come into 

play. They attempt to cleverly search the possible solution space to come as 

close to the optimal solution as possible within the time constraints. The 
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Kernighan-Lin method [56] tries to overcome the local optima problem of hill-

climbing algorithms by opting to go downhill for a while in an attempt to find 

a taller hill in the next few steps. 

3.4 Observations 

So far we have presented significant software clustering research and discussed 

several well-known clustering techniques. We have made the following observations: 

• Earlier software clustering research work was directed at a low granularity 

level i.e. clustering procedures into modules. Along with the advancement in 

software engineering the research focus has changed to clustering modules and 

into higher-level abstractions such as subsystems. 

 

• One of the important issues in software clustering is the selection of 

appropriate algorithms. A potential research initiative is a comparative study 

based on a number of software systems. Some algorithms may be found to It is 

suit particular type of software systems. A classification of the algorithms and 

the types of software for which they work best would be beneficial to the 

software clustering community.  

 

• Majority of clustering algorithms have performance issues due to their 

computational intensive nature. Partitioning the modules dependency graph 

has been proved to be a NP-hard problem [21]. In order to achieve results in 

polynomial time, most researchers have adopted the use of heuristics that 

reduce this computation complexity. 
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• Much of the clustering research uses the software engineering concepts of 

coupling and cohesion as the criteria to compute the quality of the 

decompositions produced by the clustering process. Low coupling and high 

cohesion [74] are generally recognized properties of well-designed software 

systems.  

 

• Software clustering researchers generally have resorted to use expert opinion 

in order to validate the results of their algorithms. This approach is quite 

subjective and though such assessment provides insight into the quality of 

software clustering results, formal methods are required to validate these 

results. Antquetil and Lethbridge [30, 45] have addressed this problem by 

defining the precision and recall measurement, which investigates the 

clustering results against expert decompositions of the software system. This 

approach is much better than the expert opinion the software clustering results. 

Another such approach has been presented by Tzerpos and Holt [57].  They 

have presented a distance metric, MoJo, to evaluate the similarity of two 

decompositions of a software system.  

 

• Most of the researchers admit that software system deterioration, as it goes 

through maintenance, is a fundamental software engineering problem. To 

address this problem Tzerpos and Holt [35] have proposed an orphan adoption 

technique to incrementally update existing system decomposition by 

evaluating the impact of source code changes on the software system structure. 



39 

 

 

   

A problem with this technique is that it only investigates the impact of the 

changed modules on the existing software system structure. As the remaining 

modules and relationships of the system are ignored, the software system 

structure can deteriorate repeated orphan adaptation. The solution to this 

periodical re-modularization of the complete system.  

 

• Most of the clustering techniques have not been tested on large systems. 

Testing on large software systems is vital for the validation of software 

clustering approaches. Open source systems are good option for this as access 

to large industrial systems is not easy. 

 

In the next section of this chapter we introduce source code analysis and software 

visualization, which are two important bodies of work that are related to software 

clustering. 

3.5 Source Code Analysis and Visualization 

Clustering tools typically rely on source code analysis and visualization tools as 

shown in Figure 3.3. 

Clustering tools enable users to provide software systems’ source code as input to the 

clustering process. Generally these systems are large and complex and it is virtually 

impossible possible to manually transform the source code into the representation 

(e.g., MDG) required by the clustering tool. Manual transformation is tedious and 

prone to errors. Furthermore, the researchers have to cluster the same software system 
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iteratively by varying the clustering parameters without having to revisit the original 

source code. 

 

 

 

Figure 3.3: The Relationship between Source Code Analysis and Visualization 

 

Visualization is another supporting technology needed by the software clustering 

process. The clustering results usually contain a large amount of data to be presented 

to users. Effective visualization techniques assist to present the results of the 

clustering process in a useful way. 

3.5.1 Source Code Analysis 

Source code analysis has been an active area of research for a long time. The primary 

reason for this is that is useful to consolidate a system's source code into a single 

repository that can be later be used for a variety of purposes like program 

comprehension and reverse engineering. Repositories allow the researchers to explore 
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the program structure by navigating through the complex dependencies existing 

among software system modules. Source code analysis tools have traditionally been 

used in tasks like dead code detection, program slicing, and reachability analysis. 

Researches in the area of software clustering have also found these tools to be helpful 

in their work. 

 

Source code analysis tools parse the source code and populate their repository. Then, 

the repository can be queried to extract structural information. Internal structure of the 

repository can be organized either as a relational database or by storing the abstract 

syntax tree of the software system Source code analysis tools support a variety of 

programming languages like COBOL, C, C++, Java and Smalltalk. 

 

We used the source code fact extractor developed by [58]. It extracts relationships and 

their weights. The relationships taken into account are those based on inheritance, 

containment, genericity and member access. The fact extractor provides MDG 

information in a matrix form. For example, the MDG of a small software system is 

shown in Figure 5.1 and the information extracted by the fact extractor is shown in 

Table 5.1. 

3.5.2 Visualization 

Graph visualization tools present graphical results in an organized manner. Software 

clustering systems usually process large and complex systems. The clustering results 

of such systems contain a large amount of data.  So graphical representation of these 

results is an easily interpretable manner is a difficult task. 
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AT&T’s DOT [59] is a powerful graph visualization tool that has been used by 

researchers. Dot has its own graph description language. Users specify the nodes, the 

edges between them and the attributes to steer appearance of the resultant graph in a 

text file. The DOT documentation [59] contains the description of different options 

that can be included in the input file. It is a command line tool that accepts a 

description file as input, and produces output in the specified format. It supports 

twelve output file formats (e.g., GIF, JPEG, PostScript, etc.). It has a powerful layout 

engine that increases the clarity of the resultant graph by edge routing and edge 

crossing minimization operations. 

 

Another tool by AT&T, called DOTTY [59], is an online graph viewer, that can 

visualize and edit a graphs specified in the dot description file. It supports many 

visualization functions such as bird eye views and zooming. 

 

We use this tool to present our results visually in this thesis. 
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Chapter Four: Evolution Strategies 
 

Before we present our evolution strategies based software clustering approach we find 

it important for the reader to have an overview of Evolution Strategies, the operators 

involved and a generic ES algorithm in this chapter. 

 

Evolution Strategies is a specialization of evolution algorithms. These are nature 

inspired optimization methods that apply selection and genetic operators to a 

population of individuals to evolve better solutions in an iterative manner. Every 

individual in the search space represents a potential solution. Each iteration is called a 

generation and in each generation a new population is created using the fittest 

individuals in the preceding generation. The operators, the idea of self adaptation and 

the generic ES Algorithm is presented in the following subsections. 

4.1 Objective Function 

The quality of solution is calculated using a problem dependent objective function 

that defines the fitness value (quality) of each member of the population. The function 

is designed in such a manner that an individual with higher fitness represents a better 

solution than an individual with a lower fitness. We define the objective function for 

our software clustering problem in the next chapter. 
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4.2 Operators 

ES typically uses selection, mutation and recombination operators to guide the search. 

We present each of them briefly in the following subsections: 

4.2.1 Selection 

Evolutionary algorithms need objective oriented selection operator to steer the search 

into promising regions of the object parameter space. Selection is, therefore, unlike 

the genetic operators of mutation and recombination. It guides the evolution. 

Selection in ES follows the phenomenon that only the individuals with promising 

properties, i.e. individuals with high objective function values get a chance to breed. 

This truncation selection in ES guarantees that only the µ best individuals from the 

current generation (g) are transferred to the next population at (g + 1) by means of a 

deterministic process. Beyer [22] represents the population at (g+1) is represented as 

 
β (g+1)

p := { α 1;γ , . . . , α µ;γ }     (4.1) 
 

where 

α m;γ := “mth best individual from γ individuals.” 
 

Based on whether or not the parent solutions compete for inclusion into the next 

generation, the selection technique has two versions:  

1. Comma Selection (µ, λ). 

2. Plus Selection (µ +  λ) 

In comma selection, only the λ newly generated offspring individuals define the 

selection pool. In other words, the parents from generation (g) are ignored by 

definition even if they are fitter than all offspring.  
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The Plus selection, on the other hand, takes the old parents into account. This means 

that both the parents and the offspring are copied into the selection pool which is 

therefore of size γ = µ+λ.  

 

Plus selection guarantees that fittest individual found so far, survives. For this reason 

such selection technique is termed as elitist. For the ES to converge globally, elitism 

is a sufficient condition Elitism allows the parents to survive an infinitely long time-

span. 

 

Both versions of the selection technique have their different application areas. While 

the comma selection is recommended for unbounded search spaces Y, especially Y = 

RN [60], the plus selection should be used in discrete finite size search spaces, e.g. in 

combinatorial optimization problems [61, 62]. 

4.2.2  Mutation 

The mutation operator is the primary variation operator in ES. That is, it is the main 

source of genetic variation. The design of mutation operators depends on the problem, 

domain. Although there are not any design principles but [63] has proposed some 

rules based on theoretical considerations and investigation of successful ES 

implementations. They are: 

1. Reachability. 

2. Unbiasedness. 

3. Scalability. 
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Reachability: This requirement states that any finite state in the search space can be 

reached within a finite number of mutation steps or generations. This is also a 

necessary condition for global convergence. 

 

Unbiasedness: This requirement has been derived from Darwin’s theory of evolution. 

Selection and mutation have different purposes. Selection uses the fitness values in 

order to guide the search into promising areas in the search space. Variation, on the 

other hand, explores the search space, i.e. it is based on search space information of 

the parent population rather than using any fitness information. This means that 

variation operator should not incorporate any bias by giving preference to any 

selected individual. This is a basic design rules for the variation operators. This ends 

up at the maximum entropy principle whose application leads immediately to the 

normal (Gaussian) distribution in the case of unconstrained real-valued search spaces 

RN. Rudolph [64] has shown that this principle suggests the geometrical distribution in 

case of unconstrained integer search spaces ZN. Other cases have not been 

investigated so far. 

 

Scalability: The scalability requirement states that the mutation strength should be 

tunable in order to adapt to the fitness landscape. Adaptation ensures the evolvability 

of the ES algorithm along with the objective function. Evolvability expresses that the 

variations should be generated in such a way that improvement steps are possible thus 

building a smooth evolutionary random path through the fitness landscape toward the 

optimum solution [64]. As the objective function along with variation operators 

defines the properties of the fitness landscape, the smoothness of the fitness landscape 



47 

 

 

   

becomes a prerequisite of efficient evolutionary optimization. The smoothness 

assumption is sometimes expressed in terms of the causality concept [66] stating that 

small changes on the genetic level should result on average in small changes in the 

fitness values. 

 

As the evolvability can not be ensures independently, we have to rely on scalability 

that can be guaranteed in real-valued search spaces.  

4.2.3  Recombination 

While mutation performs search steps based on the information of only one parent, 

recombination shares the information from up to p parent individuals [66, 67, 68].  p 

> 2 means multi-recombination. 

 

The recombination operator in ES produces only one offspring from a family of size 

p. This is in contrast to the crossover operator in GA [24] that produces two offspring 

from two parents. Generally two types of are recombination used in ES:  

1. Discrete (or dominant) recombination. 

2. Intermediate recombination. 

 

Discrete Recombination: Suppose a = (a1, . . . , aD) is the parent vector (object or 

strategy parameter vector), the discrete recombination produces a recombinant vector 

r = (r1, . . . , rD) by coordinate-wise random selection from the p corresponding 

coordinate values of the parent family [22] 

(r)k = (amk )k    (4.2) 
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where   

     mk := Random{1, . . . ,p} 

This means that the kth component of the recombinant is determined exclusively by 

the kth component of the randomly (uniformly) chosen parent individual mk. 

 

Intermediate Recombination: In contrast to discrete (dominant) recombination the 

intermediate recombination takes all p parents equally into account. It simply 

calculates the center of mass (centroid) of the p parent vectors am [22] 

                                        p 

              (r)k :=  Σ 
m=1  (amk )k   (4.3) 

 
 

The procedure defined in Eq. 4.3 is for real-valued state spaces. Supporting 

procedures like probabilistic rounding are require, for application in discrete spaces, 

in order to map back onto the discrete domain. 

 

4.3 Self Adaptation 

Self Adaptation is an important feature of Evolution Strategies. We explain this in 

detail. 

4.3.1 Introduction 

Evolutionary algorithms operate on basis of population of individual solutions. They 

are highly dependant on the characteristics of the population distribution in order to 

perform well. The objective of self adaptation is to bias the distribution towards 
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promising regions of the search space. This is achieved by introducing enough 

diversity among individuals to facilitate further evolvability. 

 

Generally, diversity is introduced by adjusting the values of the control parameters. 

Control parameters can be the mutation rates, recombination probabilities, or the 

population size. 

 

The goal is to efficiently find suitable adjustments. This is further complicated due to 

the dynamic nature of evolutionary algorithms.  A parameter setting suitable at the 

beginning may become sub optimal during the iterations. That is why adaptation of 

the control parameters, during the iterative run of an evolutionary algorithm, is 

required. 

 

Population individuals represent possible solutions. These are represented as sets of 

object parameters that can be interpreted as the genome of the individual. The basic 

idea of explicit self-adaptation is that the strategy parameters themselves are evolved 

along with the object parameters. 

4.3.2 Self Adaptation in Evolution Strategies 

As far as the evolution strategies are concerned, the need to adapt the mutation 

strength during the evolutionary process was recognized 1973 in Rechenberg’s book 

Evolutionsstrategie[66]. 

 

He introduced the famous 1/5th rule, which was originally developed for (1 + 1)-ES. 

For a certain number of generations, it keeps track of the mutations that results the 
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improvement in fitness value, termed as successful mutations. If more than 1/5th of 

mutations are successful, then the mutation strength is increased, otherwise it is 

decreased. The aim was to keep within the evolution window where optimal progress 

is ensured. 

 

Besides the 1/5th rule, Rechenberg [66] also proposed to couple the evolution of the 

strategy parameters with that of the object parameters. This gave birth to the idea of 

explicit or self adaptation. Rechenberg conducted experiments on sphere and corridor 

model to compare the performance of self adaptation with the 1/5th rule. Self 

adaptation not only demonstrated higher convergence rates but also proved to be 

applicable in scenarios where it was not possible to use the 1/5th rule.  Hence, self 

adaptation emerged as a more universally usable method.  

 

Self Adaptation of Strategy Parameters: In the paradigm of evolution strategies, the 

technique most commonly associated with the term self adaptation was introduced by 

Rechenberg [68] and Schwefel [69, 70]. The strategy parameters considered in this 

technique apply to the mutation process and parameterize the mutation distribution.  

4.4 The Generic ES Algorithm 

ES applies the above defined operators to a population in an iterative process. The 

generic algorithm is outlined here: 

1. Take an initial population of x individuals. 

2. Generate y offspring, where each offspring is generated in the following 

manner: 
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a. Select z parents from x (z is a subset of x). 

b. Recombine the z selected parents to form a new individual i. 

c. Mutate the strategy parameter (adaptation). 

d. Mutate the individual i using the mutated strategy parameter. 

3. Select new parent population consisting of x best individuals (based on 

objective function) from the pool of x and y. 

4. Go to 2, until termination condition occurs. 
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Chapter Five: ES Based Automated Software 
Clustering 

 

In this chapter, we present the instantiation of ES Algorithm for the software 

clustering problem. 

 

Figure 5.1 shows an example weighted MDG of small system that we will use to 

explain the concepts throughout this chapter. 

 

Figure 5.1: An Example Weighted MDG 

 

Figure 5.2 is a decomposition of the MDG presented in Figure 5.1 

5.1 Variable Selection 

Software Clustering Algorithms need to be independent of the programming language 

syntax. For this purpose, source code analysis tools are used to transform the source 
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code of the software system under study into a language independent format. This 

representation contains all of the entities and the relationships/dependencies among 

the entities.   

 

Evolution Strategies work on population of individuals. In software clustering 

problem we have three types of variables which affect resolution of the problem. 

These variables are discussed below.  

 

Entities: First, the entities involved, which in this case are modules of the system. We 

represent these modules with indices from 0 to n-1.  

 

Relationships: Second variable is the set of relationships among these modules. We 

used a third party fact extractor [58] that provided us with these relationships among 

modules and their weights. The relationships taken into account are those based on 

inheritance, containment, genericity and member access.  Figure 5.1 shows the 

modules and relationships of a small software system extracted by [58]. Table 5.1 

shows the relationship matrix, which is in fact used as input to the clustering 

algorithm, for the same software system.  

 

Subsystems: Third variable is the subsystems (clusters) which comprise of these 

modules. These subsystems are represented by 0 based indices. Therefore a system 

can have minimum one cluster and maximum n (equal to total number of modules in 

systems) subsystems. 
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 M0 M1 M2 M3 M4 M5 M6 

M0 0 0 2 0 4 0 0 

M1 0 0 0 4 0 2 2 

M2 0 0 0 1 2 0 0 

M3 0 6 0 0 0 3 0 

M4 0 0 0 0 0 2 4 

M5 0 0 0 0 0 0 0 

M6 0 0 0 0 0 0 0 

Table 5.1: Relationship Matrix for the Example MDG  

 

To solve the software clustering problem using Evolution Strategies, we use the 

variables defined above, to represent the search space population. 

5.2 Population Representation 

Every individual solution of the software clustering problem is represented by an 

encoded string of integers. This encodes string is generated by assigning a cluster 

number to each entity. For instance the decomposition shown in Figure 5.2 can be 

represented as [1 0 1 0 2 0 2]. This encoding means that  

• Cluster 0 contains modules 1,3 and 5;  

• Cluster 1 contains modules 0 and 2; 

• Cluster 2 contains modules 4 and 6. 
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M0

M2

M4

M6

M3

M1

M5

3

6

2

4

2

4

2

4

1

Cluster 0 Cluster 1

Cluster 2

3

1

Decomposition/Partition

 

Figure 5.2: A Sample Decomposition for the Example Weighted MDG 

 

5.3 Objective Function 

The major goal of software clustering algorithms is to find a partition/decomposition 

of software systems in the form of subsystems that expose abstractions of the software 

system structure. Finding good partitions involves navigating through all the possible 

partitions of the search space. To achieve this, we treat software clustering as an 

optimization problem based on maximizing the value of an objective function. 
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The objective function is derived using the variables involved in the system. We are 

proposing the use of operators and algorithm presented in Chapter 4 on an objective 

function based on software engineering concepts of coupling and cohesion.  

 

Cohesion measures that how deeply-related and focused the various responsibilities of 

a software subsystem are. Subsystems with high cohesion are preferable because high 

cohesion is has several attractive features of software including reusability, reliability, 

understandability and robustness. On the other hand, low cohesion is associated with 

undesirable qualities such as raising difficulties in maintaining, testing, understanding 

and reuse. 

 

Coupling is the measure to which extent each subsystem relies on the other 

subsystems. Coupling is usually disparate with cohesion. High coupling usually 

correlates with low cohesion, and vice versa. 

 

It is generally considered that subsystems exhibiting high cohesion and low coupling 

form well designed systems. Hence, the resulting decompositions should have more 

intra-cluster relationships and less number of inter-cluster relationships. To achieve 

this property we use the objective function Turbo MQ, used and defined in [21]. 

  

For each cluster we calculate two quantities: intra-connectivity and inter-connectivity. 

µ i, which refers to the Intra-connectivity of a cluster i is the weighted sum of all 

relationships (provided by the fact extractor) that exist between modules in that 

cluster i. A higher value of Intra-connectivity corresponds to high cohesion. ∈ ij, that 
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refers to inter-connectivity is the weighted sum of all relationships (provided by the 

fact extractor) that exist between modules in two distinct clusters i and j. This quantity 

can have values between 0 (when there are no subsystem level relations between 

subsystem i and subsystem j) and 1 (when all modules in subsystem i are related to all 

modules in subsystem j and vice-versa). A low value for inter-connectivity means low 

coupling. 

 

Using these two quantities, a cluster factor CFi is calculated for each cluster i and 

total fitness of the system is given by the sum of CF for all clusters. The cluster factor 

is calculated as:  

 

 

Total Fitness is given by:  

 

 For the decomposition given in Figure 5.2, we present the calculation of the 

individual cluster factors and that of TurboMQ, as an example. 

 

 

Number of Modules in Cluster 0 = N0 = 3 

Number of Modules in Cluster 0 = N1 = 2 

Number of Modules in Cluster 0 = N2 = 2 
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Calculations for Cluster 0: 

µ 0  = 6+4+3+2 =15 

∈ 01 = 0 No edge from any module in Cluster 0 towards any module in Cluster 1 

∈ 10 = 4 

N0*N1=6 

∈ 02 = 1  

∈ 20 = 0 No edge from any module in Cluster 2 towards any module in Cluster 0 

N0*N2=6 

CF0 = (2*15)/(2*15)+[{(0+4)/6}+{(1+0)/6}] = 0.97 

 

Calculations for Cluster 1: 

µ 1  = 2 

∈ 10 = 4  

∈ 01 = 0  No edge from any module in Cluster 0 towards any module in Cluster 1 

N1*N0=6 

 

∈ 12 = 6  

∈ 21 = 0 No edge from any module in Cluster 2 towards any module in Cluster 1 

N1*N2=4 

CF1 = (2*2)/(2*2)+[{(4+0)/6}+{(6+0)/4}] = 0.65 

 

Calculations for Cluster 2: 

µ 2  = 4 
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∈ 20 = 0 No edge from any module in Cluster 2 towards any module in Cluster 0 

∈ 02 = 1   

N0*N2=6 

 

∈ 21 = 0 No edge from any module in Cluster 2 towards any module in Cluster 1 

∈ 12 = 6 

 N2*N1=4 

CF1 = (4*2)/(4*2)+[{(0+1)/6}+{(0+6)/4}] = 0.82 

 

TURBO MQ = CF0 + CF1 + CF2  = 0.97+0.65+0.82 = 2.44 
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Chapter Six: Implementation 
 

We have developed a tool for automated software clustering using Evolution 

Strategies. As we also wanted to compare our approach some well known approach so 

our tool also provides Genetic Algorithms based software clustering. We wanted to 

use BUNCH tool [21] for GA based approach but neither we could  get hold of 

ACACIA [72], the tool that is needed to generate input for Bunch, nor we were able to 

find any helpful documentation regarding the input format to generate the input for 

Bunch by ourselves. So we decided to implement the GA based approach as well. 

 

 
Figure 6.1: The Working Environment of Our Software Clustering Tool 
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6.1 Automated Clustering Using Our Tool 

The first step in our automatic clustering approach involves converting the source 

code into programming language independent format e.g. module dependency graph 

(MDG). This MDG is then fed to our clustering engine in the form of module 

relationship matrix. The clustering engine then performs software clustering such that 

the clusters represent meaningful subsystems. The resultant decomposition of the 

clusters found in the previous step is then viewed using a visualization tool. Figure 6.1 

shows the clustering environment of our tool.  

6.2 Architecture of Our Tool 

Figure 6.2 shows the architecture of our tool. We discuss these components one by 

one. 

The User Interface

The 
Evaluation 
Services

The 
Clustering 

Engine

 

Figure 6.2: Architecture of Our Software Clustering Tool 
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6.2.1 The User Interface 

The user interface of our tool, which is shown in Figure 6.3, collects information that 

is necessary to perform the clustering. The key information collected on the user 

interface is the path of the folder containing the project of software system to be 

clustered; the clustering approach to be used i.e. genetic algorithm or evolution 

strategy; clustering options like initial population size, maximum number of 

generations and number of clusters. We will discuss these options in detail in the next  

 

Figure 6.3: The User Interface of Our Software Clustering Tool 
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chapter. The user interface also provides options like the text file containing the 

expert decomposition, to evaluate the clustering results. 

6.2.2 The Clustering Engine 

Clustering Engine is the main component that provides the software clustering 

services. Clustering engine is composed of classes that provide methods such as 

selection, mutation, recombination, cross-over in order to support software clustering 

using the Evolution Strategies and the Genetic Algorithms. The flow chart in Figure 

6.4 explains the working logic of our clustering engine. 

We now explain the steps shown in the flow chart for both the clustering approaches. 

 

Evolution Strategy Approach: 

The following steps explain the Evolution Strategy approach towards software 

clustering. 

1. Depending upon the initial population size specified by the user at user 

interface, an initial population of potential solutions is randomly generated 

which is saved in a parent pool. 

 

2. Using the objective function1, a specific number of fittest individuals, say x, 

from the initial population are selected using deterministic selection2. The 

following procedure is then repeated until a specific number of offspring, say 

y, are generated. 

                                                 

1 Defined and explained in Section 5.3. 
2 Defined and explained in Section 4.2. 
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3. Using the recombination operator3 a new individual is generated. The 

mutation operator4 is then used to mutate the strategy parameter, which in this 

case is the mutation strength.  

 

4. The mutated mutation strength is then used to mutate the newly generate 

individual. The result is then saved to an offspring pool. 

 

5. When the offspring pool contains the y offspring, x individuals of the parent 

pool are replaced by x fittest individuals in the offspring pool. 

 

6. Steps 2 to 4 are repeated until the stopping criteria, specified at the user 

interface, is fulfilled. 

 

Genetic Algorithms Approach: 

The following steps explain the Genetic Algorithms approach towards software 

clustering. 

1. Depending upon the initial population size specified by the user at user 

interface, an initial population of potential solutions is randomly generated. 

 

                                                 

3 Defined and explained in Section 4.2.3. 
4 Defined and explained in Section 4.2.2. 
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Figure 6.4: Working Logic of Clustering Engine 
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2. Using the cross-over operator [24] on pair of individuals to create new 

individuals.  

 

3. Apply mutation operator on the new individuals 

 

4. Replace the old parent population with the new one. 

6.2.3 The Evaluation Services 

This component provides the services to evaluate the clustering results. The 

decomposition produced by the clustering engine is compared against the 

expert/benchmark decomposition usually provided by the original designer of the 

system. We have implemented a similarity measure Precision & Recall [30, 45] for 

this purpose. We discuss this similarity measure in the next chapter. 

6.2.4 The Repository 

It is used to store the clustering results for later reference. It also contains expert 

decompositions. The major advantage of this repository is that the once a software 

system is clustered, its results are available for use in future without having to 

perform the clustering again. Also the repository is handy in situations where the user 

just wants to cluster the system and wants to defer the evaluation of the clustering 

results for future. So whenever evaluation is required, user can pick the clustering 

results and can evaluate them against corresponding expert decompositions which are 

also present in the repository.  
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6.3 Output Structure 

The output of the clustering engine (i.e. a resulting decomposition) is actually an array 

of cluster with each cluster having three elements: 

1. The list of modules that the cluster contains. 

2. The sum of the weights of relationships that exist between the modules 

contained in the cluster. 

3. The cluster factor computed for the cluster. 

 

CLUSTER 1

CLUSTER 2

...

...

CLUSTER N

Module 1 Module 2 ... Module M

Internal Sum

Cluster Factor

 

Figure 6.5: Output Structure 
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Chapter Seven: Experimental Results and Analysis 
 

In the previous chapter we discussed the implementation of our software clustering 

tool. To establish the correctness of our approach we tested it on several test systems. 

We also wanted to compare our approach against a good and widely used GA based 

approach. This chapter presents our research results and the comparative study of our 

self adaptive evolution strategies based automated software clustering approach 

ESBASCA and the genetic algorithms based software clustering approach. 

 

This section will first describe the interfaces exposed by the PDF parser that will be 

used by Client to get PDF objects. Second part will present complete guidelines for 

those who want to convert PDF into their own format. 

7.1 Test Systems  

This section presents the test system that we used for the verification of approach and 

the comparative study. 

We used four medium sized industrial software systems in our study. We will use test 

system IDs in this thesis, instead of their names. These are object oriented systems 

implemented in C++. Implementation of these systems also involves software 

libraries MFC, ATL and STL. The classes residing in these libraries are not included in 

clustering process. However, they are used in fact extraction process and support 

building relationships among other software entities. For instance, say a software 

system contains two classes named X and Y which are derived from CEdit (which is 
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MFC based user interface related class). CEdit may be used to find relationship 

among X and Y, as both classes have same inheritance hierarchy. But CEdit will not 

be used in the clustering process and set of subsystems will not contain this class. 

 

Each test system is introduced briefly in the following sections, each followed by a 

statistical summary. Details of the test systems and their module relationships can be 

found in [58]. The relationships taken into account are those based on inheritance, 

containment, genericity and member access. 

7.1.1 Test System 1 

Test System 1, from now onwards, referred to as TS-1, is a component of a large 

software system. It provides conversion support from intermediate data structures to a 

well known document format. Table 7.1 shows the entity related statistics for TS-1 

whereas Table 7.2 shows relationship statistics for TS-1. 

 

No. of Lines of Code 45582

No. of Header Files 53 

No. of Source Files 39 

No. of Modules 36 

No. of Relationships 817 

Table 7.1: Entity Related Information for TS-1 
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Relationships based on Inheritance 373

Relationships based on Containment 298

Relationships based on Generecity 27 

Relationships based on Member Access 32 

Other Relationships 87 

Table 7.2: Relationships Information for TS-1 

 

7.1.2 Test System 2 

Test System 2, from now onwards, referred to as TS-1, is a software system solves 

economic power dispatch problem using conventional and evolutionary computing 

techniques. It uses MFC document view architecture and implements conventional 

and genetic algorithms. Table 7.3 presents the entity related statistics for TS-2 

whereas Table 7.4 presents relationship statistics for TS-2. 

 

No. of Lines of Code 16360

No. of Header Files 31 

No. of Source Files 27 

No. of Modules 41 

No. of Relationships 473 

Table 7.3: Entity Related Information for TS-2 
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Relationships based on Inheritance 102

Relationships based on Containment 166

Relationships based on Generecity 6 

Relationships based on Member Access 127

Other Relationships 72 

Table 7.4: Relationships Information for TS-2 

 

7.1.3 Test System 3 

Test System 3, from now onwards, referred to as TS-3, is a component of a large 

software system. It provides conversion support from intermediate data structures to a 

well known printer language. Table 7.5 summarises the entity related statistics for TS-

3 whereas Table 7.6 shows summarises statistics for TS-3. 

 

No. of Lines of Code 51768

No. of Header Files 27 

No. of Source Files 27 

No. of Modules 69 

No. of Relationships 4973 

Table 7.5: Entity Related Information for TS-3 
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Relationships based on Inheritance 251 

Relationships based on Containment 379 

Relationships based on Generecity 465 

Relationships based on Member Access 254 

Other Relationships 3624 

Table 7.6: Relationships Information for TS-3 

 

7.1.4 Test System 4 

Test System 4 from now onwards, referred to as TS-4 is a software system for design 

document layout and composition. It provides visual support to define document 

layout and complete saving and loading mechanism for designed applications. Entity 

related statistics for TS-1 are given in Table 7.7 whereas relationship statistics for TS-

4 are given in Table 7.2. 

 

No. of Lines of Code 82877

No. of Header Files 74 

No. of Source Files 68 

No. of Modules 80 

No. of Relationships 4886 

Table 7.7: Entity Related Information for TS-4 
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Relationships based on Inheritance 151 

Relationships based on Containment 774 

Relationships based on Generecity 59 

Relationships based on Member Access 1174

Other Relationships 2728

Table 7.8: Relationships Information for TS-4 

 

7.2 Testing Environment 

We performed our testing on Win-XP platform on a machine with 3GHz Intel 

Pentium IV processor and 2GB RAM. Table 7.9 shows the parameters common to 

both ES and GA.  

 

Parameter Value 

Initial Population Size 300 

No. of Clusters ±2 of that proposed in 

ex pert decomposition 

Termination Condition 3000 Generations or No Improvement 

in Fitness Value since last 300 

Generations 

Table 7.9: Common Parameters for ES and GA 

 



74 

 

 

   

Here, we find it important to discuss the common features i.e. initial population size, 

the number of clusters and the termination criteria. 

 

Initial Population Size: The larger the initial population size the better is the chance 

of finding a near optimal solution. But due to computation intensive nature of these 

approaches we have to make trade-off between the initial population size and 

execution performance. So for our test systems we empirically found out 300 to be a 

good option. 

 

Number of Clusters: It is not feasible to check all decompositions containing 1 to n 

clusters where n is the number of modules in the test system. So we adopted a strategy 

based on the checking the range of ±2 number of clusters proposed by the benchmark 

decompositions, provided by the designers of the test system. So we have five 

decompositions in all and we select the decomposition with the highest fitness as the 

final solution. 

 

Termination Criteria: Another important decision is to chalk out an efficient 

termination criteria where again a trade-off has to be made between a good solution 

and execution performance. This also depends on the number of modules in the 

system and their relationships. We empirically found out that for the test systems used 

in this study, 3000 iterations is a good criterion as both ESBASCA and GA based 

approach converged within this limit. Rather ESBASCA converged well before this 

limit but we wanted to match our approach to the best possible results of GA based 

approach so we adopted this limit that favours GA based approach. The second 
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criterion is simply to stop the process when no improvement has been made for a long 

time. 

 

It should be noted that all these parameters that guide our search can be changed by 

the user of our application. Table 7.9 shows the values that we empirically found after 

experimentation with the test systems under study. 

 

Parameters specific to GA used for our tests are presented in Table 7.10. The 

available options and details for these GA specific parameters are in [24, 25].  

 

Parameter Value 

Selection Method Rank based Selection

Cross-over Probability 0.6 

Mutation Probability 0.2 

Table 7.10: GA-Specific Parameters 

 

Parameters specific to ES used in our tests are presented in Table 7.11. The options 

and details of these parameters are in [22, 23]. 

7.3 Results and Discussion 

We have compared the fitness value of the resulting decomposition of each test 

system by both ESBASCA and GA based clustering approach. The collected results 

are also compared with reference decompositions provided by the original designers 
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of the systems. The following sub sections present and discuss each category of these 

results. 

 

Parameter Value 

Mutation Type Mutation by Geometric Distribution 

 
Exponent for the Geometric

Distribution 

2 

 
Recombination Type 

Discrete 

Table 7.11: ES-Specific Parameters 

7.3.1 Quality 

Fitness value gives us the idea of how good is the decomposition according to a 

predefined objective function. Using the cohesion and coupling criteria given in 

Chapter 5, the Fitness values of the best decomposition found by both GA based 

clustering approach and ESBASCA for each test system was computed. Table 7.12 

presents the fitness results for the four test systems using both the approaches. 

 

A comparison of the fitness results of both approaches for all test systems averaged 

over ten runs is presented in Figure 7.1. It can be seen that ESBASCA yields much 

better results for all test systems; the improvement is in the range of 20-50%. The 

improvement in fitness value by ESBASCA as compared to GA based approach 

calculated for each test system is given in Table 7.13. 
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Figure 7.1: Comparison-Quality 

 

Run# TS-1 TS-2 TS-3 TS-4 

 GA  ES GA ES GA ES GA ES 

1 4.89524 5.1129 1.81979 2.83333 1.57621 2.38468 1.61919 2.37529

2 4.08602 5.13399 2.61199 2.89983 1.94534 2.66388 1.36839 2.42168

3 4.69636 5.2451 2.70386 2.89983 1.54118 2.43608 1.27642 2.32985

4 3.88172 5.2451 2.23882 2.73909 1.94742 2.52381 1.68663 2.22072

5 3.64762 5.39524 2.39226 2.62195 1.31854 2.42272 1.26835 2.5128

6 4.8172 5.39524 2.99429 2.84726 1.38764 2.31689 1.9552 2.22072

7 4.5625 5.3172 1.9142 2.57889 1.72435 3.24058 1.35205 2.32985

8 4.77083 5.39524 1.83557 3.10021 1.10844 2.40316 2.11174 2.22072

9 3.9697 5.39524 2.568 2.782 1.44422 2.27648 1.51686 2.5128

10 3.90972 5.39524 1.93804 2.89983 3.20124 2.40316 1.50222 2.32985

Table 7.12: Fitness Values of Resultant Decompositions by Both Approaches 
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This improvement in quality of results through ESBASCA is due to the absence of 

two inherent features of the GA based approach as mentioned in Section 1.4. 

 

Reproduction can abolish good solutions in GAs, while ESs ensure that good 

solutions always survive into the next generation. The design of GA is such that 

parents do not survive in to the next generation and are replaced by the offspring, 

irrelevant of the fitness values. The result of such design is that the fitness value may 

suffer degradation if the offspring resulting from the cross over operator have less 

fitness than the parents. Hence, not only the convergence speed is affected but the 

solution may remain get stuck at local optima, if such situation continues to prevail 

through generations. A technique called Elitism [73] has been proposed that tries to 

minimize this loss over a number of generations. 

 

This is not the case in ES where both parents and offspring compete to survive into 

the next generation and only the fittest survive; see details in Chapter 4. This means 

that fitness value can either remain unchanged or improve in ES. 

 

To show this quality of ESBASCA, we have monitored and recorded the fitness 

values of each test system over 500 generations for both ESBASCA and GA based 

approach. From the results it is clear that the fitness value either increases or remains 

constant over the generations in case of ESBASCA. However, it may suffer 

degradation in case of GA based approach. This is shown in figures Figure 7.2 to 7.9. 
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Test System GA-Based ESBASCA 

Percent 

Improvement 

TS-1 4.323691 5.303035 ~23% 

TS-2 2.301682 2.820222 ~22.5% 

TS-3 1.719458 2.507144 ~46% 

TS-4 1.565705 2.347428 ~50% 

Table 7.13: Improvement in Quality through ESBASCA 
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Figure 7.2: Fitness Values by Both Approaches of TS-1; generations 1-250 

 

Self adaptation of strategy parameters is the second feature that resulted in improved 

results for ESBASCA. GA may remain stuck at local optima due to the fixed mutation 

rate throughout the evolution. Self adaptive ES, on the other hand, adapts the mutation 

rate along the course of evolution that helps in fine tuning the search. For this, 

mutation rate is also evolved by applying the mutation operator in the same way as it 

is applied to the individual solutions. The evolution process keeps monitoring whether 



80 

 

 

   

or not the change of mutation rate was advantageous according to it impact on the 

fitness of the individual solutions, and based on this information the mutation strength 

is modified. 
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Figure 7.3: Fitness Values by Both Approaches of TS-1; generations 251-500 

 

TS-2 Fitness Values Gen 1:250

0

0.5

1

1.5

2

2.5

3

1 21 41 61 81 101 121 141 161 181 201 221 241

Generation No.

Fi
tn

es
s 

Va
lu

e

GA
ES

 

Figure 7.4: Fitness Values by Both Approaches of TS-2; generations 1-250 
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Figure 7.5: Fitness Values by Both Approaches of TS-2; generations 251-500 
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Figure 7.6: Fitness Values by Both Approaches of TS-3; generations 1-250 
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TS-3 Fitness Values Gen 251:500
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Figure 7.7: Fitness Values by Both Approaches of TS-3; generations 251-500 
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Figure 7.8: Fitness Values by Both Approaches of TS-4; generations 1-250 
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TS-4 Fitness Values Gen 251:500
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Figure 7.9: Fitness Values by Both Approaches of TS-4; generations 251-500 

 

7.3.2 Effectiveness 

Similarity Measure gives us the idea of how good (effective) a decomposition is, by 

comparing the decomposition produced by the clustering algorithm against the 

benchmark/expert decomposition. For obtaining the expert decompositions we 

approached the original designers of the test systems used in our study. Based on their 

knowledge of the system, source code, class listings and partial documentation of 

their corresponding systems, the designers provided us with the expert 

decompositions. 

We have used the similarity measure Precision and Recall [30, 45]. Precision and 

Recall checks the correctness of our results on the basis of inter and intra cluster 

relations. Two entities in the same cluster are termed as Intra pair while two entities 

in different clusters are termed as Inter pair. Precision gives the percentage of intra 
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pairs proposed by the clustering algorithm which are also intra in the expert 

decomposition. Recall gives the percentage of intra pairs in the expert decomposition 

which were found by the clustering algorithm. 

 

The higher these percentages are, better is the decomposition produced by the 

clustering algorithm. The precision and recall percentages of the decompositions 

produced by GA based approach and ESBASCA for ten runs for each test system is 

given in Table 7.14 and 7.15 respectively. 

 

Figures 7.10 and 7.11 compare these resulting precision and recall percentages of the 

decompositions produced by GA based approach and ESBASCA averaged over ten 

runs for each test system. Again we can see that ESBASCA significantly outperforms 

GA based approach as it shows better precision and recall for all test systems. The 

percentage improvement in the precision and recall values by our approach as 

compared to GA based approach for each test system is provided in Table 7.16. 
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Figure 7.10: Comparison- Effectiveness (Precision) 
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Run# TS-1 TS-2 TS-3 TS-4 

 GA 

Based 

ESBASCA GA 

Based 

ESBASCA GA 

Based 

ESBASCA GA 

Based 

ESBASCA

1 25.93 41.57 23.7569 33.27 29.1457 34.57 29.7407 43.1871

2 23.12 47.24 26.9231 32.3 25.5486 34.4 29.3248 39.0635

3 30.8333 44.71 26.3158 31.95 24.5971 34.08 27.5511 35.2917

4 25 43.32 29.3839 32.3 26.2243 34.08 28.1946 37.8784

5 25.23 39.29 23.3202 31.38 24.2472 34.08 27.3734 36.4273

6 30.08 37.96 27.6498 32.84 29.4833 34.08 24.2174 36.8788

7 41.96 36.74 26.776 33.31 24.4842 34.08 27.4137 40.6693

8 31.43 28.66 27.8607 34.77 27.2727 34.08 26.8738 47.9478

9 25.4902 34.71 24.0964 32.11 26.676 34.08 25.9301 35.3961

10 26.21 39.85 25.5814 32.45 26.755 34.08 32.765 35.9522

Table 7.14: Precision % of Resultant Decompositions by Both Approaches 

 

 Precision Recall 

 GA 

Based 

ESBASCA Percent 

Improvement

GA 

Based 

ESBASCA Percent 

Improvement

TS-1 28.53 39.4 ~38% 24.496 33.334 ~36% 

TS2- 26.17 32.67 ~25% 26.96 42.646 ~58% 

TS-3 26.44 34.16 ~29% 34.066 41.116 ~21% 

TS-4 27.94 38.87 ~39% 42.208 57.136 ~35% 

Table 7.16: Improvement in Effectiveness through ESBASCA 
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Run# TS-1 TS-2 TS-3 TS-4 

 GA 

Based 

ESBASCA GA 

Based 

ESBASCA GA 

Based 

ES GA 

Based 

ESBASCA

1 21.71 52.71 21.08 39.71 34.38 38.58 49.26 54.78

2 17.05 37.21 27.45 42.16 35.82 38.22 34.61 56.26

3 28.68 35.66 24.51 43.63 35.82 47.96 61.57 57.54

4 22.48 35.66 30.39 37.25 35.1 43.63 35.24 57.54

5 20.93 27.91 28.92 32.84 40.26 43.02 32.48 57.54

6 31.01 27.91 29.41 41.18 29.2 39.54 41.19 57.54

7 36.43 28.68 24.02 36.27 29.6 40.62 37.79 57.54

8 25.58 27.91 27.45 59.8 27.4 40.5 46.5 57.54

9 20.16 30.23 29.41 49.02 29.21 37.98 40.55 57.54

10 20.93 29.46 26.96 44.6 43.87 41.11 42.89 57.54

Table 7.15: Recall % of Resultant Decomposition of Both Approaches  
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Figure 7.11: Comparison- Effectiveness (Recall) 
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7.3.3 Consistency 

A comparison of the Fitness values of the best decomposition found by both GA 

based approach and ESBASCA for each test system in ten runs is presented in Figures 

7.12 to 71.5. From these figures it is clear that  

• ESBASCA yields much better results than the GA based approach. The 

improvement in fitness value by ES as compared to GA calculated for each test 

system over ten runs is given in Figure 7.1.  

• ESBASCA produces much consistent decompositions as compared to the GA 

based approach. 
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Figure 7.12: Consistency Comparison for TS-1 
 

To highlight the second point mentioned above, standard deviation of the fitness 

values using both ESBASCA and GA based approach over 10 runs for each test 

system was computed. The results are shown in Figure 7.15. The figure shows that 

results with GA based approach have a standard deviation in the range of 0.29 to 0.59 

for the four test systems while the results with ESBASCA have a standard deviation 

in the range of 0.11 to 0.28 for the same test systems. This means that even the 
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maximum deviation in ESBASCA's results is less than the minimum deviation of GA 

based results.  This much less deviation by ESBASCA as compared to the GA based 

approach clearly indicates that our approach performs consistently without any major 

variations in results. 
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Figure 7.13: Consistency Comparison for TS-3 
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Figure 7.14: Consistency Comparison for TS-4 

We would like to elaborate that the main reason for this difference in the consistency 

of ESBASCA and GA approaches can be attributed to the primary operators involved 
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in the two schemes. Mutation is the basic operator that provides genetic variation in 

ES. This operator helps in ensuring that the search is not stuck at local optima by 

adding variations in a manner that helps in exploring new possibilities in the search 

space without destroying the current high fitness values. Each individual has a 

probability of going through a small change when mutation is applied.  
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Figure 7.14: Consistency Comparison for TS-4 

 

For example,  
10001000 → 10101000 

 

The main operator in GA is the cross over operator. In contrast to mutation, cross over 

works with two individuals. Cross over operator combines parents (the individuals 

selected using the selection operator) to create offspring, in a bid to find individuals 

that have higher fitness values than either of the parents.  In a single point cross over 

(the commonly used type of cross over) each individual is split at a point: 

1 <= j <= L where L is the length of the individual. 
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By swapping the parts of the parents between j+1 and L, two new individuals are 

created: 

100 110    →     100 001 

001 001   →   001 110 

 

Hence, the variation achieved by the cross over operator is higher than that of 

mutation. While this variation is the main driving force of GAs, it brings 

inconsistency for a non uniform population like the one in software clustering 

problem. 

Consistency: Standard Deviation View

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

TS-1 TS-2 TS-3 TS-4

Fi
tn

es
s 

St
an

da
rd

 D
ev

ia
tio

n 

GA
ES

 

Figure 7.15: Comparison-Standard Deviation of Fitness Values  

 

It is customary to present the decomposition visually, we also performed the visual 

comparison of the decompositions of TS-3 achieved by ESBASCA and GA based 

approaches with the actual decomposition of the system by original designer; using 

DOT [59]. It was clear from the visual comparison that ESBASCA based 

decomposition reduces the inter cluster edges to a small number, hence, achieving low 
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coupling and high cohesion which is a desirable quality. Due to resolution issues, it is 

not possible to present the visual comparison in this report. 

7.3.4 Comparison with other Approaches 

Comparison with other approaches is not required because of their obvious 

disadvantages as shown below. These techniques have been discussed in detail in 

Chapter 2 of this thesis report. Also, the implementation of these approaches is not 

publicly available and implementing them is beyond the scope of this thesis. 

 

Approach Disadvantage 

Documentation Based 

 

 

Updated documentation is not always 

available. 

 

 

Data Bindings Different level of granularity (clusters 

procedures into modules). 

 

Semi Automated  

 

Not feasible for large systems as they 

require too much user interaction. 

 

Resource Name Based and 

Comprehension Driven 

 

Too much subjective in nature 

 



92 

 

 

   

7.4 Validation of Test Results 

The results were then shown to the original designers of the systems for validation. 

The designers of two test systems could spare time for this purpose. For this 

validation, architectures extracted through both techniques were given to different 

coders of same calibre who previously had no knowledge about these test systems. 

The coders were then asked to fix a problem in the code based on their understanding 

of the architecture. The coders acknowledged that the architecture extracted by 

ESBASCA was relatively more meaningful and it easily mapped to the source code. 

Here it must be made clear that IDs were assigned to the architectures and it was not 

known to the persons validating the results that which architecture was obtained using 

what technique. 
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Chapter Eight: Conclusion and Future Research 
Directions 

 

8.1 Conclusion 

Maintaining and understanding large software systems from source code or module 

dependency graph is a difficult task. Partitioning the graph can help but the number of 

possible partitions is quite large even for small systems. We have presented a self 

adaptive Evolution Strategies based approach that explores this large solution space to 

find an effective decomposition of the system. To study the effectiveness of our 

proposed approach, we have compared it against GA based approach using industrial 

systems of different sizes. The encouraging results showing the quality and 

effectiveness of our approach are presented for a number of test systems. In addition, 

the standard deviation among the achieved results by ESBASCA is much less than 

that of the GA based approach, highlighting the consistency in results of our 

approach. The encouraging consistent results make our approach more stable as well. 

8.2 Future Directions  

• In future we want to establish the stability of our approach using the stability 

measure defined in [48].  

• We also want to develop a new similarity measure to remove a flaw in 

EdgeSim [74]. EdgeSim gives same results for two decompositions if all edges 

in both decompositions are of same type. It is possible that a module moves 

from one cluster to another cluster in a manner that edge types remain the 

same. EdgeSim will not point out this difference. Our similarity measure will 

incorporate this movement of modules between clusters. 
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• We have plans to conduct comparative studies with other clustering 

approaches as well. 

• Another task that we have on the list is to explore other clustering algorithms 

using larges systems of magnitude as that of those used in our study. 

8.3 Research Contributions 

The following contributions have been made during our research. 

8.3.1 A New Approach for Automated Software Clustering 

We have proposed a new approach for automated software clustering. Our approach is 

based on using self adaptive evolution strategies. We have successfully verified our 

approach on sufficiently large and complex industrial systems. The approach yielded 

encouraging results. 

8.3.2 Comparative Study of   Software Clustering Approaches 

We carried out a comparative study of our proposed approach and the widely used 

genetic algorithms based software clustering approach.  Our study was based on 

comparison of the resultant decompositions of the two approaches in terms of fitness 

values (quality), precision & recall measure, (effectiveness) and consistency in 

results. In future we want to conduct comparative studies with other clustering 

approaches as well. 

8.3.3 Consistency of Software Clustering Approaches 

We were hardly able to find the research works in Software Clustering literature that 

has formally compared the consistency of the results generated by different software 



95 

 

 

   

clustering approaches. In this manner, our effort is one of the very first ones in this 

domain that compares consistency in results, an important and desirable property of 

any algorithm. 

8.3.4 Empirical Study on Industrial Systems 

We conducted our study on large and complex software systems. Lately, the 

researchers have been pointing towards the need to test software clustering techniques 

on large and complex systems. But there has been hardly any work in this regard. 

For example, B.S. Mitchell [21] presented his work on Genetic Algorithms using just 

one test system and that too consisting of 20 modules. We could only find the work of 

Jingwei Wu, Ahmed E. Hassan, Richard C. Holt [75] who conducted their study on 

sufficiently large open source systems. We have conducted our study on large 

industrial systems. In future we want to check other clustering algorithms on systems 

of this magnitude. 
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Appendix A:  Expert Decompositions for the Test 
Systems Used in Our Study 

 

An effective way of evaluating the software clustering results is to compare the 

decomposition generated by the clustering technique against 

expert/reference/benchmark decomposition. In order to obtain the expert 

decompositions for the systems used in our study, we approached the original 

designers of the test systems used in our study. Based on their knowledge of the 

system, source code, class listings and partial documentation of their corresponding 

systems, the designers provided us with the expert decompositions. As discussed in 

Chapter 7, the decompositions are compared using some similarity measure. In our 

study, we used the precision and recall similarity measure to compare the clustering 

results against the expert decompositions. 

 

For the interested audience, we are presenting the expert decompositions of the test 

systems used in our study, in this Appendix. 



104 

 

 

   

A.1   Expert Decomposition for Test System 1  

No. of Clusters: 6  No. of Modules: 36 

Cluster /Subsystem ID Contained Modules No. Of Modules Present 

0 8, 20 2 

1 4, 26, 28, 34 4 

2 15, 22, 23, 27 4 

3 3, 6, 7, 12, 24, 29, 33, 35 8 

4 0, 1, 2, 5, 16 5 

5 9, 10, 11, 13, 14, 17, 18, 

19, 

21, 25, 30, 31, 32 

13 
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A.2   Expert Decomposition for Test System 2  

No. of Clusters: 4  No. of Modules: 41 

Cluster /Subsystem ID Contained Modules No. Of Modules Present 

0 0, 1, 7, 8, 9, 10, 11, 12, 13, 

14, 15, 19, 40 

13 

1 2, 3, 4, 5, 24, 31, 32, 33, 

34, 35, 38, 23 

12 

2 16, 21, 22, 25, 26, 27, 28, 

29, 37 

9 

3 6, 17, 18, 20, 30, 36, 39 7 
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A.3   Expert Decomposition for Test System 3  

No. of Clusters: 3  No. of Modules: 69 

Cluster /Subsystem ID Contained Modules No. Of Modules Present 

0 0, 4, 16, 17, 18, 19, 20, 21, 

22, 23, 24, 25, 26, 27, 29, 

33, 34, 35, 36, 37, 45, 46, 

47, 48, 49, 50, 52, 53, 55, 

56, 57 

31 

1 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 

30, 31, 32, 58, 59, 60, 61, 

62, 63, 64, 65, 66, 67, 68 

24 

2 12, 13, 14, 15, 28, 38, 39, 

40, 41, 42, 43, 44, 51, 54 

14 

 



107 

 

 

   

A.4   Expert Decomposition for Test System 4  

No. of Clusters: 8  No. of Modules: 80 

Cluster /Subsystem ID Contained Modules No. Of Modules Present 

0 0, 1, 3, 12, 15, 25, 27, 47, 

57 , 58, 60, 63, 64, 65, 67, 

68, 70, 71 

18 

1 5, 10, 11, 16 4 

2 2, 18, 20, 29, 30, 33, 48, 

49, 55, 61 

10 

3 7, 8, 9, 17, 19, 21, 23, 28, 

35 

9 

5 4, 6, 13, 14, 22, 24, 26, 34, 

36, 37, 38, 39, 40, 41, 42, 

43, 44, 45, 46 

19 

5 31, 32, 62,66 3 

6 50, 51, 52, 53, 54, 56, 59, 

69, 72 

9 

7 73, 74, 75, 76, 77, 78, 79 7 

 


