
 EVOLUTION STRATEGIES

BASED

AUTOMATED SOFTWARE CLUSTERING

APPROACH

By

BILAL KHAN

(2006-NUST-MS PhD-CSE (E)-24)

Submitted to the Department of Computer Engineering

in partial fulfillment of the requirements for the degree of

Master of Science
in

Computer Software Engineering

Thesis Advisor
Dr. Shaleeza Sohail

MS-CSE-6

College of Electrical & Mechanical Engineering
National University of Sciences and Technology

2009

III

Acknowledgements

I thank Almighty Allah for the successful completion of my thesis. I gratefully

acknowledge the support and guidance of my advisor Dr. Shaleeza Sohail. She has

been a great mentor always providing me with the much needed encouragement and

thoughtful direction. I am also thankful to my advisory committee for their feedback

and valuable suggestions.

During my research I also worked full-time as a software engineer. Special thanks to

my manager, Muhammad Nadeem, who provided me with flexibility and guidance.

The nexus of my family and friends was also instrumental in enabling me to finish

this project, bearing my late working hours taken from their time.

I offer best regards to all those who were helpful in any way during this research.

IV

 Dedication

Dedicated to my family and friends who always supported

 me and prayed for my success.

V

Abstract

Maintenance is one of the key phases of software development life cycle, for long

term effective use of any software. It can become very lengthy and costly for large

software systems, especially when subsystem boundaries are not clearly defined.

System evolution, lack of up to date documentation and high turnover rate of software

professionals (leading to non availability of original designers of the software

systems) can complicate the system structure many folds by making the subsystem

boundaries ambiguous. Automated software module clustering helps software

professionals to recover high-level structure of the system by decomposing the system

into smaller manageable subsystems, containing interdependent modules. We treat

software clustering as an optimization problem and propose a technique to get near

optimal decompositions of relatively independent subsystems, containing

interdependent modules. We propose the use of self adaptive Evolution Strategies to

search a large solution space consisting of modules and their relationships. We

compare our proposed approach with a widely used genetic algorithm based approach

on a number of test systems. Our proposed approach shows considerable

improvement in terms of quality and effectiveness and consistency of the solutions for

all tests cases.

VI

Table of Contents
ACKNOWLEDGEMENTS .. III

DEDICATION .. IV

ABSTRACT .. V

TABLE OF CONTENTS .. VI

LIST OF TABLES ... X

LIST OF FIGURES .. XI

CHAPTER ONE: INTRODUCTION ... 1

1.1 THE IMPORTANCE OF SOFTWARE ARCHITECTURE .. 2

1.2 RESEARCH IN ARCHITECTURE RECOVERY ... 5

1.3 THE SOFTWARE CLUSTERING PROBLEM .. 6

1.4 OUR APPROACH FOR SOFTWARE CLUSTERING .. 8

1.5 THESIS OUTLINE .. 11

CHAPTER TWO: LITERATURE SURVEY .. 14

2.1 BOTTOM‐UP SOFTWARE CLUSTERING TECHNIQUES .. 16

2.1.1 Data Binding .. 16

2.1.2 Semi Automated Clustering .. 16

2.1.3 Resource Based Clustering ... 18

2.1.4 Optimization Techniques .. 18

2.2 TOP‐DOWN CLUSTERING TECHNIQUES ... 19

2.2.1 Software Reflexion Model .. 19

2.2.2 Static and Dynamic Analysis ... 20

2.3 CONCEPT ANALYSIS CLUSTERING TECHNIQUES ... 20

VII

2.3.1 Modularization Concept Analysis ... 20

2.3.2 Objectification Concept Analysis .. 21

2.4 DATA MINING CLUSTERING TECHNIQUES .. 22

2.4.1 Visual Representation Model ... 23

2.4.2 Graph Annotation .. 24

2.5 OTHER SOFTWARE CLUSTERING TECHNIQUES .. 24

2.5.1 Clustering Based on Naming Conventions .. 24

2.5.2 Comprehension Driven Clustering .. 26

2.5.3 Koschke's Clustering Research .. 26

2.6 CONSISTENCY OF CLUSTERING TECHNIQUES... 27

CHAPTER THREE: OVERVIEW OF SOFTWARE CLUSTERING PROCESS ... 29

3.1 REPRESENTATION OF SOURCE CODE ENTITIES .. 29

3.2 SIMILARITY MEASUREMENTS ... 30

3.3 CLUSTERING ALGORITHMS ... 32

3.3.1 Hierarchical Algorithms.. 32

3.3.2 Partitional Algorithms .. 34

3.3.3 Graph‐based Algorithms .. 35

3.4 OBSERVATIONS ... 37

3.5 SOURCE CODE ANALYSIS AND VISUALIZATION ... 39

3.5.1 Source Code Analysis.. 40

3.5.2 Visualization .. 41

CHAPTER FOUR: EVOLUTION STRATEGIES .. 43

4.1 OBJECTIVE FUNCTION ... 43

4.2 OPERATORS ... 44

4.2.1 Selection .. 44

4.2.2 Mutation .. 45

VIII

4.2.3 Recombination ... 47

4.3 SELF ADAPTATION ... 48

4.3.1 Introduction ... 48

4.3.2 Self Adaptation in Evolution Strategies .. 49

4.4 THE GENERIC ES ALGORITHM .. 50

CHAPTER FIVE: ES BASED AUTOMATED SOFTWARE CLUSTERING ... 52

5.1 VARIABLE SELECTION ... 52

5.2 POPULATION REPRESENTATION .. 54

5.3 OBJECTIVE FUNCTION ... 55

CHAPTER SIX: IMPLEMENTATION ... 60

6.1 AUTOMATED CLUSTERING USING OUR TOOL ... 61

6.2 ARCHITECTURE OF OUR TOOL .. 61

6.2.1 The User Interface ... 62

6.2.2 The Clustering Engine ... 63

6.2.3 The Evaluation Services ... 66

6.2.4 The Repository ... 66

6.3 OUTPUT STRUCTURE .. 67

CHAPTER SEVEN: EXPERIMENTAL RESULTS AND ANALYSIS .. 68

7.1 TEST SYSTEMS .. 68

7.1.1 Test System 1 ... 69

7.1.2 Test System 2 ... 70

7.1.3 Test System 3 ... 71

7.1.4 Test System 4 ... 72

7.2 TESTING ENVIRONMENT ... 73

7.3 RESULTS AND DISCUSSION ... 75

7.3.1 Quality ... 76

IX

7.3.2 Effectiveness .. 83

7.3.3 Consistency .. 87

7.3.4 Comparison with other Approaches ... 91

7.4 VALIDATION OF TEST RESULTS .. 92

CHAPTER EIGHT: CONCLUSION AND FUTURE RESEARCH DIRECTIONS 93

8.1 CONCLUSION .. 93

8.2 FUTURE DIRECTIONS .. 93

8.3 RESEARCH CONTRIBUTIONS ... 94

8.3.1 A New Approach for Automated Software Clustering .. 94

8.3.2 Comparative Study of Software Clustering Approaches .. 94

8.3.3 Consistency of Software Clustering Approaches ... 94

8.3.4 Empirical Study on Industrial Systems .. 95

REFERENCES ... 96

APPENDIX A: EXPERT DECOMPOSITIONS FOR THE TEST SYSTEMS USED IN OUR STUDY 103

A.1 EXPERT DECOMPOSITION FOR TEST SYSTEM 1 .. 104

A.2 EXPERT DECOMPOSITION FOR TEST SYSTEM 2 .. 105

A.3 EXPERT DECOMPOSITION FOR TEST SYSTEM 3 .. 106

A.4 EXPERT DECOMPOSITION FOR TEST SYSTEM 4 .. 107

X

List of Tables

Table 3.1: Classification of Software Features .. 31

Table 5.1: Relationship Matrix for the Example MDG ... 54

Table 7.1: Entity Related Information for TS-1 ... 69

Table 7.2: Relationships Information for TS-1 .. 70

Table 7.3: Entity Related Information for TS-2 ... 70

Table 7.4: Relationships Information for TS-2 .. 71

Table 7.5: Entity Related Information for TS-3 ... 71

Table 7.6: Relationships Information for TS-3 .. 72

Table 7.7: Entity Related Information for TS-4 ... 72

Table 7.8: Relationships Information for TS-4 .. 73

Table 7.9: Common Parameters for ES and GA .. 73

Table 7.10: GA-Specific Parameters ... 75

Table 7.11: ES-Specific Parameters .. 76

Table 7.12: Fitness Values of Resultant Decompositions by Both Approaches 77

Table 7.13: Improvement in Quality through ESBASCA ... 79

Table 7.14: Precision % of Resultant Decompositions by Both Approaches 85

Table 7.16: Improvement in Effectiveness through ESBASCA 85

Table 7.15: Recall % of Resultant Decomposition of Both Approaches 86

XI

List of Figures

Figure 1.1: An Example MDG... 10

Figure 1.2: A Sample Decomposition of the Example MDG 11

Figure 3.1: An Example Partition Sequence .. 32

Figure 3.2: Dendrogram for the Example Partition Sequence 33

Figure 3.3: The Relationship between Source Code Analysis and Visualization........ 40

Figure 5.1: An Example Weighted MDG .. 52

Figure 5.2: A Sample Decomposition for the Example Weighted MDG 55

Figure 6.1: The Working Environment of Our Software Clustering Tool 60

Figure 6.2: Architecture of Our Software Clustering Tool .. 61

Figure 6.3: The User Interface of Our Software Clustering Tool 62

Figure 6.4: Working Logic of Clustering Engine .. 65

Figure 6.5: Output Structure .. 67

Figure 7.1: Comparison-Quality .. 77

Figure 7.2: Fitness Values by Both Approaches of TS-1; generations 1-250 79

Figure 7.3: Fitness Values by Both Approaches of TS-1; generations 251-500 80

Figure 7.4: Fitness Values by Both Approaches of TS-2; generations 1-250 80

Figure 7.5: Fitness Values by Both Approaches of TS-2; generations 251-500 81

Figure 7.6: Fitness Values by Both Approaches of TS-3; generations 1-250 81

Figure 7.7: Fitness Values by Both Approaches of TS-3; generations 251-500 82

Figure 7.8: Fitness Values by Both Approaches of TS-4; generations 1-250 82

Figure 7.9: Fitness Values by Both Approaches of TS-4; generations 251-500 83

XII

Figure 7.10: Comparison- Effectiveness (Precision) ... 84

Figure 7.11: Comparison- Effectiveness (Recall) .. 86

Figure 7.12: Consistency Comparison for TS-1 .. 87

Figure 7.13: Consistency Comparison for TS-3 .. 88

Figure 7.14: Consistency Comparison for TS-4 .. 88

Figure 7.14: Consistency Comparison for TS-4 .. 89

Figure 7.15: Comparison-Standard Deviation of Fitness Values 90

1

Chapter One: Introduction

In today’s advanced world, software has gained a large share in the expenses and

gains of market shares not only for purely software dominated domains such as

communications and management information systems, but also in other conventional

technology realms like aviations, electronics engineering, astronomy and media

industry. The share of software in production for these conventional technology

domains measured up to 30 to 50 percent. The average fortune-100 company has 35

millions lines of code in operation with a growth of 10 percent per year [1].

Case studies dealing with software costs reveal that software evolution takes 60-80%

of the total cost of a software product [2]. Interestingly though, the academia and the

industry have made insufficient efforts to deal with the problems of software

evolution as compared to efforts put in to the software development area. It was the

“Y2K problem” that brought software evolution into the limelight. However, even

this example of a mass change has not changed the situation very much [3]. More than

50% of the time needed for program evolution is spent in understanding the program

before the actual change can be designed and realized, as several case studies have

shown [4]. The main reason behind this is the unavailability of the complete and

meaningful documentation required for the task. In the absences of correct

information, the developers responsible for the maintenance, who are already under

2

strict time constraints, have to fix the problem locally rather than finding the origin of

the problem and fixing it at the root. These local code fixes that treat the problem only

phenotypically instead of being the real solution, not only disrespect the intended

design but also become source of error at other sites of the software systems. This also

complicates the understanding of the software system in the future. Such circle

continues, and unless appropriate deterrent policies are adopted, the software system

becomes virtually impossible to maintain.

1.1 The Importance of Software Architecture

Large software systems are compromised of many subsystems. The architecture of a

software system is composed of these subsystems, sometimes referred to as

components, and the dependencies existing among these components. Most of the

attributes of a software system depend upon the architecture of the system. Hence

software architecture is key asset. If the architecture is inappropriate or it gets

deteriorated, one way or another, it can have catastrophic effects on the

maintainability of the software system. The software architecture can have major

impact on the following aspects of a system as describe by Garlan and Perry [5]. They

have described the impact with a development point of view. We present these aspects

from the view point of a person responsible for maintaining a software system.

Understandability: The software architecture presents a system at a higher level of

abstraction. This representation depicts the high-level constraints on system design

that a maintainer has to observe. This also helps more focused searching on

3

architectural information. Many design decisions and the penalties on their violation

become only clear at this level.

Reuse: It is through the architecture that a maintainer can identify the reusable

components and their dependencies to other parts of the system that need to be

handled before the components can be reused. Current work on reuse is generally

limited to component libraries. Architectural design supports not only the reuse of

large components but also frameworks into which components can be integrated.

Architecture recovery is also vital for product line scenario where common

architectural components of a class of systems are integrated and generalized into a

generic architectural framework for a particular domain; the architectures of the actual

systems in this domain can then be realized as instantiations of the general framework

[6].

Evolution: The software architecture is the skeleton of the system. The software

architecture description empowers the maintainer to identify the bottle-neck and

potentially weak parts that need to be carefully tackled as the system goes through

evolution phase. Also, the availability of information of a component’s dependencies

enables the maintainer to modify the component in a manner that does not affect other

parts of the system. It also helps to modify the dependencies in order to deal with

concerns regarding reuse, performance and interoperability. The architectural

information enables the maintainer to fix the errors where they were cause rather than

where they appear, through the identification of responsible components or the

undocumented dependencies and constraints.

4

Analysis: Documenting the recovered architecture provides new opportunities for

analysis. This includes analysis of high-level system consistency, abidance to the pre-

agreed architectural style and conformance to quality attributes. In addition, the

architectural description can be used to keep the check that changes to the system do

not violate the design principles of the architecture.

Management: Maintenance tasks can be assigned and managed made on the basis of

subsystems. Furthermore, the software architecture allows relatively precise risk and

cost estimation of a modification. The quality of a system can be evaluated by

estimating the stress-bearing capacity of its architecture. Weak parts can be isolated

and procedures to overcome these weaknesses can be chalked out and examined.

Components with many problems may have to be reengineered. Reengineering of

large systems is a viable option if it is done at subsystem basis. For such an approach,

The information of component dependencies and the plan for packaging of not yet

reengineered components must be available. As all the above mentioned factors play

an important role during the evolution of the system, software architecture recovery

becomes an important task. Once the architecture is recovered, the documentation

should be kept up-to-date with future changes and the need for recovery should never

arise again in the future. However, it may still be important to examine the

architecture to identify and analyze differences from the documented architecture.

Moreover, the maintainer may need to explore the architecture if its description has

been abstracted from certain details. Recovering and exploring the software

5

architecture is costly and the only available automated support in practice often a

simple debugger to trace the system at a low level.

1.2 Research in Architecture Recovery

Architecture recovery includes the detection of components (the computational parts)

and connectors (the means and points of communication) of systems. It is aimed at

supporting the process of program comprehension for software maintenance and

evolution.

Component Recovery: A major research area in component recovery is detection of

subsystems [7]; another one is recovery of objects and abstract data types. Though

abstract data type and object detection is commonly driven by reuse or object-

orientation, it does support architecture recovery at a lower level of components.

 Subprograms, types, and global variables are the bases elements. With these base

elements we can form the architectural concepts of abstract data types and objects.

Other examples can be hybrid components or collection of related subprograms. Such

low-level components solely built from types, variables, and subprograms as referred

to as atomic components.

Connector Recovery: Connectors for concurrent and distributed systems have been

the primary target of connector recovery [8], [9]. Nevertheless, most software

systems, especially the legacy software systems, are sequential and monolithic. A

primitive connector for such software systems is the Function Call. Shared global

variables are another means of communication among different components. At the

6

next higher level of connectors, we come across atomic components. For instance, a

pipe may be the means of communicate between two architectural components, where

the pipe is as an abstract data type. This implies that atomic components themselves

can be connectors at a higher level of architecture.

Hence, their detection can assist in understanding the communication among larger

components

The focus of this thesis is to developing an automated technique to facilitate the task

of recovering the structure of software systems. Before describing our work in detail

we first present an introduction to the software clustering problem.

1.3 The Software Clustering Problem

The large size and complexity of industrial software systems make the understanding

of their structure a difficult task. A typical software system usually consists of

thousands of entities (procedures, classes, modules) that are integrated in various

ways (procedure calls, inheritance relations). In practice, usually the documentation is

either obsolete or non-existent. This means that the software system’s architecture is

limited to the system architects and developers involved. This knowledge is often lost

when these knowledgeable people switch to another project or another company. For

many of the legacy software systems currently deployed around the world, this

knowledge has been lost years ago.

The fact that the need to modify existing industrial software systems is quire frequent

is backed by the number of software reengineering projects. A variety of reasons exist

7

that require such modifications. These include, but are not limited to, migration to

new hardware platforms or operating systems, compliance with new industry

standards, or change in user requirements.

The software reengineering research is aimed at dealing with the difficult problems of

understanding, re-documenting, and modifying software systems. A main factor that

makes these problems tough to address is the large size of these software systems.

Researchers in other realms of science and technology have also been faced with large

amounts of data. The approach they usually adopt to address this complexity is to

develop a taxonomy, i.e. categorize objects that exhibit similar features or properties.

A variety of techniques have been proposed in the literature to discover such

categories (commonly referred to as clusters). The field of cluster analysis [10, 11,

12, 13, 14] emerged from the study of these techniques.

In software context, several software researchers have developed similar techniques

either by adapting existing cluster analysis techniques, or by proposing new ones. The

objective of all the approaches presented in the literature is to decompose large

software systems into smaller and manageable subsystems that are easier to

understand. Such techniques are collectively referred to as software clustering

techniques.

Numerous software clustering approaches exist in the software engineering literature.

All these approaches deal with the software clustering problem from a different

perspective, either by trying to compute a similarity measure between software

entities[15]; deducing clusters from file and procedure names [16]; utilizing the

8

connectivity between software objects[17, 18, 19] or looking at the problem at hand

as an optimization problem [20].

1.4 Our Approach for Software Clustering

Based on the goals they try to achieve, the software clustering approaches can be

categorized in three different classes:

1. Re-modularization Approaches. These approaches strive to re-modularize (group

the system’s resources in a different way) in order to improve certain attributes of

the software system such as its maintainability or evolvability.

2. Objectification Approaches. Many of the software reengineering projects are

aimed at the migration of the source code from a procedural language to an object-

oriented one. The objectification approaches attempt to identify the entities that

would be candidates for classes.

3. Comprehension approaches. The goal of these approaches is to decompose the

software system into smaller, manageable subsystems in a way that will assist in

understanding the architecture of the software system.

The thesis focuses on a software clustering approaches directed towards re-

modularization. For convenience, the term software clustering approach will be used

to refer to an approach directed towards re-modularization.

9

Software clustering is aimed at categorizing large systems into smaller manageable

subsystems containing modules of similar features. Thus clustering facilitates better

comprehension of the system. The decomposition is based on the relationships among

the modules. These relationships are usually represented in the form of module

dependency graph where modules are represented as nodes and the relationships as

the edges between these nodes. The software clustering problem can be seen as

partitioning of this graph into clusters containing interdependent modules. However,

the number of possible partitions can be very large even for a small number of nodes

[20]. Moreover, the fact that even small differences between two partitions can

generate quite different results, enhances the problem domain. Hence finding the best

clustering for a given set of modules has been proved to be a NP-hard problem [21].

 In this thesis, we propose Evolution Strategy Based Automated Software Clustering

Approach (ESBASCA) that treats the clustering problem as an optimization problem

with the goal of finding near optimal partitions. We define the criteria for near

optimal partitioning in Chapter 5. Our approach searches the large solution space that

consists of all the possible partitions and after a number of iterations finds the near

optimal partitioning for the given system. The inherent quality of Evolution Strategies

(ES)s [22], [23] is the self adaptability which makes sure that as the number of

iterations are increased ESBASCA always gets same or better result than before and

never lose local optimal value during the execution. To show the effectiveness of our

approach we have compared it with Genetic Algorithm (GA) [24], [25] based

clustering approach and results show considerable improvement by ESBASCA. The

improvement is due to two main factors that GA suffers from when compared to ES:

10

• Reproduction can eliminate good solutions in GAs while good solutions

always survive into the next generation in ES.

• In GA the strategy parameters (e.g., mutation strength) remain constant so it

may remain stuck at local optima. Self adaptive ES on the other hand promises

better results because self adaptation helps faster convergence and fine tuning

of the search along the fitness landscape.

Figure 1.1 presents the MDG of a small software system and Figure 1.2 shows a

sample decomposition generated by our clustering approach.

M0

M2

M3

M1

M4

Figure 1.1: An Example MDG

For any optimization algorithms we cannot achieve exactly similar result in different

executions of the algorithm on same data. However, the results should be close to

each other without any major variations. One of the most desirable properties of any

working algorithm is the consistency in its results. Hence, an important measure while

evaluating the performance of any clustering algorithm is the consistency of the

results produced by it. Keeping this in mind we conducted a comparative study on the

consistency in results produced by ESBASCA and GA based approaches. We found

11

that ESBASCA gives far more consistent results as compared to the GA based

approach.

M0 M1

M3

M4

Cluster 0

Cluster 1

M2

A Sample
Decomposition

Figure 1.2: A Sample Decomposition of the Example MDG

1.5 Thesis Outline

In this chapter we introduced the software clustering problem, and presented an

overview of our approach to addressing this problem. The remainder of this section

provides an outline of rest of the chapters in this thesis.

Chapter 2- Literature Survey

This chapter surveys the software clustering techniques. It examines clustering

approaches in the software domain. The chapter concludes with a discussion of

12

research challenges related to software clustering, providing motivation and

perspective for our research.

Chapter 3- Overview of Software Clustering

This chapter presents and overview of the software clustering process. It discusses the

sourced code entity representation, similarity measures and clustering algorithms. It

also encompasses the topics of source code analysis and graph visualizations.

Chapter 4- Evolution Strategies

This chapter introduces the evolution strategies. It discusses the basic operators

involved in evolution strategies. The important aspect of self adaptation and a generic

evolution strategies algorithm is also presented in this chapter.

Chapter 5- ES based Software Clustering Approach

This chapter presents the instantiation of ES Algorithm for the software clustering

problem. Besides the ideas of bringing software clustering problem into a

representation on which evolution strategies can be applied, an objective function for

the same is also defined and explained in this chapter.

Chapter 6- Implementation

This chapter is dedicated to the implementation of our software clustering tool. It

presents the working environment and the architectural design of our tool.

Chapter 7- Experimental Results and Analysis

This chapter presents the experimental settings, results obtained and a detailed

analysis of the results.

13

Chapter 8- Conclusion and Future Research Direction

This chapter concludes the thesis and points our future research directions. It also

presents our research contributions.

14

Chapter Two: Literature Survey

There has been considerable research activity in the field of reverse engineering over

the past few years. Several reasons account for this activity. First, immediately prior

to the year 2000, information technology professionals spent a great deal of effort and

time verifying that their software will work into the new century. Many software

developers, who had no access to the original designers of the system under their

consideration, had to remedy the software so that it would work after the year 2000.

Second, the software development processes have gone through rapid changes.

Software systems have migrated from two-tiered, to three-tiered, to n-tiered

client/server architectural models in the past few years. Development approaches have

varied from procedural, to object oriented, to component based. Developers have to

strive to port the earlier version of their software to fit the new one each time the

system architecture goes through a change. In these situations, software professionals

are being forced to understand, and in some cases, re-modularize huge code bases.

Tools for software clustering can help these professionals by providing automated

support for recovering the abstract structure of such large and complex systems.

In the earliest days of computing, the need for clustering procedures into modules was

identified. The popular work of David Parnas [26] first suggested that the “secrets” of

a program should be hidden behind module interfaces. The information hiding

principles based on this concept advocated that modules should be designed in a

manner that design decisions of the module are hidden from all other modules. Parnas

15

suggested that module interfaces should be created in order to provide a well-defined

mechanism for communicating with the modules' internal logic. Parnas proposed that

procedures acting on common data structures should be grouped (clustered) into

common modules. Parnas's ideas were a foundation for object-oriented design

techniques.

Objected-oriented techniques provide a primitive clustering by grouping related data,

and functions that operate on the data, into classes. Booch [27] suggests that during

the design process a system should be decomposed into autonomous objects that

collaborate with one another to provide higher-level system behavior. Booch

emphasizes the importance of abstraction, encapsulation, modularization and

organizing design abstractions into hierarchies. Abstraction focuses on the similarities

between related entities. Encapsulation provides information hiding. Organizing

design abstractions into hierarchies is aimed at simplifying program understanding.

Modularization promotes strong cohesion and loose coupling between classes. Almost

all research in software clustering concentrates on one or more of these concepts.

Given the importance of recovering and understanding the architecture of source

code, the remainder of this chapter will present work performed by researchers in the

area of software clustering. The research work on software clustering is classified into

bottom-up, top-down, data mining, and concept analysis clustering techniques. In the

end of this chapter, we present miscellaneous approaches that have been applied by

researchers to the software clustering problem.

16

2.1 Bottom-Up Software Clustering Techniques

Following sections present some important bottom-up clustering approaches.

2.1.1 Data Binding

In an early paper on software clustering, Hutchens and Basili [17] have presented the

concept of a data binding. A data binding categorizes the similarity of two procedures

on the basis of common variables in the static scope of these procedures. Because of

their ability to cluster the procedures and variables into modules, data bindings are

useful for modularizing software systems (e.g., helpful for migrating a program from

COBOL to C++). The authors of this paper have presented several remarkable aspects

of software clustering. First, they identify the importance of maintaining a consistency

between the systems’ reverse engineered model and the designer's mental model of

the system's structure. The authors also claim that software systems are best

considered as a hierarchy of modules and they have focused on clustering methods

that demonstrate their results in this fashion. Finally, the paper addresses the software

maintenance problem by presenting the benefits of clustering technologies to verify

how the structure of a software system deteriorates over time.

2.1.2 Semi Automated Clustering

1. ARCH. A semi-automatic approach to software clustering is provides in

Robert Schwanke's tool Arch [7]. Arch is intended to help software

professionals to understand, reorganize and document system structure,

integrate system architects’ opinion and to monitor compliance with the

recovered architecture. Schwanke's clustering heuristics are based on the

17

software engineering principles of cohesion and coupling. They are based on

maximizing the cohesion of procedures present in the same module while

minimizing the coupling between procedures that reside in different modules.

Arch also provides an innovative feature called maverick analysis which

redefines modules by locating misplaced procedures and placing them in most

appropriate modules. Schwanke also explored the use of neural networks and

classifier systems to modularize software systems [28].

2. RIGI. Hausi Muller in his work adopted a more abstract software structure i.e.

the subsystem as the basic building block of a cluster rather than a module.

Muller's tool, Rigi [29], implements many heuristics that guide software

engineers during the clustering process. The heuristics presented and discussed

by Muller vastly focus on measuring the “strength" of the interfaces between

subsystems. Omnipresent module is an exclusive aspect of Muller's work.

While examining the structure of a software system, often modules acting like

libraries or drivers are found. These modules either provide services to other

subsystems, or consume the services of other subsystems. Muller classifies

these modules as omnipresent and stressed that they should be ignored during

cluster analysis because they add ambiguity to the system's structure. Another

feature of his work is the concept that the module names themselves can be

used as a clustering criterion. Later in this section we discuss a paper by

Anquetil and Lethbridge [30], which investigates this technique at length.

The research of Schwanke and Muller resulted in semi-automatic clustering tools that

require significant user input and feedback to obtain meaningful results.

18

2.1.3 Resource Based Clustering

Choi and Scacchi's [19] paper presents a fully-automatic clustering technique based

on maximizing the cohesion of subsystems. Their clustering algorithm starts with a

resource flow diagram (RFD) that actually is a directed graph and forms a hierarchy

of subsystems using the articulation points of the RFD. If a module A provides one or

more resources to module B, an arc is placed from A to B in the RFD. Articulation

points are nodes in the RFD that divide the RFD graph into two or more connected

components. Their algorithm searches for these articulation points. Each articulation

point and connected component of the RFD is used as the starting point of forming

subsystems. Choi and Scacchi specified resultant design of the system using the

NuMIL [31] architectural description language.

2.1.4 Optimization Techniques

Mancoridis, Mitchell et al. [20, 32, 33, 34] treat the software clustering problem as a

search problem. An important aspect of their clustering technique is that they do not

try to cluster the native source code entities directly into subsystems. Instead, they

start by generating a random subsystem decomposition of the software entities. Then

they apply heuristic searching techniques to shift software entities either between the

randomly generated clusters or in some cases they even create new clusters, to

produce improved subsystem decomposition. This process is iterated until no further

improvement is possible. The search is guided by an objective function based on

software engineering concepts of cohesion and coupling. Their algorithm rewards

19

high cohesion and low coupling. They have used several heuristic search approaches

based on hill-climbing and genetic algorithms.

Their tool, Bunch, clusters source code into subsystems automatically. The fully

automatic capability of Bunch that distinguishes it from related tools that require

significant user input to guide the clustering process. However, they have extended

Bunch over the past few years to integrate other useful features that have been

described and/or implemented by other researchers. For instance they added Orphan

Adoption techniques [35] for incremental structure maintenance, Omnipresent

Module support [29], and user directed clustering to complement Bunch's automatic

clustering engine.

2.2 Top-Down Clustering Techniques

In the following subsections we present some key top down clustering techniques.

2.2.1 Software Reflexion Model

Most software clustering techniques work in a bottom-up manner. These techniques

provide high-level architectural views of a software system from system's source

code. Murphy's work with Software Reflexion Models [43] works in a top-down

manner. The goal of the Software Reflexion Model is to recognize the differences

between a designer's mental model of the system structure and the actual organization

of the source code. Once these differences are identified and understood, either the

designer can update his model or the source code can be modified to comply with the

designer’s understanding. This technique is valuable to prevent the system to drift

away from the intended structure as it undergoes maintenance.

20

2.2.2 Static and Dynamic Analysis

Eisenbarth, Koschke and Simon [44] used concept analysis to develop a technique to

map system's externally visible behavior to relevant parts of the source code. Their

technique uses static and dynamic analysis to enable the users to understand a

system's implementation without much knowledge about its source code. Profiling is

done to collect data while the program is execution. Concept analysis is then used to

process this data in order to identify a minimal set of feature-specific modules that

participated in the execution of the feature. Static analysis is then performed against

the results of the concept analysis to identify further feature-specific modules. The

goal is to reduce the set of modules that participated in the execution of the feature to

a small set of the most relevant modules in order to simplify program understanding.

Their case study was based on two open source web browsers whose various features

were investigated which were then mapped to a small fraction of software system

modules.

2.3 Concept Analysis Clustering Techniques

Concept Analysis Clustering can be classified into two main categories namely

Modularization Concept Analysis and Objectification Concept Analysis. We discuss

each of them in the following subsections.

2.3.1 Modularization Concept Analysis

Lindig and Snelting [26] used mathematical concept analysis [37] to develop a

software modularization technique. Conceptually, their work resembles that of

21

Hutchens and Basili [17] i.e. the goal is to cluster procedures and variables into

modules based on variable dependencies between procedures. They first generate a

variable usage table. This table captures the shared variables that are used by each

procedure in the system. The authors then use a technique for converting the table into

a concept lattice which is a convenient way to visualize the variable relationships

between the procedures in the system. Their technique then methodically modifies the

procedure interfaces to remove global data dependencies. This is done by passing the

variable through the procedure’s interface. This is aimed at transforming the concept

lattice into a tree-like structure. As soon as this transformation is achieved, the

modules are realized from the concept lattice. Modularization by interface resolution

and modularization by block relation are the two techniques used by the authors to

achieve this transformation: Due to performance problems, the authors failed to

modularize two large systems as part of their case study. Furthermore, their technique

is only useful for analyzing systems that are developed using programming languages

liked COBOL and FORTRAN that rely on global data as a means for information

sharing. Thus, their technique is not for object-oriented programming languages,

based on the concept of encapsulation.

2.3.2 Objectification Concept Analysis

Van Deursen and Kuipers [38] investigated the use of clustering and concept analysis

techniques to identify objects from COBOL code automatically. Their approach to

object comprises the following steps:

1. Categorize the COBOL records as objects,

2. Categorize the procedures or programs as methods

22

3. Use clustering technique to decide the best object for each method

Their algorithm starts by creating a usage matrix that cross references the relations

between modules and variables. Once this matrix is created, a hierarchical

agglomerative clustering algorithm [39] similar to ARCH [7] is used. Euclidian

distance between the variables in the usage matrix is used to calculate dissimilarity

measurement. Clusters are formed on the basis of this dissimilarity measurement.

The authors also explored the use of concept analysis to determine clusters from the

variables in the usage table. In this technique, the usage table is transformed into a

concept table by considering the items (variable names) and features (usage of

variables in modules). After identifying the items and features, they locate the

maximal collection of items sharing common features which determines the concepts.

Similar to the Lindig and Snelting's approach, the concepts can be represented as a

lattice. Clusters can be determined at various granularity levels by moving from the

bottom to the top of the lattice.

2.4 Data Mining Clustering Techniques

Visual Representation Model and Graph Annotation are the main clustering

techniques based on data mining. Each one of them is described in the following

subsections.

23

2.4.1 Visual Representation Model

Montes de Oca and Carver [40] present a formal visual representation model for

deriving and presenting subsystem structures. Their work uses data mining techniques

to form subsystems. They claim that data mining techniques are complementary to the

software clustering problem. More importantly:

1. In database management, data mining has been used to find non-trivial

relationships between elements. Software clustering in a similar manner forms

subsystem relationships based on non-obvious relationships between the

source code entities.

2. Data mining can discover interesting relationships in databases without much

knowledge of the objects being studied. One of the salient features of software

clustering is that it can be used to promote program understanding.

3. Data mining techniques operate on a large amount of information. Thus, the

study of data mining techniques may advance the state of current software

clustering tools that usually suffer from performance problems due to the large

amount of data that needs to be processed.

The authors form subsystems on the basis of dependencies of procedures on shared

files. They have not explained the working of their similarity mechanism because

their research was primarily aimed at developing a formal visualization model.

However, they presented a good set of requirements for visualizing software

clustering results. For example, their visualization approach supports hierarchical

24

nesting, and singular programs, which are programs that do not belong to a

subsystem. The concept of singular programs is very similar in concept to Muller's

omnipresent modules [29].

2.4.2 Graph Annotation

Sartipi et al. [41, 42] also explored the software clustering problem through the data

mining approach. Their technique used data mining to annotate nodes in a graph

representing the structure of a software system with association strength values. These

association strength values are then used to partition the graph into clusters.

2.5 Other Software Clustering Techniques

Besides the techniques discussed earlier in this chapter, the techniques presented in

the following subsections are also significant.

2.5.1 Clustering Based on Naming Conventions

Anquetil, Fourrier and Lethbridge [45], investigated several hierarchal clustering

algorithms. The primary objective of their research was to evaluate the effects of

varying the clustering parameters while applying clustering algorithms to software re-

modularization problems. They presented three quality measures to compare the

results of their experiments. The most important measure is the precision and recall

measure that computes the difference between two clustering results. This is typically

used to match the decompositions produced by a clustering algorithm with the

decompositions produced by some expert (e.g. the original designer of the system).

Precision measures how much the clustering results agree with the expert

25

decomposition. While Recall measures the agreement between the expert and the

clustering method. The authors found that many clustering algorithms yielded good

precision and poor recall.

Anquetil et al. also state that clustering algorithms impose the system structure rather

that discovering it. They further state that an important decision is to select a

clustering technique that best suits a particular system. Their statement is generally

believed to be correct. In case of software maintenance, where the objective is to

understand a software system’s structure, it is usually desirable to impose a structure

conforming to the information hiding principle of software engineering. This is the

reason that many similarity measures are based on maximizing cohesion and

minimizing coupling.

Anquetil and Lethbridge [30] also proposed a clustering technique based on naming

conventions. Such techniques cluster entities with similar source code file names and

procedure names. They claimed that this technique often produces better results as

compared to the techniques based on extracting information from the source code.

They presented case studies based on name similarity as the clustering criterion that

showed promising results (high precision and high recall).

This technique, however, is very subjective. If developers organize their source files

into directories, and name source code files that perform a related function in a similar

way, then this technique will show good results. However when there are

inconsistencies in naming, e.g. when a system has undergone maintenance by

developers who did not understand the system's structure thoroughly, this technique

26

might not work well. In contrast, clustering based on source code always provide

accurate information as this information is directly extracted from the source code.

2.5.2 Comprehension Driven Clustering

Tzerpos' and Holt's ACDC clustering algorithm [46] uses patterns having good

program comprehension properties to determine the system decomposition. They have

presented seven subsystem patterns and their clustering algorithm that applies these

patterns to the software structure. This places most but not all of the modules into the

subsystems. ACDC then uses orphan adoption [35] to assign the remaining modules

to appropriate subsystems.

2.5.3 Koschke's Clustering Research

Koschke's Ph.D. thesis [47] presents 23 different clustering techniques and classifies

them into following categories

1. connection-based

2. metric-based

3. graph-based

4. concept-based

16 out of the 23 techniques in his work are fully automatic while 7 are semi-

automatic. The author also developed a semi-automatic clustering framework based

on modified versions of the fully-automatic techniques. This framework enables a

mutual session with the user. The clustering algorithm does the processing, and the

user validates the results.

27

2.6 Consistency of Clustering Techniques

We were hardly able to find any research works in Software Clustering literature that

has formally compared the consistency of the results generated by different software

clustering approaches. In this manner, our effort is one of the very first ones in this

domain that compares consistency in results, an important and desirable property of

any algorithm. To show the importance of our work we present some earlier work

from Software Engineering field that highlights the significance of consistency in

results.

Consistency is an important step toward stability of the clustering algorithm. Tzerpos

and Holt [48] defined a stable clustering algorithm as one whose output does not

change significantly when its input software system is slightly modified. From this

definition it is clear that an inconsistent algorithm, that is showing large variations

even for the same input in different runs, can not be stable; hence, consistency is

important for stability. The results presented in this thesis have shown the consistency

of our approach, ESBASCA.

Olson and Wolform [49] explained the importance of consistency in Information

Architecture. They presented an approach to indexing that selects names and topic in

manner that gives consistent and effective retrieval.

Monge, Marco and Cervigón [50] discuss the significance of consistency in context of

Software Measurement Methods. They have defined a homogeneous statistic that

28

indicates how consistent a software measurement method is. They also provided a

statistical analysis that compares given measurement methods and tells which one is

more consistent.

29

Chapter Three: Overview of Software Clustering
Process

This chapter presents an overview of software clustering techniques based on source

code. Using source code as input to the clustering process is a good idea because

source code is usually the most up-to-date documentation of a software system.

A survey paper by Wiggerts [51] describes three fundamental issues that need to be

addressed while designing clustering techniques:

1. Representation of the entities.

2. Criteria for measuring the similarity between the entities.

3. Clustering algorithms.

3.1 Representation of Source Code Entities

While clustering software systems, a variety of decisions have to be taken in order to

determine the representation of entities and relationships in the software system.

First, one has to decide the granularity level of the recovered system design i.e.

whether the entities would be procedures (methods) or modules (classes). Next

decision is whether the relationships among the entities should be weight or not.

Weights are helpful to signify certain special types of dependencies among the

software system entities.

For instance, whether two entities are more related if they use a common global

variable? How should the weight of such relationship compare to a pair of entities that

30

have a relationship that is based on one entity using the public interface of another

entity?

In the RIGI tool, the user has the option to lay down the criteria to calculate the

weight of the relationships among entities.

3.2 Similarity Measurements

After establishing the type of entities and relationships of the software system, the

next step is to determine the similarity criteria among the entities. For this purpose

similarity measures are used. Large values of these similarity measures depict a

stronger similarity between the entities.

Based on the in their input, the similarity measures can be categorized in two groups:

1. Object Relationships. In this case, graph representation can be used, where the

nodes are the objects and the edges are the relations between the objects. In case of

more than one relation the graph will have multiple kinds of edges. Generally the

similarity measures dealing with such cases are the number of edges in the path

between two objects, the length of shortest path between the objects or the weights of

different types of edges. Another important factor is whether the graph is directed or

undirected.

2. Score of objects on different Edges. Similarity in this case, is commonly usually

measured by means of association coefficients. Number of features available for each

object is used to specify these association coefficients. That is why these coefficients

are of binary type i.e. they reflect whether a feature is available or not.

Table 3.1 is used to compute various coefficients between two objects i and j:

31

 Object j 1 Object j 0

Object i 1 a b

Object i 0 c d

Table 3.1: Classification of Software Features

In the table 3.1, the variable a, specifies the count of features present for both objects,

b denotes the number of features present only for object i and so on. Different

coefficients deal with 0—0 matches (whose number is given by d) in different

manner.

 Similarly different coefficients use different weights for of the four entries of the

table. The most common coefficients are:

1. Simple Matching Coefficient: (a+d) / (a+b+c+d)

2. Jacard Coefficient: a / (a+b+c)

An extensive study of coefficients can he found elsewhere [10].

Other similarity measurements can be categorized as:

• Distance Measures: determine the dissimilarity between two entities.

• Correlation Coefficients: use statistical correlation to determine the

similarity between two entities.

• Probabilistic Measures: assign significance to rare features shared among

entities

32

3.3 Clustering Algorithms

After discussing and the representation and similarity measures in the previous

sections, we focus or attention, in this section, on describing some common software

clustering algorithms.

Most of the software clustering algorithms found in literature can be classified in the

following three classes:

1. Hierarchical Algorithms.

2. Partitional Algorithms.

3. Graph-based Algorithms.

In the following subsections we present each class in detail.

3.3.1 Hierarchical Algorithms

The hierarchical algorithms yield a nested sequence of partitions. One extreme of this

sequence is the partition where every entity lies is in a different cluster and at the

other extreme is the partition where all the entities are placed in the same cluster.

Starting from the first extreme, at each step clusters are joined together until the other

extreme is reached. Figure 3.1 shows an example partition sequence for four entities

M0, M1, M2 and M3.

Figure 3.1: An Example Partition Sequence

33

The hierarchical structure is usually represented by a dendrogram. The example

partition sequence is represented in a dendrogram in Figure 3.2.

M0 M1 M2 M3

Figure 3.2: Dendrogram for the Example Partition Sequence

All the partitions in a sequence do not have equal significance. Rather, only a few

of them (maybe only one) are of use. Finding the desired partitions is commonly

termed as finding cut points of the dendrogram. Prior knowledge of the structure

and parameters driving the clustering such as maximum number of clusters or the

number of entities in a cluster, are the factors the impact the selection of cut point.

Two subclasses of hierarchical algorithms are:

1. Agglomerative Algorithms.

2. Divisive Algorithms.

1. Agglomerative Algorithms. These algorithms start with all entities as

separate partitions and then iteratively keep on join the most similar

clusters based on the similarity measure. A point of debate in such

34

algorithms is about evaluating the similarity between a newly formed

cluster and the rest of the already formed clusters. This is known as the

update rule problem. Researchers have proposed different solutions for this

problem.

Single Link Update Rule states that the similarity of the newly formed

cluster to an existing cluster C is the maximum of the similarities of its

constituents to C.

Complete Link Update Rule states that the similarity of the newly formed

cluster to an existing cluster C is the minimum of the similarities of its

constituents to C.

2. Divisive Algorithms. These start with all entities in a singular partition and

try to iteratively split the partition until all entities are placed as different

partitions. Computational performance is a major concern for these

algorithms as exponential numbers of partitions are possible at every step.

For this reason these algorithms have failed to achieve much popularity.

3.3.2 Partitional Algorithms

Partitional algorithms generally start with an initial partition and try to modify it in a

bid to optimize the quality of a given partition. Different criteria can be used to define

the quality of a partition and this is highly subjective. It usually is domain dependant.

Example of such a criterion is maximization mathematical expression depending upon

the maximization of cohesion and minimization coupling among the clusters. A major

challenge faced by these algorithms is that the number of possible partitions is very

35

large. For example, there are 34,105 partitions of ten objects into four clusters, but

this number explodes to approximately 11,259,666,000 if the number of objects is

increased to 19 [21].

The common workaround to this problem is to heuristically select an initial partition

and attempt to optimize the quality criterion by modifying that partition in an

appropriate way. Such hill-climbing algorithms [10] do converge to the local optima.

Therefore, the choice of the initial partition is vital for the success of the algorithm.

ISODATA [10] is popular partitional algorithm. Well calculated initial choice of

value for seven parameters, controlling the factors such as the number of expected

clusters, the number of entities in a cluster, is the basis of its effectiveness. Then,

depending on closeness of the actual values of the current partition to the chosen

parameters, the algorithm iteratively improves the initial partition by operations such

as joining or splitting the clusters. Software clustering literature contains several

variations of this method.

3.3.3 Graph-based Algorithms

Another important class of software clustering algorithms is of those based on the

ideas of graph theory. Several categories of such techniques exist depending on the

perspective [51, 52]. Some of them are presented here:

1. Minimum Spanning Tree Algorithms. These algorithms start by computing

the minimum spanning tree (MST) of the given graph. Then, they either

iteratively join the two closest nodes into a cluster or split the graph into

clusters by removing inconsistent edges. Researchers have differences over the

36

definition of an inconsistent edge. But it is generally agreed that they usually

carry considerably larger weight than the rest of the edges of the MST.

2. Clique Algorithms. These algorithms either treat the maximal complete sub

graphs (cliques) of the given graph as clusters or use them as the basis for

other algorithms.

3. Local Connectivity Algorithms. These algorithms use the number of edge or

vertex disjoint paths of a specified length between two points as the criterion

to decide which entities (represented as nodes in the graph) to place in the

same cluster. For instance as described in [53], rather than only using single

edges (paths of length 1) as a measure of similarity, multiple edges (e.g. paths

of length 2) can also be used.

4. Aggregation Algorithms. These algorithms join nodes into aggregate nodes

which can either be used as clusters or can be used as input for a new iteration

to find higher level aggregates. Gregor in [54] presents Graph reduction, an

aggregation technique, based on the concept of node’s neighbourhood. Bi-

components and strongly connected components have also been used for this

purpose [55].

5. Heuristic Approaches. As already discussed in earlier sections, the large

number of possible partitions means the graph partitioning problem is almost

impossible to solve optimally. This is where heuristic approaches come into

play. They attempt to cleverly search the possible solution space to come as

close to the optimal solution as possible within the time constraints. The

37

Kernighan-Lin method [56] tries to overcome the local optima problem of hill-

climbing algorithms by opting to go downhill for a while in an attempt to find

a taller hill in the next few steps.

3.4 Observations

So far we have presented significant software clustering research and discussed

several well-known clustering techniques. We have made the following observations:

• Earlier software clustering research work was directed at a low granularity

level i.e. clustering procedures into modules. Along with the advancement in

software engineering the research focus has changed to clustering modules and

into higher-level abstractions such as subsystems.

• One of the important issues in software clustering is the selection of

appropriate algorithms. A potential research initiative is a comparative study

based on a number of software systems. Some algorithms may be found to It is

suit particular type of software systems. A classification of the algorithms and

the types of software for which they work best would be beneficial to the

software clustering community.

• Majority of clustering algorithms have performance issues due to their

computational intensive nature. Partitioning the modules dependency graph

has been proved to be a NP-hard problem [21]. In order to achieve results in

polynomial time, most researchers have adopted the use of heuristics that

reduce this computation complexity.

38

• Much of the clustering research uses the software engineering concepts of

coupling and cohesion as the criteria to compute the quality of the

decompositions produced by the clustering process. Low coupling and high

cohesion [74] are generally recognized properties of well-designed software

systems.

• Software clustering researchers generally have resorted to use expert opinion

in order to validate the results of their algorithms. This approach is quite

subjective and though such assessment provides insight into the quality of

software clustering results, formal methods are required to validate these

results. Antquetil and Lethbridge [30, 45] have addressed this problem by

defining the precision and recall measurement, which investigates the

clustering results against expert decompositions of the software system. This

approach is much better than the expert opinion the software clustering results.

Another such approach has been presented by Tzerpos and Holt [57]. They

have presented a distance metric, MoJo, to evaluate the similarity of two

decompositions of a software system.

• Most of the researchers admit that software system deterioration, as it goes

through maintenance, is a fundamental software engineering problem. To

address this problem Tzerpos and Holt [35] have proposed an orphan adoption

technique to incrementally update existing system decomposition by

evaluating the impact of source code changes on the software system structure.

39

A problem with this technique is that it only investigates the impact of the

changed modules on the existing software system structure. As the remaining

modules and relationships of the system are ignored, the software system

structure can deteriorate repeated orphan adaptation. The solution to this

periodical re-modularization of the complete system.

• Most of the clustering techniques have not been tested on large systems.

Testing on large software systems is vital for the validation of software

clustering approaches. Open source systems are good option for this as access

to large industrial systems is not easy.

In the next section of this chapter we introduce source code analysis and software

visualization, which are two important bodies of work that are related to software

clustering.

3.5 Source Code Analysis and Visualization

Clustering tools typically rely on source code analysis and visualization tools as

shown in Figure 3.3.

Clustering tools enable users to provide software systems’ source code as input to the

clustering process. Generally these systems are large and complex and it is virtually

impossible possible to manually transform the source code into the representation

(e.g., MDG) required by the clustering tool. Manual transformation is tedious and

prone to errors. Furthermore, the researchers have to cluster the same software system

40

iteratively by varying the clustering parameters without having to revisit the original

source code.

Figure 3.3: The Relationship between Source Code Analysis and Visualization

Visualization is another supporting technology needed by the software clustering

process. The clustering results usually contain a large amount of data to be presented

to users. Effective visualization techniques assist to present the results of the

clustering process in a useful way.

3.5.1 Source Code Analysis

Source code analysis has been an active area of research for a long time. The primary

reason for this is that is useful to consolidate a system's source code into a single

repository that can be later be used for a variety of purposes like program

comprehension and reverse engineering. Repositories allow the researchers to explore

41

the program structure by navigating through the complex dependencies existing

among software system modules. Source code analysis tools have traditionally been

used in tasks like dead code detection, program slicing, and reachability analysis.

Researches in the area of software clustering have also found these tools to be helpful

in their work.

Source code analysis tools parse the source code and populate their repository. Then,

the repository can be queried to extract structural information. Internal structure of the

repository can be organized either as a relational database or by storing the abstract

syntax tree of the software system Source code analysis tools support a variety of

programming languages like COBOL, C, C++, Java and Smalltalk.

We used the source code fact extractor developed by [58]. It extracts relationships and

their weights. The relationships taken into account are those based on inheritance,

containment, genericity and member access. The fact extractor provides MDG

information in a matrix form. For example, the MDG of a small software system is

shown in Figure 5.1 and the information extracted by the fact extractor is shown in

Table 5.1.

3.5.2 Visualization

Graph visualization tools present graphical results in an organized manner. Software

clustering systems usually process large and complex systems. The clustering results

of such systems contain a large amount of data. So graphical representation of these

results is an easily interpretable manner is a difficult task.

42

AT&T’s DOT [59] is a powerful graph visualization tool that has been used by

researchers. Dot has its own graph description language. Users specify the nodes, the

edges between them and the attributes to steer appearance of the resultant graph in a

text file. The DOT documentation [59] contains the description of different options

that can be included in the input file. It is a command line tool that accepts a

description file as input, and produces output in the specified format. It supports

twelve output file formats (e.g., GIF, JPEG, PostScript, etc.). It has a powerful layout

engine that increases the clarity of the resultant graph by edge routing and edge

crossing minimization operations.

Another tool by AT&T, called DOTTY [59], is an online graph viewer, that can

visualize and edit a graphs specified in the dot description file. It supports many

visualization functions such as bird eye views and zooming.

We use this tool to present our results visually in this thesis.

43

Chapter Four: Evolution Strategies

Before we present our evolution strategies based software clustering approach we find

it important for the reader to have an overview of Evolution Strategies, the operators

involved and a generic ES algorithm in this chapter.

Evolution Strategies is a specialization of evolution algorithms. These are nature

inspired optimization methods that apply selection and genetic operators to a

population of individuals to evolve better solutions in an iterative manner. Every

individual in the search space represents a potential solution. Each iteration is called a

generation and in each generation a new population is created using the fittest

individuals in the preceding generation. The operators, the idea of self adaptation and

the generic ES Algorithm is presented in the following subsections.

4.1 Objective Function

The quality of solution is calculated using a problem dependent objective function

that defines the fitness value (quality) of each member of the population. The function

is designed in such a manner that an individual with higher fitness represents a better

solution than an individual with a lower fitness. We define the objective function for

our software clustering problem in the next chapter.

44

4.2 Operators

ES typically uses selection, mutation and recombination operators to guide the search.

We present each of them briefly in the following subsections:

4.2.1 Selection

Evolutionary algorithms need objective oriented selection operator to steer the search

into promising regions of the object parameter space. Selection is, therefore, unlike

the genetic operators of mutation and recombination. It guides the evolution.

Selection in ES follows the phenomenon that only the individuals with promising

properties, i.e. individuals with high objective function values get a chance to breed.

This truncation selection in ES guarantees that only the µ best individuals from the

current generation (g) are transferred to the next population at (g + 1) by means of a

deterministic process. Beyer [22] represents the population at (g+1) is represented as

β (g+1)

p := { α 1;γ , . . . , α µ;γ } (4.1)

where

α m;γ := “mth best individual from γ individuals.”

Based on whether or not the parent solutions compete for inclusion into the next

generation, the selection technique has two versions:

1. Comma Selection (µ, λ).

2. Plus Selection (µ + λ)

In comma selection, only the λ newly generated offspring individuals define the

selection pool. In other words, the parents from generation (g) are ignored by

definition even if they are fitter than all offspring.

45

The Plus selection, on the other hand, takes the old parents into account. This means

that both the parents and the offspring are copied into the selection pool which is

therefore of size γ = µ+λ.

Plus selection guarantees that fittest individual found so far, survives. For this reason

such selection technique is termed as elitist. For the ES to converge globally, elitism

is a sufficient condition Elitism allows the parents to survive an infinitely long time-

span.

Both versions of the selection technique have their different application areas. While

the comma selection is recommended for unbounded search spaces Y, especially Y =

RN [60], the plus selection should be used in discrete finite size search spaces, e.g. in

combinatorial optimization problems [61, 62].

4.2.2 Mutation

The mutation operator is the primary variation operator in ES. That is, it is the main

source of genetic variation. The design of mutation operators depends on the problem,

domain. Although there are not any design principles but [63] has proposed some

rules based on theoretical considerations and investigation of successful ES

implementations. They are:

1. Reachability.

2. Unbiasedness.

3. Scalability.

46

Reachability: This requirement states that any finite state in the search space can be

reached within a finite number of mutation steps or generations. This is also a

necessary condition for global convergence.

Unbiasedness: This requirement has been derived from Darwin’s theory of evolution.

Selection and mutation have different purposes. Selection uses the fitness values in

order to guide the search into promising areas in the search space. Variation, on the

other hand, explores the search space, i.e. it is based on search space information of

the parent population rather than using any fitness information. This means that

variation operator should not incorporate any bias by giving preference to any

selected individual. This is a basic design rules for the variation operators. This ends

up at the maximum entropy principle whose application leads immediately to the

normal (Gaussian) distribution in the case of unconstrained real-valued search spaces

RN. Rudolph [64] has shown that this principle suggests the geometrical distribution in

case of unconstrained integer search spaces ZN. Other cases have not been

investigated so far.

Scalability: The scalability requirement states that the mutation strength should be

tunable in order to adapt to the fitness landscape. Adaptation ensures the evolvability

of the ES algorithm along with the objective function. Evolvability expresses that the

variations should be generated in such a way that improvement steps are possible thus

building a smooth evolutionary random path through the fitness landscape toward the

optimum solution [64]. As the objective function along with variation operators

defines the properties of the fitness landscape, the smoothness of the fitness landscape

47

becomes a prerequisite of efficient evolutionary optimization. The smoothness

assumption is sometimes expressed in terms of the causality concept [66] stating that

small changes on the genetic level should result on average in small changes in the

fitness values.

As the evolvability can not be ensures independently, we have to rely on scalability

that can be guaranteed in real-valued search spaces.

4.2.3 Recombination

While mutation performs search steps based on the information of only one parent,

recombination shares the information from up to p parent individuals [66, 67, 68]. p

> 2 means multi-recombination.

The recombination operator in ES produces only one offspring from a family of size

p. This is in contrast to the crossover operator in GA [24] that produces two offspring

from two parents. Generally two types of are recombination used in ES:

1. Discrete (or dominant) recombination.

2. Intermediate recombination.

Discrete Recombination: Suppose a = (a1, . . . , aD) is the parent vector (object or

strategy parameter vector), the discrete recombination produces a recombinant vector

r = (r1, . . . , rD) by coordinate-wise random selection from the p corresponding

coordinate values of the parent family [22]

(r)k = (amk)k (4.2)

48

where

 mk := Random{1, . . . ,p}

This means that the kth component of the recombinant is determined exclusively by

the kth component of the randomly (uniformly) chosen parent individual mk.

Intermediate Recombination: In contrast to discrete (dominant) recombination the

intermediate recombination takes all p parents equally into account. It simply

calculates the center of mass (centroid) of the p parent vectors am [22]

 p

 (r)k := Σ
m=1 (amk)k (4.3)

The procedure defined in Eq. 4.3 is for real-valued state spaces. Supporting

procedures like probabilistic rounding are require, for application in discrete spaces,

in order to map back onto the discrete domain.

4.3 Self Adaptation

Self Adaptation is an important feature of Evolution Strategies. We explain this in

detail.

4.3.1 Introduction

Evolutionary algorithms operate on basis of population of individual solutions. They

are highly dependant on the characteristics of the population distribution in order to

perform well. The objective of self adaptation is to bias the distribution towards

49

promising regions of the search space. This is achieved by introducing enough

diversity among individuals to facilitate further evolvability.

Generally, diversity is introduced by adjusting the values of the control parameters.

Control parameters can be the mutation rates, recombination probabilities, or the

population size.

The goal is to efficiently find suitable adjustments. This is further complicated due to

the dynamic nature of evolutionary algorithms. A parameter setting suitable at the

beginning may become sub optimal during the iterations. That is why adaptation of

the control parameters, during the iterative run of an evolutionary algorithm, is

required.

Population individuals represent possible solutions. These are represented as sets of

object parameters that can be interpreted as the genome of the individual. The basic

idea of explicit self-adaptation is that the strategy parameters themselves are evolved

along with the object parameters.

4.3.2 Self Adaptation in Evolution Strategies

As far as the evolution strategies are concerned, the need to adapt the mutation

strength during the evolutionary process was recognized 1973 in Rechenberg’s book

Evolutionsstrategie[66].

He introduced the famous 1/5th rule, which was originally developed for (1 + 1)-ES.

For a certain number of generations, it keeps track of the mutations that results the

50

improvement in fitness value, termed as successful mutations. If more than 1/5th of

mutations are successful, then the mutation strength is increased, otherwise it is

decreased. The aim was to keep within the evolution window where optimal progress

is ensured.

Besides the 1/5th rule, Rechenberg [66] also proposed to couple the evolution of the

strategy parameters with that of the object parameters. This gave birth to the idea of

explicit or self adaptation. Rechenberg conducted experiments on sphere and corridor

model to compare the performance of self adaptation with the 1/5th rule. Self

adaptation not only demonstrated higher convergence rates but also proved to be

applicable in scenarios where it was not possible to use the 1/5th rule. Hence, self

adaptation emerged as a more universally usable method.

Self Adaptation of Strategy Parameters: In the paradigm of evolution strategies, the

technique most commonly associated with the term self adaptation was introduced by

Rechenberg [68] and Schwefel [69, 70]. The strategy parameters considered in this

technique apply to the mutation process and parameterize the mutation distribution.

4.4 The Generic ES Algorithm

ES applies the above defined operators to a population in an iterative process. The

generic algorithm is outlined here:

1. Take an initial population of x individuals.

2. Generate y offspring, where each offspring is generated in the following

manner:

51

a. Select z parents from x (z is a subset of x).

b. Recombine the z selected parents to form a new individual i.

c. Mutate the strategy parameter (adaptation).

d. Mutate the individual i using the mutated strategy parameter.

3. Select new parent population consisting of x best individuals (based on

objective function) from the pool of x and y.

4. Go to 2, until termination condition occurs.

52

Chapter Five: ES Based Automated Software
Clustering

In this chapter, we present the instantiation of ES Algorithm for the software

clustering problem.

Figure 5.1 shows an example weighted MDG of small system that we will use to

explain the concepts throughout this chapter.

Figure 5.1: An Example Weighted MDG

Figure 5.2 is a decomposition of the MDG presented in Figure 5.1

5.1 Variable Selection

Software Clustering Algorithms need to be independent of the programming language

syntax. For this purpose, source code analysis tools are used to transform the source

53

code of the software system under study into a language independent format. This

representation contains all of the entities and the relationships/dependencies among

the entities.

Evolution Strategies work on population of individuals. In software clustering

problem we have three types of variables which affect resolution of the problem.

These variables are discussed below.

Entities: First, the entities involved, which in this case are modules of the system. We

represent these modules with indices from 0 to n-1.

Relationships: Second variable is the set of relationships among these modules. We

used a third party fact extractor [58] that provided us with these relationships among

modules and their weights. The relationships taken into account are those based on

inheritance, containment, genericity and member access. Figure 5.1 shows the

modules and relationships of a small software system extracted by [58]. Table 5.1

shows the relationship matrix, which is in fact used as input to the clustering

algorithm, for the same software system.

Subsystems: Third variable is the subsystems (clusters) which comprise of these

modules. These subsystems are represented by 0 based indices. Therefore a system

can have minimum one cluster and maximum n (equal to total number of modules in

systems) subsystems.

54

 M0 M1 M2 M3 M4 M5 M6

M0 0 0 2 0 4 0 0

M1 0 0 0 4 0 2 2

M2 0 0 0 1 2 0 0

M3 0 6 0 0 0 3 0

M4 0 0 0 0 0 2 4

M5 0 0 0 0 0 0 0

M6 0 0 0 0 0 0 0

Table 5.1: Relationship Matrix for the Example MDG

To solve the software clustering problem using Evolution Strategies, we use the

variables defined above, to represent the search space population.

5.2 Population Representation

Every individual solution of the software clustering problem is represented by an

encoded string of integers. This encodes string is generated by assigning a cluster

number to each entity. For instance the decomposition shown in Figure 5.2 can be

represented as [1 0 1 0 2 0 2]. This encoding means that

• Cluster 0 contains modules 1,3 and 5;

• Cluster 1 contains modules 0 and 2;

• Cluster 2 contains modules 4 and 6.

55

M0

M2

M4

M6

M3

M1

M5

3

6

2

4

2

4

2

4

1

Cluster 0 Cluster 1

Cluster 2

3

1

Decomposition/Partition

Figure 5.2: A Sample Decomposition for the Example Weighted MDG

5.3 Objective Function

The major goal of software clustering algorithms is to find a partition/decomposition

of software systems in the form of subsystems that expose abstractions of the software

system structure. Finding good partitions involves navigating through all the possible

partitions of the search space. To achieve this, we treat software clustering as an

optimization problem based on maximizing the value of an objective function.

56

The objective function is derived using the variables involved in the system. We are

proposing the use of operators and algorithm presented in Chapter 4 on an objective

function based on software engineering concepts of coupling and cohesion.

Cohesion measures that how deeply-related and focused the various responsibilities of

a software subsystem are. Subsystems with high cohesion are preferable because high

cohesion is has several attractive features of software including reusability, reliability,

understandability and robustness. On the other hand, low cohesion is associated with

undesirable qualities such as raising difficulties in maintaining, testing, understanding

and reuse.

Coupling is the measure to which extent each subsystem relies on the other

subsystems. Coupling is usually disparate with cohesion. High coupling usually

correlates with low cohesion, and vice versa.

It is generally considered that subsystems exhibiting high cohesion and low coupling

form well designed systems. Hence, the resulting decompositions should have more

intra-cluster relationships and less number of inter-cluster relationships. To achieve

this property we use the objective function Turbo MQ, used and defined in [21].

For each cluster we calculate two quantities: intra-connectivity and inter-connectivity.

µ i, which refers to the Intra-connectivity of a cluster i is the weighted sum of all

relationships (provided by the fact extractor) that exist between modules in that

cluster i. A higher value of Intra-connectivity corresponds to high cohesion. ∈ ij, that

57

refers to inter-connectivity is the weighted sum of all relationships (provided by the

fact extractor) that exist between modules in two distinct clusters i and j. This quantity

can have values between 0 (when there are no subsystem level relations between

subsystem i and subsystem j) and 1 (when all modules in subsystem i are related to all

modules in subsystem j and vice-versa). A low value for inter-connectivity means low

coupling.

Using these two quantities, a cluster factor CFi is calculated for each cluster i and

total fitness of the system is given by the sum of CF for all clusters. The cluster factor

is calculated as:

Total Fitness is given by:

 For the decomposition given in Figure 5.2, we present the calculation of the

individual cluster factors and that of TurboMQ, as an example.

Number of Modules in Cluster 0 = N0 = 3

Number of Modules in Cluster 0 = N1 = 2

Number of Modules in Cluster 0 = N2 = 2

58

Calculations for Cluster 0:

µ 0 = 6+4+3+2 =15

∈ 01 = 0 No edge from any module in Cluster 0 towards any module in Cluster 1

∈ 10 = 4

N0*N1=6

∈ 02 = 1

∈ 20 = 0 No edge from any module in Cluster 2 towards any module in Cluster 0

N0*N2=6

CF0 = (2*15)/(2*15)+[{(0+4)/6}+{(1+0)/6}] = 0.97

Calculations for Cluster 1:

µ 1 = 2

∈ 10 = 4

∈ 01 = 0 No edge from any module in Cluster 0 towards any module in Cluster 1

N1*N0=6

∈ 12 = 6

∈ 21 = 0 No edge from any module in Cluster 2 towards any module in Cluster 1

N1*N2=4

CF1 = (2*2)/(2*2)+[{(4+0)/6}+{(6+0)/4}] = 0.65

Calculations for Cluster 2:

µ 2 = 4

59

∈ 20 = 0 No edge from any module in Cluster 2 towards any module in Cluster 0

∈ 02 = 1

N0*N2=6

∈ 21 = 0 No edge from any module in Cluster 2 towards any module in Cluster 1

∈ 12 = 6

 N2*N1=4

CF1 = (4*2)/(4*2)+[{(0+1)/6}+{(0+6)/4}] = 0.82

TURBO MQ = CF0 + CF1 + CF2 = 0.97+0.65+0.82 = 2.44

60

Chapter Six: Implementation

We have developed a tool for automated software clustering using Evolution

Strategies. As we also wanted to compare our approach some well known approach so

our tool also provides Genetic Algorithms based software clustering. We wanted to

use BUNCH tool [21] for GA based approach but neither we could get hold of

ACACIA [72], the tool that is needed to generate input for Bunch, nor we were able to

find any helpful documentation regarding the input format to generate the input for

Bunch by ourselves. So we decided to implement the GA based approach as well.

Figure 6.1: The Working Environment of Our Software Clustering Tool

61

6.1 Automated Clustering Using Our Tool

The first step in our automatic clustering approach involves converting the source

code into programming language independent format e.g. module dependency graph

(MDG). This MDG is then fed to our clustering engine in the form of module

relationship matrix. The clustering engine then performs software clustering such that

the clusters represent meaningful subsystems. The resultant decomposition of the

clusters found in the previous step is then viewed using a visualization tool. Figure 6.1

shows the clustering environment of our tool.

6.2 Architecture of Our Tool

Figure 6.2 shows the architecture of our tool. We discuss these components one by

one.

The User Interface

The
Evaluation
Services

The
Clustering

Engine

Figure 6.2: Architecture of Our Software Clustering Tool

62

6.2.1 The User Interface

The user interface of our tool, which is shown in Figure 6.3, collects information that

is necessary to perform the clustering. The key information collected on the user

interface is the path of the folder containing the project of software system to be

clustered; the clustering approach to be used i.e. genetic algorithm or evolution

strategy; clustering options like initial population size, maximum number of

generations and number of clusters. We will discuss these options in detail in the next

Figure 6.3: The User Interface of Our Software Clustering Tool

63

chapter. The user interface also provides options like the text file containing the

expert decomposition, to evaluate the clustering results.

6.2.2 The Clustering Engine

Clustering Engine is the main component that provides the software clustering

services. Clustering engine is composed of classes that provide methods such as

selection, mutation, recombination, cross-over in order to support software clustering

using the Evolution Strategies and the Genetic Algorithms. The flow chart in Figure

6.4 explains the working logic of our clustering engine.

We now explain the steps shown in the flow chart for both the clustering approaches.

Evolution Strategy Approach:

The following steps explain the Evolution Strategy approach towards software

clustering.

1. Depending upon the initial population size specified by the user at user

interface, an initial population of potential solutions is randomly generated

which is saved in a parent pool.

2. Using the objective function1, a specific number of fittest individuals, say x,

from the initial population are selected using deterministic selection2. The

following procedure is then repeated until a specific number of offspring, say

y, are generated.

1 Defined and explained in Section 5.3.
2 Defined and explained in Section 4.2.

64

3. Using the recombination operator3 a new individual is generated. The

mutation operator4 is then used to mutate the strategy parameter, which in this

case is the mutation strength.

4. The mutated mutation strength is then used to mutate the newly generate

individual. The result is then saved to an offspring pool.

5. When the offspring pool contains the y offspring, x individuals of the parent

pool are replaced by x fittest individuals in the offspring pool.

6. Steps 2 to 4 are repeated until the stopping criteria, specified at the user

interface, is fulfilled.

Genetic Algorithms Approach:

The following steps explain the Genetic Algorithms approach towards software

clustering.

1. Depending upon the initial population size specified by the user at user

interface, an initial population of potential solutions is randomly generated.

3 Defined and explained in Section 4.2.3.
4 Defined and explained in Section 4.2.2.

65

Figure 6.4: Working Logic of Clustering Engine

66

2. Using the cross-over operator [24] on pair of individuals to create new

individuals.

3. Apply mutation operator on the new individuals

4. Replace the old parent population with the new one.

6.2.3 The Evaluation Services

This component provides the services to evaluate the clustering results. The

decomposition produced by the clustering engine is compared against the

expert/benchmark decomposition usually provided by the original designer of the

system. We have implemented a similarity measure Precision & Recall [30, 45] for

this purpose. We discuss this similarity measure in the next chapter.

6.2.4 The Repository

It is used to store the clustering results for later reference. It also contains expert

decompositions. The major advantage of this repository is that the once a software

system is clustered, its results are available for use in future without having to

perform the clustering again. Also the repository is handy in situations where the user

just wants to cluster the system and wants to defer the evaluation of the clustering

results for future. So whenever evaluation is required, user can pick the clustering

results and can evaluate them against corresponding expert decompositions which are

also present in the repository.

67

6.3 Output Structure

The output of the clustering engine (i.e. a resulting decomposition) is actually an array

of cluster with each cluster having three elements:

1. The list of modules that the cluster contains.

2. The sum of the weights of relationships that exist between the modules

contained in the cluster.

3. The cluster factor computed for the cluster.

CLUSTER 1

CLUSTER 2

...

...

CLUSTER N

Module 1 Module 2 ... Module M

Internal Sum

Cluster Factor

Figure 6.5: Output Structure

68

Chapter Seven: Experimental Results and Analysis

In the previous chapter we discussed the implementation of our software clustering

tool. To establish the correctness of our approach we tested it on several test systems.

We also wanted to compare our approach against a good and widely used GA based

approach. This chapter presents our research results and the comparative study of our

self adaptive evolution strategies based automated software clustering approach

ESBASCA and the genetic algorithms based software clustering approach.

This section will first describe the interfaces exposed by the PDF parser that will be

used by Client to get PDF objects. Second part will present complete guidelines for

those who want to convert PDF into their own format.

7.1 Test Systems

This section presents the test system that we used for the verification of approach and

the comparative study.

We used four medium sized industrial software systems in our study. We will use test

system IDs in this thesis, instead of their names. These are object oriented systems

implemented in C++. Implementation of these systems also involves software

libraries MFC, ATL and STL. The classes residing in these libraries are not included in

clustering process. However, they are used in fact extraction process and support

building relationships among other software entities. For instance, say a software

system contains two classes named X and Y which are derived from CEdit (which is

69

MFC based user interface related class). CEdit may be used to find relationship

among X and Y, as both classes have same inheritance hierarchy. But CEdit will not

be used in the clustering process and set of subsystems will not contain this class.

Each test system is introduced briefly in the following sections, each followed by a

statistical summary. Details of the test systems and their module relationships can be

found in [58]. The relationships taken into account are those based on inheritance,

containment, genericity and member access.

7.1.1 Test System 1

Test System 1, from now onwards, referred to as TS-1, is a component of a large

software system. It provides conversion support from intermediate data structures to a

well known document format. Table 7.1 shows the entity related statistics for TS-1

whereas Table 7.2 shows relationship statistics for TS-1.

No. of Lines of Code 45582

No. of Header Files 53

No. of Source Files 39

No. of Modules 36

No. of Relationships 817

Table 7.1: Entity Related Information for TS-1

70

Relationships based on Inheritance 373

Relationships based on Containment 298

Relationships based on Generecity 27

Relationships based on Member Access 32

Other Relationships 87

Table 7.2: Relationships Information for TS-1

7.1.2 Test System 2

Test System 2, from now onwards, referred to as TS-1, is a software system solves

economic power dispatch problem using conventional and evolutionary computing

techniques. It uses MFC document view architecture and implements conventional

and genetic algorithms. Table 7.3 presents the entity related statistics for TS-2

whereas Table 7.4 presents relationship statistics for TS-2.

No. of Lines of Code 16360

No. of Header Files 31

No. of Source Files 27

No. of Modules 41

No. of Relationships 473

Table 7.3: Entity Related Information for TS-2

71

Relationships based on Inheritance 102

Relationships based on Containment 166

Relationships based on Generecity 6

Relationships based on Member Access 127

Other Relationships 72

Table 7.4: Relationships Information for TS-2

7.1.3 Test System 3

Test System 3, from now onwards, referred to as TS-3, is a component of a large

software system. It provides conversion support from intermediate data structures to a

well known printer language. Table 7.5 summarises the entity related statistics for TS-

3 whereas Table 7.6 shows summarises statistics for TS-3.

No. of Lines of Code 51768

No. of Header Files 27

No. of Source Files 27

No. of Modules 69

No. of Relationships 4973

Table 7.5: Entity Related Information for TS-3

72

Relationships based on Inheritance 251

Relationships based on Containment 379

Relationships based on Generecity 465

Relationships based on Member Access 254

Other Relationships 3624

Table 7.6: Relationships Information for TS-3

7.1.4 Test System 4

Test System 4 from now onwards, referred to as TS-4 is a software system for design

document layout and composition. It provides visual support to define document

layout and complete saving and loading mechanism for designed applications. Entity

related statistics for TS-1 are given in Table 7.7 whereas relationship statistics for TS-

4 are given in Table 7.2.

No. of Lines of Code 82877

No. of Header Files 74

No. of Source Files 68

No. of Modules 80

No. of Relationships 4886

Table 7.7: Entity Related Information for TS-4

73

Relationships based on Inheritance 151

Relationships based on Containment 774

Relationships based on Generecity 59

Relationships based on Member Access 1174

Other Relationships 2728

Table 7.8: Relationships Information for TS-4

7.2 Testing Environment

We performed our testing on Win-XP platform on a machine with 3GHz Intel

Pentium IV processor and 2GB RAM. Table 7.9 shows the parameters common to

both ES and GA.

Parameter Value

Initial Population Size 300

No. of Clusters ±2 of that proposed in

ex pert decomposition

Termination Condition 3000 Generations or No Improvement

in Fitness Value since last 300

Generations

Table 7.9: Common Parameters for ES and GA

74

Here, we find it important to discuss the common features i.e. initial population size,

the number of clusters and the termination criteria.

Initial Population Size: The larger the initial population size the better is the chance

of finding a near optimal solution. But due to computation intensive nature of these

approaches we have to make trade-off between the initial population size and

execution performance. So for our test systems we empirically found out 300 to be a

good option.

Number of Clusters: It is not feasible to check all decompositions containing 1 to n

clusters where n is the number of modules in the test system. So we adopted a strategy

based on the checking the range of ±2 number of clusters proposed by the benchmark

decompositions, provided by the designers of the test system. So we have five

decompositions in all and we select the decomposition with the highest fitness as the

final solution.

Termination Criteria: Another important decision is to chalk out an efficient

termination criteria where again a trade-off has to be made between a good solution

and execution performance. This also depends on the number of modules in the

system and their relationships. We empirically found out that for the test systems used

in this study, 3000 iterations is a good criterion as both ESBASCA and GA based

approach converged within this limit. Rather ESBASCA converged well before this

limit but we wanted to match our approach to the best possible results of GA based

approach so we adopted this limit that favours GA based approach. The second

75

criterion is simply to stop the process when no improvement has been made for a long

time.

It should be noted that all these parameters that guide our search can be changed by

the user of our application. Table 7.9 shows the values that we empirically found after

experimentation with the test systems under study.

Parameters specific to GA used for our tests are presented in Table 7.10. The

available options and details for these GA specific parameters are in [24, 25].

Parameter Value

Selection Method Rank based Selection

Cross-over Probability 0.6

Mutation Probability 0.2

Table 7.10: GA-Specific Parameters

Parameters specific to ES used in our tests are presented in Table 7.11. The options

and details of these parameters are in [22, 23].

7.3 Results and Discussion

We have compared the fitness value of the resulting decomposition of each test

system by both ESBASCA and GA based clustering approach. The collected results

are also compared with reference decompositions provided by the original designers

76

of the systems. The following sub sections present and discuss each category of these

results.

Parameter Value

Mutation Type Mutation by Geometric Distribution

Exponent for the Geometric

Distribution

2

Recombination Type

Discrete

Table 7.11: ES-Specific Parameters

7.3.1 Quality

Fitness value gives us the idea of how good is the decomposition according to a

predefined objective function. Using the cohesion and coupling criteria given in

Chapter 5, the Fitness values of the best decomposition found by both GA based

clustering approach and ESBASCA for each test system was computed. Table 7.12

presents the fitness results for the four test systems using both the approaches.

A comparison of the fitness results of both approaches for all test systems averaged

over ten runs is presented in Figure 7.1. It can be seen that ESBASCA yields much

better results for all test systems; the improvement is in the range of 20-50%. The

improvement in fitness value by ESBASCA as compared to GA based approach

calculated for each test system is given in Table 7.13.

77

Quality

0

1

2

3

4

5

6

TS-1 TS-2 TS-3 TS-4

Fi
tn

es
s

V
al

ue

GA
ES

Figure 7.1: Comparison-Quality

Run# TS-1 TS-2 TS-3 TS-4

 GA ES GA ES GA ES GA ES

1 4.89524 5.1129 1.81979 2.83333 1.57621 2.38468 1.61919 2.37529

2 4.08602 5.13399 2.61199 2.89983 1.94534 2.66388 1.36839 2.42168

3 4.69636 5.2451 2.70386 2.89983 1.54118 2.43608 1.27642 2.32985

4 3.88172 5.2451 2.23882 2.73909 1.94742 2.52381 1.68663 2.22072

5 3.64762 5.39524 2.39226 2.62195 1.31854 2.42272 1.26835 2.5128

6 4.8172 5.39524 2.99429 2.84726 1.38764 2.31689 1.9552 2.22072

7 4.5625 5.3172 1.9142 2.57889 1.72435 3.24058 1.35205 2.32985

8 4.77083 5.39524 1.83557 3.10021 1.10844 2.40316 2.11174 2.22072

9 3.9697 5.39524 2.568 2.782 1.44422 2.27648 1.51686 2.5128

10 3.90972 5.39524 1.93804 2.89983 3.20124 2.40316 1.50222 2.32985

Table 7.12: Fitness Values of Resultant Decompositions by Both Approaches

78

This improvement in quality of results through ESBASCA is due to the absence of

two inherent features of the GA based approach as mentioned in Section 1.4.

Reproduction can abolish good solutions in GAs, while ESs ensure that good

solutions always survive into the next generation. The design of GA is such that

parents do not survive in to the next generation and are replaced by the offspring,

irrelevant of the fitness values. The result of such design is that the fitness value may

suffer degradation if the offspring resulting from the cross over operator have less

fitness than the parents. Hence, not only the convergence speed is affected but the

solution may remain get stuck at local optima, if such situation continues to prevail

through generations. A technique called Elitism [73] has been proposed that tries to

minimize this loss over a number of generations.

This is not the case in ES where both parents and offspring compete to survive into

the next generation and only the fittest survive; see details in Chapter 4. This means

that fitness value can either remain unchanged or improve in ES.

To show this quality of ESBASCA, we have monitored and recorded the fitness

values of each test system over 500 generations for both ESBASCA and GA based

approach. From the results it is clear that the fitness value either increases or remains

constant over the generations in case of ESBASCA. However, it may suffer

degradation in case of GA based approach. This is shown in figures Figure 7.2 to 7.9.

79

Test System GA-Based ESBASCA

Percent

Improvement

TS-1 4.323691 5.303035 ~23%

TS-2 2.301682 2.820222 ~22.5%

TS-3 1.719458 2.507144 ~46%

TS-4 1.565705 2.347428 ~50%

Table 7.13: Improvement in Quality through ESBASCA

TS-1 Fitness Values Gen: 1-250

0

1

2

3

4

5

1 21 41 61 81 101 121 141 161 181 201 221 241

Generation No.

Fi
tn

es
s

Va
lu

e

GA
ES

Figure 7.2: Fitness Values by Both Approaches of TS-1; generations 1-250

Self adaptation of strategy parameters is the second feature that resulted in improved

results for ESBASCA. GA may remain stuck at local optima due to the fixed mutation

rate throughout the evolution. Self adaptive ES, on the other hand, adapts the mutation

rate along the course of evolution that helps in fine tuning the search. For this,

mutation rate is also evolved by applying the mutation operator in the same way as it

is applied to the individual solutions. The evolution process keeps monitoring whether

80

or not the change of mutation rate was advantageous according to it impact on the

fitness of the individual solutions, and based on this information the mutation strength

is modified.

TS-1 Fitness Values Gen:251-500

0

1

2

3

4

5

1 21 41 61 81 101 121 141 161 181 201 221 241

Generattion No.

Fi
tn

es
s

Va
lu

e

GA
ES

Figure 7.3: Fitness Values by Both Approaches of TS-1; generations 251-500

TS-2 Fitness Values Gen 1:250

0

0.5

1

1.5

2

2.5

3

1 21 41 61 81 101 121 141 161 181 201 221 241

Generation No.

Fi
tn

es
s

Va
lu

e

GA
ES

Figure 7.4: Fitness Values by Both Approaches of TS-2; generations 1-250

81

TS-2 Fitness Values Gen 251:500

0
0.5

1
1.5

2
2.5

3
3.5

1 21 41 61 81 101 121 141 161 181 201 221 241

Generation No.

Fi
tn

es
s

Va
lu

e

GA
ES

Figure 7.5: Fitness Values by Both Approaches of TS-2; generations 251-500

TS-3 Fitness Values Gen 1:250

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

1 21 41 61 81 101 121 141 161 181 201 221 241

Generation No.

Fi
tn

es
s

Va
lu

e

GA
ES

Figure 7.6: Fitness Values by Both Approaches of TS-3; generations 1-250

82

TS-3 Fitness Values Gen 251:500

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

1 21 41 61 81 101 121 141 161 181 201 221 241

Generation No.

Fi
tn

es
s

Va
lu

e

GA
ES

Figure 7.7: Fitness Values by Both Approaches of TS-3; generations 251-500

TS-4 Fitness Values Gen:1-250

0

0.2

0.4

0.6

0.8

1

1 21 41 61 81 101 121 141 161 181 201 221 241
Generation No.

Fi
tn

es
s

Va
lu

e

GA
ES

Figure 7.8: Fitness Values by Both Approaches of TS-4; generations 1-250

83

TS-4 Fitness Values Gen 251:500

0

0.2

0.4

0.6

0.8

1

1 21 41 61 81 101 121 141 161 181 201 221 241
Generation No.

Fi
tn

es
s

Va
lu

e

ES
GA

Figure 7.9: Fitness Values by Both Approaches of TS-4; generations 251-500

7.3.2 Effectiveness

Similarity Measure gives us the idea of how good (effective) a decomposition is, by

comparing the decomposition produced by the clustering algorithm against the

benchmark/expert decomposition. For obtaining the expert decompositions we

approached the original designers of the test systems used in our study. Based on their

knowledge of the system, source code, class listings and partial documentation of

their corresponding systems, the designers provided us with the expert

decompositions.

We have used the similarity measure Precision and Recall [30, 45]. Precision and

Recall checks the correctness of our results on the basis of inter and intra cluster

relations. Two entities in the same cluster are termed as Intra pair while two entities

in different clusters are termed as Inter pair. Precision gives the percentage of intra

84

pairs proposed by the clustering algorithm which are also intra in the expert

decomposition. Recall gives the percentage of intra pairs in the expert decomposition

which were found by the clustering algorithm.

The higher these percentages are, better is the decomposition produced by the

clustering algorithm. The precision and recall percentages of the decompositions

produced by GA based approach and ESBASCA for ten runs for each test system is

given in Table 7.14 and 7.15 respectively.

Figures 7.10 and 7.11 compare these resulting precision and recall percentages of the

decompositions produced by GA based approach and ESBASCA averaged over ten

runs for each test system. Again we can see that ESBASCA significantly outperforms

GA based approach as it shows better precision and recall for all test systems. The

percentage improvement in the precision and recall values by our approach as

compared to GA based approach for each test system is provided in Table 7.16.

Effectiveness-Precision

0

10

20

30

40

50

60

TS-1 TS-2 TS-3 TS-4

Pr
ec

is
io

n% GA

ES

Figure 7.10: Comparison- Effectiveness (Precision)

85

Run# TS-1 TS-2 TS-3 TS-4

 GA

Based

ESBASCA GA

Based

ESBASCA GA

Based

ESBASCA GA

Based

ESBASCA

1 25.93 41.57 23.7569 33.27 29.1457 34.57 29.7407 43.1871

2 23.12 47.24 26.9231 32.3 25.5486 34.4 29.3248 39.0635

3 30.8333 44.71 26.3158 31.95 24.5971 34.08 27.5511 35.2917

4 25 43.32 29.3839 32.3 26.2243 34.08 28.1946 37.8784

5 25.23 39.29 23.3202 31.38 24.2472 34.08 27.3734 36.4273

6 30.08 37.96 27.6498 32.84 29.4833 34.08 24.2174 36.8788

7 41.96 36.74 26.776 33.31 24.4842 34.08 27.4137 40.6693

8 31.43 28.66 27.8607 34.77 27.2727 34.08 26.8738 47.9478

9 25.4902 34.71 24.0964 32.11 26.676 34.08 25.9301 35.3961

10 26.21 39.85 25.5814 32.45 26.755 34.08 32.765 35.9522

Table 7.14: Precision % of Resultant Decompositions by Both Approaches

 Precision Recall

 GA

Based

ESBASCA Percent

Improvement

GA

Based

ESBASCA Percent

Improvement

TS-1 28.53 39.4 ~38% 24.496 33.334 ~36%

TS2- 26.17 32.67 ~25% 26.96 42.646 ~58%

TS-3 26.44 34.16 ~29% 34.066 41.116 ~21%

TS-4 27.94 38.87 ~39% 42.208 57.136 ~35%

Table 7.16: Improvement in Effectiveness through ESBASCA

86

Run# TS-1 TS-2 TS-3 TS-4

 GA

Based

ESBASCA GA

Based

ESBASCA GA

Based

ES GA

Based

ESBASCA

1 21.71 52.71 21.08 39.71 34.38 38.58 49.26 54.78

2 17.05 37.21 27.45 42.16 35.82 38.22 34.61 56.26

3 28.68 35.66 24.51 43.63 35.82 47.96 61.57 57.54

4 22.48 35.66 30.39 37.25 35.1 43.63 35.24 57.54

5 20.93 27.91 28.92 32.84 40.26 43.02 32.48 57.54

6 31.01 27.91 29.41 41.18 29.2 39.54 41.19 57.54

7 36.43 28.68 24.02 36.27 29.6 40.62 37.79 57.54

8 25.58 27.91 27.45 59.8 27.4 40.5 46.5 57.54

9 20.16 30.23 29.41 49.02 29.21 37.98 40.55 57.54

10 20.93 29.46 26.96 44.6 43.87 41.11 42.89 57.54

Table 7.15: Recall % of Resultant Decomposition of Both Approaches

Effectiveness-Recall

0

10

20

30

40

50

60

TS-1 TS-2 TS-3 TS-4

R
ec

al
l % GA

ES

Figure 7.11: Comparison- Effectiveness (Recall)

87

7.3.3 Consistency

A comparison of the Fitness values of the best decomposition found by both GA

based approach and ESBASCA for each test system in ten runs is presented in Figures

7.12 to 71.5. From these figures it is clear that

• ESBASCA yields much better results than the GA based approach. The

improvement in fitness value by ES as compared to GA calculated for each test

system over ten runs is given in Figure 7.1.

• ESBASCA produces much consistent decompositions as compared to the GA

based approach.

Consistency: Test System 1

0

1

2

3

4

5

6

Run1 Run2 Run3 Run4 Run5 Run6 Run7 Run8 Run9 Run10

Fi
tn

es
s

Va
lu

e

GA
ES

Figure 7.12: Consistency Comparison for TS-1

To highlight the second point mentioned above, standard deviation of the fitness

values using both ESBASCA and GA based approach over 10 runs for each test

system was computed. The results are shown in Figure 7.15. The figure shows that

results with GA based approach have a standard deviation in the range of 0.29 to 0.59

for the four test systems while the results with ESBASCA have a standard deviation

in the range of 0.11 to 0.28 for the same test systems. This means that even the

88

maximum deviation in ESBASCA's results is less than the minimum deviation of GA

based results. This much less deviation by ESBASCA as compared to the GA based

approach clearly indicates that our approach performs consistently without any major

variations in results.

Consistency: Test System 2

0

0.5

1

1.5

2

2.5

3

3.5

Run1 Run2 Run3 Run4 Run5 Run6 Run7 Run8 Run9 Run10

Fi
tn

es
s

Va
lu

e

GA
ES

Figure 7.13: Consistency Comparison for TS-3

Consistency: Test System 3

0
0.5

1
1.5

2
2.5

3
3.5

Run1 Run2 Run3 Run4 Run5 Run6 Run7 Run8 Run9 Run10

Fi
tn

es
s

Va
lu

e

GA
ES

Figure 7.14: Consistency Comparison for TS-4

We would like to elaborate that the main reason for this difference in the consistency

of ESBASCA and GA approaches can be attributed to the primary operators involved

89

in the two schemes. Mutation is the basic operator that provides genetic variation in

ES. This operator helps in ensuring that the search is not stuck at local optima by

adding variations in a manner that helps in exploring new possibilities in the search

space without destroying the current high fitness values. Each individual has a

probability of going through a small change when mutation is applied.

Consistency: Test System 4

0

0.5

1

1.5

2

2.5

3

Run1 Run2 Run3 Run4 Run5 Run6 Run7 Run8 Run9 Run10

Fi
tn

es
s

Va
lu

e

GA
ES

Figure 7.14: Consistency Comparison for TS-4

For example,
10001000 → 10101000

The main operator in GA is the cross over operator. In contrast to mutation, cross over

works with two individuals. Cross over operator combines parents (the individuals

selected using the selection operator) to create offspring, in a bid to find individuals

that have higher fitness values than either of the parents. In a single point cross over

(the commonly used type of cross over) each individual is split at a point:

1 <= j <= L where L is the length of the individual.

90

By swapping the parts of the parents between j+1 and L, two new individuals are

created:

100 110 → 100 001

001 001 → 001 110

Hence, the variation achieved by the cross over operator is higher than that of

mutation. While this variation is the main driving force of GAs, it brings

inconsistency for a non uniform population like the one in software clustering

problem.

Consistency: Standard Deviation View

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

TS-1 TS-2 TS-3 TS-4

Fi
tn

es
s

St
an

da
rd

 D
ev

ia
tio

n

GA
ES

Figure 7.15: Comparison-Standard Deviation of Fitness Values

It is customary to present the decomposition visually, we also performed the visual

comparison of the decompositions of TS-3 achieved by ESBASCA and GA based

approaches with the actual decomposition of the system by original designer; using

DOT [59]. It was clear from the visual comparison that ESBASCA based

decomposition reduces the inter cluster edges to a small number, hence, achieving low

91

coupling and high cohesion which is a desirable quality. Due to resolution issues, it is

not possible to present the visual comparison in this report.

7.3.4 Comparison with other Approaches

Comparison with other approaches is not required because of their obvious

disadvantages as shown below. These techniques have been discussed in detail in

Chapter 2 of this thesis report. Also, the implementation of these approaches is not

publicly available and implementing them is beyond the scope of this thesis.

Approach Disadvantage

Documentation Based

Updated documentation is not always

available.

Data Bindings Different level of granularity (clusters

procedures into modules).

Semi Automated

Not feasible for large systems as they

require too much user interaction.

Resource Name Based and

Comprehension Driven

Too much subjective in nature

92

7.4 Validation of Test Results

The results were then shown to the original designers of the systems for validation.

The designers of two test systems could spare time for this purpose. For this

validation, architectures extracted through both techniques were given to different

coders of same calibre who previously had no knowledge about these test systems.

The coders were then asked to fix a problem in the code based on their understanding

of the architecture. The coders acknowledged that the architecture extracted by

ESBASCA was relatively more meaningful and it easily mapped to the source code.

Here it must be made clear that IDs were assigned to the architectures and it was not

known to the persons validating the results that which architecture was obtained using

what technique.

93

Chapter Eight: Conclusion and Future Research
Directions

8.1 Conclusion

Maintaining and understanding large software systems from source code or module

dependency graph is a difficult task. Partitioning the graph can help but the number of

possible partitions is quite large even for small systems. We have presented a self

adaptive Evolution Strategies based approach that explores this large solution space to

find an effective decomposition of the system. To study the effectiveness of our

proposed approach, we have compared it against GA based approach using industrial

systems of different sizes. The encouraging results showing the quality and

effectiveness of our approach are presented for a number of test systems. In addition,

the standard deviation among the achieved results by ESBASCA is much less than

that of the GA based approach, highlighting the consistency in results of our

approach. The encouraging consistent results make our approach more stable as well.

8.2 Future Directions

• In future we want to establish the stability of our approach using the stability

measure defined in [48].

• We also want to develop a new similarity measure to remove a flaw in

EdgeSim [74]. EdgeSim gives same results for two decompositions if all edges

in both decompositions are of same type. It is possible that a module moves

from one cluster to another cluster in a manner that edge types remain the

same. EdgeSim will not point out this difference. Our similarity measure will

incorporate this movement of modules between clusters.

94

• We have plans to conduct comparative studies with other clustering

approaches as well.

• Another task that we have on the list is to explore other clustering algorithms

using larges systems of magnitude as that of those used in our study.

8.3 Research Contributions

The following contributions have been made during our research.

8.3.1 A New Approach for Automated Software Clustering

We have proposed a new approach for automated software clustering. Our approach is

based on using self adaptive evolution strategies. We have successfully verified our

approach on sufficiently large and complex industrial systems. The approach yielded

encouraging results.

8.3.2 Comparative Study of Software Clustering Approaches

We carried out a comparative study of our proposed approach and the widely used

genetic algorithms based software clustering approach. Our study was based on

comparison of the resultant decompositions of the two approaches in terms of fitness

values (quality), precision & recall measure, (effectiveness) and consistency in

results. In future we want to conduct comparative studies with other clustering

approaches as well.

8.3.3 Consistency of Software Clustering Approaches

We were hardly able to find the research works in Software Clustering literature that

has formally compared the consistency of the results generated by different software

95

clustering approaches. In this manner, our effort is one of the very first ones in this

domain that compares consistency in results, an important and desirable property of

any algorithm.

8.3.4 Empirical Study on Industrial Systems

We conducted our study on large and complex software systems. Lately, the

researchers have been pointing towards the need to test software clustering techniques

on large and complex systems. But there has been hardly any work in this regard.

For example, B.S. Mitchell [21] presented his work on Genetic Algorithms using just

one test system and that too consisting of 20 modules. We could only find the work of

Jingwei Wu, Ahmed E. Hassan, Richard C. Holt [75] who conducted their study on

sufficiently large open source systems. We have conducted our study on large

industrial systems. In future we want to check other clustering algorithms on systems

of this magnitude.

96

REFERENCES

[1] Buss, E., De Mori, R., Gentleman, W. et al., “Investigating Reverse Engineering
Technologies for the CAS Program Understanding Project”, IBM Systems Journal,
vol. 33, no. 3, pp. 477-500, February, 1994.

[2] Nosek, J.T. and Palvia, P., “Software Maintenance Management: Changes in the
Last Decade”, Journal of Software Maintenance, 2(3), pp. 157-174, Sept, 1990.

[3] McCabe, T., “Keynote address at the Working Conference on Reverse
Engineering”, Hawaii, October, 1998.

[4] Fjeldstadt, R.K., and Hamlen, W.T., “Application Program Maintenance Study:
Report to Our Respondents”, Proc. GUIDE 48, IEEE Computer Society Press, April,
1984.

[5] Garlan, D., Perry D.E., “Introduction to the Special Issue on Software
Architecture”, IEEE Transactions on Software Engineering, Vol. 21, No. 4, pp. 269-
274, April, 1995

[6] Bayer, J., Girard, J.-F., Würthner, M, Apel, M., and DeBaud, J.-M., “Transitioning
Legacy Assets - a Product Line Approach”, Proceedings of the SIGSOFT Foundations
of Software Engineering, Toulouse, pp. 446-463, Association of Computing
Machinery, 1999.

[7] Schwanke, R. W., “An intelligent tool for Re-engineering Software Modularity”,
International Conference on Software Engineering, pp. 83–92, May, 1991.

[8] Fiutem, R., Tonella, P., Antoniol, G., and Merlo, E. (1996), “A Cliché-based
Environment to Support Architectural Reverse Engineering”, pp. 319-328, Proc. of
the Int. Conf. on Software Maintenance, 1996.

[9] Harris, D.R., Reubenstein, H.B., and Yeh, A.S, “Recognizers for Extracting
Architectural Features from Source Code”, Proceedings of the Working Conference
on Reverse Engineering, pp. 227-236, Toronto, IEEE Computer Society Press, 1995.

[10] M. R. Anderberg, “Cluster Analysis for Applications”, Academic Press Inc.,
1973

[11] Brian S. Everitt, “Cluster Analysis”, John Wiley & Sons, 1993.

[12] John A. Hartigan, “Clustering Algorithms”, John Wiley & Sons, 1975.

97

[13]. A. Jain and R. Dubes, “Algorithms for Clustering Data”, Prentice-Hall, 1998.

[14] J. Zupan, “Clustering of Large Data Sets”, Research Studies Press, England,
1982.

[15] Robert W. Schwanke and Michael A. Platoff. “Cross References are Features”,
In Second International Workshop on Software Configuration Management, pages 86-
95, ACM Press, 1989.

[16] Nicolas Anquetil and Timothy Lethbridge, “File Clustering Using Naming
Conventions for Legacy Systems”, In Proceedings of CASCON 1997, pages 184-195,
November, 1997.

[17] David H. Hutchens and Victor R. Basili, “System Structure Analysis: Clustering
with Data Bindings”, IEEE Transactions on Software Engineering, 11(8):749-757,
August, 1985.

[18] Jams M. Neighbors, “Finding Reusable Software Components in Large
Systems”, In Proceedings of the Third Working Conference on Reverse Engineering,
pages 2-10, IEEE Computer Society Press, November, 1996.

[19] Song C. Choi and Walt Scacchi, “Extracting and Restructuring the Design of
Large Systems”, IEEE Software, pages 66-71, January, 1990.

[20] S.~Mancoridis, B. S. Mitchell, C. Rorres, Y. Chen, and E. R. Gansner, "Using
Automatic Clustering to Produce High-Level System Organizations of Source Code",
In Proceedings of the International Workshop on Program Understanding, 1998.

[21] B. S. Mitchell, "A Heuristic Search Approach to Solving the Software Clustering
Problem", PhD Thesis, Drexel University, Philadelphia, PA, Jan. 2002.

[22] Hans-George Beyer, Hans-Paul Schwefel, "Evolution Strategies -A
Comprehensive Introduction", Natural Computing: An International Journal, Vol 1
No 1, pages 3-52, May 2002.

[23] Hans-George Beyer, "The Theory of Evolution Strategies", Springer, April 27,
2001.

[24] D. E. Goldberg, "Genetic Algorithms in Search, Optimization and Machine
Learning", Addison Wesley, New York, 1989.

[25] M. Mitchell, "An Introduction to Genetic Algorithms", The MIT Press,
Cambridge, Massachusetts, 1997.

98

[26] D. Parnas, “On the Criteria to be used in Decomposing Systems into Modules
“Communications of the ACM, pages 1053-1058, 1972.

[27] G. Booch, “Object Oriented Analysis and Design with Applications”, The
Benjamin Cummings Publishing Company Incorporated, 2nd edition, 1994.

[28] R. Schwanke and S. Hanson, “Using Neural Networks to Modularize Software”,
Machine Learning, 15:137-168, 1998.

[29] H. Muller, M. Orgun, S. Tilley, and J. Uhl., “Discovering and Reconstructing
Subsystem structures through reverse engineering”. Technical Report DCS-201-
IR, Department of Computer Science, University of Victoria, August, 1992.

[30] N. Anquetil and T. Lethbridge, "Recovering Software Architecture from the
Names of Source files", In Proceedings of Working Conference on Reverse
Engineering, October, 1999.

[31] K. Narayanaswamy and W. Scacchi, “Maintaining Configurations of Evolving
Software Systems”. IEEE Transactions on Software Engineering, SE-13(3):324-334,
March, 1987.

[32] S. Mancoridis, B.S. Mitchell, Y. Chen, and E.R. Gansner, “Bunch: A Clustering
Tool for the Recovery and Maintenance of Software System Structures. In
Proceedings of International Conference of Software Maintenance, pages 50-59,
August, 1999.

[33] B. S. Mitchell, M. Traverso, and S. Mancoridis, “An Architecture for
Distributing the Computation of Software Clustering Algorithms”. In The Working
IEEE/IFIP Conference on Software Architecture (WICSA 2001), August, 2001.

[34] D. Doval, S. Mancoridis, and B.S. Mitchell, “Automatic Clustering of Software
Systems using a genetic algorithm”, In Proceedings of Software Technology and
Engineering Practice, August, 1999.

[35] V. Tzerpos and R.C. Holt, “The Orphan Adoption Problem in Architecture
Maintenance”, In Proc. Working Conf. on Reverse Engineering, October, 1997.

[36] C. Lindig and G. Snelting, “Assessing Modular Structure of Legacy Code based
on Mathematical Concept Analysis”, In Proc. International Conference on Software
Engineering, May, 1997.

[37] G. Snelting, “Concept Analysis: A New Framework for Program
Understanding”, In Proceedings of the ACM SIGPLAN/SIGSOFT Workshop on
Program Analysis for Software Tools and Engineering (PASTE98), volume ACM
SIGPLAN Notices33, pages 1-10, June, 1998.

99

[38] A. van Deursen and T. Kuipers, “Identifying objects using cluster and concept
analysis”, In International Conference on Software Engineering, ICSM'99, pages 246-
255. IEEE Computer Society, May, 1999.

[39] L. Kaufman and P.J. Rousseeuw, “Finding Groups in Data: An Introduction to
Cluster Analysis”, John Wiley & Sons, 1990.

[40] C. Montes de Oca and D. Carver, ”A visual representation model for software
subsystem decomposition”, In Proc. Working Conf. on Reverse Engineering, October,
1998.

 [41] K. Sartipi, K. Kontogiannis, and F. Mavaddat, “Architectural Design Recovery
using Data Mining Techniques”, In Proceedings of the IEEE European Conference on
Software Maintenance and Reengineering (CSMR 2000), pages 129-139, March,
2000.

[42] K. Sartipi and K. Kontogiannis, “Component Clustering Based on Maximal
Association”, In Proceedings of the IEEE Working Conference on Reverse
Engineering (WCRE 2001), pages 103-114, October 2001.

[43] G. Murphy, D. Notkin, and K. Sullivan, “Software Reexion Models: Bridging the
Gap between Design and Implementation”, IEEE Transactions on Software
Engineering, pages 364-380, April, 2001.

[44] T. Eisenbarth, R. Koschke, and D. Simon, “Aiding Program Comprehension by
Static and Dynamic Feature Analysis”, In Proceedings of the IEEE International
Conference of Software Maintenance (ICSM 2001), November, 2001.

[45] N. Anquetil, C. Fourrier, and T. Lethbridge, "Experiments with hierarchical
clustering algorithms as software modularization methods", In Proceedings of the
Working Conference on Reverse Engineering, 1999.

[46] Vassilios Tzerpos and R. C. Holt, "ACDC: An Algorithm for Comprehension-
Driven Clustering", In Proceedings of WCRE 2000, Brisbane, Australia, November
2000.

[47] R. Koschke, “Evaluation of Automatic Re-Modularization Techniques and their
Integration in a Semi-Automatic Method”, PhD thesis, University of Stuttgart,
Stuttgart, Germany, 2000.
[48] Vassilios Tzerpos and R.C. Holt, "On the Stability of Software Clustering
Algorithms", Proceedings of the 8th International Workshop on Program
Comprehension, Limerick, Ireland, June 2000.

[49] Hope A. Olson and Dietmar Wolfram, "Indexing Consistency and its
Implications for Information Architecture: A pilot Study", IA Summit 2006.

100

[50] Ramón Asensio Monge, Francisco Sanchis Marco, Fernando Torre Cervigón,
"An Assessment of the Consistency for Software Measurement Methods", ArXiv
Computer Science e-prints, cs/0204014, April 2002.

[51] T.A.Wiggerts, “Using Clustering Algorithms in Legacy Systems
Remodularization”, In Proc. Working Conference on Reverse Engineering, October,
1997.

[52] D. G. Corneil and M. E. Woodward, “A Comparison and Evaluation of Graph
Theoretical Clustering Techniques”, INFOR, 16, 1978.

[53] P. K. T. Vaswani, “A Technique for Cluster Emphasis and Its Applications to
Automatic Indexing”, Information Processing, 68(2):1300-1303, 1968.

[54] Gregor von Laszewski, “A Collection of Graph Partitioning Algorithms”,
Technical Report SCCS 477, Northeast Parallel Architecture Center at Syracuse
University, May, 1993.

[55] Rodrigo A. Botafogo and Ben Schneiderman, “Identifying Aggregates in
Hypertext Structures”, In Proceedings of Hypertext 91, page 63-74, 1991.

[56] B.W. Kernighan and S. Lin, “An Efficient Heuristic Procedure for Partitioning
Graphs”, Bell Systems Technical Journal, 49:291-307, 1970.

[57] V. Tzerpos and R. C. Holt, “MoJo: A Distance Metric for Software Clustering”,
In Proceedings of Working Conference on Reverse Engineering, October 1999.

[58] Abbasi, A. Q, "Application of Appropriate Machine Learning Techniques for
Automatic Modularization of Software Systems", M-Phil Thesis, Quaid-i-Azam
University, Islamabad, 2008.

[59] S. North and E. Koutsofios, “Applications of Graph Visualization”, In Proc.
Graphics Interface, 1994.

[60] Schwefel H-P, “Collective Phenomena in Evolutionary Systems”, Int’l Society
for General System Research, Vol. 2. Budapest, pp. 1025–1033, 1987.

[61] Herdy M., “Reproductive Isolation as Strategy Parameter in Hierarchically
Organized Evolution Strategies”, In: Männer R and Manderick B (eds) Parallel
Problem Solving from Nature, 2, pp. 207–217. Elsevier, Amsterdam, 1992.

[62] Hans-George Beyer, “Some Aspects of the Evolution Strategy’ for Solving Tsp-
like Optimization Problems”, In: Männer R and Manderick B (eds) Parallel Problem
Solving from Nature, 2, pp. 361–370. Elsevier, Amsterdam, 1992.

101

[63] Hans-George Beyer, "The Theory of Evolution Strategies", Springer, April 27,
2001.

[64] Rudolph G., “An Evolutionary Algorithm for Integer Programming”, In:
Davidor Y, Männer R and Schwefel H-P (eds) Parallel Problem Solving from Nature,
3, pp. 139–148, Springer-Verlag, Heidelberg, 1994.

[65] Altenberg L., “The Evolution of Eolvability in Genetic Programming”, In:
Kinnear K (ed) Advances in Genetic Programming, pp. 47–74. MIT Press,
Cambridge, MA, 1994.

[66] Rechenberg I., “Evolutionsstrategie ’94”, Frommann-Holzboog Verlag, Stuttgart.

[67] Schwefel H-P, “Evolutionsstrategie und numerische Optimierung”, Dissertation,
TU Berlin, Germany, 1975.

[68] Rechenberg I., “Evolutionsstrategien”, In: Schneider B and Ranft U (eds)
Simulationsmethoden in der Medizin und Biologie, pp. 83–114. Springer-Verlag,
Berlin, 1978.

[69] Schwefel H-P, “Adaptive Mechanismen in der biologischen Evolution und ihr
Einfluß aufdie Evolutionsgeschwindigkeit” Technical report, Technical University of
Berlin, 1974.

[70] Schwefel H-P, “Numerische Optimierung von Computer-Modellen mittels der
Evolutionsstrategie”, Interdisciplinary systems research; 26. Birkh¨auser, Basel, 1977.

[71] Silja Meyer-Nieberg, "Self-Adaptation in Evolution Strategies", PhD Thesis,
University of Dortmund, Dortmund, 2007.

[72] Y. Chen, E. Gansner, and E. Koutsofios, “A C++ Data Model Supporting
Reachability Analysis and Dead Code Detection”, In Proc. 6th European Software
Engineering Conference and 5th ACM SIGSOFT Symposium on the Foundations of
Software Engineering, September, 1997.

[73] B. CHAKRABORTY and P. CHAUDHURI, "On the Use of Genetic Algorithm
with Elitism in Robust and Nonparametric Multivariate Analysis", Austrian Journal of
Statistics, Vol 32, No 1 and 2, 2003.

[74] B. Mitchell, S. Mancoridis, "Comparing the decompositions produced by
software clustering algorithms using similarity measurements", In Proceedings of the
17th International Conference on Software Maintenance, pages 744-753, Florence,
Italy, November, 2001.

102

[75] Jingwei Wu, Ahmed E. Hassan, and Richard C. Holt, “Comparison of Clustering
Algorithms in the Context of Software Evolution”, In Proceedings of ICSM 2005:
International Conference on Software Maintenance, Budapest, Hungary, Sept 25-30,
2005.

103

Appendix A: Expert Decompositions for the Test
Systems Used in Our Study

An effective way of evaluating the software clustering results is to compare the

decomposition generated by the clustering technique against

expert/reference/benchmark decomposition. In order to obtain the expert

decompositions for the systems used in our study, we approached the original

designers of the test systems used in our study. Based on their knowledge of the

system, source code, class listings and partial documentation of their corresponding

systems, the designers provided us with the expert decompositions. As discussed in

Chapter 7, the decompositions are compared using some similarity measure. In our

study, we used the precision and recall similarity measure to compare the clustering

results against the expert decompositions.

For the interested audience, we are presenting the expert decompositions of the test

systems used in our study, in this Appendix.

104

A.1 Expert Decomposition for Test System 1

No. of Clusters: 6 No. of Modules: 36

Cluster /Subsystem ID Contained Modules No. Of Modules Present

0 8, 20 2

1 4, 26, 28, 34 4

2 15, 22, 23, 27 4

3 3, 6, 7, 12, 24, 29, 33, 35 8

4 0, 1, 2, 5, 16 5

5 9, 10, 11, 13, 14, 17, 18,

19,

21, 25, 30, 31, 32

13

105

A.2 Expert Decomposition for Test System 2

No. of Clusters: 4 No. of Modules: 41

Cluster /Subsystem ID Contained Modules No. Of Modules Present

0 0, 1, 7, 8, 9, 10, 11, 12, 13,

14, 15, 19, 40

13

1 2, 3, 4, 5, 24, 31, 32, 33,

34, 35, 38, 23

12

2 16, 21, 22, 25, 26, 27, 28,

29, 37

9

3 6, 17, 18, 20, 30, 36, 39 7

106

A.3 Expert Decomposition for Test System 3

No. of Clusters: 3 No. of Modules: 69

Cluster /Subsystem ID Contained Modules No. Of Modules Present

0 0, 4, 16, 17, 18, 19, 20, 21,

22, 23, 24, 25, 26, 27, 29,

33, 34, 35, 36, 37, 45, 46,

47, 48, 49, 50, 52, 53, 55,

56, 57

31

1 1, 2, 3, 5, 6, 7, 8, 9, 10, 11,

30, 31, 32, 58, 59, 60, 61,

62, 63, 64, 65, 66, 67, 68

24

2 12, 13, 14, 15, 28, 38, 39,

40, 41, 42, 43, 44, 51, 54

14

107

A.4 Expert Decomposition for Test System 4

No. of Clusters: 8 No. of Modules: 80

Cluster /Subsystem ID Contained Modules No. Of Modules Present

0 0, 1, 3, 12, 15, 25, 27, 47,

57 , 58, 60, 63, 64, 65, 67,

68, 70, 71

18

1 5, 10, 11, 16 4

2 2, 18, 20, 29, 30, 33, 48,

49, 55, 61

10

3 7, 8, 9, 17, 19, 21, 23, 28,

35

9

5 4, 6, 13, 14, 22, 24, 26, 34,

36, 37, 38, 39, 40, 41, 42,

43, 44, 45, 46

19

5 31, 32, 62,66 3

6 50, 51, 52, 53, 54, 56, 59,

69, 72

9

7 73, 74, 75, 76, 77, 78, 79 7

