

Optimized Performance of CPU Scheduling

By

Akhtar Hussain

(2003-NUST-MS-Phd-CSE-189)

Submitted to the Department of Computer Engineering

in partial fulfillment of the requirements for the degree of

Master of Science

in

Computer Software Engineering

Thesis Supervisor

Brig. Dr. Muhammad Younas Javed

College of Electrical & Mechanical Engineering

National University of Science & Technology

January 2009

 ABSTRACT

CPU scheduling is the problem of deciding which computer process in the ready queue is to be

allocated to the CPU for processing. It is a fundamental problem in operating systems in terms

of minimizing the wait for the user when he or she simply wants to execute a particular set of

tasks. There are many CPU scheduling algorithms, which solve this problem. Some of them are

as FCFS, SJF, Round Robin, and Priority Algorithm etc.Different algorithms have different

strengths, and no single one is ideal for every situation. Therefore, we need techniques for

analyzing the characteristics of each algorithm in order to make an informed choice. Criteria for

CPU scheduling include such as,

(i) Maximum CPU utilization under the constraints that the maximum response time is 1 second.

(ii) Maximum throughput such that turnaround time is linearly proportional to execution time.

(iii) Turnaround time is time taken by process to execute.

(iv)Waiting Time is the sum of the periods spent waiting in the ready queue.

(v) Response Time is the interval between submissions of a request until the first response is

produced.

Once the selection criteria have been defined, there is a need to evaluate the various algorithms

under consideration. There are number of different evaluation method. One of the evaluation

method is called analytic evaluation. Analytic evaluation uses the given algorithm and the

system workload to produce a formula or number that evaluates the performance of the

algorithm for that workload. One type of analytic evaluation is deterministic modeling. This

method takes a particular predetermined workload and defines the performance of each

algorithm for that workload. In this thesis research work, different CPU scheduling

methodologies (FIFO, SJF, Round Robin, and Priority) have been evaluated. A simulator have

been developed which analyzes these algorithm based on Average Waiting Time (AWT). By

using result of deterministic evaluator, an optimized solution for Round Robin is proposed for

time sharing system. This Optimized solution has better performance than Existing Round

Robin with respect to Average Waiting Time (AWT).

 TABLE OF CONTENTS

1 Scheduling ……………..………………………………………………..1

1.1 Scheduling …………………………...……………………………………………….2

1.2 Objective of Scheduling…………….………………………2

1.3CPU Scheduling ……………………………….…………………..…………………3

 1.3.1 First Come First Serve……………………………………………………………4

 1.3.2 Shortest Job First…………………………………………………………………5

 1.3.3 Priority Scheduling ………………………………………………………………6

 1.3.4 Round Robin Scheduling ………………………………………………………...6

 1.3.5 Multiple Processor Scheduling…………………………………………………...7

 1.3.6 Real Time Scheduling…………………………………………………………… 7

 2 CPU Scheduling…………………………………………………………..8

2.1 Process Concept………...…………………………………………………………..10

 2.1.1 Process States…………………………………………………………………..11

 2.1.2 Process Control Block…………………………………………………………12

2.2 Scheduling Queues………………………………………………….……………...13

 2.2.1 Job Queue……………………………………………………………………….14

 2.2.2 Ready Queue…………………………………………………………………….14

 2.2.3 Device Queue…………………………………………………………………….14

2.3 Types of Scheduling………………………………………………...………………14

2.4 CPU Scheduler………………………………………….………………………….15

2.5 Scheduling Objective……………………………………………………………….16

2.6 Performance Criteria ……………………………………………………………...17

 2.6.1 CPU Utilization…………………………………………………………………..17

 2.6.2 Throughput……………………………………………………………………….18

 2.6.3 Turn around Time………………………………………………………………..18

 2.6.4 Waiting Time…………………………………………………………………….18

 2.6.5 Response Time……………………………………………………………………19

 2.6.6 Scheduler Design……………………………………………………...………….19

2.7 Scheduling Disciplines…………………………………………………………..….20

 2.7.1 Non preemptive scheduling……………………………………………………..20

 2.7.2 Preemptive Scheduling………………………………………………………….20

2.8 CPU Scheduling Algorithms……………………………………………………....20

 2.8.1 First Come First Serve Scheduling ………………………………………………21

 2.8.2 Shortest Job First (SJF) Scheduling………………………………………………22

 2.8.3 Round Robin Scheduling………………………………………………………....25

 2.8.4 Priority Scheduling……………………………………………………………….29

 2.8.5 Multilevel Queue Scheduling…………………………………………………….29

 2.8.6 Multilevel Feed Back Queue Scheduling……………………………………….31

2.9 CPU Scheduling in different Operating System………………………………….31

 2.9.1 UNIX…………………………………………………………………………….31

 2.9.2 Windows Vista…………………………………………………………………...34

3 Design and Implementation…..………………………………………...35

3.1 Problem with CPU Scheduling Algorithms……………………………………….36

 3.1.1 Problem with FCFS scheduling Algorithms….. ……………………………….36

 3.1.2 Problem with SJF scheduling Algorithm……………………………………….36

 3.1.3 Problem with Priority Scheduling Algorithm…………………………………..37

 3.1.4 Problem with Round Robin Scheduling………………………………………..37

3.2 Proposed Algorithm……………..…………………………………………………37

 3.2.1 Optimized Round Robin Algorithm…………………………………………..38

 3.2.2 Basic Theory…………………………………………………………………...38

 3.2.3 Explanation……………………………………………………………………39

 3.3 Performance Evaluation……………………………….……………………….…41

3.4 Introduction and design of developed software………………..…………..…….42

 3.4.1 Design of FCFS Scheduling Algorithm………………………………………..44

 3.4.2 Design of SJF Scheduling Algorithm………………………………………....45

 3.4.3 Design of Round Robin Scheduling Algorithm……………………………….46

 3.4.4 Design of Priority Scheduling Algorithm……………………………………….47

 3.4.5 Design of Optimized Round Robin Scheduling Algorithm……………………..48

3.5 Input of System…………………………………………………..……………..…..49

3.6 Out Put of System………………………………….….. ……..…………………....50

3.7 Design of Data Structures…………………………………………………….…....51

 3.7.1 Processes……………………………………………………………………….51

 3.7.2 Design of Process Control Blocks(PCBs)……………………………………...52

 3.7.3 Design of Simulation Data……………………………………..………………52

 3.7.4 Graphical User Interface……………………………………………………….53

4 Results and Discussions…………………………………………….... ..55

 4.1 Comparative analysis of All Algorithms…….…………………………..……..56

 4.2 Summary…………….…………...………………………………………………60

5 Conclusion and Future Work……………………………………….….65

 5.1 Conclusion……..…….………………………………………………...…....……66

 5.2 Future Work……………………...………………………………………………68

6 BIBLIOGRAPHY………………….……..…………………………….69

Dedicated To

My all family members and friends for their continuous and never ending cooperation and
encouragement.

 Acknowledgement

 First of all, I am greatly thankful to Allah, the Almighty, for enabling me to undertake and
complete this enormous task. Without His help, it would have been impossible for me to achieve
this milestone.

 I express my deep gratitude to Brig. Dr. Muhammad Younas Javed, Head of Computer
Engineering Department College of E &ME Rawalpindi NUST, to spare time from his extremely
busy schedule, whenever I needed guidance. His constant supervision and advices have played a
vital role in successful completion of this work.

Besides the above mentioned I am also thankful to all my beloved teachers at College of
E&ME Rawalpindi NUST.

 I can never forget to mention my friends Imran-Ullah Tariq, Basit Shahzad and Javed Iqbal
who encouraged me a lot and gave me the moral and every other support whenever I needed.

Last, but not the least, I am grateful to all my family members specially my beloved Amma Gee,
brothers, sisters and my beloved wife, who gave me moral and every other possible support
Without their encouragement and prayers, it would have not been possible for me to achieve the
position that Almighty Allah has bestowed on me today.

Akhtar Hussain

 1

 CHAPTER 1

SCHEDULING

 2

 Operating System

Operating Systems are resource managers. The main resource is computer hardware in the form

of processors, storage, input/output devices, communication devices, and data. Some of the

operating system functions are: implementing the user interface, sharing hardware among users,

allowing users to share data among themselves, preventing users from interfering with one

another, scheduling resources among users, facilitating input/output, recovering from errors,

accounting for resource usage, facilitating parallel operations, organizing data for secure and

rapid access, and handling network communications. An operating system may process its

workload serially or concurrently. That is resources of the computer system may be dedicated to

a single program until its completion, or they may be dynamically reassigned among a collection

of active programs in different stages of execution. Because of their ability to execute multiple

programs in interlaced fashion, such operating systems are often referred to as

multiprogramming operating systems. Operating systems which support multiprogramming

execute multiple programs concurrently. One of the objectives of multiprogramming is to

maximize resource utilization, which is achieved by sharing system resources amongst multiple

user system processes. Efficient resource sharing depends on efficient scheduling of competing

processes.

1.1 Scheduling:
"Scheduling concerns the allocation of limited resources to tasks over time. It is a decision-

making process that has as a goal the optimization of one or more objectives. [8]:

1.2 Objective of Scheduling
Many objectives must be considered in the design of a scheduling .In particulars, a scheduling

discipline should:

 Be fair: If all tasks are treated the same and no task can suffer indefinite postponement,

then such scheduling discipline will be fair.

 Maximize throughput: Scheduling discipline should complete maximum number of jobs

per unit time.

 The response time of maximum jobs should be minimum.

 3

 Be predictable: A given job should run in about the same amount of time and at about the

same cost regardless of the load on the system.

 Minimize Overhead: Interestingly, this is not generally considered to be one of the most

important objectives. Overhead is commonly viewed as wasted resources. But a certain

portion of system resources invested as overhead can greatly improve overall system

performance.

 Balance resource use: The scheduling mechanisms should keep the resources of the

system busy. Process that will use underutilized resources should be favored.

 Achieve a balance between response and utilization. The best way to guarantee good

response time is to have efficient resources available whenever they are needed. In real

time systems, fast response time is essential, and resource utilization is less important.

 Avoid indefinite postponement: in many cases, indefinite postponement can be as bad as

deadlock. Avoiding indefinite postponement is best accomplished by aging i.e. as a

process wait for a resource, its priority should grow. Eventually, the priority will become

so high that the process will be given the resource.

 Enforce priorities: In environment in which processes are given priorities, the scheduling

mechanism should favor the higher priority process.

 Given preference to processes holding key resources: Even though a low priority process

may be holding a key resource, the resource can be in demand by high priority processes.

If the resource is non-preemptible, then the scheduling mechanism should give the better

treatment than it would ordinarily receive so that the process will release the key resource

sooner.

 Give better service to processes exhibiting desirable behavior.

 Degrade gracefully under heavy load: A scheduling mechanism should not collapse under

the weight of a heavy system load. Either it should prevent excessive loading by not

allowing new processes to be created when the load is heavy, or it should service the

heavier load by providing a moderately reduced level of service to all processes.

As CPU is one of the main resources of Operating system. So to use this resource efficiently and

effectively operating system must apply some scheduling mechanism. Such mechanisms are

called CPU scheduling algorithm

 4

1.3 CPU Scheduling:

When more than one process is run able, the Operating system must decide which to run first.

The part of the operating system that makes this decision is called scheduler. And this

mechanism is called CPU scheduling.CPU scheduling involves many algorithms [4].

Determining which processes run when there are multiple run able processes. Why is it

important? Because it can have a big effect on resource utilization and the overall performance

of the system.

Basic assumptions behind most scheduling algorithms:

• There is a pool of run able processes contending for the CPU.

• The processes are independent and compete for resources.

• The job of the scheduler is to distribute the scarce resource of the CPU to the different

processes ``fairly'' (according to some definition of fairness) and in a way that optimizes

some performance criteria.

There are several approaches for solving this problem. Some of them are as follows

 FCFS

 Shortest Job First

 Round Robin

 Priority Scheduling

 Shortest Remaining Time First Scheduling

Following are details of some scheduling algorithms.

1.3.1 First Come First Serve (FCFS)

 The simplest of all the solutions (and the most naive) is the first-come first-served algorithm.

With this scheme, whichever process requests CPU time first is allocated the CPU first. This is

easily implemented with a FIFO queue for managing the tasks; as they come in, they're put on

the end of the queue. As the CPU finishes each task, it pops it off the start of the queue and heads

on to the next one.

 5

The average waiting time for this technique, though, is often quite long, and that is the drawback

of this approach. Let's take three processes that arrive at the same time in this order:

Process CPU Time Needed (ms)

------- -------------------

 P-1 100

 P-2 2

 P-3 2

If we serve these guys up in order, we get this order of execution:

P-1 starts at time 0 and ends at time 100.

P-2 starts at time 100 and ends at time 102.

P-3 starts at time 102 and ends at time 104.

Thus, P-2 has to wait 100 milliseconds to start and P-3 has to wait 102 milliseconds. The average

waiting time here is (0 + 100 + 102) / 3 = 67.3 milliseconds. But if we just switch the order a bit

to P-2, then P-3, then P-1, then the average waiting time becomes (0 + 2 + 4) / 3 = 2

milliseconds. Clearly, the average waiting time under a purely first-in first-out system is going to

often be poor if one task is significantly longer than the others [10].

1.3.2 Shortest Job First (SJF)

This, obviously, would be similar to the idea above, except that as each job comes in, it is sorted

into the queue based on size. In concept, this idea makes a lot of sense, and one can easily prove

that it is optimal in terms of giving the lowest average waiting time for a set of processes. The

difficulty with this algorithm, though, knows which incoming process is indeed shorter than

another. There is no way to know the length of the next CPU burst (the amount of time a given

process will need), so this type of scheduling is largely impossible. It does have some use for

scheduling long-term jobs, when we know exactly how long they will run and you are attempting

to plan them out over a long period of time, but in terms of doing this on the fly with incoming

processes, it is largely impossible. Length of next CPU burst is associated with each process. We

use these lengths to schedule the process with the shortest time. There are two schemes in SJF.

 6

 Non preemptive – once CPU given to the process it cannot be preempted until

completes its CPU burst.

 Preemptive – if a new process arrives with CPU burst length less than remaining
time of current executing process, preempt. This scheme is know as the
Shortest-Remaining-Time-First (SRTF).

1.3.3 Priority Scheduling

In this method each process has a priority associated with it, and as each process hits the queue,

it is sorted in based on its priority so that processes with higher priority are dealt with first. This

is essentially the shortest-job-first idea, except in that case the priority is the inverse of the time

the process needs. A variation on this theme is multilevel queue scheduling, where each task is

designated one of several different levels of importance, and the most important ones always run

first. This is quite effective at scheduling jobs for a CPU, assuming that the operating system has

the sense to properly assign priorities to the tasks. There is only one real problem with this

method, and that itself has a clever solution. The problem occurs when the operating system

gives a particular task a very low priority, so it sits in the queue for an exorbitant amount of time,

not being dealt with by the CPU. If this process is something the user needs, there could be a

very long wait. As a result, many operating systems use a technique called aging, in which a low

priority process slowly gains priority over time as it sits in the queue. That way, no matter how

low the priority of the process is, it will eventually be dealt with.

1.3.4 Round Robin Scheduling

Another approach to solving the CPU scheduling problem, round-robin scheduling, may be the

ticket. In this approach, a time slice is defined, which is a particular small unit of time. In each

time slice, the process being actively dealt with by the CPU runs until the end of the time slice; if

that process is done, it is discarded and the next one in the queue is dealt with. However, if the

process isn't done, it is halted and put at the back of the queue, and then the next process in line

is addressed during the next time slice. This method vastly slows down short processes, because

they have to share the CPU time with other processes instead of just finishing up quickly. Thus, a

good rule of thumb is to make sure that the length of the time slice is such that 80% of your

processes can run in one time slice. This way, only the longer processes wrangle over CPU time

 7

and the short jobs aren't stuck at the back of the queue. If we keep time slice large then it gives

performance approximately equal to FIFO

1.3.5 Multiple-Processor Scheduling

CPU scheduling becomes more difficult when multiple processors are available. There are

different rules in homogeneous and heterogeneous processors. Load sharing in applied to

distribute the work among different processor so that equal amount of work can be done by all

processor. There are two type of multiprocessing

• Symmetric multi processing: In this type of processing each processor makes its own

scheduling.

• Asymmetric multi processing: In this type of processing only one processor can access

data structure of system so master slave management is applied in this technique.

1.3.6 Real Time Scheduling

There are two type of real time system

 Hard real-time systems – These require to complete a critical task within a

guaranteed amount of time.

 Soft real time systems They require that critical processes receive priority over less

fortunate ones

There are several scheduling algorithms for real time systems [4].

Rate monotonic Algorithm: It assigns to each process a priority proportional to the

frequency of occurrence of its triggering event. For example, a process to run every

20msec gets priority 50 and a process to run every 100 msec gets priority 10.At run time,

the scheduler always runs the highest priority ready process, preempting the running

process if need be.Liu and Layland proved that this algorithm is optimal.

Earliest Deadline First: Whenever an event is detected, its process is added to the list of

ready processes. The list is kept sorted by deadline, which for a periodic event is the next

occurrence of the event. The algorithm runs the first process on the list, the one with the

closest deadline.

 8

Least Laxity: It first computes for each process the amount of time it has to spare, called

its laxity. If a process requires 200 msec and must be finished in 250 msec,its laxity is 50

msec.This algorithm chooses the process with the smallest amount of time to spare

While in theory it is possible to run a general-purpose operating system into real-time system by

using one of these scheduling algorithms, in practice the context-switching overhead of general

purpose systems is so large that real time-time performance can only be achieved for applications

with easy time constraints. As a consequence, most real time work uses special real-time

operating systems that have certain important properties. Typically these includes a small size,

fast interrupt time, rapid context switch, short interval during which interrupts are disables, and

the ability to mange multiple timers in the millisecond or microsecond range.

 9

 CHAPTER 2

 CPU SCHEDULING

 10

2.1 Process Concept

A process is most often defined as a program in execution. It is of two types, a user process or an

operating system process. The CPU is assigned to processes by the operating system in order to

perform computing work. In a single job operating system there is only one user process at a

time. In a multiprogramming system ,however, there may be many independent processes

competing for the control of CPU [1].For process management point of view operating system

perform the following activities [2].

 Creating and removing process.

 Controlling the progress of processes, that is, ensuring that each logically enabled

process makes progress towards its completion at a positive rate,

 Acting on exceptional conditions arising during the execution of a process, including

interrupts and arithmetic errors.

 Allocating hardware resources among the processes.

 Providing a means of communicating messages or signals among processes.

A process is created when a user job begins execution and is destroyed when the job terminates

Process is a dynamic concept that refers to a sequence of code in execution, undergoing frequent

state and attribute changes. An executable program, on the other hand, is a static process

template that may give rise to one or more processes. As an example of the distinction between

these two concepts, consider execution of the text editor program in a multiprogrammed multi

user system [1].The file containing the editor program in its executable form is the template for

all editor processes. When a user invokes the editor, the operating system loads the editor

program into the memory, creates an editor process, and schedules it for execution. The editor

process then begins executing the editing commands issued by the user from the terminal. In so

doing, the editor process uses a specific set of user designated input and output files. When

editing session is complete the user issues some command to exit the editor process. Which then

perform some housekeeping and terminates it self by calling operating system. At this the

operating system closes the data files and erases the record of that specific instance of the editor

process, which then ceases to exit.

 11

2.1.1 Process States

A process goes through a series of discrete process states. Various events can cause a process to

change states. The state of process is defined in part by the current activity of that process. Each

process may be in one of the following states.

• New: The process is being created.

• Running: Instructions are being executed or a process is said to be in running state. if it

currently has a CPU.

• Waiting: The process is waiting for some event to occur(such as an I/O completion or

reception of a signal)

• Ready: A process is said to be in ready state if it could use a CPU if one were available or

the process is waiting to be assigned to a processor.

• Terminated: The process has finished execution.

Process states are described in following Figure 2.1

 Figure 2.1 Process State Transition

These state names are arbitrary, and they vary across operating systems. The states that they

represent are found on all systems, however. Only one process can be running on any processor

at any instant, although many processes may be ready and waiting.

 12

2.1.2 Process Control Block
The operating system groups all information that needs about a particular process into a data

structure called a process descriptor or a Process control block (PCB).Whenever a process is

created, the operating system creates a corresponding PCB to serve as its run time description

during the lifetime of the process. When the process terminates, its PCB is released to the pool of

free cells from which new PCBs are drawn. The PCB is a data structure with fields for recording

various aspects of process execution and resource usage. Figure 2.2 show that information stored

in PCB typically includes some or all of the following parameters [1].

 Process Name

 Process State

 Hard ware state

 Program counter

 CPU registers

 CPU scheduling information

 Memory-management information

 Accounting information

 I/O status information

 File management information(open files, access rights)

Once constructed for a newly created process, the PCB is filled with the programmer defined

attributes found in the process template or specified as the parameters of the appropriate

operating system call to create process. Default values for other fields are usually assigned by the

operating system at this time. For example, when a process is created hardware registers and

flags are set to the values provided by linker/loader. Whenever that process is suspended, the

content of the processor register are usually saved on the stack, and the pointer to the related

stack frame is stored in the PCB,In this way ,the hardware state can be restored when the process

is scheduled to run again

 13

 Figure 2.2 PCB

.

Blocked diagram of PCB is shown in Figure 2.2

 2.2 Scheduling Queues

A state of a process is just a component of the global system state which encompasses all

processes and resources. To keep track of all processes, the operating system maintains

queues of processes classified by the current state of the related processes. In general

there is a ready queue which contains process control blocks of all ready processes, and a

suspended queue. By means of these queues operating system forms pools of processes in

similar states that are likely to be examined by operating system resource allocation

routines. For example the scheduler should search for the next process to run only in the

 14

ready queue [1].Three different types of queues, generally needed for process scheduling

[2] are listed below.

2.2.1 Job Queue

As processes are submitted to the system, they are put into the queue, called Job queue.

This queue consists of all processes residing on mass storage awaiting allocation of main

memory.

2.2.2 Ready Queue

 The processes that are residing in main memory and are ready and waiting to execute

are kept on ready queue.

2.2.3 Device Queues

The list of processes waiting for a particular I/O device is called a device queue. Each

device has its own device queue.

2.3 Types of Scheduling
 In general, (job) scheduling is performed in three stages

 Long-term (job) scheduling is done when a new process is created. It initiates processes and so

controls the degree of multi-programming (number of processes in memory).Acting as the

primary resource allocator, the long term scheduler admits more jobs when the resource

utilization is low, and blocks the incoming jobs from entering the ready queue when utilization is

too high.

Medium-term scheduling involves suspending or resuming processes by swapping (rolling)

them out of or into memory. When the main memory becomes over-committed, the medium-

term scheduler releases the memory of a suspended (blocked or stopped) process by swapping

(rolling) it out

Short-term (process or CPU) scheduling occurs most frequently and decides which process to

execute next. Short-term scheduler, also known as the process or CPU scheduler, controls the

CPU sharing among the ‘ready’ processes. The selection of a process to execute next is done by

the short-term scheduler. Usually, a new process is selected under the following circumstances

 When a process must wait for an event.

 When an event occurs (e.g., I/O completed, quantum expired).

 15

 When a process terminates

In summary, both long and medium term schedulers control the level of multiprogramming and

avoid (as much as possible) overloading the system by many processes and cause ‘‘thrashing’’.

All level of scheduling is shown in Figure 2.3.The goal of short-term scheduling is to optimize

the system performance, and yet provide responsive service. In order to achieve this goal, the

following set of criteria is used [11]:

 • CPU utilization
 • I/O device throughput
 • Total service time
 • Responsiveness
 • Fairness
 • Deadlines

 Figure 2.3 Level of Scheduler
 2.4 CPU Scheduler
The CPU scheduler allocates the processor among the pool of ready processes resident in

memory. Its main objective is to maximize system performance in accordance with the chosen

set of criteria. Since it is in charge of ready to running state transitions, the CPU scheduler must

be invoked for each process switch to select the next process to be run .In practice, the CPU

scheduler is invoked whenever an event causes the global state of the system to change. Given

 16

that, any such change could result in making the running process suspended or in making one or

more suspended processes ready, the CPU scheduler should be invoked to determine whether

such significant changes have indeed occurred and if so, to select the next process to be

executed. Some of the events that may cause rescheduling by virtue of their ability to change the

global system state are:-

 Clock ticks (time base interrupts).

 Interrupts and I/O completions.

 Operating system calls.

 Sending and receiving of signals.

 Activation of interactive programs.

2.5 Scheduling Objectives

Many objectives must be considered in the design of a scheduling .In particulars, a scheduling

discipline should:

Be fair: If all tasks are treated the same and no task can suffer indefinite postponement, then

such scheduling discipline will be fair.

Maximize throughput: Scheduling discipline should complete maximum number of jobs per

unit time.

The response time of maximum jobs should be minimum.

Be predictable: A given job should run in about the same amount of time and at about the same

cost regardless of the load on the system.

Minimize Overhead: Interestingly, this is not generally considered to be one of the most

important objectives. Overhead is commonly viewed as wasted resources. But a certain portion

of system resources invested as overhead can greatly improve overall system performance.

Balance resource use: The scheduling mechanisms should keep the resources of the system

busy. Process that will use underutilized resources should be favored.

Achieve a balance between response and utilization. The best way to guarantee good response

time is to have efficient resources available whenever they are needed. In real time systems, fast

response time is essential, and resource utilization is less important.

 17

Avoid indefinite postponement: in many cases, indefinite postponement can be as bad as

deadlock. Avoiding indefinite postponement is best accomplished by aging i.e. as a process wait

for a resource, its priority should grow. Eventually, the priority will become so high that the

process will be given the resource.

Enforce priorities: In environment in which processes are given priorities, the scheduling

mechanism should favor the higher priority process.

Given preference to processes holding key resources: Even though a low priority process may

be holding a key resource, the resource can be in demand by high priority processes. If the

resource is non-preemptible, then the scheduling mechanism should give the better treatment

than it would ordinarily receive so that the process will release the key resource sooner.

Give better service to processes exhibiting desirable behavior.

Degrade gracefully under heavy load: A scheduling mechanism should not collapse under the

weight of a heavy system load. Either it should prevent excessive loading by not allowing new

processes to be created when the load is heavy, or it should service the heavier load by providing

a moderately reduced level of service to all processes.

2.6 Performance Criteria

 Common performance measures and optimization criteria that scheduler may use in attempting

to maximize system performance include [1, 3]:

 CPU utilization

 Throughput

 Turnaround time

 Waiting time

 Response time

The scheduler should also strive for fairness, predictability and repeatability so that similar

behavior.

 2.6.1 CPU Utilization

 It is the average fraction of time during which the processor is busy. Being busy usually refers

to the processor not being idle and includes both the time spent executing user programs and

executing the operating system. The idea is to keep the CPU as busy as possible. In real systems

 18

it ranges from 40 percent for lightly loaded system to 90 percent for heavily loaded system. With

CPU utilization approaching 100%, average waiting times and average queue lengths tend to

grow excessively.

2.6.2 Throughput

Throughput is the amount of work that a computer can do in a given time period. It can be

defined as amount of work completed in unit of time. One way to express throughput is by

means of the number of processes executed in a unit of time. The higher the number, the more

work is apparently being done by the system. In closed environments, such as batch processing

systems, throughput can be a measure of scheduling efficiency. In systems, where service

demands are generated by a large population of users, such as time sharing interactive systems,

throughput is dictated by external factors and is a function of the request arrival rate and the

processor service rate.

2.6.3 Turnaround Time

 Turnaround time is defined as the time that elapses from the moment a program or job is

submitted until it is completed by a system. It is the time spent in the system and may be

expressed as sum of the execution time and waiting time. It is the sum of time periods spent

waiting to get into the memory, waiting in the ready queue, executing on the CPU, and doing

I/O.

2.6.4 Waiting Time

 It is the time that a process spends waiting for resource allocation due to contentions with other

processes. It is the sum of all waiting times a process experiences from the time of its creation to

termination. In other words, waiting time is penalty imposed for sharing resources with others.

Waiting time may be expressed as turnaround time minus actual execution time.

 W(x) =T(x)-x

Where ‘x’ is the execution time(x) is the waiting time of the process requiring ‘x’ units of

service, and T(x) is the process’s turnaround time.CPU scheduling does not really affect the

amount of time during which a process executes or does I/O.It effects only the amount of time

 19

that a process spends waiting in the ready queue.So, for this work, the waiting time is assumed to

be the total time a spends in the ready queue during its existence. As in batch processing system,

there can be many processes concurrently executing, so the best way to assess their waiting time

is to compute average waiting time in ready queue.

2.6.5 Response Time

 In interactive systems, it is defined as the time from the submission of a request until the first

response is produced. So the time elapsed from a moment the last character of a command line

launching a program or a transaction is entered until the first result appears on the terminal will

be called response time. It is desirable to maximize CPU utilization and throughput, and to

minimize the turnaround time, waiting time and response time. In most of the cases average

measures are optimized as in the case of average waiting time. However, some time it is

desirable to optimize the minimum or the maximum values. As in the case of CPU utilization

and throughput it is desirable to have maximum values, but to guarantee that all users get good

service, maximum response time may be minimized.

2.6.6 Scheduler Design

 A typical scheduler design process consists of selecting one or more primary performance

criteria and ranking them in relative order of importance [1,3].The next step is to design a

scheduling strategy that maximizes performance for the specified set of criteria while obeying

the design constraints. Scheduler typically attempts to maximize the average performance of a

system, relative to given criterion. However, due consideration must be given to controlling the

variance and limiting the worst case behavior. For example, a user experiencing 10-second

response time to simple queries has little consolation in knowing that the system’s average

response time is under 2 seconds.

One of the problems in selecting a set of performance criteria is that they often conflict with each

other, as in the case with most engineering problems. The design of a scheduler usually requires

careful balance of all the different requirements and constraints. With the knowledge of the

primary intended use of a given system, operating system designer tend to maximize the criteria

 20

most important in given environment. For example, throughput and component utilization are the

primary design objectives in a batch system.

2.7 Scheduling Disciplines

There are two type of scheduling discipline.

 2.7.1 Non preemptive Scheduling

 In batch processing non preemption implies that a selected job runs to completion or the

running process retains ownership of allocated resources until it voluntarily surrenders control to

the operating system. In other words, the running process is not forced to relinquish ownership of

the processor when a higher priority process becomes ready for execution. However, when the

running process becomes suspended as a result of its own action, say by waiting for an I/O

completion, another ready process may be scheduled [1, 2, 3].

2.7.2 Preemptive Scheduling

With preemptive scheduling running process may be replaced by a higher priority process at any

time without completing its assigned task. Similarly, it may relinquish control of CPU to another

process after its allocated time slice expires. This is accomplished by invoking the scheduler

whenever an event that changes the state of the system is detected. Since such events include a

number of actions in addition to the voluntary surrender of control by running process,

preemption generally necessitates more frequent execution of the scheduler. Thus, preemptive

scheduling is generally more responsive. However, it imposes higher overhead since each

process rescheduling entails a complete process switch [1, 2, 3].

2.8 CPU Scheduling Algorithms

 CPU scheduling deals with the problem of deciding which of the processes in the ready queue

is to be allocated the CPU.There are many different CPU scheduling algorithms. In choosing

which algorithm to use in a particular situation, properties of the various algorithms must be

considered. For comparison of their performance, their performance criteria are compared.

Popular algorithms are described in below mentioned sections [1, 2, 3]

 21

 2.8.1 First Come First Served (FCFS) Scheduling

 FCFS is by far the simplest scheduling discipline. The workload is simply processed in the

order of arrival. Without preemption.Implementtation of the FCFS scheduler is quite

straightforward. It can be easily managed with FIFO queue. When a process enters the ready

queue, its PCB is linked onto the tail of the ready queue. When CPU is free, it is allocated to the

process at the head of the ready queue’s running process is then removed from the ready queue.

Because of its simplicity, the execution of FCFS results in smaller computational overhead

[1,3].By failing to take into consideration the state of the system and the resource requirements

of the individual scheduling entities,FCFS scheduling may result in poor performance, lower

throughput and longer average waiting times. Short jobs may suffer considerable turnaround

delays and waiting times when one or more long jobs are in the system.

The average waiting time under the FCFS policy, however, is often quite long. Consider the

following set of polices that arrive at time 0, with the length of the CPU burst time given in

milliseconds:

Process Burst Time

 P1 24

 P2 3

 P3 3

Suppose that the processes arrive in the order: P1, P2, P3

The Gantt Chart for the schedule is:

Waiting time for P1 = 0; P2 = 24; P3 = 27

P1 P2 P3

24 27 300

 22

Average waiting time: (0 + 24 + 27)/3 = 17

Suppose that the processes arrive in the order

 P2, P3, P1.

The Gantt chart for the schedule is:

Waiting time for P1 = 6; P2 = 0; P3 = 3

Average waiting time: (6 + 0 + 3)/3 = 3

Much better than previous case.

Convoy effect short process behind long process

2.8.2 Shortest Job First (SJF) Scheduling

 SJF is a scheduling discipline in which the next scheduling entity, a process, is selected on the

basis of the shortest execution time of its next CPU burst. The shortest job first scheduling

favors’ the process/job with the smaller burst time. This algorithm associate with each process

the length of the latter’s next CPU burst. When the CPU is available, it is assigned to the process

that has the smallest next CPU burst. If the two processed have the same CPU burst, FCFS is

used to break the tie. A more appropriate term would be shortest next CPU burst, because the

scheduling is done by examinining the length of the next CPU burst of the process, rather then its

total length. The SJF scheduling is provably optimal, in that it gives the minimum average

waiting time for a given set of processes. By moving a short process before a long one, the

waiting time of the short process decreases more than it increases the waiting time of the

processes. Consequently, the average waiting time decreases.

There are two schemes with SJF.

Non-Preemptive: once CPU given to the process it cannot be preempted until completes its

CPU burst. Although the SJF non preemptive is optimal, it cannot be implemented at the level of

P1 P3P2

63 300

 23

short-term scheduling. There is no way to know the length of the next CPU burrstone approach is

to try to approximate SJF non-preemptive scheduling. We may not know the length of next CPU

burst, but we may be able to predict its value. We expect that next CPU burst will be similar in

length to the previous ones. As an example considers the following set of processes, with the

length of the CPU burst time given in milliseconds:

Example of Non-Preemptive SJF

 Process Arrival Time Burst Time

 P1 0.0 7

 P2 2.0 4

 P3 4.0 1

 P4 5.0 4
 SJF (non-preemptive)

 Average waiting time = (0 + 6 + 3 + 7)/4 = 4

Preemptive If a new process arrives with CPU burst length less than remaining time of current

executing process, preempt. This scheme is know as the Shortest-Remaining-Time-First

(SRTF). Shortest job first preemptive is very useful for time sharing. In this, the process with the

smallest estimated run-time to completion is run in next, including new arrivals. In SJF non-

preemptive, once job begins execution, it runs to completion. In Shortest remaining first (SRT)

Running process may be preempted by new process with shorter estimated run time. Again SRT

require estimates of the future to be effective, and the designer must provide for potential user

abuse of system scheduling strategies.SRT has higher overhead than SJF non-preemptive. It must

keep track of the elapsed service time of running job, and must handle occasional

preemptions/Arriving small processes will run almost immediately. Longer jobs however, have

P1 P3 P2

73 160

P4

8 12

 24

() .t nnn ταατ −+== 11

an even longer mean waiting time and variance of waiting times than in SJF non-preemptive. As

an example

Example of Preemptive SJF

 Process Arrival Time Burst Time

 P1 0.0 7

 P2 2.0 4

 P3 4.0 1

 P4 5.0 4

SJF (preemptive)

Average waiting time = (9 + 1 + 0 +2)/4 =3ms

Determining Length of Next CPU Burst

Length of next CPU burst can be find by using the length of previous CPU bursts, using

exponential averaging. Formula for finding the next burst is as follows [2]

P1 P3P2

4 2 11 0

P4

5 7

P2 P1

16

 25

Examples of Exponential Averaging

Let α =0

Then τn+1 = τn

 Recent history does not count.

α =1

 τn+1 = tn

Only the actual last CPU burst counts.

If we expand the formula, we get:

τn+1 = α tn+(1 - α) α tn -1 + …

 +(1 - α)j α tn -1 + …

 +(1 - α)n=1 tn τ0

Since both α and (1 - α) are less than or equal to 1, each successive term has less weight than its

predecessor.

2.8.3 Round Robin (RR) Scheduling

It is one of the oldest, simplest, and fairest and most widely used scheduling algorithms,

designed especially for time-sharing systems. A small unit of time, called time slices or quantum

is defined. All run able processes are kept in a circular queue. The CPU scheduler goes around

this queue, allocating the CPU to each process for a time interval of one quantum. New processes

are added to the tail of the queue. The CPU scheduler picks the first process from the queue, sets

a timer to interrupt after one quantum, and dispatches the process. If the process is still running

at the end of the quantum, the CPU is preempted and the process is added to the tail of the queue.

If the process finishes before the end of the quantum, the process itself releases the CPU

voluntarily. In either case, the CPU scheduler assigns the CPU to the next process in the ready

queue. Every time a process is granted the CPU, a context switch occurs, which adds overhead

to the process execution time. If there are n processes in the ready queue and the time slice is q,

then each process ideally would get 1/nof the CPU time in chunks of q time units, and each

process would wait no longer than nq time units until its next quantum. A more realistic formula

would be , where o is the context switch overhead. So, for practical purposes, it is

 26

desirable that the context switch be negligible compared to the time slice. The performance of

the Round-Robin algorithm depends heavily on the size of the quantum. If the quantum is very

large, the Round-Robin algorithm is similar to the First-Come, First-Served algorithm. If the

quantum is very small, the Round-Robin approach is called processor sharing. Round Robin is

effective in time sharing environments in which the system needs to guarantee reasonable

response times of interactive users.RR scheduling achieves equitable sharing of system

resources. Short processes may be executed within a single time quantum and thus exhibit good

response time. Long processes may require several quanta and thus be forced to cycle through

the ready queue a little time before completion.RR scheduling tends to subject long processes to

relatively long turnaround and waiting time. Such processes, however, may best be run in the

batch mode [1].Implementation of RR scheduling requires support of an interval timer. The timer

is usually set to interrupt the operating system whenever a time slice expires and thus forces the

scheduler to be invoked. The scheduler itself simply stores the context of the running process,

moves it the end of the ready queue and dispatches the process at the head of the ready queue.

The Scheduler is also invoked to dispatch a new process whenever the running process

surrenders control to the operating system before expiration of the time quantum, say, by

requesting I/O operation. The interval timer is usually reset at that point, in order to provide the

full time slot to the new running process. The preemption overhead is kept low by effective

context switching mechanisms and by providing adequate memory for the processes to reside in

main storage at the same time. The average waiting time under the round robin policy, however,

is often quite long [9].

Example: RR with Time Quantum = 20

 Process Burst Time

 P1 53

 P2 17

 P3 68

 P4 24

 27

The Gantt chart is:

Typically, higher average turnaround than SJF, but better response. The relationship between the

time slice and performance is nonlinear. Reduction of the time slice should not be carried too far

in anticipation of better response time. Too short a time slice may result in significant overhead

due to the frequent timer interrupts and process switches which causes context switches. [1].

Figure 2.4, 2.5 shows the way in which smaller time quantum increases context switches.

 Figure 2.4 Time Quantum vs. Context switches.

 Figure 2.4 Turnaround Time Varies With the Time Quantum

P1 P2 P3 P4 P1 P3 P4 P1 P3 P3

0 20 37 57 77 97 117 121 134 154

 28

Turnaround Time Varies With The Time Quantum

 Figure 2.5 Turn around Time vs. Time quantum

Round Robin scheduling is often regarded as “fair” scheduling discipline. The performance of

RR scheduling is very sensitive to the choice of the time slice that is usually on the order of

magnitude of milliseconds. This allows thousands of instructions to the running process per

quantum. The instruction per slice measure is more suitable for comparing different systems

because the time duration measure does not reflect the fact that processors with different speeds

may accomplish different amounts of work within a time slice of a given duration. In summary,

RR is primarily used in time-sharing and multiuser systems where terminal response time is

important [1, 3].

 29

2.8.4 Priority Scheduling

 In priority scheduling, processes are allocated to the CPU on the basis of an externally assigned

priority. The key to the performance of priority scheduling is in choosing priorities for the

processes. Priority scheduling may cause low-priority processes to starve. This starvation can be

compensated for if the priorities are internally computed. Suppose one parameter in the priority

assignment function is the amount of time the process has been waiting. The longer a process

waits, the higher its priority becomes. This strategy tends to eliminate the starvation problem.

Run highest-priority processes first, use round-robin among processes of equal priority. Re-insert

process in run queue behind all processes of greater or equal priority.

 Allows CPU to be given preferentially to important processes.

 Scheduler adjusts dispatcher priorities to achieve the desired overall priorities for the

processes, e.g. one process gets 90% of the CPU.

2.8.5 Multiple-Level Queues (MLQ) Scheduling

 The Scheduling disciplines described above are more suited to particular applications. But in a

system having variety of jobs running concurrently, for example jobs with time critical events,

some interactive jobs, and a few long non interactive jobs. Good performance can not be

guaranteed if the system supports only one scheduling policy. To solve this problem, one

approach is to combine several scheduling disciplines in one system. For example operating-

system processes and device interrupts may be subjected to preemptive priority scheduling,

interactive programs to RR scheduling, and batch jobs to FCFS or SJF [1, 3].Multiple ready

queues are maintained each with a different scheduler as shown in Figure 2.6. The workload is

classified according to its characteristics and is entered into an appropriate ready queue. Division

of the workload might be into following classes.

 High priority system process

 Interactive programs

 Batch jobs

 These classes may be subdivided into subclasses. For example system processes can have

two subclasses, such as:-

 30

 Service of hardware are high priority interrupts

 Services of system calls or traps.

If the hardware interrupts have higher priority then they may have a separate ready queue. A

process may be assigned to specific queue on the basis of its attributes that may be user or

system supplied. Each queue may then be serviced by the scheduling discipline must also be

devised for scheduling between queues. For example, the processes from the highest priority

queue are serviced until that queue becomes empty. This scheduling discipline may be

preemptive priority type. When the highest priority queue becomes empty the next queue may be

serviced using its own scheduling discipline (e.g. RR for interactive processes).Finally, when

both higher priority queues become empty, a batch process may be selected from the lowest

priority queue. A process in a lower priority queue may be preempted by arrival of a process in

one of the higher priority queues. This discipline maintains responsiveness to external events and

interrupts at the expense of frequent preemptions [1, 3].

 Figure 2.6 Multi level Queues

2.8.6 Multiple level Feedback Queues Scheduling
Multiple queues in a system may be used to increase the effectiveness and adaptivness of

scheduling in the form of multiple-level queues with feedback. Rather than having fixed class of

processes allocated to specific queues, the idea is to make traversal of a process through the

 31

system dependent on its run-time behavior. For example each process may start at the top level

queue. If the process is completed with a given time slice it departs the system. Processes that

need more than one time slice may be reassigned by the operating system to a lower priority

queue that gets a lower percentage of the processor time. If the process is still not finished after

having run a few times in that queue it may be moved to yet another, lower-level queue. The idea

is to give preferential treatment to short processes and have the longer ones slowly move into

lower-level queues [1, 3].Figure 2.7 shows the working of multilevel feed back queues.

In contrast to the ordinary multiple-level queues, the introduction of feedback makes scheduling adaptive
and responsive to the actual measured run-time behavior of processes as opposed to the fixed
classification. Multilevel queues with feedback are the most general discipline that may incorporate any
or all of the simple scheduling strategies discussed earlier. Its overhead may also combine the elements of
each constituent scheduler in addition to the overhead imposed by the global queue manipulation and the
process behavior monitoring necessary to implement this scheduling discipline [1,3].

 Figure 2.7 Multi level Queues

2.9 CPU Scheduling in different operating System

 2.9.1 UNIX

UNIX SVR4 introduces the notion of priority classes and supports two types of them, although

the design is flexible enough to incorporate new priority classes into the scheme as they become

available. The user priority classes officially supported, along with the System-class for system

kernel processes only, provide support for time sharing-processes (similarly to all previous

releases of UNIX), and for real-time processes. A dynamic process selection scheme is used to

determine which process will get the CPU next. All processes in the SVR4 belong to a particular

process priority class. Each class supported by the system has an associated set of class

 32

dependent routines to calculate the priority level of a process and determine on which priority

queue it is to be placed. These routines decide how a process is scheduled to run. Instead of a

single run queue (a.k.a. ready queue), like in older UNIX implementations, there are now

multiple priority queues, one for each priority value used by the system. The kernel then makes

use of class independent routines to select a process from the highest valued priority queue, as

opposed to the lowest used in previous implementations. In general, a process in the time-shared

priority class is subject to a round-robin approach similar to the one of previous

implementations: every process is eventually given use of the CPU, although some processes

may get it before others, depending on their operating characteristics. However, a real-time

process is given a higher precedence and is guaranteed to be selected to run before any time-

sharing process. To this aim many preemption points are placed throughout the kernel, which can

thus be interrupted. This is a very remarkable difference with respect to the older, time-sharing

only, implementation, in which a process might never be preempted while operating in kernel

mode. The kernel maintains a priority dispatch queue for each priority value in the system (all

integer values in a pre-defined range) and they are held together in an array of dispatch queues.

A scheme of this arrangement is shown in fig. 2,8. Each element of a queue is a proc structure,

i.e. the part of the process control block (the ``user area'', in UNIX parlance, as we saw

previously) that contains the scheduling-related information. The queues in the array are sorted

by priority value, while the element of each queue is managed in round-robin fashion. Priority

class data are represented within each proc structure, and proc structures themselves change

queue dynamically. The scheduling algorithm is then simply to always select the first process of

the dispatch queue with highest priority. However, processes in the time-shared priority class

have variable priorities computed at runtime (similarly to 4.2BSD), hence ``move'' from queue to

queue, while real-time (and system) processes have fixed priorities (unless the user changes them

explicitly).

A real-time process can literally take-over the machine: while there's a real-time process on a

dispatch queue no other system or time-shared process is scheduled. Thus, a real time process

always has a higher priority than a system or time-shared process. Hence it is the programmer's

responsibility to configure them so that the kernel is given the time it needs for normal system

operation (i.e. paging, swapping, servicing time-shared processes,)

 33

 Figure 2,8: Priority queues data structure.

Priority class data are represented within each proc structure, and proc structures themselves

change queue dynamically.

The scheduling algorithm is then simply to always select the first process of the dispatch queue

with highest priority. However, processes in the time-shared priority class have variable

priorities computed at runtime (similarly to 4.2BSD), hence ``move'' from queue to queue, while

real-time (and system) processes have fixed priorities (unless the user changes them explicitly).

A real-time process can literally take-over the machine: while there's a real-time process on a

dispatch queue no other system or time-shared process is scheduled. Thus, a real time process

always has a higher priority than a system or time-shared process. Hence it is the programmer's

responsibility to configure them so that the kernel is given the time it needs for normal system

operation (i.e. paging, swapping, servicing time-shared processes,...) [12]

 34

2.9.2 Windows Vista

 The CPU scheduling algorithm has been modified to make scheduling much more precise:

on supported CPUs, an instruction-level precision clock will be used to precisely record how

much CPU time is consumed by a thread. Also, the scheduling algorithm has also been modified

to allow fair scheduling. This makes a CPU intensive program much less likely to affect overall

responsiveness. Experiment: run a dead loop program and see rosh completion speed. In this

way, Windows is comparable to Linux with the 2.6.24 kernel CFS (completely fair scheduler).

The scheduler was modified in Windows Vista to use the cycle counter register of modern

processors to keep track of exactly how many CPU cycles a thread has executed, rather than just

using an interval-timer interrupt routine

 35

CHAPTER 3

Design

and

Implementation

3.1 Problem with CPU Scheduling Algorithms

 36

 In this section the problems and deficiencies with existing algorithms have been analyzed.

3.1.1 Problem with FCFS Scheduling

 As in FCFS priority is given to the process which has arrived first. Here is an example of taking

a set of some processes such that First process which arrives has large burst times, then the other

process arrives which has small burst times. The CPU starts executing the processes which

arrives first. The processes with large CPU burst get the maximum time of the CPU.This

generates the starvation for the processes with small CPU bursts, which are at the bottom of the

queue. So the FCFS scheduling is non preemptive. Once the CPU has been allocated to a

process, that process keeps the CPU, until it is not completed. The FCFS algorithm is particularly

troublesome for time sharing systems, where each user needs to get a share of the CPU at regular

interval. It is disastrous to allow one process to keep the CPU for an extended period of time.

3.1.2 Problem with Shortest Job First (SJF) Scheduling

 The Shortest Job First is optimal, but it cannot be implemented at the level of short term CPU

scheduling. There is no way to know the length of the next CPU burst. The Shortest Job First is

that it requires precise knowledge of how long a job or process runs, and this information is not

usually available. The best SJF can do is to rely on user estimates of run times. In production

environments where the same jobs run regularly, it may be possible to provide reasonable

estimates. But in development environment users rarely know how long their program executes.

The non preemptive SJF scheduling is not useful in timesharing environment in which the

response time must be guaranteed. The SJF preemptive has high overhead than SJF non

preemptive. It must keep track of the elapsed service time of the running job, and must handle

occasional preemption. Arriving small processes run almost immediately. Longer Job ,however,

have an even longer mean waiting time and variance of waiting time in SJF.So theoretically

,shortest job preemptive offers minimum waiting times. But because of preemption overhead it is

possible that SJF might actually perform better in certain situations.

3.1.3 Problem with Priority Scheduling

 37

 A major problem with priority scheduling algorithm is indefinite blocking (or starvation).A

process that is ready to run but lacking the CPU can be considered blocked, waiting for the

CPU.A priority scheduling algorithm leaves some low priority processes waiting indefinitely for

the CPU. In a heavily loaded computer system, a steady stream of higher priority process

prevents a low priority process from ever getting the CPU.The priority scheduling preemptive

has high overhead than priority scheduling non preemptive. It must keep track of the priority of

the running job, and must handle occasional preemption. Arriving processes with high priority w

run almost immediately. Low priority jobs, however, have an even longer mean waiting time.

3.1.4 Problem with Round Robin Scheduling

The Round Robin scheduling is the preemptive version of FCFS.The processes are treated on the

basis of FCFS, but are preempted after a fixed time quantum. The measuring of time quantum is

difficult. Because, if the quantum time is too small, then the overhead of preemption increases

and if the time quantum is too large then it works same as the FCFS.So the optimized quantum

time is necessary. The other overhead in Round Robin is to keep the record of all the processes

where they are preempted. The state of all the processes is saved where it stops the execution.

The other major problem with Round Robin is that; for example if there is a heavily loaded

system, the quantum time is 22 milliseconds, if there is a process of 24 milliseconds, the process

is preempted after 22 milliseconds only 2 milliseconds for the process are left. This process of 2

milliseconds gets time after the completion of whole queue. So the waiting time for this

2millisecond processes are very large. There is no starvation for this process but the waiting time

is too long.

3.2 Proposed Algorithm

The main objective of this research work is to optimize the performance of CPU Scheduling

using Effective Methodologies for Time Sharing Systems. As Round Robin is much suitable for

time sharing systems. Round-Robin (RR) is one of the simplest scheduling algorithms for

processes in an operating system, which assigns time slice to each process in equal portions and

in order, handling all processes without priority. Round Robin scheduling is both simple and

easy to implement, and starvation-free. Round-Robin scheduling can also be applied to other

scheduling problems, such as data packet scheduling in computer networks. In this algorithm the

 38

main objective is to minimize the average waiting time, turn around time and response time of

Round Robin algorithm..This new algorithm has been evaluated under following considerations.

• Maximize CPU utilization

• Minimize Average waiting time

• Minimize throughput such that turnaround time is linearly proportional to total execution

time.

3.2.1 Optimized Round Robin Algorithm

This Optimized Round Robin algorithm is enhanced policy to maximize the throughput and to

minimize waiting time and response time. Optimized Round Robin is effective in time sharing

environments in which the system needs to guarantee reasonable response times to interactive

users. The preemption overhead is kept low by effective context switching mechanism and by

providing adequate memory for the processes to reside in main storage at the same time.

3.2.2 Basic Theory

 The main features of Round Robin are:

.Optimized Round Robin is based on existing Round Robin. The technique it uses is based upon

Round Robin. It optimizes the performance of Round Robin. Average Wait Time (AWT) is

reduced by this technique, it also reduces response and Turn around time. The algorithm of

Optimized Round Robin is as follows:

(1) Break the process in to segment according to time quantum.

(2)Sort segments of a processes so as smallest comes first.

(3)Sort the whole ready queue so that the process with smallest segment comes at the head of the

ready queue.

(4)Now CPU starts executing the processes from head of the queue.

(5)During execution if a new process comes, it is adjusted accordingly.

3.2.3 Explanation

 39

 The Optimized Round Robin scheduling sorts all jobs according to their arrival time. Each Job

is divided into small segments the size of each segment is equal or less than time quantum .All

segments of each process are sorted according to time quantum. Then processes are again sorted

according to segment. Sort the whole ready queue so that the process with smallest segment

comes at the head of the ready queue. Now CPU starts executing processes according to Round

Robin.For further explanation an example of 5 processes is considered ,such that all processes

arrive at same time i.e. at 0 ms.Suppose time quantum is 10 ms.In first step process are sorted

according FIFO and the all processes are divided into segments according to time quantum.

Step 1

P1 = 10 => 10

P2= 29 => 10,10,9

P3 = 3 => 3

P4 = 7 => 7

P5 = 12 => 10,2

In second step all segments within a process are sorted according to SJF.

Step 2

 P1 = 10

 P2 = 9, 10,10

 P3 = 3

 P4 = 7

 P5 = 2,10

In third step processes are sorted with respect to segment length, such that process with smallest
segment is served first.

Step 3

 40

P5=2, 10

P3=3

P4 = 7

P2 = 9,10,10

P1 = 10

Then all processes execute according to Round Robin fashion. Gant chart for above processes is

shown as:

P5 P3 P4 P2 P1 P5 P2

 0 2 5 12 21 31 41 61

Wait Time of P1 = 21 AWT = 21+32+2+5+29 = 89 = 17.8 ms

Wait Time P2 = 12+20=32

Wait Time of P3 = 2

Wait Time of P4 = 5

Wait of P5 = 29

Where as if above processes run according to existing Round Robin then it gives AWT as 23

ms, so enhanced Round Robin improves the waiting time.

3.3 Performance Evaluation

 41

Performance of multiprogramming and multiuser operating system is largely dependent on their

effectiveness in allocating system resources. An active process simultaneously requires

following resources in order to execute [1, 3, 7]

Processors

Main Memory

I/O devices

Secondary storage

The inexact nature of practical schedulers make performance evaluation an important tool for

assessing the effectiveness of existing systems and for estimating the behavior of the new

systems as they are being designed. Performance evaluation tools of most interest to operating

system designer are simulation and analytic models. Simulations are of particular interest during

system design, when real hardware is not available for measurements and in situations where a

reasonably accurate analytic model of the system is not mathematically tractable. There are

different methods for CPU scheduling algorithm evaluation

(1) Deterministic evaluation

 (2) Queuing Modeling

(3) Simulation

 (4)Implementation

Deterministic modeling takes predetermined workload and defines performance of each

algorithm. Different algorithms have different strengths, and no single one is ideal for every

situation. Therefore, techniques are needed for analyzing the characteristics of each algorithm in

order to make a suitable choice. Criteria for CPU scheduling includes such as

• Maximum CPU utilization under the constraints that the maximum response time is 1

second.

• Maximum throughput such that turnaround time is linearly proportional to execution

time.

• Turnaround time is time taken by process to execute.

• Waiting Time is the sum of the periods spent waiting in the ready queue.

 42

• Response Time is the interval between submissions of a request until the first response

is produced.

Once the selection criterion is defined, various algorithms are evaluated under consideration.

There are number of different evaluation method.

One of the evaluation method is called Analytic Evaluation. Analytic evaluation uses the given

algorithm and the system workload to produce a formula or number that evaluates the

performance of the algorithm for that workload. One type of analytic evaluation is deterministic

modeling. This method takes a particular predetermined workload and defines the performance

of each algorithm for that workload. In this work different CPU scheduling methodologies are

evaluated using deterministic modeling and through simulation.

3.4 Introduction and design of developed Software

The simulator for CPU scheduling algorithms has been developed with a view to develop a

software tool, which can be used for the study and evaluation of CPU scheduling algorithms.

This software has been developed as a comprehensive software package, which runs a

simulation, generates useful data to be used for performance evaluation of algorithm and

provides a user friendly environment. Software design strategy is functional oriented and

design is modular in nature. The system is designed to run on a personal Computer as a

windows application. It provides the user an opportunity to simulate a multiprogramming

environment on a PC.The system is required to simulate creation, concurrent execution and

termination of processes in a batch processing and multiprogramming environment. It should

maintain system queues which include ready queues. It is required to record process state

transitions and system data at run time. The system should use the data to compute algorithm

evaluation parameters and to ascertain behavior of the modeled system. A user friendly and

mouse driven graphical user interface (GUI) to be integrated in order to provide a user the

opportunity to select an algorithm from the displayed menu. The system is required to simulate

the execution of selected algorithm. The block Diagram of this system is given below

 43

 True

 True

 Main window

 New Report

 Enter process,
Arrival time, Burst
Time Priority

Press
Insert

Select the algo for
execution and enter
Time quantum

Valid
time
quantum

Processes all techniques and
show simulation

 Save the whole data

 Open

If record
exists in
Data Base

If record
exists in
Data Base

Show report

True

FalseFalse

True

True

 Flow chart of Analyzer

True

 Start

 End

False

 44

 The system designs of these scheduling algorithms are outlined below.

3.4.1 Design of FCFS Scheduling Algorithm

For this algorithm ready queue is maintained as FIFO queue.PCBs of the processes, submitted to

the system is linked at the tail of the queue. The Algorithm dispatches processes from head of the

ready queue and simulates its execution through CPU.The process being simulated is terminated

on completing the task and deleted from the system. Next process is then dispatched from the

head of the ready queue. During simulation, algorithm performance data is displayed on the

screen. It also saves the process data and performance parameter in data base as well. The flow

chart for FCFS is given below.

Enter Process
parameters

Is FCFS
is
selected

Sort all the process w.r.t Arrival Time.
Starts Executing process from head of the
queue

True

Falsee

Draw Gant Chart According to input

Calculate waiting time of all process. And
find Average waiting Time. Show AWT.

Select any choice for
execution

 Start

 End

 45

3.4.2 Design of SJF Scheduling Algorithm

PCBs are linked in ready queue in order of CPU bursts length, with the shortest burst length at

the head of the queue. On arrival of new processes in the ready queue the system compares the

CPU burst time of newly created PCB with the remaining time of PCB at execution. If newly

created PCB has less CPU burst time than PCB at running; then preemption occurs and turn is

given to the new PCB for execution. During execution, performance data can be visualized

empirically and graphically; and can be stored in data base for future use. Flow chart of

implemented SJF is shown below

If SJF is selected
for execution

True

False

 Sort Process by Arrival Time

Solve Shortest Job First and preempt if
another shortest job occur

Select any choice for
execution

Draw Gant Chart According to input

Calculate waiting time of all process. And
find Average waiting Time. Show AWT.

 Start

 End

 46

3.4.3 Design of Round Robin scheduling algorithm

Ready queue is maintained as FIFO queue. Processes are selected from the head of the ready

queue. Processes being executed is preempted in expiry of time quantum, which is a user defined

variable. A preempted process’s PCB is linked at the tail of the ready queue.PCB completing

CPU burst before the expiry of time quanta is terminated and removed from the queue. During

execution, performance data can be visualized as well as can be stored in data base. Flow chart

for this technique is shown below.

If time quantum is
valid and RR is
selected for execution

Sort all the process w.r.t Arrival Time.
Starts Executing process from head of the
queue

False

 Draw Gant Chart

Calculate waiting time of all process. And
find Average waiting Time. Show AWT.

Select any choice for execution. And Enter
Time Quantum

Solve process turn by turn according to
Time Quantum

True

 Start

 End

 47

3.4.4 Design of Priority scheduling Algorithm

 PCBs are linked in the ready queue in the order of user defined priorities with PCB having

highest priority (lowest number) placed at the head. Processes are selected from the head of the

ready queue and execution is simulated. On completion of CPU burst the process is terminated

and removed from the system. In preemptive priority Scheduling algorithm preemption occurs if

the newly created PCB has higher priority than the PCB in execution. During execution,

performance data can be visualized as well as can be stored in a data base.

If Priority
technique is
selected for

Sort all the process w.r.t Arrival Time.
Starts Executing process from head of the
queue

False

 Draw Gant Chart

Calculate waiting time of all process. And
find Average waiting Time. Show AWT.

Select any choice for execution

Solve process According to priority
preempt if higher priority process comes.

True

 Start

 End

 48

3.4.5 Design of Optimized Round Robin Scheduling.

Ready queue is maintained as a FIFO queue. Then processes are divided into segments according

to size of time quantum given by user. Then ready queue is again sorted according to segments.

The process which have least segment/ is placed at head of the queue. These segments are being

executed and preempted on complete execution of segment. During execution, performance data

can be visualized as well as stored in data base. Flow diagram of its design implementation is

given below.

Sort all the process w.r.t Arrival Time.
Starts .And divide into small segments
according to Time Slice size.

False

 Draw Gant Chart

Calculate waiting time of all process. And find
Average waiting Time. Show AWT.

Select any choice for execution. And Enter
Time Quantum

Sort segment of each process so as smallest comes first.
Sorts the all process so as process with least segment
come first. Execute process from starts of the queue.

If ERR is
selected for
execution

True

 Start

 End

 49

3.5 Input of System

The system displays options for taking input data for scheduling algorithm. It takes complete

process information

• Process Id

• CPU Burst Time

• Arrival Time

• Priority

• Time Quantum

The system also ensures the correctness of data by imposing checks on input values. The value

of the CPU Burst time, arrival time, and time quantum should be some positive values. The

value of priority should be between 0 and 9;) is taken as the highest priority while 9 is the

lowest priority. The system simulates concurrent execution of processes. There is also no limit

on the number of process in a batch. A user can program the system to simulate concurrent

execution of a batch consisting of thousands of processes. The data entered by user gets saved

into data base.. Then user can select scheduling algorithm from given option and run

simulation. A user can program the system to simulate concurrent execution of a batch

consisting of thousands of processes. A user can also simulate more than one algorithm for

same set of processes to make comparative analysis. A user can visualize quantative as well as

graphical results in the form of Gant chart. Figure 3.1 shows how data for process can be

entered into the system.

 Figure 3.1 Input window

 50

3.6 Output of System

The system stores simulation data at run time in data base. The system provides the option of

saving simulation in database. A user can store complete process history as well as performance

factor in data base .The data is essential for:

• The performance evaluation of algorithms

• Detailed analysis of algorithms for the purpose of research

• User can run any saved simulation any time.

System also shows result of execution in form of Gantt chart and also can save this data into data

base, as shown in Figure 3.2 and Figure 3.3.

 Figure 3.2 Output window

 51

 Figure 3.3 Save window

3.7 Design of Data Structures

3.7.1 Processes

 In a real multiprogramming system, once a program is submitted to the system, a process is

created, that is, memory allocated and program loaded into the memory. Moreover, the operating

system creates a PCB for the process.

 This simulator is designed with a purpose to evaluate performance of new proposed CPU

scheduling algorithm and compare with the performance of existing Round Robin and all other

existing algorithm. Hence creation of a process are not required to perform actual computing

work .Hence creation of a process does not require a real program to be leaded into the memory.

Whereas the creation is accomplished by merely creating a PCB and allocating memory to it.

Consequently, a process in this simulation is represented by PCB only. As actual computing

work is not required to be done, PCBs are not required to store run time description of the

processes, the space, however, is used for storing execution data of the simulation itself.

 52

3.7.2 Design of Process Control Blocks (PCBs)

 PCB consists of a number of data items grouped together. The data items, which can be of

different data types, are known as members of the structures. Each data item can be identified by

its own identifier [4,5,6].This system creates a PCB data structure consisting of following data

members. Detail is given as below.

Members Data Type Utilization

Process Name Varchar(50) Name of process a unique identifier of the process

Burst Time Bigint Entered by user at run time. Actual amount of execution

time.

Arrival Time Bigint Entered by user at run time

Priorty Bigint Run by user at run time .Will be used in priority Scheduling.

SimulationId Bigint It will be used for Simulation

ProcessColor Varchar(50) It will be given by system to distinguish different processes

 Table 3.1 Process Data

When a process is created by the system; then its relevant information are saved in data base.

When process executes it pick this data and run accordingly. In the case of priority scheduling,

system also encounters the priority of a process during its execution. In case of Round Robin and

Optimized Round Robin system executes processes on the basis of time quantum.

3.7.3 Design of Simulation Data

System also stores information of different simulation of different set of process. Following

information are saved for simulation in data base.

Members Data Type Utilization

SimulationId Bigint It is Unique Identifier for simulation.

SimulationName Varchar(500) It is used for Simulation. Given by user at run time.

FCFS bit It will check if user has selected Option for FCFS to simulate

FCFSAWT Varchar(50) It will store average waiting time for FCFS calculated by

system

 53

SJF Bit It will check if user has selected Option for SJF to simulate

SJFAWT Varchar(50) It will store average waiting time for SJF calculated by system

RR Bit It will check if user has selected Option for RR to simulate

RRAWT Varchar(50) It will store average waiting time for Round Robin calculated

by system

ERR Bit It will check if user has selected Option for Enhanced Round

Robin to simulate

ERRAWT Varchar(50) It will store average waiting time for Enhanced Round Robin

calculated by system.

RoundRobinQuantam Varchar(50) It will store time slice for Round Robin and Enhanced round

robin given by user.

 Table 3.2 Data Related to Simulation

3.7.4 Graphical User Interface

A user friendly and mouse driven GUI has been developed. It provides a menu driven interactive

environment. User can also open the report of any one of saved simulation and view its result in

quantative analysis as well as in graphical format. As this system saves the all out put related to

scheduling algorithm in to data base, so this system also shows reports in the form of

performance comparison between scheduling algorithm as shown in Figure 3.4

 54

This reports shows AWT time of all algorithm which have been run in one simulation. it also
shows comparison between all algorithm.

 Figure 3.4 Report Viewer

 55

 CHAPTER4

 Results

 And

Discussion

 56

FCFS, SJF, Round-Robin, Priority and Optimized Round Robin techniques are implemented in

the scheduler analyzer. This work involves development of a simulator for CPU scheduling with

view to optimization. It has been developed for deterministic evaluation of CPU algorithm. And

on the basis of evaluation an enhanced Round Robin has been made and implemented, which

shows better result as compared to existing Round Robin Scheduling for time sharing systems.

.Following analysis provides detailed comparison of all above techniques.

4.1 Comparative Analysis of all Algorithms.

Input of ten processes is given to scheduler analyzer and time quantum is taken as such that most

of process completes their execution in initial two or three turns.

Process Set #1

Figure 4.1 and 4.2 show that when average waiting time of SJF is very small as compared to
other methods. It also shows that Optimized Round Robin has less average waiting time as
compared to existing Round Robin. So in this case, performance of Optimized Round Robin is better
than existing Round Robin.

 Figure 4.1 Input for process set #1

 57

 Figure 4.2: Comparison between all algorithms for processes set# 1

Figure

Process Set # 2

 Figure 4.3 Input for process set #2

 58

 Figure 4.4 Comparison between all algorithms for processes set# 2

 Figure 4.3 and 4.4 show that SJF is better as compared to other methods, and performance of

FCFS is better than priority algorithm. Similarly the performance of Optimized Round Robin is

also better than existing Round Robin.

Process Set #3

 Figure 4.5 Input for process set #3

 59

 Figure 4.6 Comparison between all algorithms for processes set# 3

Figure 4.5 and 4.6 show that SJF is better as compared to other methods, and performance of

FCFS is better than priority algorithm. Similarly the performance of Optimized Round Robin is

also better than existing Round Robin.

 Process Set #4

 Now if ten processes are given to system as input such that, Arrival time and priority

are taken as 0 then following results can be found as shown in Figure 4.7 and 4.8.In this case

again SJF shows better performance, But AWT of both FCFS and priority algorithms is same.

Optimized Round Robin is giving better performance than existing Round Robin.

 Figure 4.7 Input for process set # 4

 60

Graphical representation of above data is shown as follows.

 Figure 4.8 Comparison between all algorithms for processes set# 4

4.2 Summary

In FCFS priority is given to the process which comes first. Assume a set of two processes in

which first process has a larger burst time and second process has a smaller burst time. The CPU

will start executing the process which arrived first. This larger CPU burst process will start

consuming time of the CPU. As a result, second process with smaller CPU burst will keep

waiting due to starvation. In other words, FCFS has a disadvantage of starvation in certain cases.

Second disadvantage of FCFS scheduling is that it is non- preemptive. Once CPU is allocated to

a process, that process will keep hold of it till completion. Third disadvantage is that the FCFS

algorithm is particularly troublesome for time sharing systems, where each user needs to get a

share of the CPU after a regular interval. It is devastating to allow one process to keep the CPU

for an extended period of time. As a result FCFS scheme is not useful in scheduling interactive

users, because it cannot guarantee good response time.

Priority scheduling algorithm preserves all of the drawbacks of FCFS. A major problem with

priority scheduling algorithm is indefinite blocking (or starvation). Process that is ready to run

but lacking the CPU can be considered blocked. Priority scheduling algorithm leaves some low

priority processes waiting indefinitely for the CPU. In a heavily loaded computer system, a

 61

steady stream of higher priority processes prevents a low priority process from getting the CPU

for ever.

The priority scheduling with preemption has higher overhead than non-preemptive priority

scheduling. It must keep track of the priority of the running job, and must handle occasional

preemption. Arriving process with higher priority would be given CPU almost immediately. Low

priority jobs, however, have an even longer mean waiting time.

 Because of the drawbacks discussed earlier, we are left only with SJF, Round Robin, and

Enhanced Round Robin.

Table 4.1 compares Average Waiting Time (AWT) for SJF, Round Robin and Enhanced Round

Robin. Each record is based on a different numbers of processes, so to have a more solid

comparison. It shows that as the numbers of processes increase, Average Waiting Time (AWT)

of three algorithms also increases, but with equal proportions.

 62

No of Processes

 Scheduling Algorithms

AWTfor SJF(ms) AWT for Round Robin(ms)

AWT for Enhanced Round

Robin(ms)

25 1001.96 2016.6 1543.28

50 1600.1 3287.42 2461.46

75 2285.88 4560.84 3384.51

100 3105.54 6058.3 4649.32

125 4719.41 9108.89 6756.7

150 4618.68 8565.85 6511.36

175 5534.68 11158.9 7955.34

200 6741.86 13229.01 9703.33

225 7531.56 14523.01 10859.25

250 8396.1 16376.97 12307.39

275 9051.89 18097.39 13061.08

300 10100.76 19326.91 14406.23

 Table 4.1 AWT of Scheduling algorithms for different number of processes

 63

Comparison analsys of SJF,RR and ERR

0

5000

10000

15000

20000

25000

0 100 200 300 400

Number of Process

A
W

T(
m

s) SJF
RR
ERR

 Figure 4.9 AWT of scheduling algorithms for different number of processes in graph

 Figure 4.9 shows graphical representation of input data given in Table 4.5. SJF shows best

results in all cases. When there are 100 processes, then AWT for SJF is 3.10554 seconds, AWT

for Round Robin is 6.05 seconds and AWT for Enhanced Round Robin is 4.65 seconds. Similar

results are also observed for a set of 175 processes where AWT for SJF is 5.53 seconds, for

Round Robin it is 11.1 seconds and for Enhanced Round Robin it is 7.95 seconds.Similary if

number of processes are increased to 200, the AWT for SJF is 6.74 seconds, RR is 13.22 seconds

and ERR is 9.7seconds.When number of processes are 300 then AWT for SJF is 10.10 seconds,

RR is 19.32 seconds and ERR it is 14.14 seconds. It describes that AWT of Enhanced Round

Robin is much better than Round Robin.

SJF shows least AWT in all cases. So, it is the most efficient technique among all others. But it is

not possible to find the next CPU burst. So SJF is difficult to implement.

It is only the Round Robin algorithm which gives good performance for time sharing systems. It

prevents all processes from starvation. But it has more Average Waiting Time (AWT) as

compared to SJF. There is a need to minimize AWT of Round Robin. Enhanced Round Robin

has been designed and implemented for this purpose. All the tabulated results clearly indicate

that it provides lesser AWT in all cases. It’s major reason is that processes waiting in the ready

 64

queue are re-arranged according to time quantum (i.e. Processes with smaller segment will be

given CPU first).This modification in the RR technique works well and gives enhanced

performance for time sharing systems.

 65

CHAPTER 5

CONCLUSION

AND
FUTURE WORK

 66

5.1 Conclusion

 Computer systems supporting multiprogramming execute multiple programs

concurrently. One of the objective of multiprogramming is to maximize resource utilization that

is achieved by sharing system resources among multiple user and system processes. Efficient

resource sharing depends on efficient scheduling of competing processes.

Process scheduling is an important aspect of multiprogramming operating system. As processor

is the most important resource, CPU scheduling becomes very important in achieving the system

design goals. Many algorithms have been designed to implement CPU scheduling. Design

methods include analytic modeling, deterministic modeling and simulations. Simulation and

deterministing being the most accurate of all is commonly employed for system’s performance

evaluation despite the fact that they require complex programming for developing an efficient

analyzer/simulator.

This work involves development of a simulator for proposed as well as existing CPU scheduling

algorithms with view to get optimized performance of CPU scheduling algorithm in time sharing

systems. Using this simulator deterministic evaluation of CPU scheduling algorithm can also be

performed. This simulator can be used for measuring performance of different scheduling

algorithms; implementation of operating system and for the understanding and training of

Students. It simulates the following algorithms

• First Come First Serve(FCFS) scheduling

• Shortest Job First (SJF) scheduling

• Priority Scheduling

• Round Robin Scheduling

• Enhanced Round Robin Scheduling

This work presents a simulator that uses graphical animation to convey the concepts of various

scheduling algorithms for a single CPU. The simulator is unique in a number of respects. First, it

uses a more realistic process model that can be configured easily by the user. Second, it

graphically depicts each process in terms of what the process is currently doing against time.

Using this representation, it becomes much easier to understand what is going on inside the

system and why a different set of processes is a candidate for the allocation of the CPU at

 67

different time. A third unique feature of the simulator is that it allows the user to test and

increase his understanding of the concepts studied by making his own scheduling decisions,

through the very easy-to-use graphical user interface of the simulator. The simulator can be used

by students in operating system courses or by anyone interested in learning CPU scheduling

algorithms in an easier and a more effective way. The system is designed to mimic the dynamic

behavior of the system over time. It runs self driven simulations and uses a synthetic workload

that is artificially generated to resemble the expected conditions in the modeled system. Duration

of CPU bursts is taken from the user. The system simulates creation, concurrent execution and

termination of processes. It simulates shared utilization of processor. It maintains system queues

in memory. It generates reports of useful data that represent behavior of the system. The data can

be stored in data base for analysis and archival purposes. It also shows comparative results of

CPU scheduling algorithms empirically and graphically as well.

A user friendly and mouse driven Graphical User Interface(GUI) has been integrated .It provides

the user an opportunity to save the input of all process in data base and the select the algorithm

from given choice for execution. The GUI displays a Gant chart view of all processes at run

time. It also provides the user an opportunity to generate a report which shows graphical as well

as analytical results. It uses two tier architecture of system design. This feature makes the system

attractive for experimental analysis as academic use. The system has been put through extensive

experimentation. Results show that the execution of FCFS scheduling produce smaller

computational overheads because of its simplicity, but it gives poor performance, lower

throughput and longer average waiting times.SJF is an optimal scheduling discipline in terms of

minimizing the average waiting time of given workload.However, preferred treatment of short

processes in SJF scheduling tends to results in increased waiting times for long processes in

comparison with FCFS scheduling. Thus there is a possibility that long processes may get

stranded in the ready queue because of continues arrival of shorter processes in the queue. Round

Robin scheduling achieves suitable sharing of CPU and works well in time sharing environment.

Shorter processes execute within a single time quantum and thus exhibit good response time. It

tends to subject long processes to relatively longer response and waiting time. As the objective of

this thesis work is to find the optimized solution for time sharing systems. Hence Round Robin

has been optimized so that it should minimize average waiting and response time as compared to

Existing Round Robin. This Optimized Round Robin also decreases the waiting and response

 68

time of longer processes. So this algorithm gives the optimized solution for time sharing systems

as compared to Existing Round Robin.

SJF shows least AWT in all cases. So, it is the most efficient technique among all others. But it is

not possible to find the next CPU burst. So SJF is difficult to implement. It is only the Round

Robin algorithm which gives good performance for time sharing systems. It prevents all

processes from starvation. But it has more Average Waiting Time (AWT) as compared to SJF.

There is a need to minimize AWT of Round Robin. Enhanced Round Robin has been designed

and implemented for this purpose. All the tabulated results clearly indicate that it provides lesser

AWT in all cases. It’s major reason is that processes waiting in the ready queue are re-arranged

according to time quantum (i.e. Processes with smaller segment will be given CPU first).This

modification in the RR technique works well and gives enhanced performance for time sharing

systems.

5.2 Future Work

Present system is designed to analyze the performance of existing scheduling algorithms and

proposed the optimized solution for time sharing systems. Software module can be developed

and analyzed for CPU scheduling in symmetric multiprocessing virtual machines. As this system

allows resources of single physical machine to be shared among multiple virtual machines. Also

software can be developed and integrated in the system to introduce simulation of Linux,

windows 200/XP and Windows Vista scheduling policies. As multiple level queues scheduling

and multiple level Feedback queue scheduling provide the scheduling policies suitable for

system having variety of job running concurrently. These scheduling disciplines can be included

in this system by integrating a software module that can integrate the operation of exi55sting

CPU scheduling policies. Also further research work can be done on existing algorithm to find

better solution for time sharing systems.

 69

BIBLIOGRAPHY

[1] Milenkoviie M. Operating System Concepts and Design.Me Graw Hill

[2] Silberchatz A, Petorson J. L,Galvin P. B. Operating System Concepts Addison Wesley

[3] Beck L.L, System Software. Addison Wesley

[4] Tanenbaum, A modern Operating system

[5] CPU Scheduling Available at http://cs.wwwc.edu/~aabyan/352/Scheduling.html

[6] Operating System Lecture Notes CPU Scheduling. Available at

 http://williamstallings.com/Extras/OS-Notes/h6.html

[7] Martin Needle’s Survey of Real Time Scheduling Tools(TIK-Report No.72,November 1998)

[8] Pinedo, 1995

[9] Operating system notes available at http://choices.cs.uiuc.edu

[10] Operating System Notes Available on [http://everything2.com/?node_id=1163115]

[11] http://www.cs.ualberta.ca/~tony/C379/Notes/]

[12] http://www.cim.mcgill.ca/~franco/OpSys-304-427/lecture-notes

	abstract.pdf
	TABLE OF CONTENTS.pdf
	Dedicated To.pdf
	Operating_Systems_are_resource_managers.pdf

