
An HLA based Man in loop Simulation
framework for an Air Defense System

By
Syed Rauf ul Hassan

2005-NUST-MS PhD.CSE 05

Submitted to the Department of Computer Engineering
in fulfillment of the requirements for the degree of

Masters of Science
In

 Computer Software Engineering

Thesis Supervisor
Dr. Shoab Ahmad Khan

College of Electrical and Mechanical Engineering
National University of Sciences and Technology

Rawalpindi,Pakistan
2009

 ii

Acknowledgements

One of the great pleasures of writing a thesis is acknowledging the efforts of many

people whose names may not appear on the cover, but whose hard work, cooperation,

friendship, and understanding were crucial to the production of the thesis.

The report that you are holding is the result of many people’s dedication. I am gratefully

thankful to my supervisor Lt. Col. Dr. Shoab Ahmad Khan for encouraging my work at

each step of my thesis and guiding me towards the right and realistic goals. Without his

suggestions and guidance I would not been able to complete my thesis in efficient and

timely manner.

I would like to thank Mr. Asad Waqar Malik and Mr. Anjum Latif for his support in the

project. I would also like to thank Lt.Col Dr. Farooque Azam, Lt. Col. Dr. Rashid

Ahmad and Dr. Aasia Khanum for being on my thesis committee.

This thesis would not have been possible without the love and support of my parents.

They were my first teachers and inspired in me a love of learning and a natural

curiosity.

 iii

Dedicated to my parents, my wonderful wife, my brother and sisters who always
encourage me for all the work I have done

 iv

Abstract

HLA is software architecture for creating computer models or simulation out of

component models or simulations. At the core of the HLA is the software called ‘Run

Time Infrastructure or RTI that is responsible for distribution and management of

information. HLA has been used for the development of military simulation. In this

work, we present a framework for an HLA based man-in-loop simulation. The main

focus has been to simulate the real time command and control interface with the

operator (man) interacting with the simulation through virtual console. Also the

interfaces with sensors and weapons utilize the same interface and mechanism as used

by actual sensors and weapons. This framework can be used for evaluation/training of

the operator and testing of new weapons.

War games are widely used by the military to train troops and develop new ways

of war fighting. There are various tools and softwares available that allow the user to

create a synthetic/virtual battle field and test various scenarios. These includes OneSAF

Testbed Baseline (OTB), STRIVE, MANA. OTB can interact with other live, virtual

and constructive simulations based on HLA. In our work we present the ‘Air defense

Simulation’ in which some components of the system are simulated/virtual whereas

other components are live. In our simulation various simulated targets are generated by

the operator and engaged either by the simulated or real gun. Sensors and weapons

communicate with each other using standard messages. The simulation is tested in

various scenarios for real time performance and detail analysis of results is presented.

 v

TABLE OF CONTENTS

CHAPTER 1:INTRODUCTION... 10
1.1. Introduction .. 11
1.2. Hardware in Loop.. 12
1.3. Man in Loop.. 13
1.4. Distributed Simulation Standards... 14

1.4.1. Simulator Networking (SIMNET) .. 14
1.4.1.1. Benefits and Drawback of SIMNET 15

1.4.2. Distributed Interactive Simulation (DIS) 15
1.4.3. High Level Architecture (HLA) ... 16

1.4.3.1.Benefits and Drawback of HLA..................................... 17
1.5. Summary ... 17

CHAPTER 2:LITERATURE SURVEY... 18
2.1. Introduction .. 19
2.2. Air Defense Simulation .. 19
2.3. High Level Architecture .. 21
2.4. Man in Loop Simulation .. 22
2.5. Network Centric Warfare ... 23
2.6. Summary ... 24

CHAPTER 3:SYSTEM DESCRIPTION AND DESIGN 25
3.1. Introduction .. 26
3.2. HLA... 29

3.2.1. HLA Rules... 30
3.2.2. HLA Interface Specification ... 30
3.2.3. HLA Object Model Template... 32

3.3. Communication Mechanism... 37
3.3.1. Distributed Component Object Model................................ 37
3.3.2. Microsoft Messaging Queue.. 37
3.3.3. Sockets .. 38
3.3.4. Remote Procedure Call.. 38
3.3.5. Comparison of Communication Mechanism 40

3.4. RTI Services.. 40
3.4.1. Federation Management .. 41
3.4.2. Declaration Management... 42
3.4.3. Object Management ... 43
3.4.4. Ownership Management... 45
3.4.5. Time Management.. 45

3.4.5.1. Time Management in HLA .. 45
3.4.6. Data Distribution Managament .. 48

3.5. Scenario Generator .. 48
3.5.1. Simulating Environment .. 48

 vi

3.5.2. Simulating Fixed Wing Aircraft ... 48
3.5.3. Simulating Guns ... 49
3.5.4. Simulating RADAR.. 49

3.6. Summary ... 50

CHAPTER 4:EXPERIMENT AND RESULT....................................... 51
4.1. Introduction .. 52
4.2. Different Scenarios .. 52

4.2.1. Single Target and Single Gun Scenario................................ 52
4.2.2. Multiple Targets and Single Gun Scenario........................... 54
4.2.3. Multiple Crossing Targets and Single Gun Scenario........... 55
4.2.4. Multiple Crossing Targets and Multiple Guns Scenario...... 55

4.3. Summary ... 56

CHAPTER 5:CONCLUSION.. 57
5.1. Introduction .. 58
5.2. Findings.. 58

5.2.1. Java and C++ Integration.. 58
5.2.2. Time Management.. 58

5.3. Future Directions .. 58
5.3.1. Tracking Algorithm... 58
5.3.2. Environment Modeling.. 58
5.3.3. Distributed Data Management... 59
5.3.4. Decision Support System .. 59

5.4. Summary ... 59

CHAPTER 6:REFERENCES.. 60

 vii

LIST OF TABLES

Table 1: Fighter Jet Data Format .. 36
Table 2: Detected Target Data Format ... 37
Table 3: Communication Mechanism Comparison .. 40
Table 4: Object Subscription and Publication Table .. 43
Table 5: Interaction Publication and Subscription Table.. 43

 viii

LIST OF FIGURES

Figure 1:Typical Simulation Scenario .. 11
Figure 2: Architecture of Typical HIL System... 13
Figure 3: A System for Network Centric Warfare Analysis... 23
Figure 4: Air Defense System Architecture.. 26
Figure 5: Functional Architecture of MIL Simulation.. 28
Figure 6: Air Defense Simulation Framework ... 29
Figure 7: RTI Components ... 31
Figure 8: RTI and Federate Responsibilities .. 31
Figure 9: Remote Procedure Call.. 38
Figure 10: Federation Management Life Cycle.. 41
Figure 11: RTI Decleration Management Service.. 42
Figure 12: RTI Object Management Service.. 44
Figure 13: Time Distribution .. 47
Figure 14: RTI Network Centric Framework ... 52
Figure 15: Single Target Scenario .. 53
Figure 16: Gun Federate ... 54
Figure 17: Multiple Target Scenario... 54
Figure 18: Multiple Crossing Targets... 55
Figure 19: Multiple Crossing Targets and Multiple Guns.. 56

 ix

List of Abbreviations

ARPA Advanced Research Project Agency
COTS Commercial Of The Shelf
CGF Computer Generated Forces
DCOM Distributed Component Object Model
DIS Distributive Interactive Simulation
DoD Department of Defense
EADSIM Enhanced Air Defense Simulation
FOM Federation Object Model
HIL Hardware in Loop
HLA High Level Architecture
HMI Human Machine Interface
LBTS Lower Bound on Time Stamp
LRC Local RTI Component
MIL Man in Loop
MSMQ Microsoft Messaging Queue
OMDT Object Model Development Tool
RADAR Radio Detection and Ranging
RPC Remote Procedure Call
RTI Run Time Infrastructure
SAF Semi Automated Forces
SBA Simulation Based Acquisition
SIMNET Simulation Networking
STRICOM Simulation, Training and Instrumentation Command

 CHAPTER – 1

1. INTRODUCTION

 11

1.1. Introduction
Simulation is a representation of dynamics of a physical or abstract system. US DoD

defines a simulation as “a method for implementing a model over time” and model as “a

physical, mathematical, or otherwise logical representation of a system, entity,

phenomenon, or process” [29]. Model and simulations have been extensively used for

training, analysis, planning and demonstration of new technologies and system. The

military uses simulator, simulations and exercises to emulate present or projected

conditions.

Typical Simulation Scenario consists of scenario development, mission execution and

data analysis stages. Scenario development stage involves the creation of various

combat scenarios to be executed by a mission execution stage. Mission execution stage

involves execution of scenario developed. It may include interaction with various

hardware-in-loop and man-in-loop components depending upon the nature of

simulation. Simulation also includes data analysis and logging facility. The potential

use of this facility is to recreate the scenario and to access the operator performance.

Figure 1: Typical Simulation Scenario

Simulation can be categorized into three types:-

1. Live Simulation

2. Virtual Simulation

3. Constructive Simulation

In live simulation real people use simulated equipment in real world. Human in loop or

interactive simulations are live simulations. The most ancient and familiar type of

simulation involving real soldiers, sailors and air crew operating real equipment are also

 12

categorized as live simulation. In virtual simulation real people uses simulated

equipment in simulated world. In constructive simulation, simulated people use

simulated equipment in simulated world. Example of constructive simulation includes

exercises on the map and sand table.

Today Combat Simulation uses a variety of techniques from visualization to use of

artificial intelligence, from data analysis generation tools to data analysis tools for

improving the effectiveness of the simulation. With every passing day new techniques

and methods are emerging in the field of electronic warfare. For example now a days

concept of ‘Computer Generated Forces’ is emerging. They have the high potential in

training, development and acquisition. They use the techniques from Artificial

Intelligence to model and simulate military units ranging from large and complex

vehicle system down to individual soldier.

In a combat simulation, it is important to have a real-time effect of the system behavior.

Real Time Systems are those in which correctness of the system depends not only on

the logical results of computation but also on the time at which the results are produced.

Real-time systems are commonly divided into two categories: hard real-time systems

and soft real-time systems. In hard systems, timing correctness is critically important

and may not be sacrificed for other gains. In some cases, the timing correctness may be

so important that criteria on logical correctness may be relaxed in favor of achieving

timing correctness. In soft real-time system, time correctness is important but not

critical. An occasional failure to observe deadline does not result in performance

degradation. Soft real-time tasks are performed as fast as possible, but are not

constrained by absolute deadlines, and their timing correctness may be sacrificed under

special circumstances such as peak demands on the processor or the communication

medium.

1.2. Hardware in Loop
Hardware-in-loop (HIL) simulation is the kind of simulation used in the development of

complex real-time embedded systems. Software simulation of such systems is not

possible because it does not run in real time with actual digital/analog signals. The

 13

testing on actual system is too much costly. So engineers resort to HIL simulation where

real components interact with simulated components. This enhances productivity by

reducing development cost. It also increases reliability and quality of the product.

Architecture of typical HIL system is depicted in the figure below:-

Figure 2: Architecture of Typical HIL System

A typical Hardware in Loop (HIL) system includes sensors to receive data from the

control system, actuators to send data, a controller to process data, a human-machine

interface (HMI) and a post simulation analysis module [25]. Companies like National

Instrument have developed the product which facilitates engineer and scientist to

develop HIL simulation.

1.3. Man in Loop
In man-in-loop simulation environment various decisions are made by actual decision

makers operating within the simulated environment. One of the examples of the system

is a remote missile controller. The system provides the operator at the base location with

 14

the real time image from the camera fitted on board. Operator observes the image and

instructs the missile guidance system to make adjustment in flight path. Operator can

also make other adjustment from the base location [1]. In Man in loop system

operator/human must have a considerable amount of experience in using the system.

Most of the newly developed defense systems have the human-in-loop capability. These

systems provide the capability to analyze and experiment with the existing and newly

emerging strategic paradigms (like Network Centric Warfare or NCW). DARNOS

(Dynamic Agents Representation of Networks of Systems) has human-in-loop

capability [3].

1.4. Distributed Simulation Standards
Simulators developed prior to the 1980s were standalone system developed to carry out

a specific task. These systems were quite expensive. However with the passage of a

time a need arose to integrate individual simulations together by a network. SIMNET

was the first such project developed by US Military.

1.4.1. Simulator Networking (SIMNET)
DARPA Simulator Networking project or SIMNET [27] was initiated by Jack A.

Thorpe, with the help of Dr. Craig Fields in 1983, with a goal of developing high tech,

realistic, networkable, microprocessor-based simulators that cost 100 times less than

existing simulators. At the time SIMNET was developed, interactive simulation

equipments were expensive stand-alone systems and it was not cost effective to

replicate these facilities. SIMNET solved this problem by taking advantage of the

technological advances in the field of computer network and computer graphics. Now

individual simulation can be integrated together to form a network with individual

simulator interacting in real-time.

Bolt, Beranek and Newman (BBN), Inc. and Perceptronics, Inc. with Delta Graphics,

Inc. were the prime contractors that delivered the SIMNET development system. BBN

developed software for vehicle simulation, networking, artillery resupply and semi

 15

automated forces. Delta Graphics developed the graphic system and terrain databases.

Perceptronics built vehicle simulation shells, controls and sound systems.

The system itself consist of local and long-haul nodes of interactive simulators for

command-and-control systems, tanks, fighting vehicles, artillery and fixed wing aircraft.

Each node in the system is responsible for maintaining the state of simulation entities,

with events and interactions communicated over the network. Event scheduling and

conflict resolution is done in a distributed fashion. Every node creates its perception of

the simulation individually based on what it receives from other nodes. In the time

between each communication of simulation entity states each node executes micro-

simulation of remote entities. This allows estimation of remote simulations to create a

real-time interactive simulation on each node.

1.4.1.1. Benefits and Drawback of SIMNET

The SIMNET protocol was developed at a time when the communication speed of

networks outpaced the processing power of simulators. The result of this can be seen in

the robust but often network-inefficient designs found throughout the protocol.

SIMNET consist of autonomous individual nodes. Therefore, the system is tolerant of

single node failure, and non one node can bring the whole exercise down.

SIMNET uses “dead reckoning” mechanism to compensate for the network delays. The

high tolerance for latency in SIMNET allows simulation to occur between nodes that are

geographically separated.

The broadcast oriented PDU packets that SIMNET uses can get lost during transmission

over the network, allowing some simulation nodes to receive updates while leaving out

unreachable parts of the network.

1.4.2. Distributed Interactive Simulation (DIS)
In 1990, when ARPA transferred the SIMNET program to STRICOM, they changed the

name to Distributed Interactive Simulation or DIS [28]. DIS emerged to become an

open standard for distributed simulation, defined under IEEE Standard 1278. Simulation

 16

Interoperability and Standards Organization (SISO), a sponsor committee for IEEE,

works for improvement in the standard.

The system consists of number of computers interconnected together by a network.

Each computer represents combat elements, defense elements, decision makers and

logistic support elements. All of these participate in a simulated combat. The system is

interactive in that the user of the system can influence the simulation. The user fights

networked opposing forces which may be combination of virtual and semi automated

forces.

1.4.3. High Level Architecture (HLA)
The High Level Architecture (HLA) is a standard framework that supports simulations

composed of different simulation components. Traditional simulation lacks two

properties reusability and interoperability. Reusability as the name indicates means that

simulation components be used in other simulation scenarios and applications.

Interoperability implies that individual simulation components on different distributed

computer platform be combined together to work in real-time.

At the heart of HLA is the software called ‘Run Time Infrastructure’ (RTI) which is

responsible for distribution of information and management of simulation units. The

RTI provides the glue that unifies different concurrent simulation, known as ‘federation

execution’. The modeling and implementation of federates (or individual simulation

components) can be carried out independently of RTI, as a layer of abstraction exists

between federates and the data distribution mechanism of HLA.

RTI provides services which can be grouped into six categories:-

1. Federation Management

2. Declaration Management

3. Object Management

4. Ownership Management

5. Data Distribution Management

6. Time Management

 17

The application of HLA extends beyond military simulation system, as many industrial

and commercial organizations have now adopted it for their modeling and simulation

systems. The importance of HLA to defense simulation and modeling community has

been highlighted by the steps taken to adopt it as unifying standard for all simulation

and modeling systems.

HLA is defined under IEEE standard 1516. Before the development of IEEE standard,

HLA was sponsored by US Defense modeling and simulation office.

1.4.3.1. Benefits and Drawback of HLA

As a software architecture standard that is independent of any particular implementation

HLA is currently unchallenged. It arose from the evolution of previous standards such

as DIS to meet the emerging requirements of the US defense community. The standard

leaves out implementation details in favor of more general rules and guidelines upon

which to base the implementation. Thus the combination of features implemented in the

RTI will be based on the HLA specification, but many vary according to the needs of

the system to be developed.

The rules and guidelines specified in the HLA allows for the creation of readily

expandable synthetic environments in a cost effective manner. HLA allows the addition

of new federates to the system without a major overhaul of existing technology. Once

the simulations models have been developed they are highly reusable as a federate from

one HLA implementation can be configured to run as a part of another. Being able to

interoperate various simulation systems and re-use components help to economize the

acquisition of simulation systems in the long run.

1.5. Summary
In the modern era, it is very important for the defense forces to have a proper training

for peace and war operations. These can be learned through the variety of simulation

tools. Especially, man-in-loop simulation has significant importance in training operator

for efficient use of the system.

 CHAPTER-2

2. LITERATURE SURVEY

 19

2.1. Introduction
Simulation is an imitation of some real thing, state of affairs, or process. The act of

simulating something generally entails representing certain key characteristics or

behavior of a selected physical or abstract system. Simulation has found its application

in the modeling of natural systems, performance optimization, safety engineering,

testing, verification, training and education.

There are numerous classes of simulation. Physical and interactive simulation is one of

them. In Physical simulation, physical objects are substituted for real things. Man-in-

loop simulation is a special kind of physical simulation in which operator is involved,

such as flight simulator or a driving simulator. Human in the loop simulation can

include a computer simulation as a so-called synthetic environment.

Man in the loop simulation has found its application in military simulation or war

games. Military simulations are models in which theories of warfare can be tested and

refined without the need for actual hostilities.

2.2. Air Defense Simulation
Air Warfare is the most rapid, intense, and devastating type of warfare. Due to the fast

pace, uncertain, and dangerous aspects of air warfare, the air force man must be trained

extensively in the fundamental tenets of these operations in order to effectively protect

the aircraft, high-value units, and other military assets. Simulation is one of the many

ways of training.

There has been a lot of work done in the last ten years on the development of simulation

system. The Air-Defense Commander (ADC) is one of them. ADC is a top-view,

dynamic, Java language-based, graphics-driven software implementation of an AEGIS

Cruiser Combat Information Center (CIC) team performing the Battle Group Air-

Defense Commander duties in the Arabian Gulf region [12]. The objective of the system

was to evaluate the performance of ADC. It allows the operator to configure a wide

variety of simulation parameters to create unique and realistic air scenario. Also the

 20

operator can modify the scenario “on-the-fly” to explore different potential outcomes.

All the events in the scenario are logged for reconstruction of particular scenario.

The Area Air-Defense Commander (AADC) Battle Management System was designed

and developed by John Hopkins University’s Advanced Physics Laboratory (APL) for

the United States Navy. Major objective for the development of AADC was theatre-

wide, strategic and operational planning by the AADC. The AADC provides a single,

integrated picture of the battle-space so that a joint commander can quickly gather data

on air and missile attacks and defend against them. Also, the AADC System would

allow the air-defense staff to rapidly create, modify, and evaluate plans through

system’s automated uses which substantially reduced the time of the process. The

system was developed after Gulf War. Prior to the development of system air-defense

planning was done manually by 10-15 peoples and normally would take hours.

The Tactical Decision-Making under Stress (TADMUS) study was one of the first

comprehensive explorations into the causes of the USS Vincennes incident (in which an

Iranian civilian aircraft was shot down). The TADMUS study evaluates the system from

the Human Computer Interaction perspective and found major flaws which resulted in

the degradation of the operator performance. This system ultimately resulted in the

development of Decision Support System (DSS) with improved consoles. The improved

consoles display data in graphical format and facilitate decision making process by the

operator under stressful conditions.

The Multi-Modal Watch Station (MMWS) program was a four-year project focused on

the development of specialized watch station consoles that incorporated improved

human-computer interface (HCI) designs to improve the performance of watch-teams

during battle group air defense and land-attack warfare operations [13]. The primary

focus of the system was to develop the system that incorporates the user requirement

and task instead of forcing the operator to adapt to the system.

Air Threat Assessment studies provide a theoretical and applied basis by defining

specific cue-data relationships and detailing the cognitive process involved in air-

 21

defense assessment [14]. The process was incorporated into a model which was

validated by the air-defense decision makers.

There have been numerous games that attempt to model the military operation and

planning. These include games like ‘Unreal Tournament’, ‘Quake’, ’Medal of Honor’,

‘Harpoon’,’ Strike Fleet’ and ’Fifth Fleet’. These games have become template for

many military research projects. However these games are different from simulation,

because the overall objective of Air Defense Simulation is to get insight into the

performance of battle group air defense.

QualNet® has developed high speed network models that produce realistic simulation

of network centric warfare.

2.3. High Level Architecture
The High Level Architecture (HLA) was developed by the Defense Modeling and

Simulation Office (DMSO) of the Department of Defense to meet the increasing need of

defense related projects [15]. The main aim and objective of the HLA was to provide

highly reusable simulation components that support distributed simulation. It must be

noted that HLA is architecture; it does not provide implementation details.

There are numerous battle simulators that use simulation infrastructure provided by

HLA. JSAF is one of the simulators that provide computer generated forces (CGF) such

as land vehicles, aircraft and ships in dynamic battle scenarios, and operates in a Linux

environment (Fedora Core 3). All federates in this simulation use a commercial runtime

infrastructure (RTI) by MäK. The latest version of CAE's simulator, called STRIVE 2.0,

is a Microsoft Windows application and provides its own full CGF capability, running

under the Defense Modeling and Simulation Office (DMSO) RTI.

One of the requirements of man-in-loop simulation is that simulation must be able to

work in real time. So Run Time Infrastructure (RTI) must provide services to federate

and federation within the bounded response time and also behave in a predictable

fashion. There have been numerous protocols proposed for improving the RTI

communication performance. Virtual reality transfer Protocol (VRTP) is proposed by

 22

Bruzman et. al. [17] that support the real time interaction between federates. However

there is a cost associated with the implementation of such customized protocol and they

are not suitable for all applications. Also, numerous researchers have proposed the use

of Quality of Service (QoS) and real time operating system (RTOS) for an RTI to

provide services in real time.

Most of the techniques proposed by researcher fall into the six main categories:

Network QoS [18,19], RTI multi-threaded asynchronous process [20], Preemptive

priority scheduling [21], globally scheduling service, Real time optimized RTI services,

and special purpose transmission protocol . Azeedine et. al. [16] has proposed a novel

approach to real-time RTI based distributed simulation system. They have proposed an

optimized data distribution management (DDM) scheme for filtering out the irrelevant

data exchanged among the simulated entities. Also, they have used the modified the

time management (TM) LBTS value calculation algorithm. These modifications into the

RTI ensure real time performance.

2.4. Man in Loop Simulation

There are quite a few applications that have man-in-loop support. Air Defense System

Simulation Framework (ADSSF) has the capability of “perception visibility” or man-in-

loop reactivity. It has the DIS, HLA and other interfaces and augments legacy

simulations (SUPPRESSOR, EADSIM, and JIMM).

QualNet® also support Hardware in the loop and man in the loop simulation.

The Dynamic Agents Representation of Networks of Systems (DARNOS) provides

defense community with a modeling and simulation capability for Network Centric

Warfare (NCW) analysis. DARNOS was designed for constructive simulation. The

simulation infrastructure used by DARNOS was the one provided by BattleModel. In

2005 DARNOS was extended with Human-In-Loop (HIL) capability in support of

Headway 2005. DARNOS provides a unique capability for analysts and commanders to

explore different options available for structuring Command and Control system. The

HIL capability of DARNOS can be used to support analysis of different information

 23

dissemination paradigms, and experiment with different networking, command and

control architectures [22].

Figure 3: A System for Network Centric Warfare Analysis

There are already inventions available relating to the control of remotely controlled

missile by human-being [23].The missile is remotely guided on its flight toward target

or it accepts update to the pre-planned target from a person/operator at the base location.

Such system requires the operator who has a considerable amount of experience in

remotely "flying" the missile, gained through simulators or live exercises, and who must

be adept at interpreting the video imagery and evaluating the missile capability of

prosecuting the correct target in real time.

2.5. Network Centric Warfare
Network Centric Warfare is a relatively new term and traces its origins to 1996 when

Adm. William Owens introduced the concept of a “systems of systems” in a paper of

the same name published by the Institute National Security Studies. The US DoD has

mandated that the Global Information Grid (GIG) will be primary technical framework

 24

to support NCW/NCO under which all advanced weapon platform, sensor systems and

command and control centers be linked together.

2.6. Summary

This chapter provided the overview of the trend in the simulation with special emphasis

on Air Defense Simulation.

CHAPTER –3

3. SYSTEM DESCRIPTION AND DESIGN

 26

3.1. Introduction
The Air defense architecture compromises of several battalion command post’s (BCP),

which are installed throughout the border areas and monitor any suspicious moment.

BCP consist of radar, sensor and execution center whose primary functionality is to

send the detected information to the next higher level and receive the instruction from

higher level and execute it with the help of battalion etc. Above the BCP there are

Regiment Command Post’s (RCP) which are fewer in number as compared to BCP’s.

Usually several BCP’s are monitored by a single RCP, depend upon the complexity of

region. The primary function of RCP is to receive the information from BCP and send it

to next higher level. Thus its make the information flow possible. RCP is also connected

to some other RCP; the information passed on during simulation is very sensitive and

must be processed with in a limited time, so that RCP always have more than one path

for information to send next higher level. The next stage consist of forwarding router,

they are mobile nodes, which can change its position during execution. The final stage

in Joint Air Defense Command (JADC) takes the information from different RCP’s,

makes a decision and sends the instruction back to RCP for appropriate action. JADC

are much fewer in number as compared to RCP’s. JADC’s are also connected with other

JADC.

Figure 4: Air Defense System Architecture

 27

HLA simulation is made of number of HLA federates and are called federation. There

can be multiple instances of a particular type of federate, for example several Boeing

747 simulations or F-16 simulations, in a given federation, and this number can change

as the simulation continues.

Our ‘Air Defense Simulation’ consists of following types of federates:-

1. Battalion Command Post’s (BCP)

a. Sensors (e.g RADARs)

b. Guns

2. Regiment Command Post’s (RCP)

3. Joint Air Defense Command’s (JADC)

4. Targets (e.g Fighter Jets)

User can create BCPs and Targets on the digitized map of the Pakistan. For RADAR

and Guns user can specify their type and ranges. For targets, trajectory can be specified.

The system consists of numerous other components besides RADAR, gun and target

federate. There is a federate which allows operator to create a scenario on a digitized

map. It displays the real time target location as the simulation progress. Operator

designates the target on the map and then issue guidance command to the gun. Guidance

commands can use electrical signal, an electromagnetic signals, light transmitted

through an optical fiber, or satellite link relay. ‘UK Tactical Data System Reference

Guide’ specifies a list of the mechanism currently used for command and control by the

strategic system [2].

Architecture of our MIL simulation is depicted below:-

 28

Figure 5: Functional Architecture of MIL Simulation

The physical components include sensors nodes, communication node, platform nodes

and weapon nodes. These components model the physical characteristics of the nodes

that exist within a scenario. The network component models the command and control,

and information sharing responsibilities of the nodes. The User Interface component

includes the Analyst Interface and Operator Interface. The Operator interface module is

used to support the experimental MIL activity. The Analyst Utility includes the

Measures of Performance (MOP) and Measures of Effectiveness (MOE) component

 29

used to evaluate the adopted organizational structures. Some measures are collected and

displayed during the experiment on the Analyst Interfaces [4]

In our present scenario we implement each of the nodes as a federate in a federation.

Also one of the nodes is referred to as super node which acts as a scenario generator. It

generates various nodes in the system.

To support interfacing with actual weapons, we add a virtual federate before the actual

weapon. Virtual federate act as a gateway between the simulated weapon and actual

weapon.

Figure 6: Air Defense Simulation Framework

3.2. HLA
HLA consist of three components:-

1. HLA Rules

2. Interface Specification

 30

3. Object Model Template (OMT)

3.2.1. HLA Rules
Federation Rules ensure proper interaction of simulation in federation. They describe

the responsibility of simulation and federate. HLA compliant simulation must follow

these rules. HLA rules are divided into two groups each consist of five rules. Of these

five rules are for HLA federation and five are for HLA federate.

3.2.2. HLA Interface Specification
The Interface specification defines standard for Run-Time Infrastructure. Interface

specification provides description of the functionality of each service and requires

arguments and pre-conditions necessary for the use of the service. It also contains

information about the related services. Interface specification consists of following type

of information:-

1. Interface name and description of service

2. Supplied arguments

3. Returned arguments

4. Pre Conditions

5. Post Conditions

6. Exceptions

7. Related Services

RTI (Run Time Infrastructure) is the software that implements HLA interface

specification and provides common services to simulation system. RTI separates

simulation and communication. RTI software comprises of:-

1. RTI Executive Process (RtiExec)

2. Federation Executive Process (FedExec)

3. LibRTI library

 31

Figure 7: RTI Components

RTIExec is a globally known process. Its purpose is the creation and destruction of

fedExecs. FedExec allows federates to join and resign, and facilitate data exchange

between participant federates. LibRTI provides services such as federation management,

data management, object management and time management to the participating

federates. These services are provided by the routines in the class ‘RTIAmbassador’. In

order to create a new federate user needs to provide the implementation for the abstract

class ‘FederateAmbassador’.

Figure 8: RTI and Federate Responsibilities

Each Federate also maintains two queues for receiving data from other federates. These

are:-

1. FIFO Receive Queue

 32

2. Priority Time Stamp Queue

Information between federates is exchanged through RTI. The RTI provides functions

for synchronizing activities between federates participating in a federation. It is also

possible to specify explicit synchronization points.

3.2.3. HLA Object Model Template
HLA requires that federations and individual federates be described by an object model

which identifies the data exchanged at runtime in order to achieve federation objectives.

The primary purpose of HLA object model is to facilitate reusability and

interoperability.

HLA object model consist of two sub models: HLA simulation object model (SOM) and

HLA federation object model (FOM). HLA simulation object model (SOM) is used to

specify the capability of an individual federate in relation to the whole federation. HLA

federation object model (FOM) specifies information about data exchanged among

federates. It includes enumeration of all objects and interaction classes, along with

attributes and parameters that characterize these classes.

All the information about HLA FOM and SOM is specified in the “Federation

Execution Data (FED) File”. This file also contains information required by the RTI for

the execution of the simulation. Below are the excerpts from the FED file used by Air

Defense Simulation:-

(FED
 (Federation SimulatePopulation) ;; we choose this tag
 (FEDversion v1.3) ;; required; specifies RTI spec version
(spaces
 (space growth
 (dimension population
)
 (dimension rate
)
)
)
 (objects
 (class ObjectRoot ;; required

(attribute privilegeToDeleteObject reliable timestamp);; realiable mean
tcp, best effort udp

 (class RTIprivate);; necessary
 (class Country
 (attribute name reliable timestamp growth);; growth mean region

 33

 (attribute population reliable timestamp growth)
)
 (class Manager ;; Manager class and subclasses are required
 (class Federation
 (attribute FederationName reliable receive)
 (attribute FederatesInFederation reliable receive)
 (attribute RTIversion reliable receive)
 (attribute FEDid reliable receive)
 (attribute LastSaveName reliable receive)
 (attribute LastSaveTime reliable receive)
 (attribute NextSaveName reliable receive)
 (attribute NextSaveTime reliable receive))
 (class Federate
 (attribute FederateHandle reliable receive)
 (attribute FederateType reliable receive)
 (attribute FederateHost reliable receive)
 (attribute RTIversion reliable receive)
 (attribute FEDid reliable receive)
 (attribute TimeConstrained reliable receive)
 (attribute TimeRegulating reliable receive)
 (attribute AsynchronousDelivery reliable receive)
 (attribute FederateState reliable receive)
 (attribute TimeManagerState reliable receive)
 (attribute FederateTime reliable receive)
 (attribute Lookahead reliable receive)
 (attribute LBTS reliable receive)
 (attribute MinNextEventTime reliable receive)
 (attribute ROlength reliable receive)
 (attribute TSOlength reliable receive)
 (attribute ReflectionsReceived reliable receive)
 (attribute UpdatesSent reliable receive)
 (attribute InteractionsReceived reliable receive)
 (attribute InteractionsSent reliable receive)
 (attribute ObjectsOwned reliable receive)
 (attribute ObjectsUpdated reliable receive)
 (attribute ObjectsReflected reliable receive)))
) ;; end ObjectRoot
) ;; end objects
 (interactions
 (class InteractionRoot reliable timestamp
 (class TransferAccepted reliable timestamp
 (parameter servingName)
)
 (class RTIprivate reliable timestamp)
 (class Manager reliable receive
 (class SimulationEnds reliable receive)
 (class Federate reliable receive
 (parameter Federate)
 (class Request reliable receive
 (class RequestPublications reliable receive)
 (class RequestSubscriptions reliable receive)
 (class RequestObjectsOwned reliable receive)
 (class RequestObjectsUpdated reliable receive)
 (class RequestObjectsReflected reliable receive)
 (class RequestUpdatesSent reliable receive)
 (class RequestInteractionsSent reliable receive)
 (class RequestReflectionsReceived reliable receive)
 (class RequestInteractionsReceived reliable receive)
 (class RequestObjectInformation reliable receive
 (parameter ObjectInstance)))
 (class Report reliable receive
 (class ReportObjectPublication reliable receive
 (parameter NumberOfClasses)
 (parameter ObjectClass)
 (parameter AttributeList))
 (class ReportObjectSubscription reliable receive

 34

 (parameter NumberOfClasses)
 (parameter ObjectClass)
 (parameter Active)
 (parameter AttributeList))
 (class ReportInteractionPublication reliable receive
 (parameter InteractionClassList))
 (class ReportInteractionSubscription reliable receive
 (parameter InteractionClassList))
 (class ReportObjectsOwned reliable receive
 (parameter ObjectCounts))
 (class ReportObjectsUpdated reliable receive
 (parameter ObjectCounts))
 (class ReportObjectsReflected reliable receive
 (parameter ObjectCounts))
 (class ReportUpdatesSent reliable receive
 (parameter TransportationType)
 (parameter UpdateCounts))
 (class ReportReflectionsReceived reliable receive
 (parameter TransportationType)
 (parameter ReflectCounts))
 (class ReportInteractionsSent reliable receive
 (parameter TransportationType)
 (parameter InteractionCounts))
 (class ReportInteractionsReceived reliable receive
 (parameter TransportationType)
 (parameter InteractionCounts))
 (class ReportObjectInformation reliable receive
 (parameter ObjectInstance)
 (parameter OwnedAttributeList)
 (parameter RegisteredClass)
 (parameter KnownClass))
 (class Alert reliable receive
 (parameter AlertSeverity)
 (parameter AlertDescription)
 (parameter AlertID))
 (class ReportServiceInvocation reliable receive
 (parameter Service)
 (parameter Initiator)
 (parameter SuccessIndicator)
 (parameter SuppliedArgument1)
 (parameter SuppliedArgument2)
 (parameter SuppliedArgument3)
 (parameter SuppliedArgument4)
 (parameter SuppliedArgument5)
 (parameter ReturnedArgument)
 (parameter ExceptionDescription)
 (parameter ExceptionID)))
 (class Adjust reliable receive
 (class SetTiming reliable receive
 (parameter ReportPeriod))
 (class ModifyAttributeState reliable receive
 (parameter ObjectInstance)
 (parameter Attribute)
 (parameter AttributeState))
 (class SetServiceReporting reliable receive
 (parameter ReportingState))
 (class SetExceptionLogging reliable receive
 (parameter LoggingState)))
 (class Service reliable receive
 (class ResignFederationExecution reliable receive
 (parameter ResignAction))
 (class SynchronizationPointAchieved reliable receive
 (parameter Label))
 (class FederateSaveBegun reliable receive)
 (class FederateSaveComplete reliable receive
 (parameter SuccessIndicator))

 35

 (class FederateRestoreComplete reliable receive
 (parameter SuccessIndicator))
 (class PublishObjectClass reliable receive
 (parameter ObjectClass)
 (parameter AttributeList))
 (class UnpublishObjectClass reliable receive
 (parameter ObjectClass))
 (class PublishInteractionClass reliable receive
 (parameter InteractionClass))
 (class UnpublishInteractionClass reliable receive
 (parameter InteractionClass))
 (class SubscribeObjectClassAttributes reliable receive
 (parameter ObjectClass)
 (parameter AttributeList)
 (parameter Active))
 (class UnsubscribeObjectClass reliable receive
 (parameter ObjectClass))
 (class SubscribeInteractionClass reliable receive
 (parameter InteractionClass)
 (parameter Active))
 (class UnsubscribeInteractionClass reliable receive
 (parameter InteractionClass))
 (class DeleteObjectInstance reliable receive
 (parameter ObjectInstance)
 (parameter Tag)
 (parameter FederationTime))
 (class LocalDeleteObjectInstance reliable receive
 (parameter ObjectInstance))
 (class ChangeAttributeTransportationType reliable receive
 (parameter ObjectInstance)
 (parameter AttributeList)
 (parameter TransportationType))
 (class ChangeAttributeOrderType reliable receive
 (parameter ObjectInstance)
 (parameter AttributeList)
 (parameter OrderingType))
 (class ChangeInteractionTransportationType reliable receive
 (parameter InteractionClass)
 (parameter TransportationType))
 (class ChangeInteractionOrderType reliable receive
 (parameter InteractionClass)
 (parameter OrderingType))
 (class UnconditionalAttributeOwnershipDivestiture reliable
 receive
 (parameter ObjectInstance)
 (parameter AttributeList))
 (class EnableTimeRegulation reliable receive
 (parameter FederationTime)
 (parameter Lookahead))
 (class DisableTimeRegulation reliable receive)
 (class EnableTimeConstrained reliable receive)
 (class DisableTimeConstrained reliable receive)
 (class EnableAsynchronousDelivery reliable receive)
 (class DisableAsynchronousDelivery reliable receive)
 (class ModifyLookahead reliable receive
 (parameter Lookahead))
 (class TimeAdvanceRequest reliable receive
 (parameter FederationTime))
 (class TimeAdvanceRequestAvailable reliable receive
 (parameter FederationTime))
 (class NextEventRequest reliable receive
 (parameter FederationTime))
 (class NextEventRequestAvailable reliable receive
 (parameter FederationTime))
 (class FlushQueueRequest reliable receive
 (parameter FederationTime)

 36

)
) ;; end Service
) ;; end Report
) ;; end Federate
) ;; end Manager
) ;; end InteractionRoot
) ;; end interactions
(ContextProviders
 (CP 11 MotionSensor
 (attribute X reliable timestamp)
 (attribute Y reliable timestamp)
 (attribute Z reliable timestamp)
 (attribute ID reliable timestamp)
)
 (CP 22 TemperatureSensor
 (attribute Temperature reliable timestamp)
)
) ;; end FED

Creation of FED file manually is a complex process. To facilitate the creation of FED

file and specification of HLA FOM and SOM, DMSO has provided the tool named

“Object Model Development Tool” (OMDT). OMDT automate the process of creation

of FED file.

OMT describes the data that is exchanged. Since the data that is exchanged is machine

dependent therefore data is converted into the format appropriate for network. This

process is known as parameter marshaling. Many systems define the machine

independent representation of the data such as external data representation (XDR) to

resolve data representation and transmission issues.

Our message format is simple. Each target that is detected by the RADAR is given a

unique ID in the range from 0-999. Each of the fighter jet transmits its latitude,

longitude and height in a 12 byte message described as follows:-

4 bytes 4 bytes 4 bytes

latitude longitude Height
Table 1: Fighter Jet Data Format

When the target is detected by the RADAR, it is assigned a unique ID and upon

confirmation it is passed to the operator of man-in-the-loop gun. The message format is

as follows:-

 37

2 bytes 4 bytes 4 bytes 4 bytes

Target-ID latitude longitude Height
Table 2: Detected Target Data Format

3.3. Communication Mechanism
There are number of options available for data transmission/reception between federates

distributed across multiple machine. These are:-

1. Distributed Component Object Model (DCOM)

2. Microsoft Messaging Queue (MSMQ)

3. Remote Procedure Call (RPC)

4. Sockets

3.3.1. Distributed Component Object Model
RTI, the central component of HLA based simulation model, can use DCOM for

communication. DCOM is intended to provide distributed object services i.e. client and

server may reside on different computers with client requesting the services from server

remotely. The DCOM mechanism redirects all request to a ‘server’ that creates an

instance of the object and passes the reference back to the client. The client can then

invoke the methods on this object. This method cannot be used in our implementation

because we do not want new instance of RTI to be created at each request. Although

there exist mechanisms that allow for different applications to join to a single

component but there are other issues like threading and marshalling, which make it

more difficult to smoothly implement RTI in this fashion.

The RTI components can also be implemented as separate distributed services. But it

has a drawback that more network bandwidth is required to transfer information

between different RTI components then is required to execute those services.

3.3.2. Microsoft Messaging Queue
The second option that can be used by the RTI for communication between federates is

Microsoft Messaging Queue. This is very enticing. This enables to establish a single

 38

queue where messages can be stored and retrieved. The idea was to send the service

requests as messages and then let the RTI manage the queue and retrieve messages from

it and then execute the services. But this has a lot of overheads and it results in

performance degradation.

3.3.3. Sockets
The third option is to use low level TCP/IP sockets. TCP/IP is a specification of

computer networks protocol which defines a set of rules to enable computers to

communicate over the network. The rules contain information about message

formatting, addressing and routing mechanism.

TCP/IP is implemented as a set of four layers which are as follows:-

1. Application Layer

2. Transport Layer

3. Internet Layer

4. Link Layer

Application uses the functionality of the layers by creating sockets.

3.3.4. Remote Procedure Call
The last option is to use RPC (Remote Procedure Call) for communication.

There are two mechanism used for RPC:-

1. Doors

2. Sun RPC

Figure 9: Remote Procedure Call

 39

Doors provide the mechanism for RPC. Doors are identified by a descriptor within a

process (client or server) and pathnames outside the process. A server creates a door by

calling ‘door_create’, whose argument is a pointer to the procedure that will be

associated with this door, and whose return value is a descriptor for the newly created

door. The server then associates a pathname with the door descriptor by calling

‘fattach’. A client opens a door by calling ‘open’, whose argument is the pathname that

the server associated with the door, and whose return value is the client descriptor for

this door. The client then calls the procedure by calling ‘door_call’.

Sun RPC is another mechanism for RPC. When we require network communications

among various pieces of the application, most applications are written using explicit

network programming, that is, direct calls to either the socket API or the XTI API.

However an alternative way for writing a distributed application using implicit network

programming does exist. The calling procedure (the client) and the process containing

the procedure being called (the server) can be executing on different hosts. The fact that

the client and server are running on different hosts, and that network I/O is involved in

the procedure call, is far the most part transparent. Sun RPC uses XDR, the External

Data Representation standard, to describe and encode the data. XDR is both a language

for describing the data and a set of rules for encoding the data.

Following is the steps executed in Remote Procedure Call:-

1. The server is started and it registers itself with the port mapper software on the

server. The client is then started, which contacts the port mapper on the server host

to find the server’s ephemeral port. Client then establishes TCP connection with the

server.

2. The client calls a local procedure, called the client stub. The stub packages the

arguments to the remote procedure into some standard format, and then builds one

or more network messages. The packaging of client’s argument into a network

message is termed as marshalling.

3. These network messages are sent to the remote system by the client stub by using

TCP/IP protocol.

 40

4. A server stub procedure on receipt of request from client, un-marshals the arguments

from the network messages.

5. The server stub invokes a local procedure passing it the argument that it received

from the client. When the server procedure is finished, it returns to the server stub.

6. The server stub marshals the return value and then sends back the message to the

client.

7. The client stub reads the network messages from the local kernel.

8. After possibly converting the return values, the client stub finally returns to the

client function.

3.3.5. Comparison of Communication Mechanism
The comparison of communication mechanism is given in the table below:-

 Sockets DCOM MSMQ RPC
Speed of execution Fast Slow Slowest Slow
Programming Effort Highest Medium Medium Medium
Learning required Less More More Medium
Network Bandwidth require Less More More More

Table 3: Communication Mechanism Comparison

In our implementation we use sockets because of the following reasons

a. It gives us more control of our design

b. It does not make us dependent on a technology. Socket APIs are available for

number of platforms

c. It allows us more flexibility in our design

d. It makes our RTI truly platform independent. As TCP/IP sockets can

communicate on any platform.

3.4. RTI Services
RTI provides services which can be grouped into six categories:-

1. Federation Management

2. Declaration Management

3. Object Management

4. Ownership Management

 41

5. Data Distribution Management

6. Time Management

3.4.1. Federation Management
“Federation Management” refers to the creation, dynamic control, modification and

deletion of federation execution [26].

Figure 10: Federation Management Life Cycle

There are three types of federates in our Air Defense Simulation. Gun Federate,

RADAR federate and Fighter Jet Federate. Fighter Jet Federate is instantiated when the

user specifies the flight trajectory of the fighter jet on the map. Similarly gun federate

and RADAR federate is instantiated when the user specify the location of gun and

RADAR on the map respectively. Operator can specify the flight trajectory, gun

location and RADAR location in any order. These federate on start up join the

federation. The first federate that starts also creates the ‘Air Defense Federation’.

 42

3.4.2. Declaration Management
Federate use ‘Declaration Management’ service provided by the RTI to declare their

intention to generate and receive information. A federate must invoke appropriate

declaration management services before it register object instances, update instance

attribute values, and send interactions [26]. Federate sometimes also uses ‘Data

Distribution Management’ service along with ‘Declaration Management’ service to

declare their intention to receive information. Declaration management service of HLA

includes publication, subscription and supporting control functions.

 ‘Declaration Management’ service can be best illustrated by the diagram below:-

Figure 11: RTI Declaration Management Service

Each federate identifies its publication and subscription interests to the RTI LRC using

the RTIAmbassador methods subscribeObjectClassAttributes() and

publishObjectClass().The RTI signals a federate to start registration for object classes

only when there is another federate who is interested in receiving the information. If no

 43

federate has shown interest in the information published by the federate, then that

information is not put on the network.

Following table list the details of objects published or subscribed by federates in the Air

Defense simulation.

 RADAR Gun Fighter Jet

Publish

Detected target

information

None

Latitude, Longitude and

Elevation

Subscribe

None

Target

Information

None

Table 4: Object Subscription and Publication Table

Similarly the following table lists the interactions generated by the Air Defense

Simulation:-

 RADAR Gun Fighter Jet

Publish

Target Detected

Target Hit

Target Engaged

Subscribe

Target Hit

Target

Detected

Target Engaged

Table 5: Interaction Publication and Subscription Table

3.4.3. Object Management
‘Object Management’ includes instance registration and instance updates on the object

production side and instance discovery and reflection on the object consumer side.

Object management also includes methods associated with sending and receiving

interactions, controlling instance updates based on consumer demand, and other

miscellaneous support functions [8]. ‘Object Management’ service can best be

illustrated by the diagram below:-

 44

Figure 12: RTI Object Management Service

The RTIAmbassador method registerObjectInstance() inform LRC about the new object

instance. Registration introduces an object instance to the federation. Updating of the

values require other methods. To update the value of attribute the RTIAmbasssador

method updateAttributeValues() is used. The federate who has previously discovered

the new object receives the value by the FederateAmbassador callback method

reflectAttributeValues ().

As stated previously in the section ‘HLA Object Management Template’, each federate

is responsible for any data marshalling (encoding). The LRC does not enforce any

encoding and does not know anything about contents. It only knows about name of

object classes and their handles.

Object attribute updates and interactions are conveyed between federates using either

‘reliable’ or ‘best effort’ transportation scheme.

 45

3.4.4. Ownership Management
‘Ownership management’ service of the RTI is used by federates and the RTI to transfer

ownership of instance attributes among federates. The ability to transfer ownership of

instance attributes among federates shall be required to support the cooperative

modeling of a given object instance across a federation [26]. The ownership exchange

among federates take place using either “Push” and/or “pull” model. A federate can

give away responsibility for one or more attributes of an object instance or can take

ownership of an object instance. In case of Air Defense Simulation ownership of object

is held by the object that initially created it.

3.4.5. Time Management
Accurate notation of time is important for distributed simulation. HLA based simulation

can be categorized into two types on the basis of type of time management. Simulation

can be “scaled real time simulation” or “as-fast-as-possible simulation”. In “scaled real

time simulation” where wall-clock time and simulation time have a linear relationship

expressed as:-

 T=S*W

where W is duration in wall-clock time, S is the scale factor and T is the duration in

simulation time. When S=1 simulation is said to be a real-time simulation. Man-in-the

loop and interactive simulation fall in this category.

In the simulation it is important to have a proper protocol for time management and

synchronization. Some protocol like TCP/IP provides inherent synchronization at the

transport layer whereas others like UDP/IP do not provide synchronization. Since HLA

is independent and does not depend on other protocols for time management, it has its

own mechanism for synchronization.

3.4.5.1. Time Management in HLA

HLA federation has a concept of logical time which is independent of the local time of

federates. There are four basic mechanisms for time management:-

1. Event Driven

 46

2. Time Stepped

3. Parallel Discrete Event Simulation

4. Wall clock time driven

In ‘Wall clock time driven’ simulation mechanism, simulation time is derived from wall

clock time. Wall-clock-time driven federates do not require that events be processed in

time-stamp order. These simulations usually have hard and/or soft real-time constraints.

Man-in-loop simulations use ‘wall-clock time driven’ management policy. In order to

ensure a real-time behavior, they employ ‘clock synchronization’ and ‘time

compensation’ algorithm.

Unlike message ordering and time-stamping requirements that are largely independent

of the goals of the federation and what is being simulated. ‘Clock Synchronization’ and

‘time compensation’ are highly dependent on federation objectives and details of the

model. Scheduling algorithms require detailed information concerning the computations

performed within the federate, and thus are not well suited for implementation within

the RTI. Time compensation techniques require information concerning the semantics

of what is being simulated. Such information is not available within the RTI.

Clock synchronization is needed because hardware clocks in different (and

geographically distributed) processors drift relative to one another. This can lead to

serious problems in the distributed simulation if differences are large. The most used

clock synchronization solution on the internet is the Network Time Protocol (NTP)

which is a layered client-server architecture based on UDP message passing. NTP is a

hierarchical protocol in which nodes attached to highly accurate time sources such as

radio clocks, atomic clocks, and GPSs (Global Positioning Systems), called in NTP

parlance stratum ones, share time among them and provide time to other NTP servers

over the network.

 47

Figure 13: Time Distribution

It is important to have this kind of time synchronization in a man-in-loop simulation

because usually such systems are coupled with a decision support system. These

systems maintain logs for the replay of the scenario. In such cases if the system time is

different, it become very difficult to correlate information needed in support of critical

decision required for mission planning and execution.

Also for real time system behavior, time compensation is needed to account for the

network delay. Network delay can be expressed as:-

Where

dproc = processing delay typically a few microsecs or less

dqueue = queuing delay depends on congestion

dtrans = transmission delay L/R, significant for low-speed links

dprop = propagation delay from few microsecs to hundreds of msecs

Although queuing delay is an important delay factor in the packet switched network. In

the simulation we assume that there is no queuing delay.

proptransqueueprocnodal ddddd +++=

 48

3.4.6. Data Distribution Managament
Data Distribution Management (DDM) services may be used by joined federates to

reduce both the transmission and the reception of irrelevant data. Whereas Declaration

Management (DM) services provide information on data relevance at the class attribute

level, DDM services add the capability to further refine the data requirements at the

instance attribute level [15].

3.5. Scenario Generator
Our scenario generator allows creation of various scenarios. It includes creation of

various targets, platforms (both fixed and moving), command and communication post,

sensors and decision support system.

3.5.1. Simulating Environment
For the current implementation, it is assumed that environment is static.

3.5.2. Simulating Fixed Wing Aircraft
Fixed wing aircrafts are governed by the laws of physics. The simplest model of aircraft

moves forward, and maneuvers within the three rotational degree of freedom, i.e. pitch,

roll and yaw. These reflect the main effect from changing the rudder, elevator and

ailerons on a traditional aircraft and together with the thrust they constitute the primary

flight controls or actuators.

Aircraft has a variety of interoceptive sensors and exteroceptive sensors. The

interoceptive sensors are those sensors which measure the current state of the aircraft.

Exteroceptive sensors are sensors which measure or monitor the environment outside

the aircraft. Exteroceptive sensors include On-board RADAR, Forward looking infrared

camera.

For the simplicity we assume that aircraft starts at the particular location. It is further

assumed that aircraft change it location linearly according to the dead-reckoning

algorithm.

 49

3.5.3. Simulating Guns
The scenario generator allows creation of simulated guns node. The parameters of the

guns can be specified while creating a node. Typical parameters of the gun are:-

a. Range of Gun

b. Mounting of Gun

c. Caliber of Gun

d. Rate of fire

e. Max Speed of Target that can be engaged

f. Sensors attached to the gun

g. Operating modes of the gun (automatic/manual)

h. Type of ammunition

i. Training speed of the gun

j. Elevation speed of the gun

k. Elevation range

l. Traverse of the gun

m. Blind Arc of the gun

n. Muzzle velocity of the gun

o. Misfire probability

p. Fire delay

q. Stabilized platform (yes/no)

3.5.4. Simulating RADAR
The scenario generator allows creation of RADAR node. There are various types of

RADAR classified on the basis of their purpose and usage. Typical parameters of

interest are specified below:-

a. Range Scale

b. Scan Rate

c. Sector or full scan

d. Operating Frequency

e. Pulse Repetition Frequency

 50

f. Pulse Duration

g. Threshold for detection

h. Antenna rotation period

i. Set the Tilt of antenna

j. Gain

k. Use the IFF facility

l. STC (on /off)

m. Reduce Clutter

n. Reduce Rain effect

o. RADAR mode

a. Long Range

b. Short Range

c. ASW

d. Weather

e. Beacon

p. Display Mode

a. North Stabilized

b. Relative bearing

3.6. Summary
The system consists of many components integrated together to form an ‘Air Defense

Simulation’. The system ensures real time performance with time synchronization, data

marshalling and filtering.

 CHAPTER – 4

4. EXPERIMENT AND RESULT

 52

4.1. Introduction
This chapter contains detailed description of the experiments conducted along with their

results. The simulation is compared with that of the existing simulation and results were

found to be comparable. Also log was maintained for each scenario so that it can be

recreated.

4.2. Different Scenarios
Our system consists of RTI Network Centric Framework which displays information

about all the federate in a federation. The information relates to federation management,

declaration management, object management, time management and context providers.

Figure 14: RTI Network Centric Framework

4.2.1. Single Target and Single Gun Scenario
In this scenario, we assume that aircraft start at the location. It changes it location

linearly. It publishes the information about its current location (latitude, longitude and

elevation) which is subscribed to by the RADAR. When the target enters within the

range detectable by RADAR, it is detected and system generate track on it. The

information is then passed on to the Gun. In this particular scenario we assume that

there is a single target and the RADAR beam pattern is circular.

 53

Figure 15: Single Target Scenario

Map display allows the operator to feed in the target trajectories. It allows for the

placement of defense forces (RADAR) which is displayed superimposed on the map.

The RADAR is a simple sector scanning RADAR. Furthermore, the display allows for

the starting of simulation.

Once the target is detected by the RADAR, the information about the target is passed on
to the gun federate.

 54

Figure 16: Gun Federate

4.2.2. Multiple Targets and Single Gun Scenario
In this scenario there are two targets which are moving closing to each other. The

targets are detected by single RADAR. Furthermore it is assume that there is a single

gun within the area covered by RADAR.

Figure 17: Multiple Target Scenario

 55

4.2.3. Multiple Crossing Targets and Single Gun Scenario
In this scenario there are two targets which cross each other. They are detected by the

RADAR. The target coordinates are given to the gun for engagement. In the multiple

target scenarios it is observed that both target are detected by RADAR. However the

first target that is engaged is the one that is closer to the gun.

Figure 18: Multiple Crossing Targets

4.2.4. Multiple Crossing Targets and Multiple Guns Scenario
The scenario is the same as the above scenario except that there are now multiple guns

(two). Now the gun which is closer to target detects the targets. If the gun is placed

close together, then was observed that 70% of the time, gun locks on to the same target

and other target is missed by the gun.

 56

Figure 19: Multiple Crossing Targets and Multiple Guns

4.3. Summary
In this chapter the detailed results of the experiments were presented. The experiments

were conducted using “RTI Network Centric Framework”, “Scenario Generator” and

“Gun Simulator”. The experiment was repeated to verify the results.

CHAPTER-5

5. CONCLUSION

 58

5.1. Introduction
This chapter is aimed to provide the key conclusions and future directions for the HLA

based framework for man-in-the-loop simulation of Air Defense System.

5.2. Findings
Following are the main findings of this research.

5.2.1. Java and C++ Integration
“RTI Network Centric Framework” and all the libraries are developed in Java whereas

the main simulation code uses C++. It was observed that JNI and java makes the

system a little bit slower. The performance could be improved by using C++ entirely.

5.2.2. Time Management
In a real time man-in-loop simulation it is difficult to impose any time management

since scenario can be modified at run-time. However in our case the scenario is pre-

defined before simulation starts therefore time management policy can be defined.

“RADAR Federate” act as a time regulating federate for the “Gun Federate”, which is

constrained.

5.3. Future Directions
5.3.1. Tracking Algorithm
The purpose of the research was to develop a framework so no real emphasis were laid

on the tracking algorithm. However, tracking algorithms can be incorporated in the

simulation.

5.3.2. Environment Modeling
Environment model can be incorporated in the system. Environment can greatly affect

the RADAR performance.

 59

5.3.3. Distributed Data Management
Since the simulation is limited in scope, the system does not implement the DDM

service of HLA. DDM act as a filter on the updates. In our scenario the target

continuously send its coordinate to all the RADAR federates known to the system.

However restriction can be imposed like send the updates to the southern region when

RADAR enters from the south side.

5.3.4. Decision Support System
Man-in-loop simulation usually has an integrated ‘Decision support system’ which

evaluates the operator performance. In our particular scenario we only evaluate operator

performance by the number of target detected by the RADAR and number of targets

actually hit by the operator. More complex ‘Decision support system’ can be

incorporated which allow us to replay the simulation.

5.4. Summary
We developed the man-in-loop simulation for Air Defense system using HLA. In our

research we are able to identify key components for the developed of such system. Also

key issues during the development of framework are discussed.

 60

6. REFERENCES

[1]. “Missile system incorporating a targeting aid for man-in-the-loop missile controller”
http://www.freepatentsonline.com/5605307.html

[2]. “UK Tactical Data System Reference Guide”http://www.tdsrg.co.uk/v1c1.htm

[3]. DARNOS http://www.kesem.com/DARNOS.asp?Validate=True

[4]. Gil Tidhar, Michael Ling, Orly Shibi-Marr and Mario Selvestrel, “Human-in-loop

simulation support to experimentation and concept development”

[5]. Heinze, C., Goss, S., Josefsson, T., Bennett, K., Waugh, S., Lloyd, I., Murray, G.

and Oldfield, J., (2002) “Interchanging agents and humans in military simulation”,

in AI Magazine, 23(2):37—47.

[6]. Richard Hall, “Path Planning and Autonomous Navigation for use in Computer

Generated Forces”, Scientific Report June 2007.

[7]. Ling Rothrock, “Using Time Windows to Evaluate Operator Performance”,

Department of Biomedical, Industrial, and Human Factors Engineering Wright State

University

[8]. RTI 1.3-Next Generation Programmer’s Guide Version 3.2, US DoD Defese

Modeling and Simulation Office

[9]. F. Zhang and B. Huang, “HLA-Based Network Simulation for Interactive

Communcation System”, First Asia International Conference on Modelling &

Simulation, 2007

 61

[10]. T. Lee, S. Yoo, and C. Jeong, “HLA-Based Object-Oriented

Modeling/Simulation for Military System”, AsiaSim 2004, LNAI 3398,pp. 122-

130,2005

[11]. E. Biegeleisen, M. Eason, C. Michelson, and R. Reddy. “Network in the loop

using HLA, distributed OPNET simulations, and 3D visualizations”. In Military

Communications Conference, 2005. MILCOM 2005. IEEE, volume 3, pages 1667--

1671, Oct. 2005

[12]. Sharif H.Calfee, “Autonomous Agent-Based Simulation of an AEGIS Cruiser

Combat Information Center Performing Battle Group Air-Defense Commander

Operations”, Mater Thesis, Naval Postgraduate School ,March 2003.

[13]. Osga, Glenn, et al., “Design and Evaluation of Warfighter Task Support

Methods in a Multi-Modal Watch Station”, Space and Naval Warfare Systems

Center (SPAWAR), San Diego, May 2002, p. iii.

[14]. Liebhaber, Michael J. and Feher, Bela, “Air Threat Assessment: Research

Model, and Display Guidelines”, p. 1.

[15]. IEEE Std 1516-2000, 1516.1-2000, 1516.2-2000, Standard for Modeling and

Simulation High Level Architecture (HLA)
_
[16]. Azzedine Boukerche and Kaiyaan Lu,”A Novel Approach to Real-Time RTI

based distributed simulation system” in Proceeding of IEEE 38th Annual Simulation

Symposim, 2005

[17]. Bruzman, Don, Zyada ,Michael , Wasten, Kent and Macedonia, M. “Virtual

reality transfer protocol Design rationale”, Proceeding of the Sixth IEEE

International workshop on enabling technologies: Infrastructure for Callaborative

 62

enterprises, Distributed system aspect of sharing a virtual reality, June 1997 pp 179-

186

[18]. Real-Time CORBA 2.0: Dynamic Scheduling Specification, November 2003,

http://www.omg.org/

[19]. L Georgiadis, R Guerin, V Peris and KN Sivarajan, “Efficient network QoS

provisioning based on per node traffic shaping”, IEEE/ACM Transaction on

Networking ,1996

[20]. Hui Zhao and Nicolas D. Georganas, “HLA real time Extension”, Proceeding of

Fifth IEEE International Workshop on Distributed Simulation and real-time

Applications, Aug 2001.

[21]. Douglos C. Schmidt, David L. Levine and Chris Cleeland, “Architectures and

Developing High Performance, real-time ORB Endsystems Advances in

Computers”, Academic Press, Ed.,

[22]. Gil Tidhar, Michael Ling, Orly Shibi Marr and Mario Selvestrel, “Human-in-

Loop Simulation Support to Experimentation and Concept Development”.

[23]. Batchman, Loren E. (Solana Beach, CA), Foster and Carl G. (Tucson, AZ)

,“Missile system incorporating a targeting aid for man-in-the-loop missile

controller”, United States Patent 5605307,

http://www.freepatentsonline.com/5605307.htm

[24]. “Hardware in the loop/Man in the loop”, Case Study by QualNet

[25]. “LabVIEW FPGA in Hardware-in-the-Loop Simulation Applications”,

ftp://ftp.ni.com/pub/devzone/pdf/tut_3567.pdf

 63

[26]. High Level Architecture Interface Specification Version 1.3, U.S. Department of

Defense

[27]. L.Neal Cosby, “SIMNET-An Insider’s Perspective”,

http://www.sisostds.org/webletter/siso/iss_39/art_202.htm

[28]. “IEEE Standard 1278.1-1995 (and revisions)”, Standards Committee on

Interactive Simulation (SCIS) of the IEEE Computer Society, Approved September

21, 1995.

[29]. U.S. Department of Defense, ‘‘DoD Modeling and Simulation (M&S)

Management,’’ Department of Defense Directive, Number 5000.59, January 4, 1994.

AN HLA BASED MAN IN THE LOOP
SIMULATION FRAMEWORK FOR AN

AIR DEFENSE SYSTEM

Syed Rauf ul Hassan
2005-NUST-MS PhD.CSE 05

Master Thesis

Scheme of Presentation
Definition of Framework
Overview of HLA
Overview of “Man in Loop” and “Hardware in Loop”
Functional Architecture of simulation
Implementation
Conclusion

WHAT IS FRAMEWORK?
A framework is a basic conceptual structure used to solve or address
complex issues. This term is broadly used with the software.
A software framework, is an abstraction in which common code providing
generic functionality can be selectively overridden or specialized by user
code providing specific functionality.
Frameworks are similar to software libraries in that they are reusable
abstractions of code wrapped in a well-defined API. Unlike libraries,
however, the overall program's flow of control is not dictated by the caller,
but by the framework.

FRAMEWORK
BFC is a RAD framework for developing database-centric distributed computing applications in a .NET
environment.
CNI (Compiled Native Interface) is a software framework for the GNU GCJ compiler which allows Java
code to call and be called by native applications (programs specific to a hardware and operating system
platform) and libraries written in C++.
Component-based Scalable Logical Architecture (CSLA) is a standard way to create robust object
oriented programs using business objects, implemented using .NET.
Java Native Interface (JNI) allows Java code running in the Java virtual machine (VM) to call and be
called by native applications (programs specific to a hardware and operating system platform) and
libraries written in other languages, such as C, C++ and assembly.
Leonardi is an open source application framework for GUI applications
Spring is an open source application framework for the Java platform.
Symfony is a popular open source application framework for PHP Platform.
CodeIgniter is a popular open source application framework for PHP Platform.
Rails is a libre software application framework for the Ruby Platform.
Zend Framework is a powerful and extensible application framework, with a loosely-coupled component
library for PHP Platform.
Twisted is an open source event-driven application framework written in Python for developing Internet
applications

Simulation
Simulation is the imitation of some real thing, state of affairs, or process.
Simulation is used in many contexts.
Computer simulation is used for modeling natural processes

INTRODUCTION HLA
HLA is a general purpose architecture for simulation reuse and
interoperability.
Using HLA computer simulations can communicate with other computer
simulations regardless of the platform. Communication between different
simulations is managemed by Runtime Infrastructure (RTI)
HLA is defined under IEEE Standard 1516.
In our work we propose a simulation framework based on HLA.

BIG PICTURE OF HLA

WHY HLA?
There are many simulation frameworks available like

OMNET++ (discrete-event simulation development)
ModelSim (ASIC and FGPA simulation software)
QualNet (Wired and Wireless network simulation)

HLA is developed specifically for the needs of defense industry.
Initially developed by US DoD , it has become a standard for
developing simulation. It has evolved to become IEEE 1516
standard.

HLA OVERVIEW
HLA consists of following components

HLA Rules
Interface Specification
Object Model Template

HLA Rules
There are 10 rules out of which five are concerning the federates and five about
federation
Ensure proper interaction of simulation in federation.
Describe the simulation and federation responsibilities

HLA OVERVIEW

Interface Specification
Defines the services provided by RTI (Run Time Infrastructure)
Identifies “callback” functions each federate must provide

HLA INTERFACE SPECIFICATION
RTI services separate simulation and communication
HLA RTI services are classified into six types and can be used to manage
individual simulation in a federation

Federation Management
Declaration Management
Object Management
Ownership Management
Data Distribution Management
Time Management

HLA OVERVIEW
Object Model Template

Provides a common method for recording information
Establish the format of key models

Federation Object Model
Simulation Object Model
Management Object Model

Object Model Template (OMT)
HLA OMT is used to specify FOM and SOM
HLA Object Model shall consist of the following components:-

Object Model Identification Table
Object Class Structure Table
Interaction Class Structure Table
Attribute Table
Parameter Table
Routing Space Table
FOM/SOM lexicon

Object Model Template (OMT)
Object Model Identification table provide information that enable
inferences to be drawn regarding the reuse potential of individual
federates.

Category Information
Name Rauf

Version 1.0

Date 03-12-2008

Purpose Man in loop simulation
framework Project

Application Domain Air Defense Simulation

Sponsor

POC NUST College of E&ME

POC Organization NUST

POC Telephone 0519278050

POC Email rauf.hassan@gmail.com

Object Model Template (OMT)
Object Class Structure Table define a set of relations among
classes of objects from the simulation or federation domain.
Each object class in object class structure table is followed by
information about publication and subscription capabilities of object
class.

RADAR Gun Fighter Jet

Publish Detected target
information

None Latitude, Longitude and
Elevation

Subscribe None Target
Information

None

Object Model Template (OMT)

Interactions are specified in “Interaction Class Structure Table”
similar to the way object classes are specified in Object Class
Structure Table.
“Interaction class structure table” also includes capability of given
type of interaction which may be initiates , senses, reacts and none.

RADAR Gun Fighter Jet

Publish Target Detected Target Hit Target Engaged

Subscribe Target Hit Target Detected Target Engaged

Object Model Template (OMT)
Attribute Table specifies the characteristics for attributes in the attribute
table.
It contains the following information

Object Class
Attribute Name
Data Type
Cardinality
Units
Resolution
Accuracy
Accuracy Condition
Update Type
Update rate/condition
Transferable/acceptable
Updateable/ reflectable
Routing Space

Object Model Template (OMT)
Parameters associated with interaction specified in “Interaction
Class Structure Table” are specified in “Parameter Table”.
Following characteristic are specified for each parameter

Interaction Class
Parameter name
Data Type
Cardinality
Units
Resolution
Accuracy
Accuracy Condition

Object Model Template
“Routing Space Table” is useful in “Distributed Data Management”.
Routing space table is a multi dimensional coordinate system
through which federate either expresses an interest in receiving data
or declare their intention to send data.
FOM/SOM Lexicon provides a mean for federations to document
the definition of all terms utilized during the construction of FOMs
and SOMs.

INTRODUCTION MAN-IN-LOOP
In Man-in-loop or Interactive simulation one or more simulation module is
controlled by human beings. There are also called as “live simulation”

WHY MAN IN LOOP?
To study human factors in the development of system.
To train the operator

HARDWARE IN LOOP
Although our man emphasis is man-in-loop, we discuss hardware in loop for
completeness. A HILS is a device that fools your embedded system into thinking that
it's operating with real-world inputs and outputs, in real-time. In the autopilot
example, it fools the aircraft into thinking it's flying.
(http://www.embedded.com/15201692)

HARDWARE IN LOOP
Real Time HIL Simulation Framework is available at
http://sourceforge.net/. It utilizes SysV IPC and Glade/GTK user interface .

System Description
The system consists of various air defenses like RADAR and guns
RADAR detects the target and
Guns engage the target which is detected by the RADAR
Target may be a missile, fighter jet.

Functional Architecture of man-in-loop Simulation

The physical components model the
physical characteristics of the NCW
Players that exist within an NCW
scenario.
NCW component models the
command and control and
information sharing capabilities
The user interface component is used
to support HIL experimental activity.
The Analyst Utilities component
contains libraries/components to
measure performance and
effectiveness.

Simulation Infrastructure

Physical
Models

NCW Models

User Interface

Analyst Utilities

Comms Nodes Sensor Nodes Platform Nodes

Comms Networks Weapon Nodes

Info Nodes C2 Nodes

Operator Interfaces Analyst Interfaces

MOE/MOP Utility Libraries

Functional Architecture of man-in-loop Simulation

RTIExec is a global process.
FedExec manages federate. It is created by first federate joining the
federation.
Federate communicate by using IPC mechanism. It is allobrated further in
next slides.

Functional Architecture of man-in-loop Simulation

Federate is depicted in the
figure
To create a new federate a
class is derived from
Federate Ambassador.
The newly created class
get the handle to
RTIAmbassador and use
it to invoke various
services provided by RTI

Functional Architecture of man-in-loop Simulation

Each federate consist of two
components

Middle Ware undertaking all the
communication with RTI
Simulation Engine

Middle Ware
(Context Aware RTI Local Component)

Simulation Engine

RTI

Functional Architecture of man-in-loop Simulation

User Interface

FederateAmbassador

Data LoggerInternal Architecture of Simulation
Engine

Functional Architecture of man-in-loop Simulation
Middleware

Agent Module

Context Aware
Manager Backing Store

Data Distribution
Handling

Local RTI
Component

Subscription/
Publication

U
pdate Acquire Subscription

InformationR
ef

le
ct

Query Result

D
ata from

/to
federate

Internal Architecture of Middleware
All the communication between
Federate and RTI is done through
Agent Module
Context Aware manager receives
subscription/publication request from
Agent Module and send it to backing
store. Update request are send to “Data
Distribution Handling” Module.
Data Received from RTI are send to
the “Context Aware Manager” via
“Data Distribution Handling” module
by reflection.

Functional Architecture of man-in-loop Simulation

The system consists of three types of interacting subsystems/federates
Fighter Jet
RADAR
Guns or firing system

These modules are initiated on the user request by the “User Interface
Module”
“User Interface module” in “Simulation Engine” allows the following
activities:-

Create the flight path for the Fighter Jet on the digital map
Specify the location of RADAR on the digital map
Specify the location of Air Defenses (Gun, Missiles) on the digital map
Start the Simulation

Interfacing between Middleware and Simulation Engine

Interface between middleware and
simulation engine is depicted below
for one Federate. Other Federate
follows the same approach

Communication Mechanism

Each of the subsystem/federates can communicate by using:-
DCOM (Distributed Component Object Model)
MSMQ (MicroSoft Message Queue)
Sockets
RPC (Remote Procedure Call)

Communication Mechanism-DCOM

DCOM is intended to provide distributed object services.
The DCOM wire protocol transparently provides support for reliable,
secure, and efficient communication between COM components such as
Microsoft® ActiveX® controls, scripts, and Java applets residing on
different machines in a LAN, a WAN, or on the Internet.
DCOM mechanism redirect user request to a server machine which create
instance of new object and passes the reference to client.
We cannot create a new RTI instance when a request to join is made by
Federate.

Communication Mechanism-MSMQ

The second option is to use MSMQ.
MSMQ uses single queue where messages are stored.
Service requests are send as message

Communication Mechanism-RPC

Remote Procedure Call is used to invoke the services on another machine in
the network
Two mechanism for Remote Procedure Call (RPC)

Doors
Sun RPC

Communication Mechanism-Sockets

Network Sockets are the most common method of transmission on network.
TCP/IP is the most widely used protocol.

Communication Mechanism

MoreMoreMoreLessNetwork Bandwidth require

MediumMoreMoreLessLearning required

MediumMediumMediumHighestProgramming Effort

SlowSlowestSlowFastSpeed of execution

RPCMSMQDCOMSockets

The comparison is given in the following table

We use sockets because
It give us more control on design
Socket APIs are available on different platform.
It makes RTI platform independent

DESIGN ISSUES
Main issues that needs to be considered are

Time Management
Data Marshalling
Security

OTHER DESIGN ISSUES:
TIME MANAGEMENT

Time Management Includes
Transportation Service
Time Advancement Service

HLA support two kind of transportation services
Reliable
Best Effort

Transportation service is specified in HLA Fed file for each class attribute and
interaction. For example
(class FighterJet

(attribute latitude reliable timestamp)
(attribute longitude reliable timestamp))

OTHER DESIGN ISSUES:
TIME MANAGEMENT

Five message ordering mechanism are provided by HLA
Receive Order
Priority
Time Stamp Order
Causal Order
Causal and Totally Ordered

OTHER DESIGN ISSUES:
TIME MANAGEMENT

The RADAR federate autonomously advances its own time without coordinating
such advances with the RTI. “Human-in-the-loop” training federates and “hardware-
in-the-loop” test and evaluation federates typically utilize this approach.

OTHER DESIGN ISSUES:
DATA MARSHALLING

Data marshalling is not implemented by the RTI and HLA. So the federate
has to implement it themselves.
It involves converting the commands and data from sender into appropriate
format to be received by the receiver.

SCENARIO GENERATOR

SCENARIO GENERATOR
The system is evaluated for the number of guns and RADAR and fighter jets
interacting with each other and with tactical decision support system through well
defined interfaces.
The most common format for data exchange can be

Link-1
Link 14
Link 11A
Link 11B
Link 16

These formats defines the following:-
Message Format
Medium
Data Rate
Encryption

SCENARIO GENERATOR
The message format is specified and HLA based federates exchange messages in the
same format as specified in the standard for such system
Also the system is evaluated for a given data rate by using a logging facility of
network monitoring tool (ethereal or pcap).

IMPLEMENTATION
The system presently have the following three types of federates

Scenario generator federate
RADAR federate
Gun or fire engine federate

Scenario generates various targets like fighter jet, air to surface missile , surface to
surface missile.
Scenario generator may include the environment modeler. But at present it is not
included
For the purpose of demonstration scenario generates generate targets which have

Initial location (latitude, longitude)
Initial course
Initial Speed
Course
Speed

IMPLEMENTATION
RADAR federate implements a simple sector scan radar
RADAR is operated by an operator which can create tracks on various targets.
Targets are then handed over to the firing solution.
In the implementation scenario that are discussed later three possibilities are
discussed.

Place the actual gun in loop with either operator control or manual control
Simulate the gun

IMPLEMENTATION SCENARIOS
Scenario-1

There is federate which act as a Scenario generator. The main purpose of it is to
generate various targets like jets and missile.
RADAR is simulated as an HLA federate in a simulation. Operator detects the
target which is man-in-loop
Gun is simulated. Operator can see the virtual console where he can designate
various targets.

IMPLEMENTATION SCENARIOS
Scenario-2

There is federate which act as a Scenario generator. The main purpose of it is to
generate various targets like jets and missile.
RADAR is simulated as an HLA federate in a simulation which is man in loop
Gun is simulated as virtual federate interacting with actual hardware in loop gun.
When target is detected on the RADAR screen, it is send to gun on the RS-232
interface

IMPLEMENTATION SCENARIOS
There are other scenarios like

Single Target Single Gun Scenario
Multiple Target and Single Gun Scenario
Multiple Crossing Target and Single Gun Scenario
Multiple Crossing Targets and Multiple Guns Scenario

IMPLEMENTATION
The system consist of RTI (Run Time Infrastructure) layer which is implemented
entirely in Java. For RTI , Pitch portable RTI is used

(http://www.pitch.se/products/pitch-prti/pitch-prti-overview.html)
Federates are implemented in Java. They interact with the Graphics module
implemented in C++ by way of JNI.

Scenario Generator

RTIRADAR Console

Guns Federate

Scenario generator
proxy class

RADAR
proxy class

Gun
proxy class

Scenario Generator

RADAR Display

Guns

J

A

V

A

C
+
+

IMPLEMENTATION
Platform: Windows XP and compatible
Java is used for an implementation of RTI
OpenGL is mainly used for Drawing

MapWindow (http://www.mapwindow.org/) is used for drawing the map of
Sub Continent.
Main routines are written in C++. They interact with Java through JNI

IMPLEMENTATION

Demonstration

RADAR Simulator

Gun Virtual Federate

Real Gun

CONCLUSION
There are various advantage of an HLA based man-in-loop simulation.

It allows for the operator training on various scenarios.
It also allows for testing of new weapons in laboratory. Hardware-in-loop allows for testing
of interfaces. whereas man-in-loop allows for testing of the usability.

FUTURE WORK
The main emphasis of this research is to study the ‘HLA based man in loop
simulation’. ‘Hardware in Loop’ scenario is not fully implemented. In future this
scenario can be implemented.
Target Tracking Algorithm
Environment Modeler
Distributed Data Management
Decision Support System

REFERENCES
https://www.dmso.mil/public/transition/hla/
http://www.embedded.com
“Missile system incorporating a targeting aid for man-in-the-loop missile
controller” http://www.freepatentsonline.com/5605307.html

	Rauf-HLA based Man in loop simulation.pdf
	Rauf-HLA based Man in loop simulation presentation.pdf

