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Nomenclature

A state coefficient matrix
AR aspect ratio
ASF aircraft shape functions
Ax

[
[C(1)
V Ω(t)]M (1)−1

ξξ +Bx −BuG
]

AV Ω coefficient matrix w.r.t aerodynamic damping
Aij components of membrane stiffness matrix A in Eqs. (1.3–1.8)
Bx coefficient matrix w.r.t aerodynamic stiffness
Bu coefficient matrix w.r.t control inputs
C full order damping matrix
CTC conventional tail configuration
Ci component rotation matrix w.r.t Of
Cd drag coefficient
Cdα

∂Cd
∂α

Cl vertical lift coefficient
Clα

∂Cl
∂α

Clβ roll stiffness
Clδ

∂Cl
∂δ

Cmα pitch stiffness
Cnβ

yaw stiffness
Cs side force coefficient
Csβ

∂Cs
∂β

Dm matrix of eigenvectors
D.o.F degree of freedom
Di represents over the length or span integration
EI bending stiffness of a section
Ff resultant force vector at Of
G closed loop gain matrix
GJ torsional stiffness of a section
H gust gradient in meters
J cost function
Jf inertia matrix of the whole aircraft

v
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Ji local inertia matrix at a node of comp. i
K full order stiffness matrix
Kξ reduced order stiffness matrix
L total length of a beam or a component
LTI linear time invarient
LTV linear time varient
Lf generalized loads at Of
Lη reduced order generalized structural loads
M full order global mass matrix
Mf resultant moment vector at Of
Mj resultant bending moment due to component shear loads in Fig 4.2
Mxi external torsion moment on a node
Mξ reduced order mass matrix
Oi component origin
Pd dynamic pressure
Q,R weighting matrices in performance index
Qj resultant shear as component internal loads in Fig 4.2
Qu generalized force vector in bending
Qψ generalized force vector in torsion
Rf position vector [Rfx Rfy Rfz ]

T w.r.t inertial axes
S̃ first moment of inertia
T kinetic energy
TTC T-tail configuration
Ui potential energy
Vf rigid-body velocity vector in translation along Of , [Vfx Vfy Vfz ]

T

V̄i rigid-body velocity vector in translation on a particular node of a component i
Vzi external shear force on a node
a.c aerodynamic center
b wing span
ci chord length of a particular section of a component
e.a elastic axis
e1 null vector of size (1×3)
e2 null matrix of size (6×6)
e3 null vector of size (6+m×1)
e4 null vector of size (1×m)
d eigenvector
fi vector of resultant forces on a certain section of a component i
h height of a box structure in Eqs. (1.12–1.14) or a thickness of a ply in Eq. (1.4)
k stiffness due to the material anisotropy
ki induced drag factor
li moment arm vector in aerodynamic dampipng matrices (i.e. Eqs. (3.10–3.24)
m mass of the aircraft
nz load factor
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p generalized momenta
q vector of full order generalized coordinates
r position [rx ry rz]T of a node w.r.t a component origin
r.a reference axis
s vector of full order generalized velocities
si side force on a certain section of a component i
t time
tf final time of the simulation
u control vector [δel δa δr δT ]T

w width of a box structure
w.r.t. with respect to
wg vertical discrete gust function
wg0 peak or design vertical discrete gust velocity
xg distance penetrated into the gust in meters
yi distance between reference and elastic axes
zi total structural deflection of a particular section of a component i
αfi

rotation angles due to aft fuselage bending
αi anagle of attack at Of
βi side-slip angle at Of
δi control input vector
η vector of reduced-order generalized velocities
ρ air density
Ωf rigid-body rotational rates along Of in roll, pitch, and yaw
θf position vector in roll, pitch, and yaw [θfΦ θfΘ θfΨ]T w.r.t inertial axes
Φ eigenfunctions given in Table 3.1
φ eigenfunctions or shape functions of a component
λ eigenvalue
ξ vector of reduced-order generalized coordinates

Subscripts
E engine
T thrust
a aileron
a represents resultant aerodynamic loads due to lift and drag in Eq. (2.37)
dof degree of freedom
d represents drag in Eqs. (2.31–2.37)
d represents dynamic loads in Eqs. (4.4–4.10)
e empennage
el elevator
f fuselage
g gravity
h horizontal tail
i referring to a particular component
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ij rows and column in a matrix
l ply number on the webs of box structure in Eqs. (1.9–1.11)
l represents lift in Eqs. (2.31–2.37)
m no. of shape functions in reduced-order
n ply number on the flanges of box structure in Eqs. (1.3–1.11)
n no. of sections over the length of a beam in Eqs. (2.19–2.21)
r rudder
s represents static loads in Eq. (4.3)
s represents side force in Eqs. (2.32–2.37)
u degree of freedom (D.o.F) in bending
v vertical tail
w wing
ψ degree of freedom (D.o.F) in torsion

Superscripts
(0) zero-order
(1) first-order
1, 2 represents upper and lower sides of a box beam in Eqs. (1.6–1.14)
3, 4 represents right and left sides of a box beam in Eqs. (1.6–1.14)
A aft
F fore
L left
M total number of plies on the webs of box structure in Eqs. (1.9–1.11)
N total number of plies on the flanges of box structure in Eqs. (1.3–1.14)
MDM mode displacement method
R right
SFM summation of forces method
V vertical
T transpose
∼ represents a skew symmetric matrix of a particular vector
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Chapter 1

Introduction

The mathematical modeling of maneuvering flexible aircraft is in “constant
evolution”. Previously the limitations of hardware and numerical techniques
in terms of computing time needed for large scale problem solving forced the
engineers to make several far reaching approximations in the mathematical
modeling of aircraft dynamics. However, the ongoing reduction in computa-
tional cost resulting from the decreasing cost of hardware and the increasing
efficiency of numerical techniques allows todays engineers to simulate efficiently
not only simple models based on rigid-body flight mechanics but also com-
plex models incorporating many of the details associated with the trinity of
flight dynamics, controls and aero-elasticity. Current aircraft development like
the emergence of high-altitude and long-endurance Unmanned Aerial Vehicles
(UAVs) with very high aspect ratio flexible wings, subject to large wing de-
flections and rigid-body perturbations in flight, has opened a new paradigm in
the modeling and simulation of highly flexible aircraft, requiring inclusion of
the structural nonlinearities, both geometry and material related, in the math-
ematical model [1,2,3]. However, it is not the objective of the current research
to focus on large geometric perturbations characterizing the flight of these spe-
cialized aircraft. The aim is to develop a linear model, considering only the
small perturbations around the steady state condition, that allows the analysis
of elastically tailored composite aircraft, both business jets [4] and large civil
transport airplanes [5]. Although such a linear model is only valid close to the
steady state condition, it can be used in many cases to support compliance
finding to loads related aviation requirements found in FAR/CS part 23 and
part 25, applicable to light and large aeroplanes respectively.

The beginning of this century shows a new trend in airframe design for large civil
transport aircraft. There is a paradigm shift from fully metal based structures
to those dominated by the choice for fiber composites as baseline material. The

1
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Boeing B787, approaching certification, and the Airbus A350, under full scale
development, are clear examples in this regard. The fuselage shells of the B787,
frames excluded, are made of carbon fiber reinforced epoxy. The A350 fuselage
is expected to show an even larger dominance of fiber composites. Previously
fiber composites usage in primary aircraft structure was restricted mainly to
the tail section (i.e. tail section A340). Today we are not far away from a fully
fiber composite dominated airframe on a commercial passenger aircraft being
airworthy. Although many light aircraft are already flying with fiber composite
airframes, the criticality increases for large size, highly utilized aircraft, espe-
cially for the pressurized fuselages in those airplanes. The increasing use of
composite material demands some steps in the evolution of the mathemati-
cal modeling of the flexible aircraft, some of which are explained in the next
sections of this chapter.

1.1 The saga of elastic axis

To solve the dynamics of flexible aircraft, it is common among aeroelasticians
and flight loads engineers to use the elastic axis of an equivalent beam model of
an aircraft component as a reference for vibrations of that particular component.
For a beam element with isotropic material properties, the shear center of a
particular section of a beam element is assumed to decouple the bending and
torsional deformations, where the coupling becomes a cross-sectional property,
independent of the loads [6]. The elastic axis intersects with these centers and
acts as a reference. Figure 1.1(a) shows a deflected wing (i.e. u in bending
and ψ in torsion) with isotropic material properties, where the x-axis of the
axes system x, y, z represents the elastic axis e.a of the wing from root to tip.
It shows that the vertical lift force FZ acting on the aerodynamic center a.c
of a section, creates a torsional moment Mx around the e.a and a bending
moment My on the highlighted section. Eq. (1.1) gives us an expression of
static aeroelasticity where the inverse of the stiffness matrix is multiplied with
the load vector to give the deflection curvatures. It is to be noted that due
to both isotropic material properties and the use of e.a as the reference of
deformation, a diagonal stiffness matrix results that decouples the bending and
torsion degrees of freedom (D.o.F).

[
u′′

ψ′

]
=
[
EI 0
0 GJ

]−1 [
My

Mx

]
(1.1)

where u′′ or du2

dx2 is the bending curvature and ψ′ or dψ
dx is the twist curvature.

Now the wing shown in Fig. 1.1 is assumed to be made of fiber composite
material, where the principal axes of the laminates around the wing-box, espe-
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(a) Deflected wing. (b) Laminate geometry of flanges and webs.

Figure 1.1: A deflected wing with the elastic axis as a reference of vibrations.

cially on the webs (i.e. left and right sides of the wing-box), are not aligned
with the reference axes for the loads. This misalignment results into a coupling
between bending and torsion and makes the stiffness matrix nondiagonal thus
introducing off-diagonal k term:

[
z′′

ψ′

]
=
[
EI k
k GJ

]−1 [
My

Mx

]
(1.2)

where z′′ is curvature of the total deflection due to coupling of bending and
torsion D.o.F. (i.e. z = u + yψ and y is the distance between the shear center
and the aerodynamic center). It is quite evident from Eq. (1.2) that the use
of elastic axis e.a as a reference of vibration does not decouple the bending
and torsion deformations, and the off-diagonal k term term naturally causes a
coupling.

1.1.1 k term and stiffness matrix: a brief overview

As mentioned above the misalignment of fiber principal axes with the reference
load axes around the wing-box gives the coupling term in the stiffness matrix.
Before discussing how a bending-torsion coupling k comes into being in a fiber
composite wing-box, it is appropriate to briefly describe the process of con-
structing a stiffness matrix from a ply level to a laminate and finally to a box
structure. The stiffness matrix of a laminate is normally constructed by first
multiplying the stiffness matrix of material with the ply thickness, which are
further added in a global stiffness matrix of a laminate, normally known as Aij
matrix. The 3×3 stiffness of a ply at Θ = 0 direction and Aij matrix for N
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number of plies are defined as [7]:

[Q]Θ=0 =

⎡⎣ E11
1−μ12μ21

μ12E22
1−μ12μ21

0

μ12E22
1−μ12μ21

E22
1−μ12μ21

0

0 0 G12

⎤⎦ (1.3)

Aij =
N∑
n=1

Q̄Θ
n hn (1.4)

in which E11 and E12 represent the moduli of extension in each direction. G12

and μ12 represents the shear moduli and Poisson’s ratio, respectively. Θ and
hn are the ply angle w.r.t. the laminate reference axes and ply thickness,
respectively. The Q̄ represents the transformed stiffness matrix of a particular
ply in a direction with a Θ �= 0. For example, the [Q]Θ=0 and [Q]Θ=15 matrices
of a ply with material properties given in the footnotes of Table 1.1 are found
to be:

[Q]0 =
[

1.6159 0.4687 0
0.4687 1.1160 0

0 0 0.6140

]
1010 N

m2 , [Q]15 =
[

1.5470 0.5041 0.2476
0.5041 1.1140 0.0023
0.2476 0.0023 0.6848

]
1010 N

m2 (1.5)

The above example shows that the slight change in the direction of the ply w.r.t.
the laminate reference axes fills the zero terms of the Q matrix (i.e. Q13 and
Q23), which give couplings between the shear and extension D.o.F. By putting
the [Q] matrices of Eq. (1.5) in Eq. (1.4) gives the Aij matrix of a two ply
laminate. For a 4-sided (i.e. upper, lower, left, and right) wing-box structure
with a straight laminate on each side, the Aij matrices of upper and lower side
laminates are transformed to a uniaxial stiffness w.r.t. left and right sides as
follows [7, 8]:

K
(1,2)
11 =

N∑
n=1

A
(1,2)
11 − (A(1,2)

12 )2/A(1,2)
22 (1.6)

K
(1,2)
16 =

N∑
n=1

A
(1,2)
16 − (A12A26

)(1,2)
/A

(1,2)
22 (1.7)

K
(1,2)
66 =

N∑
n=1

A
(1,2)
66 − (A(1,2)

26 )2/A(1,2)
22 (1.8)

in which the superscripts 1 and 2 represent upper and lower sides. With the
help of the matrices Kij of upper and lower sides, and Aij of left and right sides
the equivalent bending stiffness EI, torsion stiffness GJ , and bending-torsion
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stiffness k are expressed as [8]:

EI =
N∑
n=1

∫ ∫
1,2

K
(n)
11 (z(n))

2dxdy +
M∑
l=1

∫ ∫
3,4

A
(l)
11(z(l))

2dxdy (1.9)

GJ =
N∑
n=1

∫ ∫
1,2

K
(n)
66 (z(n))

2dxdy +
M∑
l=1

∫ ∫
3,4

A
(l)
66(y(l))

2dxdy (1.10)

k =
N∑
n=1

∫ ∫
1,2

K
(n)
16 (y(l))

2dxdy (1.11)

in which zn and yl are the distances of each ply of flanges (i.e. upper and lower
side) and webs (i.e. left and right side), respectively, to the reference axes of
the wing-box, see Fig. 1.1(b). Eqs. (1.9–1.11) can be simplified as [7]:

EI =
w × h

4

[
K

(1)
11 +K

(2)
11

]
(1.12)

GJ =
w2 × h2(
w + h

)2 [(K(1)
22 +K

(2)
22

)
w +

(
A

(3)
66 +A

(4)
66

)
h
]

(1.13)

k =
w2 × h2

2
(
w + h

) [K(1)
22 +K

(2)
22

]
(1.14)

where w and h are width and height of the cross-section, respectively. The
above equations are then used to calculate the stiffness properties of a box
beam given in Table 1.1. It shows that first lay-up configuration (i.e. [0/90]6)
has symmetric1 laminates on all the four sides, which give no coupling in torsion
and bending D.o.F (i.e. k = 0). The second lay-up configuration (i.e. [15]6 and
[15/−15]3) has symmetric-unbalanced laminates on the flanges and symmetric-
balanced2 laminates on the webs, which give the coupling (i.e. k �= 0). This
example shows that coupling arises due to balanced laminates on the webs,
where the principal axes of the fiber directions around a close section are not
aligned with the reference axes for the loads.

The elements of a stiffness matrix depend upon cross-sectional properties and,
as stated above, the material properties (i.e. Aij of each laminate). The mod-
uli of metal alloys are well determined and published in the literature. In case
of fiber composite, as shown above, it largely depends upon the lay-up con-
figuration of the fibers and requires some analytical formulas to construct the
stiffness matrix. In addition to Eqs. (1.3–1.14), two excellent papers by Hong

1A laminate is called symmetric around its midplane if the ply located at a position +z is
identical to the ply at -z [9].

2A laminate is called balanced for every ply in the +Θ direction there is an identical ply
at in the -Θ direction [9].
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6 Chapter 1. Introduction

Table 1.1: Wing-box layers configuration and stiffness properties

Configurationa Ref. 8b MSC.Nastranb

Flanges Webs EI GJ k EI GJ k

[0/90]3 [0/90]3 13.1 2.34 0 12.73 2.02 0
[15]6 [15/− 15]3 22.53 5.26 5.85 14.90 2.51 3.0

a Mechanical properties: E11 = 14.19GPa, E22 = 9.8GPa, G12 =
6.14GPa, μ12 = 0.42, ply thickness = 0.127mm, width = 0.0242m,
height = 0.014m.

b Units: kg-m2.

and Chopra [10], and Smith and Chopra [11] also give a detailed analytical
model of constructing the stiffness matrix for a thin-walled fiber composite he-
licopter blade. Although this model takes care of calculating stiffness along
bending-extension degree of freedom, which is generally not incorporated in a
fixed wing aircraft, one can use the model by omitting the bending-extension
coupling in the stiffness matrix. Moreover, Lottati [12] also gives an overview
on how to construct the stiffness matrix for a composite wing-box. As shown in
Table 1.1 the results from Ref. 8 are compared to the equivalent stiffness values
calculated from the static condensation in MSC.Nastran software. Equivalent
stiffness values for a box type structure can be obtained quite simply by solv-
ing the above equations but for complex and large structures like a fuselage
section, the usage of static condensation techniques included in a state of art
FEA software like MSC.Nastran becomes inevitable. Static condensation of a
finite element model gives the equivalent stiffness values at the chosen conden-
sation points and constructs the beam model for further aeroelastic analysis,
see Appendix A for a brief description on this account.

Now the question arises how does the coupling affect the dynamics of the air-
craft. In aeroelastic tailoring, e.g. to increase the divergence and flutter speeds,
the optimized design often suggests different combinations of fiber lay-up [13].
It shows that the flutter speed in case of asymmetric-balanced and symmetric-
balanced laminates of a wing-box is increased as much as 20% compared to
those of from purely symmetric-unbalanced laminates, but, as stated in Sec-
tion 1.1, balanced laminates introduce cross coupling term k in the stiffness
matrix. Previously, research on a box beam of a helicopter blade shows that the
symmetric-balanced laminates on each flange and web contribute to the cross
coupling terms with an appreciable influence on stability of the blade [10].
Later on, the deformations calculated analytically in Ref. 10 were correlated
with experimental results with satisfactory conformity [8].
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1.2 The problem identification

As stated above, the shear center of a particular section plays a significant
role in decoupling the bending and torsion deformations, and the intersection
of shear centers over the length of beam makes the elastic axis [6]. It is also
shown that the effectiveness of the e.a in decoupling is reduced if a nondiagonal
stiffness matrix comes into being, as Eq. (1.2) makes it quite clear that the
cross coupling terms in the stiffness matrix gives a torsional deformation due to
bending moment. In this particular case the shear center does not remain to be
a cross-sectional property, rather becomes a local beam property (i.e. a beam
with constant cross-section will not have the same point of the shear center in
each of the cross-section and the resultant elastic axis might not be exhibiting
a straight line from root to tip). To assert this claim, a mathematical example
is presented in this regard [6, 8]; the vertical aerodynamic force FZ in Fig. 1.1
applies the torsion load around the shear center of the highlighted section as
FZ × y, where y is the distance between the a.c and shear center3. Bending
moment is applied as FZ × (L − x), where L is the total length of the wing.
By integrating Eq. (1.2) total twist due to both bending and torsion loads is
expressed as [8]:

ψ(x) =
−k [FZ × (2Lx− x2)

]
+ 2EI

[
FZ × y

]
x

2
[
EI ×GJ − k2

] (1.15)

A shear center is a point where the application of a force will not lead to
torsional deformation (i.e. ψ = 0), so the above equation takes the form as:

y(x) =
k(2L− x)

2EI
(1.16)

where the length L can be written as a function of x, so the above equations
takes the form as follows:

y(x) =
kx

2EI
(1.17)

Eq. (1.17) makes it quite clear that the shear center does not remain to be
a cross-sectional property anymore and it is dependent on the stiffness terms
and moreover over the length position in the wing (i.e the position of shear
center y is proportional to the length, so as the length of the wing is increased,
the shear center at the tip will tend to go out of the structural boundaries).
Otherwise, as suggested by Hodges [6], the locus of mass centroids as being a
reference line can be an alternative to the elastic axis, but the straightness of
this line is also not guaranteed due to structural discontinuities in fixed-wing

3It is to be noted that in Chapter 2 the symbol y represents the distance between the r.a
and the shear center, and that should not to be mixed up with the definition given in this
section.
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8 Chapter 1. Introduction

aircraft. So keeping in mind the increasing use of fiber composite material in
aircraft structures, a mathematical model is looked for that does not have the
necessity of using the e.a as references for vibrations in aircraft components.
The use of the e.a of a component is to be replaced by a “practical” reference
axis r.a and its location on each component of the aircraft is fixed at a certain
position relative to the aircraft body axes. The use of r.a was already shown
in Ref. 12. But the mathematical modeling was restricted only to a wing
structure for flutter analysis. The aim of this research is to address the dynamics
of the whole aircraft, which, as stated, includes the trio of flight dynamics,
controls and aeroelasticity in one simulation. The preference is to modify the
existing mathematical model, rather than “reinventing the wheel”. In the next
section we discuss the choices made for the existing mathematical model for the
inclusion of a practical r.a on each component and its effects on the component
stiffness matrix alongside the anisotropic material properties.

1.3 A search for a mathematical model

Upon looking at the existing linear models which address the three different
disciplines of flight dynamics, controls, and aeroelasticity, we find a few models
in the published archives and their characteristics are briefly described here by
categorizing them into inertially decoupled equations of motion and inertially
coupled equations of motion.

1.3.1 Inertially decoupled equations of motion

Inertially decoupling of equations of motion means that different forms of mo-
tion, whether elastic or rigid-body, and translational or rotational are not cou-
pled to each other. In short a vibrating fuselage does not affect the wings or
tail planes through inertial terms and, vice-versa. Also the rigid-body motion
of the aircraft does not affect the structural vibrations through inertial terms
and, vice-versa. The reason is, as stated earlier, the mathematical models of
flexible aircraft are approximated for the simplifications. The foremost simpli-
fications comes through the use of such reference axes as aircraft stability axes,
usually called as “mean axes”, which are not fixed with a material point on the
fuselage [14, 15, 16]. The resulting inertial decoupling by using the mean axes
is explained as under:

1. Omission of the linear and angular momenta due to elastic deformation
in the total kinetic energy of the aircraft, i.e. the derivatives of the La-
grangian of the whole aircraft with respect to local structural velocities
are zero in those equations that belong to the rigid-body motion of the
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aircraft, hence it inertially decouples the two sets of equations i.e. flight
and structural dynamics. The only coupling between these two sets of
equations is achieved through the aerodynamic forces [5, 14].

2. The use of free-free orthogonal mode shapes that decouple the structural
dynamics equations and constructs a diagonal4 mass matrix [5, 14]. As
stated, a vibrating fuselage does not affect the wings or tail planes through
inertial terms and, vice-versa.

Inertially decoupled equations of motion derived in Ref. 14 are reproduced in
Appendix B with a brief description. The Eq. (B.4) of Appendix B expresses
the use of orthogonality criteria. Here it is important to note that though the
structural dynamics equations are inertially decoupled but in the case of elastic
coupling, as given in Eq. (1.2), these equations are not truly fully decoupled
rather these equations remain intact through the stiffness terms. However,
these equations are solved as a function of natural frequencies, which can also
be determined through ground vibrational tests (GVT) and in that case too,
that during the system modeling, the stiffness matrix is also diagonalized by
using the orthogonal modes [18].

1.3.2 Inertially coupled equations of motion

In contrary to the mean axes system, by using the quasi-coordinate approach,
Meirovitch and Tuzcu [4] show the replacement of mean axes by another kind
of aircraft body axes, called as “body fixed axes”, which are fixed to a material
point on the fuselage. The aircraft structural components like fuselage, wings,
and empennage are represented in the form of equivalent beams with fixed-free
mode shapes. The equations of motion are inertially coupled by taking into
account the effects of linear and angular momenta due to elastic deformation
in the total kinetic energy of the aircraft, hence giving a non diagonal mass
matrix. However in this case too, the use of elastic axes makes a diagonal
stiffness matrix. Most recently these inertially coupled equations of motion are
extended to the simulation of dynamic loads during atmospheric turbulence [19].

1.4 The scope of the present work

After identifying the problem in using e.a as a reference for vibrations it is time
to describe the scope of the work presented here. As stated above, it is intended

4In this report a diagonal or non diagonal matrix means a “block” diagonal or non diagonal
matrix, respectively. A block diagonal matrix is defined as a square matrix in which the
diagonal elements are square matrices of any size, and the off-diagonal elements are zero. [17]
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10 Chapter 1. Introduction

to come up with such a mathematical model that should address all the main
areas related to the aircraft dynamics and moreover should also take care of the
new challenges as state above. It is proposed to modify the existing state of
the art mathematical model so in this regard the model derived by Meirovitch
and Tuzcu [4] is considered to be the most suitable as it is the latest version
and closer to reality than to those of models derived in Ref. 14 and 16. Once
the equations of motion are updated with the modifications, the equations are
expanded to the structural loads, which are one of the primary factors in the
sizing of structural parts during the preliminary design phase. In addition to
the inclusion of bending-torsion coupling it is also thought to transform the
given equations of motion to an aircraft model with horizontal tails mounted
on a vertical tail, see Fig. 1.2. This requirement comes through an industrial
project [20] on the flight loads simulation of a regional jet. Moreover, it is
also thought that while looking at the current market trends in the business
and regional jet designs the T-Tail configuration is quite common [21] and the
present work will serve for the aeroelastic and loads analysis in the preliminary
design of composite airframes of both conventional and T-tail configuration.
The steps taken during the modification are summarized as:

• Inclusion of k term in the stiffness matrix.

• The use of fixed axes as reference of vibrations on each component of the
aircraft.

• Transforming the model into a configuration that the horizontal tail is
attached to vertical tail.

• Extending the resultant equations of motion to structural loads equations.

However, the chosen mathematical model is based on a purely analytical ap-
proach. So it starts by redefining the deflection of a beam section in bending to
incorporate the torsion effects. The result is expanded to the modified expres-
sions of beam generalized velocities. The modified expressions of generalized
velocities and deflections affect the whole mathematical model from top to bot-
tom (i.e. from the equations of kinetic and strain energies to the global mass
and stiffness matrices, respectively, and further down to state-space coefficient
matrices and structural loads equations). Lastly, flight loads simulations are
presented in two different maneuvers and gust conditions, while programming
the whole mathematical model presented herewith in MATLAB language soft-
ware.
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Figure 1.2: T-Tail configuration in Fokker 100 aircraft

1.5 Thesis breakdown

The structure of the thesis is as follows. Chapter 2 presents the mathematical
modeling with all those steps that are taken during the modification process
and which are believed necessary to be included in this thesis. Chapter 3
presents the state-space form of the linearized equations of motion. Dynamic
loads equations are presented in the Chapter 4. Presenting a complete struc-
tural optimization problem, which also includes finding the cross-sectional and
material properties, is out of the scope of this thesis but the modified equa-
tions of motion do present a viable basis to do so. Moreover, due to the non
availability of the structural data of the aircraft made of fiber composite, it is
not possible to include the actual anisotropic material properties in the stiffness
matrix. However, the coupling effects are simulated by manipulating the e.a of
each wing and horizontal tail of a twin jet metal aircraft in five different cases
of numerical examples in Chapters 5 and 6. In first three cases, the e.a of each
wing and horizontal tail is drawn parallel to the r.a of that particular compo-
nent, where the e.a with respect to r.a of each component is placed in three
different positions. In the fourth and fifth case, the e.a of each wing and tail is
drawn by intersecting the shear centers of each section from root to tip, where
the shear center of a section is calculated by using Eq. (1.17). In Chapter 5
this is done for steady level flight and in Chapter 6 for discrete gust and pilot
induced maneuvers. Finally, conclusions are drawn in Chapter 7.
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Chapter 2

Mathematical Modeling

In this chapter the mathematical model regarding the dynamics of the fully flex-
ible aircraft is modified to accommodate the new aspects related to the coupled
vibrations. It starts with the description of the generic Lagrange’s equations of
motion, the basis for the rest of the mathematical modeling presented in this
chapter. The modeling is divided into two main domains; structural dynamics
and aerodynamics, where the structures part covers the structural discretiza-
tion of aircraft components into lumped mass and stiffness elements, and the
aerodynamics part covers the discretization of lifting surfaces into quasi-steady
strips. On the basis of the structural discretization the kinetic energy and
potential energy expressions are formulated. On the basis of kinetic and poten-
tial energies mass and stiffness matrices are derived, respectively. Kinetic and
potential energies of the whole system are assembled in the Lagrangian and
the equations of both rigid-body and elastic motions are driven through the
generalized aerodynamic forces. Consequently the full-order model is reduced
to a lower numbers of degrees of freedom by the eigenvalue solution of global
stiffness and mass matrices.

2.1 Lagrange’s equation of motion

Motions of a system can be solved through the Langrange’s equation of motion
as [22]:

d

dt

∂L

(∂q̇i)
− ∂L

∂qi
+
∂F
∂q̇i

= Qi i = f, e, w (2.1)

in which L = T − U is the Lagrangian, which is a function of kinetic energy
T and potential energy U of the system. F is the Rayleigh dissipation density
function, which gives the structural damping due to friction between the struc-
tural components during vibrations. Generalized coordinates vector qi holds

13



�

�

“thesis” — 2009/3/12 — 22:27 — page 14 — #28
�

�

�

�

�

�

14 Chapter 2. Mathematical Modeling

the information of several variables related to aircraft motion (i.e. both rigid-
body motion w.r.t. inertial and body axes, and elastic motion of the structural
components w.r.t. to their particular local axes system), see Section 2.2 for a
brief description in this account. Qi is the vector of generalized conservative
forces1 due to aerodynamic and gravity loads. Eq. (2.1) gives us a guideline
to proceed further in deriving a complete mathematical model of the flexible
aircraft, which includes the derivations of kinetic and potential energies, dissi-
pation density function, and the generalized forces.
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Figure 2.1: Aircraft discretized model.

2.2 Modeling of aircraft structural dynamics

In the structural dynamics part we discuss the structural discretization of the
aircraft. On the basis of the discretization the kinetic and potential energy ex-
pressions and consequent mass and stiffness matrices, respectively, are derived.

2.2.1 Structural discretization

The structure of a flexible aircraft can be discretized into a number of beams.
Fig. 2.1 shows a sample aircraft modeled with seven beams to represent fore and
aft fuselage structures, one beam per half wing and half horizontal tail, and one
beam for the vertical tail, where the aircraft body axes Of lies on the juncture
of aft and fore fuselages beams. Each beam over its length is further discretized

1We can classify friction as nonconservative force (i.e. it does not changes the potential
energy of the system), whereas gravitational and aerodynamic forces as conservative, which
changes the potential energy of a system through the structural deformations or change in the
position of the aircraft.
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into several sections with lumped mass elements mi at their mass centers (c.g).
These mass elements are attached to each other with springs of average stiffness
over the two neighboring sections. For each fuselage beam there are two bending
degrees of freedom (D.o.F) u along each y and z directions of the aircraft body
axes Of and one torsion ψ along the longitudinal axis of Of [4]. For each wing
and empennage beam there is one bending D.o.F normal to the plane of the
lifting surface and one torsion D.o.F. along the r.a, i.e. longitudinal axis of
their respective coordinate axes at Oi. Local axes Oi are normally positioned
w.r.t. Of . Fig. 2.2 shows the position of the wing local axes Ow w.r.t. Of
and moreover the position of a node on the wing w.r.t Ow, where the position
vector rw is divided into its three components (i.e. rwx , rwy , and rwz). Same
analogy is also used for the rest of the components (i.e. horizontal and vertical
tails).

xfwr

zfwr

xwr

zwr
ywr

wrwy wz

wx

wO

fO

Y

X

Z

Figure 2.2: Position of a node on the wing w.r.t its local axes.

2.2.2 Kinetic energy

To derive the kinetic energy of a maneuvering aircraft, the motion of the aircraft
is defined. The rigid-body motion of the aircraft is normally observed w.r.t. two
types of the axes system (i.e. inertial and aircraft body axes). The positions of
the aircraft in translation Rf and rotation θf are defined w.r.t to the inertial
axes, whereas aircraft motion in the form of rigid-body velocities (i.e. Vf as
translational velocity vector and Ωf as angular velocity vector) are defined w.r.t
aircraft body axes Of . Elastic motion in the form of structural generalized
velocities (i.e. su in bending and sψ in torsion) of the aircraft components
are defined w.r.t. a component’s local axes system. The total kinetic energy
T w.r.t. Of due to both rigid and elastic motions of the aircraft will be as
follows [4]:
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T =
1
2

∫
V̄ T
f V̄fdmf +

1
2

∫
V̄ T
w V̄wdmw +

1
2

∫
V̄ T
e V̄edme

=
1
2
V TMV (2.2)

where the velocity vector V is discretized as follows:

V =
[
V T
f ΩT

f sTuf
sTuw sTue

sTψf
sTψw

sTψe

]T
(2.3)

in which the first two subvectors, as stated above, are the rigid-body velocities,
next three subvectors represent the generalized velocities in bending sui . Last
three subvectors are the generalized velocities in torsion sψi. The subvectors of
sui in bending and sψi

in torsion are further discretized into component level
e.g. empennage in bending and torsion is discretized into vertical tail, right
and left horizontal tail components and expressed as:

sue =
[
sTuv sR

T

uh
sL

T

uh

]T
sψe =

[
sTψv

sR
T

ψh
sL

T

ψh

]T
(2.4)

Similarly for fuselage into fore and aft, while wing into right and left components
can be expressed as:

suf
=
[
sF

T

uf
sA

T

uf

]T
sψf

=
[
sF

T

ψf
sA

T

ψf

]T
(2.5)

suw =
[
sR

T

uw
sL

T

uw

]T
sψw =

[
sR

T

ψw
sL

T

ψw

]T
(2.6)

2.2.3 Generalized velocities

As given in Eq. (2.3), the local elastic motion of a component i is expressed
in the form of vectors su,ψ. Before defining the expressions of each subvector
of structural velocities, first the structural deflections of a section of a com-
ponent ‘i’, placed at a position ‘ri’ from its origin ‘Oi’, are defined. Fig. 2.3
shows a deformed section, where ‘zi’, ‘ui’, and ‘ψi’ represent the total vertical
deflection, pure bending and torsion, respectively. While assuming no deforma-
tion due to shear [23] and using the small angle approximation in conjunction
with the Galerkin method [23], the deformations with respect to the r.a of a
component are expressed as a function of two eigenfunctions or shape functions
φu,ψ per D.o.F of a fixed-free beam and the corresponding vector of generalized
coordinates ‘qu,ψ’:

zi (ri, t) = ui (ri, t) + yi sin (ψi (ri, t))
≈ φui (ri) qui (t) + yiφψi (ri) qψi

(t) (2.7)
ψi (ri, t) = φψi

(ri) qψi
(t)
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Figure 2.3: Deformed section.

A brief description of eigenfunctions is given in Appendix C. By taking the time
derivative of the generalized coordinates, the corresponding structural velocities
will be as follows:

żi (ri, t) = φui (ri) sui (t) + yiφψi
(ri) sψi

(t)

ψ̇i (ri, t) = φψi
(ri) sψi

(t) (2.8)
sui,ψi

(t) = q̇ui,ψi
(t)

The vector of total absolute velocity V̄f (rf , t) on a node is the sum of rigid-body
velocities at Of and the generalized structural velocities at that node. From
Eqs. (2.7–2.8), the velocity vector on a node of the fuselage is expressed as the
sum of rigid-body translational velocity CfVf of the aircraft, absolute velocity
due to aircraft rigid-body angular velocity2 (r̃f + z̃f )TCfΩf , the absolute ve-
locity due to torsional velocity r̃Tf ψ̇f , and the structural bending velocity żf of
the node [4]:

V̄f (rf , t) = CfVf + (r̃f + z̃f )
T CfΩf + r̃Tf ψ̇f + żf

= CfVf + r̃T
f
CfΩf +

(
˜CfΩf

) (
φuf

quf
+ ỹfφψf

qψf

)
(2.9)

+
(
r̃f + ỹf

T
)
φψf

sψf
+ φuf

suf

2Absolute velocity Vi due to a angular velocity is normally expressed as the cross-product
r × Ωf , in which r is the distance from the origin of the rotation to the point where the
absolute velocity is measured. For a generalized distance, r is summed with the instantaneous
structural deflection z in Eq. (2.9). Similarly the torsional structural velocity is also converted
to the absolute velocity by using the same analogy shown in the case of rigid-body velocities.
The cross-product of two vectors is solved in matrix form by multiplying the skew symmetric
matrix of one of the vector, represented as ∼ over that vector, to the other vector. The
property of skew symmetry is ãT b = b̃a.
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18 Chapter 2. Mathematical Modeling

in which Cf is the rotation matrix of the fuselage, which transforms the vec-
tors from Of to the component’s local axes system3. The deflection of the
attachment point of wings or empennage on the fuselage is a function of rota-
tion angles due to deflections in bending and torsion of the fuselage. Figure 2.4
shows the kinematics of the attachment point ‘Ow’ of the two halves of the wing
on the aft fuselage, where the beams representing the aft fuselage and the left
wing are depicted with their lumped mass elements ‘mf ’ and ‘mw’, respectively,
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fyz
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w fz z

.e a

L
wxwr

Figure 2.4: Deflected aft fuselage and left wing beams.

and their respective stiffness elements. The other components are not shown
for the sake of brevity. The point ‘Ow’ is deflected by ‘zfy ’ and ‘zfz ’ in ‘y’ and
‘z’ directions, respectively, with a torsion angle of ‘ψfx’ along the x-axis. By
using the first expression of Eq. (2.7), the rotation angle along the y-axis due
to bending about z-axis is as follows:

αfy

(
rfxi

, t
)

= − ∂zfz

∂rfxi

= −
(
∂φuf

(
rfxi

)
quzf

(t)

∂xf
+ yfz

∂φψf (rfi)qψf
(t)

∂xf

)
(2.10)

Similarly the rotation angle along the z-axis due to bending about y-axis is as
follows:

αfz

(
rfxi

, t
)

=
∂zfy

∂rfxi

=
(
∂φuf (rfi)quyf

(t)

∂xf
+ yfy

∂φψf (rfi)qψf
(t)

∂xf

)
(2.11)

The generalized rotational velocities due to bending can be written in a vector

3It is to be noted that in Eq. (2.9) the rigid-body velocities are only required to transform,
whereas the structural velocities (i.e. ż and ψ̇) are already expressed in the local axes system.
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2.2. Modeling of aircraft structural dynamics 19

form as:

α̇ (rfi
, t) = Δφufi

suf + ỹfΔφψfi
sψf

Δ =

⎡⎢⎢⎣
∂/∂xf 0 0

0 0 −∂/∂xf
0 ∂/∂xf 0

⎤⎥⎥⎦
φufi

(rfi
) =

⎡⎣0 0 0
0 φufy

0
0 0 φufz

⎤⎦ (2.12)

φψfi
(rfi

) =
[
φψf

0 0
]T

suf
=
[
0 q̇uyf

q̇uzf

]T
yf =

[
0 yfz yfy

]T
The vector of total absolute velocity on a node of either the wing or the vertical
tail is the sum of rigid-body and structural velocities of the aft fuselage, struc-
tural velocities of the attachment point ‘Oi’ and finally the structural velocities
of the node itself. It is given as follows:

V̄i (ri, t) = CiVf +
[
Ci (r̃fi + z̃fi)

T + (r̃i + z̃i)
T Ci

]
Ωf

+ Ci

(
żfi + r̃Tfiψ̇fi

)
+ r̃Ti Ci

(
α̇fi + ψ̇fi

)
(2.13)

+ żi + r̃Ti ψ̇i i = w, v

Figure 2.4 is expanded to Fig. 2.5, where it is shown that the horizontal tail is
attached to the vertical tail at a position of ‘rvh’ and the effects of fuselage de-
formation comes through the vertical tail. The vector of total absolute velocity
for a mass element ‘mh’, located at a position ‘rh’, on one of the horizontal tails
is a function of rigid-body and structural velocities of fuselage, vertical tail, and
the node itself. It is expressed as follows:

V̄h (rh, t) = ChCvVf +

[
ChCv (r̃fv + z̃fv)

T + Ch (r̃vh + z̃vh)
T Cv

+ (r̃h + z̃h)
T ChCv

]
Ωf

+ Ch

[
Cv żfv + Cv r̃

T
fvψ̇fv

]
+ Ch

[
r̃TvhCv

(
α̇fv + ψ̇fv

)]
(2.14)

+ Ch
[
żfh + r̃Tvhψ̇vh

]
+ r̃ThCh

(
α̇vh + ψ̇vh

)
+ żh + r̃Th ψ̇h

By using Eqs. (2.7–2.8), and (2.12), the Eqs. (2.13) and (2.14) are expanded
and linearized as given in Appendix H, see Eqs. (H.5– H.8).
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Figure 2.5: Deflected aft fuselage and empennage beams.

2.2.4 Mass Matrix

The velocity terms in Eqs. (2.9) and (2.13– 2.14) are sorted out in vector form
of Eq. (2.3) and then used in Eq. (2.2). The coefficients resulting from the
product of velocities construct the global mass matrix M = [Mij ], which is a
function of a structural displacements:

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡⎣ m
m

m

⎤⎦ S̃T M13 ... M18

S̃ Jf M23 ... M28

M31 M32 M33 · · · M38
...

...
...

...
...

M81 M82 M83 · · · M88

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.15)

in which m, S̃, and Jf are the aircraft mass, and first moment of inertia and
moment of inertia matrices of the flexible aircraft, respectively. Readers are
referred to Ref. 4 for the complete listing of the submatrices [Mij ] of the mass
matrix except for the modified submatrices due to bending-torsion coupling and
T-Tail configuration. These are given in Eqs.(E.2–E.54) in Appendix E.

2.2.5 Stiffness matrix

As assumed in Section 2.2.3 that there are no deformations due to shear,
whereas only bending and torsion deformations are taken into account. So
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2.2. Modeling of aircraft structural dynamics 21

the potential energy is presented in the form of strain energy [12, 24]:

U =
∑

i=f,e,w

∫
1
2

[
EIi (z′′i )

2 − 2ki (z′′i ) (ψ′i)
+GJi (ψ′i)

2

]
dDi (2.16)

in which dDi represents the integration over the length of the beam. The global
stiffness matrix of the aircraft is a function of the strain energy [22]:

K =

⎡⎢⎢⎢⎢⎢⎢⎣

Kuf
0 0 Kuψf

0 0
0 Kuw 0 0 Kuψw 0
0 0 Kue 0 0 Kuψe

Kψuf
0 0 Kψf

0 0
0 Kψuw 0 0 Kψw 0
0 0 Kψue 0 0 Kψe

⎤⎥⎥⎥⎥⎥⎥⎦ (2.17)

where

[Kjk] =
[
∂2U

∂qj∂qk

]
(2.18)

Using Eqs. (2.7) and (2.16–2.17), the stiffness in bending and torsion are stated,
respectively, as:

Kui =
[

∂2U

∂qui∂qui

]
=
[
φ′′ui

]
diag

[
EIi(dof)1 · · ·EIi(dof)n

] [
φ′′ui

]T (2.19)

Kψi
=
[

∂2U

∂qψi
∂qψi

]
=
[
φ′ψi

]
diag

[
GJi(dof)1 · · ·GJi(dof)n

] [
φ′ψi

]T
(2.20)

The cross coupling term in the form of a submatrix of the global stiffness matrix
is as follows:

Kuψi
=
[

∂2U

∂qui∂qψi

]

=

due to the use of r.a︷ ︸︸ ︷[
φ′′ui

]
diag

[
EIi(dof)1 · · ·EIi(dof)n

]
diag

[
yi1 · · · yin

] [
φ′′ψi

]T
(2.21)

− [φ′′ui

]
diag

[
ki1 · · · kin

] [
φ′ψi

]T︸ ︷︷ ︸
due to the material properties

where the matrix of two shape functions or mode shapes4 of a beam in bending
‘u’ or torsion ‘ψ’ is given as:

[φi] =
[
φ1,1 · · · φ1,n

φ2,1 · · · φ2,n

]
, i = u, ψ (2.22)

4Two shape functions or mode shapes of a cantilever beam means to consider only the first
two lowest frequencies, see Appendix C.
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In conjunction with the subvectors of generalized structural velocities in
Eqs. (2.3–2.6), and two shape functions per D.o.F in Eq. (2.7), the vector of
structural generalized coordinates is defined as:

q = [

qu︷ ︸︸ ︷
qTuf qTuw qTue

qψ︷ ︸︸ ︷
qTψf qTψw qTψe]

T (2.23)

The length of q is 32, in which, the first eight elements belong to fuselage in
bending, the next four elements belong to wings in bending and so on with the
last six elements belong to torsion in empennage i.e. a vertical tail and two
halves of horizontal tail.

2.3 Damping matrix

Friction between the vibrating components dissipates energy, which damps the
vibrations. By using Eq. (2.16) the structural damping in the form of dissipation
density ‘F ’ is written as [22]:

F =
∑

i=f,e,w

2ζ√
Λu,ψi

∫
1
2

⎡⎣ EIi (ż′′i )
2 − 2ki (ż′′i )

(
ψ̇′i
)

+GJi
(
ψ̇′i
)2

⎤⎦dDi (2.24)

in which the
√

Λu,ψi
is the lowest natural frequency of a component, computed

from the eigenvalue solution of the particular mass and stiffness matrices of
that component, ζ is the structural damping factor. From Eq. (2.16) we can
write Eq. (2.24) as:

F =
∑

i=f,e,w

2ζ√
Λu,ψi

U̇ (2.25)

and by using Eq. (2.8), Eq.(2.24) can be expanded as follows:

F =
∑

i=f,e,w

2ζ√
Λu,ψi

∫
⎛⎜⎜⎜⎜⎜⎜⎝

sTui

[
φ′′ui

]
diag

[
EIi(dof)1 · · ·EIi(dof)n

] [
φ′′ui

]T
sui

+sTui

[
φ′′ui

]
diag

[
EIi(dof)1 · · ·EIi(dof)n

]
×diag [yi1 · · · yin] [φ′′ψi

]T
sψi

−sTui

[
φ′′ui

]
diag

[
ki1 · · · kin

] [
φ′ψi

]T
sψi

+sTψi

[
φ′ψi

]
diag

[
GJi(dof)1 · · ·GJi(dof)n

] [
φ′ψi

]T
sψi

⎞⎟⎟⎟⎟⎟⎟⎠ dDi

(2.26)
and now by substituting Eqs. (2.20–2.21) into Eq. (2.26) F is expressed as:

F =
∑

i=f,e,w

2ζ√
Λu,ψi

(
sTui
Kuisui − sTui

Kuψi
sψi

+ sTψi
Kψi

sψi

)
(2.27)
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The structural damping matrix ‘C’ is proportional to the stiffness matrix i.e. C
= 2ζK√

Λu,ψi

, where the Rayleigh dissipation density F is finally expressed as [22]:

F =
∑

i=f,e,w

(
sTui
Cuisui − sTui

Cuψi
sψi

+ sTψi
Cψi

sψi

)
(2.28)

The global damping matrix of the aircraft is expressed similar to the stiffness
matrix in Eq. (2.17) as:

C =

⎡⎢⎢⎢⎢⎢⎢⎣

Cuf
0 0 Cuψf

0 0
0 Cuw 0 0 Cuψw 0
0 0 Cue 0 0 Cuψe

Cψuf
0 0 Cψf

0 0
0 Cψuw 0 0 Cψw 0
0 0 Cψue 0 0 Cψe

⎤⎥⎥⎥⎥⎥⎥⎦ (2.29)

where the individual submatrix in Eq. (2.29) is given as:

[Cjk] =
[
∂2F
∂q̇j∂q̇k

]
(2.30)

2.4 Aerodynamic and gravity loads

The aerodynamic model is essentially a two dimensional model, presented in
the form of several strips, as shown in Fig. 2.1, with lift, sideforce, moment,
and drag slopes i.e. Clα , Csβ

, Cmα , and Cdα , respectively. It is well known that
aeroelastic predictions are usually conservative when using the quasi-steady
strip theory [23], but at the same time the use of aerodynamic coefficients suits
the quasi-coordinate approach [4]. Otherwise the aerodynamic data from a high
fidelity analysis (e.g. computational fluid dynamics) can also be converted to
aerodynamic derivatives and the same form of the equations of motion can be
used [25].

The quasi-steady lift fli on the aerodynamic center of each strip of either fuse-
lage, wings or horizontal tails is a function of the aerodynamic lift slope and
the local angle of attack of the strip [4, 25]:

flf = PdcfClαf
αf = PdcfClf

flw = Pdcw
(
Clαwαw + Clδaδa

)
(2.31)

flh = Pdch
(
Clαh

αh + Clδeδe
)

in which Pd, ci, αi, and δ are dynamic pressure, chord length, angle of attack,
and control deflection, respectively. Similarly the lateral force fsi per unit strip
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of either fuselage or vertical tail can be expressed as:

fsf
= PdcfCsβfβf = PdcsfCsf

fsv = Pdcv
(
Csβvβv + Csδrδr

)
(2.32)

The dynamic pressure pd, angle of attack αi, and side-slip angle βi are defined
as:

Pd =
1
2
ρV 2

fx
(2.33)

αi = θΘf
+
Vfz − Vξ + liΩfΘ + q̇i

Vfx

+ ψ, i = f, h, w (2.34)

βi = θΨf
+
Vfy + liΩfΨ + q̇i

Vfx

+ ψ, i = f, v (2.35)

in which Vξ, θΘf
, and θΨf

are the vertical component of the downwash in
horizontal tail only, pitch attitude, and yaw attitude, respectively. The instan-
taneous local angle of attack of a strip is determined from the torsion angle ‘ψ’
of that strip and the angles produced by both rigid-body and elastic motions,
see Appendix F for the definitions. Pitching velocity ΩfΘ multiplied with the
moment arm li from Of to the particular strip gives the vertical absolute ve-
locity. As given in Eq. (2.8), q̇i is the generalized velocity vector. The drag fdi

per unit strip of either fuselage, wings, or empennage is expressed as [4]:

fdi
= Pdci

(
Cd0i

+ kiC
2
lαiα

2
)

(2.36)

in which the 2-D profile drag coefficients Cd0i
corresponds to α = 0 and ki is the

induced drag factor. The resultant aerodynamic force fali
and fasi on fuselage,

wings, empennage with respect to the local coordinate axes Oi are expressed in
vector form as:

falf
=

⎡⎣ flf sinαf − fdf
cosαf

0
−flf cosαf − fdf

sinαf

⎤⎦ , fasf
=

⎡⎣ fsf
sinβf

−fsf
cosβf
0

⎤⎦
fLali

=

⎡⎣ 0
fli sinαi − fdi

cosαi
−fli cosαi − fdi

sinαi

⎤⎦ , fRali
=

⎡⎣ 0
−fli sinαi + fdi

cosαi
−fli cosαi − fdi

sinαi

⎤⎦ (2.37)

fasv =

⎡⎣ 0
fsv sinβv
−fsv cosβv

⎤⎦
It is to be noted that the sign convention for aerodynamic forces on left and
right wing or horizontal tail in Eq. (2.37) is referred to the respective coordinate
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axes ‘Oi’, as shown in Fig. 2.1. The gravitational forces per unit volume of a
component are as follows [26]:

fgf
= mfCIf

⎡⎣0
0
g

⎤⎦
fgi = miCiCIf

⎡⎣0
0
g

⎤⎦ , i = e, w (2.38)

in which CIf is the transformation from inertial axes to the aircraft body axes
and given in Appendix D. Gravity g is taken as 9.81m/sec2. The total force
on a node of a component is the summation of air and gravitational forces:

fi = fali
+ fasi + fgi , i = f, e, w (2.39)

2.5 Thrust model

The thrust fE for a single engine is expressed as [26]:

fE = fESL

( ρ
1.225

)0.7 (
1− exp−(

Rfz
+17000

2000
)

)
δT (2.40)

where δT , fESL
, ρ, and Rfz are the pilot input on thrust, static thrust at the

sea level, air density, and altitude, respectively.

2.6 Generalized forces

The distributed forces on a component as given in Eq. (2.39) are converted to
generalized forces, which are to be used in conjunction with the equations of
motion, see section 2.7. The actual forces are generalized by means of virtual
work δW̄ , which in terms of rigid-body and elastic deformations can be written
as [4]:

δW̄ = F Tf δRf +MT
f δθf +

∑
i=f,e,w

(
QTuiδqui +QTψi

δqψi

)
(2.41)
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while using the Eqs. (2.9), (2.13), and (2.14), the generalized forces for the
rigid-body motion can be defined as:

Ff =
∫
Df

[
fEδ

(
r − rfE

)]
dDf +

∑
i=f,e,w

CTi

∫
Di

fidDi

Mf = CTf

∫
Df

(
r̃f + z̃f

) [
ff + fEδ

(
r − rfE

)]
dDf

+
∫
Dh

[(
r̃fv + z̃fv

) (
ChCv

)T + CTv
(
r̃vh

+ z̃vh

)
CTh

+
(
ChCv

)T (
r̃h + z̃h

) ]
fhdDh (2.42)

+
∫
Di

[(
r̃fi

+ z̃fi

)
CTi + CTi

(
r̃i + z̃i

)]
fidDi, i = w, v

in which δ
(
r − rfE

)
is a direct delta function and rfE

is the location of the
engines on the fuselage [4]5. By using the Eqs. (2.9), (2.13), and (2.14), the
generalized forces acting on the fuselage are expressed as:

Quf
=
∫
Df

φTuf

[
ff + fEδ

(
r − rfE

)]
dDf +

∫
Di

[
r̃Ti CiΔφufi

+ Ciφufi

]T
fidDi

+
∫
Dh

[
r̃Tvh

CvΔφufv
+ Cvφufv

]T
CTh fhdDh, i = w, v

Qψf
=
∫
Df

φTψf
r̃f
[
ff + fEδ

(
r − rfE

)]
dDf (2.43)

+
∫
Di

[
r̃Ti Ci

(
ỹfΔφψfi + φψfi

)
+ Ci

(
ỹf + r̃Tfi

)
φψfi

]T
fidDi

+
∫
Dh

[
r̃Tvh

Cv
(
ỹfΔφψfv

+ φψfv

)
+ Cv

(
ỹf + r̃Tfv

)
φψfv

]T
CTh fhdDh

5The aircraft used in Chapters 5 and 6 has fuselage mounted engines. Otherwise, in case
of wing mounted engines, their location and direct delta function will be accommodated as
δ
(
r − rwE

)
in the integrals of generalized forces acting on the wings.
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Similarly using the equations, as stated above, the generalized forces on the
vertical tail are expressed as follows:

Quv =
∫
Dv

φTuv
fvdDv +

∫
Dh

[
r̃ThChΔφuvh + Chφuvh

]T
fhdDh

Qψv =
∫
Dh

[
r̃ThCh

(
ỹvΔφψvh

+ φψvh

)
+ Ch

(
ỹv + r̃Tvh

)
φψvh

]T
fhdDh (2.44)

+
∫
Dv

φTψv
r̃vfvdDv

and the generalized forces on wings and horizontal tails are given as:

Qui =
∫
Di

φTui
fidDi

Qψi
=
∫
Di

φTψi
r̃ifidDi, i = h,w (2.45)

In conjunction with the generalized coordinates in Eq. (2.23), the generalized
forces with regard to elastic deformations are arranged as:

Q =
[
QTuf

QTuw
QTue

QTψf
QTψw

QTψe

]T
(2.46)

The above equation can be further partitioned into the subvectors in the same
way as in the case of generalized velocities in Eqs. (2.4–2.6).

2.7 Equations of motion

The generalized momenta ‘p’ can be expressed as a partial derivative of the
Lagrangian “L = T − U” w.r.t the velocity [4, 22]:

p = ∂L/∂V = MV

p =
[
pTVf

pTΩf
pTuf

· · · pTψe

] (2.47)

By using the generic form of the equations of motion [4], the equations of motion
for the whole aircraft can be expressed as follows:

Ṙf = CTIfVf , θ̇f = E−1
If Ωf

q̇ui = sui, q̇ψi = sψi

ṗVf
= −Ω̃fpVf

+ Ff (2.48)

ṗΩf
= −ṼfpVf

− Ω̃fpΩf
+Mf
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The first two expressions in Eq. (2.48) belong to the rigid-body motions with
respect to the inertial axes, where CIf and EIf are the transformation matrices
from inertial axes to the aircraft body axes. The third and fourth solve the
generalized coordinates, which are then used in Eq. (2.7) to get the subsequent
elastic deformations. The last two expressions in Eq. (2.48) solve the momenta
in rigid-body translations and rotations, respectively. By using the generic form
of Lagrange’s equation, as given in Eq. (2.1), the expressions for the generalized
momenta for elastic motion in bending and torsion are given as:

ṗui =
∂T

∂qui

−Kψiqui − Cuisui +Qui

ṗψi
=

∂T

∂qψi

−Kψi
qψi
− Cψi

sψi
+Qψi

i = f, e, w (2.49)

As the kinetic energy in Eq. (2.2) is a function of the absolute velocity V̄i, which
in turn, as given in Eqs. (2.9), (2.13), and (2.14), is a function of the structural
generalized coordinates qui in bending and qψi

in torsion. So by using the chain
rule for differentiation, the partial derivatives of kinetic energy T with respect
to a vector of generalized coordinates in bending is expresses as:

∂T

∂qui

=
∂V̄ T

f

∂qui

∂T

∂V̄ T
f

+
∂V̄ T

w

∂qui

∂T

∂V̄ T
w

+
∂V̄ T

e

∂qui

∂T

∂V̄ T
e

∂T

∂quf

=
∫
Df

φTuf
˜CfΩf

T
V̄fdmf + (CTf φufw

)T Ω̃T
f C

T
w

∫
Dw

V̄wdmw

+ (CTf φufv
)T Ω̃T

f

[
CTv
∫
Dv

V̄vdmv + (ChCv)T
∫
Dh

V̄hdmh

]
∂T

∂quw

=
∫
Dw

φTuw
(˜CwΩf )T V̄wdmw (2.50)

∂T

∂quv

=
∫
Dv

φTuv
(˜CvΩf )T V̄vdmv + φTuvh

CTh (˜CvΩf )T
∫
Dh

V̄hdmh

∂T

∂quh

=
∫
Dh

φTuh
( ˜ChCvΩf )

T V̄hdmh

Similarly, by using the analogy of the first expression of Eq. (2.50) the partial
derivatives of kinetic energy w.r.t a vector of generalized coordinates qψi

in



�

�

“thesis” — 2009/3/12 — 22:27 — page 29 — #43
�

�

�

�

�

�
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torsion are given as:

∂T

∂qψi

=
∂V̄ T

f

∂qψi

∂T

∂V̄ T
f

+
∂V̄ T

h

∂qψi

∂T

∂V̄ T
h

+
∂V̄ T

i

∂qψi

∂T

∂V̄ T
i

∂T

∂qψf

=
∫
Df

(ỹfφψf
)T ˜CfΩf

T
V̄fdmf + (CTf ỹfφψfw

)T Ω̃T
f C

T
w

∫
Dw

V̄wdmw

+ (CTf ỹfφψfv
)T Ω̃T

f

[
CTv
∫
Dv

V̄vdmv + (ChCv)T
∫
Dh

V̄hdmh

]
∂T

∂qψw

=
∫
Dw

(ỹwφψw)T (˜CwΩf )T V̄wdmw (2.51)

∂T

∂qψv

=
∫
Dv

(ỹvφψv)
T (˜CvΩf )T V̄vdmv + (ỹvφψvh

)TCTh (˜CvΩf )T
∫
Dh

V̄hdmh

∂T

∂quh

=
∫
Dh

(ỹhφψh
)T ( ˜ChCvΩf )

T V̄hdmh

2.8 Model reduction

The equations of motion in Eqs. (2.48–2.49) solve a state-vector of 76 elements
which include 38 generalized coordinates, 6 rigid-body translations and rota-
tions, and 32 elastic deformations. The equations contain all lower and higher
frequency modes. To determine the lower frequencies and corresponding aircraft
shape functions (ASF), the mathematical modal is reduced to a lower number
of D.o.F by the eigenvalue solution of global stiffness and mass matrices:[

K − λM(7:38,7:38)|q=0

]
d = 0 (2.52)

The reduced-order mass matrix is given as [27,28]:

Mξ = UTuψMqUuψ (2.53)

in which the transformation matrix Uuψ is given as:

Uuψ =

⎡⎢⎣I 0
. . .

0 Dm

⎤⎥⎦

Dm =
[
d( : ,1:m)

]
=

⎡⎢⎢⎢⎣
Duf

Duw
...

Dψe

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
Dm(1:8,1:m)

Dm(9:12,1:m)
...

Dm(27:32,1:m)

⎤⎥⎥⎥⎦ (2.54)

(2.55)
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30 Chapter 2. Mathematical Modeling

and I is an identity matrix of order 6. The reduced-order stiffness and damp-
ing matrices are computed by using the analogy of mass matrix as given in
Eq. (2.53):

Kξ = DT
mKDm (2.56)

Cη = DT
mCDm (2.57)

Similarly the generalized force vector Q in Eq. (2.46) is reduced as:

Qξ = DT
mQ (2.58)

It is important to note that the ASF in the matrices of Uu,ψ and Dm linearly
transform the model into a reduced-order “similar” [29] model, which does not
change the properties of the system i.e. both the resulting mass and stiffness
matrices remain to be the non diagonal matrices that maintain the inertial and
elastic coupling, respectively. The expressions for generalized coordinates and
momenta in Eqs. (2.48) and (2.49) are rewritten after the reduction as:

ξ̇ = η (2.59)

ṗη =
∂T

∂ξ
−Kξξ − Cηη +Qξ (2.60)

The reduced-order generalized coordinates and momenta vector from above
equation can be expanded as:

q = Dmξ p = Dmpη (2.61)

Similarly, the partial derivative ∂T
∂ξ in Eq. (2.60) is expressed by using the

submatrices of Dm in Eqs (2.50) and (2.51):

∂T

∂ξ
= DT

uf

∂T

∂quf

+DT
uw

∂T

∂quw

+DT
uv

∂T

∂quv

+DT
uh

∂T

∂quh

+DT
ψf

∂T

∂qψf

+DT
ψw

∂T

∂qψw

+DT
ψv

∂T

∂qψv

+DT
ψh

∂T

∂qψh

(2.62)

2.9 Synopsis

The aircraft structure is discretized into several beams, where each beam is
further discretized into lumped mass and stiffness elements. The aerodynamic
lifting surfaces are presented in the form of quasi-steady panels or strips with
lift, moment, and drag coefficients. The deflection of a beam section in bend-
ing with torsion effects is presented. The result is expanded to the modified
expressions of beam generalized velocities. The nondiagonal mass matrix is for-
mulated as a product of the coefficients of generalized velocities when used in
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2.9. Synopsis 31

kinetic energy expression. Structural stiffness and damping matrices are formu-
lated by using the strain energy of whole aircraft with coupled bending torsion
deformations. Based on the principle of virtual work, the generalized forces
due to aerodynamics and gravity loads are derived. After that, by using the
generic equations of motion of a flexible aircraft, derived through the Lagrange
principle of motion, the equations of motion to be used in the present study
are derived, in which the positions are presented in the form of generalized co-
ordinates and motion in the form of generalized momenta. Finally, a common
modal reduction technique is used to reduce the degrees of freedom.
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Chapter 3

State-Space Representation
and Linearization

In this chapter the equations of motion are linearized and presented in the
form of state-space equations. These will be used in the next chapters on loads
equations, computer coding and finally the flight loads simulation.

Before deriving the matrices of the state-space equation it is necessary to dis-
cuss some important aspects of linearization in the equations of motion. It is
common practice in rigid-body flight dynamics to linearize the equations about
the steady-state condition, assuming that the disturbances are very small and
aerodynamics effects are linear functions of the disturbances [30,31]. The small
perturbation theory in case of a fully-flexible aircraft looks reasonably valid
when the external disturbances (e.g. due to a gust input) cause small pertur-
bations around the trim state, where the forward air speed and inertia matrix
are assumed constant. But during certain maneuvers (e.g, due to abrupt ele-
vator inputs), the angle of attack can increase significantly [32]. In such cases
the idea of perturbation around the trim condition does not seem valid but
at the same time it is quite difficult to solve the nonlinear equations of mo-
tion of relatively large order (i.e. integrating the rigid-body and elastic D.o.F.
concurrently). A special form of perturbation theory, called the “extended
aeroelasticity theory” [4, 27, 28], addresses the nonlinearities in the dynamics
of the flexible aircraft by first solving the rigid-body dynamics problem, called
the zero-order problem, and the solution of a zero-order problem enters into
linearized equations, called the first-order problem, which solves the vibrations
and their effects on the rigid-body motion. Another method, known as the
Generalized-αmethod is also used to solve the equations of motion of the flexible
aircraft by integrating the rigid-body and elastic D.o.F concurrently, where the
equations of motion are not linearized around the steady-state condition [33].

33
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34 Chapter 3. State-Space Representation and Linearization

However in the present study the linear model (i.e. extended aeroelasticity ap-
proach) is used, which, as stated in Chapter 1, is acceptable in verifying the
loads conditions given in aviation regulations.

A constant inertia matrix for a purely rigid aircraft in a short period maneuver
seems very practical but for flexible aircraft, subject to structural deformations
during the maneuvers, the inertia matrix should be updated for every time
step of the solution. The equations of motion of a flexible aircraft presented in
Ref. 5 and 14 lack this particular capability and the inertia matrix is assumed
to be constant during a maneuver. However, the inertially coupled equations
of motion presented in Ref. 4 and the modified version presented in this report
or in Ref. 34 are solved with updated inertia matrix for each time step, see
Eqs. (E.2–E.54) where the inertia matrices are functions of the generalized
coordinates qu and qψ. The “extended aeroelasticity theory”, as stated above,
linearizes the nonlinear effects of flexibility around a certain time step of a
given maneuver. As stated, it divides the solution into two parts, i.e. zero-
order and first-order problems. The linearization of the equations of motion
into first-order state in Ref. 4 makes the equations symbolically quite complex
and a small error during the computer coding can make the results erroneous.
To make the linearization process easy to implement, the equations of motion
are linearized in two stages. In the first stage the most commonly known
flight mechanics and aeroelasticity terms are used to differentiate the equations
into a few coefficient matrices [30, 31, 35, 36] that are ultimately collected in
a generic state-space equation of motion of a flexible aircraft in perturbation.
In conjunction with the theory of extended aeroelasticity, the generic state-
space equation is further segregated into a zero-order state and, while using
the Taylor’s series expansion [29], the coefficient matrices are further linearized
into first-order state equations in the second stage.

3.1 Generic state-space equations

As given in the Eq. (2.47), the inverse of the mass matrix multiplied by the
momenta eliminates the velocities in Eqs. (2.48–2.49) and the generic state-
space form of Eqs. (2.48–2.49) is given as:

ẋ(t) =
[[
A(t) + CV Ω(t)

]
M−1
ξξ (t) +Bx(t)

]
x(t) +Buu(t) (3.1)

in which the state-vector ‘x’ is defined as
[
RTf θTf ξT pTV f pTΩf pTη

]T
. Ma-

trices CV Ω, Bx, and Bu are related to the aerodynamic damping, aerodynamic
stiffness and control stiffness, respectively, and these are defined in this chapter.
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The inverse of M−1
ξξ in matrix form is defined as:

M−1
ξξ =

[
0 M−1

ξ

0 M−1
ξ

]
(3.2)

where the state-space matrix A is expressed as:

A =

⎡⎢⎢⎢⎢⎢⎢⎣

0 0 0 CTf 0 0
0 0 0 0 E−1

f 0
0 0 0 0 0 sη
0 0 0 0 p̃V f 0
0 0 0 p̃V f p̃Ωf 0
0 0 Aξ −Kξ AV AΩ Aη − Cη

⎤⎥⎥⎥⎥⎥⎥⎦ (3.3)

in which the submatrices Aξ, AV , AΩ, and Aη are derived by using the
Eqs. (2.9), (2.13), and (2.14) in Eqs. (2.50) and (2.51), see Appendix H.

3.2 The α− β derivatives

The derivatives with respect to angle of attack ‘α’ and side slip angle ‘β’ are
defined in this section, which are to be used extensively in the aerodynamic
damping and stiffness matrices in the later sections of this chapter. Expanding
Eq. (2.37) by using Eqs. (2.31–2.36), the drag coefficient can be expressed as a
function of α for a aerodynamic strip on fuselage, left wing, or left horizontal
tail:

∂fad
(ri)

∂α
= Pdci(ri)

∂
(
Clαα sinα− (Cd0 + kC2

lαα
2
)
cosα

)
∂α

= Pdci(ri)
(
Clα sinα+ Clαα cosα− Cd0α cosα+ Cd0 sinα

−2kC2
lαα cosα+ kC2

lαα
2 sinα

)
(3.4)

Using the small angle approximation i.e. sinα ≈ α and cosα ≈ 1 and also
removing the higher order terms Eq. (3.4) can be written as:

∂fad
(ri)

∂α
= −Pdci(ri)Cd0α (3.5)

in which Cd0α for a strip can be written as
(
∂Cd
∂α

)
0

= 2Cl0
πARki

Clα . The sign
convention in case of right wing and horizontal tail will be opposite to that of
given in Eq. (3.5). Similarly, by using the same assumption as used in the case
of Eq. (3.4), the derivative of lift and side force w.r.t α and β, respectively, are
as follows:

∂fal
(ri)

∂α
= −Pdci(ri)

[
Clα + Cd0

]
(3.6)

∂fs(ri)
∂β

= −Pdci(ri)Csβ (3.7)
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3.3 Aerodynamic damping matrix

Based on the expressions of instantaneous angles α and β, given in Appendix F,
the aerodynamic damping matrix CV Ω in Eq (3.1) is expressed as follows:

CV Ω =

⎡⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 ZV ZΩ Zη
0 0 0 MV MΩ Mη

0 0 0 QV QΩ Qη

⎤⎥⎥⎥⎥⎥⎥⎦ (3.8)

3.3.1 Damping due to V

In Eq. 3.8 the aerodynamic damping matrices ZV , MV , and QV due to rigid-
body motion in translation are expressed as:

ZV =
ρVfx

2

⎡⎢⎢⎢⎢⎢⎢⎣ eT1

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
∫
CTf cf

ZVβf︷ ︸︸ ︷⎡⎣Cd0βf

Csβf

0

⎤⎦ dDf +
∫
CTv cv

⎡⎣ 0
Cd0βv

Csβv

⎤⎦
︸ ︷︷ ︸
ZVβv

dDv

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
eT1

⎤⎥⎥⎥⎥⎥⎥⎦

+
ρVfx

2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
eT1 eT1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
CTwcw

ZVαw︷ ︸︸ ︷⎡⎣ 0
Cd0αw

Clαw + Cd0w

⎤⎦ dDw

+
∫

(ChCv)T ch

⎡⎣ 0
Cd0αh

Clαh
+ Cd0h

⎤⎦
︸ ︷︷ ︸

ZVαh

dDh

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.9)

MV =
ρVfx

2

⎛⎜⎝ ∑
i=f,v

∫
Di

l̃ici

⎡⎣ e1
ZTVβi

e1

⎤⎦T dDi +
∑

i=h,w

∫
Di

l̃ici

⎡⎣ e1
e1
ZTVαh

⎤⎦T dDi

⎞⎟⎠ (3.10)

in which e1 is a null vector of size (1×3). By using the Eqs. (2.43–2.45), the
moment arm vectors lf , li, and lh from aircraft body axes Of to a particular
node of fuselage, wings or vertical tails, and horizontal tails respectively are
expressed in Eq. (3.10) as:

l̃f = r̃fC
T
f + CTf

(
˜φuf
Duf

+ ˜ỹfφψf
Dψf

)
ξ (3.11)
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l̃i =
[
r̃fi +

(
˜CTf φuf

Duf
+ ˜CTf ỹfφψf

Dψf

)
ξ
]
CTi

+ CTi

[
r̃i +

(
˜φuiDui + ˜ỹiφψi

Dψi

)
ξ
]

i = w, v (3.12)

l̃h =
[

˜rfv +
(

˜CTf φufv
Duf

+ ˜CTf ỹfφψfv
Dψf

)
ξ
] (
ChCv

)T
+ CTv

[
˜rvh +

(
˜φuvh
Duv + ˜ỹvφψvh

Dψv

)
ξ
]
CTh

+
(
ChCv

)T [
r̃h +

(
˜φuh
Duh

+ ˜ỹhφψh
Dψh

)
ξ
]

(3.13)

The reduced-order generalized damping matrix QV is given as:

QV =
ρVfx

2

∑
i=f,e,w

QVi (3.14)

By using Eqs.(2.43–2.45), the reduced-order generalized damping matrices QVi

of each component in Eq. (3.14) are defined as:

QVi =
∫
Di

[
Φui + Φψi

]T
ci

⎡⎣ e1
e1
ZTVαi

⎤⎦T dDi, i = h,w (3.15)

QVv =
∫
Dv

[
Φuv + Φψv

]T
cv

⎡⎣ e1
ZTVβv

e1

⎤⎦T dDv+
∫
Dh

[
Φuvh

+ Φψvh

]T
ch

⎡⎣ e1
e1
ZTVαh

⎤⎦T dDh

(3.16)

QVf
=
∫
Df

[
Φuf

+ Φψf

]T
cf

⎡⎣ e1
ZTVβi

e1

⎤⎦T dDf +
∫
Dv

[
Φufv

+ Φψfv

]T
cv

⎡⎣ e1
ZTVβv

e1

⎤⎦T dDv

+
∫
Dw

[
Φufw

+ Φψfw

]T
cw

⎡⎣ e1
e1
ZTVαw

⎤⎦T dDw +
∫
Dh

[
Φufh

+ Φψfh

]T
CTh ch

⎡⎣ e1
e1
ZTVαh

⎤⎦T dDh

(3.17)

The expressions for eigenfunctions Φui and Φψi
in Eqs. (3.15–3.17) are given in

Table 3.1.

3.3.2 Damping due to Ω

The aerodynamic damping due to rigid-body rotational rates in pitch and yaw
(i.e. θ̇Θf

and θ̇Ψf
, respectively) are dominated by empennage effects (i.e. hor-

izontal tails and vertical tail). The effects of wings and fuselage are simply
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38 Chapter 3. State-Space Representation and Linearization

ignored in this case only [30, 36]. Similarly the damping due to a roll rate (i.e.
θ̇Φf

) is affected by the wings only. The damping matrices ZΩ, MΩ, and QΩ due
to rigid-body motion in rotation are therefore expressed as:

ZΩ =
ρVfx

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

∫
Dv

‖lv‖cv
⎡⎣ e1

e1(
CTv ZVβv

)T
⎤⎦T dDv +

∫
Dw

‖lw‖cw
⎡⎣(CTv ZVαw

)T
e1
e1

⎤⎦T dDw

+
∫
Dh

‖lh‖ch

⎡⎣ e1(
ChCv)TZVαh

)T
e1

⎤⎦T dDh

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(3.18)

MΩ =
ρVfx

2

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∫
Dv

l̃v‖lv‖cv
⎡⎣ e1
e1
ZTVβv

⎤⎦T dDv +
∫
Dw

l̃w‖lw‖cw
⎡⎣ZTVαw

e1
e1

⎤⎦T dDw

+
∫
Dh

l̃h‖lh‖ch

⎡⎣ e1
ZTVαh

e1

⎤⎦T dDh

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(3.19)

QΩ =
ρVfx

2

∑
i=h,v

QΩi (3.20)

in which ‖li‖ is the Euclidean norm1 of the moment arm vector. Similar to
the damping matrices QVi in Eqs. (3.15–3.17), the reduced-order generalized
damping matrices QΩi of each component are defined as:

QΩh
=
∫
Dh

[
Φuh

+ Φψh

]T ‖lh‖ch
⎡⎣ e1
ZTVαh

e1

⎤⎦T dDh, (3.21)

QΩv =
∫
Dv

[
Φuv

+Φψv

]T
‖lv‖cv

⎡⎣ e1
e1
ZTVβv

⎤⎦T dDv+
∫
Dh

[
Φuvh

+Φψvh

]T
‖lh‖ch

⎡⎣ e1
ZTVαh

e1

⎤⎦T dDh

(3.22)

1Euclidean norm of a vector [x y z] is
√

x2 + y2 + z2
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3.3.3 Damping due to η

The aerodynamic damping matrices Zη, Mη, and Qη due to structural general-
ized velocities are expressed as:

Zη =
ρVfx

2

∑
i=f,e,w

∫
Di

CTi ZηidDi (3.23)

Mη =
ρVfx

2

∑
i=f,e,w

∫
Di

l̃iZηidDi (3.24)

Qη =
ρVfx

2

∑
i=f,e,w

∫
Di

ΦT
i ZηidDi (3.25)

where the rotation matrix Ci of the horizontal tail in Eq. (3.23), as given in
several expression before, is ChCv. The reduced-order generalized damping
matrices Zηi of each component are defined as:

Zηh
= ch

⎡⎣ e1
e1
ZTVαh

⎤⎦T Φh︷ ︸︸ ︷[
Φuh

+ Φψh
+ Φuvh

+ Φψvh
+ Φufh

+ Φψfh

]
(3.26)

Zηw = cw

⎡⎣ e1
e1
ZTVαw

⎤⎦T Φw︷ ︸︸ ︷[
Φuw + Φψw + Φufw

+ Φψfw

]
(3.27)

Zηv = cv

⎡⎣ e1
ZTVβv

e1

⎤⎦T Φv︷ ︸︸ ︷[
Φuv + Φψv + Φufv

+ Φψfv

]
(3.28)

Zηf
= cf

⎡⎣ e1
ZTVβf

e1

⎤⎦T Φf︷ ︸︸ ︷[
Φuf

+ Φψf

]
(3.29)

3.4 Aerodynamic stiffness matrix

The aerodynamic stiffness in Eq. (3.1) is defined as:

Bx =

⎡⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
ZRf

Zθf
Zξ 0 0 0

MRf
Mθf

Mξ 0 0 0
QRf

Qθf
Qξ 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ (3.30)
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Table 3.1: Eigenfunctions used in aerodynamic damping and mass matrices

Φufi

[
r̃Ti CiΔφufi

+ Ciφufi

]
Duf

, i = w, v

Φufh

[(
r̃ThCh + Chr̃

T
vhCv

)
Δφufv

+ ChCvφufv

]
Duf

Φuvh

[
r̃ThChΔφuv + Chφuvh

]
Duv

Φui φuiDui , i = f, e, w

Φψfi

[
r̃Ti Ci

(
ỹfΔφψfi

+ φψfi

)
+ Ci

(
ỹf + r̃fi

)T
φψfi

]
Dψf

, i = w, v

Φψfh

[(
r̃ThCh + Chr̃

T
vhCv

) (
ỹfΔφψfv

+ φψfv

)
+ ChCv

(
ỹf + r̃fv

)T
φψfv

]
Dψf

Φψvh

[
r̃ThCh

(
ỹvΔφψvh

+ φψvh

)
+ Ch

(
ỹv + r̃vh

)T
φψvh

]
Dψv

Φψi

(
ỹi + r̃i

)T
φψi

Dψi
, i = f, e, w

a As given in Eq. (2.12), φufi or φψfi , and φuvh or φψvh correspond to shape function values
at the position of wings or vertical tail on fuselage, and horizontal tails on vertical tail,
respectively.

3.4.1 Stiffness due to Rf

The stiffness due to the rigid-body translation is mainly attributed to the engine
thrust, which, as given in Eq. (2.40), is a function of the altitude. But in the
present study we assume that during short period maneuvers the change in
aircraft altitude is small and has a minimum effect on the air density and so is
the engine thrust. So the aerodynamic stiffness due to the Rf is simply ignored,
however if one feel it necessary to include the derivative then Eq. (2.40) can be
differentiated w.r.t. Rf .

3.4.2 Stiffness due to θf

The aircraft attitude in roll and pitch (i.e. θΦf
and θΘf

) affects the aerody-
namic and gravity loads in Eq. (2.38). The submatrices Zθf

, Mθf
, and Qθf

are
functions of the derivatives of w.r.t. θΦf

, θΘf
, and θΨf

and expressed as follows:

Zθf
=
∑

i=f,e,w

∫
Di

⎛⎜⎝ρV 2
fx

2 ci

⎡⎢⎣ e1
CTi Z

T
Vαi

CTi Z
T
Vβi

⎤⎥⎦
T

dDi +
[
∂CIf

∂θΦf

∂CIf

∂θΘf

∂CIf

∂θΨf

]⎡⎣0
0
g

⎤⎦ dmi

⎞⎟⎠
(3.31)
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Mθf
=
∑

i=f,e,w

∫
Di

l̃i

⎛⎜⎝ρV 2
fx

2 ci

⎡⎢⎣ e1
CTi Z

T
Vαi

CTi Z
T
Vβi

⎤⎥⎦
T

dDi +
[
∂CIf

∂θΦf

∂CIf

∂θΘf

∂CIf

∂θΨf

]⎡⎣0
0
g

⎤⎦ dmi

⎞⎟⎠
+
∑

i=f,e,w

∫
Di

ρV 2
fxci

2

⎡⎣0 0 Clβi

0 Cmαi
0

0 0 Cnβi

⎤⎦ dDi (3.32)

Qθf
=
∑

i=f,e,w

∫
Di

φTi

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρV 2
fx

2 ci

⎡⎢⎣ e1
CTi Z

T
Vαi

CTi Z
T
Vβi

⎤⎥⎦
T

dDi +
[
∂CIf

∂θΦf

∂CIf

∂θΘf

∂CIf

∂θΨf

]⎡⎣0
0
g

⎤⎦ dmi

+
ρV 2

fxci
2

⎡⎣0 0 Clβi

0 Cmαi
0

0 0 Cnβi

⎤⎦

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(3.33)

3.4.3 Stiffness due to ξ

The stiffness due to a local torsion of a section on the wings, horizontal tails
and the vertical tail is as follows, whereas the fuselage is simply ignored:

Zξ = −ρVfx
2

∑
i=f,e,w

∫
Di

CTi ZξidDi (3.34)

Mξ = −ρVfx
2

∑
i=f,e,w

∫
Di

l̃iZξidDi (3.35)

Qξ = −ρVfx
2

∑
i=f,e,w

∫
Di

ΦT
i ZξidDi (3.36)

The reduced-order generalized aerodynamic stiffness matrices Zξi of each com-
ponent are defined as:

Zξv =

⎡⎣ZTVβ

e1
e1

⎤⎦T ΦψvDψv (3.37)

Zξi =

⎡⎣ZTVα

e1
e1

⎤⎦T Φψi
Dψi

i = h,w (3.38)

in which Φψi
is given in Table 3.1.
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3.5 Control stiffness matrix

The aerodynamic stiffness due to pilot input (i.e. control surface deflections
and thrust changes) can be written as:

Bu =

⎡⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0
Zδel

Zδa Zδr ZδT
Mδel

Mδa Mδr MδT

Qδel
Qδa Qδr QδT

⎤⎥⎥⎥⎥⎥⎥⎦ (3.39)

The next four subsections describe the different contributions.

3.5.1 Stiffness due to δel

The aerodynamic stiffness as a result of an elevator deflection is expressed as:

Zδel
=
ρVfx2

2

∫
Dh

chC
T
v C

T
h

[
0 0 Clδel

]T
dDh (3.40)

Mδel
=
ρVfx2

2

∫
Dh

ch l̃h

[
0 0 Clδel

]T
dDh (3.41)

Qδel
=
ρVfx2

2

∫
Dh

chΦT
h

[
0 0 Clδel

]T
dDh (3.42)

in which Φh is expressed in Eq. (3.26).

3.5.2 Stiffness due to δa

Similar to Eqs. (3.40–3.42), the aerodynamic stiffness due to aileron deflections
is expressed as:

Zδa =
ρV 2

fx

2

∫
Dw

cwC
T
w

[
0 0 Clδa

]T
dDw (3.43)

Mδa =
ρV 2

fx

2

∫
Dw

cw l̃w
[
0 0 Clδa

]T
dDw (3.44)

Qδa =
ρV 2

fx

2

∫
Dw

cwΦT
w

[
0 0 Clδa

]T
dDw (3.45)

in which Φw is expressed in Eq. (3.27).
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3.5.3 Stiffness due to δr

The aerodynamic stiffness due to a rudder deflection is expressed as:

Zδr =
ρV 2

fx

2

∫
Dv

cvC
T
v

[
0 Clδr

0
]T
dDv (3.46)

Mδr =
ρV 2

fx

2

∫
Dv

cv l̃v
[
0 Clδr

0
]T
dDv (3.47)

Qδr =
ρV 2

fx

2

∫
Dv

cvΦT
v

[
0 Clδr

0
]T
dDv (3.48)

in which Φv is expressed in Eq. (3.28).

3.5.4 Stiffness due to δT

The aerodynamic stiffness due to thrust changes is expressed as:

ZδT =
∫
Df

δ
(
r − rfE

) [
CxδT

0 0
]T
dDf (3.49)

MδT =
∫
Df

l̃fδ
(
r − rfE

) [
CxδT

0 0
]T
dDf (3.50)

QδT =
∫
Df

ΦT
f δ
(
r − rfE

) [
CxδT

0 0
]T
dDf (3.51)

in which, from Eq. (2.40) CxδT
= ∂fE

∂δT
.

3.6 Linearization

After the formulation of the state-space equations, the model is linearized fur-
ther into a zero-order problem (i.e. the rigid-body motion) and a first-order
problem (i.e. vibrations and their effects on the rigid-body response).

3.6.1 Zero-order problem

The zero-order problem represents the rigid-body motion and is represented
with superscript (0):

ẋ(0)(t) =
[[
A(0)(t) + C

(0)
V Ω(t)

]
M

(0)−1

rr +Bx(t)(0)
]
x(0)(t) +B(0)

u u(0)(t) (3.52)
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Eq. (3.52) is a generic form of the zero-order problem. For a typical steady-state
solution (i.e. to find the trim variables such as controls inputs u(0) and aircraft
attitude angles θ(0)

f ) it is assumed that the aircraft exhibits no perturbations
around the steady-state. Eq. (3.52) is therefore transformed as:

ẋ(0)(t) =
[
A(0)M

(0)−1

rr +B
(0)
x

]
x(0) +B(0)

u u(0) +Bξξ
(0) (3.53)

Although Eq. (3.53) solves the zero-order state, at the same time static struc-
tural deflections ξ(0) are present2 and their effects on the aerodynamic forces
are taken care in the last term of Eq. (3.53), see Section 4.2 for a brief descrip-
tion on finding a steady-state. After finding the trim condition (i.e. x(0), u(0),
and ξ(0) = constant, where ξ̇ = 0) at the given speed (V (0)

fx
), the perturbation

in zero-order is stated as:

Δẋ(0)(t) =
[
C

(0)
V Ω(V (0)

fx
)M (0)−1

rr +B
(0)
x (V (0)

fx
)
]
Δx(0)(t) +B(0)

u (V (0)
fx

)Δu(0)(t)
(3.54)

In Eqs. (3.52–3.54), the zero-order state-vector x(0) is defined as[
R

(0)T

f θ
(0)T

f p
(0)T

V f p
(0)T

Ωf

]T
. The state matrix A(0) from Eq. (3.3) is reduced

to the following form [28]:

A(0) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e2

[
C

(0)T
f 0

0 E
(0)−1

f

]

e2

⎡⎣ 0 p̃
(0)
V f

p̃
(0)
V f p̃

(0)
Ωf

⎤⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.55)

in which the e2 is the null matrix of size (6× 6). The inverse of the zero-order
mass matrix M (0)−1

rr in Eqs. (3.53–3.54) has the same form as given in Eq. (3.2)

(i.e. M (0)−1

rr =
[

0 M
(0)−1

r

0 M
(0)−1

r

]
), where the single submatrix M

(0)
r has the form as

given below:

M (0)
r =

[
mI S̃T

S̃ Jf

]
(3.56)

2In this section the superscript (0) is only meant for static deflections, otherwise the concept
of the generalized coordinates ξ as first-order quantities remains intact.
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C
(0)
V Ω, B(0)

x , and B
(0)
u are reduced to zero-order states by retaining only those

terms, which are related to the rigid-body motion:

C
(0)
V Ω =

⎡⎣ e2 e2

e2
ZV ZΩ

MV MΩ

⎤⎦ , B(0)
x =

⎡⎣ e2 e2
ZRf

Zθf

MRf
Mθf

e2

⎤⎦

B(0)
u =

⎡⎣ e2 e2
Zδel

Zδa Zδr ZδT
Mδel

Mδa Mδr MδT

⎤⎦ , Bξ =

⎡⎢⎢⎣
eT1
eT1
Zξ
Mξ

⎤⎥⎥⎦ (3.57)

Moreover, the moment arm vectors lf , li, and lh in Eqs.(3.11–3.13) are also
reduced to zero-order vectors as:

l̃
(0)
f = r̃fC

T
f (3.58)

l̃
(0)
i = r̃fiC

T
i + CTi r̃i (3.59)

l̃
(0)
h = r̃fv

(
ChCv

)T + CTv r̃vhC
T
h +

(
ChCv

)T
r̃h (3.60)

In most of the flight mechanics literature [26, 30, 31], instead of momenta, the
equations of motion, as given in Eqs. (3.52–3.54), are solved in the form of
accelerations. In Appendix G the equations of motions are simplified into the
velocity states, however, this does not change the original context of the equa-
tions.

3.6.2 First-order problem

The solution of the zero-order steady-state (i.e. x(0), u(0), and ξ(0)) enters
into the first-order problem, which is a linearized state around the rigid-body
perturbation and takes vibrations into account, including their effects on the
overall response of the aircraft:

ẋ(1)(t) =
[
A(1) + C

(1)
V ΩM

(1)−1

ξξ +B
(1)
x −B(1)

u G
]
x(1)(t) +

[
e3
Fext

]
(3.61)

Here Fext is the external force vector caused by turbulence or pilot inputs and
is obtained through the time domain solution of Eq. (3.54) as:[

e3
Fext

]
= C

(1)
V Ω

[
e3

Δẋ(0)
Rθ(t)

]
+Bx(t)(1)

[
e3

Δx(0)
Rθ(t)

]
(3.62)

Δx(0)
Rθ is the rigid-body perturbation over the trim condition and expressed in

the vector form as
[
R

(0)T

f θ
(0)T

f e4

]T
, which is solved through Eq. (3.54) or
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Eqs. (G.4) and (G.5) in Appendix G3. e3 is a null vector of size (6 +m × 1),
and e4 is a null vector of size (1×m)4. The first-order state-vector now takes
its original form and adds two additional sub-vectors of generalized coordinates
and their momenta:

x(1) =
[
R

(1)T
f θ

(1)T
f ξT p

(1)T
vf p

(1)T
Ωf pTη

]T
(3.63)

The state-matrix A(1) = A[x(0), ξ(0)] contains the partial derivatives of zero-
order velocities, stiffness, and damping matrices with respect to the first-
order state-vector. The coefficient matrices C(1)

V Ω = CV Ω[x(0), ξ(0)] and B
(1)
x =

Bx[x(0), ξ(0)] gives the aerodynamic damping and stiffness, respectively, due to
rigid-body translation and rotations, as well as the structural vibrations due to
vehicle motion resulting from external disturbance, caused by a gust input or
during maneuvers. B(1)

u = Bu[x(0), u(0)] multiplied by the control gain matrix G
gives the forces and moments due to first-order control inputs u(1), which con-
sequently minimize the effects of external disturbance. The gain matrix G can
be obtained by optimizing the performance index of linear quadratic regulator
(LQR) [4, 37]:

J =
∫ tf

0

(
x(1)TQx(1) + u(1)TRu(1)

)
dtf (3.64)

where tf is the final time of the simulation. First-order control input u(1) is
calculated as:

u(1)(t) = −G(t)x(1)(t)

Similar to the state-vector in Eq. (3.63), all the coefficient matrices like A(1),
C

(1)
V Ω, B(1)

x , and B(1)
u take their original form as given in Eqs. (3.3), (3.8), (3.30),

and (3.39), respectively. However, the coefficients related to the rigid-body
motion are linearized and the process of linearization can be found in the Ap-
pendix H. The final perturbed solution will be as follows [4]:

Δx (t) = Δx(0) (t) + x(1) (t)
Δu(t) = Δu(0) (t) + u(1) (t)

(3.65)

3.7 Synopsis

Equations of motion for a flexible aircraft are presented in the state-space form.
The state equation is divided into coefficient matrices multiplied by the gener-
alized state or control vector. The coefficient matrices include state coefficient

3It is to be noted that Δx
(0)
Rθ in Eq. (3.62) constructs particularly the external force vector

Fext, otherwise the state-matrices like A(1), C
(1)
V Ω, B

(1)
x , and B

(1)
u are the functions of zero-order

steady-state solution only (i.e. x(0), u(0), and ξ(0)).
4Symbol m in case of null vectors e3 and e4 represents the number of shape functions used

in the model reduction.
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3.7. Synopsis 47

matrix, aerodynamic damping, aerodynamic stiffness and control stiffness ma-
trix. The state-space equation is then linearized into a zero-order and first-order
form, where the zero-order part takes care of the rigid-body response whose so-
lution then enters into the first-order problem, which solves the vibrations and
its effects on the overall rigid-body response of the flexible aircraft. The lin-
earization process of key elements of the model is given in Appendix H.
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Chapter 4

Flight Loads Equations

In this chapter the equations of motion are extended to predict static and
dynamic loads. As given in Eq. (3.65), the loads on a flexible aircraft can also
be divided into two categories, (1) static loads in a steady-state condition and
(2) dynamic loads during maneuvers or as a result of external disturbances such
as atmospheric turbulence.

4.1 LTI or LTV

With regard to the flight loads, first it is appropriate to choose between a linear
time-invariant system (LTI) and a linear time-varying (LTV) system approach.
For an LTI system it is assumed that during the maneuvers the air speed and
height remain constant i.e. zero-order rigid-body velocity and position vectors
do not change during the course of simulation. In other words the state-space
matrices in Eqs. (3.52) and (3.61) are constructed once and held constant.
This kind of scenario is assumed in steady pull-up or during a gust encounter
when the aircraft does not accelerate. Although in many maneuvers like a
checked and unchecked elevator deflection [38] the aircraft is subjected to a
pitch acceleration [32], the author in Ref. 32 prefers to use the LTI approach.
In principal the LTV approach seems more accurate than the LTI approach
but on the other hand it is quite expensive in terms of numerical solution as
the state-space matrices are to be updated for every time step. In Ref. 28
the authors used the LTV approach and solved the equations of motion by a
discrete time numerical technique, where the model is reduced by using only
the first two mode shapes. However, if the number of mode shapes in the model
reduction is increased and sufficient higher frequency modes are included then
the solution time in LTV approach will definitely be increased. In the present
work we take the LTI approach to be most suitable however the state-space

49
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50 Chapter 4. Flight Loads Equations

equation presented in Chapters 2 and 3 are equally capable of being used in a
LTV simulation.

4.2 Steady level flight

Steady level flight conditions for a linear time invariant (LTI) system are found
by minimizing the zero-order momenta rates. It is assumed, as stated before,
that before going into a maneuver or atmospheric turbulence the aircraft is
flying in a purely horizontal, symmetric, and steady flight. In that case the
translational momentum rate in side-slip ṗV fy and bank i.e. ṗΩfx and ṗΩfz are
zero. Hence, in order to obtain a constant velocity and height, only transla-
tional momenta rates in forward ṗV fx , plunge ṗV fz and pitching ṗΩfy are to be
minimized. Using the momenta in the state-vector of the Eq. (3.53), we write
the quadratic cost function as:

J (0)
(
θ
(0)
f , u(0)

)
=
[
ṗ
(0)
V fx

ṗ
(0)
V fz

ṗ
(0)
Ωfy

]
W

⎡⎢⎢⎣
ṗ
(0)
V fx

ṗ
(0)
V fz

ṗ
(0)
Ωfy

⎤⎥⎥⎦ (4.1)

where W is a weighting matrix, which can be an identity matrix of order 3×3.
By using an iterative optimization algorithm, in this case the simplex search
method [39], the cost function given in Eq. (4.1) is minimized and that gives the
trim elevator deflection δe, thrust settings δT and pitch attitude θΘf . To verify
these values, a check on the resultant horizontal and vertical forces and pitching
moment at aircraft body axes Of should find them to be zero. Figure 4.1 shows
the schematic of the search algorithm used in finding the trim variables. It
shows that first the Eq. (3.53) is algebraically solved, which gives the momenta
rates. Based on these rates the cost function, as given in Eq. (4.1), is checked
against the given minimum value (i.e. 10−4). If the objective in the current
iteration τ is not achieved then the optimizer proceeds to the next iteration
(i.e. τ + 1) with a change Δ in the design variables. This process continues till
the cost function is minimized to 10−4. The static deflections ξ(0) during the
iterations are calculated by multiplying the inverse of the stiffness matrix with
the generalized force vector calculated in Eqs. (2.43–2.46):

ξ(0)(τ) = K−1
ξ

[
Q

(0)
uξ (τ − 1)

Q
(0)
ψξ

(τ − 1)

]
(4.2)
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-4

x(0)(�+1)= x(0)(�) + �x(0)

u(0)(�+1)= u(0)(�) + �u(0)

�(0)(�+1)= �(0)(�) 

 �x
 �u 

� = � + 1

x(0)(�) 

x(0)(�) 
u(0)(�)

Figure 4.1: Schematic of trim algorithim.

4.2.1 Static loads

In steady level flight (i.e. V (0)
f = constant and nz = 1), the generalized coordi-

nates ξ(0)(τ) from Eq. (4.2) are expanded to the full-order vector by using the
specific rows of eigenvector Dm. The full-order vector is then multiplied with a
matrix of eigenfunctions of a particular D.o.F, which gives the static deflection
at each node of a component. By using the mode displacement method (MDM),
which is based on the internal forces caused by the structural deformations due
to aerodynamic and inertial loads [23,40], the external static shear forces ‘Vzis ’
and torsion moments ‘Mxis ’ of a component ‘i’ are given as:

VMDM
zis (ri) =

[
φui (ri)Dui + yiφψi

(ri)Dψi

]
Kξξ

(0)(t)

MMDM
xis (ri) = φψi

(ri)Dψi
Kξξ

(0)(t), i = f, w, e (4.3)

where e.g., as given in Eq. (2.54), for the right wing bending DR
uw = Dm(9:10,1:m)

and similarly for the torsion DR
ψw = Dm(23:24,1:m).

4.3 Dynamic loads

Dynamic loads can be predicted at each node by calculating the rate of change
of momentum due to elastic motions of that node:

ṗη =
d

dt

[
pui

pψi

]
=
[
Fdi

Tdi

]
(4.4)
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52 Chapter 4. Flight Loads Equations

From Eq. (4.4) we can infer that by solving the equations of motion in the form
of momenta an extra advantage is gained in simulating the dynamic loads [19,
41]. The numerical solution of Eq. (3.61) gives the first-order momenta which
are then used to calculate first-order velocities. The first-order velocities can
be expressed by linearizing Eq. (2.47) as given below [28], also see Appendix H:

p(1) = M
(1)
ξ V (0)

η +M
(0)
ξ V (1)

η (4.5)

Rearranging Eq. (4.5) gives the first-order velocity vector as:

V (1)
η (t) =

(
M

(0)
ξ

)−1 (
p(1) (t)−M (1)

ξ V (0)
η

)
(4.6)

The reduced first-order velocity vector V (1)
η is expressed as

[
V

(1)T
f ω

(1)T
f ηT

]T
.

After the numerical solution, Eq. (3.61) eventually acts as an algebraic equation
which gives the momenta rates ṗ. It is known that the mass matrix is a function
of generalized coordinates q [41], and does not depend upon the generalized
velocities s (i.e. for a linear time invariant (LTI) system the time derivative of
mass matrix Ṁξ and velocity vector V̇ (0)

η around steady-state is zero), which
states the time derivative of Eq. (4.6) as:

V̇ (1)
η (t) =

(
M

(0)
ξ

)−1
ṗ(1) (t) (4.7)

The reduced order dynamic loads vectors Lf and Lη due to rigid-body motion
and elastic motion, respectively, can be expressed by the summation of forces
method (SFM) and that is defined as the summation of all the aerodynamic
and inertial loads [23]:

⎡⎣ e3
Lf (t)
Lη (t)

⎤⎦ =

aerodynamic loads︷ ︸︸ ︷
(Ax)x(1)(t) +

[
e3

Fext(t)

]
−
[

e3(
M

(0)
ξ

)
V̇

(1)
η (t)

]
︸ ︷︷ ︸

inertial loads

(4.8)

Lη is then expanded to a full order vector for a particular component by using
the matrices of eigenvector and shape functions:

V SFM
zid

(ri, t) =
[

φui (ri)Dui + yiφψi (ri)Dψi

]
L(1)
η (t)

MSFM
xid

(ri, t) = φψi (ri)DψiL
(1)
η (t) , i = f, w, e (4.9)

where ‘Vzid ’ and ‘Mxid ’ are the vectors of external dynamic vertical shear force
and torsional moment along the r.a, respectively. Structural loads calculated
from SFM can also be verified by using the mode displacement method (MDM)
[23,40]:

VMDM
zid

(ri, t) =
[

φui (ri)Dui + yiφψi (ri)Dψi

]
Kξξ

(1)(t)

MMDM
xid

(ri, t) = φψi(ri)DψiKξξ
(1)(t), i = f, w, e (4.10)
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4.4 Component internal loads

Internal loads in terms of resultant shear, torsion, and bending moment are
shown in Fig. 4.2. The downward shear and a bending moment that produces
tension in the lower fibers is considered positive. The torsional moment on a
node follows the sign convention of a particular component, see Fig 2.1. The
resultant shear Qj in Fig. 4.2 can be computed as follows [36]:⎡⎢⎢⎢⎢⎢⎣

Q1

Q2

Q3
...
Qj

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
1 0 0 . . . 0
1 1 0 . . . 0
1 1 1 . . . 0
...

...
... . . .

...
1 1 1 . . . 1

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
Vzi1
Vzi2
Vzi3

...
Vzij

⎤⎥⎥⎥⎥⎥⎦ (4.11)

Similarly the bending moment due to the shear is expressed as:⎡⎢⎢⎢⎢⎢⎣
M1

M2

M3
...
Mj

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
0 0 0 . . . 0

(r2 − r1) 0 0 . . . 0
(r2 − r1) (r3 − r2) 0 . . . 0

...
...

... . . .
...

(r2 − r1) (r3 − r2) (r4 − r3) . . . 0

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
Q1

Q2

Q3
...
Qj

⎤⎥⎥⎥⎥⎥⎦ (4.12)

The resultant torsional moment is also computed by using the analogy given in
Eq. (4.11).
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Figure 4.2: Wing resultant shear and bending.
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54 Chapter 4. Flight Loads Equations

4.5 Synopsis

The equations of motion presented in the last two chapters are further extended
to structural loads equations, where it is assumed that the structural loads can
be linearized into two categories; static loads during steady flight and dynamic
loads due to external disturbances such as atmospheric turbulence or by pilot
inputs. A quadratic cost function is used to determine the trim condition of
the aircraft, by minimizing the translational and angular accelerations. After
finding the trim condition in steady level flight the static structural loads are
calculated by using the mode displacement method (MDM), which is based on
the structural deformations. Dynamic loads due to vibrations are considered to
be a first-order problem and summation of forces method (SFM) is formulated
in this regard, which is based on the summation of aerodynamic, gravity and
inertial forces acting on the component. Loads calculated from SFM are verified
by using MDM. In the end the calculated loads are converted to component
internal loads in the form of shear forces and corresponding moments.
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Simulation example – Part 1:
Static case

In Chapters 2–4 the emphasis is put on the mathematical modeling of equations
of motion, state-space form, and consequently the loads equations. This chapter
gives an overview of the assembly of all mathematical equations in a computer
code called DARLoads. Subsequently, a static simulation example is presented.

5.1 DARLoads

A computer code, DARLoads, has been written in MATLAB. The schematic
of DARLoads is presented in Fig. 5.1. The structure of the code is divided into
various functions and sub-routines such as functions that calculate mass, stiff-
ness and damping matrices, coefficient matrices, shape functions, and graphics
etc. These functions are called by the main script, whenever these are needed
during the solution. It is capable of accepting the data of any aircraft of the
configuration shown in Fig. 2.1. The inputs, in case of the structural model,
are locations of grid points and values of lumped-masses and inertia matrices,
stiffness properties of spring elements, and components’ origins with their ro-
tation matrices with respect to aircraft body-axis. For the aerodynamic model
the inputs are locations of grid points of lifting strips with their aerodynamic
coefficients. All the inputs are read from a spread sheet program and then saved
into assigned structure arrays with particular components name and identifica-
tion number (ID). For example the ID for the right wing is (3) and the structure
of input routine looks like as given in Table 5.1:

After reading the aerodynamic and structural inputs, the flight conditions like
nominal air speed and height are specified with arbitrary control inputs for el-

55
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56 Chapter 5. Simulation example – Part 1: Static case

Table 5.1: Data input example

component(3).name = Right Wing;
component(3).coordinates = xlsread(input.xls, . . .);
. . .
component(3).rotation = [0;4;90];

evator, aileron, rudder, and thrust. The structural dynamics module assembles
the full-order mass, stiffness and structural damping matrices. By using these
full-order mass and stiffness matrices the eigenvalue solution gives the natural
frequencies and eigenvectors. Based on these eigenvectors the aircraft shape
functions (ASF) are plotted and identified for the model reduction.

The rigid-body mass matrix and the aerodynamic coefficients from the inputs
then constructs the zero-order state-space matrices, which include the state
coefficient, aerodynamic damping, aerodynamic stiffness, and control stiffness
matrices. The zero-order derivatives are then used to find the level flight trim
condition. Based on the trim conditions static deformations are found and the
mass matrix is updated with the effects of the static deformations. The zero-
order problem is then simulated by solving the Eq. (3.52). This results in a
zero-order state-vector stored in an internal database, which is to be further
used in the first-order problem.

The first-order problem starts with the input of the zero-order state-vector,
which, in addition to the reduced-order matrices from the structural dynamics
module, makes the first-order coefficient and control gain matrices. Eq. (3.61)
is solved, where for a LTI system the simulation loops proceeds to the next step
(i.e. loads equations), otherwise for a LTV system, while using the discrete
time numerical approach [28], the simulation proceeds to the next time step and
meanwhile the mass matrix is updated with the new quasi-static deformations.
The loop for the first-order problem continues for the total number of time
steps, N . However, as stated in Chapter 4, only LTI is implemented so far.

The rigid-body response of the aircraft from both the zero and first-order prob-
lems is simply added and stored. Whereas the generalized coordinates and
generalized momenta enter into the loads module. The Eqs. (4.3–4.12) are
solved that give both static and dynamic loads on each node of the component.
Based on these loads the internal shear and moments are then calculated.
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Figure 5.1: Schematic of DARLoads.
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5.2 Model reduction

At this point, it is appropriate to discuss the selection of a few number of air-
craft shape functions (ASF) to achieve model reduction. In Ref. 34, the authors
choose the first eighteen ASF, which covers lower to higher frequencies and cor-
responding symmetric shapes (i.e., both symmetric and asymmetric) to reduce
the model. The idea is to use sufficient number of ASF to include the effects of
asymmetric shapes (i.e. particularly torsion) on the aerodynamics. Previously,
in conjunction with flight controller design of a flexible aircraft, Meirovitch and
Tuzcu [28] used the first two shape functions to reduce the model, which signif-
icantly retains the properties of a full-order controller. It is commonly thought
that the frequencies of external disturbances, due to atmospheric turbulence,
on the aircraft structure are not high enough to excite the higher structural
frequencies and corresponding shapes, which therefore permits to use a few
lower frequency modes. However, Bisplinghoff et al. [23] recommended con-
sidering a sufficient number of vibration modes to get an equivalency in the
results from both the MDM and SFM. In the case of dynamic loads due to
landing on the ground and in order to get the identical results from MDM
and FSM, Bisplinghoff et al. however recommended to use all the modes of
vibrations [23]. It is appropriate to recall from Section 1.3 and Appendix B
that the typical orthogonal vibration modes are used to inertially decouple the
structural dynamic equations, where each independent equation represents a
particular mode of a component [5,14]. The ASF preserve the inertial coupling
and they represent the linear combinations of component vibration modes or
eigenfunctions, see Eq. (2.54). The outcome of the linear combination goes all
the way from Eqs. (2.54–2.60) that makes it obvious that even the inclusion of
a single ASF in Eq. (2.54) influences the dynamic response. So the contribu-
tion of each ASF on the dynamic response is to be determined. Pototzky and
Perry [40] plot the frequency response of wing root bending moment (WRBM),
which gives a fair idea about the contribution of each vibration mode to the
dynamic response. A twin-jet aircraft is selected as a test case for response
and dynamic loads over two different pilot induced maneuvers and a discrete
gust, see Chapter 6. The aircraft structural and aerodynamic data are given in
Ref. 4. Flight conditions for symmetric flight are presented in Table 5.2. First
the aircraft is assumed to have the conventional tail configuration (CTC) and
after that the aircraft is also modeled with a T-tail configuration (TTC), where
the horizontal tail is moved to the tip of the vertical tail. The first twenty ASF
for both tail configurations are given in Tables 5.3 and 5.4, and while the first
six ASF of each tail configuration are plotted in Figs. 5.3 and 5.41. It shows
that change in the position of the horizontal tail to the tip of the vertical tail

1The higher frequency ASF are not shown here for the sake of brevity.
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Table 5.2: Geometry and flight conditions

Airspeed V (0),m–sec−1 250.0
Altitude, m 7620.0
Wing span, m 16.7
Wing root chord, m 3.287
Horizontal tail root chord, m 1.6263
Wing position rfw, [x, y, z] [-0.128,0,0.9736]
Vertical tail position rfv, [x, y, z] [-6.0698,0,-0.6099]
Horizontal tail position rvh for CTC, [x, y, z] [0.4964,-0.115,0]
Horizontal tail position rvh for TTC, [x, y, z] [2.95,0.062,0]
Aircraft total mass, Kg 5884.23
Inertia J (0)

xx ,Kg–m2 20708.91
Inertia J (0)

yy ,Kg–m2 64003.38
Inertia J (0)

zz ,Kg–m2 79590.5
Inertia J (0)

xy ,Kg–m2 0.8072
Inertia J (0)

xz ,Kg–m2 -4241.35
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Figure 5.2: WRBM frequency response.
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60 Chapter 5. Simulation example – Part 1: Static case

predominates2 the fuselage mode in torsion, see Fig. 5.4(a). With regard to the
choice of number of ASF for model reduction, the full-order aircraft models of
each tail configurations are subjected, as stated above, to the gust and pilot
induced maneuvers and the time response of WRBM is transformed to the fre-
quency domain by using a Fourier transformation, see Fig. 5.2. It shows that
in almost all cases the ASF up to 40Hz (i.e. first 14 ASF) significantly affect
the dynamic response of the structure. However to have the greatest impact of
aerodynamic forces and moments, it is thought to consider a sufficient number
of ASF of lower to higher frequencies, while exhibiting both bending and tor-
sion as predominant features in wings and horizontal tails. By using the first
18 ASF that cover the frequencies up to 46.4Hz, the full-order model in each
simulation case is reduced to only 24 D.o.F i.e. 6 rigid-body and 18 elastic
degrees of freedom.

5.3 Level flight trim solution

As stated in Section 5.2, a twin-jet given in Ref. 4 is selected for the simulation,
where the stiffness properties of the aircraft components represent a metal air-
frame (i.e. with out the cross-coupling terms in the stiffness matrix). As stated
in Section 1.5, the structural data of a composite aircraft is not available so
the coupling effects are simulated by manipulating the e.a of each wing and
horizontal tail in five different cases. In first three cases, the e.a of each wing
and horizontal tail is drawn parallel to the r.a of that particular component,
where the e.a with respect to r.a of each component is placed in three different
positions. In the fourth and fifth case, the e.a of each wing and tail is drawn by
intersecting the shear centers of each section from root to tip, where the shear
center of a section is calculated by using Eq. (1.17). All these five cases are
defined and simulated in next two sections.

5.3.1 Case 1–3: Parallel e.a case

It is assumed that during a structural optimization exercise the anisotropy in
the stiffness matrices of each wing and horizontal tail is negligible. However,
e.a of these components, while exhibiting a parallel line to that of a particular
r.a, changes its position. For this purpose three different cases of e.a position
are simulated i.e. in the first case the e.a of each wing and horizontal tail is
placed 30.0mm in front of their particular r.a, in the second case these are
aligned, and in the third case the e.a of each wing and horizontal tail is placed

2Each Eigenvector of Eq. 2.52 are normalized to the unity, where the position of unity in
an eigenvector of size (32 × 1) decides the predominance of a certain D.o.F of a component
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(a) 1st ASF, 5.92Hz (b) 2nd ASF, 8.26Hz

(c) 3rd ASF, 10.45Hz (d) 4th ASF, 11.24Hz

(e) 5th ASF, 12.32Hz (f) 6th ASF, 14.64Hz

Figure 5.3: First 6 ASF in conventional tail configuration.
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(a) 1st ASF, 5.6Hz (b) 2nd ASF, 5.8Hz

(c) 3rd ASF, 7.56Hz (d) 4th ASF, 7.76Hz

(e) 5th ASF, 7.84Hz (f) 6th ASF, 9.56Hz

Figure 5.4: First 6 ASF in T-tail configuration.
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Table 5.3: Description of first 20 ASF (Con-
ventional tail)

ASF No. Freq. (Hz) Predominate Shapea

1 5.92 1st symmetric W-B
2 8.26 1st asymmetric W-B
3 10.45 1st symmetric H-B
4 11.24 1st asymmetric H-B
5 12.32 2nd asymmetric H-B
6 14.64 2nd symmetric H-B
7 19.51 1st asymmetric V-B
8 20.09 1st asymmetric F-B
9 22.05 2nd asymmetric V-B
10 23.05 1st symmetric F-B
11 26.58 2nd symmetric F-B
12 27.42 2nd asymmetric W-B
13 37.72 1st asymmetric F-T
14 46.81 1st asymmetric H-T
15 49.91 2nd asymmetric H-T
16 53.02 1st symmetric H-T
17 53.37 1st asymmetric W-T
18 53.70 2nd symmetric H-T
19 62.42 3rd asymmetric H-T
20 64.60 3rd symmetric H-T

a B: Bending, F: Fuselage, H:Horizontal tail, T:
Torsion, W: Wings, V: Vertical tail

30.0mm behind their particular r.a, see Table 5.5. It is to be noted that the
forward or rearward directions are to be referred with respect to aircraft body
axes Of , however the sign convention of a particular yi is taken w.r.t its local
axes system Oi, see Fig. 2.1. As stated before in Section 4.2, the steady state
for a purely longitudinal flight condition, as given in Table 5.2, is achieved by
using an iterative optimization algorithm which balances out the forces and
moments around the body axes of the aircraft by minimizing a quadratic cost
function expressed in Eqs. (4.1) and (G.3) [41]. The trim elevator, aileron
and rudder deflection, and throttle setting, respectively, in Case 1 are found
to be u(0) = [1.55 deg, 0, 0, 76.4%]. The corresponding pitch attitude θ(0)

fΘ

is found to be 0.55 deg. The static upward bending deflection of 1.236m and
0.168m is calculated at the tip of each wing and horizontal tail, respectively.
Figure 5.5 shows the change in trim solutions of pitch and elevator deflection
for three cases of the elastic axis position. The change in the values of pitch-
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Table 5.4: Description of first 20 ASF (T-
tail)

ASF No. Freq. (Hz) Predominate Shapea

1 5.63 1st asymmetric F-T
2 5.81 1st symmetric W-B
3 7.56 1st symmetric H-B
4 7.76 1st asymmetric W-B
5 7.84 2nd asymmetric W-B
6 9.56 2nd symmetric H-B
7 10.51 2nd symmetric W-B
8 11.41 3rd symmetric H-B
9 18.71 4th symmetric H-B
10 24.11 3rd symmetric W-B
11 25.70 3rd asymmetric W-B
12 25.91 1st asymmetric V-B
13 26.78 3rd asymmetric H-B
14 36.28 2nd asymmetric F-T
15 41.12 1st symmetric H-T
16 41.78 1st asymmetric W-T
17 41.93 2nd symmetric H-T
18 46.44 1st asymmetric H-T
19 56.34 5th symmetric H-B
20 59.54 4th asymmetric H-T

a B: Bending, F: Fuselage, H:Horizontal tail, T:
Torsion, W: Wings, V: Vertical tail

angle and elevator deflection is less than 0.1 deg and 0.66 deg, respectively, and
the throttle setting is changing not more than 1.0%. It also shows that the
elevator deflection decreases while the e.a moves from front to the rear of r.a.
The static torsion deflections of both wings and horizontal tails also change
with the position of their particular elastic axes. Figure 5.6 shows that the
local twist angles at the tip of both wing and horizontal tail increases as the
e.a moves from front to the rear of r.a. Figure 5.7 explains this phenomenon
where the locations of the key points on the tip sections of both the right wing
and horizontal tail are shown. It shows the actual locations of the aerodynamic
centers (a.c), centers of mass (c.g), r.a and the rearward position of e.a i.e. Case
3 in Table 5.5. The abscissa of the Fig. 5.7 gives the section lengths in meters.
In case of wing tip, the c.g of the tip section is located quite close to the r.a and
whenever during the analysis the e.a coincides or positioned in the front of r.a,
the torque around the e.a produced by weight is added to the torque produced
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Table 5.5: Three cases of e.a position

Case No. yRw , yRe yLw, yLe
1 -30.0mm 30.0mm
2 0.0mm 0.0mm
3 30.0mm -30.0mm

by the aerodynamic loads. However, both of these torques oppose each other
when the e.a is positioned rearward of the r.a. The vertical aerodynamic force
on the wing tip, at the given speed, is approximately seven times larger than
its weight, which, on the other hand, due to increase in moment arm makes the
twist angle a bit larger in the cases where the e.a is placed ahead of the c.g.
Similarly in the case of horizontal tail tip section the aerodynamic force, at the
given speed, is approximately three times larger than its weight. The torque
produced by the aerodynamic force, for all the positions of e.a, is deducted by
the torque produced by the weight, where the moment arm of the aerodynamic
force makes the horizontal tail to twist more when the e.a is positioned rearward
of the r.a. It is also noted that as the twist angle increases at the horizontal tail,
the elevator deflection decreases and vice-versa. As we know that, apart from
the rigid-body pitch angle and the throttle input, the lift required in trimming
the aircraft is also contributed by both twist over the tailplane and the elevator
deflection. So it would be correct to state that the optimization routine used
here efficiently optimizes the elevator deflection against the given structural
deformations.

Case 3Case 2Case 1
0

0.5

1

1.5

Pitch

Elevator

Thrust

Figure 5.5: Trim variables.
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5.3.2 Case 4–5: Shear center case

In Case 1–3 of Section 5.3.1 the elastic axis of each wing and horizontal tail
is assumed to be parallel to the corresponding reference axis of the specific
component. However, in Case 4 and 5 the elastic axis of each wing and tail is
derived by connecting the shear centers of each section of the component, from
root to tip. The location of these shear w.r.t. the particular r.a is calculated
by using Eq. (1.17). It is assumed that each wing and tail, from root to tip,
has a constant cross-section and the stiffness properties (i.e. EI, and GJ)
along the length are the values found in Ref. 4 and given in Table 5.6. These
stiffness properties are averaged over the span for the diagonal terms while
the off-diagonal k terms (i.e. coupling) in Eqs. (2.19–2.21), are approximated
as 10% percent of the averaged torsional stiffness GJ . In Case 4 the k term
in Eq. (1.17) is considered positive, which gives a swept-back elastic axis on
wings and tails. In Case 5 the k term is considered negative Eq. (1.17), which
results into a swept-forward elastic axis, see Figure 5.8. Figure 5.8 also plots
the positions of the mass center c.g and the aerodynamic center a.c along the
lengths of both wing and horizontal tail. The elastic axes of each wing and
horizontal tail do not remain parallel to the reference axes. In these specific
wing cases the elastic axis is supposed to be out of the structural boundaries
near the tip if the magintuide of k term is increased. The trimmed condition
for the purely longitudinal flight condition, as given in Table 5.2, is determined
by the procedure described in Section 5.3.1. The resulting elevator, aileron
and rudder deflection, and the throttle setting for Case 4 and 5 are given in
Table 5.7. The values for the zero-order generalized coordinates for wing and
horizontal tail in bending for Case 4 are found to be:

qR
(0)

uw
= qL

(0)

uw
=
[−0.2351 0.0123

]T
(m) (5.1)

qR
(0)

uh
= qL

(0)

uh
=
[−0.0270 0.0007

]T
(m) (5.2)

Similarly the zero-order generalized coordinates in torsion for Case 4 are found
to be:

qR
(0)

ψw
=
[
0.0059 0.0012

]T
(rad) qL

(0)

ψw
= − [0.0059 0.0012

]T
(rad) (5.3)

qR
(0)

ψh
=
[
0.0044 0.0004

]T
(rad) qL

(0)

ψh
= − [0.0044 0.0004

]T
(rad) (5.4)

Inserting the above given values in Eq. (2.7) gives the static deflections. The
torsional deformation along the semi-span of wing and horizontal tail together
with the mass dm and lift distributions Clα are plotted in Fig. 5.9. It shows
that from root to mid span, the wing has positive twist (LE up) with maximum
angles of 0.30 deg and 0.44 deg, respectively, in Case 4 and Case 5, and from
mid span to tip it shows negative twist. In Case 4 of the horizontal tail a
positive twist is found along the complete span with a maximum of 0.23 deg in
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at the tip section. However, Case 5 of the tail gives the same kind of pattern as
that of wings. The counter intuitive wing behavior is caused by the use of the
averaged stiffness properties that results in a deflection pattern dominated by a
higher frequency mode shape, see Fig. C.1(b) (i.e. results into qR

(0)

ψw(2) = 0.0012 or

qL
(0)

ψw(2) = −0.0012 in Eq. (5.3)). For the horizontal tail the contribution of higher
frequency modes in the static deflections is negligible. To investigate it further,
the twist along the semi-span of the wing with different values of q(0)

ψw(2) and a

constant value for q(0)
ψw(1) is plotted in Fig. 5.10. It shows that as the value of

q
(0)
ψw(2) increases, the higher frequency mode in torsion, as shown in Fig. C.1(b),

predominates. While comparing the torsion over wing and horizontal tail, it
can also be inferred that apart from the stiffness properties the length of a
component also helps in exciting the higher degree modes.

5.4 Synopsis

A brief description is given of the MATLAB computer program that imple-
ments all the mathematical equations presented in the previous two chapters.
A conventional metal twin jet is selected to test the software. Data of a real
composite aircraft is not available and it was therefore decided to study the
coupling effects on the aircraft dynamics by manipulating the e.a of each wing
and horizontal tail in five different cases. A selection of aircraft shape functions
(ASF) is made for the model reduction. Frequency plots of the dynamic re-
sponses are used to validate the effectiveness of the selected ASF. The trimmed
condition for a level flight at certain speed and height is obtained by an iterative
optimization routine. The trim variables with static structural deflections are
plotted for each elastic axis case. A comparison is made and conclusions are
drawn for the importance of the shape of the elastic axis.
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Table 5.6: Stiffness properties

Wing Horizontal Tail

No. xw EI×106a GJ×106a No. xh EI×106a GJ×106a

1 0.00 31.28 30.70 1 0.00 1.12 0.69
2 0.43 27.83 30.70 2 0.06 1.08 0.67
3 0.86 24.82 29.84 3 0.35 0.90 0.60
4 1.04 23.24 28.55 4 0.81 0.66 0.49
5 1.38 19.94 25.25 5 1.26 0.47 0.38
6 1.72 16.35 21.81 6 1.63 0.35 0.30
7 2.06 13.88 18.36 7 1.90 0.27 0.23
8 2.34 12.28 15.21 8 2.24 0.20 0.16
9 2.74 10.01 12.91 9 2.64 0.13 0.12
10 3.12 8.06 11.24 10 3.03 0.093 0.085
11 3.56 6.25 9.15 11 3.23 0.078 0.062
12 4.05 4.82 6.97 Vertical Tail
13 4.55 3.87 5.33 1 0.00 4.47 2.09
14 5.09 2.92 3.93 2 0.18 3.81 1.92
15 5.63 2.10 2.52 3 0.53 2.77 1.60
16 6.13 1.62 1.60 4 0.88 1.96 1.27
17 6.60 1.22 1.02 5 1.26 1.32 1.01
18 7.02 1.01 0.72 6 1.62 0.87 0.70
19 7.46 0.80 0.49 7 1.97 0.57 0.40
20 7.90 0.57 0.24 8 2.31 0.36 0.25
21 8.30 0.36 0.018 9 2.68 0.19 0.10

10 2.88 0.12 0.024
a Units: N-m2.

Table 5.7: Trim variables for Case 4-5

Case 4 Case 5

δ
(0)
el

a δ
(0)
T θ

(0)
fΘ

a δ
(0)
el δ

(0)
T θ

(0)
fΘ

a

2.13 78.1% 0.686 2.77 77.3% 0.577
a Units: deg.
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Simulation example – Part 2:
Dynamic case

In the previous chapter the zero-order problem for steady level flight was dis-
cussed and the coupling effects on the trim variables were studied. In this
chapter the fully dynamic cases are simulated as perturbation around the steady
level flight (i.e. solution of the steady state flight enters into the coefficient ma-
trices, which are then perturbed through the external forces due to gust or pilot
controls). The next sections are dedicated to the perturbation problem during
a discrete gust and two pilot induced maneuvers, as given in aviation regula-
tions [38] (i.e. checked elevator input and aileron impulse input), and results
are plotted in the form of rigid-body response and structural loads.

6.1 Discrete gust

The aircraft is assumed to be subjected to symmetrical vertical gust (i.e. 1-
Cosine) in level flight [38]. The level flight conditions are taken the same as
those calculated in Section 5.3. The shape of the discrete gust wg is expressed
as follows [36,38]:

wg
(
xg
)

=
wg0
2

(
1− cos 2πxg

H

)
, 0 ≤ xg ≤ H (6.1)

in which H is the gradient distance of the discrete gust. The peak gust wg0 is
taken as 5.0m-sec−1. Dynamic analysis for a conventional tail configuration is
performed by first simulating the zero-order problem , as expressed in Eq. (G.7),
and results in the form of plunge and pitching rates are plotted in Fig. 6.1. The
external force vector, as given in Eq. (3.62), is calculated and the first-order

73
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Figure 6.2: 1st order rigid-body response during gust.

problem in Eq. (3.61) is solved. Figure 6.2 shows the disturbance in rigid-body
motion and consequent control inputs to minimize the perturbations. To get
the structural loads, the solution of Eq. (3.61) is used in Eqs.(4.7–4.12). The
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comparison of shear forces from the SFM and MDM load equations is presented
in Fig 6.3. It shows that in case of the fuselage the results are in fair agreement,
and in the case of the wings and horizontal tails the shear forces calculated from
MDM are lower than those of the shear forces calculated from SFM but still
these are comparable to each other.

6.1.1 Case 1–3

Figure 6.4 shows the structural deflections and dynamic loads at the wing and
fuselage roots for each elastic axis position given in Table 5.5. It shows that the
wing is deflecting in bending a maximum of -0.4m upward and 0.4m downward.
The twist in the wing is ranging from 0.02rad upward to -0.01rad downward.
The fuselage is bending vertically (i.e. in xz-plane) from 0.05m downward to
-0.042m upward and twisting around 0.01rad upward and downward. Similarly
Fig.6.10 shows the structural deflections and dynamic loads at the horizontal
and vertical tail roots1. It shows that the horizontal tail is bending a max-

1Though the aircraft is perturbed under a purely symmetric gust input, due to nonzero
Jxy inertia value in mass matrix the aircraft is also perturbed in the xy-plane.
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imum of -0.14m upward and 0.13m downward, and twisting 0.01rad upward
to -0.005rad downward. The vertical tail is bending sideways from 0.02m to
-0.02m, and twisting 0.0028rad upward to -0.002rad downward.

6.1.2 Case 4–5

Only the discrete gust problem is investigated for the dynamic analysis of cases
4 and 5 (i.e. nonparallel e.a). The results for the right wing and right horizontal
tail are presented in Fig. 6.6. One can see that the maximum bending deflection
of the wing is 5.3m upwards and 4.8m downwards. The wing twist ranges
from 0.18rad upwards to 0.15rad downwards. Similar results are obtained for
the horizontal tail. The twist angle is most likely too large with respect to
structural strength and aircraft stability. In practice, the aircraft structure
would have already collapsed under these conditions. However, this example
shows the importance of the right choice of the stiffness properties, especially
the coupling term k, which is dependent on the lay-up sequence along the wing
box. Another interesting point to be noted for case 5 is that the order of
magnitude of the bending and torsion moment at the root of the horizontal tail
is not as high as that of the corresponding structural deflections at the tip. It
seems that the maximum moments occur somewhere near the mid-span. This is
also indicated by the pattern of the high order eigenfunction shown in Fig. C.1.
Although the total bending and torsion moments along the span remain the
same, the scenario described above helps to increase the fatigue life of the root
joints.

6.2 Checked elevator maneuver

Abrupt checked elevator maneuver is performed mainly in simulating the dy-
namic loads during pitching maneuver and with regard to design loads the
horizontal tail during this maneuver is the most considered component [32,38].
Before the maneuver it is assumed that the aircraft flies in steady level flight
and the elevator is moved rapidly in a sinusoidal motion as given below:

δel = δelmax sinwnt (6.2)

in which δelmax is the maximum allowable elevator deflection during the ma-
neuver. wn is the elevator rate equal to the rigid-body short period mode and
expressed as follows [32]:

wn =
[(
Zθf

MΩf
/Vfx

)−Mθf

] 1
2 (6.3)
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By using the numerical values given in Eq. (G.7), the elevator rate is found to be
15.7rad/sec (i.e. 2.5Hz) and elevator input is plotted in Fig. 6.7. After solving
the Eq. (G.7), the first-order problem of Eq. (3.61) is solved in the same way as
stated in Section 6.1. The results from both zero-order and first-order problem
are plotted in Fig. 6.8 to 6.10. Figure 6.8 shows the rigid-body response during
the pitching maneuver, where it shows that the aircraft bears the positive load
factor nz of around 3.0g during pitching up and -4.0g during pitching down2.
Figure 6.9 shows the structural deflections and dynamic loads at the wing and
fuselage roots for each elastic axis position. It shows that the wing is deflecting
in bending a maximum of -1.2m upward and 1.1m downward. The twist in
wing is ranging from 0.04rad upward to -0.02rad downward. Fuselage is bend-
ing vertically (i.e. in xz-plane) from 0.12m downward to -0.08m upward and
twisting around 0.015rad upward and -0.02rad downward. Similarly Fig. 6.10
shows the structural deflections and dynamic loads at the horizontal and verti-
cal tail roots. It shows that the horizontal tail is bending a maximum of -0.28m
upward and 0.25m downward, and twisting 0.01rad upward to -0.006rad down-
ward. The vertical tail is bending sideways from 0.03m to -0.04m, and twisting
0.0028rad upward to -0.0021rad downward.

6.3 Aileron impulse maneuver

In this case the aircraft with a T-Tail configuration is considered to be at steady
level flight conditions, the same as assumed in Sections 6.1 and 6.2, sudden
aileron input in the form of impulse is applied, see Fig. 6.11. The rigid-body
response, as plotted in Fig 6.12, is converted into the time dependent first-
order external force vector by using Eq. (G.7) and the first-order problem of
Eq. (3.61) is solved. Figure 6.13 shows the structural deflections and dynamic
loads at both right and left-half wing for each elastic axis position. Fig. 6.14
depicts the results for the aft fuselage and vertical tail deformation and loads
in the xy-plane. The deflections and corresponding loads in case of wings for
case 2 (i.e. when e.a is aligned with the r.a) are quite high and the reason can
be the large rolling rate, which is around 1.0rad/sec (i.e. ≈ 57.0deg/sec). For
the other two cases the right wing has a maximum bending of around -3.0m
upward with the twist ranging from 0.02rad upward to -0.025rad downward. In
case of the left wing the deflections in bending are more or less the same but
in torsion it is reduced as much as 0.01rad in both directions (i.e. upward and
downward). The fuselage is bending sidewards (i.e. along y-axis) from 0.08m

2According to aviation regulations (i.e. FAR/CS-25.331(c)(2)) [38] the aircraft should
not go beyond the designed load factor, which may require a digital controller to check the
maximum load factor and not letting the aircraft to go beyond that point. However in this
report emphasis is given to the design load cases only.
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to -0.08m and twisting around 0.010rad upward and -0.012rad downward. The
vertical tail is bending sidewards from 0.08m to -0.085m and twisting around
0.015rad in both directions.

6.4 Results discussion

The results clearly indicate that elastic coupling has a large influence on (1)
aircraft loads, (2) the underlying rigid-body motion and (3) structural vibra-
tions. For case 1-3, the amplitudes of the structural deformations, as well as
the first order pitch θ(1)

fΘ and roll attitude θ(1)
fΦ, reduce significantly when the e.a.

is shifted rearwards with respect to the r.a. This seems contrary to the results
of the static analysis where the twist angle at the tip increases when the e.a.
moves from the front to the rear. The main reason is the influence of the inertial
terms on the dynamic response. These terms do not have an effect on the static
deformation. Thus it can be inferred that coupling can help to reduce dynamic
loads. In general, the position of the c.g. of every section varies with respect to
their respective r.a. Also, the position of the shear center can be different for
each section on both the wings and empennage. Therefore, the results obtained
for cases 4 and 5 give a better insight in how the position of the shear center
affects the structural deflections and corresponding loads. The horizontal rail
root bending and torsion moments are an order of magnitude lower than the
structural deflections at the tip. As stated earlier, stiffness properties are as-
sumed constant over the length of the wings, the horizontal tail surfaces and the
vertical tail. In real-life, this is not the most practical solution. Nevertheless,
the simulation results give a good impression of the effects of bending-torsion
coupling on the aircraft response and also show the relevance of the proper
mathematical modeling of the flexible aircraft dynamics.

6.5 Synopsis

After finding the steady level flight trim conditions in Chapter 5, the aircraft
in this chapter is subjected to different dynamic conditions (i.e. discrete gust
and two pilot induced maneuvers in pitching and rolling). For each condition
the rigid-body perturbation solution is performed that is later multiplied with
coefficient matrices to get the external force vector, which is used as an input for
running the first-order problem. Results in the form of rigid-body disturbances
and dynamic loads are extracted and plotted. It is concluded that coupling
does influence the dynamic problems significantly, which opens a door for the
structural optimization to achieve the loads alleviation.
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Figure 6.4: 1st order deflections and root loads during gust.
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Figure 6.5: 1st order tip deflections and root loads during gust.
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Figure 6.6: 1st order deflections and root loads during gust.
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Ṙ

(0
)

f
z

(m
/s

ec
)

Δ
n
z

Figure 6.8: Rigid-body response during pitching maneuver.



�

�

“thesis” — 2009/3/12 — 22:27 — page 83 — #97
�

�

�

�

�

�

6.5. Synopsis 83

0 2 4

-1

-0.5

0

0.5

1

Time (Sec)

B
en

di
ng

 (m
)

0 2 4

-5

0

5
x 106

B
en

di
ng

 M
om

en
t (

N
-m

)

0 2 4
-0.02

0

0.02

0.04

To
rs

io
n 

(r
ad

)

0 2 4
-1

0

1

x 106

To
rs

io
n 

M
om

en
t (

N
-m

)

Case 1 Case 2 Case 3

(a) Right wing

0 2 4

-0.05

0

0.05

0.1

Time (Sec)

B
en

di
ng

 (m
)

0 2 4

-2

0

2

4

x 106

B
en

di
ng

 M
om

en
t (

N
-m

)

0 2 4
-0.02

-0.01

0

0.01

To
rs

io
n 

(r
ad

)

0 2 4

-1

0

1

x 105

To
rs

io
n 

M
om

en
t (

N
-m

)

Case 1 Case 2 Case 3

(b) Aft fuselage

Figure 6.9: 1st order deflections and root loads during pitching.
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Figure 6.10: 1st order tip deflections and root loads during pitching.
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Figure 6.12: Rigid-body rolling and yawing rates during aileron impulse input.
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Figure 6.13: 1st order deflections and root loads during rolling.
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Figure 6.14: 1st order deflections and root loads during rolling.
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Chapter 7

Conclusions

The use of fiber composite material in aircraft components results in anisotropy
of the structural stiffness properties of that component and in such case the use
of elastic axis e.a as reference of vibration does not really decouples the bending
and torsion deformations. It is also revealed that the position of a shear center
of a box beam (e.g. wing box section) with symmetric-balanced laminates does
not remain to be a cross-sectional property and becomes a material property.
The elastic axis, which is drawn by intersecting the shear centers from root
to tip, tends to get far outside from the structural boundaries. So it seemed
necessary to reduce the usage of e.a as the reference of vibrations. The state
of the art inertially coupled equations of motion are modified to accommodate
a reference axis r.a other than the e.a in each equivalent beam model of the
aircraft component. Moreover the anisotropic material properties are also ac-
commodated in the stiffness matrix. This modification requires to rederive the
mathematical model from top to bottom (i.e. from the expression of a section
deformation to the formation of structural dynamics matrices and further down
to state-space matrices and structural loads equations). A small executive twin
jet is selected for the simulation in a few static (i.e. steady level flight) and
dynamic conditions (i.e. discrete gust and pilot induced maneuvers). Due to
the nonavailability of the composite aircraft data the coupling effects on the
response of the aircraft are studied by manipulating the e.a of each wing and
horizontal tail of the metal aircraft in five different cases of numerical exam-
ples. The modified equations of motion were found to be very useful in this
regard, which show that the coupling plays a significant role in the dynamics of
the fully flexible aircraft. It shows different effects both in static and dynamic
conditions. Those effects were not clearly known because the e.a was either
used as the reference of vibrations or the modeling and simulation of the e.a
position was restricted to a wing in flutter analysis. Although for a structural
design engineer the cases of e.a positions, given herein, do not seem to be a
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proper way of doing an analysis, it does give a fair picture in conceptual or
preliminary design. However, the modified equations remove the necessity of
using an elastic axis as a reference of vibration in fiber composite aircrafts and
open a door for an optimization problem to optimize the position of e.a, which
should result in minimized vibrations due to the coupling effects.

7.1 Recommendations

A multidisciplinary design optimization (MDO) of an aircraft during the pre-
liminary design phase can be formulated as a multiobjective problem (e.g. mini-
mum weight, controllability, minimum drag, and etc.) with multivariables (e.g.
fiber orientations, position of aircraft components w.r.t. aircraft CG, sweep
angle, and etc.) This sort of MDO problem is quite possible while using the
global sensitivity equations (GSE) approach. GSE, which are gradient based
Jacobian equations make it possible to internally couple the disciplines of struc-
tures, aerodynamics, and controls in a single optimization framework. During
the optimization solution structural dynamics matrices (i.e. mass, stiffness and
structural damping matrices) are updated in each iteration. Each new stiff-
ness and mass matrix in an iteration give new sets of dynamic loads. The
mathematical model presented herein is equally capable of handling this kind
of problem, for example, while using the gradient-based optimization routines,
if one of the objectives is to minimize the vibrations and consequent loads then
the loads equations based on stiffness (i.e. MDM) can easily be differentiated to
a structural design variable that yields the loads sensitivity of the each relevant
design variable. During the preliminary design phase this sort of exercise will
yield a minimum stiffness requirement for each aircraft component against the
dynamic loads. During the advanced design phases, when the geometry of the
aircraft components is more or less fixed, some latest optimization techniques
like genetic algorithm can be used to optimize the layer configurations of a
fiber composite component under a static load case. The resultant stiffness and
mass properties can later be compared with a minimum requirement of a stable
system.

While looking at the scope of the mathematical modeling in general and struc-
tural dynamics in particular of a flexible aircraft, the development presented
in this report does not end here. The generic equations of motion can be used
for any type of aircraft, but the formulation of its subparts like mass and stiff-
ness matrices vary with the configuration. The model presented in this report
is capable of simulating the dynamics of any conventional aircraft, which are
believed to well remain as the dominant design for at least next two decades.
Looking at the proposed alternatives like the blended wing-body (BWB) or the
Prandtlplane, a robust framework will be required in the future to automate
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the process of constructing the structural dynamics part of the inertially cou-
pled equations of motion. This will reduce the purpose of lengthy and complex
analytical mathematical modeling. A commercial finite element software can
be a good choice, which would automatically construct the structural dynamics
matrices and it may also require a kind of internal programming (e.g. Direct
Matrix Abstraction Programing in Nastran). However this exercise may have
its own limitations for each and every different aircraft configuration, which
may require some changes in programming and it would not serve as a fully
automated optimization framework but at least it will work for a fixed config-
uration at a time.

The knowledge based engineering (KBE) tools like design and engineering en-
gine (DEE), being developed by DAR group of Faculty of Aerospace Engineer-
ing in Delft University, is a best example in the automation of MDO problem in
aircraft preliminary design phase. The above discussion leads us to a conclusion
that DARLoads can be accommodated in the DEE framework and the use of
GSE can be the best approach to couple the various analysis tools like CFD
and FEA.
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Appendix A

Static condensation

The aircraft beam model shown in Fig 2.1 is usually created by using the static
condensation or Guyan reduction technique [42], where the full-order finite
element structural model of any component like wings, fuselage or empennage
are condensed to lumped mass and stiffness elements [36]. Without going into
the detailed theory of static condensation, only a brief description of modeling a
condensation problem is presented with an example of using the superelements
approach in MSC.Nastran software [43].

A.1 Superelement modeling

Fig A.1(a) shows a fuselage section structure discretized into several panels
along the circumference, where it is assumed that each stiffened panel is rep-
resented by a a straight panel with equivalent stiffness and material proper-
ties [44,45]. Modeling the structure with equivalent panels saves a considerable
solution time and it terms of accuracy this practice is also quite reliable es-
pecially with reference to aeroelastic predictions [46]. Each section along the
fuselage length (i.e., a distance between from one fuselage frame to the next)
is modeled as a superelement (SE) by using the SESET bulk data entry, where
the grids at the root of that section represent its interior points and the grids
at the tip acts as its exterior points to the next section, see Fig A.1(a). Fig-
ure A.1(b) shows the superelement tree from root to the tip superelement. By
using the rigid body element, RBE2 or RBE3, the stiffness and mass proper-
ties of the section are condensed to the grid at neutral axis. These rigid-body
elements typically give a rigid connection between an independent node (i.e.
condensation node at neutral axis) to other dependent nodes on the fuselage
(i.e. exterior points or nodes). The RBE2 does not allow a relative motion
between the dependent and independent nodes, whereas the RBE3 allows a rel-
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94 Chapter A. Static condensation

ative motion of a certain D.o.F as the weighted average of the displacement of
the other D.o.F. The output data from the MSC.Nastran is written out in out-
put4 format, which is then read by MATLAB to get mass and stiffness matrices
of the structure.

+,+,-./0


+,+,-./

12,�$���$+,+,-./0


,�������$3����$���$+,+,-./0


4�����������$3���

�
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-�6$+,

1�����#$+,

(a) Equivalent shell modeling. (b) Superelement tree.

Figure A.1: Superelement modeling.

A.2 A wing-box example

A composite wing-box, as shown in Fig. A.2, is modeled in MSC.Nastran by
using several CQUAD elements, which are then divided into two superelements
(SE). The layers configurations with material and geometrical properties are
given in Ref. 8 and presented herewith in Table A.1. The free-body diagram
shows the formation of the SE tree, where the nodes connecting SE1 and SE2
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Table A.1: Wing-box layers configuration and stiffness properties

Configurationa Ref. 8b MSC.Nastranb

Flanges Webs EI GJ k EI GJ k

[0/90]3 [0/90]3 13.1 2.34 0 12.73 2.02 0
[15]6 [15/− 15]3 22.53 5.26 5.85 14.90 2.51 3.0

a Mechanical properties: E11 = 14.19GPa, E22 = 9.8GPa, G12 = 6.14GPa,
μ = 0.42, ply thickness = 0.127mm, width = 0.0242m, height = 0.014m.

b Units: kg-m2.

act as external nodes (i.e., ASET ) for SE1 and internal nodes (i.e., OSET ) to
SE2. By using the SOL103 solution option in MSC.Nastran the stiffness and
mass properties are condensed, and the results are presented and compared with
those of Ref. 8 in Table A.1. It shows that in the first test case the error is not
more than the 2.8%, whereas the error increases to 33% for the second case. The
reason can be the use of type of rigid-body elements (i.e., RBE2) and it can be
improved by using the RBE3 element. However, we concentrate only on to the
static condensation approach while using a commerical finite element software.
Moreover, it can easily be observed that slight change in ply angle on left and
right sides of the web gives the material anisotropy, which causes the coupled
vibrations. Although the orthogonality, as shown in Eq. (B.4), decouples the
equations of motion in Eqs. (B.1–B.3), the present example shows that these
are not actually fully decoupled and the material anisotropy somehow keeps the
coupling intact.

Figure A.2: Composite wing-box.
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Appendix B

Inertially decoupled equations
of motion

The rigid-body motion of the flexible aircraft is normally observed w.r.t. two
types of the axes system (i.e. inertial and aircraft body axes). The positions of
the aircraft in translation Rf and rotation θf are defined w.r.t to the inertial
axes, whereas aircraft motion in the form of rigid-body velocities (i.e. Vf as
translational velocity vector and Ωf as angular velocity vector) are defined
w.r.t aircraft body axes. Elastic motion in the form of structural generalized
velocities (i.e. q̇u in bending and q̇ψ in torsion) of the aircraft components are
defined w.r.t. a component’s local axes system. The dynamic response of the
aircraft is solved by the numerical solution of the equations of motion, which
can be inertially coupled equations of motion (i.e. with a nondiagonal mass
matrix) or inertially decoupled equations of motion (i.e. with a diagonal mass
matrix). Inertially coupled equations of motion for a flexible aircraft derived in
Ref. 14 and 25 are reproduced here with a brief description of the formulation.

Ṙf = CTIfVf , θ̇f = E−1
If Ωf (B.1)

V̇f =
Ff
m
− Ω̃fVf , Ω̇f =

Mf − Ω̃fJfΩf

Jf
(B.2)

q̈i + ω2
i qi =

Q

M
, i = 1, 2, 3, . . . (B.3)

in which the Eqs. (B.1) and (B.2) relate to the rigid-body motion with respect
to inertial and aircraft body axes, respectively. Eq. (B.3) is related to the elastic
motion where ωi represents the vibration frequency for the ith mode. It is to
be noted that the Eqs. (B.1–B.2) are inertially decoupled and the only coupling
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98 Chapter B. Inertially decoupled equations of motion

between the equations comes through the force vectors i.e. Ff , Mf , and Q. The
inertial decoupling results from the the constraints of practical mean axes [14].
One of the constraints is the use of orthogonal modes, which makes the mass
matrix a diagonal matrix, like in the following expression decoupling between
the bending and torsion degrees arises as follows:

Mij =
∫
Di

φuiφψi
dmi ≡ 0 (B.4)

whereas the submatrices of mass matrix given in Eqs. (2.15) and (E.2–E.54)
contradicts the above expression and holds the coupling between the two dif-
ferent D.o.F.
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Appendix C

Eigenfunctions for a fixed-free
beam

To calculate the structural deflections over the length of a fixed-free beam (i.e.
cantilever beam), as given in Eq. (2.7), the eigenfunctions φu in bending and φψ
in torsion are multiplied with generalized coordinates of corresponding D.o.F.
(i.e. qu and qψ, respectively). Eigenfunctions used in this report do not repre-
sent typical natural modes of vibration, which are orthogonal with respect to
mass distribution of the beam, see Eq. (B.4). However, each eigenfunction does
hold two important properties of natural modes (i.e. shape of a vibration mode,
and the corresponding natural frequency). Eigenfunctions are the functions of
position rx along the length of a beam and in bending these are expressed as
follows [4]:

φu(rx) = cosh
βLnrx
L

− cos
βLnrx
L

+
sinβLn − sinhβLn

cosβLn + coshβLn

×
(
sinh βLnrx

L − sin βLnrx
L

)
(C.1)

in which L is the total length of a beam. The values of βLn are given by the
abscissas of the points of intersection of the curves, which are plotted as a solu-
tion of transcendental equation of cantilever beam, see Fig. 3-4 of Ref. 23. For
first two vibration shapes in bending (i.e. n = 1, 2), the values of intersection
points are given as βLn =

[
0.597π 1.49π

]
, where the corresponding normal-

ized shapes are plotted in Fig. C.1(a). Similarly eigenfunctions in torsion are
expressed as follows:

φψ(rx) = sin
(2n− 1)πrx

2L
(C.2)

The shapes of first two normalized shapes in torsion are plotted in Fig. C.1(b).
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Appendix D

Transformation matrices

All the transformation or rotation matrices from inertial axes to aircraft body
axes in both translation and rotation are obtained through the sequence of Euler
rotations i.e. yaw θΨf

about the z-axis, pitch θΘf
about the y-axis and lastly

roll θΦf
about the x-axis. Same analogy is adopted in the case of transformation

from aircraft body axes Of to a component local axes Oi. The quasi rotation
matrices from inertial axes to the aircraft body axes is translation and rotation
is expressed as [4]:

CIf =

⎡⎣ cθΨf
cθΘf

sθΨf
cθΘf

−sθΘf

cθΨf
sθΘf

sθΦf
− sθΨf

cθΦf
sθΨf

sθΘf
sθΦf

+ cθΨf
cθΦf

cθΘf
sθΦf

cθΨf
sθΘf

cθΦf
+ sθΨf

sθΦf
sθΨf

sθΘf
cθΦf

− cθΨf
sθΦf

cθΘf
cθΦf

⎤⎦
(D.1)

EIf =

⎡⎣1 0 −sθΘf

0 cθΦf
cθΘf

sθΦf

0 −sθΦf
cθΘf

cθΦf

⎤⎦ (D.2)

in which s = sin and c = cos. The component transformation matrices used in
the simulation examples of Chapter 5 and 6 are as follows:

CFf =

⎡⎣1 0 0
0 1 0
0 0 1

⎤⎦ CAf =

⎡⎣−1 0 0
0 −1 0
0 0 1

⎤⎦
CRw =

⎡⎣ 0 0.9976 −0.0698
−1 0 0
0 0.0698 0.9976

⎤⎦ CLw =

⎡⎣0 −0.9976 −0.0698
1 0 0
0 −0.0698 0.9976

⎤⎦
101
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102 Chapter D. Transformation matrices

Cv =

⎡⎣−0.4808 0 −0.8768
−0.8768 0 0.4808

0 1 0

⎤⎦
CRh =

⎡⎣ 0.1653 −0.0234 0.9860
0.4719 0.8797 −0.0582
−0.8660 0.4749 0.1564

⎤⎦ CLh =

⎡⎣ 0.1653 −0.0234 −0.9860
−0.4719 −0.8797 −0.0582
−0.8660 0.4749 −0.1564

⎤⎦
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Appendix E

Mass matrix terms

The structural mass matrix is constructed by using the velocity terms Eqs. (2.9)
and (2.13– 2.14) in the kinetic energy expression of Eq. (2.2). The coefficients
resulting from the product of velocities construct the global mass matrix. A
complete listing of submatrices and arrays of the mass matrix of a flexible
aircraft is given in Ref. 4 except for the modified submatrices and arrays due to
bending-torsion coupling and T-Tail configuration, which are presented here.
Before that it is appropriate to briefly elaborate the structure of the mass matrix
as given in Eq. (2.15). As given in Eq. (2.15) the mass matrix is divided into
(8 × 8) arrays, where not all the array exhibit the same size but they make a
full-order mass matrix of size (38 × 38). The size of each array depends upon
the size of the coupling terms. For instance the coupling between the rigid-
body motion in translation Vf and empennage bending D.o.F is stored in the
array M15 of size (3× 6), in which the number of rows (i.e. 3) originates from
the size of Vf and similarly the number of columns (i.e. 6) originates from
the size of generalized coordinates in bending D.o.F of empennage in Eq. (2.4).
Similarly in Eq. (E.1), with the conjunction of two shape functions per D.o.F
of a component in Eqs. (2.7) and (2.4), the array M88 of size (6 × 6) couples
the torsion D.o.F of each horizontal tail to the vertical tail and vice-versa.

M88 =

⎡⎣M88(1,1)
M88(1,2)

M88(1,3)

M88(2,1)
M88(2,2)

M88(2,3)

M88(3,1)
M88(3,2)

M88(3,3)

⎤⎦ (E.1)

in which each submatrix consists of a size (2×2). M88(1,1)
, M88(2,2)

, and M88(3,3)

defines the inertial terms in torsion D.o.F of vertical tail, right and left hori-
zontal tails, respectively. M88(1,2)

and M88(1,3)
represent the effects of torsion of

right and left horizontal tails on the vertical tail, respectively, and vice-versa in
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104 Chapter E. Mass matrix terms

submatrices M88(2,1)
and M88(3,1)

1. Supposedly there is no structural coupling
between the two horizontal tails so the submatrices M88(2,3)

and M88(3,2)
are the

null matrices of size (2× 2).

E.1 Inertia matrices

By using the Eqs. (3.11–3.13)2, the first moment of inertia and the inertia
matrix of a deformed aircraft are defined as follows:

S̃ =
∑

i=f,e,w

∫
Di

l̃idmi (E.2)

Jf =
∑

i=f,e,w

∫
Di

l̃Ti l̃idmi (E.3)

E.2 Vf−Bending coupling

The effects of deformations in bending D.o.F of fuselage, wing, or empennage
beams on the rigid-body velocity in translation Vf are taken into account in
arrays M13, M14, or M15 of Eq. (2.15), respectively, and vice-versa i.e. the effect
of Vf on the bending D.o.F are taken into account in arrays M31, M41, or M51.
The array M15 is not affected at all but the submatrices related to horizontal
tail in bending in arrays M13 and M15 are changed. By using Table 3.13:

M13(1,2)
=
(
ChCv

)T ∫
Dh

Φufh
dmh

(E.4)

M15(1,2)
=
(
CRh Cv

)T ∫
DR

h

Φuh
dmh

(E.5)

M15(1,3)
=
(
CLhCv

)T ∫
DL

h

Φuh
dmh

(E.6)

1M88(2,1) and M88(3,1) are simply equal to MT
88(1,2)

and MT
88(1,3)

, respectively. The same
analogy is applied to the rest of the submatrices and arrays.

2It is to be noted that while computing the full-order mass matrix the products of transfor-
mation matrices and the vector of reduced-order generalized coordinates i.e. Duiξ and Dψiξ
of a particular component in Eqs. (3.11–3.13) are simply replaced by full-order generalized
coordinate qui and qψi , respectively.

3While constructing a full-order matrix, again the transformation matrices Dui or Dψi are
omitted in the eigenfunctions Φui or Φψi .



�

�

“thesis” — 2009/3/12 — 22:27 — page 105 — #119
�

�

�

�

�

�

E.3. Vf−Torsion coupling 105

E.3 Vf−Torsion coupling

The coupling of deformations in the torsion D.o.F of fuselage, wing, or empen-
nage beams on the rigid-body velocity in translation Vf are taken into account
in arraysM16, M17, or M18 of Eq. (2.15), respectively. The modified expressions
are given as:

M16 = CTf

∫
Df

Φψf
dmf

+
∑
i=w,v

CTi

∫
Di

Φψfi
dmi +

(
ChCv

)T ∫
Dh

Φψfh
dmh

(E.7)

M17 = CTw

∫
Dw

Φψwdmw (E.8)

M18(1,1)
= CTv

∫
Dv

(
Φψvh

+ Φψv

)
dmv (E.9)

M18(1,2)
=
(
CRh Cv

)T ∫
DR

h

Φψh
dmh

(E.10)

M18(1,3)
=
(
CLhCv

)T ∫
DL

h

Φψh
dmh

(E.11)

E.4 Ωf−Bending coupling

The effects of deformations in the bending D.o.F of fuselage, wing, or empen-
nage beams on the rigid-body velocity in rotation Ωf are taken into account in
arrays M23, M24, or M25 of Eq. (2.15), respectively. The modified expressions
are as follows:

M23(1,2)
=
∫
Dh

l̃hΦufh
dmh

(E.12)

M25(1,1)
=
∫
Dv

l̃v
(
Φuvh

+ Φuv

)
dmv (E.13)

M25(1,2)
=
∫
DR

h

l̃hΦuh
dmh

(E.14)

M25(1,3)
=
∫
DL

h

l̃hΦuh
dmh

(E.15)
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106 Chapter E. Mass matrix terms

E.5 Ωf−Torsion coupling

The coupling of deformations in the torsion D.o.F of fuselage, wing, or empen-
nage beams on the rigid-body velocity in rotation Ωf are taken into account in
arrays M26, M27, or M28 of Eq. (2.15), respectively. The modified expressions
are given as:

M26 =
∫
Df

l̃fΦψf
dmf

+
∑
i=e,w

∫
Di

l̃iΦψfi
dmi (E.16)

M27 =
∫
Dw

l̃wΦψwdmw (E.17)

M28(1,1)
=
∫
Dv

l̃vΦψvdmv +
∫
Dh

l̃hΦψvh
dmh

(E.18)

M28(1,2)
=
∫
DR

h

l̃hΦψh
dmh

(E.19)

M28(1,3)
=
∫
DL

h

l̃hΦψh
dmh

(E.20)

E.6 Bending–Bending coupling

The coupling of deformations in the bending D.o.F of fuselage are inertially
coupled to the bending of wing, or empennage beams and vice-versa. The
array M33 represents the effect of fuselage bending on itself and moreover the
wings and empennage beams. Similarly the effects of bending of each wing on
itself and fuselage beams are as follows:

M33 =
∫
Df

ΦT
uf

Φuf
dmf

+
∑
i=e,w

∫
Di

ΦT
ufi

Φufi
dmi (E.21)

M34 =
∫
Dw

ΦT
ufw

Φuwdmw (E.22)

M44(1,1)
=
∫
DR

w

ΦT
uw

Φuwdmw (E.23)

M44(2,2)
=
∫
DL

w

ΦT
uw

Φuwdmw (E.24)
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As the bending in the horizontal tail affects the fuselage through the vertical
tail so the array M35 is portioned as follows:

M35(1,1)
= ΦT

ufv

[ ∫
Dv

Φuvdmv +
∫
Dh

Φuvh
dmh

]
(E.25)

M35(1,2)
=
∫
DR

h

ΦT
ufh

Φuh
dmh

(E.26)

M35(1,3)
=
∫
DL

h

ΦT
ufh

Φuh
dmh

(E.27)

The coupling in mass matrix between the bending in vertical and horizontal
tails is given as:

M55(1,1)
=
∫
Dv

ΦT
uv

Φuvdmv +
∑
L,R

∫
Dh

ΦT
uvh

Φuvh
dmh

(E.28)

M55(1,2)
=
∫
DR

h

ΦT
uvh

Φuh
dmh

(E.29)

M55(1,3)
=
∫
DL

h

ΦT
uvh

Φuh
dmh

(E.30)

M55(2,2)
=
∫
DR

h

ΦT
uh

Φuh
dmh

(E.31)

M55(3,3)
=
∫
DL

h

ΦT
uh

Φuh
dmh

(E.32)

It is to be noted that there is no direct inertial effect of bending in each wing or
horizontal tail on the other wing or horizontal tail but their coupling in bending
comes through the array M33. Therefore the arrays M44(1,2)

or M44(2,1)
for wings

and M55(2,3)
or M55(3,2)

of horizontal tails are the null matrices of each (2× 2).
Moreover wing and empennage beams are also not directly connected to each
other and again, as stated, the coupling comes through the fuselage (i.e. the
array M33), whereas the arrays M45 or M54 are the null matrices of each (4×4).

E.7 Torsion-Bending coupling

The bending D.o.F of each component is inertially coupled to its torsion D.o.F
and vice-versa. In case of the fuselage the arrays M36, M37, and M38 represents
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the effect of fuselage, wings and empennage torsion, respectively on the bending
D.o.F of the fuselage. The array M47 represent the coupling of the wing torsion
and the wing bending, and similarly the array M58 for the empennage beams.
The analogy of null matrices in the arrays M55(2,3)

and M55(3,2)
, as stated above,

also works in case of the arrays M47(1,2)
or M47(2,1)

for wings and M58(2,3)
or

M58(3,2)
of horizontal tails.

M36 =
∫
Df

ΦT
uf

Φψf
dmf

+
∑
i=e,w

∫
Di

ΦT
ufi

Φψfi
dmi (E.33)

M37 =
∫
Dw

ΦT
ufw

Φψwdmw (E.34)

M38(1,1)
= ΦT

ufv

[ ∫
Dv

Φψvdmv +
∫
Dh

Φψvh
dmh

]
(E.35)

M38(1,2)
=
∫
DR

h

ΦT
ufh

Φψh
dmh

(E.36)

M38(1,3)
=
∫
DL

h

ΦT
ufh

Φψh
dmh

(E.37)

M47 =
∫
Dw

ΦT
uw

Φψwdmw (E.38)

M58(1,1)
=
∫
Dv

ΦT
uv

Φψvdmv +
∑
L,R

∫
Dh

ΦT
uvh

Φψvh
dmh

(E.39)

M58(1,2)
=
∫
DR

h

ΦT
uvh

Φψh
dmh

(E.40)

M58(1,3)
=
∫
DL

h

ΦT
uvh

Φψh
dmh

(E.41)

M58(2,2)
=
∫
DR

h

ΦT
uh

Φψh
dmh

(E.42)

M58(3,3)
=
∫
DL

h

ΦT
uh

Φψh
dmh

(E.43)
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E.8 Torsion-Torsion coupling

M66 =
∫
Df

ΦT
ψf

Φψf
dmf

+
∑
i=e,w

∫
Di

ΦT
ψfi

Φψfi
dmi + Jf (E.44)

M67 =
∫
Dw

ΦT
ψfw

Φψwdmw (E.45)

M68(1,1)
= ΦT

ψfv

[ ∫
Dv

Φψvdmv +
∫
Dh

Φψvh
dmh

]
(E.46)

M68(1,2)
=
∫
DR

h

ΦT
ψfh

Φψh
dmh

(E.47)

M68(1,3)
=
∫
DL

h

ΦT
ψfh

Φψh
dmh

(E.48)

M77 =
∫
Dw

ΦT
uw

Φψwdmw + Jw (E.49)

M55(1,1)
=
∫
Dv

ΦT
ψv

Φψvdmv +
∑
L,R

∫
Dh

ΦT
ψvh

Φψvh
dmh

+ Jv (E.50)

M88(1,2)
=
∫
DR

h

ΦT
ψvh

Φψh
dmh

(E.51)

M88(1,3)
=
∫
DL

h

ΦT
ψvh

Φψh
dmh

(E.52)

M88(2,2)
=
∫
DR

h

ΦT
ψh

Φψh
dmh

+ Jh (E.53)

M88(3,3)
=
∫
DL

h

ΦT
ψh

Φψh
dmh

+ Jh (E.54)
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Appendix F

α–β Definitions

From Fig. F.1 we can define the angle of attack α of a strip of the wing or
the horizontal tail as a function of rigid-body pitch θΘf

, flight path −γ =
Vzf

−Vξ+liΩfΘ

Vfx
, structural generalized velocities s = q̇ or η = ξ̇ in reduced order,

and the torsion angle ψ of the strip:

αi − Vξ
Vfx

= θΘf
− γ +

ξ̇

Vfx

+ ψ(ri) (F.1)

αi = θΘf
+
Vfz − Vξ + liΩfΘ + ξ̇

Vfx

+ ψi(ri), i = f, h, w (F.2)

in which Vξ is the vertical component of the downwash in horizontal tail only.

��

���
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8

��
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�� :$�	


;<�

Figure F.1: Aircraft in pitch and plunge.

Similarly from Fig F.2 we can also define the side-slip angle β of a strip of the
vertical tail or the fuselage as a function of rigid-body yaw θΨf

, flight path ζ,
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112 Chapter F. α–β Definitions

structural generalized velocities η = ξ̇, and the torsion angle ψ of the strip:

βi = θΨf
− ζ +

ξ̇

Vfx

+ ψ(ri) (F.3)

βi = θΨf
+
Vfy + liΩfΨ + ξ̇

Vfx

+ ψ, i = f, v (F.4)

���

��=

;>�
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��

Figure F.2: Aircraft in side-slip.
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Appendix G

Simplified form for rigid-body
equations

It is a quite common practice in most of the flight mechanics literature [26,30,
31] that, instead of momenta, the equations of motion representing rigid-body
motion are solved in the form of velocity rates. In this Appendix the equations
of motion for the rigid-body motion, as given in Eq. (3.52), are simplified so
that these can be solved in terms of accelerations. However the simplification
does not change the original context of the Eq. (3.52) but, as required by the
airworthiness regulations [38], it only helps to solve the acceleration at the
aircraft body axes. By using the last two expressions of Eq. (2.48), Eq. (3.52)
for a LTI system can be written as:

Mrẍ
(0)(t) = Mr

⎡⎣−Ω̃(0)
f 0

−Ṽ (0)
f −Ω̃(0)

f

⎤⎦ ẋ(0)(t) + C
(0)
V Ωẋ

(0)(t) +B(0)
x x(0)(t) +B(0)

u u(0)(t)

ẍ(0)(t) =

⎡⎣−Ω̃(0)
f 0

−Ṽ (0)
f −Ω̃(0)

f

⎤⎦ ẋ(0)(t) +
C

(0)
V Ω

Mr
ẋ(0)(t) +

B
(0)
x

Mr
x(0)(t) +

B
(0)
u

Mr
u(0)(t)

(G.1)

in which the state vector x(0) is expressed as
[
R

(0)T
f θ

(0)T
f

]T
.

113



�

�

“thesis” — 2009/3/12 — 22:27 — page 114 — #128
�

�

�

�

�

�

114 Chapter G. Simplified form for rigid-body equations

G.1 Steady-state equations

During the trim condition analysis, it is assumed that plunging and pitching
rates are zero so the Eq. (G.1) is written for this particular problem as:

ẍ(0)(t) =

⎡⎣−Ω̃(0)
f 0

−Ṽ (0)
f −Ω̃(0)

f

⎤⎦ ẋ(0)(t) +
B

(0)
x

Mr
x(0)(t) +

B
(0)
u

Mr
u(0)(t) (G.2)

Similarly, the quadratic cost function in finding the trim variables, as given in
Eq. (4.1), is also transformed to the following expression:

J (0)
(
θ
(0)
f , u(0)

)
=
[
Ṙ

(0)
fx

Ṙ
(0)
fz

θ̇
(0)
fΘ

]
W

⎡⎢⎣Ṙ
(0)
fx

Ṙ
(0)
fz

θ̇
(0)
fΘ

⎤⎥⎦ (G.3)

G.2 Perturbation equations

Rigid-body perturbation over a steady-state due to a discrete gust is expressed
as follows, where it is assumed that steady-state flight variables (i.e. rigid-body
velocities and control inputs) are kept constant:

Δẍ(0)(t) =
C

(0)
V Ω

Mr
Δẋ(0)(t) +

B
(0)
x

Mr
Δx(0)(t) +

B
(0)
wg

Mr
wg(t) (G.4)

in which B(0)
wg is the stiffness due to the gust and in this case it can be taken the

same as the aerodynamic stiffness but without the gravity terms in Eqs. (3.31)
and (3.32). The perturbation equation for a pilot induced maneuvers around
the steady-state condition are given as:

Δẍ(0)(t) =
C

(0)
V Ω

Mr
Δẋ(0)(t) +

B
(0)
x

Mr
Δx(0)(t) +

B
(0)
u

Mr
Δu(0)(t) (G.5)

G.3 Decoupling

The Eqs. (G.4) and (G.5) are further decoupled into two equations (i.e. pure
symmetric and pure asymmetric rigid-body motions)1. The equation of motion

1This assumption is not considered to be true for a non-zero first moment inertia matrix
S̃ and a non-zero Jxy inertia in mass matrix Mr. However in the present case, just for an
approximation and simplicity, these variables are assumed to be zero. Otherwise one should
solve the Eqs. (G.4) and G.5 as a whole.
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representing a purely symmetric perturbation is given as:

[
R̈

(0)
fz

(t)

θ̈
(0)
fΘ

(t)

]
=
[
m 0
0 Jyy

]−1

⎛⎜⎝
[
ZVz ZΩΘ
MVz MΩΘ

] [
Ṙ

(0)
fz

(t)

θ̇
(0)
fΘ

(t)

]
+
[

0 ZθΘ
0 MθΘ

] [
R

(0)
fz

(t)

θ
(0)
fΘ

(t)

]
+
[

0 Zwgi
0 Mwgi

]
wg(t) +

[
Zδel
Mδel

]
δ
(0)
el (t)

⎞⎟⎠ (G.6)

After the trim solution of the flight conditions given in Table 5.2 the numerical
values in the Eq. (G.6), as used in the simulation example of Chapter 6, are as
follows:

[
R̈

(0)
fz

(t)

θ̈
(0)
fΘ

(t)

]
=
[

5884.23 0
0 64003.38

]−1

⎛⎜⎜⎜⎜⎜⎝
[−15843.00 −7923.89
−4980.57 −47510.37

] [ Ṙ(0)
fz

(t)

θ̇
(0)
fΘ

(t)

]
+
[

0 −3962739.43
0 −1755796.38

]
×
[
R

(0)
fz

(t)

θ
(0)
fΘ

(t)

]
+
[

0 −14638.13
0 267.49

]
wgw(t)

+
[

0 −1209.68
0 −7250.19

]
wgh

(t) +
[ −45279.47
−278097.15

]
δ
(0)
el (t)

⎞⎟⎟⎟⎟⎟⎠
(G.7)

Similarly for an asymmetric motion due to a rudder or aileron input the nu-
merical values are as follows:

⎡⎢⎣ R̈
(0)
fy

(t)

θ̈
(0)
fΦ

(t)

θ̈
(0)
fΨ

(t)

⎤⎥⎦ =
[

5884.23 0 0
0 20708.91 −4241.35
0 −4241.35 79590.5

]−1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

[
1012.54 0 6849.01
1874.04 −86805.7593 −5161.90
−6563.81 283942.1731 2830.7422

]⎡⎢⎣ Ṙ
(0)
fy

(t)

θ̇
(0)
fΦ

(t)

θ̇
(0)
fΨ

(t)

⎤⎥⎦
+
[

0 64618.66 253168.02
0 −1355.13 468612.39
0 −32099.194 −1641309.694

]⎡⎢⎣R
(0)
fy

(t)

θ
(0)
fΦ

(t)

θ
(0)
fΨ

(t)

⎤⎥⎦
+
[ −5091.77 −34178.20
−445738.90 −63263.63
−445.00 221580.17

] [
δ
(0)
a (t)

δ
(0)
r (t)

]

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(G.8)
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Appendix H

Linearization process

While ignoring the higher order terms, the first-order Taylor’s series is expressed
as [29]:

f
(
x, y
) ∼=

zero-order problem︷ ︸︸ ︷
f
(
x(0), y(0)

)
+

first-order problem︷ ︸︸ ︷
∂f
(
x(0), y(0)

)
∂x

y(0) +
∂f
(
x(0), y(0)

)
∂y

x(0)

∼= f
(
x(0), y(0)

)
+ x(1)y(0) + x(0)y(1) (H.1)

Using the analogy of first-order problem in Eq. (H.1), the Eqs. (2.48) and (2.60)
will take a form as:

Ṙ
(1)
f = C

(0)T
If V

(1)
f + C

(1)T
If V

(0)
f , θ̇

(1)
f = E

(0)−1

If Ω(1)
f − E(0)−1

If E
(1)
If E

(0)−1

If Ω(0)
f

ξ̇ = η

ṗ(1)
vf

= −Ω̃(1)
f p(0)

vf
− Ω̃(0)

f p(1)
vf

+ F (1) (H.2)

ṗ
(1)
Ωf

= −Ṽ (1)
f p(0)

vf
− Ṽ (0)

f p(1)
vf
− Ω̃(1)

f p
(0)
Ωf
− Ω̃(0)

f p
(1)
Ωf

+M (1)

ṗη =
∂T

∂ξ

(1)

−Kξξ − Cηη +Qη

in which the vectors of F (1), M (1), and Qη result from the coefficient matrices
C

(1)
V Ω, B(1)

x , and B
(1)
u of Eq. (3.61) and their linearization process is presented

in the next section of this Appendix. As far as the coefficient matrix A(1)

is concerned readers are referred to Ref. 28 for the complete description of
the matrix as its linearized state is not expressed for the sake of conciseness.
However, due to the modification in the mathematical model, presented in the
Chapter 2, a few submatrices particular to ∂T

∂ξ

(1)
in A(1) are presented here but

before that it is also necessary to express the linearization of absolute velocities
of each component.
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118 Chapter H. Linearization process

H.1 First-Order velocity expressions

H.1.1 Fuselage

The absolute velocity expression in Eq. (2.9) is also linearized into zero-order
and first-order velocity expressions. The zero-order velocity expression, with
superscript (0), simply represents a purely rigid-body motion i.e. without the
effects of structural deformations. Whereas the first-order velocity expression,
with superscript (1), represents the disturbance over the zero-order velocity
vector due to vibrations or generalized velocities η.

V̄
(0)
f = CfV

(0)
f + r̃Tf CfΩ

(0)
f (H.3)

V̄
(1)
f = CfV

(1)
f + r̃Tf CfΩ

(1)
f +

(
˜φuf
Duf

ξ + ˜ỹfφψf
Dψf

ξ
)T

CfΩ
(0)
f + Φfη (H.4)

in which the expression for the eigenvector Φf is given in Eq. (3.29).

H.1.2 Wing and vertical tail

Similar to Eqs (H.3–H.4), the absolute velocity expression for wings and vertical
tail in Eq. (2.13) is also segregated into zero-order and first-order forms as
follows, respectively:

V̄
(0)
i = CiV

(0)
f +

(
Cir̃

T
fi

+ r̃Ti Ci
)
Ω(0)
f (H.5)

V̄
(1)
i = CiV

(1)
f +

(
Cir̃

T
fi

+ r̃Ti Ci
)
Ω(1)
f

+

⎡⎢⎣Ci
(

˜φufi
Duf

ξ + ˜ỹfφψfi
Dψf

ξ
)T

+
(

˜φuiDuiξ + ˜ỹiφψi
Dψi

ξ
)T

Ci

⎤⎥⎦Ω(0)
f + Φiη (H.6)

in which the expression for the eigenfunction Φi is given in Eqs. (3.27–3.28).

H.1.3 Horizontal tail

The absolute velocity expression for horizontal tail in Eq. (2.14) is segregated
into zero-order and first-order forms as follows, respectively:

V̄
(0)
h = ChCvV

(0)
f +

(
ChCv r̃

T
fv

+ Chr̃
T
vh
Cv + r̃ThChCv

)
Ω(0)
f (H.7)
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H.2. Tξ coefficients 119

V̄
(1)
h = ChCvV

(1)
f +

(
ChCv r̃

T
fv

+ Chr̃
T
vh
Cv + r̃ThChCv

)
Ω(1)
f

+

⎡⎢⎢⎢⎢⎣
ChCv

(
˜φufv
Duf

ξ + ˜ỹfφψfv
Dψf

ξ
)T

+Ch
(

˜φuvh
Duvξ + ˜ỹiφψvh

Dψvξ
)T

Cv

+
(

˜φuh
Duh

ξ + ˜ỹhφψh
Dψh

ξ
)T

ChCv

⎤⎥⎥⎥⎥⎦Ω(0)
f + Φhη (H.8)

in which the expression for the eigenvector Φh is given in Eq. (3.26)

H.2 Tξ coefficients

The expression of kinetic energy in Eq. (2.2) with linearized velocity expressions
can be written as:

T =
1
2

∑
i=f,e,w

∫ (
V̄

(0)
i + V̄

(1)
i

)T (
V̄

(0)
i + V̄

(1)
i

)
dmi (H.9)

Now using the Eqs. Eq. (H.9), and (H.3–H.8) in Eqs. (2.50) and (2.51) and
rearranging brings us:(

∂T
∂ξ

)(1)
= Aξξ +AV V

(1)
f +AΩΩ(1)

f +Aηη (H.10)

where the coefficient matrices w.r.t ξ, V (1)
f , Ω(1)

f , and η are as follows:

Aξ =
∫
Df

φTuψf

(
˜CfΩf

(0)
)T (

˜

CfΩ
(0)
f

)
φuψf

dmf +
∑
i=w,v

φTuψfi
Ω̃(0)T
f

×
∫
Di

[
Ω̃(0)
f φuψfi

+ CTi

(
˜

CiΩ
(0)
f

)
φuψi

]
dmi + φTuψfv

Ω̃(0)T
f ×

∫
Dh

Ω̃(0)
f φuψfv

+
(
ChCv

)T [(
˜

ChCvΩ
(0)
f

)
φuψi

+ Ch

(
˜

CvΩ
(0)
f

)
φuψvh

]
dmh (H.11)

+
∑
i=w,v

φTuψi

(
˜

CiΩ
(0)
f

)T ∫
Di

[
CiΩ̃

(0)
f φuψfi

+
(

˜

CiΩ
(0)
f

)
φuψi

]
dmi

+
[
φTuψvh

CTh

(
˜

CvΩ
(0)
f

)T
+ φTuψh

(
˜ChCvΩf

)T]
×
∫
Dh

[
ChCvΩ̃

(0)
f φuψfv

+ Ch

(
˜

CvΩ
(0)
f

)
φuψvh

+
(

˜

ChCvΩ
(0)
f

)
φuψh

]
dmh
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120 Chapter H. Linearization process

AV =
∫
Df

φTuψf

(
˜

CfΩ
(0)
f

)T
dmf +

∑
i=w,v

∫
Di

[
φTuψfi

Ω̃(0)T
f + φTuψi

(
˜

CiΩ
(0)
f

)T
Ci

]
dmi

+
∫
Dh

φTuψfv
Ω̃(0)T
f +

[
φTuψvh

CTh

(
˜

CvΩ
(0)
f

)T
+ φTuψh

(
˜

ChCvΩ
(0)
f

)T]
ChCvdmh

(H.12)

AΩ =
∫
Df

φTuψf

(
˜

CfΩ
(0)
f

)T
l̃Tf dmf +

∑
i=w,v

∫
Di

[
φTuψfi

Ω̃(0)T
f CTi + φTuψi

˜

CiΩ
(0)
f

T
]
l̃Ti dmi

+
∫
Dh

[
φTuψfv

Ω̃(0)T
f

(
ChCv

)T + φTuψvh
CTh

(
˜

CvΩ
(0)
f

)T
+ φTuψh

(
˜

ChCvΩ
(0)
f

)T]
l̃Th dmh

(H.13)

Aη =
∫
Df

φTuψf

(
˜

CfΩ
(0)
f

)T
φfdmf +

∑
i=w,v

∫
Di

[
φTuψfi

Ω̃(0)T
f CTi + φTuψi

˜

CiΩ
(0)
f

T
]
φidmi

+
∫
Dh

[
φTuψfv

Ω̃(0)T
f

(
ChCv

)T + φTuψvh
CTh

(
˜

CvΩ
(0)
f

)T
+ φTuψh

(
˜

ChCvΩ
(0)
f

)T]
φhdmh

(H.14)

φuψfi
= φufi

Duf
+ ỹfφψfi

Dψf

φuψvh
= φuvh

Duv + ỹvφψvh
Dψv (H.15)

φuψi
= φuiDui + ỹiφψi

Dψi

H.3 Linearization of coefficient matrices

In this section the coefficient matrices AV Ω, Bx, and Bu are linearized. Keeping
in view the consiceness in the document, it is thought to present only one
example of linearization. The rest of the equations are linearized in the same
way as that of the example and presented without the derivations.

H.3.1 w.r.t. Vf

Starting with the linearization of the Eq. (3.9) while assuming that in case of
vertical lift the Vfz gives the damping as:

ZVli
Vfz =

ρVfx

2

∫ (
ciC

T
i ZVαi

)
dDiVfz (H.16)
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From the Taylor’s series expansion:

Z
(1)
Vli
V

(1)
f =

ρ

2

(
V

(0)
fx
V

(1)
fz

+ V
(0)
fz
V

(1)
fx

)∫ (
ciC

T
i ZVαi

)
dDi (H.17)

⇒ ρ

2
CTi

∫
ci

[
ZVαiV

(0)
fz

eT1 ZVαiV
(0)
fx

]
dDi

⎡⎢⎣V
(1)
fx

0
V

(1)
fz

⎤⎥⎦ (H.18)

Z
(1)
Vli

=
ρ

2
CTi

∫
ci

[
ZVαiV

(0)
fz

eT1 ZVαiV
(0)
fx

]
dDi (H.19)

Similarly for the side force:

Z
(1)
Vsi
V

(1)
f =

ρ

2
CTi

∫
ci

[
ZVβi

V
(0)
fy

ZVβi
V

(0)
fx

eT1

]
dDi

⎡⎢⎣V
(1)
fx

V
(1)
fy

0

⎤⎥⎦ (H.20)

Z
(1)
Vsi

=
ρ

2
CTi

∫
ci

[
ZVβi

V
(0)
fy

ZVβi
V

(0)
fx

eT1

]
dDi (H.21)

The matrix of first-order aerodynamic damping in translation is:

Z
(1)
Vv

=
∑
i=f,v

∫
Z

(1)
Vsi
dDi +

∑
i=h,w

∫
Z

(1)
Vli
dDi (H.22)

The moment due to aerodynamic damping in translation, as expressed in
Eq. (3.10), is linearized as:

M
(1)
V =

∑
i=f,v

∫
l̃
(0)
i CiZ

(1)
Vsi

+ l̃
(1)
i CiZ

(0)
Vsi
dDi +

∑
i=h,w

∫
l̃
(0)
i CiZ

(1)
Vli

+ l̃
(1)
i Z

(0)
Vli
dDi

(H.23)

in which the moment vectors l̃(0)
i are defined in Eqs. (3.58–3.60) and l̃(1)

i corre-
sponds to the structural deformations in Eqs. (3.11–3.13), which are functions
of generalized coordinates ξ. So Eq. (H.23) is reduced to:

M
(1)
Vv

=
∑
i=f,v

∫
l̃
(0)
i CiZ

(1)
Vsi
dDi +

∑
i=h,w

∫
l̃
(0)
i CiZ

(1)
Vli
dDi (H.24)

whereas l̃(1)
i part of the Eq. (H.23) is separated as1:

Mξv = −ρV
(0)
fx

2

[ ∑
i=f,v

∫ (
˜CTi ciZVβi

)
∂l

(1)
i
∂ξ dDi+

∑
i=h,w

∫ (
˜CTi ciZVαi

)
∂l

(1)
i
∂ξ dDi

]
(H.25)

1The property of skew symmetry: ãb = −b̃a and ãT b = b̃a
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122 Chapter H. Linearization process

Repeating the process of linearization as given in Eqs. (H.16–H.25), the aero-
dynamic damping and stiffness in Eqs. (3.18) and (3.31–3.32), respectively, and
control stiffness in Eqs. (3.40–3.50), are linearized where the parts that are a
function of V (1)

f are collected and form the first-order aerodynamic damping
due to rigid-body translation as:

Z
(1)
V = Z

(1)
Vv
− ρθ̃(0)

f

⎛⎜⎝ ∑
i=h,w

∫
CTi

⎡⎣ZTVαh

e1
e1

⎤⎦TdDh +
∑
i=f,v

∫
CTi

⎡⎣ZTVβv

e1
e1

⎤⎦TdDv

⎞⎟⎠
−ρ

2
Ω̃(0)
f

⎛⎜⎝∫ ‖lh‖(0)(ChCv)T

⎡⎣ZTVαh

e1
e1

⎤⎦TdDh +
∫ ‖lv‖(0)CTv

⎡⎣ZTVβv

e1
e1

⎤⎦TdDv

⎞⎟⎠

+ρ

⎛⎜⎜⎜⎜⎜⎜⎝
CTv C

T
h

∫
chδ

(0)
el

⎡⎣ 0 0 0
0 0 0

Clδel
0 0

⎤⎦dDh + CTw
∫
cwδ

(0)
a

⎡⎣ 0 0 0
0 0 0
Clδa

0 0

⎤⎦dDw

+CTv
∫
cvδ

(0)
r

⎡⎣ 0 0 0
Clδr

0 0
0 0 0

⎤⎦dDv

⎞⎟⎟⎟⎟⎟⎟⎠
(H.26)

M
(1)
V = M

(1)
Vv
− ρθ̃(0)

f

⎛⎜⎝ ∑
i=h,w

∫
l̃
(0)
i CTi

⎡⎣ZTVαh

e1
e1

⎤⎦TdDh +
∑
i=f,v

∫
l̃
(0)
i CTi

⎡⎣ZTVβv

e1
e1

⎤⎦TdDv

⎞⎟⎠
−ρ

2
Ω̃(0)
f

⎛⎜⎝∫ l̃(0)
h ‖lh‖(0)(ChCv)T

⎡⎣ZTVαh

e1
e1

⎤⎦TdDh +
∫
l̃
(0)
v ‖lv‖(0)CTv

⎡⎣ZTVβv

e1
e1

⎤⎦TdDv

⎞⎟⎠

+ρ

⎛⎜⎜⎜⎜⎜⎜⎝
CTv C

T
h

∫
l̃
(0)
h chδ

(0)
el

⎡⎣ 0 0 0
0 0 0

Clδel
0 0

⎤⎦dDh + CTw
∫
l̃
(0)
w cwδ

(0)
a

⎡⎣ 0 0 0
0 0 0
Clδa

0 0

⎤⎦dDw

+CTv
∫
l̃
(0)
v cvδ

(0)
r

⎡⎣ 0 0 0
Clδr

0 0
0 0 0

⎤⎦dDv

⎞⎟⎟⎟⎟⎟⎟⎠
(H.27)



�

�

“thesis” — 2009/3/12 — 22:27 — page 123 — #137
�

�

�

�

�

�

H.3. Linearization of coefficient matrices 123

H.3.2 w.r.t. Ωf

Using the same analogy as given in Eqs. (H.16–H.25), the Eqs. (3.18) and (3.19)
are linearized as:

Z
(1)
Ω = Z

(0)
Ω (H.28)

M
(1)
Ω =

∑
i=h,v

l̃
(0)
i CiZ

(0)
Ωi

(H.29)

in which Z(0)
Ω means the solution of Eq. (3.18) by taking into account the zero-

order values of V (0)
f and l(0)

i .

H.3.3 w.r.t. θf

Similarly the Eqs. (3.31) and (3.32) are also linearized by using the analogy of
Eqs. (H.16–H.25):

Z
(1)
θf

= Z
(0)
θ (H.30)

M
(1)
θf

=
∑

i=f,e,w

l̃
(0)
i CiZ

(0)
θi

(H.31)

Similarly the Z(0)
θ means the computation of Eq. (3.31) by taking into account

the zero-order values of V (0)
f , θ(0)

f , and l(0)
i .

H.3.4 w.r.t. δi

The aerodynamic stiffness due to the control inputs are also linearized by using
the analogy of Eqs. (H.16–H.25):

Z
(1)
δi

= Z
(0)
δi

(H.32)

M
(1)
δi

= l̃
(0)
i CiZ

(0)
δi

(H.33)

Z
(0)
δ is also computed by taking into account the zero-order values of V (0)

f and

R
(0)
fz

in Eqs. (3.40–3.51).

H.3.5 w.r.t. ξ

In addition to the aerodynamic moment due to torsion in Eq. (3.35), the lin-
earization of the aerodynamic damping and stiffness coefficients, as given in
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124 Chapter H. Linearization process

Sections H.3.1 to H.3.4, also adds some additional terms in Eq. (3.35), e.g.
Eq.( H.25). So after the linearization Eq. (3.35) is updated to:

Mξ = Eq. (3.35)− ρV
(0)
fx

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∫ ‖lh‖(0)ch

⎛⎜⎝ ˜
⎡⎣ e1
ZTVαh

e1

⎤⎦T Ω(0)
f

⎞⎟⎠ ∂l
(1)
h
∂ξ dDh

− ∫ ‖lv‖(0)cv

⎛⎜⎝ ˜⎡⎣ e1
e1
ZTVβv

⎤⎦T Ω(0)
f

⎞⎟⎠ ∂l
(1)
v
∂ξ dDv

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+Eq. (H.25)− ρV
(0)2

fx

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

CTv C
T
h

∫
ch

˜

δ
(0)
el

⎡⎣ 0
0

Clδel

⎤⎦∂l(1)h
∂ξ dDh

+CTw
∫
cw

˜

δ
(0)
a

⎡⎣ 0
0
Clδa

⎤⎦∂l(1)w
∂ξ dDw

+CTv
∫
cv

˜

δ
(0)
r

⎡⎣ 0
Clδr

0

⎤⎦∂l(1)v
∂ξ dDv

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−
∑

i=f,e,w

ρV
(0)
fx

2

∫
ci

⎛⎜⎝ ˜⎡⎣ e1
(CTi ZVαi

)T

(CTi ZVβi
)T

⎤⎦T θ(0)
f

⎞⎟⎠ ∂l
(1)
i
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Summary

Aeroelastic Loads Modeling
for

Composite Aircraft Design Support

by Haroon A. Baluch

The use of fiber composite material is getting common in the aircraft industry.
Previously their use was quite common only in the light weight aircrafts and
in the true sense most of the time the home builders or hobbyists were the
forerunners in using these types of materials. The main reason behind this is
the ease of manufacturing and its lower cost. We also see that in that period the
manufacturers of large airplanes are always reluctant to use the fiber composite
material and restricted most of the time to the parts that were less critical
to loads. Contrary to that we see a change in late 80s and early 90s that
few of these manufacturers start using the fiber composite materials in tail-
section which was quite encouraging to the world of aircraft engineering and
especially to the fiber composite industry. The start of 21st century gives
another break through in the sense that, apart from tail section, two of the
major manufacturers come up with fiber composite fuselages i.e. the fuselages
of A380 and B787. The manufacturers of executive jets have already started
producing the complete fiber composites airframes and we expect that those
days are not far away when the wings of large airplanes will also be made of
fiber composites.

With regard to the simulation of structural vibrations and consequent aeroe-
lastic loads in aircraft components, the use of elastic axis e.a as reference of
vibrations is quite common. The e.a decouples the bending and torsion degrees
of freedom (D.o.F) during the dynamic analysis. The use of the e.a to decouple
the bending and torsion in vibration analysis does not work for fiber composite
structures with anisotropic material properties. Anisotropic material proper-
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ties often result in an elastic axis that is either discontinuous or far outside the
real aircraft. Existing mathematical models of flexible aircraft dynamics do not
address this issue. In this report, state of the art inertially coupled equations
of motion of a flexible aircraft are modified. For each of the equivalent beam
model of the fuselage, wings, and tail structure a particular fixed reference axis
r.a is used for vibrations instead of elastic axis. Since no decoupling can be
used, the beam deflections become a function of both bending and twist. The
resulting displacements are expanded to the expressions of beam generalized
velocities. Apart from the inclusion of the coupling effects, it is also thought
to modify the structural dynamics model that, apart from the conventional tail
configuration, should also accommodate the analysis of T-Tail configuration
aircraft. These developments modify the expressions of kinetic and strain ener-
gies and subsequent global mass and stiffness matrices, state-space coefficient
matrices.

The modified model is then linearized into zero-order problem (i.e. rigid-body
maneuvers) and first-order problem (i.e. vibrations and their effects on the
rigid-body response of the aircraft). The equations of motion are then ex-
panded to the structural loads equations, which are based on the summation of
forces method (SFM) and mode displacement method (MDM). SFM is based on
the summation of all the aerodynamic, gravity, and inertial forces on a compo-
nent. Whereas the MDM is based on the structural deformations caused by the
external forces. The results computed from SFM can be verified by comparing
to those of the results from the MDM.

A computer code, DARLoads, is written to simulate the dynamics of the flexible
aircraft and all the equations given in this report are programmed in MATLAB
software. An executive twin-jet is selected for the simulation. Due to the non-
availability of the composite aircraft data the coupling effects on the response
of the aircraft are studied by manipulating the e.a of each wing and horizon-
tal tail of the metal aircraft in five different cases of numerical examples. In
first three cases, the e.a of each wing and horizontal tail is drawn parallel to
the r.a of that particular component, where the e.a with respect to r.a of each
component is placed in three different positions. In the fourth and fifth case,
the e.a of each wing and tail is drawn by intersecting the shear centers of each
section from root to tip. The aircraft is trimmed at the given air speed and
altitude for each e.a case, which shows that the coupling affects the trim vari-
ables significantly (i.e. elevator and thrust inputs, and the pitch angle) and
moreover the static deflections. For each optimized trim condition the aircraft
is subjected to different dynamic conditions, which include the discrete gust
and abrupt checked elevator maneuver with a conventional tail configuration,
and impulse aileron input with a T-tail configuration. The results in the form
of rigid-body response and consequent structural loads show the same kind of
scenario as observed in the static case (i.e. during trim solution). It shows that
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the position of elastic axis has significant effects on the dynamics of the fully
flexible composite aircraft.

Lastly, it is concluded that the present work opens a door for a multidisci-
plinary design optimization (MDO) problem, where the position of e.a can be
optimized for minimized vibrations. Moreover, to reduce the purpose of lengthy
and complex analytical mathematical modeling, a robust framework is required
to automate the construction of structural dynamics part of the equations of
motion for the more advanced design like BWB and Prandtlplane. Otherwise
the the mathematical model presented in this report will restricted to only con-
ventional composite aircraft, which on the other hand, are believed to remain
in service for at least next two to three decades.
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Samenvatting

Bepaling van Aero-elastische Belastingen
in het

Ontwerp van Composiet Vliegtuigen

door Haroon A. Baluch

Het gebruik van fiber composiet materiaal wordt steeds gebruikelijk in de lucht-
vaartindustrie. Voorheen was het gebruik ervan vrij vaak alleen in het lichte
gewicht van vliegtuigen en in de meest ware zin van de tijd de woning bouwers
of hobbyisten waren de voorlopers in het gebruik van deze types van materi-
alen. De belangrijkste reden hiervoor is het gemak van het productieproces
en de lagere kosten. Verder zien we dat in die periode de fabrikanten van
grote vliegtuigen zijn altijd huiverig voor het gebruik van de glasvezel com-
posiet materiaal en beperkt het merendeel van de tijd tot de delen die waren
minder kritische lading. In tegenstelling tot dat zien we een verandering in
de late jaren’80 en vroege jaren’90 dat maar weinig van deze fabrikanten start
met het gebruik van de glasvezel composiet materialen in tail-afdeling en dat
was bemoedigend naar de wereld van vliegtuigen engineering en vooral aan de
glasvezel composiet industrie. Het begin van de 21ste eeuw geeft een andere
doorbraak in de zin dat, afgezien van de staart sectie, twee van de belangrijkste
fabrikanten komen met fiber composiet rompen dwz de rompen van de A380 en
B787. De fabrikanten van executive jets zijn reeds begonnen met de productie
van de complete fiber composieten casco’s en we verwachten dat deze dagen zijn
niet ver weg als de vleugels van grote vliegtuigen zullen ook worden gemaakt
van fiber composieten.

Met betrekking tot de simulatie van trillingen en de daaruit voortvloeiende
structurele aroelastische lading in het vliegtuig onderdelen, het gebruik van
elastische as e.a als referentie van trillingen is niet homogeen. De ea decou-
ples de buiging en torsie graden van vrijheid (D.o.F) tijdens de dynamische
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analyze. Het gebruik van de e.a te ontkoppelen van de buig-en torsie in
vibratieanalyse werkt niet voor fiber composiet constructies met anisotrope
materiaal eigenschappen. Anisotroop materiaal eigenschappen die vaak resul-
teren in een elastische as die een discontinue of ver buiten de echte vliegtuigen.
Bestaande wiskundige modellen van flexibele luchtvaartuigen dynamics niet op
dit onderwerp. In dit verslag, state of the art traagheids gekoppelde vergeli-
jkingen van de beweging van een flexibele vliegtuigen worden gewijzigd. Voor
elk van de lichtbundel gelijk model van de romp, vleugels, staart en de struc-
tuur van een bepaalde vaste referentie-as r.a wordt gebruikt voor trillingen in
plaats van elastische as. Aangezien er geen ontkoppeling kan worden gebruikt,
de lichtbundel verleggingen een functie van zowel buigen en draaien. De daaruit
voortvloeiende verschuivingen worden uitgebreid tot de uitdrukkingen van de
boomkorvisserij gegeneraliseerde snelheden. Naast het opnemen van de koppel-
ing van effecten is het ook aan gedacht om de structurele dynamica model dat,
afgezien van de staart conventionele configuratie, moet ook aan het onderzoek
van T-Tail configuratie vliegtuigen. Deze ontwikkelingen passen uitingen van
de kinetische energie en de stam en de daaropvolgende wereldwijde massa en
stijfheid matrices, state-space coëfficiënt matrices.

Het gewijzigde model is in linearized dan nul-orde-probleem (dat wil zeggen
stijve romp manoeuvers) en eerste-orde-probleem (dat wil zeggen trillingen en
hun effecten op de stijve romp respons van het vliegtuig). De vergelijkingen
van de beweging wordt vervolgens uitgebreid naar de structurele lasten vergeli-
jkingen, die zijn gebaseerd op de sommering van de strijdkrachten methode
(SFM) en modus verplaatsing methode (MDM). SFM is gebaseerd op de som
van alle arodynamische, zwaartekracht, en inertielle krachten op een onderdeel.
Overwegende dat de MDM is gebaseerd op de structurele vervormingen als
gevolg van de externe krachten. De resultaten lopen vanaf SFM kan worden
geverifieerd door middel van een vergelijking met die van de resultaten van het
MDM.

Een computer-code, DARLoads, is geschreven voor de simulatie van de dy-
namiek van de flexibele vliegtuigen en alle vergelijkingen in dit rapport zijn ge-
programmeerd in MATLAB software. Een uitvoerend tweemotorig straalvlieg-
tuig is gekozen voor de simulatie. Vanwege de nonavailability van de composiet
vliegtuigen gegevens van de koppeling op de respons van het vliegtuig worden
bestudeerd door het verplaatsen van de positie van e.a met betrekking tot de
r.a van elke vleugel en de horizontale staart. Het vliegtuig is bij het gegeven
gegarneerd lucht snelheid en hoogte voor elke positie e.a, waaruit blijkt dat
de koppeling effecten hebben een significant effect op de trim (ie een lift en
stuwkracht input en de pitch hoek) en bovendien de statische doorbuiging.
Voor elk geoptimaliseerd trim conditie van het vliegtuig wordt blootgesteld aan
verschillende dynamische omstandigheden, waaronder de discrete en plotselinge
windvlaag gecontroleerd lift manoeuvreren met een conventionele staart con-
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figuratie en impuls rolroer ingangssignaal met een T-staart-configuratie. De
resultaten in de vorm van stijve romp respons en de daaruit voortvloeiende
structurele lasten vertonen dezelfde soort scenario zoals waargenomen in het
statische geval is (dwz tijdens trim-oplossing). Hieruit blijkt dat de positie van
elastische as significante effecten heeft op de dynamiek van de volledig flexibele
composiet vliegtuigen.

Tot slot is het conclulded dat het huidige werk opent een deur voor een mul-
tidisciplinair ontwerp-optimalisatie (MDO) probleem, waar de positie van e.a
kan worden geoptimaliseerd voor geminimaliseerd trillingen. Bovendien, om
het doel van lange en complexe analytische wiskundige modellering, een robu-
ust raamwerk nodig is voor het automatiseren van de bouw van de structurele
dynamica deel van de vergelijkingen van de beweging voor de meer geavanceerde
ontwerp graag BWB en Prandtlplane. Anders wordt het wiskundig model
gepresenteerd in dit verslag zal beperkt blijven tot alleen de klassieke com-
posiet vliegtuigen, die aan de andere kant, zijn vermoedelijk in gebruik blijven
gedurende ten minste komende twee tot drie decennia.
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