

OPERATIONAL DESIGN OF A CELLULAR
MANUFACTURING SYSTEM

By

Adnan Tariq

Submitted for the Partial Fulfillment of the Degree Of
Doctor of Philosophy

Supervisor
Prof Dr Abdul Ghafoor

Co-supervisor
Prof Dr Iftikhar Hussain

Mechanical Engineering Department
College of Electrical & Mechanical Engineering (E & ME)

National University of Science & Technology (NUST)
Rawlpindi, Pakistan

2010

 2

OPERATIONAL DESIGN OF A CELLULAR

MANUFACTURING SYSTEM

Keywords: Group Technology; Cellular Manufacturing; Machine-Part grouping;
Genetic Algorithms; Grouping Efficacy; Local Search Heuristic; Job-Shop;

Scheduling.

ABSTRACT

Cellular Manufacturing (CM), which contains the flexibility of Job-Shop and at

the same time has a higher rate of production as flow lines, is proving to be a useful
substitute for the production carried out in batches. In spite of the fact that there are so
many benefits associated with CM but designing CM, for real world problems, is a
very complex job. Since the main task in designing a CM is grouping of machines
into cells and parts into corresponding families, therefore, most of the research carried
out so far has considered the Cellular Manufacturing System (CMS) design as a
Machine-Part grouping problem only and focus on the operational aspects of the
design has been very little. Once the Machine-Part grouping stage is over, scheduling
of the system is supposed to be the next stage in completing the operational design of
a CMS. This is the stage where important production related information; such as
processing sequence and processing time is taken into consideration. Scheduling is
very essential as it enhances productivity and maximizes the usefulness of a given
manufacturing system by utilizing the available resources in an optimized manner.
Therefore, alongside Machine-Part grouping, scheduling is of paramount importance
too, as it ensures proper utilization of resources.

In order to carryout a complete operational design of CMS, a two stage

methodology has been developed in this research. First, the problem of Machine-Part
grouping (CMS design) is solved, and then sequencing and scheduling of parts on
machines is carried out. Since each cell is like a Job-Shop, therefore the scheduling
part of the problem is solved using a similar approach as in case of a Job-Shop
scheduling problem (JSSP).

Separate hybrid tools, for solving Machine-Part grouping problem and Job-Shop

Scheduling Problem (JSSP), has been developed by combining Genetic Algorithms
(GA) with Local Search Heuristics (LSH). Each tool’s effectiveness has been verified,
separately, by solving a number of benchmark problems from literature. Finally, the
two tools are combined in such a manner that the output of the Machine-Part grouping
serves as an input to the tool developed for the scheduling of Job-Shop. Final outcome
of the program is a cellular arrangement of the system (machine groups and
corresponding part families) and detailed information about the sequencing and
scheduling of the system.

The development of two effective hybrid GA based tools, for Machine-Part
grouping and Job-Shop Scheduling, and their combination are the main contributions
of this research.

 3

ACKNOWLEDGEMENTS

I am thankful to Almighty Allah who gave me the strength and wisdom to
complete this research work.

It has been a long journey to finally complete one of my dreams. Many people
have been involved in this journey. I must admit that without their support and
guidance, it would have been much more difficult to accomplish this success. At this
time, I would like to thank each of them for their encouragement and support.

I would like to express my thanks and appreciation to my supervisor, Brig Dr
Abdul Ghafoor, for his continuous support and advice that helped me complete this
dissertation.

I would also like to express my special thanks and appreciation to my co-
supervisor Prof Dr Iftikhar Hussain (Chairman Industrial Engineering Department,
NWFP University of Engineering & Technology, Peshawar, Pakistan) who extended a
great deal of help and guidance in the completion of this research work.

I would also like to acknowledge the consistent support and help of my
Guidance & Evaluation Committee (GEC) members; Prof Dr Nawar Khan, Dr Javed
Iqbal, and Prof Dr Afzaal Malik.

I am extremely thankful to my foreign experts (Dr M. Khursheed Khan,
Bradford University, UK, and Dr Sheikh Meeran, Bath University, UK) and local
expert (Dr Sahar Noor, NWFP UET, Peshawar) for their valuable comments and
suggestions that helped me improve this thesis a great deal.

I am also thankful to Higher Education Commission (HEC), Pakistan, for their
financial support during this research work.

Finally I would like to thank all my family members and friends for their love
and support during my studies.

In the end I would like to dedicate this research work to my late father, who
would have been feeling extremely proud while seeing me achieving this goal.

 4

TABLE OF CONTENTS

ABSTRACT 02

ACKNOWLEDGEMENTS 03

TABLE OF CONTENTS 04

LIST OF FIGURES 07

LIST OF TABLES 09

GLOSSARY 11

CHAPTER 1
INTRODUCTION 13

1.1 Introduction 13
1.2 Group Technology (GT) 13
1.3 Job-Shop Manufacturing 14
1.4 Flow Line Manufacturing 15
1.5 Cellular Manufacturing 16
1.6 Advantages of Cellular Manufacturing 18
1.7 Problem Definition 19
1.8 Research Objectives 21
1.9 Conceptual Approach 23
1.10 Contributions 24
1.11 Organization of Thesis 25
1.12 Summary 26

CHAPTER 2
LITERATURE REVIEW – GENETIC ALGORITHMS 27

2.1 Introduction 27
2.2 Artificial Intelligence (AI) 27
2.3 Genetic Algorithms (GA) 27
2.4 Summary 33

CHAPTER 3
LITERATURE REVIEW – CELLULAR MANUFACTURING 34
SYSTEM DESIGN TECHNIQUES

3.1 Introduction 34
3.2 Classification of Cellular Manufacturing System (CMS) 34
 design techniques
3.3 Evaluation of solutions in GT 68
3.4 Summary 70

CHAPTER 4
LITERATURE REVIEW – JOB-SHOP SCHEDULING 71

4.1 Introduction 71
4.2 Scheduling 71

4.2.1 Project Scheduling 71
4.2.2 Operations Scheduling 72

 5

4.3 Job-Shop Scheduling 73
4.4 Solution Techniques to Handle Job-Shop Scheduling 73
 Problems (JSSP)

4.4.1 Optimization Based Approaches 74
4.4.1.1 Efficient Techniques 74
4.4.1.2 Enumerative Techniques 75

4.4.2 Approximation Based Approaches 76
 4.4.2.1 Tailored Algorithms 76
 4.4.2.2 General Algorithms/ Artificial Intelligence 79
 4.4.2.2.1 Artificial Neural Networks (ANN) 79
 4.4.2.2.2 Genetic Algorithms (GA) 80

 4.5 Summary 82

CHAPTER 5
METHODOLOGY FOR MACHINE-PART GROUPING 84

5.1 Introduction 84
5.2 Hybrid GA for Machine-Part grouping 84
5.3 Cell Formation Problem 85
5.4 Methodology for the Hybrid GA for Machine-Part Grouping 87

5.4.1 Genetic Algorithms (GA) 91
5.4.1.1 Representation 92
5.4.1.2 Initialization 93
5.4.1.3 Evaluation and Fitness of Solutions in Machine-Part 95

Grouping
5.4.1.4 Genetic Operators 99
 5.4.1.4.1 Crossover 99
 5.4.1.4.2 Mutation 102
 5.4.1.4.3 Inversion 103
 5.4.1.4.4 Repair Strategy 105
 5.4.1.4.5 Selection 107

 5.4.2 LSH 108
 5.4.3 Numerical Example for LSH 110
 5.5 Numerical Example of Machine-Part grouping 115
 5.6 Sensitivity Analysis 117
 5.7 Summary 121
CHAPTER 6
METHODOLOGY FOR CELL SCHEDULING AND COMBINATION 122
WITH MACHINE-PART GROUPING
 6.1 Introduction 122
 6.2 Scheduling of a CMS 122
 6.3 A Hybrid GA for JSSP 123
 6.4 The Standard JSSP 123
 6.5 Methodology for the Hybrid GA for JSSP 124
 6.5.1 Genetic Algorithms (GA) 125
 6.5.1.1 Representation 126
 6.5.1.2 Initialization 126
 6.5.1.3 Evaluation and Fitness 128
 6.5.1.4 Genetic Operators 130
 6.5.1.4.1 Crossover 130
 6.5.1.4.2 Repair Algorithm 132
 6.5.1.4.3 Mutation 137

 6

 6.5.1.4.4 Selection 138
 6.5.2 Local Search Heuristic (LSH) 142
 6.6 Numerical Example of Job-Shop Scheduling 147
 6.7 Sensitivity Analysis 148
 6.8 Combined Methodology for Operational Design of a CMS 150
 6.9 Numerical Example of Combined Model 153
 6.10 Summary 157

CHAPTER 7
RESULTS AND DISCUSSIONS 159

7.1 Introduction 159
7.2 Performance and Analysis of Hybrid GA for Machine-Part Grouping 159
7.3 Statistical Analysis 167
7.4 Formation of Single Machine Cells 169

7.4.1 Numerical Example (Formation of Single Machine Cells) 169
7.4.2 Computational Results (Formation of Single Machine Cells) 171

7.5 Computational Results and Discussion (Hybrid GA for JSSP) 173
7.6 Computational Results and Discussion (Combined Model) 175
7.7 Summary 177

CHAPTER 8
CONCLUSION AND RECOMMENDATIONS FOR FUTURE RESEARCH 179
STUDY

8.1 Introduction 179
8.2 Conclusion of Hybrid GA for Machine-Part Grouping 179
8.3 Conclusion of Hybrid GA for Job-Shop Scheduling 180
8.4 Conclusion of Combined Model (Operational Design of a CMS) 181
8.5 Directions for Future Research 182

8.5.1 Hybrid GA for Machine-Part grouping 182
8.5.2 Hybrid GA for Job-Shop scheduling 183

8.6 Summary 183

REFERANCES 185

 7

LIST OF FIGURES

Figure 1.1 Functional type layout 15
Figure 1.2 Product based layout 16
Figure 1.3 Cellular type layout 17
Figure 1.4 Conceptual approach for the proposed research 23

Figure 3.1 Classification of Machine-Part grouping techniques. 36

Figure 4.1 Solution approaches to JSSP 74

Figure 5.1 Block diagram representation of the proposed methodology 87
Figure 5.2 Block diagram representation for the hybrid GA for Machine-Part 90

grouping
Figure 5.3 Block diagram representation of the initialization process 94
Figure 5.4 The process of rearrangement of Machine-Part incidence matrix 96

according to a given chromosome
Figure 5.5 Decoding of a chromosome 98
Figure 5.6 Block diagram representation of the crossover procedure 101
Figure 5.7 Block diagram representation of the mutation process 103
Figure 5.8 Block diagram representation of the inversion process 104
Figure 5.9 Block diagram representation of the repair strategy 106
Figure 5.10 Roulette wheel selection procedure 108
Figure 5.11 Block diagram representation for the LSH 110
Figure 5.12 Effect of the number of generations on %age solution gap 118
Figure 5.13 Effect of population size on %age solution gap 119
Figure 5.14 Effect of crossover rate on %age solution gap 119
Figure 5.15 Effect of inversion rate on %age solution gap 120
Figure 5.16 Effect of mutation rate on %age solution gap 120

Figure 6.1 Hybrid methodology for JSSP 125
Figure 6.2 Block diagram representation of the initialization process 128
Figure 6.3 Decoding procedure 129
Figure 6.4 Block diagram representation of the crossover procedure 131
Figure 6.5 Block diagram representation for legality check 133
Figure 6.6 Block diagram representation for repair algorithm 135
Figure 6.7 Block diagram representation of the mutation process 138
Figure 6.8 Stochastic Universal Sampling (SUS) 141
Figure 6.9 Local Search Heuristic (LSH) 143
Figure 6.10 Schedule developed for the best chromosome found in 1st 144
 generation of GA
Figure 6.11 Schedule developed for the solution improved by LSH 146
Figure 6.12 Schedule developed after decoding the best chromosome 148
Figure 6.13 Effect of the number of generations on %age solution gap 149
Figure 6.14 Effect of population size on %age solution gap 149
Figure 6.15 Effect of crossover rate on %age solution gap 150
Figure 6.16 Effect of mutation rate on %age solution gap 150
Figure 6.17 Combined methodology for the operational design of a CMS 152
Figure 6.18 Schedule developed after decoding the best chromosome 157

Figure 7.1 Variation in size of machine part incidence matrix 160

 8

Figure 7.2 Comparison of GE obtained by this research and the best 163
 reported in literature
Figure 7.3 The number and percentage of problems improved 165
Figure 7.4 Comparison (between Fernando’s work and this approach) 165
 in terms of the number of generations to reach the maximum
 value of GE for each problem
Figure 7.5 %age improvement in result (GE) of each problem 167
Figure 7.6 Normality test for Hybrid GA (Fernando & Mauricio [2002]) 168
 and new approach (this research)
Figure 7.7 Equal Variance Test for Hybrid GA and New Approach 169
Figure 7.8 Comparison of GE with and without the presence of single 172
 machine cells
Figure 7.9 Comparison in terms of number of intercellular moves with 173
 and without the presence of single machine cells
Figure 7.10 Cost saved as a result of reduction in total number of IC moves 173
Figure 7.11 %age solution gap between LB and results achieved for each 177
 problem

 9

LIST OF TABLES

Table 2.1 Different problem encoding techniques 29
Table 2.2 Crossover techniques for various encoding types 30
Table 2.3 Different mutation techniques for various encoding types 31

Table 3.1 Design and manufacturing attributes of parts 36
Table 3.2 Incidence matrix 39
Table 3.3 Block-diagonalized form 39
Table 3.4 Mathematical Programming Based Techniques 45
Table 3.5 FL Based Techniques 54
Table 3.6 SA Based Techniques 58
Table 3.7 GA Based Techniques 60
Table 3.8 Heuristic Based Techniques 66

Table 4.1 Types of Adapted Genetic Operators 81

Table 5.1 Differences between the two Hybrid GAs 90
Table 5.2 Representation of chromosome (Chromj) 92
Table 5.3 MPini[i,k] (Initial matrix) 96
Table 5.4 MPfin[i,j] (Blank matrix) 96
Table 5.5 MPfin[k,j] (Columns are being copied) 97
Table 5.6 MPfin1[i,j] (Rows are being copied) 97
Table 5.7 Initial Machine-Part incidence matrix 111
Table 5.8 Decoded solution (Best [i]) 111
Table 5.9 Complete application of LSH to the best solution found by GA 113
Table 5.10 Decoded solution (Best[i]) 115
Table 5.11 Initial Machine-Part incidence matrix 116
Table 5.12 Final block-diagonal matrix 117

Table 6.1 Chromosome representation 126
Table 6.2 Chromosome A 131
Table 6.3 Chromosome B 131
Table 6.4 Child A 131
Table 6.5 Child B 131
Table 6.6 Number of times each integer exists in a solution 136
Table 6.7 Positions of those integers which are in excess 136
Table 6.8 Repair work 137
Table 6.9 Repaired solution 137
Table 6.10 Chromosome selected 138
Table 6.11 Mutated chromosome 138
Table 6.12 A randomly generated 4 × 4 problem 144
Table 6.13 Best chromosome after 1st generation 144
Table 6.14 Complete stepwise procedure of local improvement for one gene 145
Table 6.15 Solution after being locally improved 146
Table 6.16 A 6 × 6 benchmark problem 147
Table 6.17 Best chromosome 148
Table 6.18 Machine-Part incidence matrix (King and Nakornchai [1982]) 153
Table 6.19 Final Machine-Part matrix 154
Table 6.20 Processing sequence for each job 154
Table 6.21 Processing time for each operation 155

 10

Table 6.22 Calculation of Lower Bound (LB) 156
Table 6.23 Chromosome/solution after 1st generation 156

Table 7.1 Selected problems from literature 159
Table 7.2 Test results (GE values) of the selected problems from literature 161
Table 7.3 Results in terms of percentage improvement 166
Table 7.4 The initial Machine-Part incidence matrix 170
Table 7.5 Solution without single machine cell 170
Table 7.6 Solution with single machine cell 171
Table 7.7 Problems with their sizes and sources 171
Table 7.8 Results of the problems shown in Table 7.7 172
Table 7.9 Computational results (Hybrid GA for JSSP) 174
Table 7.10 Results of the problems solved by combined model 175

 11

GLOSSARY

GET Accumulative GE of a whole population
ART Adaptive Resonance Theory
ASC Additive Similarity Coefficient
Cum Prob[x] Array for cumulative probability of each chromosome in population
GE [x] Array for grouping efficacy of each chromosome in population
NM [k] Array for number of machines in cell k

NP [k] Array for number of parts in cell k

Sel Prob [x] Array for selection probability of each chromosome in population
AI Artificial Intelligence
ANN Artificial Neural Network
Best [x,y] Best chromosome of the population
Best [x] Best chromosome of the population
BEA Bond Energy Analysis
BB Branch and Bound
CM Cellular Manufacturing
CMS Cellular Manufacturing System
Chrom Chromosome
CI Cluster Identification
CT Completion Time
CPM Critical Path Method
CR Critical Ratio
X1, X2 Crossover points
DCA Direct Clustering Analysis
EDD Earliest Due Date
EST Earliest Start Time

ija Entry at ith row and jth column (either 1 or 0)

ES Expert System
FIFO First In First Out
Fuzzy ART Fuzzy Adaptive Resonance Theory
FL Fuzzy Logic
Gen Generation number
GA Genetic Algorithm
GERT Graphical Evaluation and Review Technique
GT Group Technology
GE Grouping Efficacy
IC Intercellular
Chrom [i,j] Is a two dimensional array for population
Excess[w] Is an array for those integers which are in excess
Short [z] Is an array for those integers which are in shortage
E. Amnt [w] Is an array showing the excess amount of each integer which is in excess
S. Amnt [z] Is an array showing the shortage amount of each integer which is in

shortage
JAT Job Availability Time
JSSP Job-Shop Scheduling Problem
LSH Local Search Heuristic
LB Lower Bound
MAT Machine Availability Time
MPini [i,j] Machine-Part incidence matrix

 12

Cmax Makespan
MP Management Priority
Max GE Maximum Grouping Efficacy
Max Gen Maximum Number of Generations
MST Minimum Spanning Tree
MSC Multiplicative Similarity Coefficient
NC Number of Cells
PT Processing Time
PERT Project Evaluation and Review Technique
ROC Rank Order Clustering
ChildA [i,j] Represents child A that results after the crossover procedure
ChromA[i,j] Represents the Ath chromosome in the array for population (Pop [x, y, z])
SOFM Self Organizing Featured Maps
SPT Shortest Processing Time
SA Simulated Annealing
MPfin [i,j] The rearranged Machine-Part matrix
Pop [x, y, z] Three dimensional array for population
TBE Total Bond Energy

in
N0 Total Number of 0s inside the block diagonal

xk Total number of 1s in cell k

1N Total number of 1s in the machine parts incidence matrix
inN1 Total number of 1s inside the block diagonal

outN1 Total number of 1s out side the block diagonal

Machs Total number of machines
Parts/Jobs Total number of parts/jobs
Pop Size Variable for population size

 13

CHAPTER 1

INTRODUCTION

1.1 Introduction:

Modern manufacturing systems have been kept under constant pressure by the

unpredictability in demand and the ever decreasing product life cycles and are finding

it hard to cope with these challenges. That is the reason that Cellular Manufacturing

(CM) is seen by many as a promising alternative which provides some immediate

benefits of reduction in the costs related to material handling, setup times and work in

process. Therefore a Cellular Manufacturing System (CMS) is comparatively well

equipped to face the challenges mentioned above.

This Chapter briefly describes Group Technology (GT), the conventional

manufacturing systems and finally CMS. The description of different manufacturing

systems is followed by the objectives of this research and methodology to be adopted

to achieve those objectives. An outline of the report is also given in the end.

1.2 Group Technology (GT):

GT in fact is the philosophy that is based upon doing those things in a similar

fashion that are alike (Askin and Standridge [1993]). According to Selim & Askin

[1998] “GT is a manufacturing philosophy that groups parts into families by taking

into consideration the similarities among parts in terms of design and manufacturing”.

When the philosophy of GT is implemented into manufacturing, then at the initial

stage of design, the components of a product, which are similar to each other, are

processed on similar processing arrangements (Irani [1999]). Also, such products are

assembled following a similar sequence (Irani [1999]). GT in fact is a source of

improving productivity by bringing together the similar recurrent activities and

organizing common tasks alongside each other. With the help of GT, a set of parts can

be broken down into different part families. Within each family the processing

requirements of each part are the same. Manufacturing cells are organized for these

part families by grouping dissimilar machines, that are required for processing by

each part family, on the production floor. The associated improvements with the

 14

implementation of GT are summarized by Pullen [1976], Houtzeel and Brown [1984],

and Wemmerlov and Hyer [1989] as follows:

a) Throughput time is reduced from 5% to 90%

b) Reduction in the inventory levels of work-in-process is from 8% to 80%.

c) Savings in terms of materials handling costs are from 10% to 83%

d) The job satisfaction levels are between 15% to 50%

e) The reduction in Fixtures requirements is between 10% to 85%

f) Setup time requirements are reduced between 2% to 95%

g) The reduction in Space requirement stays between 1% to 85%

h) Quality improvements from 5% to 90% can be experienced

i) Finished goods (10-75%)

These benefits result in a substantial decrease in manufacturing cost and

increase in product quality. These are the reasons that GT has been so attractive and

found successful with medium variety and medium volume production environments.

 Before further elaboration of GT and CMS, first the traditional manufacturing

approaches (Job-Shops and Flow Lines) are described in the following Sections.

1.3 Job-Shop Manufacturing:

Job-Shop manufacturing systems can be very commonly found in the USA

(Black, J. [1991]). The main aim of Job-Shop manufacturing is to achieve a higher

degree of flexibility so that products having a wide range of variation in size and

shape can be produced, in small lot sizes, in a single facility. The distinguishing

feature of Job-Shop is the manufacturing of products that may be having different

processing sequences and variation in processing times. Products travel through the

entire facility in batches. In Job-Shop environment the main dictating force in

selection of machines is variety of products and smaller lot sizes. This is the reason

that in Job-Shop manufacturing general purpose machines are mainly utilized as they

can perform a variety of operations. The grouping of machines in Job-Shop

environment is carried out on the basis of functions e.g. lathe machines are placed in

one shop, milling machines in another and so on, as shown in Figure 1.1. That is why

a Job-Shop layout is generally termed as a functional layout.

 15

Mungawattana [2000] presented a comparison of different manufacturing

systems. According to him in Job-Shop manufacturing jobs spend less time in

processing and most of their time is consumed either waiting in queues or in other

non-productive activities for example handling. Since in Job-Shop environment

machines are distributed on the basis of their function therefore during processing

some jobs have to travel through the entire facility. Therefore, in order to make the

processing more economical jobs are processed and moved through the facility in

batches which result in longer cycle times and high level of in-process inventory. This

results an increase in the cost of production and a decrease in the rate of production.

1.4 Flow Line Manufacturing:

Mungawattana [2000] also observes that the distinguishing feature of Flow

Line Manufacturing is its higher rate of production and lower manufacturing cost.

Unlike Job-Shop manufacturing here specialized machines are used. The organization

of a Flow Line is in accordance with the processing requirements of a product. Once

organized, then each flow line is fully dedicated for the manufacturing of a particular

product. The presence of specialized machines and their organization according to the

processing requirements of a product allow the flow of one piece at a time which

results in increase in production rate and decrease in manufacturing time and cost as

lesser amount of time is spent by jobs while waiting in queues and handling

L

L

S S

S S

P P

P P

D D

D D

Figure 1.1: Process Based Layout

Lathe - L Shaping - S Planning - P Drilling - D

L

In

Out

 16

[Mungawattana, (2000)]. Lack of flexibility is one major drawback of flow line

manufacturing. Main reason for this is the presence of specialized machines which are

very expensive and reconfiguration of such machines is normally not allowed.

 1.5 Cellular Manufacturing:

From the above discussion it can be concluded that Job-Shops and Flow Lines

are comparatively less equipped to meet the present day’s challenges that include

constant changes in product design, product demand and corresponding

reconfigurations in the manufacturing systems. Therefore, CM which is a

manufacturing philosophy based on GT, is seen as a promising solution for the

problems faced by the present day manufacturing systems. The formation of a CMS

mainly consists of two important tasks: grouping of parts into families on the basis of

their similar designs and processing requirements and grouping of machines into cells

according to the processing requirements of corresponding part families. A group of

parts can be called as a family if either their processing requirements are similar or

they resemble each other in terms of size and geometric shape (Ham et al. [1985],

Groover [2008]). Similarly, a manufacturing cell consists of a group of machines that

are dissimilar to each in terms of their functioning and dedicatedly involved in the

processing of a part family (Mungawattana, [2000]). Machines in each cell are placed

in close proximity to each other (Figure 1.3) thus saving time and cost (handling).

Each cell is ideally responsible for the manufacturing of a particular part family which

results in simplifying the flow of material and scheduling of the system. In contrast

to Job-Shop parts in CM have to travel less distances before their processing is

L P S D

L S P D

S L P D

L S P D

Figure 1.2: Product Based Layout

In Out

 17

completed. Also, having machines in close proximity the flow of one piece at a time is

possible thus saving a lot of waiting time, which is unavoidable in case of Job-Shop

manufacturing.

Another aspect of CM that causes a reduction in the over all production time is

reduced setup times. It is because of the fact that each part family contains parts that

have similar design attributes.

CM in fact provides a system that has the combined advantages of both Job-

Shop and Flow Line Manufacturing. Similar to Job-Shop CMS also utilizes general

purpose machines and therefore has the ability to be reconfigured and produce a

variety of products. Also, having machines in close proximity in each cell and

dedicated to a particular part family efficient flow of material and higher rate of

production, like a Flow Line Manufacturing system, can be achieved. Finally it can be

concluded that wherever there is a requirement of producing a medium variety of

products in medium quantity then CM can prove to be, comparatively, more

economical, (Black J. [1983]). In case where large volumes are to be produced then

pure Flow Line Manufacturing is preferable. Similarly, in case where greater variety

of products is to be produced then pure Job-Shop Manufacturing can be more useful.

CM over the years has been gaining popularity. Fry et al [1987] observed that several

US based manufacturers adopted CM instead of the conventional Job-Shop

Manufacturing.

L S

L P

L P

S M

L S

G M

S M

P D

Figure 1.3: Cellular Type Layout

Cell 1 Cell 2 Cell 3 Cell 4

Out In

 18

1.6 Advantages of Cellular Manufacturing:

 There are many advantages that have been associated with CM. A number of

research studies have been carried out in validating and establishing these benefits

associated to CM. Some of the well known studies include Greene & Sadowski

[1984], Chandrasekharan & Rajagopalan [1987], Askin & Standridge [1993], Shafer

& Charnes [1994], Suresh & Meredith [1994], Singh & Rajamani [1996], and Annan

Mungawattana [2000]. These advantages are briefly summarized below:

• Smaller setup times are required: Since each manufacturing cell is

assigned a family of parts that contains parts of similar design attributes,

therefore during processing they require similar fixtures and work holding

devices. This reduces setup time.

• Smaller lot sizes can be processed: Since machines are in close proximity

and arranged according to the processing requirements of a particular part

family, therefore processing of parts in smaller lot sizes is possible and

economical too.

• Smaller inventory levels both in terms of in-process and finished items:

Due to efficient and smooth flow of material, smaller lot sizes and setup

times, the level of inventory both in terms of in-process and finished items

is reduced. Another aspect of this efficient material flow is the possibility of

producing parts either Just-In-Time (JIT) or in small lot sizes

• Reduction in time and material handling cost: Ideally in CM each part

family is completely processed inside a particular cell. It saves a lot of time

(travel + waiting) and material handling cost which is a regular feature of

the Job-Shop environment.

• Decrease in flow time is observed: The efficient and smooth flow of

material through the system reduces the time both in terms of setup and

handling of material which as a whole decreases the overall flow time.

• Reduction in the number and types of tools required: In CM each part

family consists of parts which have similar shapes, sizes and processing

requirements. This is the reason that similar tools are required by almost all

the jobs during processing.

 19

• Space requirements are reduced: Because of reduction in lot sizes and

setup times there occurs a reduction in the inventory levels of both in-

process and finished items, which consequently reduces the space

requirements.

• Decrease in throughput times: In Job-Shop environment parts get

processed in almost the entire facility and thus have to travel through long

distances. On the contrary in CM each part family is processed ideally

inside a particular cell which means parts have to travel through short

distances and spend less time in waiting. This reduces the overall

throughput time.

• Improvement in the quality of products: In CM parts get processed in

small lot sizes and on machines which are placed in close proximity.

Therefore, during processing, any mistake can be quickly identified and

corrected. This leads to improvement in the quality of products and

reduction in wastage of material.

• Improvement in operations’ control: Since in CM jobs are processed

inside their respective cells therefore the overall control of operations

(scheduling and material) is much easier as compared to Job-Shop

manufacturing where mostly jobs have to travel the entire facility while

getting processed.

1.7 Problem Definition:

In spite of the fact that CM is very beneficial, a number of CMS design

approches - such as Classification and Coding (Hyer & Wemmerlov [1989], Offodile

[1991]), Array Based Clustering (King [1980], Chandrasekharan & Rajagopalan

[1986], Chu & Tsai [1990]), Graph Partitioning (Kumar et al. [1986], Vohra et al.

[1990], Ng [1992 & 1993]), Similarity Coefficient Approach (Lozano et al. [1999],

Yasuda & Yin [2001], Yin and Yasuda [2006]), Mathematical Programming (Heragu

[1999], Zhao & Wu [2000], Nsakanda et al [2005]), Artificial Intelligence (Peker &

Fernando & Mauricio [2002], Kara [2004], Li et al. [2007], Safaei et al. [2008]),

Heuristic Based Approaches (Geoffrey et al. [1992], Caux et al. [2000]) - proposed

over the years still have major shortcomings. Almost all the techniques so far

developed take the CMS design problem as the part machine clustering problem only

and very little consideration has been given to important production related

 20

information such as production volume, processing sequence, processing times etc.

That is why the portability of such techniques into practice is limited and this is

causing an increase in gap between practice and research. The linking of CMS design

problem with the cell scheduling makes it more useful in practice. But this aspect of

linking CMS design with cell scheduling has been very rarely handled in research.

Some researchers (Onwubolu [2000], Venkataramanaiah [2006], Celano et al. [2007],

Lin et al. [2008]) did focus on the scheduling aspect of the CMS. But the drawback of

these approaches is that their entire focus is on cell scheduling only and the CMS

design problem has not been considered at all. This shows that the two problems

(CMS design and cell scheduling) have been frequently dealt with separately rather

than in a sequential/integrated manner. Therefore, the motivation of this research is to

develop a methodology that would not only solve the CMS design problem as

Machine-Part grouping problem, but also schedule the system by considering some of

the important production related information i.e. processing sequence of each part and

processing time for each operation of each part on each machine. The system would

be initially provided with an input in the form of a 1-0 Machine-Part incidence matrix,

where each “1” would represent an operation of a particular part on a particular

machine and “0” otherwise. The block-diagonalization of the Machine-Part incidence

matrix would be carried out with the help of a hybrid technique developed by

combining GA with a Local Search Heuristic (LSH), while considering maximization

of Grouping Efficacy (GE) as its performance factor. Once the cellular arrangement

(machine groups and corresponding part families) is finalized, the user would be

asked to provide information about the processing sequence of each part and the

processing time for each operation of each part on each machine. Finally, taking this

information into account the scheduling problem of the system would be solved as a

typical JSSP and for that too a hybrid approach would be developed by combining

GA with an LSH and considering minimization of Makespan as its performance

factor. The ultimate output of the system would be a cellular arrangement showing

machine groups and corresponding part families and a production schedule presented

on a Gantt chart.

Since the methodology proposed here would not only provide solution for the

Machine-Part grouping problem but solve the scheduling part of the problem as well.

Therefore, it would definitely be more useful in practice and account for some of the

major limitations of the available CMS design techniques such as “lack of using more

 21

production related information in the cell design” and “lack of ability to be practically

implemented”.

1.8 Research Objectives:

The main research objectives are listed and explained below. Each main

objective has some intended novelties which are also listed and explained alongside

their respective main objectives:

1. To develop a GA based hybrid approach (combination of GA with an

LSH) for Machine-Part grouping - developing machine groups and

corresponding part families - by considering maximization of GE as its

performance factor, and validating the model by solving a number of

benchmark problems from literature and comparing results with some of

the known techniques. This technique has the following novelties:

(i) Using integer type representation with the intention that

information about the different groups of machines and their

corresponding families of parts would be encoded in each

chromosome. Another advantage of this type of representation is

that it minimizes decoding effort. It is a rare practice as most of the

researchers (for example Fernando & Mauricio [2002]) represent

their solutions in the form of chromosomes that after decoding

produce either machine cells or part families.

(ii) Developing a repair algorithm that checks the legality of each

solution that is randomly generated and the solutions those are

resulted from the genetic operators (crossover, mutation and

inversion). This would ensure that all the solutions in a population

are legal and produce feasible solutions thus avoiding the penalty

approach in which a new solution is randomly generated and

placed in the population instead of an illegal solution which may

disturb the natural evolution of GA.

(iii) Developing an LSH that has the ability to increase the capability

of traditional GA (that is using integer type representation, multi

cut point crossover, gene to gene mutation and inversion) in terms

of reaching the optimum in earlier generations. The LSH is to be

 22

placed inside the GA loop, so that the best solution of each

generation is further improved and afterwards placed back into

population so that it can participate in different genetic operators

such as crossover, inversion and mutation giving it a chance to

produce even better solutions. This is a novel approach as most of

the LSH available in literature are subjected to the final outcome

of GA.

All the relevant details are given in chapters to follow.

2. To develop a GA based hybrid approach (combination of GA with an

LSH) for JSSP by considering minimization of Makespan as its

performance factor, and validating the model by solving a number of

benchmark problems from literature and comparing results with some of

the known techniques. The intended novelties are as listed below:

(i) The use of integer type representation and arranging the entries in

a two dimensional matrix, which is very rare in literature.

(ii) Devising a repair algorithm which ensures that all the

chromosomes in population are legal and produce feasible

solutions when decoded.

(iii) Here also, like objective 1, such an LSH is intended to be

developed which can increase the efficiency of traditional GA (that

is using integer type representation, multi cut point crossover and

traditional swap mutation) in terms of reaching the optimum in

earlier generations. Here also the LSH is to be placed inside the

GA loop so that the best solution of each generation is further

improved thus helping GA to reach the optimum in earlier

generations.

All the relevant details are given in chapters to follow.

3. Linking the Machine-Part grouping part with the Job-Shop Scheduling

part in such a way that the output of the Machine-Part grouping part can

be served as an input to the Job-Shop Scheduling part. Finally, validating

the combined approach by solving randomly generated or benchmark

 23

problems from literature. This is a novel approach as most of the research

either focuses on cell design or cell scheduling. A combined approach of

this kind is extremely rare to be found in literature.

1.9 Conceptual Approach:

To achieve the objectives discussed earlier the conceptual approach adopted is

as shown in Figure 1.4.

Figure 1.4 shows that the main parts of the approach are the development of

hybrid GA based approaches that combine GA with LSH, both for the Machine-Part

grouping and Job-Shop scheduling. Also, the next important aspect of the conceptual

model is the linking of the two models together so that the output of Machine-Part

grouping model can be served as an input to the Job-Shop scheduling model. For the

hybrid GA in Machine-Part grouping part a simple integer based representation, with

multi cut point crossover, traditional gene to gene mutation and inversion is applied.

In order to measure the performance of a solution GE is used due to its inbuilt ability

to maximize the utilization of a machine inside its cell and minimize the total number

of intercellular moves. Also the capability of GE, as far as differentiating between the

Review of
literature on CMS
design techniques

Developing a
hybrid GA for
Machine-Part

grouping

Comparison of
results with
benchmark

problems for
potential

improvement in
grouping efficacy

Review of
literature on

JSSP

Developing a
hybrid GA for

solving the
JSSP

Comparison of
results with
benchmark

problems for
potential

improvement in
Makespan

Linking the CMS
design technique
with the Job-shop

scheduling

technique

Validation of the
combined strategy
by comparison of

results of
benchmark

problems (if any)
or randomly

generated
problems

Summary, Discussion of

results and comparison

Figure 1.4: Conceptual Approach for the Proposed Research

 24

ill-structured and well-structured Machine-Part incidence matrices is concerned, is

very high. Further, in case of GE no weight factor is required (Fernando and Mauricio

[2002]). The LSH is placed within the GA loop so that the best solution of each

generation is subjected to it and after being locally improved it is placed back into the

population. The process is carried out for fixed number of generations and on

termination the best result is saved.

 Similarly, for the hybrid GA in Job-Shop scheduling part, also, a simple

integer type, operation based representation is used. But it is worth mentioning that

the way chromosomes are represented here i.e. in two dimensional arrays, is very rare

to be found in literature. The traditional multi cut point crossover and swap mutation

is applied here. In this part static scheduling condition is assumed, which definitely

helps in facilitating the performance comparison of the proposed approach with the

benchmark problems available in literature. Makespan is used as the performance

measure, because it is a popular measure of performance and has been very frequently

used by researchers. Here, also, LSH is incorporated inside the GA loop and the best

solution of each generation is subjected to it.

1.10 Contributions:

This research provides an opportunity to have an in depth knowledge of the

CMS design problem and the JSSP in general and the application of GA to both these

problems in particular. Following are the major contributions of this research:

1. A hybrid GA is developed for solving the CMS design (Machine-Part

grouping) problem by combining GA with an LSH. The technique, after

being tested on a number of benchmark problems from literature, is found

to be very effective as it has been found accurate and consistent

irrespective of the problem size in comparison to all the other previously

developed techniques. The effectiveness of the approach is due to the fact

that a very effective LSH is present at the heart of the GA loop which

locally improves the best solution of each generation and places it back

into population so that it can take part in different genetic operators and

produce even better solutions. The effectiveness of the LSH can be

assessed by the fact that we have not used any specifically devised non-

traditional genetic operators (crossover, mutation and inversion) but even

 25

then results are better and consistent in terms of accuracy. This shows that

the LSH is having a major effect on the overall GA procedure.

2. Another, hybrid GA is developed for solving the JSSP and here, too, GA is

combined with an LSH. The technique, after being tested on a reasonable

number of benchmark problems, has been found reasonably accurate and

time efficient, as well. Here, also, the effectiveness of the technique is due

to the presence of an effective LSH inside the GA loop which has the

ability to produce accurate results even in combination with the traditional

crossover (two cut point crossover) and mutation (swap mutation)

strategies.

3. The two hybrid GAs (for Machine-Part grouping problem & JSSP)

developed are linked together in such a manner that the output of the

Machine-Part grouping (cellular arrangement) is served as an input to the

Job-Shop scheduling part. The combination, which is extremely rare to be

found in literature, has given a solution methodology that not only caters

for the grouping of machines and corresponding part families but also

provides solution for the system scheduling. This is indeed a

distinguishing feature of this technique as it definitely accounts for some

of the major limitations of the current CMS design techniques such as

“lack of using more production related information in the cell design” and

“lack of ability to be practically implemented”.

1.11 Organization of Thesis:

 This thesis report consists of eight chapters. Chapter 1 provides an

introduction to this research, description of the research problem, research objectives,

the conceptual approach to handle the research problem and the contributions of this

research to the existing knowledge. Chapter 2 mainly focuses on the literature survey

regarding different techniques of Artificial Intelligence (AI) in general and GA in

particular as it has been frequently applied during this research. In Chapter 3 a

comprehensive literature review regarding different techniques of CMS design is

presented. Since during this research, not only the Machine-Part grouping problem is

handled but solution for the system scheduling is provided as well, therefore a

reasonable literature review regarding the Job-Shop Scheduling Problem (JSSP) is

also carried out and presented in Chapter 4. Chapter 5 mainly describes the hybrid

 26

methodology developed to solve the cell design problem which is verified and

validated through a number of benchmark problems from literature. Chapter 6

describes in detail a hybrid approach developed to solve the JSSP and also its

combination with the approach developed for cell design (Machine-Part grouping).

All the details about verification and validation of the hybrid tools, for Machine-Part

grouping and Job-Shop scheduling, and further discussion regarding results of the

problems is given in Chapter 7. Chapter 8 describes the main outcome (conclusion) of

this research and also provides directions for future research in this area.

1.12 Summary:

 This chapter has briefly given a background to the CMS design problem and

the particular problem to be tackled during this research. The objectives expected to

be achieved from this research have been described. A conceptual approach for

solving the research problem has also been outlined that mainly consists of the

development of hybrid GA based approaches both for the Machine-Part grouping and

Job-Shop Scheduling parts, separately, and finally combining them together. It also

describes the main contributions of this research to the area of CMS design. Finally

the chapter discusses organization of the thesis.

 27

CHAPTER 2

LITERATURE REVIEW- GENETIC ALGORITHMS

2.1 Introduction:

“Artificial Intelligence (AI) techniques have increased in terms of application

in most of the fields in general and in the area of manufacturing system design and

operations scheduling in particular” [Noor (2007)]. Therefore, it is very necessary to

review the basics of AI, generally, and Genetic Algorithms (GA), more specifically as

GA has been applied during this research. This chapter identifies the different AI

tools, whereas GA has been discussed in detail.

2.2 Artificial Intelligence (AI):

 McCarthy [1960] described AI as a subfield of computer science integrating

the biological and computer intelligence. On the other hand, AI has been defined by

Rich and Knight [1991] as the study of how to make computers do those things which

at the moment are being tackled by people, in a better way. A more comprehensive

definition of AI is given by Souri [2003], according to which it is the capability of a

device or machine to perform functions which are normally associated with the

intelligence of human beings.

 The different branches of AI include Expert Systems (ES), Fuzzy Logic (FL),

Artificial Neural Networks (ANN), Hybrid Systems and Genetic Algorithms (GA).

Since GA has been more frequently utilized during this research, therefore, it has been

further elaborated in detail, below.

2.3 Genetic Algorithms (GA)

GA is AI methodology that is inspired by the evolution theory of Darwin. In

comparatively simpler words it can be said that in GA an evolutionary process solves

problems and the final result is the best (fittest) solution (survivor) or in other words,

it can be said that a solution is evolved. A brief description of the natural evolution

process is discussed below which would help in thoroughly understanding GA.

 28

In nature all living organisms basically consist of cells. Every cell consists of a

set of chromosomes. Each chromosome, in turn, is a string of DNA and serves as a

model for the whole organism. A chromosome is basically a collection of genes,

where each gene can be defined as a block of DNA and encodes a particular protein.

In other words it can be said that each gene encodes a trait, for instance, the colour of

eyes. The possibilities of different trait settings could be black, brown or blue. These

settings are known as alleles. Every gene has a particular position in a chromosome

and that position is termed as locus. As complete set of genes is called a chromosome,

like wise a genome consists of a complete set of chromosomes. Whereas, a genotype

is specified by a particular set of genes. It is the genotype that is mainly responsible

for the after birth developments of the organism's phenotype, the different

characteristics (mental & physical) for example colour of the eyes, level of

intelligence, etc. Reproduction is the process during which new chromosomes are

created. The first thing that occurs and is very important in the creation of new

chromosomes is called crossover or recombination. During crossover genes from the

parent chromosomes recombine and create new chromosomes. The other important

operator that takes place during reproduction is called mutation. During mutation,

basically, a small change is incorporated in the elements of DNA. Obitko [1998]

observes that errors in copying genes from parents result in these changes. Survival is

the measure of fitness of an organism.

Initially, Holland [1975] developed a methodology for GA that consists of a

sequence of steps which are followed to move from one generation to another. In each

generation the operators such as mutation and crossover are used for reproducing new

chromosomes. Each chromosome’s performance or suitability is measured by some

fitness value. This fitness value of a chromosome serves as a basis for its selection

into the next generation.

Crossover is an operator during which two different chromosomes exchange

their parts and hence develop offspring. Whereas, mutation is an operator during

which a randomly selected gene of a chromosome is changed. As already discussed

that fitness value is the basis on which the selection of the chromosome in the next

generation depends, therefore, it can be said that a fitter chromosome has more

chances of getting selected in the next generation. This fitness based selection ensures

that the fittest chromosomes survive through generations whereas the least fit

 29

becomes extinct. The basic requirements of GA are: a fitness function that can

measure fitness of a chromosome, an encoding criterion to encode a solution of a

problem, defining the different constraints and criteria for the optimum value, and

finally incorporation of suitable crossover and mutation operators. GA has the ability

to perform efficiently in the evolution of an optimum solution, but the major difficulty

in its implementation is the encoding of a problem solution, as improper encoding

may lead to a complete change in the shape of a problem (Obitko [1998], Negnevitsky

[2002]).

The first step in the implementation of GA is encoding i.e. the representation

of a problem solution/ chromosome. Encoding is mainly dependent upon the problem

to be solved. Some of the different encoding techniques are given in Table 2.1 (Noor

[2009]). These have been used with some success [Obitko (1998)].

Table 2.1: Different Problem Encoding Techniques (Noor [2007])

S/No. Encoding

technique

Example

1

Binary

encoding

Chromosome 1 :101100101100101011100101

Chromosome 2 : 111111100000110000011111

2

Permutation

encoding

Chromosome 1: 8 9 7 4 6 2 3 5 1

Chromosome 2 : 2 3 1 4 8 5 6 7 9

3

Value
encoding

Chromosome 1: 5.3243 1.2324 2.3293 0.4556 2.4545

Chromosome 2 : HDIERJFDJDLDFABDJEIFLFEGT

Chromosome 3 : (right), (back), (left), (back), (forward)

4

Tree
encoding

+

x /

5 y

Chromosome A

Do until

step wall

Chromosome B

(+ x (/ 5 y)) (do until step wall)

 30

After encoding and the random generation of an initial population the next step in GA

is the selection of chromosomes which would take part as parents in crossover. The

main problem is how to carryout this selection. As per Darwin’s evolution theory, the

fittest chromosomes survive through generations and are most likely to take part in

crossover and create offspring. “Some of the well known techniques of selection are

tournament selection, roulette wheel selection, steady state selection and rank

selection” (Noor [2007]). After the selection of chromosomes for crossover, the next

task is to decide how to carryout the process of crossover so that genes from two

parents can be recombined and children are created. The most common way of doing

this is by random selection and then exchange of genes, as shown in example, below.

(‘|’ is the crossover point):

Chromosome A=10011 | 10101110111

Chromosome B=11001 | 01010011010

Child A=10011 | 01010011010

Child B=11001 | 10101110111

Crossover can be carried out in a number of ways. Some of them are shown in Table

2.2. The type of crossover to be chosen mainly depends upon the type of encoding

being used and therefore it can be sometimes quite complicated. A suitable selection

of the type of crossover for a particular problem can definitely improve the GA’s

performance.

Table 2.2: Crossover Techniques for Various Encoding Types (Noor [2007])

S/No. Encoding

technique

Crossover

technique

Example

1. single cut
point
crossover

1100/1011+1101/1111= 1100/1111 + 1101/1011

2. Double cut
point
crossover

11/00/1011 + 11/01/1111 = 11011011 +11001111

3. Uniform
crossover

11001011 + 11011101 =11011111 + 11001001

1

Binary

4. Arithmetic
crossover

0100110 + 0100101 = 1100110 + 0101111

(the first three digits of each parent are added

together for child 1 and the remaining digits are

added for the child 2)

 31

2 Permutation
encoding

Single cut
point

(1 2 3 4 5 6 /7 8 9) + (4 5 3 6 8 9/ 7 2 1) = (1 2 3

4 5 6 8 9 7) +4 5 3 6 8 9 7 1 2

3 Real value
encoding

Same as in
binary values

(1.29 5.68/ 2.86 4.11 5.55)+(3.23 4.45/ 6.13
5.67 2.98) = (1.29 5.68 6.13 5.67 2.98) +(3.23
4.45 2.86 4.11 5.55)--single point

4

Tree
encoding

Exchange

Once the issue of crossover is resolved, the next step is mutation. “The main

aim of carrying out mutation is to induce a certain level of diversity into population so

that GA can be prevented from getting trapped into a local optimum” (Obitko [1998]).

It has been already mentioned, previously, that during mutation a slight change is

incorporated in the genetic structure of a chromosome. An offspring, resulted from

crossover, is randomly changed by a mutation operator. For binary encoding,

mutation can be carried out as shown in example below.

(Bits selected for mutation are shown in bold)

Chromosome A=1100111000010010

Chromosome B=1101101111110110

Mutated chromosome A=1101111000010010

Mutated chromosome B=1101100111110110

Like crossover the decision of how to perform mutation, also, depends upon the type

of encoding being used. The different mutation techniques, for different types of

encoding, are shown in Table 2.3.

Table 2.3: Different Mutation Techniques for Various Encoding Types
(Noor [2007])

S/No. Encoding type Mutation
technique

Example

1 Binary Bit inversion 11001001 => 10001001

/

x +

y 3

-
-

x
^

y 2

+

=

/

x ^

y 2

-
-

x
+

y 3

+

 32

2 Permutation Change in order (1 2 3 4 5 6 8 9 7) => (1 8 3 4 5 6 2 9 7)

3

Real value

Addition of a
small number

(1.29 2.86 5.68 4.11 5.55) => (1.29

 2.86 5.68 4.22 5.55)

4

Tree

Change in
operator

“Crossover and mutation rates are the two basic parameters of GA” (Obitko

[1998]). The crossover rate determines the number of times crossover of

chromosomes will be carried out in one generation. The range for selection of

crossover rate is from 0% to 100%. If the crossover rate is 0% it means that

chromosomes in the next generation will be the exact copies of chromosomes in the

current generation. On the other hand if it is 100% then every chromosome in the

population of next generation will be the result of crossover between any two

chromosomes of the current generation. Crossover is carried out in the hope that

children, created during the process, would contain good parts of their parents and

consequently perform better as compared to them. Each selection criteria is so

designed that during selection some part of the population in the current generation do

get selected in the next generation.

Similarly, mutation rate means how many genes in a population in one

generation would get mutated. Here also the range could be from 0% to 100%. If the

mutation rate is 0% then it means none of the genes would get selected. But, if it is

100% then it means all the genes in a population of a generation would get mutated.

As indicated earlier, mutation is an operator that creates a certain level of diversity in

a population and hence GA is prevented from getting trapped into local optimum.

Therefore “selection of mutation rate is a delicate decision” (Noor [2007]). Too high a

mutation rate would convert GA into a kind of random search and the characteristic of

evolution is lost. Also, if the mutation rate is too low then there would be a tendency

of GA converging on to a local optimum. In addition to two basic parameters i.e.

crossover and mutation, there are some additional parameters of GA. One particularly

important additional parameter of GA is the population size. Population size means

-

x +

y 3

+

x

+

y 3

=

 33

total number of chromosomes in a population, in one generation. Population size is

important because it provides GA the searching space in which search for the

optimum solution is carried out. If there are too few chromosomes in a population

then it means GA is given a smaller searching space and this would limit the GA’s

searching ability and there would be every likelihood of GA getting trapped on a local

optimum. On the other hand, if there are too many chromosomes, then it means GA is

provided with a larger searching space which would definitely slow it down by

increasing its computational effort. Therefore, selecting a reasonable population size

is again a delicate matter. According to Obitko [1998] it is not useful to use a very

large population size because it does not solve the problem quickly as compared to a

moderate sized population.

2.4 Summary

In this chapter a brief introduction to GA and its different parameters is

presented. As far as its application to different fields in general and to the areas of CM

and Job-Shop Scheduling in particular is concerned that is presented in detail in

Chapter 3 and Chapter 4, respectively.

GA is a direct inspiration of the process of natural reproduction which consists

of the processes of crossover, mutation and selection of chromosomes from one

generation to another. Whenever, a problem is solved with the help of GA, the first

hurdle that needs to be tackled is representation/ encoding. Since there are a number

of encoding techniques available, therefore a suitable technique must be selected. The

next in line is to select proper crossover and mutation techniques which should be in

accordance to the encoding technique, already selected. Another important thing is

to develop an appropriate fitness function which would evaluate the fitness of all the

chromosomes in a population. These fitness values are responsible for the selection or

rejection of a chromosome in the next generation as the fittest chromosomes have

better chances of survival into the next generation as compared to their weaker

counterparts. The mutation and crossover rates, number of generations and population

size are the important GA parameters. These parameters are important because they

determine the quality of the solution.

 34

CHAPTER 3

LITERATURE REVIEW

CELLULAR MANUFACTURING SYSTEM

DESIGN TECHNIQUES

3.1 Introduction:

 GT is in fact a concept of manufacturing that takes into account the similarities

in design and processing requirements of different parts while grouping them together

in to families (Irani [1999]). Mitrofanov [1966] and Burbidge [1975] gave the initial

concept of GT and Burbidge [1975]. GT can be defined as, “a method of

manufacturing piece parts by the classification of these parts into groups and

subsequently applying to each group similar technological operations” (Mitrofanov

[1966]). Another definition of GT is, “the realization that many problems are similar

and by grouping them a single solution can be found to a set of problems, thus saving

time and effort” (Shunk [1978]). This definition gives a comparatively wider

understanding of GT. However, a more general definition of GT is “it is a

manufacturing philosophy which identifies and exploits the underlying proximity of

parts and manufacturing processes” (Ham et al. [1985]).

3.2 Classification of Cellular Manufacturing System (CMS) Design

Techniques:

Basically, CM is a concept based on the application of GT to the

reconfiguration of manufacturing systems. “CM is a hybrid system linking the

advantages of both job shops (flexibility in producing a wide variety of products) and

flow lines (efficient flow and high production rate)” (Mungawattana [2000]). In CM

the machines are normally close to each other and involved in the manufacturing of a

specific part family. This particular arrangement facilitates the system to have an

efficient flow of material and a comparatively higher rate of production like an FL. By

using general-purpose machines the CMS can be easily reconfigured to facilitate the

production of new product designs and product demand with a comparatively smaller

amount of effort both in terms of cost and time. This makes the manufacturing system

more flexible in terms of producing different variety of products.

 35

“CM is a manufacturing system that can produce medium-volume/medium-

variety part types more economically than other types of manufacturing systems”

(Black J. [1983]). The different categories, of the numerous GT algorithms that can be

repeatedly found in literature, are as follows:

a) Classification and coding

b) Array-Based clustering

c) Graph Partitioning

d) Similarity Coefficient

e) Mathematical Programming

f) Artificial Intelligence (AI) Based

g) Heuristic based approaches

 These available techniques have been reviewed in detail by Joines et al.

[1996]. According to them (Joines et al [1996]) these techniques can be divided into

two main classes as design oriented techniques and production oriented techniques.

The criteria of grouping parts in the design oriented techniques is based on similarity

in design features, whereas, in production oriented techniques grouping is carried out

on the basis of similar processing requirements. Joines et al. [1996] presented the

division of CMS design techniques as shown in Figure 3.1:

 36

a) Classification and Coding Analysis:

 This approach uses a coding system to assign numerical weights to parts

characteristics and identifies part families using some classification scheme.

The classification and coding of parts is a very complex job and takes a lot of

time. Perhaps due to the design orientation and proprietary nature of most

coding systems, they are not popularly known in the research literature for GT

or cellular manufacturing. Like other grouping techniques this method also

tries to group parts into families on the basis of similarities in design and

manufacturing attributes. This concept of grouping similar parts into families

using design features was initially introduced by Mitrofanov [1966] and Opitz

et al. [1969]. Different attributes of a part like shape, dimensions, size of hole,

size of gear tooth etc, are all encoded in the form of a code number. The

different design manufacturing attributes of parts are summarized in Table 3.1:

Table 3.1: Design and Manufacturing Attributes of Parts.

S/No. Design attributes Manufacturing attributes

1 Basic external shape Major processes

2 Basic internal shape Minor processes

3 Rotational or prismatic shape Process plan

Cellular
Manufacturing

Design oriented
techniques

Production oriented
techniques

Classification and
coding

Others

Array-Based
clustering

Graph
partitioning

Similarity
coefficient

Mathematical
programming

Heuristic
Based

Artificial
Intelligence

based

Figure 3.1: Classification of machine-part grouping techniques

 37

4 Length-to-diameter ratio

(rotational)

Major dimensions

5 Aspect ratio (prismatic) Surface finish

6 Material type Machine tool

7 Part function Production cycle time

8 Major dimensions Batch size

9 Minor dimensions Annual production

10 Tolerances Fixtures required

11 Surface finish cutting tools

A code number completely represents the size, dimensions, shape etc of a part.

Parts carrying same code numbers can be grouped into families as they would

be having similar attributes and hence similar processing requirements.

Machines are grouped according to the processing requirements of each part

family.

Classification and coding based systems were the primary tool of GT in

the 1960s and 1970s. A number of classification and coding systems are

reported in literature. According to Opitz, H., [1970] “classification and

coding techniques have been used in practice but using features, based on

shape and then group parts accordingly is a very labor intensive job and in

order to solve this problem the idea of weighted codes is useful”. Kaparthi and

Suresh [1990] suggested that the lack of popularity of classification and

coding based systems might be because they are labor intensive, and thus they

suggested the automation of the coding part of the method. Ham et al. [1985]

provided a complete survey of the different classification and coding

techniques. Kusiak [1987] argued that the unpopularity of coding based

techniques could be due to the expense and difficulty involved in

implementing coding and classification systems; however, Hyer and

Wemmerlov [1989] and Levuhis [1978] viewed it otherwise. For example,

according to a survey conducted by Hyer and Wemmerlov [1989] showed that

62% of companies surveyed indicated that they used classification and coding

systems; therefore one of the reasons for the slow development of coding

based algorithms could be finding groups with the weighted codes. Offodile

 38

[1991] came up with the idea of developing a framework by which the

weighted codes can be converted into a similarity measure and argued that this

could alleviate the problem.

Billo [1999] identified and described several organizing principles

(Operational Constructors, Meta Models, Dynamic Binding and Associative

Naming) and argued that if software is developed using these principles then it

would be more user friendly. Liao [2001] came up with the idea of using

Fuzzy Logic in devising a classification and coding based system for the

formation of part families. The authors argued that traditionally all features of

a part were considered as crisp, whereas realistically some should be fuzzy.

Barton and Love [2005] developed a novel system that was based on the

already existing coding system CAMAC which was originally developed by

Love and George [1985]. “The ability to find designs using a detail drawing

rather than textual descriptions is a significant achievement in itself” Barton

and Love [2005]. They further argued that if certain way could be found to

find parts from simple sketches then this would be more useful and effective in

practice.

 There are a number of coding packages available commercially.

However, none of the systems has universally been adopted because of the fact

that some require manual coding which is extremely slow (not more than 100

parts per day) and would take years to code the complete database of even a

small company having few thousand parts. Automatic coding models using

three-dimensional models would eliminate this problem but even then the

overall approach remains non-simultaneous. This (non-simultaneous way of

grouping parts into families and machines into corresponding groups) is a

major weakness of the classification and coding based techniques.

b) Array Based Clustering:

Array based clustering is one of the simplest as compared to other

production oriented techniques used to form machine cells and corresponding

part families, simultaneously. The system is initially arranged in the form of a

0-1 Machine-Part incidence matrix that consists of entries in the form of either

1s or 0s. 1 means the operation of a part j on machine i (aij=1), and 0 means

 39

otherwise. Once the system is arranged in 1-0 form then with the help of

shifting columns and rows all or most of the 1s can be rearranged in the form

of blocks along the diagonal of the matrix. Each block in the diagonal

represents a family of parts and corresponding machines which are

simultaneously formed, as shown in example presented in Tables 3.2 & 3.3:

 Table 3.2: Incidence Matrix Table 3.3: Block-diagonalized form

Machines
Parts 1 3 7 4 6 2 5

2 1 1 1 0 0 0 0

5 1 1 1 0 0 0 0

3 0 0 0 1 1 0 0

4 0 0 0 1 1 0 0

6 0 0 0 1 1 0 0

1 0 0 0 0 0 1 1

7 0 0 0 0 0 1 1

 A detailed comparison of some of the well known array-based clustering

techniques (Rank Order Clustering (ROC), Direct Clustering Analysis (DCA)

and Bond Energy Analysis (BEA)) is given in Chu and Tsai, [1990].

 ROC was initially proposed by King, [1980]. In ROC every row and

column of the machine part incidence matrix is considered as string of binary

numbers. The block-diagonalization of the matrix is achieved by rearranging

the rows and columns in the decreasing order of the decimal values of their

respective binary strings. Chanrasekharan and Rajagopalan, [1986] identified

the limitations of ROC. They observed that “ROC is highly dependent upon

the configuration of the input matrix and therefore can only be efficiently

applied to well-structured Machine-Part incidence matrices”. Despite its

shortcomings, ROC is considered to be the most simple and popular algorithm

for cell formation.

 “BEA is a general clustering algorithm and can be applied to any

nonnegative array of numbers” (McCormick et al. [1972]). According to this

technique the interrelationship, between an element in an array and its

neighboring four elements, is being exploited. The sum of the products of

these adjoining elements creates bond energy. The total bond energy (TBE)

for a particular row ‘x’ and column ‘y’ can be calculated as shown in (3.1):

Machines
Parts 1 2 3 4 5 6 7

1 0 1 0 0 1 0 0

2 1 0 0 0 0 0 1

3 0 1 0 0 1 0 0

4 0 0 1 1 0 1 0

5 1 0 0 0 0 0 1

6 0 0 1 1 0 1 0

7 0 1 0 0 1 0 0

 40

] [*
2

1
),(

1 1

,1,11,1,∑∑
= =

+−+−
+++=

m

i

n

j

jijijijiij aaaaayxTBE (3.1)

 Where:

 01,0,,11,0 ====
++− niijmj aaaa

 m = the number of machines

 n = the number of parts

 The BEA, in fact, maximizes the TBE over all the n!m! permutations

(Joines et al. [1996]). The main weakness of this method is that it allows the

formation of a final Machine-Part matrix that contains overlapping blocks

which makes it difficult for the viewer to identify the natural machine groups

and their corresponding part families. This becomes impossible when the

problem size is large.

 DCA was proposed by Chan and Milner, [1982]. According to their

approach the initial matrix is rearranged by moving rows with the left most

positive cell to the top and columns with the top most positive cell to the left.

A positive cell is the one where aij=1. The main advantages of DCA are that

unlike ROC it does not have any size limitations, converges to the final

solution in comparatively lesser number of iterations. Before applying the

algorithm, all the exceptional elements and bottleneck machines are removed

after being marked. However, Wemmerlov, [1984] observes that DCA may

not produce acceptable solutions as the diagonal is redirected in each iteration.

Therefore he came up with a modified version of DCA.

 After comparing the three array based clustering techniques it was

concluded that BEA outperformed the other two methods (ROC & DCA)

especially in the presence of exceptional elements (Chu and Tsai, [1990]).

 The main problems with the clustering techniques are the presence of a

large number of exceptional elements and bottleneck machines on which a

large number of parts need to be processed. Therefore, “quality of the results

given by clustering techniques is highly dependent upon the initial input i.e.

the configuration of the zero-one Machine-Part incidence matrix. Therefore,

 41

these approaches loose their effectiveness as the problem size increases and

the Machine-Part incidence matrix gets more and more ill-structured” (Tariq et

al. [2007]). These are the reasons that these techniques are very rarely used

these days. They have been over taken by some of the well known modern

approaches of cell formation that utilize Simulated Annealing, GA, Artificial

Neural Networks, Fuzzy Logic etc.

 c) Graph Partitioning Approaches:

 The first to implement the graph partitioning approach to the cell

formation problem were Rajagopalan and Batra, [1975]. The graph they

developed to solve the cell formation problem was basically a combination of

nodes and arcs. Each node represented a machine, whereas, each arc indicated

similarity among the machines. The partitioning of graph or, in other words,

the formation of machine cells, was carried out by assembling cliques

determined from the graph. The work of Rajagopalan and Batra, [1975], also,

pointed out that normally the number of intercellular moves does not reflect

the true cost of material handling. Especially in the case when an intercellular

move is somewhere in the middle of the processing sequence of a part. In such

a situation there will be two intercellular moves required instead of one.

 “Normally, graph partitioning approaches treat the machines and/or parts

as nodes and the processing of parts as arcs connecting the nodes” (Askin and

Chu, [1990]). One thing that is considered as the major weakness of graph

partitioning approach is its non-simultaneous grouping of parts into families

and machines into respective cells. The approach developed by Kumar et al.

[1986] was also based on graph partitioning during which they solved the

Machine-Part grouping problem for a known number of cells while applying a

constraint on the size of cell.

 Other approaches that are actually the extension of the initial graph

partitioning approach, include, the bipartite graph approach of King and

Nakornchai, [1982], a heuristic and graph partitioning approach of Askin and

Chu, [1990], the network flow approach of Vohra et al. [1990], and the

Minimum Spanning Tree (MST) approach of Ng, [1992] & [1993],

 42

 As mentioned earlier this approach is non-simultaneous and that is why

either would be applied to the formation of part families followed by grouping

of machines or otherwise. Also, being an analytical approach it cannot handle

large size of problems especially those which have ill-structured Machine-Part

incidence matrices. Due to these limitations graph partitioning approaches are

not very popular and that is why limited number of researchers applied it to the

cell formation problem. One recent example in which graph partitioning has

been applied to the cell formation problem is Rebeiro [2009]. In this technique

graph regarding the production system is generated first and then a coloring

algorithm is activated to obtain the number cells as desired initially. Though

the technique is claimed to be an effective one but the results presented show

that it has been applied to comparatively smaller size of problems and in

limited number of problems (3 out of a total of 15 problems) improvement

could be observed.

d) Similarity Coefficient Approach:

 In this approach first similarity measures among parts are determined by

taking into consideration their features, designs and processing requirements

and then formation of part families and their corresponding machine groups is

carried out using these similarity measures (Irani [1999]).

 The main steps to develop machine groups and part families with the

help of similarity coefficient based approaches generally are, as described

below:

i. The initial data is provided in the form of a 0-1 Machine-Part incidence

matrix of order M×P where, M represents total number of machines and

P represents total number of parts. Each element (aij) of the initial

Machine-Part incidence matrix is either 1, if part j has an operation on

machine i, or 0, if otherwise.

ii. By using the Machine-Part incidence matrix the similarity coefficient is

calculated and the initial matrix is converted into a triangular form

representing either machine-by-machine (M×M) or part-by-part (P×P)

similarity matrix.

 43

iii. Using the information available after step ii a tree/dendrogram is

constructed which actually represents the hierarchy of similarity among

all pairs of machines or parts.

iv. From the tree/dendrogram developed in step iii the corresponding

machine groups or part families are formed while satisfying the

constraints e.g. cell size etc.

 Once the similarity coefficients between all the pairs of machines and

parts are calculated the initial machine part incidence matrix can be converted

into a final block-diagonal form showing groups of machines and

corresponding part families by following steps iii and iv, described above.

McAuley [1972] was the first to develop machine cells by using the Jaccard

similarity coefficient. McAuley’s work was applied to a number of real life

problems by Carrie [1973]. He came up with the idea to apply similarity

coefficient approach to form part families first. But it was later on observed by

White [1980] that it would not be carrying any advantage if part families are

formed first followed by the grouping of machines into cells or otherwise.

Since similarity coefficients have the ability to incorporate the

manufacturing data other than the binary machine part incidence matrix,

therefore a variety of such methods have been developed, some of the well

known examples are: the average linkage method of Seifoddini and Wolfe

[1986], the similarity coefficient approach of Seifoddini [1989] which was

developed to handle the problem of improper machine assignment, and the

production data based similarity coefficient approach of Gupta and Seifoddini

[1990] that had the ability to incorporate a variety of production related

information such as the Machine-Part incidence matrix, the actual sequence of

operations, the average production volume of each part, the processing time of

each operation of a part.

Mosier and Taube [1985] introduced two kinds of similarity coefficients.

One is called the Additive Similarity Coefficient (ASC) and the other is called

Multiplicative Similarity Coefficient (MSC). The ASC is actually the

implementation of the conventional jaccard similarity coefficient in a weighted

manner. Each part, in this case, is assigned a weight according to its

 44

importance. MSC, on the other hand, is more or less a correlation coefficient.

The conventional Jaccard Similarity Coefficient was, also, modified by

Seifoddini and Djassemi [1995] in order to accommodate the information

related to production volume. The modified version of the conventional

Jaccard Similarity Coefficient proved more effective both in terms of reducing

the total number of intercellular moves and improving the process of

scheduling. Geonwook et al [1998] developed a two-phase procedure for

configuring a CMS. In phase-I a new similarity coefficient was developed that

presented the option of alternative routings in case of machine failures,

whereas, in phase-II a methodology, to consider scheduling and operational

aspects of the cell design, was developed.

 There are a number of other similarity coefficients being developed and

used in solving the cell formation problem. Shafer and Rogers [1993b] carried

out a comparative study on 16 different similarity coefficients. A number of

comparatively recent studies carried out in the application of similarity

coefficients to the CMS design problem, includes, Onwubolu and Mlilo

[1998], Ben-Arieh and Sreenivasan [1999], Lozano et al. [1999], Baykasoglu

and Gindy [2000], Samatova et al. [2001].

 Yasuda and Yin [2001] reviewed two similarity coefficients; Jaccard

Similarity and Commonality Score, and concluded that these similarity

coefficients are inefficient to solve the cell formation problem. Yin and

Yasuda [2005] conducted a comparative study and concluded that though a

generalized similarity coefficient cannot be devised for the cell formation

problem but at least it could be found that which similarity coefficient is

comparatively appropriate for a particular situation. In their further study (Yin

and Yasuda [2006]) the authors conducted a comprehensive review of

similarity coefficient based approaches. In addition to presenting a detailed

review of the similarity coefficient based techniques, a review of the previous

reviews has also been presented. It has also been argued in this paper that

similarity coefficient is the most flexible cell formation method.

 Though similarity coefficients based methods offer greater flexibility in

terms of incorporating production level data while solving the cell formation

 45

problem, there exists a number of deficiencies in the current similarity

coefficient based methods. Most of the techniques developed so far either form

part families first followed by machine groups or otherwise. Existence of

simultaneous Machine-Part grouping approaches based on similarity

coefficients is very rare in literature. Also, even with the non-simultaneous

approach handling large size problems is not possible and that is why recent

similarity coefficient based approaches utilize GA when it comes to solve

large size cell formation problems.

e) Mathematical Programming Based Approaches:

Approaches based on Mathematical Programming actually solve the

Machine-Part grouping problem as an optimization problem. Due to their

ability to consider and incorporate a number of critical system design

information, Mathematical Programming based approaches have been

extensively used to solve the Machine-Part grouping problem. All the

mathematical optimization approaches applied to the cell formation are either

linear or nonlinear integer programming problems. Kusiak’s, [1987 & 1988],

and Boctor’s, [1991], work has shown that these approaches have the ability to

incorporate a lot of production related data, for example; processing sequence,

routing flexibility, setup and processing time etc. Being an optimization

technique, the objective; while clustering parts or machines; could be to

maximize the total sum of similarities between each pair of machines/ parts. A

review of the work of some of the researchers, who used mathematical

programming techniques to formulate the cell formation problem, is presented

in Table 3.4.

Table 3.4: Mathematical Programming Based Approaches

S/No. Reference Technique Review

1 Purcheck
[1974,1975]

Linear
integer
Programming

The author was the first to have applied
the approach of mathematical modelling
to the cell formation problem. The
research shows that first the part families
are formed and then machines are
grouped according to the processing
requirements of each part family which
indicates that the approach carries out
Machine-Part grouping sequentially
rather than simultaneously.

 46

2 Choobineh
[1988]

Integer
Programming

The methodology presented in this paper
consisted of two stages. In the first stage
part families were formed using
clustering techniques with a proximity
measure that took manufacturing
operations and their sequence into
consideration. In the second stage, also,
an integer programming model was
proposed to assign machines to different
cells. The procedure itself reveals that it
is not a simultaneous approach.

3 Shtub [1989] Mathematical
Programming

Here a mathematical model for the cell
formation problem was developed as a
generalized assignment problem.

4 Gunasighe &
Lashkari
[1989, 1989,
1990]

0-1 integer
programming

The authors developed two separate 0-1
integer programming models. One for the
part family formation and the second one
for the grouping of machines into cells.
The objective of their model was to
minimize the cost involved in the total
number of intercellular moves and the
duplication of machines. The concept of
routing flexibility was also considered
during this research. Since separate
models were developed for the part
family formation and grouping of
machines therefore this shows that the
approach is not a simultaneous one and
also finding solution, analytically, for the
large scale problems would be difficult.

5 Srinivassan et
al. [1990]

Generalised
assignment
approach

In this research the authors presented a
generalised assignment approach for the
cell formation problem and argued that it
would perform better than the p-median
model. The main feature of the approach
was that the number of part families
(number of cells) was not known as a
priori. This was also a sequential
approach of grouping parts into families
first and then assigning machines to each
cell afterwards.

6 Boctor[1991] Mathematical
Programming

The author presented an analytical
optimization model for simultaneous
Machine-Part grouping with the objective
of minimizing the total number of
intercellular moves. Since it was an
analytical approach therefore it could not
be applied to problems of large size. This
made the author to recommend Simulated
Annealing approach.

7 Joines et al. Integer Here, also, an integer programming

 47

[1996] Programming model was developed for the cell
formation problem. But instead of
solving problems analytically, the authors
made use of GA which speaks itself
about the limitations of pure
mathematical based techniques.

8 Heragu &
Chen[1997]

Mathematical
Programming

The authors came up with an approach
based on mathematical programming and
claimed that they could find an optimal
solution for a cell formation problem.
The model consisted of three major
aspects - routing flexibility, machine
utilization and practical constraint.
Though it was an efficient approach but
could only solve problems of medium
size.

9 Cheng et al.
[1998]

Mathematical
Programming

Here the problem of cell formation was
initially formulated as the Travelling
Salesman Problem (TSP) based on
mathematical modelling. Since finding
analytical solution is excessively time
consuming therefore GA was used to find
solution for the problems while using GE
as the performance measure. This shows
the limitations of pure mathematical
techniques.

10 Chen &
Heragu [1999]

Mathematical
Programming

Here the authors improved their previous
work (Heragu & Chen [1997]) and tried
to over come some of its limitations (e.g
its lack of ability to solve large scale
problems). The methodology presented in
this paper was based on the stepwise
decomposition of the large scale cell
formation problem.

11 Won [2000] p-median
based

During this research the cell formation
problem was formulated as p-median
based mathematical model using a
comparatively new similarity measure
between pairs of machines. Since
similarity measure is used between pairs
of machines this means that first machine
groups would be formed and then parts
would be assigned afterwards. This
shows that the technique is not grouping
parts and machines simultaneously.

12 Akturk &
Turkcan
[2000]

Mathematical
Programming

In this paper the authors have integrated
the cell formation problem with the cell
layout problem while carrying out the
Machine-Part grouping simultaneously.

13 Plaquin &
Pierreval

Mathematical
Programming

An approach based on mathematical
programming and taking into account

 48

[2000] some specific constraints, e.g some
machines could stay together if they
shared a common resource and some
causing interference would be placed
separately, was presented in this paper.
The authors devised an evolutionary
approach to solve the cell formation
problems which speaks itself about the
limitation of using mathematical
modelling and solving the cell formation
problems analytically.

14 Zhao & Wu
[2000]

Mathematical
Programming

In this research the authors have
developed a multi-objective optimization
model for the cell formation problem.
The multiple objectives they considered,
included minimization of the cost
involved in intercell and intracell
movements, minimization of the
variations in cell load, and minimization
of the total number of exceptional
elements. The cell formation problem
was actually solved as machine grouping
problem and parts were assigned to each
group considering their processing
sequence and production volume. Since
the problem was formulated as multi-
objective, therefore analytical solution
for even the problems of medium size
was not possible and that is why the
authors used GA. The computational
experience presented in the paper is
limited and even in the presence of GA it
can only sove problems of medium size
only.

15 Caux et al.
[2000]

Mathematical
Programming

Here the authors developed an
optimization model for the cell formation
problem while considering alternative
process plans and the machine capacity
constraint with the objective of
minimizing the intercellular moves. Since
the model was multi-objective therefore
analytical solutions could not be
determined and that is why the author
proposed an SA based methodology and
combined it with a branch-and-bound
technique for the routing selection. The
approach presented is a logical one but
the computational experience presented
in the paper is very limited which may
not be enough to justify its effectiveness
when applied to large size practical

 49

problems both in terms of accuracy and
computational time.

Some of the comparatively recent research studies that utilized

mathematical programming to formulate the cell formation problem includes

Onwubolu and Mutingi [2001], Uddin and Shanker [2002], Nsakanda et al.

[2005], Fantahun et al. [2006], Geonwook and Herman [2006], Tariq et al.

[2006], Tariq et al. [2009].

Onwubolu and Mutingi [2001] formulated the cell formation problem by

taking into account the cell-load variation. The work of Uddin and Shanker

[2002] was based upon integer programming with the consideration of routing

flexibility. Nsakanda et al. [2005] developed a mathematical approach that

considered a number of many manufacturing parameters including the part

demands, multiple routings, operations sequence, multiple process plans, and

machine capacities. The drawback of their methodology was that it could

never guarantee optimality.

Fantahun et al. [2006] formulated the cell formation problem as a

mathematical optimization problem while considering a number of

information such as; routing flexibility, operation sequence, machine

duplication, machine capacity, cell load balancing, and different type of costs

like operation, tool consumption, setup and subcontracting cost. Since the

model was multi-objective and was also multi-constrained therefore to solve

the cell formation problem analytically with the help of this model was a

challenging task. Therefore, the authors proposed a GA based heuristic

approach to solve the cell formation problem.

Geonwook and Herman [2006] presented a two-phase mathematical

approach for the cell formation problem. In the first phase formation of part

families was carried out whereas in the second phase in addition to the

formation of corresponding machine groups, operational issues were also

handled. Since the problem was multi-objective and multi constrained

therefore finding solutions analytically for medium and large size problems in

polynomial time would not be possible and that is why the authors proposed a

GA based methodology. The approach seems to be an effective one but

 50

computational experience presented in the paper is very limited and a

comparatively smaller size problem is solved.

Tariq et al. [2006] formulated a mathematical optimization model for the

cell formation problem with the objective of maximizing GE: which

consequently minimizes the total number of intercellular moves and

maximizes a machine’s utilization into its respective cell. Initially they applied

their model to small and medium sized problems but in their later work (Tariq

et al. [2009]) a comprehensive computational experience of the same model is

presented. They also suggested a hybrid GA based methodology to solve the

cell formation problem.

Though the mathematical optimization approaches are very attractive in

terms of incorporating more production level data into cell formation models

but to find analytical solution of medium and large size cell formation

problems in polynomial time is not possible which is a major limitation of

mathematical optimization based techniques. “Obtaining optimal solution for

the mathematical programming approaches can be infeasible due to

combinatorial complexity of the CMS design problem” (Mungawattana

[2000]). Most of the recent researchers have, therefore, opted for either SA or

GA based methodologies rather than pure mathematical approaches.

f) Artificial Intelligence (AI) Based Approaches:

The application of AI-based approaches to the problem of CMS design

has increased in recent years. Though it may seem as if these approaches are

patterned on the same structure as that of the conventional array based

clustering techniques, but still they are different as they have the ability to

incorporate AI in their algorithms. Another feature is their searching ability

through which they can find out optimum or near to optimum solutions with

comparatively little computational effort. They also have the ability to handle

multiple objectives and related constraints, quite conveniently. Some of the

well known AI techniques are listed as follows:

i. Artificial Neural Networks (ANN)

ii. Fuzzy Logic (FL)

 51

iii. Simulated Annealing (SA) & Genetic Algorithms (GA)

A brief description of these techniques and the related research work,

being carried out so far, is given below:

i. Artificial Neural Network (ANN):

ANN are the network models developed for computations. They

contain simple units that carryout processing and communicate with each

other by exchanging signals through a number of connections where each

connection carries a weight factor. ANN is actually the inspiration of

human brain.

Like a human brain, ANN is also a network containing a number of

processing units known as artificial neurons. These processing units are

connected with each other through weighted connections. Each artificial

neuron transmits the incoming signal to other units through their outgoing

weighted connections. The information transferred among processing

units is stored in these weights in the form of specific values. This storage

of information enables these networks to have the ability of learning from

experience and memorizing the relationships among different data.

ANN has been successfully applied to the area of manufacturing.

Because of some of its unique capabilities ANN is highly suitable for

application to the area of CMS design. ANN’s use for CM applications is

justified by the fact that they can learn from experience, recognize

patterns, and generalize the knowledge they obtain. Another advantage is

their ability to handle incomplete data which is highly useful when it

comes to real world applications. Due to these advantages, ANN has been

extensive used in the area of GT in recent years.

ANN can be trained in two ways; through supervised learning or

unsupervised learning. A single layer perceptron and multi-layer

perceptron are the two important architectures of supervised learning

(Noor [2007]). “A perceptron can represent a linearly separable function,

and hence it can learn only OR and AND operations but not the Exclusive-

 52

OR (XOR) which is not linear in nature” (Noor [2007]). This limitation of

perceptron can be overcome by training a multilayer ANN with back-error

propagation (Negnavitskey [2002]). But even, “back-error propagation is not

the exact emulation of human brain and hence the multi-layer perceptron

does not have associative memory characteristics like a human brain” (Noor

[2007]). Jain and Meeran [1999] and Meeran [2003] reports that ANN

sometimes perform poorly due to lack of data or the trajectory dependent

training algorithms which cannot map the complex data precisely.

The basic requirement of supervised learning techniques is to have

some knowledge in advance about the number of cells to be formed and a

set of training data with known output. The fact of the matter is that the

availability of this kind of knowledge in advance is very hard in case of

Machine-Part grouping problem. The reason is that, generally, no

information about the exact number of groups to be formed is known a

priori. But still, a number of researchers have applied supervised learning

technique to solve the cell formation problem. A three-layered feed-

forward network with back-propagation (supervised learning) for part

grouping in CMS was proposed by Kao and Moon [1991]. They overcame

this difficulty of training data by selecting some seed parts as

representatives of the part families to be formed. Some of the earlier

research works in which supervised learning is used for part/ machine

grouping, include Kao and Moon [1990], Moon [1990], Moon [1990],

Moon and Chi [1992], Moon and Roy [1992].

Unsupervised learning is suitable for the initial cell formation. Once

the initial formation is over then supervised learning can be applied and

trained to refine the formation and add new parts to cells. That is why

majority of neural networks that have been developed for parts/ machines

grouping used unsupervised learning methods. Some of the unsupervised

learning models developed over the years include, Self Organizing

Feature Maps (SOFM) - Kohonen [1982], Adaptive Resonance Theory

(ART) - Carpenter and Grossberg [1987], the modified Hebbian learning

algorithm of Malave and Ramchandran [1991], and the Fuzzy Adaptive

Resonance Theory (Fuzzy ART) - Carpenter and Grossberg [1991].

 53

“SOFM performs a dimension reduction of the input patterns to the

two-dimensional space while maintaining the topological relations

between the elements” (Kiang et al. [1995]). SOFM operates in a similar

manner as the competitive learning model. SOFM has been found efficient

when applied to the problem of part grouping.

Like any competitive learning model the ART tries to group parts

automatically. In fact the output layer’s neurons directly represent part

families. The vigilance threshold enables the ART network model to

control the similarity among parts of a part family. Another advantage of

this network is that it does not need the information, about the number of

part families to be developed, in advance. Some of the researchers who

used ART for part/ machine grouping and investigated some of its

drawbacks include, Kaparthi and Suresh [1992], Kaparthi et al. [1993],

Dagli and Huggahalli [1995], Chen and Cheng [1995].

Fuzzy ART, Carpenter and Grossberg [1991], is an improved form

of ART carrying the concepts of Fuzzy logic. A basic difference between

ART network and Fuzzy ART is that both non-binary and binary data can

be handled by Fuzzy ART. Suresh and Kaparthi [1994] used a Fuzzy ART

network to develop part families using the Machine-Part incidence matrix.

They also compared the performance of Fuzzy ART with conventional

ART as well as ROC [King, (1980)] and found Fuzzy ART superior to

these techniques. Because of the promising results achieved, Fuzzy ART

is still considered to be an open area for research. The work of Suresh and

Park [2003] is basically an extension of the conventional Fuzzy ART and

which allows the consideration of operation sequence while clustering the

parts. Peker and Kara’s [2004] work is actually an investigation on

parameter setting for Fuzzy ART networks.

Although a lot of research is being carried out in improving the

ANN algorithms, applied to the problem of cell formation, however little

work has been carried out to handle the problem of bottleneck machines.

Also, some additional constraints, for example load balancing, capacity

 54

constraints, or part demands etc., need to be considered, at the CMS

design stage, as well.

ii. Fuzzy Logic (FL):

FL was invented by Lofty Zadeh, a professor at the University of

California at Berkley, in 1965. The motivation for the development of FL

was that, “imprecisely defined sets or classes play an important role in

human thinking, particularly in the domain of pattern recognition and

communication of information” (Zadeh [1965]). FL gives designers the

abilities; to define relationships in less than exact terms, to handle the

simulation of real world judgements with ease, to cope with nonlinearity

with the same ease as linear relationships, to be able to simulate natural

language intercourse, and finally to have the ability to handle real life

problems with ease and more flexibility. FL is an interesting AI tool as it

gives us a simplified approach to reach the definite solution of a problem

while utilizing imprecise or ambiguous input information.

Fuzziness has been handled in many ways in case of cell formation

problems. A review of some of the earlier research works in this area is

presented in Table 3.5.

Table 3.5: FL Based Techniques

S/No. Reference Technique Review

1 Xu & Wang
[1989]

FL In this research the authors used fuzzy
mathematics to handle the issue of
uncertainty/imprecision while calculating
similarity between parts. Here a dynamic
part family formation procedure has been
presented which assigns new parts to an
already existing part family by using the
principle fuzzy pattern recognition. The
weakness of the approach could be its non-
simultaneous approach towards Machine-
Part grouping.

2 Chu & Hayya
[1991]

Fuzzy C-
mean
algorithm

The authors were the first to have applied
the Fuzzy C-mean Algorithm, initially
developed by Bezdek [1991], to the cell
formation problem. Their algorithm
resulted in two matrices one for the
identification of the part families and
second for the identification of machine

 55

groups. The main problem with their
algorithm is that there is a possibility of cell
developed without a part family or machine
group assigned to it. Another problem that
could arise is that more than one part family
may be assigned to one cell. Also, the
Fuzzy C-mean algorithms work well with
smaller data sets and well structured
Machine-Part incidence matrices only and
clustering errors are observed once the
problem size increases and data becomes
more and more ill-structured.

3 Zhang & Wang
[1992]

FL In this research FL was applied to the
conventional ROC method using input in
the form of non-binary Machine-Part
incidence matrix. Initially with the help of
the conventional ROC method the number
of clusters were determined and then using
that information a fuzzy based
methodology was used to form the part
families. The weakness of this approach
could be its non-simultaneous nature of
grouping parts into families and machines
into cells.

4 Leem & Chen
[1996]

Fuzzy
Clustering
Algorithm

Here also the authors developed fuzzy
clustering algorithm based on determining
the similarity coefficient using input in the
form of non-binary Machine-Part incidence
matrix while taking alternative process
plans into consideration. The algorithm was
useful in terms considering alternative
processing of parts and minimization of
cost involved in intercellular movements.
The weakness of the approach could be
solving the cell formation problem in a
sequential manner (first machine group
formation followed by part family
formation) rather than simultaneous.

5 Gill & Bector
[1997]

Fuzzy
linguistics

Here the authors developed an approach for
the cell formation problem based on fuzzy
linguistics. Here first the information
related features of different parts was
quantified and then families of parts were
formed accordingly. The approach was a
useful one as far as quantification of the
features of parts, in non exact terms, was
concerned. Here also the main weakness
could be the non-simultaneous approach of
Machine-Part grouping.

 56

6 Susano et al.
[1999]

Fuzzy C-
mean
Algorithm

In this research the authors applied the
Fuzzy C-mean Algorithm to the cell
formation problem with the intention to
overcome the basic short comings of the
algorithm (lack of ability to solve large size
and ill-structured problems). The main aim
of their work was to reduce the infeasibility
of the conventional Fuzzy C-mean
Algorithm. They did overcome that but
with a reduction in GE this indicated
deficiencies in this approach.

7 Josien & Liao
[2000]

Fuzzy C-
mean
algorithm

In this research the authors tried to improve
the Fuzz C-mean Algorithm initially
proposed by Chu & Hayya [1991] but had
little success. Here the Fuzzy C-mean
Algorithm was integrated with the Fuzzy
K-nearest neighbour algorithm while using
some commonly used performance
measures such as GE, grouping index,
number of bottleneck machines and
exceptional parts etc.

Recently Li et al. [2007] developed an improved fuzzy clustering

method for the cell formation problem overcoming most of the

shortcomings being identified in the earlier Fuzzy C-mean clustering

algorithms. The authors compared their work with other previous studies

in which Fuzzy C-mean Algorithms were proposed i.e. original Fuzzy C-

mean Algorithm, Chu and Hayya [1991], Susano et al [1999] and reported

that they have outperformed each one of them. It is worth noting that with

this approach the authors have been able to bring down the percentage of

infeasible solutions developed in case of comparatively large and ill-

structured data sets, which remained considerably high in the earlier

studies.

Though application of FL to solve the cell formation problem seems

very attractive, however, issues like; handling large size ill-structured

problems and lack of ability to find optimum solutions for such problems,

still need to be tackled.

iii. Simulated Annealing (SA) & Genetic Algorithm (GA):

SA and GA are very effective search techniques that actually

replicate natural phenomena. They have shown effectiveness in solving a

 57

number of combinatorial optimization problems. Since Machine-Part

grouping problem is NP-hard (Yasuda et al. [2005]), therefore, these

techniques have been very frequently used in literature to solve this

problem.

The first researcher to use SA was Kirkpatrick et al. [1983]. His

methodology was actually based on the research being carried out by

Metropolis et al. [1953]. The SA algorithm was initially developed to

handle the optimization of difficult combinatorial problems with the help

of randomization carried out in a controlled manner. SA, in fact, is the

replication of the actual annealing process in which a system, at a higher

energy level, is allowed to be cooled gradually in a controlled

environment till it attains its lowest energy level.

There is a great deal of similarity between the actual annealing

process and the iterative algorithms. An iterative algorithm basically

consists of solution representation, an objective function, a generation

mechanism, and a proper schedule to enforce annealing. In SA the

evolution of the whole algorithm depends upon the generation of the

initial solution. First an initial solution is generated and then its

neighbouring solution is evolved from the initially generated solution. If

the neighbouring solution is better than the initial solution then it replaces

the initial solution otherwise it is accepted with certain value of

probability. With each iteration, the value of initially selected temperature

is reduced which consequently reduces the probability of accepting worst

solutions. The process is kept continued until the stopping criteria

(minimum energy level is achieved).

The work of Lundy and Mees [1986] proved that SA based

algorithms have greater probability to reach the global optimum or in its

neighbourhood, under certain assumptions. SA has several advantages,

when compared to other competitive techniques, e.g. it can be easily and

quickly implemented. That is the reason that it has been successfully

applied to difficult problems and reasonable results have been attained.

Several such examples can be found in literature. Kirkpatrick et al. [1983]

 58

applied SA in the area of computer systems design, Bonomi & Lutton

[1984] and Aarts & Van Laarhoven [1985] applied it to solve the

Travelling Salesman Problem, Wilhelm and Ward [1987] used SA to

solve the Quadratic Assignment Problem, whereas Alfa et al. [1991]

applied it to the Vehicle Routing Problem.

Being a strong random search algorithm SA proved to be equally

efficient when applied to the cell formation problem, as well. Some of the

earliest work carried out by different researchers in designing CMS using

SA is presented in Table 3.6.

Table 3.6: SA Based Techniques

S/No. Reference Technique Review

1 Boctor [1991] SA The author initially formulated the cell
formation problem as a linear mathematical
model and then utilized SA to solve the
model.

2 Venugopal &
Narendaran
[1992a]

SA Here, the authors developed an
optimization model for the cell formation
problem based on SA with the objective of
minimizing the machine load variation.

3 Chen &
Srivastava
[1994]

SA In this research a quadratic programming
model was developed for the formation of
machine cells and SA was used to solve the
cell formation problem. The approach,
though seems a logical one, is not grouping
machines into cells and parts into families
simultaneously.

4 Chen et al.
[1995]

SA Here, the authors developed a heuristic
based approach for the cell formation
problem and used SA to find solution for
different problems. The objective of their
approach was to minimize the total number
of intercellular moves while grouping
machines into cells and parts into
corresponding families.

5 Boctor [1996] SA An SA based algorithm was developed
during this research with the objective of
minimizing the total manufacturing cost.

6 Sofianopoulou
[1997]

SA Here, the CMS design problem was
formulated as the linear integer
programming model. The technique had an
objective to minimize the total number of
intercellular moves while applying a
constraint on the size of cell and utilising
Sa to find solution for the problems. The

 59

main advantage of the algorithm was that
the number of cells, the system was
supposed to be divided into, was not known
as a priori. But the enforcement of the cell
size constraint may result an increase in the
number of intercellular moves in case of
larger problems having ill-structured
Machine-Part incidence matrices. Also, the
size of the problems solved is
comparatively small.

7 Su & Hsu
[1998]

SA In this research the authors developed an
optimization model for the cell formation
problem with multiple objectives of
minimizing the total cost involved in
intercell and intracell moves (transportation
cost), intracell machine load variation and
intercell machine load variation. A parallel
SA was proposed to solve the cell
formation problem. The approach is a
logical one and can be useful in practice but
the main challenge would be to implement
it to a real life situation which is normally
larger and more complex than the
computational experience presented in the
paper.

8 Caux et al.
[2000]

SA Here the authors developed an optimization
model for the cell formation problem while
considering alternative process plans and
the machine capacity constraint with the
objective to minimize the intercell traffic.
To solve the cell formation problem they
proposed an SA based methodology and
combined it with a branch-and-bound
technique for the routing selection. The
approach presented is a logical one but the
computational experience presented in the
paper is very limited which may not be
enough to justify its effectiveness when
applied to large size practical problems
both in terms of accuracy and
computational time.

Some of the recent research works in which SA is applied to the cell

formation problem includes Xambre and Vilarinho [2003], Tavakkoli et al

[2005], Safaei et al. [2008]. Xambre and Vilarinho [2003] developed a

mathematical programming approach for the cell formation problem and

allowed the duplication of bottleneck machines with an objective to

minimize intercellular moves subject to the machine capacity constraint

 60

and cell size constraint. Due to the combinatorial nature of the problem

they used SA to solve it. The authors besides comparing their work, with

other available similar studies in literature, applied it to one practical

situation and reported satisfactory results both in terms of accuracy and

computational time. The point to note in this research is the constraint on

the cell size and the duplication of bottleneck machines. Restricting the

cell size means that in certain problems the number of cells may increase

than the number of naturally available clusters. Also, the duplication of

bottleneck machines may reduce the total number of intercellular moves

but would increase the initial cost of machines (multiple copies of one

machine type), therefore there must be justifiable cost comparison

(material handling cost vs. machine duplication cost) should also be

considered.

Tavakkoli et al [2005] solved the dynamic cell formation problem

using metaheuristics like SA, GA and Tabu search and compared results

in the end. Whereas Safaei et al. [2008] developed a mixed integer

programming model for the cell formation problem and used hybrid SA to

solve it.

“It is an established fact that cell formation problems belong to the

class of NP-hard combinational problems” Yasuda et al. [2005]. A

number of optimization algorithms can be found in literature that have the

ability to find optimal solution, but only for small- and medium-sized

problems. “Their deficiencies are exposed once the problem size gets

bigger and the Machine-Part incidence matrices become more and more

ill-structured” (Tariq et al. [2009]). These are the reason that GA based

search techniques can be frequently found in literature. A review of some

of the GA based techniques, available in literature, is presented in Table

3.7.

Table 3.7: GA Based Techniques

S/No. Reference Technique Review

1 Venugopal &
Narendran
[1992b]

GA The authors applied GA to the cell
formation problem with the objective of
considering variations in cell load and
minimization of the total number of
intercellular moves.

 61

2 Gupta et al.
[1995]

GA Here also a GA based methodology is
developed to solve the cell formation
problem with the objective of minimizing
the intercellular and intracellular moves.

3 Gupta et al.
[1996]

GA During this research the authors
improved their previous work [Gupta et
al. (1995)] and integrated the cell
formation problem with the cell layout
design problem.

4 Hwang & Sun
[1996]

GA based
heuristic

Here, the authors developed a two phased
GA based methodology for the cell
formation problem. In the first phase GA
is combined with a heuristic to identify
machine groups, whereas in the second
phase the corresponding part families are
identified. It is evident from the above
description that the approach is not a
simultaneous one. The results could have
been even better had a simultaneous
approach been used instead of sequential.

5 Su & Hsu
[1996]

GA They also developed a two phased
methodology for solving the cell
formation problem. Here also, one could
argue that the results could have been
better had a simultaneous approach for
Machine-Part grouping (cell formation)
been used.

6 Joines et al.
[1996]

GA During this research initially the cell
formation problem is formulated as a
mathematical model based on integer
programming and later on GA was used
to solve the optimization problem.

7 Alsultan &
Fedjki [1997]

GA Here the authors formed part families by
using the combination of quadratic
integer programming model with GA and
then later on found corresponding
machine groups. The sequence of events
shows that a simultaneous approach for
Machine-Part grouping has not been used
and therefore the results may have been
even better had somehow the Machine-
Part grouping been carried out
simultaneously.

8 Lee et al.
[1997]

GA The distinguishing feature of this GA
based approach is the consideration of
routing flexibility.

9 Gravel et al.
[1998]

GA The authors developed a double-loop GA
based approach for the cell formation
problem while considering routing
flexibility.

10 Cheng et al. GA In this research the cell formation

 62

[1998] problem was solved with the help of GA
in the same fashion as the travelling
salesman problem using GE as the
performance measure. Since simple GA
was used therefore more than 50% of the
results were worst than the previously
reported results.

11 Moon and Gen
[1999]

GA The authors, initially, developed the cell
formation problem as a 0-1 integer
programming model and used GA to
solve it. They tried to develop
independent machine cells by considering
routing flexibility and dual copies of
bottleneck machines. The approach is a
logical one but can be applied where
there is reasonable cost justification for
the duplication of machines.

12 Moon & Kim
[1999]

GA Here the cell formation problem was
initially developed as a 0-1 integer
programming model with the objective of
maximizing the total number of intracell
moves while considering the cell size
constraint. The model was later on solved
by using GA. The approach is an
effective/logical one, but considering the
cell size constraint creates other
complications e.g. avoiding the formation
of single machine cells, in most of the
cases, results an increase in total number
of intercellular moves which
consequently increases material handling
cost [Tariq et al. (2007)].

13 Lee-Post
[2000]

GA The GA based approach presented in this
paper forms the part families first,
considering the similarities encoded in an
exiting classification and coding scheme,
and then groups machines accordingly.
The approach is an effective one but
could have proved to be more effective
had the two activities (part families
formation and machines grouping) been
carried out simultaneously.

14 Zhao & Wu
[2000]

GA The authors presented a GA based
approach for the machine grouping
problem considering multiple objectives
such as minimizing cost involved in
intracell part movements, cell load
variation, and number of intercell
movements. The approach is an effective
one as the work of some of the previous
researchers, have been further improved.

 63

The obvious shortcomings of the
approach are its non-simultaneous
(handling machine grouping and part
family formation separately) nature and
the smaller size of the problems solved.

15 Arzi et al.
[2001]

GA During this research the authors
developed a mixed integer programming
model for the cell formation problem and
employed GA to solve problems of larger
size.

16 Dimopoulos &
Mort [2001]

Genetic
Programming
(GP)

 Here, the authors developed a Genetic
Programming (GP) based approach for
the cell formation problem using the
concept of hierarchical clustering. The
use of GP for the cell formation problem
is unique in itself but the point, in this
research, that one can argue about is its
limited computational experience and
application to comparatively simpler
(well structured Machine-Part incidence
matrices.

17 Onwubolu &
Mutingi [2001]

GA In this research a GA based approach is
developed to solve the cell formation
problem by taking into account the cell
load variation.

18 Uddin &
Shanker
[2002]

GA This work consisted on the formation of
an approach based on GA with the
objective of minimizing the total number
of intercellular moves while considering
multiple process plans.

19 Wu et al.
[2002]

GA The GA based approach presented in this
paper is an integrated one. Here the cell
formation problem is integrated with the
cell layout problem.

Some of the comparatively recent approaches in which GA has been

used, include Fernando and Mauricio [2002] who developed a hybrid

approach by combining GA with an LSH with the objective of

maximizing grouping efficacy. The approach have presented a detailed

computational experience and observed improvement in GE for 57% of

the total tested problems (35) from literature. This improvement was due

to the fact that the authors have developed a hybrid approach rather than

pure GA. In spite of these improvements it is still felt that had there

approach been a simultaneous one the results could have been even better.

The same point was proved by Tariq et al. [2009].

 64

Yasuda et al. [2005] developed a grouping GA for the multi-

objective (minimization of cell load variation and intercellular moves) cell

formation problem. The main advantage of their approach was that the

number of cells, the system was supposed to be divided into, was also to

be determined by the algorithm. The approach would have been more

realistic had it taken processing sequence and routing flexibility into

consideration as well. A GA-based concurrent design approach for CM

was proposed by Wu et al. [2006]. They integrated the problems of cell

formation and group layout generation. The approach is quite effective but

as far as the computational experience is concerned it has been applied to

problems of small and medium size.

Aaron et al. [2006] developed a hybrid approach for CMS design.

They integrated the cell formation problem with the machine allocation

and part routing problem. Their solution methodology was based on the

combination of GA with large scale optimization techniques. Tariq et al

[2006], also, developed a hybrid GA by combining GA with an LSH that

further improved some of the results presented in Fernando & Mauricio

[2002]. The LSH they developed was so effective that in combination

with simple multi-cut point crossover and gene to gene mutation it could

still improve the results of some of the problems. In their later work (Tariq

et al [2007]) an analysis regarding the handling cost saved by allowing the

formation of single machine cells is presented. In this research the

formation of cells having only one machine was allowed which

consequently resulted in saving some material handling cost by reducing

the number of intercellular moves. They further improved their previous

work (Tariq et al. [2006]), and produced a comprehensive paper (Tariq et

al [2009]) that presented a hybrid GA based methodology and further

improved the results of most of the problems solved by Fernando &

Mauricio [2002]. This research has proved that in the presence of an

effective LSH the dependence of GA on its operators (crossover,

mutation, and selection) is somewhat relieved.

Genetic algorithm (GA) and simulated annealing (SA) have proved

to be prominent algorithms when applied to the cell formation problem in

 65

terms of solution quality, size of the problems handled, and convergence

speed. Therefore, these search techniques, in comparison to many

traditional techniques, have the capabilities to provide basis for the

development of more practically useful cell formation algorithms.

According to Holland [1975] GA has the ability to converge on

global optimum or nearly so in a large and complicated search space,

under given certain conditions on the problem domain. Since GA

operates independently from the objective function of the problem,

therefore it gives a designer greater flexibility to interchange different

objective functions and also make use of the multi-criterion based

objective functions. Also, GA can form machine cells and part families

simultaneously therefore they are more suitable for handling real life

problems which are normally large in size and complicated in nature.

Therefore, it has been time and again mentioned in literature that

techniques based on SA in general and GA in particular have

outperformed most of the conventional cell formation techniques

especially when it comes to large sized and complicated nature of

problems.

g) Heuristic Based Approaches:

Apart from mathematical programming based approaches, all of the CMS

design techniques discussed so far are based on heuristics. All the AI and array

based clustering techniques are basically heuristics, but since their solution

approach is general in nature, therefore, they are termed as metaheuristics.

Apart from these there are also some other heuristics, developed for the cell

formation problem, which do not fit in the exact definition of metaheuristics.

Branch and Bound (BB) based algorithms are an example of this class. It was

originally developed by Kusiak [1990]. BB algorithm is basically an

improvement of the Cluster Identification (CI) algorithm. CI algorithms were

actually successful clustering techniques which could only work with perfect

Machine-Part incidence matrices that could be divided into completely

separable clusters or in other words have no bottleneck machines and/or parts.

BB algorithms are actually the same as original CI algorithms but with the

 66

induced ability to tackle bottleneck elements. A reasonable review of the

heuristic based techniques is presented in Table 3.8.

Table 3.8: Heuristic Based Techniques

S/No. Reference Technique Review

1 Wakhodekar &
Sahu [1984]

Machine
component Cell
(MACE)
formation
approach

It is one of the earliest methods of
cell formation and that is why can
handle problems of limited size
only.

2 Vanneli &
Kumar [1986]

The bottleneck
cell minimization
approach

The paper provided an approach
of minimizing bottle neck
machines and/or parts by the
method of duplication of
machines and/or subcontracting of
parts. Though it seems
appropriate as far as formation of
perfect groups of machines and
families of parts is concerned but
still there has to be more than a
reasonable justification based on
cost analysis.

3 Askin &
Subramaniam
[1987]

A cost based
heuristic approach

The author cam up with an
approach of designing system on
the basis of minimizing cost that
involves work in process, material
handling and fixed machine costs.
The main challenge for such an
approach is to implement it to real
life situations which are normally
large in size and more
complicated.

4 Wei & Kern
[1989]

The machine score
similarity based
heuristic

The approach presented was
based on the calculation of
commonality score to assess
similarity between two machines.
The approach is very simple to
implement but suitable for smaller
size of problems only.

5 Al-Qatan [1990] Branch & Bound
algorithm

This technique outperformed the
traditional ROC technique but still
could not handle large size of
problems

6 Wei & Gaither
[1990]

A multi-objective
based heuristic.

A 0-1 integer programming model
is used to develop machine groups
and corresponding part families
while minimizing the overall cost
of producing exceptional parts.

7 Frazier et al.
[1990]

A multi-objective
cell formation

In this research an approach is
developed that could handle

 67

heuristic. multiple objectives while solving
the cell formation problem. The
researchers used a random seed
heuristic with non-dominated
solution theory. Though the
heuristic seems effective but it
would have been even more
effective had it been applied to
real life.

8 Harhalakas et al
[1990]

An efficient
heuristic based
approach for cell
formation.

An efficient heuristic based
approach for cell formation is
presented with discussion
regarding its industrial
applications.

9 Seifoddini[1990] A probabilistic
model approach.

The author presented a
probabilistic approach for the cell
formation problem with the
intention to overcome the
different assumptions to handle
the deterministic approach.

10 Logendran[1990] A heuristic based
algorithm.

In this research the author
developed a heuristic based
approach for the cell formation
problem, considering the
variations in cell load while
minimizing the total moves
(intercell+ intracell). The
approach is effective enough, but
the computational experience
presented in the paper is very
limited.

11 Boe & Cheng
[1991]

A close neighbour
algorithm.

In this research many
shortcomings of the Bond Energy
Algorithm and the Rank Order
Clustering approach have been
overcome. Though the algorithm
is effective enough but it may
have proved more effective had
GE been used instead of Grouping
efficiency as the performance
measure.

12 Geoffrey et al.
[1992]

Intercell reduction
heuristic

The authors developed a heuristic
for the cell formation problem
based on the objective intercell
reduction. The uniqueness of the
technique is that several
performance measures - such as
machine utilization, queue length,
flow time etc. - have been used. It
would have been even more
effective had GE been used as

 68

performance measure too.

13 Kusiak [1992] Branch & Bound
algorithm

Out performed nine other
algorithms but the deficiency was
still to handle large size problems

14 Cheng [1995] Branch & Bound
algorithm

The author claimed to have
produced a more reliable
approach that produces optimal
results. This speaks itself about
the limitation of the method as
optimal solutions can only be
obtained for smaller size of
problems. He compared his
results with McCormick et al
[1972], Slagel et al. [1974] and
ROC[1980]

15 Caux et al.
[2000]

Simulated
Annealing (SA)
based algorithm

In this approach the part routing
problem was handled by Branch
& Bound approach, whereas the
system was designed using SA
approach. The question left open
was that whether such multi
domain solution can be obtained
for a real life/large size problem?

3.3 Evaluation of solutions in GT:

Several objectives for the evaluation of solutions in GT have been defined by

resaerchers. A list of nine different objectives is given in Ballakur and Steudel [1987].

The most commonly used in literature is the minimization of intercellular material

handling costs. It is because of the fact that intercellular material handling cost would

be high in case of an inefficient grouping of machines and parts into cells or in other

words there would be too many exceptional elements (parts being processed in more

than one cell). Other objectives in the list include: maximizing similarities of parts or

dissimilarity of machines, minimizing the total amount of production cost, and

minmizing the total idle time of machines or maximizing the machine utilization in

cells. The objective of the models formulated by Kusiak [1985] and Seifoddini and

Wolfe [1987] was to minimize the total number of intercellular moves. On the other

hand, the two models presented by Gunasinghe and Lashkari [1989, 1989] had the

objective of maximizing the sum of the compatibility index between all machines and

parts.

 A major defficiency in the objectives, used by many cell formation models, is

that they do not have the ability to evaluate the ‘goodness’ of a solution on absolute

 69

basis. Chandrasekharan and Rajagopalan [1989] came up with another measure of

performance called grouping efficiency (Equation 3.2).

Grouping efficiency = η = qη1 + (1 - q) η2 (3.2)

Where:

η1 = The ratio between the number of 1s in the block diagonal to the total

number of elements in the block diagonal.

η2 = The ratio between the number of 0s outside the block diagonal to the total

number of elements outside the block diagonal.

q = Weight factor.

“The major drawback of grouping efficiency is its lower ability to distinguish

between good and bad solutions for example, a bad solution with many 1s outside the

block diagonal often shows efficiency figures around 75%” (Fernando and Mauricio

[2002]). This inability of grouping efficiency increases with increase in the size of the

Machine-Part incidence matrix. Therefore, Kumar and Chandrasekharan [1990]

proposed another measure of performance called Grouping Efficacy as shown in

Equation 3.3.

 Grouping Efficacy =
in

out

NN

NN

01

11GE
+

−
= (3.3)

 Where:

 1N = Total number of 1s in the machine parts incidence matrix

in

N0 = Total Number of 0s inside the block diagonal

 outN1 = Total number of 1s out side the block diagonal.

The development of GE was actually an attempt to propose a performance

measure that does not posses the drawbacks in other objectives especially the

grouping efficiency that had the lower ability to discriminate between a good and a

bad solution. Contrary to grouping efficiency, the size of the matrix does not affect

GE.

The Machine-Part grouping problem is normally solved by block

diagonalizing the zero-one Machine-Part incidence matrix, while minimizing

intercellular movements and maximizing the utilization of machines inside the cell,

simultaneously. “To obtain these two objectives, at a time, GE can be chosen as the

 70

measure of performance, because it has the ability to incorporate both the within-cell

machine utilization and the intercellular movements, also, it has a higher capability to

differentiate between well-structured and ill-structured matrices and finally, it does

not require any weight factor as well” (Fernando and Mauricio [2002]).

On the basis of the different advantages described above, GE is used as the

measure of performance during this research.

3.4 Summary:

 This chapter has given a brief description of the fundamentals of GT and CMS

which itself is a conceptual derivative of GT. A comprehensive literature review of

the different cell formation algorithms has been presented in section 3.2. The cell

formation techniques have been initially divided into two classes as; design oriented

and production oriented techniques. Further, the production oriented techniques are

distributed into six different types as; graph partitioning, array based clustering,

mathematical programming, similarity coefficient, heuristic based approaches, and

artificial intelligence. Within each category along with description of the technique a

reasonable review of related literature is also presented. Finally a brief overview of

some of the renowned performance measures, pointing out their advantages and

limitations, is also presented in section 3.3.

All the CMS design approaches discussed during this chapter have certain

advantages and disadvantages. Some approaches are very simple as far as their

practical application is concerned, for example ROC. Whereas, some have the ability

to formulate the CMS design problem more precisely by considering different

objectives and constraints, but the problem with such approaches is that they need

substantially long computational time to find solutions, for example Mathematical

programming. AI-based approaches including ANN, FL, SA and GA have been

applied to CMS design, because of their ability to; find solutions in comparatively less

computational time, capture and employ design knowledge, handle a number of

constraints, utilize several nonlinear performance measures, and simultaneously form

machine groups and part families with a lot of ease. Both Heuristic Search and AI-

based approaches are relatively new in this area and therefore most of the recent

research is utilizing these techniques to handle the cell formation problem.

 71

CHAPTER 4

LITERATURE REVIEW

JOB-SHOP SCHEDULING

4.1 Introduction:

Manufacturing industries are the backbone in the economic structure of a

nation, as they contribute to both increasing GDP/GNP and providing employment.

Productivity, which directly affects the growth of GDP, and benefits from a

manufacturing system, can be maximized if the available resources are utilized in an

optimized manner. Optimized utilization of resources can only be possible if there is

proper scheduling system in place. This makes scheduling a highly important aspect

of a manufacturing system. This chapter presents a review of scheduling in general

and Job-Shop Scheduling in particular. Finally, a brief review of the scheduling

procedures applied to CMS is also given at the end.

4.2 Scheduling:

Scheduling can be defined as, “the allocation of resources over a period of

time to perform a collection of tasks” (Noor [2007]). Also, another definition of

scheduling is that, “it is a function to determine an actual (optimal or feasible)

implementation plan as to the time schedule for all jobs to be executed; that is, when,

with what machine, and who does what operation” (Hitomi [1996]). Scheduling has

its applications everywhere, for example; flights scheduling, train scheduling and

production scheduling. According to Wiers [1997] manufacturing scheduling is the

performance of operations on a set of jobs, with the help of already allocated set of

machines, within a specified time.

According to the nature of activities, scheduling can be broadly divided into

project scheduling and operations scheduling

4.2.1 Project Scheduling:

 It is actually the scheduling of activities involved in carrying out a project. A

project can be construction of a factory, a bridge, a high way or maintenance and

repair of a factory or a plant etc. A number of software based approaches are available

 72

to handle such type of scheduling. Some well known techniques involve; Graphical

Evaluation and Review Technique (GERT), Critical Path Method (CPM), Project

Evaluation and Review Technique (PERT).

4.2.2 Operations Scheduling:

 Operation scheduling can be defined as, “the processing of a set of jobs, in a

given amount of time, on the already allocated corresponding set of machines, in a

workshop consisting of several machines or production facilities including operative

workers” (Hitomi [1996]). Jain [1998] classified the available operations scheduling

models as job sequencing, flow-shop scheduling, mixed-shop scheduling, Job-Shop

scheduling and open-shop scheduling.

The job sequencing model determines the sequence or order in which a set of

jobs would be processed on one machine. For N jobs there are a set of N! number of

possible schedules (sequences). From these N! number of sequences, one sequence is

selected based on the maximization or minimization of certain objective functions.

“A flow-shop has a typical flow pattern for mass production” (Hitomi [1996]).

Here the processing sequence is the same for all jobs. The flow-shop scheduling is

carried out by finding out the sequence of machines according to the multiple-stage

manufacturing.

In a Job-Shop every job may have a separate processing sequence. “Job-Shop

has a typical arrangement for the case of varied production of most jobbing types and

batch types” (Hitomi [1996]). The scheduling of Job-Shop is bit more complicated as

compared to the flow-shop. Since every job has a separate processing sequence,

therefore for each machine a separate job sequence has to be determined and these job

sequences should be inter-related with each other in such a way that all the jobs can

be processed within the minimum possible time (Makespan minimization).

A mixed-shop is basically the combination of flow-shop and Job-Shop. In this

case some jobs have fixed machine sequence like a flow-shop, and some are

processed in an arbitrary sequence like a Job-Shop. In other words, “jobs must be

processed in a sequence consistent with a given partial order of machines in mixed

shop” (Jain [1998]).

 73

The proper sequence of machines is not followed in an open-shop and

therefore the processing of jobs can be carried out in any sequence or order. All the

models discussed above are actually the derivatives of open-shop model.

In a manufacturing cell, ideally, all the jobs should have similar processing

requirements (no intercellular moves), but still the processing sequence may not be

the same each jobs. Therefore, a manufacturing cell can be termed as a Job-Shop.

Since this research is mainly concerned with the scheduling of manufacturing cells,

therefore the main focus will be on Job-Shop scheduling and the rest of the discussion

would be only related to this class of scheduling only.

4.3 Job-Shop Scheduling:

“Job-Shop Scheduling Problem (JSSP) is one of the well known hardest

combinatorial optimization problems. JSSP being amongst the worst members of the

class of NP-hard problems” (Gary and Johnson, [1979]), there is still a lot of room for

improvement in the existing techniques. Because of its large solution space JSSP is

considered to be comparatively one of the hardest problems to solve. “If there are n

jobs and m machines the number of theoretically possible solutions is equal to (n!)m”

(Noor [2007]). Among these solutions an optimal solution, for a certain measure of

performance, can be found after checking all the possible alternatives. But the

checking of all the possible alternatives can only be possible in small size problems.

For example, a very simple problem of 5 jobs and 8 machines will give 4.3x1016

numbers of alternatives. Even with a high performance computer, that can evaluate

one alternative per micro second, complete enumeration of this problem to find out

the optimal solution would take more than 1000 years of continuous processing

(Hitomi [1996], Morshed [2006]).

4.4 Solution Techniques to Handle JSSP:

 A number of solution techniques to handle the JSSP have been developed over

the years. A broad classification of the scheduling techniques is given in Jain [1998].

Initially the techniques are divided into two classes as approximation and optimization

techniques. A complete classification is shown in Figure 4.1.

 74

Optimization based techniques are further classified as efficient techniques

and enumerative techniques. Enumerative approach has further two subclasses as

branch and bound algorithms and mathematical optimization (mixed and linear

integer programming) based algorithms. On the other side approximation techniques

are initially classified as general algorithms and tailored algorithms. Tailored

algorithms are either dispatching rules or heuristic based algorithms, whereas general

algorithms are classified as AI-based techniques (ANN, GA and Expert Systems) and

local search based algorithms. A literature review of the optimization and

approximation approaches is given below.

4.4.1 Optimization Based Approaches:

 A lot of research work has been carried out, in this area, in the last fifty years.

Details are given in the following sections.

4.4.1.1 Efficient Techniques:

Johnson [1954] is one of the earliest research works in this area. He developed

a heuristic based efficient method for finding an optimal solution for the two and three

Techniques for
JSSP

Branch and Bound
algorithms

Optimization
based techniques

Approximation
based techniques

Efficient
techniques

Enumerative
techniques

Mixed integer
programming

Linear integer
programming

Mathematical
optimization

General
algorithms

Tailored
algorithms

Dispatching
rules

Heuristics

Local
search

Artificial
Intelligence

ANN GA Expert system

Figure 4.1: Solution approaches to JSSP [Jain(1998)]

 75

stage production scheduling problem, while considering the setup time as well. Akers

[1956] developed a heuristic based graphical approach for solving the production

scheduling problem. Jackson [1956] extended the Johnson’s rule and developed a

heuristic based approach for handling the job lot scheduling. Hefetz and Adiri [1982]

developed an approach for two machines unit time Job-Shop schedule length problem.

These techniques are applicable to very small problems and cannot handle a big

problem of more than 3 machines efficiently.

4.4.1.2 Enumerative Techniques:

Mathematical programming based approaches have been extensively used to

solve the JSSP. Balas [1965] developed an addictive algorithm for solving the linear

programming model that had 0-1 variables. In his [Balas (1969)] further work he

developed a mixed integer programming model for machine scheduling using the

disjunctive graphs. Mixed integer programming models for the JSSP were also

formulated by Mann [1960], Giffler and Thompson [1960] and Balas [1978]. Some of

the researchers [Giffler and Thompson (1960), Nemhauser and Wolsey (1988) and

Blazewicz et al (1991)] argued that mixed integer programming had not been leading

solution approaches to the practical methods of solution. However, the approach

presented in Harjunkoski et al. [2000] is a hybrid one, in which they formulated the

JSSP as a combination of mixed integer and constraint logic programming.

Another popular enumerative technique is Branch and Bound (BB). It was

initially developed by Bellman [1956]. Florian et al [1971], also, developed a BB

based algorithm for the machine sequencing problem. The work of Mahon and Florian

[1975] was based on BB, too. They developed a methodology to handle the issues of

due dates and maximum lateness in JSSP. Whereas, Martin [1991] and Asano and

Ohta [2002] proposed heuristics using BB and tried to find optimal solution for the

JSSP.

Though mathematical approaches are very attractive as far as formulation of

the problem is concerned. But, when it comes to solving the model and finding out the

optimal solution of the problem then it becomes extremely difficult as it could require

a substantial amount of time. The time requirement increases as the complexity and

size of the problem increases. Since JSSP has a higher degree of complexity, therefore

 76

mathematical optimization has very limited application as far as large and complex

problems are concerned (Noor [2007]).

4.4.2 Approximation Based Approaches:

 Approximation based approaches offer a good alternatives for solving the

JSSP in terms of the quality of solution and computational time. Though these

techniques do not guarantee optimality, but still solutions obtained are feasible and

near to optimum, always. Another main advantage of these techniques is the ease with

which they can be implemented in practice.

 Approximation approaches are further classified as Tailored algorithms

(dispatching rules and heuristics) and General algorithms (local search and AI tools),

as mentioned in Figure 4.1. A literature review regarding these techniques is

presented as follows.

4.4.2.1 Tailored Algorithms:

 A problem of N jobs to be scheduled on M machines with the objective of

minimizing Makespan (time elapsed between the start of the first operation and the

completion of the last operation), Cmax, can be handled in two steps. In first step jobs

are assigned to each machine according to their processing requirements. While, in

second step those assigned jobs are sequenced on each machine in such a way that

Cmax is minimized. The second step is normally handled by algorithms known as

Tailored Algorithm (Bedworth and Bailey [1987]). Both step one and step two can be

followed using a variety of heuristics/sequencing rules for the shop floor schedules for

N jobs and one machine and N jobs and M machines (Bedworth and Bailey [1987]).

An approach to Job-Shop scheduling or any complex operational scheduling problem

can be to break down the main problem into a number of sub problems. Sub problems

are scheduled separately with the help of certain algorithms or decision rules. Such

methods may not produce guaranteed optimal solution but would definitely present a

feasible solution evaluated through a particular performance factor.

 A number of decision rules can be found in literature. Some of the renowned

ones are described below.

 77

First In First Out (FIFO): In this case job sequencing on a machine is carried out on

the basis of the order of their arrival time. The objective behind the first come first

serve methodology is to minimize the completion time for individual jobs. This kind

of scheduling approach is suitable for service organisations (Fogarty et al. [1991]) and

(Vonderembse and White [1991]). A major disadvantage of this approach is that it

does not produce consistent results. Momin [1999] observes that the lack of consistent

results is because of the fact that the job sequencing is totally dependent upon the

probability distribution of their arrival. Another disadvantage is that apart from arrival

no other priority is considered. For example, an order released late needs to be moved

ahead of other orders in schedule because of certain priority (due date etc.) is not

allowed in by this rule (Veilleux and Petro [1988]).

Shortest Processing Time (SPT): According to this rule the priority for job

sequencing on a machine is the length of processing time. The shortest the processing

time of a job, the earliest the job is to be processed. The objectives associated with

this rule are reduction in the: average work in process, average job completion and

average job lateness (Smith [1989], Fogarty et al. [1991] and Vonderembse and White

[1991]). Though the results of this rule, in terms of its objectives, have been consistent

but still one disadvantage is that the job with the longest processing time is always

processed in the last.

Earliest Due Date (EDD): As per this rule, jobs are sequenced according to their due

dates. The one having the earliest due date is sequenced first and vice versa. The

objectives, associated with this rule, are minimization of maximum lateness and

average tardiness. Fogarty et al. [1989] argue that this rule works well in the

scheduling scenario where most of the jobs have similar processing times. Since

priority of job sequencing is their respective due dates, therefore it may be very useful

for the companies who are very sensitive about delivery deadlines. However,

Vonderembse and White [1991] observed that since one job is processed at a time,

therefore it will make other jobs to miss their due dates.

Critical Ratio (CR): Here the job sequencing priority is a ratio, between the time

remaining to the work remaining, which is known as critical ratio. Therefore, a job

having lowest critical ratio is sequenced first and vice versa. Being a dynamic rule it

is mostly used in practice (Veilleux and Petro [1988], Smith [1989], Vonderembse

 78

and White [1991] and Vollmann et al. [1997]). The objectives that may be achieved

by implementing this rule are minimization of lateness and tardiness.

Management Priority (MP): According to this rule jobs are sequenced according to

the priority list provided by the management. The priority may be according to the

importance level of a client to the management. According to Momin [1999] the

priority is set in advance and provided as an input, related to jobs, in the beginning of

a schedule.

 The above described dispatching rules have been consistently applied to the

scheduling problem in practice as they provide good solutions to complex problems in

real-time. One thing that can be concluded from the above discussion is that every

rule is suitable for a certain condition and can achieve a certain objective, but when it

comes to practice there are a number of other related objectives too, which have to be

compromised on. For example in case of SPT rule a job with a longest processing

time would always be processed last no matter how urgently required. That is the

reason that some researchers use more than one rule in combination. This shows that

the selection of a dispatching rule or a combination of dispatching rules actually

depends upon the type and amount of information that is taken into account while

carrying out the scheduling process. Wu [1987] presented a classification of these

rules based on the type and amount of information. Class 1 contains simple priority

rules that utilizes a particular piece of information, for example, due dates (such as

EDD), processing times (such as SPT), and arrival times (such as FIFO). Class 2

consists of combinations of rules from the previous class. The implementation of a

particular rule depends upon the shop floor situation. For example SPT and FIFO can

be combined in a way that SPT is used until there are only 5 jobs in queue and once it

exceeds this limit the system is switched over to FIFO. This may help in preventing

the jobs with longest processing times to be processed last, always. Class 3 contains

rules that utilize more than a single piece of information related to jobs and normally

referred to as Weight Priority Indexes. Every piece of information is assigned a

weight according to its relative importance. First an objective function is defined, for

example, f(x) = Processing Time of Jobi × weight1+ (Current Time - Due Date of Jobi)

× weight2. Then, all the jobs are sequenced according to their respective objective

function value.

 79

 From the classification described above, it is clear that by combining different

rules or utilizing different information about the jobs more effective approaches for

scheduling can be developed which can fulfil multiple objectives.

4.4.2.2 General Algorithms/ Artificial Intelligence:

 Figure 4.1 shows that general algorithms have been initially classified as AI-

based approaches and techniques based on local search. According to Jain [1998] the

AI-based approaches, that mainly include GA and ANN, have proved to be more

efficient especially in the case of NP-Hard problems, where heuristic based solutions

are difficult to find. A literature review of AI tools, applied to the problem of JSSP, is

presented below.

4.4.2.2.1 Artificial Neural Networks (ANN):

A reasonably detailed introduction of ANN has already been presented in

Chapter 3. Therefore, in this section more emphasis would be given to its application

to JSSP.

 ANN’s configuration can be carried out in terms of activation functions,

learning processes, feed forward or feed back, and input type. By changing the

number of layers, the number of artificial neurons per layer and the algorithm for

changing the weights of the interconnections a number of different configurations

with different characteristics can be developed. Each configuration may suit a

particular situation or problem. The useful applications of ANN have been explored in

the area of manufacturing by Zhang and Huang [1995]. They presented a

comprehensive review of the applications of ANN in manufacturing, for example in;

scheduling, group technology, computer vision, fault detection etc.

A number of researchers applied ANN to the JSSP. Among these Foo and

Takefuji [1988] are considered to be the earliest ones. Some of the other researchers

who also applied ANN to the JSSP includes; Zhou et al. [1991], Arizono et al. [1992],

Satake et al. [1994] , Jain and Meeran [1998], Hagan [2002], Meeran [2003], Noor et

al [2005]. Almost all of them have experienced that ANN is data-hungry tool and

precision of its results depends on the number of examples presented for its training.

 80

The output of unknown examples is valid if they lie within 20% range of the training

examples.

Some researchers (Montana [1992], Hagan [2002], Meeran [2003], Noor et al

[2005]) reported that ANN has the tendency of getting trapped in local optimum

because of the trajectory-dependant algorithm used for training. That is the reason that

some researchers (Montana [1992], Shazly and Shazly [1999], Yeun et al [1999],

Sexton and Gupta [2000], Edward and Taylor [2001], Tsakonas and Dounias [2002])

proposed hybrid approaches and their results showed that hybrid approaches

performed better than the traditional ANN.

4.4.2.2.2 Genetic Algorithms (GA):

 A reasonably introduction of GA has already been presented in Chapter 2.

Here its application to the JSSP would be described and some related review would be

presented.

 As already described, the four basic steps in the application of GA to a

problem are: representation, selection, crossover and mutation. A number of research

papers have been produced by different researchers showing different representations

and selection procedures with a variety of crossover and mutation schemes.

Representation is considered to be the first step in the implementation of GA

to a problem. According to Cheng et al [1996] a total of nine different types of

representation have been used while applying GA to the JSSP. Details are as under:

Representation based on:

Operations

Jobs

Preference list

Job-pair relation

Priority rule

Disjunctive graph

Completion time

Machines

Random keys

 81

According to Cheng et al. [1996] the first five types are termed as direct

representations, whereas, the last four are termed as indirect representations. In all the

direct type of representations a production schedule for a JSSP is directly encoded as

a chromosome, whereas, in case of indirect representation a sequence of decisions

related to scheduling a system (for example dispatching rules) is encoded as a

chromosome. Morshad [2006] carried out a comprehensive review of the different

representation schemes used by researchers. According to his survey, direct type

representation have been used by Nakano and Yamada [1991], Yamada and Nakano

[1992], Fang et al [1993], Gen et al [1994], Norman and Bean [1995], Bierwirth et al

[1996], Masaru et al [2000],Wang and Zheng [2001], Zhou et al [2001]; whereas,

examples of indirect representation can be found in; Falkenauer and Bouffoix [1991],

Tamaki and Nishikawa [1992], Della Corce et al [1995], Donrdoff and Pesch [1995]

Kobayashi et al [1995], Donrdoff and Pesch [1995], Ghedjati [1999], Cai et al

[2002].

After finalizing representation the next step is selection of chromosomes that

may take part in crossover and mutation. A number of established selection

procedures have already been mentioned in Chapter 2.

Selection is followed by crossover. Cheng et al. [1999] broadly categorised the

different crossover operators, used by researchers while solving JSSP, into two classes

as adapted genetic operators and heuristic-featured genetic operators. According to

Noor et al [2007] the following (Table 4.1) adapted genetic operators have been used

in the last two decades.

Table 4.1: Types of Adapted Genetic Operators (Noor [2007])

S/ No. Crossover type Proposed by

1 Partial-Mapped Crossover (PMX) Goldberg and Lingle [1985]

2 Order crossover (OX) Devis [1985]

3 Cyclic Crossover (CX) Oliver et al [1987]

4 Position Based Crossover Syswerda [1989]

5 Order Based Crossover Syswerda [1989]

6 Linear Order Crossover (LOX) Falkenauer and Bouffouix [1991]

7 Partial Schedule Exchange Crossover Gen et al [1994]

8 Subsequent Exchange Crossover Kobayashi et al. [1995]

 82

9 Job-Based Order Crossover Ono et al. [1996]

10 Substring Exchange Crossover Cheng et al [1997]

Gen and Cheng [1997] observed that in case of JSSP permutation-based

representations have been very frequently used by researchers in literature which

makes it very easy for some mutation schemes; like insertion, inversion, reciprocal

exchange mutation, shift mutation, and displacement; to be implemented.

 Some well known heuristic-based genetic operators reported in literature

include: Giffler and Thompson [1960], algorithm based crossover of Yamada and

Nakano [1991] and the neighbourhood search based mutation of Chen [1991].

 A number of researchers applied GA to the JSSP and presented different views

about its working. For example, Sakawa and Kubota [2000] observed that GA

outperformed SA. Also, according to Onwubolu [2000] GA performs more effectively

in reaching the optimum solution of a JSSP. Whereas, some researchers that include;

Bierwirth [1995], Dorndorf and Pesch [1995], Morshed [2006]; argue that hybrid GA

performs better than standard GA. “A standard GA may not be flexible enough for

practical applications and this becomes increasingly apparent when problem is

complicated and involves conflict and multi-tasking” (Morshed [2006]). Also, “GAs

can rapidly converge on possible solutions; they can sample large spaces randomly

and efficiently” (Serdar Uckun et. al. [1993]). However, “they are also subject to such

problems as genetic drift and premature convergence” (Serdar Uckun et. al. [1993]).

Therefore, some researchers developed hybrid GA procedures (Della Croce et al

[1994], Fang et al. [1994], Liaw [2000], Zhou et al. [2001], Noor et al. [2006], Tariq

et al. [2007]). “The complementary strengths of GA and local search are such that a

hybrid framework of GA and local search can achieve more efficient optimization

than GA alone and relaxes the dependence on parameters” (Cheng-Fa & Feng-Cheng

[2003]).

4.5 Summary:

 Manufacturing scheduling is of paramount importance, as an effective

scheduling system ensures optimized utilization of resources. Manufacturing

scheduling is broadly categorized as project scheduling and operations scheduling. A

project may be a construction of a factory, building or bridge etc. Project scheduling

 83

is mainly concerned with the scheduling of activities that are carried out in completing

a project. On the other hand operations scheduling takes care of the sequencing and

scheduling of operations of a set of jobs on a set of machines in such a way that

certain predefined objective is either minimized or maximized. The operation

scheduling models can be further classified as job sequencing, Job-Shop scheduling,

flow-shop scheduling, open-shop scheduling and mixed-shop scheduling.

 Job-Shop scheduling has much in common with the scheduling of

manufacturing cells in GT and is a well known hardest combinatorial optimization

problem. The techniques developed, over the years, to solve the JSSP are initially

classified as optimization and approximation based approaches.

The optimization based approaches are either efficient algorithms or

enumerative (Branch and Bound algorithms and Mathematical optimization based

techniques). A bulk of optimization approaches are based on Mathematical

optimization which consist of either linear or mixed integer programming.

Mathematical optimization techniques have the ability to incorporate a number of

design related information in the model thus formulating the problem accurately.

Therefore they are very attractive as far as formulation of the problem is concerned.

But because they consume a lot of time in finding out solutions, their use is limited to

small size problems only.

The approximation based approaches are broadly classified as tailored

algorithms and general algorithms. Tailored algorithms mainly consist of different

types of dispatching rules and heuristics, whereas general algorithms include

techniques that are based on local search and AI. The application of AI tools (ANN

and GA) is considered as a comparatively recent development in this area. ANN and

GA have been extensively used in solving the JSSP. Recently, most of the researchers

are of the view that hybrid AI tools perform better than traditional AI tools and that is

the reason that trend of using hybrid AI tools to solve the JSSP is on the rise.

 84

CHAPTER 5

METHODOLOGY FOR MACHINE-PART

GROUPING

5.1 Introduction:

 The literature review, in the previous chapters, has pointed out two things in

particular. One is that hybrid GA based methodologies have consistently performed

better than standard GA. The second is that in case of CMS the focus of the

researchers has either been on Machine-Part grouping (cell design) or on cell

scheduling. Whereas the combined approaches that take care of both the issues (cell

design and cell scheduling) are very rare in literature. This is the reason that a

combined approach has been developed during this research which not only carries

out the Machine-Part grouping but also takes care of the operational issues (cell

scheduling). Separate hybrid methodologies (GA + LSH) are developed both for

Machine-Part grouping and cell scheduling. Machine-Part grouping is considered to

be the first step in developing the operational design of CMS. This chapter describes

in detail the working of the hybrid GA based tool developed for Machine-Part

grouping by combining GA with an LSH. The LSH is incorporated inside the

traditional GA loop. The best solution in each generation is locally improved by the

LSH and the improved solution is placed back into population, so that it can take part

in different genetic operations (crossover, mutation, inversion) and produce even

better solutions.

5.2 Hybrid GA for Machine-Part grouping:

 As mentioned above, the first and most important step in the operational

design of a CMS is the grouping of parts into families and machines into

corresponding groups so that those parts can be processed alongside in one cell which

require similar processing. Therefore, for identifying part families and corresponding

machine groups an approach is developed during this research that combines an LSH

with GA. LSH takes the best solution from each generation and tries to improve its

GE by following a number of well defined steps. The procedure continues until no

further improvement is possible. Afterwards, the solution is placed back into the

 85

population so that it may take part in different genetic operators and produce even

better solutions. Further details of the hybrid approach are given in Section 5.4.

 5.3 Cell Formation Problem: (Tariq et al. [2006] & [2009])

 The problem of cell formation is solved in a simultaneous manner during this

research. “The simultaneous Machine-Part grouping approaches generally produce

better results in comparison to sequential approaches, since all decisions are taken at

the same time” (Mungawattana [2000]).

 During this research the problem of cell formation is solved by block

diagonalizing the zero-one initial Machine-Part incidence matrix with the objective of

maximizing GE which automatically minimizes the total number of intercellular

moves and maximizes the utilization of machines inside the cells. “GE has a higher

capability to differentiate between well-structured and ill-structured matrices and it

does not require any weight factor” (Fernando and Mauricio [2002]). The basic

expression of

+

−
=

in

out

NN

NN

01

11GE was first proposed by Kumar & Chandrasekharan

[1990] and was also used by Fernando & Mauricio [2002] as measure of performance.

 The initial zero-one Machine-Part incidence matrix is represented by MP[i,j]

and is of order Machs×Parts (where: Machs = Total machines in the system & Parts

= Total parts in the system). Every entry (aij) in the Machine-Part incidence matrix

can be either “1” or “0”.

=ija (5.1)

Mathematical Model (Tariq et al. [2006] & [2009])

 For the above description of the cell formation problem a mathematical model

can be developed which in fact is the first step towards finding solution for the cell

formation problem.

+

−
==

in

out

NN

NN

01

11 MaximizeGE Maximizefunction Objective (5.2)

1 (if a particular part ‘i’ has one of its operations on machine j)

0 (vice versa)

 86

Subject to: ∑
=

≥
NC

k

kx
1

1 (5.3)

k = 1……. NC (Total number of cells)

x = Total number of 1s in cell k.

Where:

GE = Grouping Efficacy,

1N = Total number of 1s in the Machine-Part incidence matrix

1N 1 if
1 1

==∑∑
= =

ij

M

j

P

i

ij aa (5.4)

i = 1……...P (Total number of parts)

j = 1……. M (Total number of machines)

in
N0 = Total Number of 0s inside the block diagonal

in
N0 ∑∑∑

= = =

=
NC

k

NM

j

NP

i

ijkb
1 1 1

 If 0=ijka then 1=ijkb else 0=ijkb (5.5)

b= Any variable.

NM = Number of machines in cell k.

NP = Number of parts in cell k.

inN1 = Total number of 1s inside the block diagonal.

inN1 ∑∑∑
= = =

=
NC

k

NM

j

NP

i

ijka
1 1 1

 If 1=ijka (5.6)

outN1 = Total number of 1s outside the block diagonal.

outN1 = inNN 11 − (5.7)

The objective function (5.2) maximizes GE which in turn minimizes the total

number of intercellular moves by reducing the number of 1s outside the block

diagonal (outN1) and minimizes the total number of 0s inside the block diagonal (in
N0)

that results in increasing the within-cell machine utilization. Whereas, constraint (5.3)

ensures that at least one part and one machine is allocated to each cell. One other

thing that needs to be mentioned here is that information about the number of cells has

to be provided in advance so that the system can be divided into that many number of

cells. The model ensures that a given set of machines and parts is arranged into a

CMS in such a way that the number of bottleneck machines (machines that are

 87

required by more than one cell) is minimized and their utilization inside their

respective cells is maximized.

5.4 Methodology for the Hybrid GA for Machine-Part Grouping: (Tariq et al.

[2006] & [2009])

 To find an optimal solution for the cell formation problem described and

formulated in Section 5.4, a strategy based on complete enumeration (considering all

the possible options) can be developed as shown in Figure 5.1. For each set of

machine groups all the possible part arrangements are considered and on termination

the optimal solution is found.

Figure 5.1: Block diagram representation of the proposed Methodology (Tariq et

al. [2006] & [2009])

START

Form the machine-part incidence
matrix (1-0 form)

Decide about the number of
cells/groups

Group parts into families according to the above
machines arrangement

Calculate Grouping Efficacy (GE)

Have all the possible
part families been

considered?

Have all the possible
machine arrangements

been considered?

Select the best solution

Yes

Yes

No

No

Select an arrangement of machines in the already
allocated number of cells.

END

 88

 A further stepwise description of the methodology, expressed in Figure 5.1,

can be as follows:

i. Arrange the Machine-Part incidence matrix in such a manner that each

row represents a machine and each column represents a part. The matrix

must contain entries in the form of either 1 or 0. 1 would represent that

part i has an operation on machine j and 0 would mean otherwise.

ii. Decide how many cells have to be developed.

iii. Distribute the total number of machines into the already indicated number

of groups (cells).

iv. Tryout, one by one, all the possible combinations of part families and

calculate respective GE for each arrangement.

v. Now, repeat step 3, for another combination of machines, and then step 4.

vi. The procedure in steps 3 and 4 must be repeated until every possible

arrangement has been considered.

vii. The arrangement that gives maximum GE is to be finally selected.

viii. End.

 “The cell formation problem is a combinatorial optimization problem that is

NP-hard” (Fernando & Mauricio [2002]). Therefore, complete enumeration can only

be possible in case of small size problems. But when it comes to handling problems of

large size, it is almost impossible to consider every possible arrangement/division of

machines and parts due to rapid increase in computational time and effort. In such a

case some kind of search method has to be employed. To cope with this problem a

hybrid GA is proposed by combining the conventional GA with an LSH to search for

that particular combination of machine groups and corresponding part families which

generates a maximum value of GE. The best solution of each generation of GA is

selected and further improved with the help of LSH. The process is repeated for 50

generations (Section 5.7) and on termination the best result is selected.

 It has been preferred to use a hybrid GA based approach rather than standard

GA because of the fact that, over the years, hybrid approaches have generally

performed exceptionally well as compared to standard GAs. This thinking was further

strengthened by the work presented by Fernando and Mauricio [2002] in which they

developed an approach by combining GA with an LSH and as a result there was a

 89

substantial improvement in GE for a number of benchmark problems. The hybrid GA

developed during this research, also, performed efficiently and further improved the

results, presented in Fernando & Mauricio [2002], of different benchmark problems.

 All hybrid GAs developed over the years (available in literature) are different

from each other in many respects. The hybrid GA developed during this research

possesses the uniqueness of having a strong LSH at the heart of the traditional GA

loop. The LSH is termed as strong because it produces better results in comparison to

all other techniques in spite of the fact that it has been used in combination with the

traditional crossover, mutation and inversion techniques. This proves the fact that an

efficient LSH relieves a great deal of pressure on the GA operators for producing

accurate/better results as would be the case in traditional GA. The LSH proposed

during this research is organized in such a way that for a given solution it can change

the position of a part and/or machine from one cell to another and observes its effect

on the value of GE. Further differentiation between this research and Fernando &

Mauricio [2002] is given in Table 5.1.

 The hybrid GA based approach developed during this research is presented in

Figure 5.2.

 90

 Apparently the approach developed during this research and shown in Fig 5.2

may look similar to the one proposed by Fernando & Mauricio [2002] but actually

they are different from each other in many ways. A description of these differences is

presented in Table 5.1.

Table 5.1: Differences between the two Hybrid GAs. (Tariq et al. [2009])

S/No. Fernando’s Hyb. GA Hyb. GA proposed in this research

1 Each chromosome has been

represented as a vector of random

keys {u (0, 1)}.

Here, each Chromosome is represented

by vectors consist of integers. The

value of each integer is between 1 and

the total number of cells.

2 A chromosome only encodes

information about the grouping of

machines in each cell. Therefore,

its length is equal to Machs+1,

where Machs is the total number

of machines in the system. The

last gene in a chromosome

A chromosome encodes information

both about the grouping of machines

into cells and their respective part

families. Therefore, its length is equal

to Machs+Parts. Where Machs is the

total number of machines and Parts is

the total number of parts in the system.

Provide info about
the total no. of

parts & total no. of
machines

Provide info in 1-0
form about the mach-
part incidence matrix

Gen ← 0

Initialize
population
randomly

Decoding &
Calculating

fitness values

Crossover

Repairing if
child is illegal Mutation

Evaluating
and placing
back in pop

Repairing if
child is illegal

Evaluating
and placing
back in pop

Inversion
Repairing if child

is illegal

Evaluating
and placing
back in pop

Selecting next
generation by

Roulette Wheel
selection procedure

Identifying the best
chromosome of the

generation

Is
Gen=0 Has

it been
previously
subjected
to LSH?

Local Search Heuristic

Is
Gen ≤ Max Gen

Start

END
Gen = Gen+1

Yes

No

Yes No

Yes

No

Figure 5.2: Block diagram representation of the hybrid GA for machine-part grouping

 91

represents the total number of cells

the system is going to be divided

into.

3 The type of crossover used is

Parameterized uniform crossover.

Where at each gene a biased coin

(with a probability of tossing

heads = 0.7) is tossed to decide

that from which parent this gene is

going to be selected from.

Here the conventional multi-cut point

crossover is used. Four cut points, two

in the machines’ portion and two in the

parts’ portion, are randomly selected.

This helps in interchanging entries

between the same portions of two

chromosomes for example entries from

machines’ portion of one chromosome

are interchanged with entries of the

machines’ portion of another

chromosome. This helps in reducing

the possibility of illegal solutions

produced in the process.

4 Here one or two random solutions

are inducted into population in

order to maintain a specific level

of diversity.

The conventional gene to gene type

mutation is used.

5 LSH is proposed for the formation

of respective part families for each

group of machines provided by

GA. The combination is further

refined by maximizing the value

of GE.

LSH is proposed to be placed inside the

conventional GA loop. The best

solution of each generation is further

locally improved by changing the

placement of parts and/or machines

with the objective of maximizing the

value of GE.

5.4.1 Genetic Algorithm (GA) (Tariq et al. [2006] & [2009])

 “GAs are stochastic search techniques based on the mechanism of natural

selection and natural genetics” (Irani [1999]). The procedure of GA is started with a

set of solutions, randomly generated, known as population. Each solution in the

population is known as a chromosome. The evolution of chromosomes is carried out

through successive iterations termed as generations. In each generation a selected

 92

number of chromosomes are subjected to different operations, for example inversion,

crossover, mutation, etc, which are known as GA operators. The evaluation of the

entire population is then carried out using some fitness measure. Each chromosomes

fitness value decides about its selection into subsequent generations. A complete

description of GA and its different operators and procedures has already been given in

chapter 2, whereas a general GA procedure is shown in the following:

5.4.1.1 Representation (Tariq et al. [2006] & [2009])

 Representation is the first and most important step in the implementation of

GA. During this research each chromosome (solution) is encoded in the form of

vectors containing integers. Once the representation scheme to be used is decided; the

next thing in line is to decide about the length of chromosome. Since here each

chromosome would carry information both about the machines and parts, therefore

length of chromosome is equal to the accumulative number of machines and parts, so

that a gene is allocated for each machine and each part in every solution. Let us

consider an example in which there are 4 machines and 4 parts and they have to be

arranged into two cells then the following vector can be a solution to the problem:

Chromj = [1 2 2 1 2 2 1 1]
 Machines Parts

Chromj can be more clearly represented as shown in Table 5.2.

Table 5.2 Representation of chromosome Chromj (Tariq et al. [2009])
Machines/ Parts → M1 M2 M3 M4 P1 P2 P3 P4

Gene No. → 0 1 2 3 4 5 6 7

Location → 1 2 2 1 2 2 1 1

 Machines Parts

Procedure: Genetic Algorithms (Gen and Cheng, 1997)
begin

 t ← 0;

 initialize P(t);

 evaluate P(t);

 while (termination condition not satisfied) do

 recombine P(t) to yield C(t);

 evaluate C(t);

 select P(t + 1) from P(t) and C(t);

 t ← t + 1;

 end

end

 93

 Where Chromj is an array of integers containing information about the

allocation of machines and parts to particular cells (j = 1 to population size). in this

example, vector Chromj consists of a total number of 8 locations (from 0 to 7); out of

these 8 locations the first half of the locations (from 0 to 3) represent machines,

whereas the last half of the locations (from 4 to 7) represent parts. Each machine and

part is represented by the location of its corresponding gene e.g. the second gene (1)

in Chromj represents machine1 (M2) and the sixth gene (5) represents part1 (P2).

Furthermore, each gene’s value (allele) shows the allocation (to be placed in which

cell) of a particular machine or part e.g. in the solution shown in Table 5.2 the

allocation of M2 is to cell 2 and P3 is to cell 1.

5.4.1.2 Initialization:

 After taking care of representation schemes and length of chromosomes, then

comes the stage when a population of chromosomes has to be randomly generated,

accordingly. A stepwise procedure can be devised for the initialization process as

follows:

i. Enter the total number of parts (Parts) to be handled.

ii. Enter the total number of machines (Machs) available for the processing

of parts.

iii. Provide information about the total number of cells (NC) in which the

system is to be divided.

iv. Now generate a random number ‘K’, so that 1 ≤ K ≤ NC. This would

ensure that the system is divided into as many number of cells as specified

in step iii. For further clarification consider Table 5.2 that represents a two

cell problem and therefore none of the genes is having a value greater than

2 or less than 1. This means that a machine/part is either placed in cell 1

(if the value of its corresponding gene is 1) or in cell 2 (if the value of its

corresponding gene is 2).

v. Chrom [i,j] ← K.

vi. IF the number of genes entered in the ith row of Chrom [i,j] are less than

an accumulative figure of total number of machines and total number of

parts (Machs + Parts), THEN repeat steps 4 and 5, ELSE go to next step.

This step ensures that each chromosome, in a population, consists of a

 94

total number of genes equal to the sum of Machs and Parts. Table 5.2

represents a 2 cell problem that consists of 4 machines and 4 parts,

therefore the chromosome consists of 8 genes.

vii. Increment the value of row (i ← i + 1). Incrementing i means that after the

random generation of ith solution is completed, we move on to the next

(i+1) solution.

viii. IF the number of rows filled up so far is less than the population size (i <

Pop Size), THEN repeat steps 4, 5 and 6, ELSE go to next step. This step

ensures that the number of solutions randomly generated must not exceed

the population size limit. It is essential because the population size is an

important GA parameter and its value is set after carrying out a sensitivity

analysis.

ix. Stop.

The above described stepwise procedure can be more clearly expressed in the

form of a block diagram representation as shown in Figure 5.3.

In Figure 5.3 ‘Chrom [i,j]’ is a two dimensional array for population, where

each row represents a chromosome/ solution. The total number of chromosomes in

population (rows in Chrom [i,j]) depends upon the size of population.

Enter the total
number of parts

(Parts)

Enter the total
number of
machines
(Machs)

Enter the total
number of cells

(NC)
i = 0

j = 0

Chrom [i, j] =

Random number
between 1 and NC

j ˂ Machs +
Parts

i < Pop Size

END

START

i = i + 1

j = j + 1

Yes No

Yes

No

Figure 5.3: Block diagram representation of the initialization process

 95

5.4.1.3 Evaluation and Fitness of Solutions in Machine-Part Grouping: (Tariq et

al. [2006] & [2009])

 It has been described in section 5.4 that on the basis of higher differentiating

ability, between the ill-structured and well-structured Machine-Part incidence

matrices, GE has been chosen as the performance measure. Since the value of GE has

to be maximized, therefore, the fitness function can be similar to the objective

function (Equation 5.2). The reason for this is that in case of maximization problems

the solution having a higher objective function value is considered to be a

comparatively fitter chromosome than the one having lower objective function value.

$$ Before selecting the next generation from the current generation, the fitness value

of each chromosome is determined. This in turn is responsible for its selection into the

next generation. The procedure for evaluating each chromosome consists of the

following two steps:

1. First the rows and columns of the initial machine part incidence matrix

(MPini [i,k]) are rearranged according to the arrangement mentioned in a

chromosome. For this purpose a blank array, (MPfin [i,j]) of the same size

as that of MPini [i,k], is defined. Then according to the value of each gene

a particular row or a column from the initial matrix is copied into the final

matrix. Since each chromosome has two portions: machines’ portion and

parts’ portion, therefore first columns of MPini [i,j] are rearranged and

afterwards the rearrangement of rows is carried out. The procedure is

started, in the machines’ portion, with the minimum value of gene i.e. 1.

Starting with the first row (x = 0), in Chrom [x,k], the value of each gene

is checked. If the kth gene is having value equal to 1 then the kth column

from MPini [i,k] is copied into the j
th column of MPfin [i,j], where j is

having an initial value of ‘0’ and is incremented by 1 every time a column

is copied. The same process is repeated for all the genes in machines’

portion having value equal to 1, and after that for all the other values of

genes in the same portion, one by one. Once all the genes, having values

from 1 to NC, in the machines’ portion are checked and corresponding

rearrangement of columns’ carried out, the same procedure is repeated in

the parts’ portion with the exception that here instead of the rearrangement

of columns, rows are selected from MPfin [i,k] according to a gene’s value

 96

and copied into another blank array MPfin1 [i,j]. This procedure is clearly

represented in Figure 5.4.

In order to further elaborate the procedure presented in Figure 5.4, a two

cell problem having 4 machines and 4 parts is considered as shown below:

Suppose the first row of Chrom [x,k] is:

Chrom [0, k] = [1 2 2 1 1 2 2 1]
 Machs Parts

START

x = 0

i (Row) = 0

j (Col) = 0
Gene = 1

k = 0

Chrom [x,k] =
Gene

i = 0

i = i + 1
i < Parts

j = j + 1

k = k + 1

k < Machs

Gene = Gene + 1

Gene ≤ NC

i (Row) = 0

j (Col) = 0
Gene = 1

k = Machs

Chrom [x,k] =
Gene

MPfin 1[i,j] ← MPfin [k,j]

j = j + 1

j < Machs

i = i + 1

k = k + 1

k < Machs
+ Parts

Gene = Gene + 1

Gene ≤ NC

MPfin [i,j] ← MPini [i,k]

j = 0

Yes

Yes

Yes

Yes

Yes

Yes

Yes

No

No

No

No

No

No

No

No

Yes

Figure 5.4: The process of rearrangement of machine-part incidence

matrix according to a given chromosome

END

Table 5.3: MPini[i,k]
Machs

Parts

1 2 3 4

1 1 0 0 1

2 0 1 1 0

3 0 1 1 0

4 1 0 0 1

Initial matrix

Table 5.4: MPfin[i,j]
Machs

Parts

Blank matrix

 97

Now copying columns and rows, respectively, according to the given

solution from MPini [i,k] into MPfin [i,j] and MPfin [k,j] into MPfin 1[i,j] as

shown in Tables 5.5 and 5.6.

2. Then GE is calculated, with the help of Equation (5.2) after determining

values of the variables mentioned in the equation. This step itself consists

of several sub steps as follows:

i. First the total number of operations (N1) are determined in the given

Machine-Part incidence matrix (MPini [i,k]), which is equal to the total

number of 1s in the matrix.

ii. Then from the rearranged matrix (MPfin 1[i,j]), obtained from Step 1,

the total number of machines (NM[k]) and the total number of parts

(NP[k]) in cell k is determined.

iii. Also, from the rearranged matrix the total number of 1s (inN1) and the

total number of voids/ zeros (in
N0), inside the block diagonal, is

determined, which in turn helps in calculating the total number of

intercellular moves (outN1).

iv. Now GE can be calculated by putting values of the variables, found in

step (iii), in Equation (5.2).

v. Steps (ii) to (iv) are repeated population size times in order to calculate

GE for all the solutions/chromosomes (Chrom [x,z]) in population.

 This process, for one solution, is clearly expressed in the form a block diagram

representation as shown in Figure 5.9.

Table 5.5: MPfin[k,j]
Machs

Parts

1 4 2 3

1 1 1 0 0

2 0 0 1 1

3 0 0 1 1

4 1 1 0 0

Columns are being copied

Table 5.6: MPfin1[i,j]
Machs

Parts

1 4 2 3

1 1 1 0 0

4 1 1 0 0

2 0 0 1 1

3 0 0 1 1

Rows are being copied

 98

Let us consider the same example mentioned in Table 5.3. GE for the problem

can be found using Equation (5.2) and the approach presented in Figure 5.5.

From MPini[i,j]:

Total number of 1s in initial Machine-Part incidence matrix = N1 = 8

Now, from MPfin1[i,j]:

Total number of machines in cell 1 = 2

Total number of parts in cell 1= 2

Total number of machines in cell 2 = 2

Total number of parts in cell 2 = 2

Using the above information about the number of machines and parts in each cell and

the approach presented in Figure 5.5, the following can be found:

MPfin1[i,j]
= 1

START
i = 0

N1 = 0
j = 0 MPini[i,j]

= 1

j = j + 1

N1 = N1 + 1

j < Parts

i = i + 1

i < Machs

y = 1
k = 0
x = 0

M = 0
z = 0

Chrom[x,z]
= y

NM[k] =
M + 1

z = z + 1

k = k + 1
y = y + 1

z < Machs

y < NC

y = 1
k = 0

P = 0
z = Machs

Chrom[x,z]
= y

NP[k] =
P + 1

z = z + 1
z < Machs

+ Parts

k = k + 1
y = y + 1

y < NC

k = 0
inN1 = 0
in

N0 = 0

i = 0

j = 0

inN1 =
inN1 + 1

in
N0 =

in
N 0 + 1

j = j + 1
j < NP[k]

i = i + 1

i < NM[k]

k = k + 1

k < NC

Calculation of
GE [x] from

Equation (5.2)
END

outN1 = N1-
inN1

Figure 5.5: Decoding of a Chromosome

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

No

No

No

No

No

No

No

No

No

No

No

No

No

 99

Total number of 1s inside the block diagonal = inN1 = 8

Total number of 0s inside the block diagonal = in
N0 = 0

Total number of 1s outside the block diagonal = outN1 = N1 -
inN1 = 8 – 8 = 0

Now, putting all the values of variables in Equation (5.2),

==
−

−
=

+

−
= %1001

08

08
 GE

01

11

in

out

NN

NN

5.4.1.4 Genetic Operators

 With the help of different genetic operators e.g. mutation, inversion and

crossover a chromosome selected initially evolves to many other chromosomes. The

proper use of these different GA operators causes improvement in results in each

generation and this whole process is stopped when no more improvement is

experienced.

5.4.1.4.1 Crossover (Tariq et al. [2006] & [2009])

 It is regarded as the major GA operator. Normally, two chromosomes are

being subjected to the procedure of crossover, at a time. In this process the features of

the two chromosomes are combined together and the generation of two new

chromosomes (offspring) is resulted. A crossover approach used during this research

is termed as multi-cut point crossover. In this approach initially a set of 4 cut points

are selected. The reason for selecting 4 cut points is that every solution consists of two

portions: parts’ portion and machines’ portion. Now, in order to utilize the

effectiveness of the multi-cut point crossover and exchange/crossover the elements of

the respective parts (machines to machines and parts to parts) a set of two cut points

are selected both in the machine and parts’ portions of two selected chromosomes. In

spite of this arrangement of separate cut points selection in the machines’ and parts’

portions there is still a possibility of mixing of elements between the two portions.

Therefore, a repair algorithm is also developed to tackle such irregularities/

illegalities. Also, 2 cut point crossover can also be used instead of the 4 cut points

crossover.

 100

The stepwise procedure used to carryout crossover, during this research, is as

follows:

i. Select two chromosomes ChromA and ChromB on the basis of their better

fitness (top two chromosomes)

ii. Generate four random numbers a, b (0 ≤ a ˂ Machs and 0 ≤ b ˂ Machs)

and c, d (Machs ≤ c ˂ Machs+Parts and Machs ≤ d ˂ Machs+Parts).

iii. IF a < b, AND c < d, THEN proceed to the next step, ELSE go to step 2

and generate random numbers again.

iv. Start from the value of a, i.e. j ← a.

v. Swap the two entries Chrom [A, j] and Chrom [B, j] in the two selected

chromosomes.

vi. Increment the value of j i.e. j ← j + 1.

vii. IF j < b, THEN repeat steps 5 and 6, ELSE go to next step.

viii. This time j ← c.

ix. Swap the two entries Chrom [A, j] and Chrom [B, j] in the two selected

chromosomes.

x. Increment the value of j i.e. j ← j + 1.

xi. IF j < d, THEN repeat steps 9 and 10, ELSE go to next step.

xii. IF the number of chromosomes selected for crossover, so far, is less than

60% of the population size (Section 5.7), THEN select the next two best

chromosomes in the population and go to step 2 and start all over again,

ELSE go to next step.

xiii. Stop.

The above described procedure is also shown in the form of a block diagram

representation as shown in Figure 5.6.

 101

 In order to further elaborate the procedure presented in Figure 5.6, let us

consider the same example of 4 parts and 4 machines. Based on the fitness values the

selection of two chromosomes, from the population, is carried out e.g. solution 3 and

5 get selected, as follows:

(Tariq et al. [2006] & [2009])

Chrom [3,j] = [1 2 1 2 2 1 2 1]

Chrom [5,j] = [1 1 2 2 2 1 1 2]

 Then a random selection of 4 cut points is carried out (2 each in the machines’

and parts’ portions of the two selected chromosomes) as follows:

START

Two chromosomes ChromA and

ChromB are selected on the basis
of their better fitness

Generate four random numbers:
 Two a, b (0 ≤ a, b ˂ Machs)

Two c, d (Machs ≤ c, d ˂ Machs+Parts)

a < b
c < d

j = a

z = Chrom [A,j]
Chrom [A,j] = Chrom [B,j]

Chrom [B,j] = z

j = j + 1

j ≤ b

j = c

z = Chrom [A,j]
Chrom [A,j] = Chrom [B,j]

Chrom [B,j] = z

j = j + 1

j ≤ d

END

Figure 5.6: Block diagram representation of the crossover procedure

Yes

Yes

Yes No

No

No

Is
the

Crossover performed
so far, less than

60%?

Select the next two best
chromosomes

Yes No

 102

 Chrom [3,j] = [1 2 1 2 2 1 2 1]

 Chrom [5,j] = [1 1 2 2 2 1 1 2]

 The resulting offsprings, after interchanging entries between the cut points, are

as shown below:

Chrom [3,j] = [1 1 2 2 2 1 1 1]

Chrom [5,j] = [1 2 1 2 2 1 2 2]

 The crossover rate used in this research is 60% as discussed in Section 5.7.

5.4.1.4.2 Mutation: (Tariq et al. [2006] & [2009])

It is the GA operator that maintains a certain level of diversity in population

by incorporating random and spontaneous changes in selected chromosomes. “In GA,

mutation serves the crucial role of either, (a) replacing the genes lost from the

population during the selection process so that they can be tried in a new context, or

(b) providing the genes that were not present in the population” (Gen & Cheng

[1997]). The stepwise procedure adapted, during this research, to carryout mutation is

as follows:

i. First, a gene is randomly selected. For this purpose two random numbers i

(0 ≤ i ˂ Machs+Parts) and j (0 ≤ j ˂ Population size).

ii. Select the ith
 gene of the jth chromosome, i.e. Chrom [i,j].

iii. Now, generate a random number K (1 ≤ K ≤ NC).

iv. IF Chrom [i,j] = K, THEN go back to step 3 and generate another random

number within the same range, ELSE go to next step.

v. Assign the value of K to the initially selected gene (Chrom [i,j] ← K).

vi. IF the number of mutated genes is less than 10% of the total number of

genes in population (Section 5.7), THEN go back to step 1 and start all

over again, ELSE go to next step.

vii. Stop.

This procedure is further clarified the form of a block diagram representation

as shown in Figure 5.7.

 103

To further clarify the procedure of mutation, being employed here, let us

consider an example in which the total number of cells to be developed is 3. Let a

gene selected for mutation is Chrom [i,j] = 1. Now, a random number between 1 and 3

is generated keeping in check that it is not equal to the original value of the gene i.e.

1. Say, the generated value is 2, so Chrom [i,j] is assigned the value 2 instead of its

original value 1. The whole process is repeated until 10% (Section 5.7) genes in a

population undergo mutation.

5.4.1.4.3 Inversion: (Tariq et al. [2006] & [2009])

It is the GA operator that inverts a selected portion of a chromosome thus

changing its genetic structure. During this research 15% (Section 5.7) chromosomes

of the total population have been allowed to undergo inversion. Following is the

stepwise procedure being employed to carryout the inversion process:

i. Invert ← 0 (where ‘Invert’ is a variable).

ii. Randomly select a chromosome ‘k’.

Chrom[i,j]
= K

START

Generate two random numbers
i (0 ≤ i < Machs+Parts) and

j (0 ≤ j < Population size)

Select the jth chromosomes’
ith gene (Chrom[i,j])

Generate a random number
‘K’ between 1 and NC
(Total number of cells)

Chrom [i,j] ← K

Mut = 0

Mut < 10% of
total genes

Mut = Mut + 1

END

Yes

No

Yes

No

Figure 5.7: Block diagram representation of the mutation process

 104

iii. Generate two random numbers i (0 ≤ i ˂ Machs+Parts) and j (0 ≤ j ˂

Machs+Parts).

iv. IF i ˂ j, THEN go to next step, ELSE repeat step 3.

v. Swap Chromk [i] and Chromk [j].

vi. Increment the value of i (i ← i+1) and decrement the value of j (j ← j - 1).

vii. IF still i ˂ j, THEN repeat step 5 and 6, ELSE go to next step.

viii. Increment the value of variable ‘Invert’ (Invert ← Invert + 1).

ix. IF Invert < 15% of Pop Size (Section 5.7), THEN repeat steps 2 to step8,

ELSE go to next step.

x. Stop.

The stepwise procedure used is also presented in Figure 5.8, as follows:

In order to further elaborate the process of inversion, let us consider an

example having 4 parts and 4 machines. Let the following kth chromosome is selected

randomly from the population:

Chromk [j] = [2 1 1 2 1 2 1 1]

Then two random numbers are generated between 0 and the position number

of the last gene which is 7 in this case. Say 2 and 5 are the numbers randomly

START

Invert = 0

Generate two random
numbers

i (0≤ i ˂ Machs+Parts) and j
(0≤ j ˂ Machs+Parts)

i < j

z ← Chromk [i]
Chromk [i] ← Chromk [j]

Chromk [j] ← z

i = i + 1

j = j - 1

i < j

Invert = Invert + 1

Invert < 15%
of Population

size

END

Randomly select a
chromosome
e.g. Chromk

Figure 5.8: Block diagram representation of the inversion process

Yes

Yes

Yes

No

No

No

 105

generated. The inversion procedure is applied in between the selected range as shown

below:

Chromk [j] = [2 1 1 2 1 2 1 1] (the entries within the selected range “positions 2 to 5”

are shown in bold)

Chromk [j] = [2 1 2 1 2 1 1 1] (the entries are shown in inverted form)

5.4.1.4.4 Repair Strategy: (Tariq et al. [2006] & [2009])

The method of encoding (representation) chromosomes and the type of

different genetic operators used during this research are such that some

illegal/infeasible chromosomes may be resulted. A chromosome is termed as

infeasible or illegal if it, after being decoded, generates a solution having one or more

cells without a part and/or machine assigned to it i.e. without even a single part and/or

machine. The repair strategy ensures that at least one part and one machine is assigned

to each cell which is in accordance with the Equation (5.3).

i. Start with y ← 1.

ii. Gene ← y.

iii. IF this value of ‘Gene’ is having at least one entry in both the portions i.e.

machines’ portion and parts’ portion, THEN y ← y + 1, AND go to step 8,

ELSE go to the next step.

iv. Now, randomly select another gene (Chromi [j]) in the same portion in

which ‘Gene’ does not exist.

v. IF Chromi [j] exists more than once in the portion, THEN go to next step,

ELSE go step 4 and randomly select another gene.

vi. Chromi [j] ← Gene (the value of a gene that was missing).

vii. Increment the value of y (y ← y + 1).

viii. IF y < NC (total number of cells), THEN go to step 2, ELSE go to next

step.

ix. Stop.

The above described repair strategy can be presented in the form a flow

diagram as shown in Figure 5.9.

 106

For further clarification an example is considered. It consists of 4parts and 4

machines and they are to be arranged into 3 cells. One of the possible solutions can be

as follows:

Chromi [j] = [2 1 1 2 2 2 3 3]

Here, in the machines’ portion (first 4 genes in Chromi [j]) integer 3 is not

available and also in the parts’ portion (last 4 genes in Chromi [j]) integer 1 is

missing. So this solution is termed as an illegal one and its repair is required to be

carried out. During the repair process a gene, both in the machines’ and parts’ portion,

is selected randomly and then it is checked whether any other gene has the same value

as the selected gene. If the answer is “yes” then the selected gene is assigned the value

of the missing gene. Let us suppose gene2 and gene6 have been picked. 1 and 3 are

the respective values of these selected genes. Since other genes, having the same

integer values, do exist in the respective portions of the selected genes there are

other genes that have the same values, in their respective portions, therefore, gene2

START

y = 1

Does
‘Gene’ have at
least one entry

in both the
portions?

Generate a random number
‘j' between start and total
number of genes in that

portion

Does
Chromi [j]

have multiple
entries in the

portion?

Chromi [j] = Gene
(that was missing)

y = y + 1

y ≤ NC (Total

number of cells

END

Gene = y

Yes

Yes

Yes

No

No

No

Figure 5.9: Block diagram representation of the repair strategy

 107

can be given the value of 3 (since in the machines’ portion 3 is missing) and gene6

can be given the value of 1 (since in the parts’ portion 1 is missing).

Following is the repaired form of the chromosome.

Chromi [j] = [2 1 3 2 2 2 1 3]

5.4.1.4.5 Selection: (Tariq et al. [2006] & [2009])

During this research the selection approach adopted is based on roulette wheel

selection procedure. A roulette wheel selection approach selects a new population

using the probability distribution based on the value of fitness. The roulette wheel can

be constructed as follows:

i. Start with a counter x ← 0, GET ← 0, where GET is the total GE of a whole

population.

ii. GET = GET + GE [x], where GE [x] is the GE of Chromx.

iii. Increment the value of x (x ← x + 1).

iv. IF x < Pop Size (Population size), THEN repeat steps 2 and 3, ELSE go

to next step.

v. x ← 0.

vi. Calculate selection probability for a chromosome (Sel Prob [x] =
[]

TGE

xGE
).

vii. Increment the value of x (x ← x + 1).

viii. IF x < Pop Size, THEN repeat step 6 and step 7, ELSE go to next step.

ix. x ← 0 and Sum ← 0.

x. Sum ← Sum + Sel Prob [x].

xi. Now cumulative probability (Cum Prob [x]) of a chromosome can be

determined by Cum Prob [x] ← Sum.

xii. Increment the value of x (x ← x + 1).

xiii. IF x < Pop Size, THEN repeat step 10 to step 12, ELSE go to next step.

xiv. x ← 0 and z ← 0.

xv. Generate a random number ‘R’ (0 < R < 1).

xvi. IF R ≤ Cum Prob [x], THEN select Chromx, ELSE IF R ≤ Cum Prob

[x+1], THEN select Chromx+1, ELSE x ← x + 1 AND repeat step 16.

xvii. Increment the value of z (z ← z + 1).

xviii. IF z < Pop Size, THEN repeat step 15 to step 17, ELSE go to next step.

 108

xix. Stop.

The above described procedure can be clearly represented in the form of a

block diagram as shown in Figure 5.10.

5.4.2 Local Search Heuristic (LSH): (Tariq et al. [2006] & [2009])

The best solution (Best [i]) of each generation is locally further improved with

the help of the LSH developed during this research. The actual motivation of

developing this LSH is to increase the effectiveness of GA in reaching the optimum or

close to the optimum in comparatively earlier generations. The structure of this LSH

is such that if by incrementing or decrementing the value of a particular gene the

corresponding GE value is increased then such a change is stored and on completion

of iteration the same procedure is repeated again. This procedure is kept on repeated

until no increase is experienced in a complete iteration. This way the best solution of a

generation can be further improved which is most of the times either equal or better

than the previously reported best results. Another capability of this LSH is that if a

problem consists of a well-structured Machine-Part incidence matrix then it is more

START x = 0 GET = 0 GET = GET + GE[x] x = x + 1

x = 0

x < Pop
Size

Sel Prob[x] =
 GE[x]/ GET

x = x + 1

x < Pop
Size

x = 0
Sum = 0

Sum = Sum +
 Sel Prob[x]

Cum Prob[x]
 = Sum

x = x + 1
x < Pop

Size

x = 0, z = 0

Generate random
number R

between 0 & 1

R ≤ Cum
Prob [x]

R ≤ Cum
Prob [x+1]

Select
Chromx

Select
Chromx+1

x = x + 1

z < Pop
Size

END

Yes

Yes

Yes

Yes

Yes

Yes

z = z + 1

No

No
No

No
No

No

Figure 5.10: Roulette Wheel selection procedure

 109

likely that the best result would be achieved in the first generation. However, for the

problems having ill-structured Machine-Part incidence matrices it may take more than

one generation to reach the optimum or close to the optimum. This shows that in spite

of the fact that LSH displayed considerable effectiveness; it still depends upon the

searching ability of GA to help it out in finding a comparatively better solution (best

of the generation) which can be further improved and converted into the best. The

development of the LSH procedure in a stepwise manner is as follows:

i. Starting with y ← 1 and i ← 0, the best solution (Best [i]) is checked for

any gene having value equal to ‘y’ in the Machines’ portion.

ii. IF Best [i] = y, THEN x ← i, ELSE i ← i+1.

iii. Check for multiple entries of ‘y’ except at position ‘x’ (stored value of ‘i’).

iv. IF multiple entries exist THEN go to next step, ELSE go to step1 and

start the same procedure in the parts' portion.

v. Best [x] ← Best [x] + w, where w = 1, IF this value of Best [x] is tried

previously THEN again Best [x] ← Best [x] + w (this is repeated until a

value is found which has not been previously tested), ELSE go to next

step.

vi. IF Best [x] ≤ NC (Total number of cells), THEN decode Best [i] and

calculate GE, ELSE go to the start of the procedure, stop incrementing and

start decrementing.

vii. IF GE > Max GE, THEN Max GE ← GE AND Best [x] ← Best [x] + w,

ELSE Best [x]← y.

viii. Repeat steps 5, 6, and 7 until Best [x] + w ≤ NC.

ix. IF Best [x] + w > NC, THEN Best [x] ← Best [x] – w, AND repeat 5, 6, 7

until Best [x] – w ≥ 1.

x. Keep repeating from 2 to 9, until all the genes having value as ‘y’ are

tested.

xi. IF all the genes having value equal to ‘y’ are tested, THEN y ← y+1.

xii. IF y ≤ NC, THEN go to step2, ELSE go to next step.

 110

xiii. Has there been any improvement recorded? IF yes, THEN start all over

again, ELSE stop.

Figure 5.11 is the block diagram representation of the LSH, and it further

elaborates the stepwise procedure described prior to it.

5.4.3 Numerical Example for Local Search Heuristic (LSH):

To further elaborate the working of the LSH developed during this research an

example is selected from Waghodekar & Sahu [1984]. This numerical example

consists of 7 parts and 5 machines. Initially the application of LSH in a stepwise

manner, to the first gene of the best solution (Best [i]) found by GA in its first

generation, is shown in the following. Details of the complete application of LSH to

Figure 5.11: Block diagram representation of Local Search Heuristic

y=1 i = 0

Best[i] =y

i=i+1

Does
Best [x] has

multiple entries
in portion.

w =0

w = w+1

Best[x]≤NC

y < NC

END

START

Best [x]=Best[x]+w

GE > Max

GE

Decode Best []
and find GE

Best [x] =y

i < Machs

+Parts

y = y+1

Max GE =GE

x = i

w = 0
z = Best [x]

w = w+1

Best [x] =Best[x]-w

Best[x] ≥ 1

Decode Best []
and find GE

GE > Max

GE

Max GE=GE Best [x] =z

Yes

No

Yes No No

Yes

Yes

No

No No

No

No

Yes

Yes

Yes Yes

Has there
been any

improvement
?

No

Yes

 111

the remaining genes of the solution are presented in Table 5.9. The problem is as

shown in Table 5.7.

Table 5.7: Initial Machine-Part incidence matrix (Tariq et al. [2009])

Machines

Parts
1 2 3 4 5

1 1 0 0 1 0

2 0 1 0 1 1

3 0 1 1 1 0

4 0 1 1 1 1

5 1 1 1 0 1

6 1 0 1 0 1

7 1 0 0 0 0

 This problem is basically about arranging 7pats and 5 machines into a total

number of 2 cells while achieving maximum possible value of GE. To achieve this

objective the given data is loaded into a computer code developed during this research

and based upon the methodology described above. The best chromosome developed

by GA in its first generation is as follows.

Best [i] = [1 2 2 1 2 1 2 2 2 2 2 1]

 The decoded form of the solution Best [i] is shown in Table 5.8.

Table 5.8: Decoded solution (Best [i]) (Tariq et al. [2009])

Machines

Parts
1 4 2 3 5

1 1 1 0 0 0

7 1 0 0 0 0

2 0 1 1 0 1

3 0 1 1 1 0

4 0 1 1 1 1

5 1 0 1 1 1

6 1 0 0 1 1

Using (5.2) (5.4) (5.5) (5.6) and (5.7) we get GE = 62.50%

This solution is subjected to LSH:

Step 1: The procedure is started with y = 1, and i = 0, where y is any variable and i is

the counter for array Best [i].

 112

Step 2: All the genes of Best [i] are checked for the value of y, one by one. Starting

with i = 0, the value of i is incremented by 1 until Best[i] = y.

Best [i] = [1 2 2 1 2 1 2 2 2 2 2 1]

In the above example at i = 0 i.e. Best [0] = y = 1, as shown in grey colored

background. So that value of i is stored in another variable x and the gene is selected.

Step 3: Now, the machines’ portion of the array Best [i] is checked for any gene,

other than at position x (which is the location of the selected gene), that has the same

value as y (1).

Step 4: Since Best [3] = 1, it means the value of the selected gene can be

incremented/decremented in order to change the position of the machine (machine1)

related to this gene (gene 0). Had there been no multiple entries of the selected gene,

any change in its value would have led to the creation of an illegal chromosome as

that would have violated the inequality (5.3).

.Step 5: So, Best [x] = Best [x] + 1 = 1 + 1 = 2, where x = 0. This new value of Best

[x] satisfies the constraint Best [x] + 1 ≤ NC, where NC is the total number of cells,

which is 2 in this case, so the new chromosome, as a result of the change in the

selected gene’s value, is shown below:

Best [i] = [2 2 2 12 1 2 2 2 2 2 1]

Step 6: On decoding the chromosome, mentioned in step 5 and using (5.2) (5.4)

(5.5) (5.6) and (5.7) it is found that GE = 55.56%.

Step 7: Since GE found, as a result of the change, is less than the maximum GE (Max

GE) found so far therefore the change is reverted back i.e. Best [x] = 1.

Step 8: Now we move to step 5 and again Best [x] = Best [x] + 1. Since this value of

Best [x] i.e. 2, is already tested so this time Best [x] = Best [x] + 2. But since Best [x]

+ 2 > NC, so further incrementing is stopped.

Step 9: Now Best [x] = Best [x] – 1 = 1 – 1 = 0. But since this value of Best [x]

violates the constraint Best [x] – 1 ≥ 1, so decrementing is stopped, too.

Step 10: The same procedure of incrementing and then decrementing can be applied

to all other genes having the value equal to y that is 1 in array Best [i].

 113

Step 11: Once all the genes having value equal to y (1) are subjected to the procedure

explained above, then y = y + 1 = 1 + 1 = 2.

Step 12: Steps 2 to 11 are repeated until y ≤ NC. IF y > NC THEN go to next step.

Step 13: IF there has been any improvement recorded in the value of GE, THEN the

procedure is started all over gain, ELSE stopped.

Table 5.9: Complete application of LSH to the best solution found by GA (Tariq
et al. [2009])

S/

No

Chromos-

ome

Best [i]

Max

GE

%

Selected

gene’s

changed

value (I)

I≤NC New

Chromos-

ome

GE

%

GE

>

Max

GE

Re-marks

01 [12212

1222221]

62.50 2 Yes [22212

1222221]

55.56 No Max GE>GE change is reverted

02 [12212

1222221]

62.50 3 No - - - Constraint is violated. So change

is reverted.

03 [12212

1222221]

62.50 0 No - - - Constraint is violated. So change

is reverted.

04 [12212

1222221]

62.50 2 Yes [12222

1222221]

68.00 Yes Max GE<GE change is stored.

05 [12222

1222221]

68.00 3 No - - - Constraint is violated. So change

is reverted.

06 [12222

1222221]

68.00 0 No - - - Constraint is violated. So change

is reverted.

07 [12222

1222221]

68.00 2 Yes [12222

2222221]

 60.71 No Max GE>GE change is reverted

08 [12222

1222221]

68.00 3 No - - - Constraint is violated. So change

is reverted.

09 [12222

1222221]

68.00 0 No - - - Constraint is violated. So change

is reverted.

10 [12222

1222221]

68.00 2 Yes [12222

1222222]

55.17 No Max GE>GE change is reverted

11 [12222

1222221]

68.00 3 No - - - Constraint is violated. So change

is reverted.

12 [12222

1222221]

68.00 0 No - - - Constraint is violated. So change

is reverted.

13 [12222

1222221]

68.00 3 No - - - Constraint is violated. So change

is reverted.

14 [12222

1222221]

68.00 1 Yes [11222

1222221]

50.00 No Max GE>GE change is reverted

 114

15 [12222

1222221]

68.00 0 No - - - Constraint is violated. So change

is reverted.

16 [12222

1222221]

68.00 3 No - - - Constraint is violated. So change

is reverted.

17 [12222

1222221]

68.00 1 Yes [12122

1222221]

50.00 No Max GE>GE change is reverted

18 [12222

1222221]

68.00 0 No - - - Constraint is violated. So change

is reverted.

19 [12222

1222221]

68.00 3 No - - - Constraint is violated. So change

is reverted.

20 [12222

1222221]

68.00 1 Yes [12212

1222221]

62.50 No Max GE>GE change is reverted

21 [12222

1222221]

68.00 0 No - - - Constraint is violated. So change

is reverted.

22 [12222

1222221]

68.00 3 No - - - Constraint is violated. So change

is reverted.

23 [12222

1222221]

68.00 1 Yes [12221

1222221]

50.00 No Max GE>GE change is reverted

24 [12222

1222221]

68.00 0 No - - - Constraint is violated. So change

is reverted.

25 [12222

1222221]

68.00 3 No - - - Constraint is violated. So change

is reverted.

26 [12222

1222221]

68.00 1 Yes [12222

1122221]

56.00 No Max GE>GE change is reverted

27 [12222

1222221]

68.00 0 No - - - Constraint is violated. So change

is reverted.

28 [12222

1222221]

68.00 3 No - - - Constraint is violated. So change

is reverted.

29 [12222

1222221]

68.00 1 Yes [12222

1212221]

56.00 No Max GE>GE change is reverted

30 [12222

1222221]

68.00 0 No - - - Constraint is violated. So change

is reverted.

31 [12222

1222221]

68.00 3 No - - - Constraint is violated. So change

is reverted.

32 [12222

1222221]

68.00 1 Yes [12222

1221221]

50.00 No Max GE>GE change is reverted

33 [12222

1222221]

68.00 0 No - - - Constraint is violated. So change

is reverted.

34 [12222

1222221]

68.00 3 No - - - Constraint is violated. So change

is reverted.

 115

35 [12222

1222221]

68.00 1 Yes [12222

1222121]

62.50 No Max GE>GE change is reverted

36 [12222

1222221]

68.00 0 No - - - Constraint is violated. So change

is reverted.

37 [12222

1222221]

68.00 3 No - - - Constraint is violated. So change

is reverted.

38 [12222

1222221]

68.00 1 Yes [12222

1222211]

69.57 Yes Max GE<GE change is stored.

39 [12222

1222211]

69.57 0 No - - - Constraint is violated. So change

is reverted.

(Genes marked in grey colored background are the selected genes)

 The best solution found by the LSH is shown below.

Best [i] = [1 2 2 2 2 1 2 2 2 2 1 1] GE = 69.57%

 Decoding the solution Best[i], modified by LSH, the Machine-Part

arrangement is shown in Table 5.10.

Table 5.10: Decoded solution (Best[i]) (Tariq et al. [2009])

 Machines

Parts
1 2 3 4 5

1 1 0 0 1 0

6 1 0 1 0 1

7 1 0 0 0 0

2 0 1 0 1 1

3 0 1 1 1 0

4 0 1 1 1 1

5 1 1 1 0 1

5.5 Numerical Example of Machine-Part Grouping (Tariq et al. [2006] &

[2009])

 A numerical example is selected from Irani [1999] and solved by this

approach to show its effectiveness. This example consists of a total number of 20

parts and 10 machines. The system is required to be organized into 3 cells. The input

information in the form of a Machine-Part incidence matrix is given in Table 5.11:

 116

Table 5.11: Initial Machine-Part incidence matrix (Tariq et al. [2006] & [2009])

Machines

Parts 1 2 3 4 5 6 7 8 9 10

1 1 1 1

2 1 1 1

3 1 1 1

4 1 1 1

5 1 1 1

6 1 1 1 1

7 1 1 1 1

8 1 1 1

9 1 1 1

10 1 1 1 1

11 1 1 1

12 1 1 1 1

13 1 1 1 1

14 1 1 1

15 1 1 1

16 1 1 1

17 1 1 1

18 1 1 1 1

19 1 1 1

20 1 1 1
For clarity only 1’s are shown in the Table.

Number of parts (P) = 20

Number of machines (M) = 10

Length of chromosome (L) = 20 + 10 = 30 (Each chromosome will have 30 genes)

 This data is fed into a computer program, encoded in AM (Applications

Manager, [2001]) software and based on the methodology explained above. The best

possible solution was obtained in the first generation. The result is as under:

Best [i] = [1 3 2 1 2 3 1 2 3 2 1 3 3 1 3 2 2 3 1 2 3 2 2 3 1 1 3 2 3 1]

 Allocating the machines and parts as per the best solution (Best[i]) the

Machine-Part incidence matrix, shown in Table 7, shapes up as:

Machines Parts

 117

Table 5.12: Final block diagonal matrix (Tariq et al. [2006] & [2009])

Machines

Parts 1 4 7 3 5 8 10 2 6 9

1 1 1 1

4 1 1 1

9 1 1 1

15 1 1 1

16 1 1 1

20 1 1 1

6 1 1 1 1

7 1 1 1 1

10 1 1 1 1

12 1 1 1 1

13 1 1 1 1

18 1 1 1 1

2 1 1 1

3 1 1 1

5 1 1 1

8 1 1 1

11 1 1 1

14 1 1 1

17 1 1 1

19 1 1 1

Using (5.4) (5.5) (5.7) and (5.2), respectively, the following can be calculated.

The total number of 1’s in the Machine-Part incidence matrix (N1) = 66

Total number of 0’s inside the block diagonal (in
N0) = 0

Total number of 1’s outside the block diagonal (outN1) = 0

%10000.1
066

066
GE

01

11 ==
+

−
=

+

−
=

in

out

NN

NN

The final block diagonal matrix, shown in Table 5.12, has a GE of 100%.

5.6 Sensitivity Analysis:

 The overall performance of GA is considerably affected by its parameters i.e.

number of generations, population size, crossover, and mutation rates. Though it

seems beneficial to operate with a large population size through a greater number of

generations as it provides an opportunity to explore more solution space and

facilitates GA to converge on a global optimum, but at the same time it increases the

 118

computational effort of GA. Therefore, proper adjustment of these parameters is very

important as it fine tunes the performance of GA and enhances its effectiveness.

 In the presence of a strong local search, dependence of GA on its parameters is

reduced and that is why results for most of the problems are achieved in earlier

generations as compared to simple GA or other competitive algorithms in literature.

Therefore, a problem of the size 30×50 (Total number of machines = 30 & Total

number of parts = 50) is selected from literature (Stanfel [1985]) for analysis, as it

required the maximum number of generations in comparison to other tested problems

and therefore seems to be a suitable choice. The problem is solved with various

number of generations, population sizes, crossover, inversion and mutation rates.

Figure 5.12 shows the effect of increase in the number of generations on the

Percentage (%age) Solution Gap. It can be evidently seen in the Figure that as the

number of generations increases the %age Solution Gap decreases and at generation

number 50 it reaches to a value of zero. Therefore the maximum number of

generations, which the algorithm is allowed to run through, is kept at 50.

The effect of population size on the %age Solution Gap is shown in Figure

5.13, below. Lower bound for the problem is obtained when the population size is

increased to 50 with a constant crossover, inversion and mutation rates of 60%, 15%

and 10% respectively.

%age
solution

gap

0.25

0.5

Number of generations

10 20 30 40 50 60

0.325

0.175 0.175

0.05

0 0

Figure 5.12: Effect of the number of generations on %age solution gap

0

 119

Number of generations = 50, Crossover rate = 0.6, Inversion rate = 0.15,

Mutation rate = 0.1

 Further, the sensitivity of the algorithm against variations in the rate of

crossover, inversion and mutation is presented in Figures 5.14, 5.15 and 5.16.

Number of generations = 50, Population size = 50, Inversion rate = 0.15,

Mutation rate = 0.1

0.2

%age
solution

gap

0.1

Crossover rate

0.4 0.5 0.6 0.7 0.8 0.9

0 0

Figure 5.14: Effect of crossover rate on %age solution gap

0 0

0.1375

0.075

0.0375

0.1625

Figure 5.13: Effect of population size on %age solution gap

%age
solution

gap

0.125

0.25

Size of population

25 50 75
0 0 0

0.225

 120

Number of generations = 50, Population size = 50, Crossover rate = 0.6,

Mutation rate = 0.1

Number of generations = 50, Population size = 50, Crossover rate = 0.6,

Inversion rate = 0.15

 From the Figures 5.12, 5.13, 5.14, 5.15 & 5.16 it can be concluded that the

algorithm achieved maximum value (zero value of the %age Solution Gap) at a

crossover rate = 0.6, inversion rate = 0.15, mutation rate = 0.1, constant population

size = 50, and through a constant number of generations = 50. Since the problem used

here for analysis consumed the maximum number of generations before reaching its

maximum value, therefore it would be more than reasonable to assume that the

algorithm with the same set of values for its parameters would perform satisfactorily

for other problems as well.

0.2

%age
solution

gap

0.1

Mutation rate

0.1 0.09 0.08 0.07 0.06 0.05
0

Figure 5.16: Effect of mutation rate on %age solution gap

0

0.125

0.0875 0.0875

0.1875

0.15

0.2

0

0.125

0.0625

0.1625

%age
solution

gap

0.1

Inversion rate

0.2 0.15 0.1 0.05
0

Figure 5.15: Effect of inversion rate on %age solution gap

 121

5.7 Summary:

This Chapter has given a detailed description of a hybrid GA based tool that

has been developed, during this research, for the Machine-Part grouping problem. It

starts with the initial description of the cell formation problem and the mathematical

model developed for the problem during this research. Based on the mathematical

model an approach is presented, which can be used to find the optimum solution for

any problem based on the principles of complete enumeration. Since complete

enumeration is possible in problems of limited size only, therefore a GA based hybrid

methodology is proposed, during this research, which combines GA with an LSH. The

methodology developed utilizes multipoint crossover, traditional gene to gene

mutation, inversion, and Roulette Wheel selection procedure. The best solution of

each generation is subjected to LSH, which is placed at the heart of the GA loop,

provided that it is different from all the previous solutions that underwent local

improvement. For better understanding of the programming logic each step of the

algorithm is clearly explained both with the help of flow diagrams and stepwise

procedure. Finally, the methodology is further elaborated by solving a benchmark

problem with the help of the proposed algorithm. In the last part of the Chapter a

sensitivity analysis is presented to justify the values of the GA parameters (crossover

= 60%, mutation = 10%, inversion = 15%, population size = 50, number of

generations = 50).

 122

CHPTER 6

METHODOLOGY FOR CELL SCHEDULING AND

COMBINATION WITH MACHINE-PART

GROUPING

6.1 Introduction:

 It has been previously described that carrying out an operational design of a

CMS is comparatively more useful in practice than simply grouping parts into

families and machines into corresponding cells. As mentioned in previous chapters

that operational design of a CMS consists of two steps (Machine-Part grouping and

the cell scheduling). The development and implementation of first step (Machine-Part

grouping) has been described in detail in Chapter 5. Description of the second step is

given in this chapter that consists of details about the development and operation of

the hybrid GA based tool for cell scheduling by combining GA with an LSH and then

its combination with the hybrid GA based tool for Machine-Part grouping (Chapter 5).

Here also, the LSH is incorporated inside the traditional GA loop in such a way that

the best solution in each generation is subjected to it. The effectiveness of the LSH is

evident from the fact that though it has been used in combination with the traditional

two cut point crossover and swap mutation even then the results produced for all the

benchmark problems are as accurate as previously reported in literature.

6.2 Scheduling of a CMS: (Tariq et al. [2007])

 As mentioned in section 6.1, the second step in carrying out the operational

design of a CMS is to provide solution for scheduling of operations on available

machines in each cell. While solving the cell scheduling problem, during this

research, it has been assumed that:

� Each job in a cell has its own processing sequence totally independent of

the processing sequence of other jobs in the system.

� None of the jobs visits the same machine twice.

� An operation once started cannot be interrupted in between.

� Each machine can process only one job at a time.

 123

It can be easily understood from the above assumptions that the problem of

cell scheduling, as far as this research is concerned, resembles the general JSSP and

would be handled in a similar manner. Therefore, the methodology developed during

this research to solve the JSSP is presented in the following sections, which would be

later on applied to the cell scheduling problem after combining it with the solution

methodology, already presented, for the cell formation problem.

6.3 A Hybrid GA for JSSP: (Tariq et al. [2007])

The general JSSP is known to be extremely hard and requires efficient,

effective and accurate scheduling techniques to realize its full benefits. In this

research a hybrid GA is presented to solve n jobs and m machines JSSP. An LSH is

incorporated within GA to optimize Makespan. LSH considerably improves the result

of GA and saves a lot of computational effort. The algorithm is tested and verified by

using a number of benchmark problems from literature and industrial case studies. For

further elaboration of the algorithm solution for a benchmark problem is also

presented. The Makespan is used as the main scheduling criterion because of its

popular use as performance measure in scheduling and therefore the comparison of

most of the different tools/algorithms is made by this measure.

The performance of the approach (GA+LSH) developed during this research is

validated through various benchmark problems and industrial case studies.

Computational experience with the algorithm proves that in addition to be as accurate

as previous approaches it also has the ability to search out the best solution in fewer

number of generations.

6.4 The Standard JSSP: (Tariq et al. [2007])

“In the classic n × m minimum- Makespan JSSP, n different jobs on m

different machines are scheduled” (Gen & Cheng, [1997]). In JSSP every job contains

several operations which are to be carried out in pre-specified order. Each operation

of the job requires a specific machine on which it is processed for a fixed amount of

time (processing time). In addition to the above information a number of constraints,

listed below, are also required to be followed.

� There is only one operation of each job on each machine.

 124

� There is no pre-specified sequence of processing between the operations of

different jobs.

� Once an operation is started it cannot be stopped in between.

� Only one job is to be processed, at a time, on each machine.

� The delivery time of jobs, i.e. due date or time of release, is not pre-

specified.

While following the above mentioned constraints the JSSP is solved by

sequencing the operations of all the jobs on the available set of machines with the

objective to minimize the total Makespan which in fact is the time elapsed between

the start of the first operation and the completion of the last operation.

6.5 Methodology (Developed during this research) for the Hybrid GA for

JSSP: (Tariq et al. [2007])

In general it is believed that the best results, as far as the quality of solutions

and time are concerned, are achieved from hybrid approximation algorithms, as they

combine several methods. From a general perspective, the solution to JSSP can be

considered as a collection of local decisions concerning which operation to schedule

next. Therefore, the methodology developed in this research is in fact the combination

of conventional GA with the LSH (developed during this research) as shown in Figure

6.1. The LSH is incorporated inside the GA loop in such a way that each generation’s

best chromosome is subjected to it provided that it has not been tried previously. This

procedure is kept repeated for a pre-specified number of generations and once it is

completed the solution that displayed the best result is selected. This procedure can be

described in a stepwise manner as follows:

i. Start with initializing the value of a variable ‘Gen’ (Gen ← 0).

ii. Initialize population randomly.

iii. Decode each solution and calculate its fitness value.

iv. Select the best chromosomes for crossover.

v. IF children are illegal THEN repair, ELSE go to next step.

vi. Evaluate children and place them into population.

vii. Randomly select chromosome and carryout mutation.

viii. Evaluate the mutated chromosome and place it into population.

ix. Select the next generation by stochastic universal sampling (SUS).

 125

x. Select the best chromosome of the generation.

xi. IF Gen = 0, THEN subject the best chromosome to LSH, ELSE go to next

step.

xii. IF the selected chromosome has not been previously subjected to LSH,

THEN apply the LSH procedure to it, ELSE go to next step.

xiii. Increment the value of ‘Gen’ (Gen ← Gen + 1)

xiv. IF Gen < Max Gen (Maximum number of generations i.e. 100 as discussed

in Section 6.7), THEN repeat step 4 to step 13, ELSE go to next step.

xv. Stop.

The above described procedure can be further explained with the help of a

block diagram representation as shown in Figure 6.1.

 6.5.1 Genetic Algorithm (GA): (Tariq et al. [2007])

In the hybrid GA, developed during this research, GA starts with an initial

population size of 75, crossover rate of 60%, mutation rate of 10% and is allowed to

run through 100 generations (details are given in Section 6.7).

Crossover

Decoding &
Calculating

fitness values

Initialize
population
randomly

 START

Mutation

Evaluating the
mutated chromosome

and placing into
population

Selecting next
generation by

stochastic universal
sampling (sus)

Identifying the best
chromosome of the

generation

Is
Gen=0

Has
It been

previously
subjected
to LSH?

Local
Search

Heuristic

END
Identify the best

chromosome

No

Yes
No

Yes

No

Yes

Figure 6.1: Hybrid methodology for JSSP (Tariq et al. [2007])

Gen = Gen + 1

 126

6.5.1.1 Representation: (Tariq et al. [2007])

In the hybrid methodology, proposed during this research,

chromosomes/solutions are represented in the form of two dimensional arrays of

integers as shown in Table 6.1. The size of chromosome is determined by multiplying

the total number of machines with the total number of jobs i.e. Machs × Parts. For

example, if there are 6 machines and 6 parts and each part has six operations i.e. an

operation on each machine then every solution/two dimensional array would be

having 36 entries, as shown in Table 6.1.

Table 6.1: Chromosome representation (Tariq et al. [2007])

3 3 1 5 4 3

4 2 1 2 5 5

1 4 6 6 6 4

2 2 5 1 5 1

6 6 4 2 2 5

4 3 3 1 6 3

Every location of the two dimensional array is filled with an integer having

value from 1 to 6 i.e. 1≤ integer ≤6. Also, the frequency of existence (how many times

an integer can exist in a solution) of an integer must be equal to 6. The reason for this

is that the maximum number of operations on a job can be 6.

 While retrieving information, about the processing schedule of each operation, from

a solution entries are taken into consideration along the direction of arrow i.e. row wise,

starting from the first row. In the above solution (Table 1) the first entry is ‘3’. Since integer

‘3’ has been encountered for the first time it means this corresponds to operation 1 of job 3.

Moving further, the second entry in the same column is ‘4’. Since ‘4’ has also been

encountered for the first time therefore this also corresponds to the first operation of job ‘4’

and its scheduling would be carried out after the first operation of job 3. As soon as all the

integers in the first column (from row 1 to row 6) have been considered (corresponding

operations scheduled) the same process is repeated for the 2nd column and so on until all the

entries in the rest of the columns are considered.

6.5.1.2 Initialization:

 A stepwise procedure for the random initialization of a population of solutions

can be developed as described below:

Direction
to read

entries in a
solution

 127

i. Initialize variables x, y and z (x ← 0, y ← 0, z ← 0).

ii. i ← 1 (where 1≤ i ≤ Jobs)

iii. Count ← 0.

iv. Generate a random number ‘x’ between 0 and total number of machines

(Machs).

v. IF 0 ≤ x < Machs, THEN go to next step, ELSE repeat step 4.

vi. Generate another random number ‘y’ between 0 and total number of jobs

(Jobs).

vii. IF 0 ≤ y < Jobs, THEN go to next step, ELSE repeat step 6.

viii. IF Pop [x, y, z] = 0, where Pop [x, y, z] is a three dimensional array for

population, THEN Pop [x, y, z] = i, ELSE repeat step 4 to step 8.

ix. Increment the value of variable ‘Count’ (Count ← Count + 1).

x. IF Count < Machs, THEN repeat step 4 to step 9, ELSE go to next step.

xi. Increment the value of i (i ← i + 1).

xii. IF i ≤ Jobs, THEN repeat step 3 to step 12, ELSE go to next step.

xiii. Increment the value of z (z ← z + 1), which is a counter for the population

size.

xiv. IF z < Pop Size (Population size), THEN repeat step 2 to step 14, ELSE

go to next step.

xv. Stop.

The stepwise procedure, explained above can be further elaborated with the

help of a block diagram representation as shown in Figure 6.2.

 128

6.5.1.3 Evaluation and Fitness: (Tariq et al. [2007])

For the purpose of evaluation, Makespan (Cmax) is chosen as the performance

measure. It is a common performance measure and has been frequently used in

literature for comparison of the quality of solutions, for different benchmark

problems, developed by different techniques. Therefore, like other techniques, in this

research also, each chromosome is decoded and its Makespan is calculated. The

decoding procedure developed during this research is explained in the form of a

stepwise procedure as follows:

i. Start by initializing the counter for rows ‘i’ (i ← 0) and the variable for

Makespan ‘Cmax’ (Cmax ← 0).

ii. Initialize the counter for columns ‘j’ (j ← 0).

iii. Select the integer at position (i,j) (Chrom[i,j]).

iv. Identify the job (x), its operation number (o) and the machine (k) on which

it is going to be performed.

v. IF it is the first operation of job (x) on machine (k) AND also it is the first

operation of any job on machine (k), THEN assign a value zero to both the

machine available time (MATk) and the job available time (JATx) (MATk ←

0, JATx ← 0), ELSE go to step 7.

vi. Assign a value zero to the earliest start time for operation ‘o’ (ESTo ← 0)

AND go to step 8.

z ˂ Pop size

START

x = 0
y = 0
z = 0

Count = 0
x = Random Num

(Between 0 & Machs) 0 ≤ x ˂ Machs

y = Random Num
(Between 0 & Jobs)

0 ≤ y ˂ Jobs

Pop[x,y,z]
= 0

Pop[x,y,z] = i

Count = Count + 1

Count ˂
Machs

i = i + 1

i ≤ Jobs

z = z + 1 END

Figure 6.2: Block diagram representation of the initialization process

Yes
Yes Yes

Yes

Yes

Yes

No No No

No

No

i=1

No

 129

vii. IF MATk < JATx, THEN ESTo ← MATk, ELSE ESTo ← JATx.

viii. Calculate completion time for operation ‘o’ (CTo) by adding the earliest

start time for the operation (ESTo) and it’s given processing time (PTo)

(CTo = ESTo + PTo).

ix. IF CTo > Cmax, THEN Cmax = CTo, AND i ← i + 1, ELSE i ← i + 1.

x. IF i < Jobs, THEN repeat step 3 to step 9, ELSE go to next step.

xi. Increment the value of column ‘j’ (j ← j + 1).

xii. IF j < Machs, THEN repeat step 2 to step 11, ELSE go to next step.

xiii. Makespan ← Cmax.

xiv. Stop.

The procedure explained above is further elaborated in the form of a block

diagram representation as in Figure 6.3.

Once the value of Makespan (Cmax) is found then fitness value for solution can

be found by taking its reciprocal as shown in Equation (6.1).

Figure 6.3: Decoding Procedure (Tariq et al. [2007])

Identify
Job (x)

Operation # (o)
Machine (k)

Select
Chrom [i,j]

i = 0
(Row)

j = 0
(Column)
Cmax = 0

(makespan)

START

Is it the
first operation of
job x and also of

Machine k?

MATk = 0

JATx = 0

ESTo = MATk =

JATx = 0

MATk > JATx

ESTo = MATk

CTo = ESTo + PTo

ESTo = JATx

Cmax = CTo

CTo > Cmax i=i+1

i < Jobs

j=j+1

j < Machs Makespan = Cmax END

Yes

Yes

Yes

Yes

No

No No

No

No

Yes

 130

Fitness Function = F = 1/Cmax (6.1)

6.5.1.4 Genetic Operators: (Tariq et al. [2007])

To obtain improved results proper utilization of genetic operators (crossover

and mutation) is very important. A brief description of the genetic operators used here

is given in the following.

6.5.1.4.1 Crossover: (Tariq et al. [2007])

The crossover used in this particular case is a two cut point crossover, which is

very common and has been previously used in literature. The stepwise procedure that

is adopted to perform crossover is as follows;

i. Select the two best chromosomes (ChromA and ChromB) of a population.

ii. Randomly select two cut points a and b, in the range from 0 to total

number of jobs (Jobs).

iii. IF a < b, THEN proceed to next step, ELSE repeat step 2.

iv. Assign the value of ‘a’ to the counter for rows ‘i’ (i ← a).

v. Initialize the counter for columns ‘j’ (j ← 0).

vi. Swap the entries ChromA[i,j] and ChromB[i,j].

vii. Increment the value of ‘j’ (j ← j + 1).

viii. IF j < Machs, THEN repeat step 6 and step 7, ELSE go to next step.

ix. Increment the value of ‘i’ (i ← i + 1).

x. IF i ≤ b, THEN repeat step 5 to step 9, ELSE go to next step.

xi. IF the crossover performed so far is less than 60% (Section 5.13) of the

population size, THEN select the next two best chromosomes, AND

repeat step 2 to step 10, ELSE go to next step.

xii. Stop.

The above stepwise procedure is also explained with the help of a block

diagram representation, as shown in Figure 6.4.

 131

An example is given below to further clarify the procedure described above.

First two chromosomes are selected (Tables 6.2 & 6.3) on the basis of their

better fitness (elitist strategy). Then two cut points are selected randomly. Let us say

the two cut points are 3 and 4. It means the entries in rows 3 and 4 would be

interchanged as shown in Tables 6.4 & 6.5. (Tariq et al. [2007])

Table 6.4: Child A

3 3 1 5 4 3

4 2 1 2 5 5

1 4 6 6 6 4

5 4 3 3 3 1

 5 5 2 2 1 1

4 3 3 1 6 3

Table 6.5: Child B

4 5 5 1 2 2

6 1 4 4 6 6

6 4 2 6 2 5

2 2 5 1 5 1

6 6 4 2 2 5

4 3 3 3 1 6

 Table 6.2: Chromosome A

3 3 1 5 4 3

4 2 1 2 5 5

1 4 6 6 6 4

2 2 5 1 5 1

6 6 4 2 2 5

4 3 3 1 6 3

 Table 6.3: Chromosome B

4 5 5 1 2 2

6 1 4 4 6 6

6 4 2 6 2 5

5 4 3 3 3 1

5 5 2 2 1 1

4 3 3 3 1 6

START

Select the two best
chroms (A & B) of

the population

Randomly select two
cut points a & b

between 0 & Jobs
a ˂ b i = a

z ← ChromA[i,j]
ChromA[i,j] ← ChromB[i,j]

ChromB[i,j] ← z

i = i + 1

i ≤ b

Crossover
performed ˂
60% of the

Pop size

Select the next two
best chroms of the

population

END

Figure 6.4: Block diagram representation of the crossover procedure

Yes

Yes

Yes

No

No

No

j = 0

j < Machs

j = j + 1

No

Yes

 132

The problem with this kind of crossover is that the resulting children may be

of illegal nature. This illegality is because of the fact that when a portion (certain

number of rows) of a chromosome is exchanged with a portion of the same size(same

number of rows) of another chromosome then there is every chance that in resulting

children some integers may reflect more than the specified number (number of

machines) and some less than that. It has been initially mentioned that each part

would have a number of operations equal to the number of machines (Section 6.5.1.1).

Since in the above example (Tables 6.2 and 6.3) 6 machines and 6 parts are

considered therefore in any solution an integer cannot exist less than or more than 6

times. But, if child A (Table 6.4) is examined then it can be seen that this condition is

violated. As some integers exist more than 6 times (e.g. 1s = 7, 3s = 9), whereas some

exist less than that (e.g. 2s = 4, 6s = 4). This shows illegality and hence some sort of

repair strategy has to be developed.

6.5.1.4.2 Repair Algorithm: (Tariq et al. [2007])

As mentioned earlier the type of crossover employed may develop illegal

chromosomes. Therefore, some sort of repair strategy needs to be developed to

remove any illegality. For this purpose a repair procedure is developed during this

research. First each child is checked for legality. This can be done by counting the

number of entries each integer has in a child. If the number of entries of any one or

more integers is less than or greater than the number of machines then such a

chromosome is called illegal. If found illegal, then repair is carried out, otherwise the

repair strategy is skipped. Once illegality is confirmed, then information about the

positions of those integers which are in excess and those integers which are in

shortage is stored. Remember only those positions are stored which are outside the

portion which took part in crossover. Now one by one those integers are selected

which are in shortage and then randomly any of the stored positions is picked and

assigned the value equal to the selected integer. This process is repeated until all the

integers which are in shortage are placed back into the solution/child.

The procedure developed during this research for repairing illegal solutions is

mainly divided into two main portions. In the first portion it is determined whether a

child is legal or not, whereas the second portion deals with repair of an illegal child.

 133

Both the portions have been separately represented with the help of block diagrams in

Figures 6.5 and 6.6.

A stepwise procedure for the legality check of a Child [i,j] is as follows:

i. Start with an initial value of a variable ‘Gene’ i.e. 1 (Gene ← 1)

ii. Initialize variables ‘Count’ (counter for counting the number of entries of

each integer) and ‘i’ (counter for rows) (Count ← 0, and i ← 0).

iii. Initialize ‘j’ (counter for columns) (j ← 0).

iv. IF Child [i,j] = Gene, THEN Count ← Count +1, AND j ← j + 1, ELSE

j ← j + 1.

v. IF j < Machs, THEN repeat step 4, ELSE go to next step.

vi. Increment the counter for rows ‘i’ (i ← i + 1)

vii. IF i < Jobs, THEN repeat steps 3 to step 6, ELSE go to next step.

viii. IF Count = Machs, THEN Gene ← Gene + 1, AND go to next step, ELSE

stop as the illegality of child is proved.

ix. Increment the value of ‘Gene’ (Gene ← Gene + 1)

x. IF Gene ≤ Machs, THEN repeat step 2 to step 9, ELSE stop with the

conclusion that child is legal and doesn’t require any repair.

The working of the above described stepwise procedure for legality check is

further explained in the form of a block diagram representation in Figure 6.5.

Gene = 1

i = 0
Count = 0

j = 0

Child [i,j]
= Gene

j = j + 1

j˂ Machs

i = i + 1

i ˂ Jobs

Count =
Count + 1

Count =
Machs

Gene =
Gene + 1

Gene ≤

Machs

END

Child is
illegal

Yes

Yes

Yes

Yes

Yes

No

No

No

No

No

Child is
legal

Figure 6.5: Block diagram representation for legality check

 134

Once it is confirmed that a child is illegal then the repair procedure, developed

during this research, is applied. The sequence of steps is described below to carry out

repair of an illegal solution.

i. Start with a minimum value of 1 for a variable ‘Gene’ (Gene ← 1), AND

initialize counters ‘Count, z, w’ (Count ← 0, z ←0, w ← 0).

ii. Initialize a variable ‘Num’ (Num ← 0) that is used to count the number of

entries of each integer in a solution.

iii. Initialize counter for columns ‘j’ (j ← 0).

iv. Initialize counter for rows ‘i’ (i ← 0).

v. IF ChildA[i,j] = Gene, THEN increment the value of ‘Num’ (Num ←

Num + 1), AND increment the value of the variable for rows ‘i’ (i ← i +

1), ELSE increment ‘i’ (i ← i + 1).

vi. IF i < Jobs, THEN repeat step 5, ELSE increment the value of variable

for columns ‘j’ (j ← j + 1).

vii. IF j < Machs, THEN repeat step 4 to step 6, ELSE go to next step.

viii. IF Num = Machs, THEN increment the value of ‘Gene’ (Gene ← Gene +

1), AND go to next step, ELSE go to step 10.

ix. IF Gene ≤ Machs, THEN repeat step 2 to step 8, ELSE go to step 13.

x. IF Num < Machs, THEN store the integer along side those integers which

are in shortage (Short [z] ← Gene) AND its shortage amount into another

array (S. Amnt [z] ← Machs – Num) AND Count ← Count + S. Amnt [z]

AND increment ‘z’ (z ← z + 1), ELSE store that integer into another array

allocated for those integers which are in excess (Excess[w] ← Gene) AND

its excess amount into its corresponding array (E. Amnt [w] ← Num –

Machs) AND increment ‘w’ (w ← w + 1).

xi. Increment the value of variable ‘Gene’ (Gene ← Gene + 1).

xii. IF Gene ≤ Machs, THEN repeat step 2 to step 11, ELSE go to next step.

xiii. X1 ← crossover cut point # 1, X2 ← crossover cut point # 2.

xiv. Initialize variables ‘Num, z, w’ (Num ← 0, z ← 0, w ← 0).

xv. Generate two random numbers x (between 0 and Jobs) and y (between 0

and Machs).

xvi. IF X1 ≤ x ≤ X2, THEN repeat step 15, ELSE go to next step.

xvii. IF ChildA[x,y] = Excess[w], THEN go to next step, ELSE repeat step 15

and step 16.

 135

xviii. ChildA[x,y] ← Short [z] AND S. Amnt[z] ← S. Amnt[z] – 1.

xix. IF S. Amnt[z] = 0, THEN z ← z + 1 AND E. Amnt[w] ← E. Amnt[w] – 1,

ELSE E. Amnt[w] ← E. Amnt[w] – 1.

xx. IF E. Amnt[w] = 0, THEN w ← w + 1 AND Num ← Num + 1, ELSE

Num ← Num + 1.

xxi. IF Num < Count, THEN repeat step 15 to step 20, ELSE go to next step.

xxii. Stop.

The above described procedure can also be expressed in the form of block

diagram representation, as shown in Figure 6.6.

In order to explain the repair algorithm being proposed here in more detail, child “A”

(Table 6.4) is subjected to it.

Step 1: First the solution is checked for legality as shown in Table 6.6:

Figure 6.6: Block diagram representation for repair algorithm

START

Gene = 1, w = 0
Count = 0, z = 0

Num = 0

j = 0

i = 0

ChildA[i,j]
= Gene

i = i + 1

i < Jobs

j = j + 1

Num =
Num + 1

Excess[w]
= Gene

E. Amnt[w] =
Num-Machs

Short[z]
= Gene

S. Amnt[z] =
Machs-Num

w = w + 1 z = z + 1

Gene = Gene + 1

Gene ≤
Machs

X1, X2 =
Crossover cut
points #1 & 2

w = 0, z = 0,
Num = 0 y = Random num

(0, Machs)

x = Random num
(0, Jobs)

X1 ≤ x ≤ X2

ChildA[x,y]
= Excess[w]

ChildA[x,y]
= Short[z]

S. Amnt[z] =
S. Amnt[z] - 1

S. Amnt[z]
= 0

z = z + 1

E. Amnt[w] =
E. Amnt[w] - 1

E. Amnt[w]
= 0

w =
w + 1

Num =
Num + 1

Num <
Machs

END

Count = Count
+ S. Amnt [z]

j < Machs

Num =
Machs

Num <
Count

Yes

Yes

Yes

No

Yes

Yes

No

Yes

Yes

Yes

Yes

No

No

No

No

No Yes

No

No No

No

Yes

 136

Table 6.6: Number of times each integer exists in the solution

Integer Existence (How

many times?)

Short/ Excess/

Legal

Num of times in

excess/shortage

1 7 Excess 1

2 4 Short 2

3 9 Excess 3

4 6 Legal 0

5 6 Legal 0

6 4 Short 2

Step 2: As the frequency of existence of some integers exceeds (excess) the limit

(total number of machines) and in some cases it is less than (short), therefore

it shows that the solution is not legal and repair is required.

Step 3: Now we are aware about the number of times each integer exists in the

solution i.e. about their excess and shortage (if any). So, information about the

locations of those integers which exceed the limit is stored. Here one thing is

important to mention that only those locations are considered for storage

which are on the outer side of the portion which has been crossed over (rows

3 & 4). The relevant information is presented in Table 6.7.

Table 6.7: Positions of those integers which are in excess

Positions Integers

in excess x (Row) y (Column)

0 2

1 2

2 0

1

5 3

0 0

0 1

0 5

5 1

5 2

3

5 5

Step 4: Now one by one those integers which are in shortage are selected and placed

randomly in any of the previously stored positions as shown in Table 6.8.

 137

Table 6.8: Repair work
Randomly
selected
positions

Integer in
shortage

Shortage
amount

Integers
in excess

Excess
amount

x(row) y(col)

New value
assigned

to selected
position

1 1 1 2 2
2 2

0 0 2

0 5 6
6 2

3

3

5 5 6

Step 5: It is evident from Table 5.19, that step 4 has been repeated until all the

integers, in shortage, are being placed in the solution. The repaired solution is

shown in Table 6.9.

Table 6.9: Repaired solution

2 3 1 5 4 6

4 2 2 2 5 5

1 4 6 6 6 4

5 4 3 3 3 1

5 5 2 2 1 1

4 3 3 1 6 6

6.5.1.4.3 Mutation (Tariq et al. [2007])

In this case swap mutation is used which has been frequently used in literature.

Here, the values of two randomly selected genes are swapped. The process is

continued until 10% randomly selected genes of the total number of genes in

population get mutated (Section 5.13). This process is further described in a stepwise

manner as follows:

i. Start with an initialized value of a variable for mutation ‘Mut’ (Mut ← 0).

ii. Randomly select a chromosome ‘ChromK’ from the population.

iii. Initialize the variable for columns ‘j’ (j ← 0).

iv. Generate two random numbers ‘i & x’ between 0 and Jobs.

v. Swap the entries ChromK[i,j] and ChromK[x,j].

vi. Increment the value of ‘j’ (j ← j + 1).

vii. IF j < Machs, THEN repeat step 4 to step 6, ELSE go to next step.

viii. Increment the value of ‘Mut’ (Mut ← Mut + 1).

ix. IF Mut < 10% of total genes in population (Section 5.13), THEN repeat

step 2 to step 8, ELSE go to next step.

 138

x. Stop.

The stepwise procedure for mutation described above can also be elaborated in

the form of a block diagram representation as follows in Figure 6.7.

Mutation performed in this way guarantees to generate legal offspring as

shown in Tables 6.10 & 6.11. (Tariq et al. [2007])

 Table 6.10: Chrom selected Table 6.11: Mutated chromosome

 3 3 1 2 6 3

4 5 1 2 5 5

5 4 3 6 4 1

1 4 3 3 3 4

5 2 2 5 1 1

4 3 6 1 6 3

6.5.1.4.4 Selection: (Tariq et al. [2007])

A number of selection procedures are available in literature that can be used to

select a new population from the existing one. All these selection procedures are

actually based on inspiration from the Darwin's Evolution Theory. In roulette wheel

selection procedure, which is very common and has been frequently used in literature,

the selection of a chromosome into the next generation depends mainly on its fitness

value. Therefore, a chromosome with a higher fitness value can get selected more than

once into the next generation thus reducing the diversity of the population. The

3 3 1 5 4 3

4 2 1 2 5 5

1 4 6 6 6 4

5 4 3 3 3 1

5 5 2 2 1 1

4 3 3 1 6 3

START Mut = 0

Randomly select a
chromosome

(ChromK)

j = 0

z = ChromK[i,j]
ChromK[i,j] = ChromK[x,j]

ChromK[x,j] = z
 j = j + 1

j ˂ Machs

Mut ˂ 10%
of total genes

Mut = Mut + 1

Generate two random
numbers i and x between

0 and Jobs

END

Yes

Yes No

No

Figure 6.7: Block diagram representation of mutation process

 139

frequency of this behaviour (selection of multiple copies of one chromosome) would

increase in the coming generations as more and more similar solutions would get

selected which may lead the algorithm to a premature convergence. On the other hand

the method used for selection of new population is known as Stochastic Universal

Sampling (SUS), presented by Chaperfield et al. [2001] and also used by Pohlheim

[2005], used here for the process of selecting chromosomes in the next generation

from the present generation. This method is used due to its nature of having minimum

spread and displaying bias as zero. To clarify it further let us consider an example in

which there are 10 solutions/chromosomes in a population. The fitness values,

selection probabilities and cumulative probabilities of all the chromosomes and the

rest of the procedure is as follows:

Fitness values: (the fitness function values for each chromosome in the

population)

F = 0.81, 0.24, 0.56, 0.72, 0.31, 0.43, 0.54, 0.26, 0.62, 0.45

Fitness sum: (the total sum of the fitness values of all the chromosomes in the

population)

∑F = 4.94

Selection probability (S. Prob.): (obtained by dividing the individual fitness

value of a chromosome in a population by the total fitness value of the population)

S. Prob. = F/ (∑F) = 0.164, 0.049, 0.113, 0.146, 0.063, 0.087, 0.11, 0.053,

0.126, 0.091

Cumulative probability (C. Prob.): (obtained by continuously adding the

fitness values for each chromosome. For example cumulative probability for first

chromosome is its own fitness value whereas for the second chromosome it would be

the sum of the fitness values of first two chromosomes, for the third chromosome it

would be the sum of the fitness values of first three chromosomes and so on)

C. Prob. = 0.164, 0.213, 0.326, 0.472, 0.535, 0.622, 0.732, 0.785, 0.838,

1.00

 140

Once the cumulative probabilities for all the chromosomes are calculated then

a random number is generated between 0 and 1/z, where z represents the population

size. For the above example the value of 1/z is 0.1 as there are 10 chromosomes in the

population. Now a random number is generated in the range (0, 0.1). For example the

number randomly generated is 0.09. Since it is less than the cumulative probability of

first chromosome (0.164) therefore first chromosome is selected into the next

generation. For the selection of second chromosome the value of randomly generated

number is doubled. Since the doubled value (0.18) is between the cumulative

probability values of first and second chromosome, therefore second chromosome is

selected. Similarly, for the selection of third chromosome the value of the randomly

generated number is tripled and then compared with the cumulative probability values

and a respective chromosome is selected. This process is kept continued until all the

members of the next generation are selected.

The procedure shows that the chances of selection of multiple copies of one

chromosome are less as compared to roulette wheel selection approach thus

maintaining a reasonable diversity in population in each generation.

 This method can be expressed in the form of a sequence of steps as follows:

i. Start by initializing the values of a variable ‘Sum’ and a counter ‘z’ (Sum

← 0, z ← 0).

ii. Sum ← Sum + F. Value [z], where ‘F. Value [z]’ is the fitness value of

chromosome at position z (Chromz) in the array of population.

iii. Increment the value of ‘z’ (z ← z + 1).

iv. IF z < Pop Size, THEN repeat step 2 and step 3, ELSE go to next step.

v. Initialize the counter ‘z’ (z ← 0).

vi. Calculate selection probability for Chromz (Sel. Prob [z] = F. Value [z] /

Sum).

vii. Increment the value of ‘z’ (z ← z + 1).

viii. IF z < Pop Size, THEN repeat step 6 and step 7, ELSE go to next step.

ix. Sum ← 0 AND z ← 0.

x. Sum ← Sum + Sel. Prob [z].

xi. Assign the value of Sum to the cumulative probability of Chromz (Cum

Prob [z] ← Sum)

 141

xii. Increment the value of ‘z’ (z ← z + 1).

xiii. IF z < Pop Size, THEN repeat step 10 to step 12, ELSE go to next step.

xiv. Initialize the pointer ‘R’ and a variable ‘K’ (R ← 0 AND K ← 0).

xv. Generate a random number for pointer ‘R’ between 0 and 1/ Pop Size.

xvi. Initialize a variable ‘x’ (x ← 0).

xvii. IF R ≤ Cum Prob [x], THEN select Chromx, ELSE IF R ≤ Cum Prob [x +

1], THEN select Chromx+1, ELSE x ← x + 1 AND repeat step 17.

xviii. Increment the value of ‘K’ (K ← K + 1).

xix. IF K < Pop Size, THEN R ← R + 1/ Pop Size AND repeat step 17 and

step 18, ELSE go to next step.

xx. Stop.

A block diagram representation for the above stepwise procedure can be as

shown in Figure 6.8.

START
Sum = 0

z = 0
Sum = Sum +
F. Value [z]

z = z + 1
z < Pop

Size

z = 0

Sel. Prob [z] =
F. Value [z]/ Sum

z = z + 1
z < Pop

Size

Sum = 0
z = 0

Sum = Sum +
Sel. Prob [z]

z = z + 1

z < Pop
Size

R = 0
K = 0

Pointer = R =
Random number
(0, 1/Pop Size)

x = 0

R ≤ Cum
Prob [x+1]

Cum Prob [z]

= Sum

R ≤ Cum
Prob [x]

Select
Chromx

Select
Chromx+1

x = x + 1 K = K + 1
K < Pop

Size

R = R + 1/Pop Size

END

Yes

Yes

Yes

Yes

Yes

Yes

No

No

No

No

No

No

Figure 6.8: Stochastic Universal Sampling (SUS)

 142

6.5.2 Local Search Heuristic (LSH): (Tariq et al. [2007])

The LSH, developed during this research, is such that it carries out the local

improvement of the best solution in each generation. The LSH is started by swapping

the first two entries (entry in first column and first row with entry in second column

and first row) in the solution that is undergoing local improvement. If this swapping

causes a decrease in the actual Makespan or it remains the same then this change is

stored, else the previous arrangement is restored. After this the position of the same

gene is swapped with the next gene which is in first row and third column and so on.

Once swapping with all the genes in first row has been carried out then the same

procedure for the same gene is kept continued in the second row and so on until all the

entries in a solution are swapped with the first gene and corresponding Makespan

values calculated. Once the testing of a particular gene with all the genes in a solution

is completed then the same is repeated for the next gene and this process kept

continued for 50% of the Machs×Jobs times. The justification for this limit

(50%×Machs×Jobs times) is that because of the fact that once first half of the

operations are scheduled then by that time a pattern has been developed and therefore

the scheduling of the last half of the operations does not affect the value of the

Makespan of the problem. Relevant details are given in the following and complete

procedure of local improvement for one gene is shown in Table 6.14.

In spite of the fact that LSH displayed considerable effectiveness; it still

needed the abilities of GA as a far as searching a better solution is concerned which

can be further transformed into the best. The LSH, developed during this research, is

clearly explained with the help of a stepwise procedure as described below:

i. Start by initializing a counter ‘Count’ (Count ← 0).

ii. Initialize counters for rows ‘a’ and columns ‘b’ (a ← 0 AND b ← 0).

iii. Initialize counters for rows ‘i’ and columns ‘j’ (i ← 0 AND j ← 0).

iv. IF Best [i,j] = Best [a,b], THEN b ← b + 1 AND go to step 9, ELSE go to

next step.

v. Swap the entries Best [i,j] and Best [a,b].

vi. Decode the solution and calculate its Makespan ‘C’.

vii. IF C < Cmax, where Cmax is the initial Makespan of the solution, THEN

store the change AND i ← a, j ← b, ELSE reverse the swapped entries.

 143

viii. Increment the value of ‘b’ (b ← b + 1).

ix. IF b < Machs, THEN repeat step 4 to step 8, ELSE go to next step.

x. a ← a + 1 AND b ← 0.

xi. IF a < Jobs, THEN repeat step 4 to step 10, ELSE go to next step.

xii. Count ← Count + 1.

xiii. IF Count < ½ (Machs × Jobs), THEN repeat step 2 to step 12, ELSE go to

next step.

xiv. Stop.

This stepwise procedure can also be expressed in the form of a block diagram

representation as shown in Figure 6.9.

To explain the procedure of LSH, developed during this research, a numerical

example of order 4×4 is generated randomly as shown in Table 6.12.

START Count = 0 i=0, j=0

Best[i,j] =
Best[a,b]

Swap Best[i,j]
and Best[a,b]

Decode and
find makespan

“C”

C < Cmax

Store change
i=a, j=b

b=b+1

b < Machs

a =a+1
b = 0

a < Jobs

Count=Count+1

Count<1/2(Machs×
Jobs)

END

Reverse
swapped entries No

No

No

No

No Yes

Yes

Yes

Yes

Yes

Figure 6.9: Local Search Heuristic (LSH) (Tariq et al. [2007])

a=0, b=0

 144

Table 6.12: A randomly generated 4×4 problem

Operations (Machine, time)

1 2 3 4

Jobs (m, t) (m, t) (m, t) (m, t)

1 3,5 2,7 4,6 1,4

2 2,6 1,8 3,7 4,5

3 4,9 3,3 1,4 2,2

4 1,5 4,8 2,6 3,3

The problem is required to be solved with the objective of minimizing the

Makespan (Cmax). to accomplish this objective the data of the problem is fed into a

computer code developed in accordance with the methodology explained in Figure

5.17. In its first generation GA developed the following best solution (Table 6.13).

Table 6.13: Best chromosome after 1
st
 generation of GA

2 2 2 4

4 3 4 3

3 4 1 2

1 1 1 3

The Makespan of the solution presented in Table 6.13= Cmax = 33. After being

decoded the Gantt Chart representation of the solution is as shown in Figure 6.10.

The best solution (Table 6.13) presented by GA in its first generation is now

further locally improved with the help of LSH. For the first gene of the solution the

complete LSH procedure is as shown in Table 6.14.

2

4

3

1

2

3

4

1

2

4

1

1

4

3

2

3

5 10 15 20 25 30
33

35

Time

Machines

1

2

3

4

Figure 6.10: Schedule developed for the best chromosome found in 1
st
 generation of

GA

 145

Table 6.14: Complete stepwise procedure of local improvement for one gene

Solution

Showing

selected

genes

Selected

Genes

are

equal?

Interchange

of selected

genes

C Comparison

of C and

Cmax

Remarks Solution

after the

change is

validated

2 2 2 4

4 3 4 3

3 4 1 2

1 1 1 3

Yes

-

-

-

Since genes
are equal so
move to next

gene

2 2 2 4

4 3 4 3

3 4 1 2

1 1 1 3

2 2 2 4

4 3 4 3

3 4 1 2

1 1 1 3

Yes

-

-

-

Since genes
are equal so
move to next

gene

2 2 2 4

4 3 4 3

3 4 1 2

1 1 1 3

2 2 2 4

4 3 4 3

3 4 1 2

1 1 1 3

No

4 2 2 2

4 3 4 3

3 4 1 2

1 1 1 3

42

Cmax < C

No
improvement
so change is

reverted

2 2 2 4

4 3 4 3

3 4 1 2

1 1 1 3

2 2 2 4

4 3 4 3

3 4 1 2

1 1 1 3

No

4 2 2 4

2 3 4 3

3 4 1 2

1 1 1 3

33

Cmax = C

Change is

stored

4 2 2 4

2 3 4 3

3 4 1 2

1 1 1 3

4 2 2 4

2 3 4 3

3 4 1 2

1 1 1 3

No

4 2 2 4

3 2 4 3

3 4 1 2

1 1 1 3

40

Cmax < C

No
improvement
so change is

reverted

4 2 2 4

2 3 4 3

3 4 1 2

1 1 1 3

4 2 2 4

2 3 4 3

3 4 1 2

1 1 1 3

No

4 2 2 4

4 3 2 3

3 4 1 2

1 1 1 3

42

Cmax < C

No
improvement
so change is

reverted

4 2 2 4

2 3 4 3

3 4 1 2

1 1 1 3

4 2 2 4

2 3 4 3

3 4 1 2

1 1 1 3

No

4 2 2 4

3 3 4 2

3 4 1 2

1 1 1 3

45

Cmax < C

No
improvement
so change is

reverted

4 2 2 4

2 3 4 3

3 4 1 2

1 1 1 3

4 2 2 4

2 3 4 3

3 4 1 2

1 1 1 3

No

4 2 2 4

3 3 4 3

2 4 1 2

1 1 1 3

33

Cmax = C

Change is

stored

4 2 2 4

3 3 4 3

2 4 1 2

1 1 1 3

4 2 2 4

3 3 4 3

2 4 1 2

1 1 1 3

No

4 2 2 4

3 3 4 3

4 2 1 2

1 1 1 3

33

Cmax = C

Change is

stored

4 2 2 4

3 3 4 3

4 2 1 2

1 1 1 3

4 2 2 4

3 3 4 3

4 2 1 2

1 1 1 3

No

4 2 2 4

3 3 4 3

4 1 2 2

1 1 1 3

33

Cmax = C

Change is

stored

4 2 2 4

3 3 4 3

4 1 2 2

1 1 1 3

4 2 2 4

3 3 4 3

4 1 2 2

1 1 1 3

Yes

-

-

-

Since genes
are equal so
move to next

gene

4 2 2 4

3 3 4 3

4 1 2 2

1 1 1 3

 146

4 2 2 4

3 3 4 3

4 1 2 2

1 1 1 3

No

4 2 2 4

3 3 4 3

4 1 1 2

2 1 1 3

40

Cmax < C

No
improvement
so change is

reverted

4 2 2 4

3 3 4 3

4 1 2 2

1 1 1 3

4 2 2 4

3 3 4 3

4 1 2 2

1 1 1 3

No

4 2 2 4

3 3 4 3

4 1 1 2

1 2 1 3

33

Cmax = C

Change is

stored

4 2 2 4

3 3 4 3

4 1 1 2

1 2 1 3

4 2 2 4

3 3 4 3

4 1 1 2

1 2 1 3

No

4 2 2 4

3 3 4 3

4 1 1 2

1 1 2 3

33

Cmax = C

Change is

stored

4 2 2 4

3 3 4 3

4 1 1 2

1 1 2 3

4 2 2 4

3 3 4 3

4 1 1 2

1 1 2 3

No

4 2 2 4

3 3 4 3

4 1 1 2

1 1 3 2

38

Cmax < C

No
improvement
so change is

reverted

4 2 2 4

3 3 4 3

4 1 1 2

1 1 2 3

Once process for the first gene is completed it is restarted, for the new first gene, all

over again and the same is kept continued for 50%×Machs×Jobs, times. After the

procedure is completed the solution locally improved by LSH is presented Table 6.15:

Table 6.15: Solution after being locally improved

2 1 3 1

3 1 3 2

4 4 1 4

4 2 3 2

Makespan = Cmax = 28

The solution shown in Table 6.15 can be represented on a Gantt chart as

shown in Figure 6.11, with a Makespan of 28 (17.85% improvement).

Time

4 2 3

2 1 4 3

1

1 3 2 4

3 4 1 2

5 10 15 20 25
28

30

1

2

3

4

Machines

Figure 6.11: Schedule developed for the solution improved by LSH

 147

6.6 Numerical Example of Job-Shop Scheduling: (Tariq et al. [2007])

To further justify the effectiveness of the approach developed for JSSP during

this research a benchmark numerical example (Fisher & Thompson [1963]) is solved

here. Information about the processing sequence and corresponding processing times

is given in Table 6.16.

A legal schedule can be defined as that schedule in which the sequence, in

which a job is to be processed on different machines, is to be maintained. This

actually means that there must not be two operations scheduled on one machine at one

time, similarly two operations of one job must not be scheduled on two different

machines at one time.

Table 6.16: A 6 × 6 bench mark problem [Fisher & Thomson (1963)]

Operations (Time, Machine)

1 2 3 4 5 6

Jobs (t, m) (t, m) (t, m) (t, m) (t, m) (t, m)

1 1,3 3,1 6,2 4,7 3,6 6,5

2 8,2 5.3 10,5 6,10 10,1 4,4

3 5,3 4,4 8,6 1,9 1,2 7,5

4 5,2 5,1 5,3 4,3 8,5 9,6

5 9,3 3,2 5,5 6,4 3,1 1,4

6 3,2 3,4 9,6 1,10 4,5 1,3

The objective is to solve the problem while minimizing the Makespan. In

addition to Makespan there are a number of other performance measures but

Makespan has been widely used as being simple and easy to implement.

The problem presented in Table 5.27 is loaded into a computer code based on

the above described methodology (Figure 6.1) and developed in AM (Applications

Manager, 2001). On completion of first iteration (first generation) the optimum result

is obtained and is shown in Table 6.17, whereas, the Gantt chart representation of the

best solution is given in Figure 6.12.

 148

Table 6.17: Best Chromosome (Tariq et al. [2007])

1 6 2 1 3 3

2 1 5 4 6 3

4 5 3 6 2 1

3 3 4 2 6 2

2 5 4 5 5 5

1 6 4 1 4 6

Makespan = 55 time units.

6.7 Sensitivity Analysis:

 In order to carryout an analysis to determine the sensitivity of the hybrid GA

developed for JSSP during this research a similar approach, described in Section 5.7,

is adopted. For the purpose of this analysis a benchmark problem from Fisher &

Thompson [1963] of order 10×10 is elected and solved for various: sizes of

population, number of generations, mutation and crossover rates. Those values, of all

these parameters, that resulted in minimum solution gape percentage are chosen to be

used for all the other test problems. and finally those values of the parameters are

selected at which the algorithm achieves the minimum percentage solution gap for the

problem. The sensitivity of the algorithm against variations in the number of

generations, population size, rate of crossover and mutation is presented in Figures

6.13, 6.14, 6.15 and 6.16 present the variation in percentage solution gape against

variations of different GA parameters.

Figure 6.12: Schedule developed after decoding the best Chrom. (Tariq et al. [2007])

Machines

6

5

4

3

2

1

1

2 4

3 2

1

6 1

5

3

5

6

2 5

3

4

4

4 1

4

6 2 5 1

3 6 2

6

5

4

3

3 1

2 5

6

Time

10 20 30 40 50 55

 149

Figure 6.13 shows that in a total number of 100 generations the minimum

percentage solution gap is obtained. Further, as far as analysis regarding the

population size, crossover and mutation rates are concerned that is presented in

Figures 6.14, 6.15, 6.16 respectively. The analysis, on the whole, shows that a

minimum value for the percentage solution gape is achieved for generations = 100,

Population size = 75, crossover rate = 0.6 and mutation rate = 0.1.

Number of generations = 100, Crossover rate = 0.6, Mutation rate = 0.1

 Figures 6.15 and 6.16 present an analysis regarding crossover and mutation

rates while using population size as 75 and a total number of generations as 100.

0.5

1.5

1.8

%age
Solution

Gap

1.0

2.0

Size of population

60 75 80
0

Figure 6.14: Effect of population size on %age Solution Gap

0.65 0.65

%age
Solution

Gap

1.0

2.0

Number of generations
40 50 60 70 80 90

0

Figure 6.13: Effect of the number of generations on %age Solution Gap

100 110

1.9

1.2 1.2

1.0
0.9

0.8
0.6 0.6

0.5

1.5

 150

Number of generations = 100, Population size = 75, Mutation rate = 0.1

Number of generations = 100, Population size = 75, Crossover rate = 0.6

 It can be concluded from the analysis, about different GA parameters,

presented above that for the satisfactory performance of the proposed algorithm the

population size should be 75, the number of generation should be kept at 100, the

crossover and mutation rates should be maintained at 0.6 and 0.1 respectively.

6.8 Combined Methodology for Operational Design of a CMS:

According to Wemmerlov and Hyer [1987] while designing a CMS several

structural and operational issues must be taken into consideration. The first and most

important task in the implementation of CM is the cell formation - grouping of parts

into families and corresponding machines into cells. Wemmerlov and Hyer [1987]

also pointed out that once the Machine-Part grouping has been carried out then the

2.0

%age
solution

gap

1.0

Mutation rate

0.1 0.09 0.08 0.07 0.06 0.05
0

Figure 6.16: Effect of mutation rate on %age Solution Gap

0.65

1.5

1.0 1.0

1.75

1.5

0.5

1.5

0.66

2.5

0.5

1.5

2.0

1.33

1.67

0.66

2.17
2.34

%age
Solution

Gap 1.0

Crossover rate

0.4 0.5 0.6 0.7 0.8 0.9
0 0

Figure 6.15: Effect of crossover rate on %age Solution Gap

 151

next step must be scheduling of the system and it is the job of the manufacturing

engineer or operations manager to address the issue of allocating operations on each

machine. This shows that carrying out an operational design of a CMS is more

important rather than simply providing solution for the cell formation problem, as this

would make an approach more practically useful.

As described above, operational design of a CMS consists of the following

two steps:

1. CMS Design (Machine-Part grouping)

2. Scheduling of the system in a similar manner as Job-Shop scheduling.

Therefore, to carry out the operational design of CMS, the above two steps

were followed and two separate tools have been developed: one for the Machine-Part

grouping and another for scheduling of the system. The effectiveness of both the tools

has been separately tested, verified and validated through a number of bench mark

problems from literature. Since both the approaches have been found working

satisfactorily, therefore this is the stage where they are Combined so that they can

operate in a sequence.

 In Figure 6.17 a block diagram representation for the operational design of a

CMS is shown. A close look at the figure reveals that it is a combination of the two

methodologies (Machine-Part grouping and scheduling of JSSP) described above.

Figure 6.17 also shows that the output of the Machine-Part grouping tool is provided

as an input to the Job-Shop scheduling tool.

 152

 There are two main outputs of the program. First output is obtained from the

Machine-Part grouping portion (the upper half of Figure 6.17) and that is the final

Machine-Part incidence matrix which is in block-diagonalized form. The second

Provide info about
the total num of

parts & total num
of machines

Provide info in 1-0
form about the mach-
part incidence matrix

Gen ← 0

Crossover

Repairing of
illegal child if

any

Evaluating children
and placing them into

population

Decoding &
Calculating

fitness values

Initialize
population
randomly

Gen ← 0

Provide info about
the processing

sequence &
processing time

Mutation

Evaluating the
mutated

chromosome and
placing into
population

Selecting next
generation by

stochastic universal
sampling (sus)

Identifying the
best chromosome
of the generation

Is
Gen=0

Has
It been

previously
subjected
to LSH?

Local
Search

Heuristic

Is
Gen ≤ Max Gen End

Identify the best
chromosome

No

Yes
No

Yes

No

Figure 6.17: Combined Methodology for operational design of a CMS

Yes

Initialize
population
randomly

Decoding &
Calculating

fitness values

Crossover

Repairing if
child is
illegal

Mutation

Evaluating
and placing
back in pop

Repairing if
child is
illegal

Evaluating
and placing
back in pop

Inversion
Repairing if child

is illegal

Evaluating
and placing
back in pop

Selecting next
generation by

Roulette Wheel
selection procedure

Identifying the
best chromosome
of the generation

Is
Gen=0 Has

It been
previously
subjected
to LSH?

Local Search Heuristic

Is
Gen ≤ Max Gen

Start

Identify the best
chromosome

Gen = Gen+1

Gen = Gen+1

Yes

No

Yes No

Yes

No

 153

output is given by the scheduling part (the lower half of Figure 6.17) and is in the

form of a complete production schedule providing details about each operation of a

job i.e. at what time and on which machine it is going to be performed.

6.9 Numerical Example of Combined Model

 To further elaborate the combined working of the two methodologies,

described previously in this chapter, let us select a grouping problem from literature

(King and Nakornchai [1982]) and solve it with the help of the combined

methodology being proposed here (Figure 6.17). The initial Machine-Part incidence

for the problem is as shown in Table 6.18.

Table 6.18: Machine-Part incidence matrix (King and Nakornchai [1982])

Machines

Parts 1 2 3 4 5

1 0 1 1 0 1

2 1 0 0 1 0

3 0 1 1 0 0

4 1 0 0 1 0

5 1 0 0 0 1

6 1 0 1 1 0

7 0 0 1 0 1

The above initial Machine-Part incidence matrix is provided as an input along

with the information about the total number of cells (two) that the system is to be

divided into, to the Machine-Part grouping tool (hybrid GA based approach for

Machine-Part grouping). The best result was obtained in first generation. The

chromosome representing the best solution is as shown below:

Best [i] = [2 1 1 2 1 1 2 1 2 2 2 1]

The decoded form of the above result is a block-diagonalized form of the initial

Machine-Part incidence matrix, as shown in Table 6.19.

 154

Table 6.19: Final Machine-Part matrix

Machines

Parts 2 3 5 1 4

1 1 1 1 0 0

3 1 1 0 0 0

7 0 1 1 0 0

2 0 0 0 1 1

4 0 0 0 1 1

5 0 0 1 1 0

6 0 1 0 1 1

Using (5.4) (5.5) (5.7) and (5.2), respectively, the following can be calculated.

The total number of 1’s in the Machine-Part incidence matrix (N1) = 16

Total number of 0’s inside the block diagonal (in
N0) = 3

Total number of 1’s outside the block diagonal (outN1) = 2

%68.737368.0
316

216
GE

01

11 ==
+

−
=

+

−
=

in

out

NN

NN

Once the Machine-Part grouping phase is completed then information about

the processing sequence and processing time is to be provided by the user. Here, for

convenience, the processing sequence for each job and the processing time for each

operation are generated randomly, as shown in Table 6.20 and Table 6.21,

respectively.

Table 6.20: Processing sequence for each job

Operations

Jobs 1 2 3 4 5

1 1 5 2 3 4

2 2 4 1 5 3

3 4 2 1 5 3

4 4 2 3 1 5

5 1 2 3 5 4

6 4 2 3 1 5

7 4 3 1 2 5

 155

Table 6.21: Processing time for each operation

Operations

Jobs 1 2 3 4 5

1 0 19 11 19 0

2 0 13 13 0 0

3 0 19 0 0 11

4 19 0 0 16 0

5 10 0 0 18 0

6 18 0 12 11 0

7 0 18 0 0 18
Processing time is randomly generated from an interval of (10,20)

Though all the values in Table 6.20 and Table 6.21 are randomly generated, but being

displayed on screen (in program) in the form of input fields, the user would be having

an opportunity to change these values as per the processing requirements of jobs in

the system. Another point that one can argue about is that according to Table 6.20

there are certain operations for each job on certain machines which are mentioned in

the sequence but according to the Machine-Part incidence matrix, jobs do not even

have those operations for example: as per Table 6.20 Job 1 has its 1st and 5th operation

on Machine 1 and Machine 4, whereas according to the Machine-Part incidence

matrix (Table 6.18) Job 1 does not even have any operation on these Machines (1 and

4). The reason for such anomaly is that the hybrid GA based tool for scheduling of the

system is in fact developed for the Job-Shop system, where each job has an operation

on each machine. Therefore while providing information about the operation sequence

of each job, those machines must also be included in the sequence on which that job

does not even have any operation. However, the computer code, initially developed

for the scheduling of JSSP, has been modified to exclude such operations by assigning

a processing time of zero to all such operations and processing time for all the other

operations are randomly generated between 10 and 20, as shown in Table 6.21.

The information about total number of jobs, total number of machines,

processing sequence, and corresponding processing times is provided as an input to

the scheduling tool (hybrid GA for JSSP), described in Section 5.11. In order to save

computational effort a Lower Bound (LB) value for the Makespan is calculated, as

shown in Table 6.22 and after each generation the minimum Makespan value is

compared with it. If at any point, before reaching the maximum number of

generations, the LB value is reached then further search is stopped.

 156

Table 6.22: Calculation of Lower Bound (LB)

Machines

Jobs 1 2 3 4 5 Sum of rows

1 0 11 19 0 19 49

2 13 0 0 13 0 26

3 0 19 11 0 0 30

4 16 0 0 19 0 35

5 10 0 0 0 18 28

6 11 0 12 18 0 41

7 0 0 18 0 18 36

Sum of columns 50 30 60 50 55

Lower Bound (LB) = 60

Although in certain problems, the LB cannot be achieved because of complex

processing sequence, but still it is an ideal target that keeps the search for best

Makespan going and in certain cases compels the algorithm to utilize the maximum

number of generations.

 Now, allowing the program to run through the maximum number of

generations (100) while keeping in check the LB value, the best solution obtained on

termination is presented in Table 6.23.

Table 6.23: Chromosome/solution after 1
st
 generation

7 1 7 2 3

6 6 4 7 1

6 5 4 4 4

3 3 6 2 3

4 6 1 2 7

2 5 5 5 3

7 1 5 2 1

Makespan = 70 time units

Using the decoding procedure presented in Figure 6.3, the following Gantt chart

representation (Figure 6.18), for the schedule encoded in the chromosome shown in

Table 6.23, can be developed.

 157

 Although the LB value is 60, the Makespan displayed in Figure 5.34 is 70.

This does not mean that the result cannot be optimum. Figure 6.18 shows that except

for Machine 1, the waiting time for all the other machines is zero. Machine 1 has a

total waiting time of 20 time units, because of the intercellular move of part 6. Part 6

has its 2nd operation on Machine 3, for which it has to travel from Cell 2 to Cell 1 and

back to Cell 1 for its third operation.

The distinguishing feature of the above combined solution approach is that not

only a grouping solution is provided like most of the techniques available in literature,

but a solution for the scheduling part of the problem is also provided which definitely

makes this technique more useful in practice.

6.10 Summary:

 Since the problem of operational design of a CMS can be broadly categorised

as the Machine-Part grouping problem and the cell scheduling problem, therefore the

solution methodology, developed during this research, has also been divided into two

main portions. In the first portion (Chapter 5) the Machine-Part grouping problem is

solved, whereas in second portion (This Chapter) solution for the cell scheduling

problem is provided. Separate tools have been developed for both the portions and

their effectiveness have also been validated through a number of benchmark problems

from literature (details available in the Next Chapter).

This Chapter has specifically provided a detailed description of the tool

developed for solving the cell scheduling problem, based on the principles of JSSP,

Figure 6.18: Schedule developed after decoding the best Chrom.

60

5

4

3

2

1

Time

10 20 30 40 50 70

Machines

5 (1)

1 (2)

7 (2)

6 (1) 4 (1) 2 (2)

3 (1)

5 (4)

6 (3)

1 (3)

6 (4)

7 (5)

1 (4)

2 (3)

3 (5)

4 (4)

 158

and then its combination with the tool for Machine-Part grouping which has been

described in detail in Chapter 5. A similar solution approach, as in the case of

Machine-Part grouping, has been adopted for solving the JSSP. Here also, GA is

combined with an LSH using multipoint crossover, swap type mutation, and

Stochastic Universal Sampling (SUS) as the selection procedure. The best solution in

each generation is subjected to LSH provided that it has not been previously subjected

to it. For better understanding of the programming logic each step of the algorithm is

clearly explained both with the help of flow diagram and stepwise procedure. The

methodology is further elaborated by solving a benchmark problem with the help of

the proposed algorithm. To justify the values of the GA parameters (crossover = 60%,

mutation = 10%, population size = 75, number of generations = 100) a sensitivity

analysis is also presented.

 After separate development, testing and validation of both the tools, they have

been finally combined with each other. The combination of two approaches is carried

out in such a manner that the output of Machine-Part grouping is used as an input by

the cell scheduling part. The distinguishing feature of this combination is that it not

only provides solution for the Machine-Part grouping problem but also solves the cell

scheduling problem. It makes this approach more useful in practice as compared to all

those design approaches which consider the CMS design problem as only a Machine-

Part grouping problem.

 159

CHAPTER 7

RESULTS AND DISCUSSIONS

7.1 Introduction:

 This chapter presents testing and validation of the two models (hybrid GA for

Machine-Part grouping and hybrid GA for JSSP), developed during this research and

described in Chapter 5 and 6. Regarding testing and validation of the models, details

of the selected benchmark problems, their solutions, analysis of results and

comparison with other techniques are described in detail in this chapter. This chapter

also provides an insight, as far as the combined working of the two tools is concerned,

in the form of an analysis based on results of some problems which are solved by the

combined approach i.e. first Machine-Part grouping and then cell scheduling.

7.2 Performance and Analysis of Hybrid GA for Machine-Part Grouping:

 To check the performance of the hybrid model developed during this research

for Machine-Part grouping, a set of 36 different benchmark problems have been

selected from literature. The selected problems are of variable sizes as far as their

Machine-Part incidence matrices are concerned. This is done deliberately so that

performance of the proposed approach can be tested on different data sets.

The matrix size of each problem and its source is mentioned in Table 7.1.

Table 7.1: Selected problems from literature (Tariq et al. [2006] & [2009])

S/No. Source Machs×Jobs Matrix size

1 King and Nakornchai [1982] 5×7 35

2 Waghodekar and Sahu [1984] 5×7 35

3 Seifoddini [1989] 5×18 90

4 Kusiak [1992] 6×8 48

5 Kusiak and Chow [1987] 7×11 77

6 Boctor [1991] 7×11 77

7 Seiffodini and Wolfe [1986] 8×12 96

8 Chandrasekharan and Rajagopalan [1986a] 8×20 160

9 Chandrasekharan and Rajagopalan [1986b] 8×20 160

10 Fernando and Mauricio [2002] 9×11 99

11 Mosier and Taube [1985a] 10×10 100

12 Chan and Milner [1982] 10×15 150

13 Askin and Subrammanian [1987] 14×23 322

14 Stanfel [1985] 14×24 336

 160

15 McCormick et al. [1972] 16×24 384

16 Srinivasan et al. [1990] 16×30 480

17 King [1980] 16×43 688

18 Carrie [1973] 18×24 432

19 Mosier & Taube [1985b] 20×20 400

20 Kumar et al. [1986] 20×23 460

21 Carrie [1973] 20×35 700

22 Boe and Cheng [1991] 20×35 700

23 Chandrasekharan & Rajagopalan [1989]-1 24×40 960

24 Chandrasekharan & Rajagopalan [1989]-2 24×40 960

25 Chandrasekharan & Rajagopalan [1989]-3 24×40 960

26 Chandrasekharan & Rajagopalan [1989]-5 24×40 960

27 Chandrasekharan & Rajagopalan [1989]-6 24×40 960

28 Chandrasekharan & Rajagopalan [1989]-7 24×40 960

29 McCormick et al. [1972] 27×27 729

30 Carrie [1973] 28×46 1,288

31 Kumar and Vannelli [1987] 30×41 1,230

32 Stanfel [1985] 30×50 1,500

33 Stanfel [1985] 30×50 1,500

34 King & Nakornchai [1982] 30×90 2,700

35 McCormick et al. [1972] 37×53 1,961

36 Chandrasekharan & Rajagopalan [1987] 40×100 4,000

 Table 7.1 can also be interpreted in the form of a graphical representation as

shown in Figure 7.1. It clearly shows the variation from a minimum value of 35

(product of total number of machines and total number of parts) to a maximum value

of 4000, hence covering a reasonably wide range of different problem sizes and

providing enough challenge to the algorithm to prove its effectiveness.

-

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

Problem No.

P
ro

b
le

m
 s

iz
e
 (

M
a

c
h

s
X

J
o

b
s

)

Figure 7.1: Variation in size of Machine-Part incidence matrix

 161

 After solving all the problems listed in Table 7.1, the GE reported for the same

problems by the following techniques is compared with the GE obtained during this

research. (Tariq et al. [2006] & [2009])

a) ZODIAC (Chandrasekharan and Rajagopalan, [1987])

b) GRAFICS (Srinivasan and Narenderan, [1991])

c) CA - Clustering algorithm (Srinivasan, [1994])

d) GATSP - Genetic algorithms (Cheng et al. [1998])

e) GA - Genetic algorithm (Onwubolu & Mutingi, [2001])

f) GP- Genetic programming (Dimopoulos & Mort, [2001])

g) Hyb. GA - Hybrid GA (Fernando and Mauricio, [2002])

Best results for the selected benchmark problems from literature, as far as the

GE values are concerned, have been reported by the above listed techniques.

Therefore in order to verify the effectiveness of the approach developed during this

research a comparison, based on the selected benchmark problems, is carried out with

the above listed techniques and is presented in Table 7.2. Table 7.2 also displays the

CPU time for each problem. This time is recorded while solving these problems on a

machine having 1.86 GHz Intel® T2130 processor with a RAM of 1.0 GB.

Table 7.2: Test results (GE values) of the selected problems from literature (Tariq
et al. [2006] & [2009])

No. ZODIAC

[1987]

GRAFICS

[1991]

CA

[1994]

GA

TSP

[1998]

GP

[2001]

GA

[2001]

Hyb.

GA

[2002]

Gens This

Approach

Gens CPU

Time

(Seconds)

1 73.68 73.68 - - - - 73.68 1 73.68 1 0.42

2 56.52 60.87 - 68.00 - 62.50 62.50 1 69.57 1 0.51

3 77.36 - - 77.36 - 77.36 79.59 1 79.59 1 0.67

4 76.92 - - 76.92 - 76.92 76.92 1 76.92 1 0.56

5 39.13 53.12 - 46.88 - 50.00 53.13 6 58.62 1 2.60

6 70.37 - - 70.37 - 70.37 70.37 1 70.37 1 0.89

7 68.30 68.30 - - - - 68.30 1 68.30 1 1.40

8 58.33 58.13 58.72 58.33 58.72 55.91 58.72 2 58.72 1 18.72

9 85.24 85.24 85.24 85.24 85.24 85.25 85.25 1 85.25 1 14.12

10 - - - - - - 86.67 1 86.67 1 0.52

11 70.59 70.59 70.59 70.59 - - 70.59 1 70.59 1 1.52

12 92.00 92.00 - 92.00 - - 92.00 1 92.00 1 2.12

13 64.36 64.36 64.36 - - - 69.86 10 70.83 1 22.64

 162

14 5 65.55 - 67.44 - 63.48 69.33 1 70.51 1 3.23

15 32.09 45.52 48.70 - - - 51.96 21 51.96 2 9.82

16 67.83 67.83 67.83 - - - 67.83 1 67.83 1 4.02

17 53.76 54.39 54.44 53.89 - - 54.86 1 54.86 1 11.06

18 41.84 48.91 44.20 - - - 54.46 32 54.95 2 9.89

19 21.63 38.26 - 37.12 - 34.16 42.96 50 43.45 8 21.48

20 38.66 49.36 43.01 46.62 49.00 39.02 49.65 78 49.65 1 4.63

21 75.14 75.14 75.14 75.28 - 66.30 76.14 1 76.14 1 5.06

22 51.13 - - 55.14 - 44.44 58.07 2 58.38 1 10.29

23 100.00 100.00 100.00 100.00 100.00 100.00 100.00 1 100.00 1 15.29

24 85.11 85.11 85.11 85.11 85.11 - 85.11 1 85.11 1 18.47

25 73.51 73.51 73.51 73.03 73.51 73.03 73.51 1 73.51 1 23.75

26 20.42 43.27 51.81 49.37 - 37.62 51.85 114 52.50 1 49.11

27 18.23 44.51 44.72 44.67 - 34.76 46.50 117 46.84 12 231.09

28 17.61 41.67 44.17 42.50 - 34.06 44.85 75 44.85 8 143.91

29 52.14 41.37 51.00 - - - 54.27 8 54.31 4 21.07

30 33.01 32.86 40.00 - - - 43.85 117 46.43 7 204.83

31 33.46 55.43 55.29 53.80 - 40.96 57.69 111 60.74 4 197.62

32 46.06 56.32 58.70 56.61 - 48.28 59.43 113 59.66 35 1626.3

33 21.11 47.96 46.30 45.93 - 37.55 50.51 93 50.51 35 1391.12

34 32.73 39.41 40.05 - - - 41.71 45 44.67 9 823.52

35 52.21 52.21 - - - - 56.14 1 59.60 8 55.37

36 83.66 83.92 83.92 84.03 84.03 83.90 84.03 3 84.03 1 270.76

(All the rows having a grey coloured background, show that the results have been further improved)

 Analysing the results presented in Table 7.2, it can be clearly seen that the

approach developed during this research has given GE for all the benchmark problems

which is either greater than or equal to the previously reported values and that is why

it would not be an overstatement to say that this research has outperformed all the

previous research approaches in terms of accuracy and consistency. By accuracy we

mean the value of GE which for none of the benchmark problems is less than the

previously reported values, whereas in 15 problems (41.67% of the total tested

problems) it is even better than the previously reported results. On the other hand by

consistency we mean that this behaviour of giving accurate results remains consistent

throughout i.e. right from the first problem till the 36th problem, whereas all the other

techniques, used here for comparison, loose their accuracy as the problem size

increases. It is evident from Table 7.2 that out of the first 18 results (where the

Machine-Part incidence matrix size varies from 35 to 688 entries) only 5 (27.77%)

 163

have been further improved whereas in the last 18 results (where the Machine-Part

incidence matrix size varies from 400 to 4000 entries), 10 (55.55%) results have been

further improved.

 A graphical representation of results presented in Table 7.2 is shown in Figure 7.2.

79
.5

9

58.
62

70
.3

7

58
.7

2

70
.5

9

92

70.
83

51.
96

67.
83

54
.8

6

43
.4

5
49

.6
5

76
.1

4

58
.3

8

10
0

85.
11

73
.5

1

52
.5

46
.8

4
54.

31
60

.7
4

59
.6

6

50
.5

1

59
.6

84
.0

3

68

79
.5

9

70
.3

7

58
.7

2

70
.5

9

92

69
.8

6

51
.9

6

67
.8
3

54
.8

6

42
.9

6
49

.6
5

76
.1

4

58
.0

7

10
0

85
.1

1

73
.5

1

51
.8

5

46
.5

54
.2
7 59

.4
3

50
.5

1

84
.0

3

44
.6

7
46

.4
3

44
.8

5

54
.9

5

70
.5

173
.6

8

69
.5

7

76
.9

2

68
.3

85
.2

5 86.
67

56
.1

4

41
.7

1
43

.8
5

44
.8

5

54
.4

6

69
.3

3

53
.1

3

73
.6

8

68
.3

57
.6

9

85
.2

5 86
.6

7

76
.9

2

0

10

20

30

40

50

60

70

80

90

100

110

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

Problem No.

G
r
o
u
p
in

g
 E

ff
ic

a
c
y
 (

G
E

)

This approach Previous best

Figure 7.2: Comparison of GE obtained by this research and the best reported in

literature

It can be seen, both, in Table 7.2 and Figure 7.2 that the approach, developed

during this research, have produced results which are either better or equivalent to the

previously best reported results in literature. For 58.33% (21 problems) of the total

tested problems (36 problems) the results are equivalent to the best reported in

literature. For 41.67% (15 problems) the GE values obtained by this approach are

higher than the previously reported values. Another distinguishing feature of the

approach is that in case of 66.67% (24 problems) it took only one generation to reach

the best value of GE which proves that the LSH developed during this research is very

effective and it has made this approach comparatively more accurate and consistent,

whereas the all the other approaches used here for comparison have the tendency of

loosing accuracy as the size of the problem increases and the incidence matrices

become more ill-structured. In Table 7.2 it can be seen that in 31.82% (7 problems) of

the first 22 results, where the machine part incidence matrix size is less than or equal

to 700 entries, the value of GE is higher than the previous best reported. To further

establish this claim let us consider the results of the last 14 problems i.e. from

problems 23 to 36 in which the matrix size is either greater than or equal to 960

 164

entries (24×40), it can be very clearly observed that 57.14% (8 results) are better than

previous bests. To dig it even further we can see that in 75 % (6 results) of the last 8

results, where the Machine-Part incidence matrix size is either greater than or equal to

729 entries (27×27), have displayed higher GE values. These statistics prove that the

technique developed during this research is comparatively more consistent and is not

much affected by the size and structure of the Machine-Part incidence matrix (Tariq et

al. [2006] & [2009]).

 The above improvements are because of the strategy of simultaneous

Machine-Part grouping, used during this research, and the development and

placement of a strong LSH at the heart of the traditional GA loop. The LSH,

developed during this research, is organised in such a manner that it changes the

position of a part and/or machine from one cell to another while checking any

consequent increase in the value of GE. The procedure is started from the first gene

and by the time it reaches the last gene a comparatively better solution, having higher

GE, has evolved. The LSH developed during this research, though does not take all

the available options (placing a part and/or machine in all the available cells, one by

one) into consideration, considers enough number of options that makes it

comparatively more effective. In comparison, the technique developed by Fernando &

Mauricio [2002] does not group machines into cells and parts into families

simultaneously and at the same time LSH is first used to make part families in

accordance with the initial machine groups and then refines the machine arrangement

into a final arrangement on the available part families. This shows that their technique

is sequential in nature rather than simultaneous and therefore the results produced, in

comparison to this research, are less accurate. Also, since the LSH, developed during

this research, is applied both to the formation of machine groups and corresponding

part families and considers larger number of options for improvement (search is not

limited in the neighbourhood only) therefore it is more rigorous as compared to the

one presented by Fernando & Mauricio [2002].

A graphical representation, of the analysis being carried out in the preceding

paragraphs, is shown in Figure 7.3, where all the problems are divided into 6 groups

each containing 6 problems.

 165

2
0

3 2
4 4

33.33

0

50

33.33

66.66 66.66

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

6 12 18 24 30 36

Problems

N
u

m
b

e
r+

%
 o

f
p

ro
b

s
 i
m

p
ro

v
e

d

Problems improved

% of probs improved

Figure 7.3: The number and percentage of problems improved

It can be clearly seen in Figure 6.3 that the maximum number of problems

(66.66%) are being further improved in the groups from 25 to 30 and from 31 to 36,

where the problem size varies from 960 to 4000 entries. This shows the consistency of

the algorithm in terms of accuracy.

Another comparison of this approach, on the basis of the total number of

generations required by GA to reach a maximum value, is also made with the

technique developed by Fernando and Mauricio [2002]. A graphical representation of

this comparison is shown in Figure 7.4.

0

10

20

30

40

50

60

70

80

90

100

110

120

130

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

Problem No.

N
u

m
b

e
r

o
f

G
e

n
s

 t
o

 r
e

a
c

h
 t

h
e

 m
a

x

Fernando [2002]

This approach

Figure 7.4: Comparison (between Fernando’s work and this approach) in terms

of the number of generations to reach the maximum value of GE for each

problem

 166

 It is clear from Figure 7.4 and Table 7.2 that the approach developed during

this research needed less number of generations in more than 50% of the problems to

reach the maximum value of GE, as compared to Fernando and Mauricio [2002]. On

the other hand, for all the rest of the problems it needed an equivalent number of

generations except at one instant (Problem 35). This clearly proves the power and

effectiveness of the LSH being proposed here. It has already been described that this

effectiveness is due to the fact that it (The LSH) does not limit its search to immediate

neighbourhood. It takes a large number of options into consideration while improving

a solution which makes it comparatively more effective. Since the LSH is placed at

the heart of the traditional GA loop and further improves the best solution of each

generation, therefore it reaches the optimum/near optimum GE value in comparatively

lesser number of generations.

 In order to further elaborate the ability of this approach to produce

comparatively better results, percentage improvement has been calculated for each of

the tested problems and is presented in Table 7.3.

Table 7.3: Results in terms of percentage improvement

Problem

Previous best

(GE)

This approach

(GE)

Percentage

improvement

1 73.68 73.68 0

2 68.00 69.57 2.31

3 79.59 79.59 0

4 76.92 76.92 0

5 53.13 58.62 10.33

6 70.37 70.37 0

7 68.30 68.30 0

8 58.72 58.72 0

9 85.25 85.25 0

10 86.67 86.67 0

11 70.59 70.59 0

12 92.00 92.00 0

13 69.86 70.83 1.38

14 69.33 70.51 1.70

15 51.96 51.96 0

16 67.83 67.83 0

17 54.86 54.86 0

18 54.46 54.95 0.8997

19 42.96 43.45 1.145

20 49.65 49.65 0

21 76.14 76.14 0

22 58.07 58.38 0.5338

23 100 100 0

 167

24 85.11 85.11 0

25 73.51 73.51 0

26 51.85 52.50 1.254

27 46.50 46.84 0.7312

28 44.85 44.85 0

29 54.27 54.31 0.074

30 43.85 46.43 5.884

31 57.69 60.74 5.287

32 59.43 59.66 0.387

33 50.51 50.51 0

34 41.71 44.67 7.097

35 56.14 59.60 6.163

36 84.03 84.03 0

 The data presented in Table 7.3 can also be displayed in the form of a

graphical representation as shown in Figure 7.5.

0

2.31

0 0

10.33

0 0 0 0 0 0 0

1.38
1.7

0 0 0

0.89971.145

0 0
0.5338

0 0 0

1.254
0.7312

0 0.074

5.884

5.287

0.387
0

7.097

6.163

0

0

1

2

3

4

5

6

7

8

9

10

11

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

Problem No.

%
a

g
e

im
p

ro
v

em
en

t

Figure 7.5: %age improvement in result (GE) of each problem

Table 7.3 and Figure 7.5 show that percentage improvement has been recorded

in case of 15 (41.67%) problems. The maximum improvement (10.33%) has been

recorded in problem 5, whereas the minimum (0.074%) has been recorded in problem

29. However, on the average an improvement of 1.255% has been recorded.

7.3 Statistical Analysis: (Tariq et al. [2009])

In order to validate the results, obtained during this research, a statistical

analysis is presented. For this purpose the two techniques, New approach (this

research) and Hybrid GA (Fernando & Mauricio [2002]), have been compared with

each other using a 95% Confidence Interval (CI) for the mean difference while

performing a Paired T-Test. It is to be noted here that zero is not included in the

 168

confidence interval between the two techniques for the mean difference. This

indicates that the two techniques are different from each other. Inconsistency of the

data is indicated by the small p-value (p = 0.006) with H0: µ d = 0, which suggests

that the two approaches did not perform equally rather the performance of the new

approach (mean = 65.3222) was comparatively better than the hybrid approach (mean

= 64.5081) as far as calculating the value of GE is concerned for the total number of

36 problems selected form literature (Table 6.1 & Table 6.2).

Paired T-Test and CI: Hyb.GA (Fernando & Mauricio, 2002), New Approach

(this research) (Tariq et al. [2009])

Paired T for Hyb.GA - New Approach

 N Mean StDev SE Mean

Hyb.GA 36 64.5081 15.1927 2.5321

New Approach 36 65.3222 14.7703 2.4617

Difference 36 -0.814167 1.660087 0.276681

95% CI for mean difference: (-1.375859, -0.252474)

T-Test of mean difference = 0 (vs not = 0): T-Value = -2.94: P-Value = 0.006

Hyb.GA

P
e
rc
e
n
t

1009080706050403020

99

95

90

80

70

60

50

40

30

20

10

5

1

Mean

0.208

64.51

StDev 15.19

N 36

AD 0.490

P-Value

normality test for Hyb.GA data
Normal

New Approach

P
e
rc
e
n
t

10090807060504030

99

95

90

80

70

60

50

40

30

20

10

5

1

Mean

0.261

65.32

StDev 14.77

N 36

AD 0.450

P-Value

normality test for New Approach data
Normal

Figure 7.6: Normality test for Hybrid GA (Fernando & Mauricio [2002]) and

New Approach (This research) (Tariq et al. [2009])

The plot of normal probabilities versus the data is the graphical output as

shown in Figure 6.6. The departure of data from the fitted line in the extremes

(distribution tails) can be more evidently viewed. But since the assumption of

normality in any T-Test is of moderate importance only, therefore the P-value of the

Anderson Darling (AD) test suggest that it is safe enough to apply the Paired T-Test,

in spite of the fact that the data looks like departing in lower extremes from the fitted

line.

 169

Our contention is also supported by the graph obtained from the test of equal

variances.

9 5 % B o n f e r r o n i C o n f i d e n c e I n t e r v a l s f o r S t D e v s

N e w A p p r o a c h

H y b . G A

2 01 81 61 41 2

D a t a

N e w A p p r o a c h

H y b . G A

1 0 09 08 07 06 05 04 0

F - T e s t

0 . 8 7 6

T e s t S t a t i s t i c 1 . 0 6

P - V a lu e 0 . 8 6 8

L e v e n e ' s T e s t

T e s t S t a t i s t i c 0 . 0 2

P - V a lu e

T e s t f o r E q u a l V a r i a n c e s f o r H y b . G A , N e w A p p r o a c h

Figure 7.7: Equal Variance test for Hybrid GA and New Approach (Tariq et al.

[2009])

7.4 Formation of Single Machine Cells: (Tariq et al. [2007])

 Some of the research works, presented in literature, advocates restriction on

the formation of single machine cells e.g. Fernando and Mauricio [2002] discarded

any such solutions from population in which single machine cells were formed.

Contrary to this, it has been found during this research that the formation of single

machine cells is in fact beneficial in terms of increase in GE and decrease in

intercellular moves which consequently reduces the material handling cost. In order to

show the effectiveness of allowing the formation of single machine cells an analysis is

presented in the following Section.

7.4.1 Numerical Example (Formation of Single Machine Cells): (Tariq et al.

[2007])

To judge the effectiveness of allowing the formation of single machine cell, a

numerical example is selected from Waghodekar and Sahu [1984]. The problem

consists of a total number of 7 parts and 5 machines. The total number of cells to be

developed is 2. Table 6.4 presents the initial Machine-Part incidence matrix of the

problem. First solution for the problem is obtained while restricting the formation of

cells that posses one machine. Afterwards the same problem is solved while allowing

the formation of cells that posses one machine and finally the results are compared:

 170

Table 7.4: The initial machine part incidence matrix (Tariq et al. [2007])

Machs.

Parts

1 2 3 4 5

1 1 0 0 1 0

2 0 1 0 1 1

3 0 1 1 1 0

4 0 1 1 1 1

5 1 1 1 0 1

6 1 0 1 0 1

7 1 0 0 0 0

First the algorithm is modified to restrict the formation of single machine cell.

The solution obtained is as shown in Table 7.5:

Table 7.5: Solution without single machine cell (Tariq et al. [2007])

Machines
Parts

1 4 2 3 5

1 1 1 0 0 0

7 1 0 0 0 0

2 0 1 1 0 1

3 0 1 1 1 0

4 0 1 1 1 1

5 1 0 1 1 1

6 1 0 0 1 1

 Table 7.5 shows that a total number of five 1s are outside the block diagonal.

This means that 5 parts (2, 3, 4, 5 and 6) require processing in other cells i.e. other

than the one to which they are allocated. Since each of these parts would be carried to

another cell for processing and brought back afterwards, therefore the total number of

intercellular moves would be twice the total number of 1s outside the block diagonal.

All the relevant calculations are as follows:

Grouping Efficacy (GE) = 62.5%

Number of 1s outside the block diagonal = 5

Total number of intercellular (IC) moves = 5 × 2 = 10

Let, material handling cost per IC move = 10 units.

So, total material handling cost for 10 IC moves = 10 × 10 = 100 units

 Now, secondly, the algorithm is converted back to its original form i.e.

formation of single machine cells is allowed. This time the solution, for the same

example, obtained is as shown in Table 7.6:

 171

Table 7.6: Solution with single machine cell (Tariq et al. [2007])

Machines

Parts
1 2 3 4 5

1 1 0 0 1 0

6 1 0 1 0 1

7 1 0 0 0 0

2 0 1 0 1 1

3 0 1 1 1 0

4 0 1 1 1 1

5 1 1 1 0 1

It can be clearly seen in Table 7.6, that this time the total number of 1s outside

the block diagonal are 4 instead of 5. The total number of 0s inside the block diagonal

has also decreased from 4 to 3. The net effect of this decrease in the total number 1s

outside, and 0s inside the block diagonal is an increase in the value of GE and

decrease in the material handling cost, as shown below:

Grouping efficacy (GE) = 69.57%

Number of 1s outside the block diagonal = 4

Total number of IC moves = 4 × 2 = 8

Total material handling cost for 8 IC moves = 8 × 10 = 80 units

Total material handling cost saved = 100 – 80 = 20 units.

7.4.2 Computational Results (Formation of Single Machine Cells):

 The phenomenon, of increase in GE and decrease in material handling cost as

a result of allowing the formation of single machine cells is not limited only to the

example presented above. The same trend is experienced in a number of other, already

tested, benchmark problems as well. A total number of 8 such problems (out of the

total 36 tested problems) were found in which the final result contained single

machine cells. The matrix size and source of these problems are as shown in Table

7.7.

Table 7.7: Problems with their sizes and sources (Tariq et al. [2007])

Pb/No. Source Size

1 Stanfel (1985) 14×24

2 Carrie (1973) 18×24
3 Mosier & Taube (1985b) 20×20

4 Boe and Cheng (1991) 20×35

5 Chandrasekharan & Rajagopalan (1989)-5 24×40

 172

6 Carrie (1973) 28×46

7 Kumar and Vannelli (1987) 30×41
8 Stanfel (1985) 30×50

 Results of the problems listed in Table 7.7 are as shown in Table 7.8, in the

following:

Table 7.8: Results of the problems shown in Table 7.7 (Tariq et al. [2007])

Pb.

Prev. Best
(GE)

without
single

mach cells

Prev. Best
(IC moves)

without
single mach

cells

This Paper
(GE) with

single
mach cells

This Paper
(IC

moves)
with single
mach cells

Diff. in
IC

moves
(d)

Total
IC

moves
saved
(2×d)

Cost
Saved
d×10
Units

1 69.33 09 70.51 06 03 06 60

2 54.46 27 54.95 27 00 00 00

3 42.96 53 43.45 48 05 10 100

4 58.07 41 58.38 41 00 00 00

5 51.85 47 52.50 47 00 00 00

6 43.85 97 46.43 94 03 06 60

7 57.69 38 60.74 29 09 18 180

8 59.43 50 59.66 49 01 02 20

 It can be seen in Table 7.8 and Figure 7.7, that GE has been improved in 100%

of the problems. This is a clear indication that allowing the formation of single

machine cells is beneficial as far as effective grouping of parts into families and

machines into corresponding groups is concerned.

69.33

54.46

42.96

58.07

51.85

43.85

57.69 59.43

70.51

54.95

43.45

58.38

52.5

46.43

60.74 59.66

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8

Problem No.

G
ro

u
p

in
g

 E
ff

ic
a

c
y

 (
G

E
)

Without single m/c cell

With single m/c cell

Figure 7.8: Comparison of GE with and without the presence of single machine

cells

 Increase in GE means: increase in machine utilization inside the cell (less

number of 0s inside the block diagonal) and/or decrease in the number of intercellular

moves (less number of 1s outside the block diagonal). It can also be seen in Table 7.8

 173

that in addition to increase in GE in 100% problems, a decrease in the total number of

intercellular moves is experienced in more than 60% of the problems (5 out of 8).

This trend of decrease in intercellular moves is shown in Figure 7.8.

9

27

53

41
47

97

38

50

6

27

48
41

47

94

29

49

0

10

20

30

40

50

60

70

80

90

100

110

1 2 3 4 5 6 7 8

Problem No.

N
u

m
b

e
r

o
f

IC
 m

o
v

e
s

With single m/c cell

Without single m/c cell

Figure 7.9: Comparison in terms of number of intercellular moves with and

without the presence of single machine cells

 Reduction in intercellular moves means less material handling cost. This trend

in the units of material handling cost saved, as a result of reduction in the total number

on intercellular moves while allowing the formation of single machine cells, is shown

in Figure 7.9, in the following.

60

0

100

0 0

60

180

20

0

20

40

60

80

100

120

140

160

180

200

1 2 3 4 5 6 7 8

Problem No.

C
o

s
t

s
a

v
e

d

Figure 7.10: Cost saved as a result of reduction in total number of IC moves

7.5 Computational Results and Discussion (Hybrid GA for JSSP): (Tariq et al.

[2007])

Table 7.9 presents the results of the tested problems. Though the

computational experience is very limited, it shows that in case of more than 90%

 174

problems the optimum result has been achieved. This shows that the proposed

algorithm is effective enough as far as its accuracy is concerned.

Table 7.9: Computational Results (Hybrid GA for JSSP) (Tariq et al. [2007])

S/N

o

Source Prob Size

Jobs ×

machs

Makespan

found here

Optimal

Makespan

%age

Sol

Gap

CPU

time

(sec)

Num

of

Gens

1 Fisher &
Thompson [1963]

FT 6 6 × 6 55 55 0 1 1

2 Lawrence, [1984] LA 1 10 × 5 666 666 0 4 1

3 Lawrence, [1984] LA 2 10 × 5 655 655 0 328 36

4 Lawrence, [1984] LA 3 10 × 5 597 597 0 431 38

5 Lawrence, [1984] LA 4 10 × 5 590 590 0 13 1

6 Lawrence, [1984] LA 5 10 × 5 593 593 0 1 1

7 Lawrence, [1984] LA 6 15 × 5 926 926 0 4 1

8 Lawrence, [1984] LA 7 15 × 5 890 890 0 12 1

9 Lawrence, [1984] LA 11 20 × 5 1222 1222 0 59 1

10 Fisher &
Thompson [1963]

FT 10 10 × 10 936 930 0.65 6653 90

11 Noor [2007] CB-
JSSP1

8×6 505 505 0 8 2

12 Noor, [2007] CB-
JSSP2

6×6 444 444 0 3 1

13 Noor, [2007] CB-
JSSP3

6×6 379 379 0 18 4

In Table 7.9, comparatively smaller size of problems is solved. The reason is

that this approach can handle a maximum problem size (Machs × Parts) of 100 i.e

Machs × Parts ≤ 100. It is due to the limitation of the software (Applications Manager

– AM), this technique has been encoded in. The software (AM) does not allow an

array size having more than 8000 elements which means the population size for a 10

× 10 problem cannot be more than 80. This is the reason that as the problem size

increases (gets beyond 10 × 10) the size of population gets smaller in order to keep

the population array’s size (Machs × Parts × Pop Size) down to 8000 elements

(Machs × Parts × Pop Size ≤ 8000). The decrease in population size means less space

for the algorithm to explore, which in turn means that there is every chance for the

algorithm to get trapped on a local optimum. A reasonably larger population size

provides a larger searching space and also maintains a satisfactory level of diversity.

Diversity is important because it keeps the potential areas intact in a population where

the global optimum may exist. A smaller population size can get monotonous in

comparatively lesser number of generations thus causing the algorithm to get trapped

on a local optimum. Now, the question arises that in spite of this limitation why the

 175

technique has been encoded in AM? The answer is that we had already encoded the

tool for Machine-Part grouping in AM and since this tool for Job-Shop scheduling

was to be combined with that, therefore it had to be encoded in AM. Also, at that time

this limitation was not known as it did not get discovered during the encoding of

Machine-Part grouping technique. Besides that, the reason for selecting AM was that

it is user friendly and can be used for quick development of applications.

7.6 Computational Results and Discussion (Combined Model):

 As described earlier the combined model is developed by the combination of

two tools (hybrid GA for Machine-Part grouping problem and JSSP) in a manner that

the output of Machine-Part grouping tool is used as input by the Job-Shop scheduling

tool. A number of problems (20) have been selected from literature to evaluate the

performance of the Combined model. Results (calculated values of GE and

Makespan) of the tested problems are presented in Table 7.10, in the following.

Table 7.10: Results of the problems solved by combined model
S/

No

Problem

size

(Machs×

Parts)

Source Num

of

cells

Sour

ce

(GE)

This

resear

ch

(GE)

%age

Impr

ovem

ent

Proces

sing

sequen

ce

Proces

sing

time

Lo

wer

bou

nd

Make

span

Cmax

%age

Sol

Gap.

1 5×5 Won &
Currie [2006]

2 73.33 73.33 0 Rand Rand 52 62 19.23

2 5×7 Fernando &
Mauricio
[2002]

2 73.68 73.68 0 Rand Rand 59 59 0

3 5×7 Fernando &
Mauricio
[2002]

2 62.50 69.57 11.31 Rand Rand 59 68 15.24

4 6×6 Zhao & Wu
[2000]

2 76.19 76.19 0 Rand Rand 79 79 0

5 6×7 Sunderesh &
Heragu
[1994]

2 65.22 65.22 0 Source Rand 50 63 26.00

6 6×8 Fernando &
Mauricio
[2002]

2 76.92 76.92 0 Rand Rand 113 113 0

7 6×8 etidweb.tamu
.edu/ftp/ENT
C380/Exam%
203%20Mate

rial/18-
Cellular%20
Manufacturin

g.pdf

3 88.89 88.89 0 Rand Rand 64 64 0

8 6×13 Arzi et al
[2001]

2 56.25 56.25 0 Rand Rand 116 116 0

9 7×8 home.postech
.ac.kr/~jjujju/
data/data/ch1

3 85.00 85.00 0 Rand Rand 58 66 13.79

 176

0(KimJ).ppt

10 7×9 Yasuda &
Yin [2001]

2 72.73 72.73 0 Rand Rand 64 77 20.31

11 7×10 Mungawattan
a [2000]

3 69.23 69.23 0 Source Rand 82 82 0

12 7×11 Fernando &
Mauricio
[2002]

3 53.13 58.62 10.33 Rand Rand 77 77 0

13 7×11 Fernando &
Mauricio
[2002]

3 70.37 70.37 0 Rand Rand 55 65 18.18

14 7×11 Amirthagades
waran &

Arunachalam
, [2006]

2 61.90 61.90 0 Source Source 55 55 0

15 7×12 Mungawattan
a [2000]

3 60.00 60.00 0 Source Rand 76 76 0

16 7×14 Wu et al
[2006]

3 65.79 65.79 0 Rand Rand 77 77 0

17 8×10 Murugan &
Selladurai,

[2005]

3 81.25 81.25 0 Source Rand 74 87 17.56

18 8×12 Fernando and
Mauricio
[2002]

3 68.30 68.30 0 Rand Rand 102 102 0

19 9×9 Gongaware
& Ham
[1981]

3 74.29 74.29 0 Rand Rand 82 90 9.75

20 10×10 Fernando and
Mauricio
[2002]

3 70.59 70.59 0 Rand Rand 56 72 28.57

 Table 7.10 shows that the Combined model not only provides solution for the

Machine-Part grouping problem but also provides solution for the system scheduling

problem. In the part machine grouping stage only two problems (3 & 12) have been

further improved as far as their GE is concerned. Whereas, in the scheduling part

eleven problems (55% of the tested problems) achieved the lower bound values which

shows the effectiveness of the scheduling tool. A graphical representation of the

%age solution gap between the lower bound and the Makespan achieved, for each

problem, by the hybrid GA based scheduling tool developed during this research is

given in Figure 7.11.

 177

19.23

0

15.24

0

26

0 0 0

13.79

20.31

0 0

18.18

0 0 0

17.56

0

9.75

28.57

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Problem No.

%
a

g
e

 s
o

lu
ti

o
n

 g
a

p

%age sol gap

Figure 7.11: %age solution gap between LB and result achieved for each

problem

 It can also be seen in the Table 7.10 that for 75% of the problems (15 out of

20) the processing sequence has been randomly generated as it is not provided in the

source. Similarly, for 95% of the problems (19 out of 20) the processing times have

been randomly generated. Whereas for none of the above mentioned problems, the

values of Makespan are available in literature. This shows that this kind of solution

approach is very rare to be found in literature as most of the researchers emphasized

heavily on Machine-Part grouping and little attention has been paid to operational

issues.

7.7 Summary:

 This chapter has presented a detailed analysis based on the testing and

validation of the tools developed for Machine-Part grouping and Job-Shop scheduling.

A number of benchmark problems have been selected from literature and after solving

the results have been compared with the already reported results by different

researchers. The results show that the Machine-Part grouping tool, besides performing

satisfactorily has also one other aspect of allowing the formation of single machine

cells which results in increasing GE while reducing the number of intercellular moves

and corresponding material handling cost. On the other hand, though the tool

developed for JSSP performed efficiently for the tested problems, listed in Table 6.9,

but it still carries a drawback as it could not be applied to large size problems because

of the limitations (on the size of array) of the software (AM) used for encoding.

Finally, after separate testing and validation of the two tools (Machine-Part grouping

problem and JSSP) they have been combined and then the combined model is also

 178

tested and validated through a number of problems from literature. The problem with

validation of the combined model is that benchmark results for the scheduling part of

the problem are not available in literature, showing that this aspect of CMS design

(operational) has not been thoroughly considered by researchers.

 179

CHAPTER 8

CONCLUSION AND FUTURE RESEARCH

8.1 Introduction:

 The main research objectives initially described in Chapter 1 were to develop

separate hybrid tools for the Machine-Part grouping and Job-Shop scheduling

problems and then finally integrate them together after verification and validation of

the tools through a number of benchmark problems form literature. Details regarding

the development of these tools, their integration, and validation are described in

Chapter 5, Chapter 6 and Chapter 7. Now, this chapter presents the outcome of the

technique developed during this research for the operational design of a CMS. In

addition to the overall conclusion of this research some directions for the future work

in this area are also identified.

8.2 Conclusion of Hybrid GA for Machine-Part Grouping:

 The hybrid GA based approach, for Machine-Part grouping, developed during

this research, combines an LSH with GA that uses integer type representation,

multipoint crossover and roulette wheel selection procedure. LSH is placed inside the

GA loop in such a way that the best solution in each generation is subjected to it.

After being locally improved the solution is placed back in population so that it can

take part in different genetic operators like crossover and mutation and produce even

better solutions. A computational experience (Table 7.1 & Table 7.2) shows that the

approach developed during this research is not only accurate, as it produce results that

are equally accurate, but also achieves this goal in comparatively lesser number of

generations. Further, in case of some problems (41.67% of the total tested problems)

the values of GE obtained by this approach are greater than the ones reported earlier

as best. Another differentiating feature of the approach is that it has shown a

consistent level of accuracy in case of all problem sizes whether small or large. On the

contrary other approaches reported in literature and used here as benchmarks have the

tendency to loose their accuracy and effectiveness with the increase in problem size

and the ill-structured formation of Machine-Part incidence matrices. A statistical

analysis has also been carried out to further verify and authenticate the effectiveness

of this approach.

 180

 Another important aspect of this technique is that, unlike many other

approaches, here the formation of cells that posses one machine only is allowed. The

computational experience (Table 7.7 & Table 7.8), as far as this aspect of the

algorithm is concerned, shows that by allowing the formation of cells that contain

only one machine a decrease can be observed in the total number of intercellular

moves and corresponding material handling costs which results an increase in the

value of GE.

8.3 Conclusion of Hybrid GA for Job-Shop Scheduling:

Similar to the approach developed for Machine-Part grouping a hybrid GA

based technique is developed for Job-Shop scheduling by combining GA with an LSH

while representing chromosomes as two-dimensional arrays of integers, making use of

the swap mutation, multi-cut point crossover, and the selection approach of Stochastic

Universal Sampling (SUS). The uniqueness of the approach, that was initially

intended, is that each chromosome (solution) is represented in the form of a two

dimensional array which is very rare to be found in literature. Also, a repair algorithm

is developed that ensures the legality of each solution in a population. Here also, the

LSH developed during this research is placed on the inner side of the GA loop and

locally improves the best solution of each generation. The main significance of the

LSH developed during this research is that it produces satisfactory results in

combination with ordinary two point crossover and swap mutation. It means that the

LSH is so effective that it has relieved considerable amount of pressure on the GA

operators (crossover, mutation and selection) which is the main reason for satisfactory

results. Computational experience (Table 7.9) with the algorithm shows that in more

than 90% (12 out of 13) of the problems the results obtained are optimum. Also, in

77% (10 out of 13) of the total tested problems the algorithm consumed a maximum

of four generations in reaching the optimum result which proves the effectiveness of

the LSH which helps the algorithm to converge on to the optimum in lesser number of

generations.

Though the technique developed during this research seems effective, as far as

the reported results are concerned, but it still has one major shortcoming. This

approach can handle a maximum problem size (Machs × Parts) of 100 i.e Machs ×

Parts ≤ 100. It is due to the limitation of the software (Applications Manager – AM),

 181

this technique has been encoded in. The software (AM) does not allow an array size

greater than 8000 elements that means the population size for a 10 × 10 problem

cannot be more than 80. This is the reason that as the problem size increases (gets

beyond 10 × 10) the size of population gets smaller in order to keep the population

array’s size (Machs × Parts × Pop Size) down to 8000 elements (Machs × Parts ×

Pop Size ≤ 8000). The decrease in population size means less space for the algorithm

to explore.

8.4 Conclusion of Combined Model (Operational Design of a CMS):

The main motivation for this research was to develop a combined technique

that not only provides solution for the Machine-Part grouping problem (cell design)

but also handles the system scheduling problem which is unique in itself as both the

problems have been dealt with separately in literature. After separate development

and thorough validation of hybrid GA based approaches both for Machine-Part

grouping and Job-Shop scheduling the two models have been combined with each

other in such a way that the output of Machine-Part grouping tool is used as an input

to the Job-Shop scheduling tool. The uniqueness of this model, as already described,

is that it not only groups machines into cells and parts into corresponding families but

also provides solution for the system’s scheduling problem. This combined solution

approach is very rare to be found in literature and thus makes this technique different

and more useful in practice as far as other competitive existing techniques, in

literature, are concerned. A reasonable computational experience presented in Table

7.10 shows that such problems have not been handled previously and that is the

reason that for none of the problems solution both in terms of GE and Makespan is

available. In 10 % of the problems (2 out of 20) the GE obtained is better than the

previously reported results, whereas in 90% of the problems (18 out of 20) the GE

obtained is equal to the previous best results. In 75% of the total tested problems (15

out of 20) the processing sequence has been randomly generated as it is not provided

in the source. Similarly, for 95% of the problems (19 out of 20) the processing times

have been randomly generated. Whereas for none of the above mentioned problems,

the values of Makespan are available in literature. This shows that this kind of

solution approach is very rare to be found in literature as most of the researchers

emphasized heavily either on Machine-Part grouping or on system scheduling.

 182

8.5 Directions for Future Research:

 Though the techniques developed during this research both for machine part

grouping and Job-Shop scheduling performed satisfactorily but still there is a lot of

room for improvement. In the following sections identification and description of

certain directions for future research are presented which can further diversify and

improve the working of these techniques.

8.5.1 Hybrid GA for Machine-Part grouping:

 Following are some of the directions for future research that may lead to

improving the hybrid GA based tool developed for the grouping machines into cells

and parts into their corresponding families.

1. Although the developed methodology for the design of CMS produced

satisfactory results (better than the reported results in literature) but the

approach was based on static conditions where it is assumed that the parts

are already available at time zero. It is proposed that in future the dynamic

conditions should also be considered to come up with a more realistic

operational design of the CMS. Further it is suggested that demand,

processing times, etc. should also be considered while designing a CMS

as opposed to just clustering, partitioning.

2. In order to take advantage of the available GA tool box in MATLAB and

to overcome the shortcomings of the AM software this technique is

proposed to be encoded in MATLAB.

3. Other performance measures such as minimizing: material handling cost,

work in process etc may also be included to evaluate the quality of the

solution.

4. To make this technique more time efficient the LSH is proposed to be

made more intelligent by identifying and excluding some of the checks

which can not improve GE any further. For example; by changing a

gene’s value which results in placing the corresponding part or machine

into a cell where it doesn’t have any operation will not improve GE. LSH

can be made intelligent to identify such checks in advance and avoid

wasting time in running the whole procedure for such options.

 183

8.5.2 A Hybrid GA for Job-Shop Scheduling:

 Some directions for future research to improve the working and performance

of the hybrid GA based tool for JSSP are presented in the following:

1. It has already been pointed out that the major deficiency in the tool

developed during this research for solving the JSSP is its inability to

handle large size problems which is due to the limitations of the software

(Applications Manager – AM) it has been encoded in. Therefore it is

suggested that the same technique may be encoded in MATLAB software

to overcome this difficulty (array size limitation).

2. It is further suggested that different types of crossover and mutation

operators may be implemented for further improvement in performance.

3. LSH is suggested to be made more intelligent to avoid such checks which

may not be able to improve results. This would make the technique more

time efficient.

4. The current system is a two-part sequential system in which the first part

deals with the cell formation and the second part finds a schedule for the

operations carried out in the cell. The results of scheduling module are not

used to modify the original cell formation. Therefore, it is suggested that

the scheduling part of the algorithm should be Combined with the cell

design so that information about the overall Makespan can be used as a

feed back and the initial cell design (Machine-Part grouping) can be

modified for further improvement in the overall Makespan. This would be

a further improvement as far as integration of the model is concerned.

5. Other performance measures such as flow time minimization, earliness,

tardiness etc. may also be considered to check the quality of the solution.

8.6 Summary:

 The primary and secondary objectives set for this research have been

successfully achieved. A hybrid GA based tool for Machine-Part grouping has been

developed and its performance has been validated through a number of benchmark

problems from literature. Though this tool has performed satisfactorily but still to

further improve its performance, some recommendations have been made for future

work. Another hybrid tool to handle the system scheduling problem has also been

 184

developed. The performance of this tool has also been tested and validated through a

number of benchmark problems from literature. Further, the shortcomings of the tool

have been identified, and to overcome those some directions for future research have

also been described.

 185

References:

[1]. Aaron L.N., Moustapha D., Wilson L.P. [2006]. “Hybrid genetic approach for

solving large scale capacitated cell formation problems with multiple

routings”. European Journal of Operational Research, 171(3), 1051-1070.

[2]. Aarts, E. H. L., and Van Laarhoven, P. J. M., [1985]. “Statistical cooling:

approach to combinatorial optimization problems”. Philips Journal of

Research, 40, 193-226.

[3]. Akers S. B., [1954]. “A Graphical Approach to Production Scheduling

Problems”. Operations Research, 4, 244-245.

[4]. Akturk, M.S., and Turkcan, [2000]. “A Cellular Manufacturing System design

using a holonistic approach”. International Journal of Production Research,

38(1) 2327-2347.

[5]. Alfa,A.,Heragu, S., and Chen,M., [1991]. “A 3-opt based simulated annealing

algorithm for vehicle routing problems”. Computers and Industrial

Engineering, 21, 635-639.

[6]. Amirthagadeswaran, K. S., & Arunachalam, V. P., [2006]. “Optimization of

Scheduling in Job Shops under Cellular Manufacturing Environment using

Genetic Algorithm”. Journal of The Institution of Engineers (India), 86, 39-42.

[7]. Application Manager (AM), [2001]. Intelligent Environment, Middlesex, UK.

[8]. Al-Qattan, I., [1990]. “Designing flexible manufacturing cells using branch

and bound method”. International Journal of Production Research, 28(2), 325-

336.

[9]. Al-Sultan, K.S. & Fedjki, C.A., [1997]. “A genetic algorithm for the part

family formation problem”. Production Planning & Control, 8, 788–796.

[10]. Annan, M. [2000]. “Design of Cellular Manufacturing Systems for Dynamic

& Uncertain Production Requirements with Presence of Routing Flexibility”.

Ph.D. Thesis.

[11]. Applications Manager (AM), [2001]. “Intelligent Environment”, Middlesex,

UK.

[12]. Arizono, I., Yamamoto, A., Ohta, H., [1992]. “Scheduling for minimizing total

actual flow time by neural networks”. International Journal of Production

Research, 30(3), 503 – 511.

 186

[13]. Arzi, Y., Bukchin, J. and Masin, M., [2001]. “An efficiency frontier approach

for the design of Cellular Manufacturing Systems in a lumpy demand

environment”. European Journal of Operations Research, 134, 346–364.

[14]. Asano M. and Ohta H., [2002]. “A Heuristic for Job Shop Scheduling to

Minimize Total Weighted Tardiness”. Computer and Industrial Engineering,

42, 137-147.

[15]. Askin, R., & Chu, K. [1990]. “A Graph Partitioning Procedure for Machine

Assignment and Cell formation in Group Technology”. International Journal

of Production Research, 28(8), 1555-1572.

[16]. Askin, R. G., & Standridge, C. R., [1993]. “Modelling and Analysis of

Manufacturing System”. Wiley, New York.

[17]. Askin, R. G. & Subrammanian, S. [1987]. “A cost-based heuristic for group

technology configuration”. International Journal of Production Research,

25(l), 101-113.

[18]. Balas E., [1965]. “An Adictive Algorithm for Solving Linear Programming

with Zero-One Variables”. Operation Research, 13, 517-546.

[19]. Balas E., [1969]. “Machine Scheduling Via Disjunctive Graphs: An Implicit

Enumeration Algorithm”. Operation Research, 17, 941-957.

[20]. Balas E., [1979]. “Dynamic Programming”. Hammer P. L., Johson E. L. and

Korte B. (Eds), Discrete Optimization II, North Holland, Amsterdam, The

Netherlands.

[21]. Ballakur, A. & Steudel, H. J., [1987]. "A Within-Cell Utilization Based

Heuristic for Designing Cellular Manufacturing Systems". International

Journal of Production Research, 25(5), 639-665.

[22]. Barton, J. & Love, D., [2005]. “Retrieving designs from a sketch using an

automated GT coding and classification system”. Production Planning &

Control, 16(8), 763–773.

[23]. Baykasoglu, A., Gindy, N.N.Z., [2000]. “MOCACEF 1.0: Multiple objective

capability based approach to form part–machine groups for Cellular

Manufacturing applications”. International Journal of Production Research,

38, 1133–1161.

[24]. Bedworth D., Bailey J. E., [1987]. “Integrated Production Control Systems,

Management Analysis, Design”. 2nd Edition, John Wiley & Sons.

 187

[25]. Bellman R., [1956]. “Dynamic Programming and Lagrange Multipliers”.

Proceedings of the National Academy of Sciences, 42, 767-769.

[26]. Ben-Arieh, D., Sreenivasan, R., [1999]. “Information analysis in a distributed

dynamic group technology method”. International Journal of Production

Economics, 60–61, 427–432.

[27]. Bezdek, J.C., [1981]. “Pattern Recognition with Fuzzy Objective Function

Algorithm”. New York, Plenum Press.

[28]. Bierwirth C., [1995]. “A Generalized Permutation Approach to Job Shop

Scheduling with Genetic Algorithms”. OR Spektrum, 17(2-3), 87-92.

[29]. Bierwirth, C., Mattfield, D. C., Kopfer, H., [1996]. “A generalized

permutation approach to Job-Shop scheduling with genetic algorithms”. OR

Spectrum, 17(2-3), 87-92.

[30]. Billo, R. E., [1999]. “Organizing principles for the design of classification

and coding software”. Journal of Manufacturing Systems, 17(6), 405-417.

[31]. Black, J. [1983]. “Cellular Manufacturing Systems Reduce Setup Time, Make

Small Lot Production Economical”. Industrial Engineering, 36-48.

[32]. Black, J. [1991]. “The Design of the Factory with a Future”. McGraw Hill

Inc. New York.

[33]. Blazewicz J., Dror M. and Weglarz J., [1991]. “Mathematical Programming

Formulations for Machines Scheduling: A survey”. European Journal of

Operational Research, Invited Review, 51(3), 283-300.

[34]. Boctor, F.F. [1991]. “A linear formation of the machine cell formation

problem”. International Journal of Production Research, 29(2), 343-356.

[35]. Boctor, F.F., [1996]. “The minimum-cost, Machine-Part cell formation

problem”. International Journal of Production Research, 34, 1045–1063.

[36]. Boe, W. J. & Cheng, C. H. [1991]. “A close neighbour algorithm for

designing Cellular Manufacturing System”. International Journal of

Production Research, 29(10), 2097-2116.

[37]. Bonomi, E. & Lutton, J., [1984]. “The N-city travelling salesman problem:

Statistical mechanics and the Metropolis algorithm”. SIAM Review, 26, 551-

568.

[38]. Burbidge, J.L. [1975]. “The Introduction of Group Technology”. Wiley, New

York.

 188

[39]. Carpenter, G. A., & Grossberg, S., [1987]. “A massively parallel architecture

for a self organizing neural pattern recognition machine”. Computer Vision,

Graphics and Image Processing, 37, 54-115.

[40]. Carpenter, G. A., & Grossberg, S., [1991]. “

[41]. Carrie, A. S. [1973]. “Numerical taxonomy applied to group technology and

plant layout”. International Journal of Production Research, 11(4), 399-416.

[42]. Caux, C., Bruniaux R., & Pierreval, H., [2000]. “Cell formation with

alternative process plans and machine capacity constraints: A new combined

approach” International Journal of Production Economics, 641(1-3), 279-284.

[43]. Celano, G., Costa, A. & Fichera, S. [2007]. “Scheduling of unrelated parallel

manufacturing cells with limited human resources”. International Journal of
Production Research, 46(2), 405-427.

[44]. Chandrasekharan, M. P., & Rajagopalan, R. [1986a]. “An ideal seed non-

hierarchical clustering algorithm for cellular manufacturing”. International

Journal of Production Research, 24(2), 451-464.

[45]. Chandrasekharan, M. P., & Rajagopalan, R. [1986b]. “MODROC: An

extension of rank order clustering for group technology”. International

Journal of Production Research, 24(5), 1221-1233.

[46]. Chandrasekharan, M.P. & Rajagopalan, R. [1987]. “ZODIAC - An algorithm

for concurrent formation of part families and machine cells”. International

Journal of Production Research. 25(6), 835-850.

[47]. Chandrasekharan, M. P., & Rajagopalan, R. [1989]. “GROUPABILITY:

Analysis of the properties of binary data matrices for group technology”.

International Journal of Production Research, 27(6), 1035-1052.

[48]. Chan, H. M. & Milner, D. A. [1982]. “Direct clustering algorithm for group

formation in cellular manufacture”. Journal of Manufacturing System, 1, 65-

75.

[49]. Chaperfield A., Flemming P., Pohlhein H., Fonseca C., [2001]. “Genetic

Algorithm MATLAB Tool Box –User’s Guide”. Version 1.2, Department of

Automatic Control and Systems Engineering, University of Sheffield.

[50]. Chen, S. J., & Cheng, C. S., [1995]. “A neural network based cell formation

algorithm in cellular manufacturing”. International Journal of Production

Research, 33(2), 293-318.

 189

[51]. Chen, C.L., Cotruvo, N.A. and Bake, W., [1995]. “A simulated annealing

solution to the cell formation problem”. International Journal of Production

Research, 33, 2601–2614.

[52]. Chen, J. and Heragu, S.S., [1999]. “Stepwise decomposition approaches for

large scale cell formation problems”. European Journal of Operational

Research, 11, 64-79.

[53]. Chen, W.H., & Srivastava, B., [1994]. “Simulated annealing procedures for

forming machine cells in group technology”. European Journal of Operational

Research, 75, 100-111.

[54]. Cheng, C.H., Gupta, Y.P., Lee, W.H. & Wong, K.F. [1998]. “A TSP-based

heuristic for forming machine groups and part families”. International Journal

of Production Research. 36(5), 1325-1337.

[55]. Cheng, C. H., [1995]. “A branch and bound clustering algorithm”. IEEE

Transactions on Systems, Man, and Cybernetics, 25(5), 895-898.

[56]. Cheng-Fa Tsai, Feng-Cheng Lin, [2003]. “A new hybrid heuristic technique

for solving job shop scheduling problem”. IEEE International Workshop on

Intelligent Data Acquisition and Advanced Computing Systems: Technology

and Applications, Lviv, Ukraine.

[57]. Cheng R., Mitsuo G. and Tsujimura Y., [1996]. “A tutorial survey of Job-

Shop scheduling problems using genetic algorithms-I –Representation”.

Computer and Industrial Engineering, 30(4), 983-997.

[58]. Cheng R., Mitsuo G. and Tsujimura Y., [1999]. “A tutorial survey of Job-

Shop scheduling problems using genetic algorithms-part II: Hybrid genetic

search strategies”. Computer and Industrial Engineering, 36, 343-364.

[59]. Choobineh, F. [1988]. “A Framework for the Design of Cellular

Manufacturing Systems”. International Journal of Production Research, 26(7),

1161-1172.

[60]. Chu, C. H., Hayya, J. C., [1991]. “A fuzzy clustering approach to

manufacturing cell formation”. International Journal of Production Research,

29(7), 1475-1487.

[61]. Chu, C.H., & Tsai, M. [1990]. “A Comparison of Three Array-Based

Clustering Techniques for Manufacturing Cell Formation”. International

Journal of Production Research, 28(8), 1417-1433.

 190

[62]. Dagli, C. & Huggahalli, R., [1995]. “Machine-Part family formation with the

adaptive resonance theory paradigm”. International Journal of Production

Research, 33, 893-913.

[63]. Della C. F., Tedei R., Rolando R., [1994]. “Solving a Real World Project

SchedulingProblem with a Genetic Approach”. Belgian Journal of Operations

Research, Statistics and Computer Science, 33(1-2), 65-78.

[64]. Della C. F., Tadei R., Volta G., [1995] “A genetic algorithm for Job-Shop

problem”. Computers and Operations Research, 22(1), 15-24.

[65]. Devis L., [1985]. “Applying Adaptive Algorithms to Epistatic Domains”.

Proceedings of the International Joint Conference on Artificial Intelligence,

162-164.

[66]. Dimopoulos, C., & Mort, N., [2001]. “A hierarchical clustering methodology

based on genetic programming for the solution of simple cell-formation

problems”. International Journal of Production Research, 39(1), 1–19.

[67]. Dorndorf U., Pesch E., [1995]. “Evolution based Learning in Job Shop

Scheduling Environment”. Computers and Operation Research, 22(1), 25-40.

[68]. Edwards D., Taylor N., Brown K., [2001]. “Comprehensive Evolution of

Neural Networks”. Proc of the 2001 UK Workshop of Computational

Intelligence, University of Edinburgh, 75-80.

[69]. etidweb.tamu.edu/ftp/ENTC380/Exam%203%20Material/18-

Cellular%20Manufacturing.pdf – (Problem 7, Table 6.10)

[70]. Falkenaur E., Boufoix S., [1991]. “A Genetic Algorithm for Job Shop”.

Proceedings of the IEEE International Conference on Robotics and

Automation, 824-829.

[71]. Fang H. L., Ross P. and Corne D, [1993]. “A Promising Genetic Algorithm

Approach to Job Shop Scheduling, Rescheduling and Open Shop Scheduling

Problems”. ICGA’s Proceedings of the 5th International Conference on

Genetic Algorithms, Morgan Kaufmann Publishers, San Mateo, California,

375-382.

[72]. Fang H. L., Ross P. and Corne D, [1994]. “A promising hybrid GA/Heuristic

approach for Open Shop Scheduling Problems”. Proceedings of the 11th

European Conference on Artificial Intelligence, 590-594.

[73]. Ghedjati, F., [1999]. “Genetic algorithms for the Job-Shop scheduling

problem with unrelated parallel constraints: Heuristic mixing method

 191

machines and precedence”. Computers & Industrial Engineering

37(1-2), 39-42.

[74]. Fernando, J. G. & Mauricio, G. C. R., [2002]. “A hybrid genetic algorithm for

manufacturing cell formation. Technical Report”. TD-5FE6RN. AT&T Labs

Research.

[75]. Fisher H., Thompson G. L., [1963]. “Probabilistic learning combinations of

local job shop scheduling rules”, Muth, J. F., Thompson G. L.(Eds), Industrial

Scheduling, Prentic-Hall, Englewood Cliffs, NJ.

[76]. Florian M., Trepant P. and Mohan G. B., [1971]. “An implicit Enumeration

Algorithm for Machine Sequencing Problem”. Management Science

Application Series, 17(12), 782-792.

[77]. Fogarty D.W., Blackstone J.H. & Hoffmann T.R., [1991]. “Production and

Inventory Management”. South –Western Publishing Co.

[78]. Foo, S. Y., & Takefuji, Y., [1988]. “Integer linear programming neural

networks for Job-Shop scheduling”. Proceedings of the IEEE International

Conference on Neural Networks, San Diego, California, USA, 2, 341-348.

[79]. Frazier, G. V., Gaither, N., & Oslon, D., [1990]. “A procedure for dealing

with multiple objectives in cell formation decisions”. Journal of Operations

Management, 9(40), 465-480.

[80]. Fry, T. Breen, M. & Wilson, M. [1987]. “A Successful Implementation of

Group Technology & Cellular Manufacturing”. Production & Inventory

Management Journal, 28(3): 4-6.

[81]. Gary, M. R., & Johnson, D. S., [1979]. “Computers and intractability: A

guide to the theory of NP-Completeness”. Freeman.

[82]. Gen, M., & Cheng, R. [1997]. “Genetic Algorithms & Engineering Design”.

John Wiley & Sons, Inc.

[83]. Gen M., Tsujimura Y., Kubota E., 1994]. “Solving Job Shop Scheduling

Problem Using Genetic Algorithms”. Gen M., (Ed), Proceedings of the 16th

International Conference on Computer and Industrial Engineering, Japan, 576-

579.

[84]. Geoffrey, O. O., Chen, M., Chanagchit, C., & Richard L. S., [1992].

“Manufacturing system cell formation and evaluation using a new inter-cell

reduction heuristic”. International Journal of Production Research, 30(5),

1101-1118.

 192

[85]. Geonwook, J. & Herman, R. L. [2006]. “Forming part families by using

genetic algorithms and designing machine cells under demand changes”.

Computers & Operations Research, 33, 263-283.

[86]. Geonwook, J., Herman, R. L., & Hamid, R. P., [1998]. “A Cellular

Manufacturing System based on new similarity coefficient which considers

alternative routes during machine failure”. Computers and Industrial

Engineering, 34(1), 21-36.

[87]. Geonwook, J., Herman, R. L., [2006]. “Forming part families using Genetic

Algorithm and designing machine cells under demand changes”. Computers

and Research, 33, 263-283.

[88]. Giffler B. and Thompson G. L., [1960]. “Algorithms for Solving Production

Scheduling Problems”. Operations Research, 8(4), 487-503.

[89]. Gill, A., Bector, C. R., [1997]. “A fuzzy linguistic approach to data

quantification and construction of distance measures for the part family

formation problem”. International Journal of Production Research, 35, 2565-

2578.

[90]. Goldberg, D.E., [1989]. “Genetic Algorithms in Search, Optimisation, and

Machine Learning”. Addison-Wesley: New York, NY.

[91]. Goldberg D., Lingle R., [1985]. “Alleles, Loci and the Travelling Salesman

Problem”. Proceedings of the First International Conference on Genetic

Algoirthms, Hillsdale, NJ:Lawrence Erlbaum Associates, 154-159.

[92]. Gongaware, & I. Ham, I., [1981]. “Cluster analysis applications for group

technology manufacturing systems”. Proceedings of the 9th North American

Manufacturing Research Conference (NAMRC), 503-508.

[93]. Gravel, M., Nsakanda, A.L. and Price, W., [1998]. “Efficient solutions to the

cell-formation problem with multiple routings via a double-loop genetic

algorithm”. European Journal of Operations Research, 109, 286–298.

[94]. Greene, T. and Sadowski, R., [1984]. “A Review of Cellular Manufacturing

Assumptions, Advantages, and Design Techniques". Journal of Operations

Management, 4(2), 85-97.

[95]. Groover, M. P., [2008]. “Automation production system and computer

integrated manufacturing”. Prentice Hall, New Jersey, USA.

 193

[96]. Gunasingh, K. R., & Lashkari, R. S., [1989]. "The Cell Formation Problem in

Cellular Manufacturing Systems-A Sequential Modeling Approach".

Computers and Industrial Engineering, 16(4), 469-476.

[97]. Gunasingh, K. R., & Lashkari, R. S., [1989]. "Machine Grouping in Cellular

Manufacturing Systems--An Integer Programming Approach". International

Journal of Production Research, 27(9), 1465-1473.

[98]. Gunasingh, K. R., & Lashkari, R. S., [1990]. “Simultaneous grouping of parts

and machines in Cellular Manufacturing Systems: an integer programming

approach”. Computers and Industrial Engineering, 20(1), 111-117.

[99]. Gupta, T., Seifoddini, H., [1990]. “Production data based similarity

coefficient for machine component grouping decisions in the design of a

Cellular Manufacturing System”. International Journal of Production

Research, 28(7), 1259-1273.

[100]. Gupta, Y., Gupta, M., Kumar, A., & Sundram, C., [1995]. “Minimizing total

intercell and intracell moves in cellular manufacturing: A genetic algorithm

approach”. International Journal of Computer Integrated Manufacturing, 8(2),

92-101.

[101]. Gupta, Y., Gupta, M., Kumar, A. and Sundaram, C., [1996]. “A genetic

algorithm-based approach to cell composition and layout design problems”.

International Journal of Production Research, 34, 447–482.

[102]. Hagan M. T., Demuth H. B., Beale M., [2002]. “Neural Network Design”.

Vikas Publishing House Pvt. Ltd., New Delhi.

[103]. Ham, I. Hitomi, K. & Yoshida, T. [1985]. “Layout Planning for Group

Technology in Group Technology”. Applications to Production Management,

153-169.

[104]. Harhalakas, G., Nagi, R., & Proth, J. M., [1990]. “An efficient heuristic in

manufacturing cell formation for group technology applications”.

International Journal of Production Research, 28(1), 185-198.

[105]. Harjunkoski I., Jain V., and Grossmann I. E., [2000]. “Hybrid Mixed

Integer/Constraint Logic Programming Strategies for solving Scheduling and

Combinatorial Optimization Problems”. Computers and Chemical Engineers,

24, 337-343.

 194

[106]. Hefetz N. and Adiri I., [1982]. “An Efficient Optimum Algorithm for Two

Machines Unit Time Job Shop Schedule Length Problem”. Mathematics of

Operation Research, 7, 354-360.

[107]. Heragu, S.S., Chen, J., [1997]. “Optimal solution of Cellular Manufacturing

System design: Benders' decomposition approach”. European Journal of

Operational Research.

[108]. Hitomi K., [1996]. “Manufacturing Systems engineering – A unified approach

to manufacturing technology, production management, and industrial

economics”. Taylor and Francis Ltd, London UK, 2nd edition.

[109]. Holland, J.H., [1975]. “Adaptation in Natural and Artificial System”.

University of Michigan Press: Ann Arbor, MI.

[110]. home.postech.ac.kr/~jjujju/data/data/ch10(KimJ).ppt (Problem 9, Table

6.10)

[111]. Houtzeel, A., & Brown, C. S., [1984]. “A Management Overview of Group

Technology” in Group Technology At Work. N. L. Hyer (Ed.), Society of

Manufacturing Engineers, Detroit, MI.

[112]. Hwang, H. and Sun, J., [1996]. “A genetic-algorithm-based heuristic for the

GT cell formation problem”. Computers & Industrial Engineering, 30(4),

941–955.

[113]. Hyer, N. L., Wemmerlov, U. [1989]. “Group Technology in the US

manufacturing industry: A survey of current practices”. International Journal

of Production Research, 27(2), 1287-1304.

[114]. Irani, S. A. [1999]. “Handbook of Cellular Manufacturing Systems”. John

Wiley & Sons, Inc.

[115]. Jain A.S., [1998]. “A Multi-Level of Hybrid Framework for the deterministic

Job- Shop scheduling problem”. PhD Thesis, University of Dundee.

[116]. Jain A.S., Meeran S., [1998]. “Job-Shop scheduling using neural networks”.

International Journal of Production Research, 36(5), 1249-1272.

[117]. Jackson J. R., [1956]. “An Extension of Johson’s Rule on Job Lot

Scheduling”. Naval Research Logistics, 3(3), 201-203.

[118]. Johnson S. M., [1954]. “Optimal Two and Three Stage Production Schedules

with Setup Time Included”. Naval Research Logistics Quarterly, 1, 61-68.

 195

[119]. Joines, J.A., Culbreth, C.T. & King, R.E. [1996]. “Manufacturing cell design:

An integer programming model employing genetic algorithms”. IIE

Transactions, 28, 69-85.

[120]. Josien, K. and Liao, T.W., [2000]. “Integrated use of fuzzy c-means and fuzzy

KNN for GT part family and machine cell formation”. International Journal

Production Research, 38(15), 3513–3536.

[121]. Kao, Y., & Moon, Y. B., [1990]. “Learning part families by back propagation

rule of neural networks”. Proceedings of 1st International Conference on

Automation Technology, Hsinchu, Taiwan, 819-824.

[122]. Kao, Y., & Moon, Y. B., [1991]. “A unified group technology implementation

using the back propagation learning rule of neural networks”. Computers

and Industrial Engineering, 20(4), 425-437.

[123]. Kaparthi, S., Suresh, N.C. and Cerveny, R.P., [1993]. “An improved neural

network leader algorithm for part-machine grouping in group technology”.

European Journal of Operations Research, 69(3), 342–356.

[124]. Kaparthi, S. & Suresh, N. C. [1990]. “Machine-component cell formation in

group technology: A neural network approach”. International Journal of

Production Research, 30(6), 1353-1367.

[125]. Kaparthi, S., & Suresh, N.C. [1991]. "A Neural Network System for Shape-

Based Classification and Coding of Rotational Parts". International Journal

of Production Research, 29(9), 1771 -1784.

[126]. Kaparthi, S., & Suresh, N.C. [1992]. “Machine component cell formation in

group technology: A neural network approach”. International Journal of

Production Research, 25(6), 1353-1367.

[127]. Kiang, M.Y., Kulkarni, U.R. and Tam, K.Y., [1995]. “Self-organising map

network as an interactive clustering tool-an application to group technology”.

Decision Support System, 15(4), 351–374.

[128]. Kirkpatrick, S., Gelatt, C. D. & Vecchi, M. P., [1983]. “Optimization by

Simulated Annealing”. Science, 220, 671-680.

[129]. King, J. R. [1980]. “Machine-component grouping in production flow

analysis; An approach using Rank Order Clustering algorithm”. International

Journal of Production Research, 18(2), 213-232.

 196

[130]. King, J.R. & Nakornchai, V. [1982]. “Machine-component group formation in

group technology: Review and extension”. International Journal of Production

Research, 20(2), 117-133.

[131]. Kobayashi S.,Ono I., Yamamura M., [1995]. “An Efficient Genetic Algorithm

for Job Shop Scheduling Problems”. Proceedings of the Sixth International

Conference on Genetic Algorithms, San Francisco, CA, Morgan Kaufmann

Publishers, 506-511.

[132]. Kohonen, T., [1982]. “Self-Organized Formation of Topologically Correct

Feature Maps”. Biological Cybernetics, 43(1), 56-69.

[133]. Kumar, K. R., & Chandrasekharan M. P., [1990]. “Grouping efficacy: a

quantitative criterion for goodness of block diagonal form of binary matrices

in group technology”. International Journal of Production Research, 28(2),

233-243.

[134]. Kumar, K. R., Kusiak, A. & Vannelli, A. [1986]. “Grouping of Parts and

Components in Flexible Manufacturing Systems”. European Journal of

Operations Research, 24, 387-397.

[135]. Kumar, K. R. and Vannelli, A., [1987]. “Strategic subcontracting for efficient

disaggregated manufacturing”. International Journal of Production Research,

25(12), 1715-1728.

[136]. Kusiak, A., [1985]. "The Part Family Problem in Flexible Manufacturing

Systems". Annals of Operations Research, 279-300.

[137]. Kusiak, A. [1987]. “The Generalized Group Technology Concept”.

International Journal of Production Research, 25(4), 561-569.

[138]. Kusiak, A. & Chow, W. [1987]. “Efficient solving of the group technology

problem”. Journal of Manufacturing Systems, 6(2), 117-124.

[139]. Kusiak, A. [1988]. “A knowledge based system for group technology”.

International Journal of Production Research, 26, 887-905.

[140]. Kusiak, A. [1990]. “A branch and bound algorithm for solving the group

technology problem”. Annals of Operations Research, 26, 415-431.

[141]. Kusiak, A. [1992]. “Group Technology: Models and solutions approaches”.

Proceedings of 1st Industrial Engineering Research Conference, 349-352.

[142]. Lawrence, S., [1984]. “Supplement to resource constrained project

scheduling: An experimental investigation of heuristic scheduling

 197

techniques”. Graduate School of Industrial Administration, Carnegie-Mellon

University, Pittsburgh, P.A.

[143]. Lee, M.K., Luong, H.S. and Abhary, K., [1997]. “A genetic algorithm based

cell design considering alternative routing”. Computer Integrated

Manufacturing Systems, 10, 93–107.

[144]. Leem, C.W. and Chen, J.J.G., [1996]. “Fuzzy-set-based machine-cell

formation in cellular manufacturing”. International Journal of Manufacturing,

7, 355–364.

[145]. Lee-Post, A., [2000]. “Part family identification using a simple genetic

algorithm”. International Journal of Production Research, 38, 793–810.

[146]. Lin, Shih-Wei, Gupta, Jatinder N. D., Ying, Kuo-Ching and Lee, Zne-Jung

[2008]. “Using simulated annealing to schedule a flowshop manufacturing

cell with sequence-dependent family setup times”, International Journal of

Production Research, 1-13.

[147]. Levuhis, R., [1978]. “Group Technology--A Review of the State of the Art in

the United States”. Chicago: K.W. Tunnel Co.

[148]. Li, J., Chu, C. -H., Wang, Y. and Yan, W., [2007]. “An improved fuzzy

clustering method for cellular manufacturing”. International Journal of

Production Research, 45(5), 1049-1062.

[149]. Liao, T. W. [2001]. “Classification and Coding approaches to part family

formation under a fuzzy environment”. Fuzzy Sets and Systems, 122(3), 425-

441.

[150]. Liaw C. F, [2000]. “A Hybrid Genetic Algorithm for the Open Shop

Scheduling Problem”. European Journal of Operation Research 124, 28-42.

[151]. Logendran, R., [1990]. “A workload based model for minimizing total

intercell and intracell moves in cellular manufacturing”. International Journal

of Production Research, 28(5), 913-925.

[152]. Love, D.M. and George, A.R. [1985]. “Designing a computerised component

coding and classification system to minimise implementation costs”.

Proceedings CADCAM’85, Cambridge, UK, 23–31.

[153]. Lozano, S., Adenso-Diaz, B., Eguia, I., Onieva, L., [1999]. “A one-step tabu

search algorithm for manufacturing cell design”. Journal of the Operational

Research Society, 50, 509–516.

 198

[154]. Lundy, M., and Mees, A., [1986]. “Convergence of an annealing algorithm.

Mathematical Programming”. 34, 111-124.

[155]. Malave, C. O., Ramchandran, S., [1991]. “A neural network based design of

Cellular Manufacturing System”. Journal of Intelligent Manufacturing, 2,

305-314.

[156]. Manne A. S., [1960]. “On the Job Shop Scheduling Problem”. Operation

Research, 8, 219-223.

[157]. Martin P. D., [1991]. “A Time Oriented Approach to Computing Optimal

Schedules for Job Shop Scheduling Problem”. PhD Thesis, School of

Operation Research & Industrial Engineering, Cornell University, New York.

[158]. Masaru, T., Hiji, M., Miyabayashi, K., Okumura, K., [2000]. “A New Genetic

Representation and Common Cluster Crossover for Job Shop Scheduling

Problems”. Evo. Workshops, 297-306.

[159]. Meeran S., [2003]. “A History of Encounters with Intelligent Search Job Shop

Scheduling-Failures, Successes and Lessons Learnt”. Proceedings of 19th

International Conference on CAD/CAM Robotics and Factories of the Future,

Kuala Lumpur, Malaysia, 22-24 July, K3-1-K3-23.

[160]. McAuley, J., [1972]. “Machine grouping for efficient production”. Production

Engineer, 51(2), 53-57.

[161]. McCarthy J., [1960]. “Recursive Functions of Symbolic Expressions and their

Computation by Machine”. Part 1, Communications of the ACM, 3, 475-482.
[162]. McCormick, W. T., Schweitzer, P. J., White, T. W. [1972]. “Problem

decomposition and data reorganization by a clustering technique”.

Operations Research, 20, 993-1009.

[163]. Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N. & Teller, A. H., [1953].

“Equation of state calculation by fast computing machines”. Journal of

Chemical Physics, 21, 1087-1092.

[164]. Mitrofanov, S. P., [1966]. “Scientific Principles of Group Technology”.

Yorkshire, UK.

[165]. Mohan G. B. and Florian M., [1975]. “On Scheduling with Ready Times and

Due Dates to Minimize Maximum Lateness”. Operation Research, 23(3), 475

– 482.

[166]. Momim M., [1999]. “A knowledge-Based Approach for the Dynamic

Scheduling and Sequencing in Manufacturing Cells”. PhD Thesis, University

of Bradford, UK.

 199

[167]. Montana D. J., [1992]. “Neural Network Weight Selection Using Genetic

Algorithm”. Bolt Beranek and Newman Inc. 70 Fawcett Street, Cambridge,

MA02138.

[168]. Moon, Y. B., [1990]. “Forming part families for cellular manufacturing: A

neural network approach”. International Journal of Advanced Manufacturing

Technology, 5, 278-291.

[169]. Moon, Y. B., [1991]. “An interactive and competition for machine part family

formation in group technology”. Proceedings of International Joint

Conference Neural Networks, Washington, USA, 667-670.

[170]. Moon, Y. B., & Chi, S. C., [1992]. “Generalized part family formation using

neural network techniques”. JMS, 11(3), 149-159.

[171]. Moon, C. and Gen, M., [1999]. “A genetic algorithm-based approach for

design of independent manufacturing cells”. International Journal of

Production Economics, 60/61, 421–426.

[172]. Moon, C. and Kim, J., [1999]. “Genetic algorithm for maximizing the parts

flow within cells in manufacturing cell design”. Computers & Industrial

Engineering, 36, 379–389.

[173]. Moon, Y. B., Roy, U., [1992]. “Learning group technology pat families from

solid models from parallel distributed processing”. International Jounal of

Advanced Manufacturing Technology, 7, 109-118.

[174]. Morshed M. S., [2006]. “A Hybrid Model for Job Shop Scheduling”. PhD

Thesis, University of Birmingham.

[175]. Mosier, C.T. & Taube, L. [1985]. “A weighted similarity coefficient for use in

addressing the group technology part machine grouping problem”. American

Institute of Decision sciences Annual Meeting, Los Vegas, 812-815.

[176]. Mosier, C.T. & Taube, L. [1985a]. “The facets of group technology and their

impact on implementation”. OMEGA, 13(6), 381-391.

[177]. Mosier, C.T. & Taube, L. [1985b]. “Weighted similarity measure heuristics

for the group technology machine clustering problem”. OMEGA, 13(6), 577-

583.

[178]. Mungwattana, A., [2000]. “Design of Cellular Manufacturing Systems for

dynamic and uncertain production requirements with presence of routing

flexibility”. PhD thesis, Virginia Polytechnic Institute and State University,

Blacksburg, VA.

 200

[179]. Murugan, M., & Selladurai, [2005]. “Manufacturing cell design with

reduction in setup time through genetic algorithm”. Journal of Theoretical and

Applied Information Technology, 76-97.

[180]. Nakano, R., Yamada, T., [1991]. “Conventional genetic algorithms for Job-

Shop problem”. Proceedings of the 4th International Conference on Genetic

Algorithms and their Applications, San Diego, California, USA, 474-479.

[181]. Negnevitsky M., [2002]. “Artificial Intelligence--A guide to intelligent

Systems”. Addison-Wesley, Essex CM20 2JE, England. 1st Edition.

[182]. Ng, S. [1992]. “On the measures of cell formation in group technology”.

Proceedings of the 1st Industrial Engineering Conference, 353-356.

[183]. Ng, S. [1993]. “Worst-case analysis of an algorithm for cellular

manufacturing”. EJOR, 69(3), 384-398.

[184]. Nemhauser G. L. & Wolsey L. A. (Eds), [1988]. “Integer and Combinatorial

Optimization”. John Wiley and Sons, New York.

[185]. Noor, S., [2007]. “Operational scheduling of traditional and flexible

manufacturing systems using genetic algorithms, artificial neural networks

and simulation”. PhD Thesis, University of Bradford, UK.

[186]. Noor S., Khan M. K., Hussain I., Ullah I., [2005]. “Application of Simulation

and Artificial Neural Network to the problem of Scheduling of Flexible

Manufacturing System”. International Journal of INGENIUM, 191-199.

[187]. Noor S, Khan M. K., Hussain I, Ullah I., [2006]. “Scheduling Tool for the

Flexible Manufacturing Systems using Hybrid Genetic Algorithm”. 2nd

International Conference on Emerging Technologies, Peshawar, Pakistan.

[188]. Norman, B., Bean, J., [1995]. “Random keys genetic algorithm for Job-Shop

scheduling: Unabridged version”. Technical Report, Department of Industrial

and Operations Engineering, University of Michigan, Ann Arbor, USA.

[189]. Nsakanda, A. L., Diaby, M., & Price, W. L., [2005]. “Hybrid genetic

approach for solving large-scale capacitated cell formation problems with

multiple routings”. European Journal of Operations Research, (Article in

press).

[190]. Obitko M. and Slavík P., [1999]. “Visualization of Genetic Algorithms in a

Learning Environment”. Spring Conference on Computer Graphics, CCG'99.

Bratislava: Comenius University, ISBN 80-223-1357-2, 1999, 101-106.

 201

[191]. Offodile, O. F., [1991]. "Application of Similarity Coefficient Method to Parts

Coding and Classification Analysis in Group Technology". Journal of

Manufacturing Systems, 10(6), 442-448.

[192]. Oliver I,, Smith D., Holland J., [1987]. “A Study of Permutation of Crossover

Operators on the Traveling Saleman Problem”. Proceedings of the Second

International Conference on Genetic Algoirthms, Hillsdale, NJ:Lawrence

Erlbaum Associates, 224-230.

[193]. Ono I., Yamamura M., Kobayashi S., [1996]. “A Genetic Algorithm for Job

Based Crossover”. Proceedings of the Third IEEE Conference on

Evolutionary Computation, Japan, 547-552.

[194]. Onwubolu G. C., [2000]. “Manufacturing Cell Scheduling Using Genetic

Algorithms”. Proceedings of Institution of Mechanical Engineers, 214, Part B,

159-164.

[195]. Onwubolu, G.C., Mlilo, P.T., [1998]. “Manufacturing cell grouping using

similarity coefficient-distance measure”. Production Planning & Control, 9,

489–493.

[196]. Onwubolu, G.C., & Mutingi, M. [2001]. “A genetic algorithm approach to

Cellular Manufacturing Systems”. Computers and Industrial Engineering,

39(1-2), 125-144.

[197]. Opitz, H. [1970]. “A Classification System to Describe Work Pieces”. New

York: Pergamon Press.

[198]. Opitz, H., Eversheim, W., & Wiendhal, H.P. [1969]. "Work piece

Classification and Its Industrial Applications". International Journal of

Machine Tool Design and Research, 9, 39-50.

[199]. Peker, A. and Kara, Y., [2004]. “Parameter setting of the Fuzzy ART neural

network to part-machine cell formation problem”. International Journal of

Production Research, 42(6), 1257–1278.

[200]. Plaquin, M., Pierreval, H., [2000]. “Cell formation using evolutionary

algorithms with certain constraints”. International Journal Of Production

Economics, 64(1-3), 267-278.

[201]. Pohlheim H., [2005]. “Genetic and Evolutionary Algorithm Toolbox for use

with MATLAB” [online] Available at: http://www.geatbx.com/docu/algindex-

02.html#P452_27492

 202

[202]. Pullen, R. D., [1976]. “A survey of Cellular Manufacturing cells”. The

Production Engineer, 55(9), 451-454.

[203]. Purcheck, G. F. K., [1974]. “A mathematical classification as a basis for the

design of group technology production cells”. Production Engineer, 54(1), 35-

48.

[204]. Purcheck, G. F. K., [1975]. “Combinatorial grouping - a lattice theoretic

method for the design manufacturing systems”. Journal of Cybernetics.

[205]. Rajagopalan, R., Batra, J. L., [1975]. “Design of cellular production system: A

graph theoretic approach”. International Journal of Production Research,

13(6), 567-579.

[206]. Ribeiro, J.F.F., [2009]. “Manufacturing cells formation based on graph

theory”. International Conference on Computers and Industrial Engineering

(ICCIE), 6-9 July, Troyes, France. 658-662.

[207]. Rich E. and Knight K., [1991]. “Artificial Intelligence”. 2nd Edition, MGraw-

Hill, Inc.

[208]. Safaei, N., Saidi-Mehrabad, M., Jabal-Ameli, M.S., [2008]. “A hybrid

simulated annealing for solving an extended model of dynamic Cellular

Manufacturing System”. European Journal of Operational Research, 185(2),

563-592.

[209]. Sakawa M., Kubota R., [2000]. “Fuzzy Programming for Multi-Objective Job

Shop Scheduling with Fuzzy Processing Time and Fuzz Due Date Through

Genetic Algorithms”. European Journal of Operational Research, 120(2), 393-

407.

[210]. Satake, T.,Morikawa, K., and Nakamura,N., [1994]. “Neural network

approach for minimizing the Makespan of the general Job-Shop”.

International Journal of Production Economics, 33 (1-3), 67-74.

[211]. Seifoddini, H., [1990]. “A probabilistic model for cell formation”. JMS, 9(1),

69-75.

[212]. Seifoddini, H. & Djassemi, M. [1995]. “Merits of the production volume

based similarity coefficient in machine cell formation”. JMS, 14(1), 35-44.

[213]. Seifoddini, H. & Wolfe, P. [1986]. “Application of Similarity Coefficient

Method in Group Technology”. IIE Transactions, 18(3), 271-277.

 203

[214]. Seifoddini, H. [1989]. “Single linkage versus average linkage clustering in

machine cells formation applications”. Computers and Industrial Engineering,

16(3), 419-426.

[215]. Selim, H. Askin, R. [1998]. “Cell Formation in Group Technology: Review

Evaluation and Directions for Future Research”. Computers and Industrial

Engineering, 34(1): 3-20.

[216]. Serdar Uckun, Bagchi, S., Kawamura, K., Miyabi, Y., [1993]. “Managing

Genetic Search in Job Shop Scheduling”. IEEE Experts, 15-24.

[217]. Sexton R. S., Gupta J. N. D., [2000]. “Comparative evaluation of Genetic

algorithm and Backpropagation for training neural networks”. Information

Science 129, 45-49.

[218]. Shafer, S. and Charnes, J. [1994]. “Cellular versus Functional Layouts under

a Variety of Shop Operating Conditions”. Decision Sciences, 24(3):665-682.

[219]. Shafer, S. M. & Rogers, D. F., [1993b]. “Similarity and distance measures for

cellular manufacturing: An extension and comparison”. International Journal

of Production Research, 31(6), 1315-1326.

[220]. Shazly M. R. E., Shazly H. E. E., [1999]. “Forecasting currency prices using

genetically evolved neural network architecture”. International Review of

Financial Analysis, 8(1), 67-82.

[221]. Shtub, A. [1989]. “Modelling Group Technology Cell Formation as a

Generalized Assignment Problem”. International Journal of Production

Research, 27(5), 775-782.

[222]. Shunk, D.L. [1978]. “Computer Integrated Manufacturing” in Manufacturing

High technology Hand Book, New York, 83-100.

[223]. Singh, N. & Rajamaani, D. [1996]. “Cellular Manufacturing Systems: Design,

Planning and Control”. Chapman & Hall, New York.

[224]. Slagle, J. L., Chang, C. L., & Heller, S. R., [1974]. “A clustering and data

reorganisation algorithm”. IEEE Transactions on Systems, Man, and

Cybernetics, 5(2), 125-128.

[225]. Smith S. B., [1989]. “Computer Based Production and Inventory Control”.

Prentice-Hall International, Inc.

[226]. Sofianopoulou, S., [1997]. “Application of simulated annealing to a linear

model for the formulation of machine cells in group technology”. International

Journal of Production Research, 35(2), 501-511.

 204

[227]. Souri M., [2003]. “Dictionary of IT Terms”. Pentagon Press, New Delhi.

[228]. Srinivasan, G. [1994]. “A clustering algorithm for machine cell formation in

group technology using minimum spanning trees”. International Journal of

Production Research, 32, 2149-2158.

[229]. Srinivasan, G., Narendran, T. & Mahadevan, B. [1990]. “An assignment

model for the part-families problem in group technology”. International

Journal of Production Research, 28(l), 145-152.

[230]. Srinivasan, G. & Narendran, T.T. [1991]. “GRAFICS - A nonhierarchical

clustering-algorithm for group technology”. International Journal of

Production Research, 29(3), 463-478.

[231]. Stanfel, L. E. [1985]. “Machine clustering for economic production”.

Engineering Costs and Production Economics, 9, 73-81.

[232]. Su, C.T. and Hsu, C.M., [1996]. “A two-phased genetic algorithm for the cell

formation problem”. International Journal Industrial Engineering, 3, 114-125.

[233]. Su, C.T. & Hsu, C.M., [1998]. “Multi-objective machine–part cell formation

through parallel simulated annealing”. International Journal of Production

Research, 36, 2185-2207.

[234]. Sunderesh and Heragu, S., [1994]. “Group Technology and Cellular

Manufacturing”. IEEE Transactions on Systems, Man, and Cybernetics,

24(2).

[235]. Suresh, N. and Meredith, J. [1994]. “Coping with the Loss of Pooling Synergy

in Cellular Manufacturing Systems”. Management Science, 40(4), 466-483.

[236]. Suresh, N. C., & Kaparthi, S., [1994]. “Performance of fuzzy art neural

network for group technology cell formation”. International Journal of

Production Research, 32(7), 1693-1713.

[237]. Suresh, N. C., & Park, S., [2003]. “Performance of Fuzzy ART neural network

and hierarchical clustering for part-machine grouping based on operation

sequences”. International Journal of Production Research, 41(14), 3185-3216.

[238]. Susanto, S., Kennedy, R.D. and Price, J.W.H., [1999]. “A new fuzzy-c-means

and assignment technique-based cell formation algorithm to perform part-type

clusters and machine type clusters separately”. Production Planning &

Control, 10(4), 375–388.

 205

[239]. Syswerda G., [1989]. “Uniform Crossover Genetic Algorithms”. Proceedings

of the Third International Conference on Genetic Algorithms, San Mateo, CA,

Morgan Kaufmann Publishers, 2-9.

[240]. Tariq, A., Hussain, I., Ghaffoor, A., [2006]. “A hybrid genetic algorithm for

Machine-Part grouping”. Proceedings of the 2nd International Conference on

Emerging Technologies (ICET), Peshawar, Pakistan, Nov. 13-14.

[241]. Tariq, A., Hussain, I., Ghaffoor, A., [2007]. “A hybrid genetic algorithm for

Job-Shop scheduling”. 37th Internation Conference on Computer and

Industrial Engineering, Alexandria, Egypt.

[242]. Tariq, A., Hussain, I., Ghaffoor, A., [2007]. “Consideration of single machine

cells in designing Cellular Manufacturing System using a Hybrid Genetic

Algorithm”. Proceedings of the 3rd International Conference on Emerging

Technologies (ICET), Islamabad, Pakistan, Nov. 12-13.

[243]. Tariq, A., Hussain, I., Ghaffoor, A., [2009]. “A Hybrid Genetic Algorithm for

Machine Part Grouping” (Extended version). Computers and Industrial

Engineering, 56(1), 347-356.

[244]. Tamaki, H., & Nishikawa, Y., [1992]. “A parallel genetic algorithm based on

neighbourhood model and its application to the Job-Shop scheduling”.

Proceedings of the 2nd International Conference on Parallel Problem Solving

from Nature, Brussels, Belgium, 573-582.

[245]. Tavakkoli-Moghaddam, R., Aryanezhad, M. B., Safaei, N. Azaron, A.,

[2005]. “Solving a dynamic cell formation problem using metaheuristics”.

Applied Mathematics and Computation, 170(2), 761-780

[246]. Tsakonas A., Dounias G., [2002]. “Hybrid Computational Intelligence

Schemes in Complex Domains”. University of the Aegean [online] Available

at: http//:decision.ba.aegan.gr

[247]. Uddin, M. K., Shanker, K., [2002]. “Grouping of parts and machines in

presence of alternative process routes by genetic algorithm”. International

Journal of Production Economics, 76(3) 219-228.

[248]. Vannelli, A., & Kumar, K. R., [1986]. “A method for finding minimal

bottleneck cells for grouping part-machine families”. International Journal of

Production Research, 24(2), 387-400.

 206

[249]. Venkataramanaiah, S. [2007]. “Scheduling in Cellular Manufacturing

Systems: an heuristic approach”. InternationalJournal of Production

Research, 46(2), 429-449.

[250]. Venugopal, V., Narendaran, T. T., [1992a]. “Cell formation in manufacturing

systems through simulated annealing: An experimental evaluation”. EJOR,

63(3), 409-422.

[251]. Venugopal, V., Narendaran, T. T., [1992b]. “A genetic algorithm approach to

the machine component grouping problem with multiple objectives”.

Computers & Industrial Engineering 22(4), 469-480.

[252]. Veilleux R. F. and Petro L. W., [1988]. “Tool and Manufacturing Engineers

Handbook Vol 5, Manufacturing Management”. Society of Manufacturing

Engineers (SME), One SME Drive Dearbon, Michingan, 1988.

[253]. Vohra, T., Cheng, D., Chang, J., & Chen, H., [1990]. “A network approach to

cell formation in cellular manufacturing”. International Journal of Production

Research, 28(11), 2075-2084.

[254]. Vollmann T. E., Berry W. L. and Whybark D. C., [1997]. “Manufacturing

Planning and Control Systems”. Homewood, Illinois Irwin.

[255]. Vondermbse M.A. and White G.P., [1991]. “Operation Management:

Concepts, Methods and Strategies”. West Publishing Company.

[256]. Waghodekar, P. H., Sahu, S. [1984]. “Machine-component cell formation in

group technology: MACE”. International Journal of Production Research,

22(6), 937-948.

[257]. Wang L. and Zheng D., [2001]. “An effective hybrid optimization strategy for

Job-Shop scheduling problems”. Computers and Operations Research 28,

585-596.

[258]. Wemmerlov, U., & N. L. Hyer [1989]. “Cellular Manufacturing practices”.

Manufacturing Engineering, 102(3), 79-82.

[259]. Wemmerlov, U. [1984]. “Comments on direct clustering algorithm for group

formation in cellular manufacturing”. JMS, 3, vii-ix.

[260]. Wei, J. C., & Gaither, N., [1990]. “An optimal model for cell formation

decisions”. Decision Sciences, 21(2), 416-433.

[261]. Wei, J. C., Kern, G. M., [1989]. “Commonality analysis: A linear cell

clustering algorithm for group technology”. International Journal of

Production Research, 27(12), 2053-2062.

 207

[262]. White, J. D. E., [1980]. “The use of similarity coefficient in production flow

analysis”. International Journal of Production Research, 18(4), 504-514.

[263]. Wiers V. C. S., [1997]. “A review of the Applicability of OR and AI

Scheduling Techniques in Practice”. Omega, International Journal of

Management Science, 25(2).

[264]. Wilhelm, M. R., & Ward, T. L., [1987]. “Solving quadratic assignment

problems by `simulated annealing”. IIE Transactions, 19, 107-119.

[265]. Won, Y., [2000]. “Two-phase approach to GT cell formation using efficient p-

median formulations”. International Journal of Production Research, 38(7)

1601- 1613.

[266]. Won, Y. and Currie, K. R., [2007]. “Fuzzy ART/RRR-RSS: a two-phase neural

network algorithm for part-machine grouping in cellular manufacturing”,

International Journal of Production Research, 45(9), 2073-2104.

[267]. Wu, D. [1987]. “An Expert Systems Approach for the Control and Scheduling

of Flexible Manufacturing Systems”. Ph.D. Dissertation, Pennsylvania State

University.

[268]. Wu, X.D., Chu, C.H., Wang, Y.F. and Yan, W.L., [2002]. “A genetic

algorithm for integrated cell formation and layout decision”. Proceedings of

IEEE Congress on Evolutionary Computation, Honolulu, Hawaii, 12–17 May.

[269]. Wu, X., Chu, C. -H., Wang, Y. and Yan, W., [2006]. “Concurrent design of

Cellular Manufacturing Systems: a genetic algorithm approach”.

International Journal of Production Research, 44(6), 1217-1241

[270]. Xambre, A. R., Vilarinho, P. M., [2003]. “A simulated annealing approach

for manufacturing cell formation with multiple identical machines”. European

Journal of Operational Research, 151(2), 434-446.

[271]. Xu, H., & Wang, H. P., [1989]. “Part family formation for GT application

based on fuzzy mathematics”. International Journal of Production Research,

27(9), 1637-1651.

[272]. Yamada, T., Nakano, R., [1992]. “A genetic algorithm applicable to job shop

problems”. Proceedings of the 2nd International Workshop on Parallel

Problem Solving from Nature, Brussels, Belgium, 281-290.

[273]. Yasuda, K., Yin, Y., [2001]. “A dissimilarity measure for solving the cell

formation problem in cellular manufacturing”. Computers and Industrial

Engineering, 39, 1–17.

 208

[274]. Yasuda, K., Hu, L., Yin, Y., [2005]. “A grouping genetic algorithm for multi-

objective cell formation problem”. International Journal of Production

Research, 43(4), 829–853.

[275]. Yeun Y.S., Lee K.H., Yang Y.S., [1999]. “Function approximation by

coupling neural networks and genetic programming trees with oblique

decision trees”. Artificial Intelligence in Eng. 13, 223-239.

[276]. Yin, Y., Yasuda, K., [2006]. “Similarity coefficient methods applied to the cell

formation problem: A taxonomy and review”. International Journal of

Production Economics, 101, 329-352.

[277]. Zadeh, L. A., [1965]. “Fuzzy sets”. Information and Control, 8, 338-353.

[278]. Zhang, H. C., and Huang, S.H., [1995]. “Applications of neural networks in

manufacturing: a state-of-the-art survey”. International Journal of Production

Research, 33(3), 705-728.

[279]. Zhang, C., Wang, H., [1992]. “Concurrent formation of part families and

machine cells based on the fuzzy set theory”. JMS, 11(1), 61-67.

[280]. Zhao, C., & Wu, Z. [2000]. “A genetic algorithm for manufacturing cell

formation with multiple routes and multiple objectives”. International Journal

of Production Research, 38(2), 385-395.

[281]. Zhou, D. N., Cherkassy, V., Baldwin, T. R., and Olson, D. E., [1991]. “A

neural network approach to Job-Shop scheduling”. IEEE Transactions on

Neural Networks, 2(1), 175-179.

[282]. Zhou H., Feng Y. and Han L., [2001]. “The Hybrid Genetic Algorithm for Job

Shop Scheduling”. Computers and Industrial Engineering, 40, 191-200.

