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ABSTRACT 

 
Cellular Manufacturing (CM), which contains the flexibility of Job-Shop and at 

the same time has a higher rate of production as flow lines, is proving to be a useful 
substitute for the production carried out in batches. In spite of the fact that there are so 
many benefits associated with CM but designing CM, for real world problems, is a 
very complex job. Since the main task in designing a CM is grouping of machines 
into cells and parts into corresponding families, therefore, most of the research carried 
out so far has considered the Cellular Manufacturing System (CMS) design as a 
Machine-Part grouping problem only and focus on the operational aspects of the 
design has been very little. Once the Machine-Part grouping stage is over, scheduling 
of the system is supposed to be the next stage in completing the operational design of 
a CMS. This is the stage where important production related information; such as 
processing sequence and processing time is taken into consideration. Scheduling is 
very essential as it enhances productivity and maximizes the usefulness of a given 
manufacturing system by utilizing the available resources in an optimized manner. 
Therefore, alongside Machine-Part grouping, scheduling is of paramount importance 
too, as it ensures proper utilization of resources.  

 
In order to carryout a complete operational design of CMS, a two stage 

methodology has been developed in this research. First, the problem of Machine-Part 
grouping (CMS design) is solved, and then sequencing and scheduling of parts on 
machines is carried out. Since each cell is like a Job-Shop, therefore the scheduling 
part of the problem is solved using a similar approach as in case of a Job-Shop 
scheduling problem (JSSP). 

 
Separate hybrid tools, for solving Machine-Part grouping problem and Job-Shop 

Scheduling Problem (JSSP), has been developed by combining Genetic Algorithms 
(GA) with Local Search Heuristics (LSH). Each tool’s effectiveness has been verified, 
separately, by solving a number of benchmark problems from literature. Finally, the 
two tools are combined in such a manner that the output of the Machine-Part grouping 
serves as an input to the tool developed for the scheduling of Job-Shop. Final outcome 
of the program is a cellular arrangement of the system (machine groups and 
corresponding part families) and detailed information about the sequencing and 
scheduling of the system.   

The development of two effective hybrid GA based tools, for Machine-Part 
grouping and Job-Shop Scheduling, and their combination are the main contributions 
of this research.    
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CHAPTER 1 
 

INTRODUCTION 

 
1.1  Introduction: 

 

Modern manufacturing systems have been kept under constant pressure by the 

unpredictability in demand and the ever decreasing product life cycles and are finding 

it hard to cope with these challenges. That is the reason that Cellular Manufacturing 

(CM) is seen by many as a promising alternative which provides some immediate 

benefits of reduction in the costs related to material handling, setup times and work in 

process. Therefore a Cellular Manufacturing System (CMS) is comparatively well 

equipped to face the challenges mentioned above.  

This Chapter briefly describes Group Technology (GT), the conventional 

manufacturing systems and finally CMS. The description of different manufacturing 

systems is followed by the objectives of this research and methodology to be adopted 

to achieve those objectives. An outline of the report is also given in the end.   

1.2 Group Technology (GT): 

GT in fact is the philosophy that is based upon doing those things in a similar 

fashion that are alike (Askin and Standridge [1993]). According to Selim & Askin 

[1998] “GT is a manufacturing philosophy that groups parts into families by taking 

into consideration the similarities among parts in terms of design and manufacturing”. 

When the philosophy of GT is implemented into manufacturing, then at the initial 

stage of design, the components of a product, which are similar to each other, are 

processed on similar processing arrangements (Irani [1999]). Also, such products are 

assembled following a similar sequence (Irani [1999]). GT in fact is a source of 

improving productivity by bringing together the similar recurrent activities and 

organizing common tasks alongside each other. With the help of GT, a set of parts can 

be broken down into different part families. Within each family the processing 

requirements of each part are the same. Manufacturing cells are organized for these 

part families by grouping dissimilar machines, that are required for processing by 

each part family, on the production floor. The associated improvements with the 
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implementation of GT are summarized by Pullen [1976], Houtzeel and Brown [1984], 

and Wemmerlov and Hyer [1989] as follows: 

a) Throughput time is reduced from 5% to 90% 

b) Reduction in the inventory levels of work-in-process is from 8% to 80%. 

c) Savings in terms of materials handling costs are from 10% to 83% 

d) The job satisfaction levels are between 15% to 50% 

e) The reduction in Fixtures requirements is between 10% to 85% 

f) Setup time requirements are reduced between 2% to 95% 

g) The reduction in Space requirement stays between 1% to 85% 

h) Quality improvements from 5% to 90% can be experienced 

i) Finished goods (10-75%) 

These benefits result in a substantial decrease in manufacturing cost and 

increase in product quality. These are the reasons that GT has been so attractive and 

found successful with medium variety and medium volume production environments.  

 Before further elaboration of GT and CMS, first the traditional manufacturing 

approaches (Job-Shops and Flow Lines) are described in the following Sections.  

1.3 Job-Shop Manufacturing:  

Job-Shop manufacturing systems can be very commonly found in the USA 

(Black, J. [1991]). The main aim of Job-Shop manufacturing is to achieve a higher 

degree of flexibility so that products having a wide range of variation in size and 

shape can be produced, in small lot sizes, in a single facility. The distinguishing 

feature of Job-Shop is the manufacturing of products that may be having different 

processing sequences and variation in processing times. Products travel through the 

entire facility in batches. In Job-Shop environment the main dictating force in 

selection of machines is variety of products and smaller lot sizes. This is the reason 

that in Job-Shop manufacturing general purpose machines are mainly utilized as they 

can perform a variety of operations. The grouping of machines in Job-Shop 

environment is carried out on the basis of functions e.g. lathe machines are placed in 

one shop, milling machines in another and so on, as shown in Figure 1.1. That is why 

a Job-Shop layout is generally termed as a functional layout.  
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Mungawattana [2000] presented a comparison of different manufacturing 

systems. According to him in Job-Shop manufacturing jobs spend less time in 

processing and most of their time is consumed either waiting in queues or in other 

non-productive activities for example handling. Since in Job-Shop environment 

machines are distributed on the basis of their function therefore during processing 

some jobs have to travel through the entire facility. Therefore, in order to make the 

processing more economical jobs are processed and moved through the facility in 

batches which result in longer cycle times and high level of in-process inventory. This 

results an increase in the cost of production and a decrease in the rate of production. 

1.4 Flow Line Manufacturing: 

Mungawattana [2000] also observes that the distinguishing feature of Flow 

Line Manufacturing is its higher rate of production and lower manufacturing cost. 

Unlike Job-Shop manufacturing here specialized machines are used. The organization 

of a Flow Line is in accordance with the processing requirements of a product. Once 

organized, then each flow line is fully dedicated for the manufacturing of a particular 

product. The presence of specialized machines and their organization according to the 

processing requirements of a product allow the flow of one piece at a time which 

results in increase in production rate and decrease in manufacturing time and cost as 

lesser amount of time is spent by jobs while waiting in queues and handling 

L 

L  
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Figure 1.1: Process Based Layout 
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[Mungawattana, (2000)]. Lack of flexibility is one major drawback of flow line 

manufacturing. Main reason for this is the presence of specialized machines which are 

very expensive and reconfiguration of such machines is normally not allowed.   

 1.5 Cellular Manufacturing: 

From the above discussion it can be concluded that Job-Shops and Flow Lines 

are comparatively less equipped to meet the present day’s challenges that include 

constant changes in product design, product demand and corresponding 

reconfigurations in the manufacturing systems. Therefore, CM which is a 

manufacturing philosophy based on GT, is seen as a promising solution for the 

problems faced by the present day manufacturing systems. The formation of a CMS 

mainly consists of two important tasks: grouping of parts into families on the basis of 

their similar designs and processing requirements and grouping of machines into cells 

according to the processing requirements of corresponding part families. A group of 

parts can be called as a family if either their processing requirements are similar or 

they resemble each other in terms of size and geometric shape (Ham et al. [1985], 

Groover [2008]). Similarly, a manufacturing cell consists of a group of machines that 

are dissimilar to each in terms of their functioning and dedicatedly involved in the 

processing of a part family (Mungawattana, [2000]). Machines in each cell are placed 

in close proximity to each other (Figure 1.3) thus saving time and cost (handling). 

Each cell is ideally responsible for the manufacturing of a particular part family which 

results in simplifying the flow of material and scheduling of the system.   In contrast 

to Job-Shop parts in CM have to travel less distances before their processing is 

L P S D 

L S P D 

S L P D 

L S P D 

Figure 1.2: Product Based Layout 

In Out 
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completed. Also, having machines in close proximity the flow of one piece at a time is 

possible thus saving a lot of waiting time, which is unavoidable in case of Job-Shop 

manufacturing. 

 

Another aspect of CM that causes a reduction in the over all production time is 

reduced setup times. It is because of the fact that each part family contains parts that 

have similar design attributes.  

CM in fact provides a system that has the combined advantages of both Job-

Shop and Flow Line Manufacturing. Similar to Job-Shop CMS also utilizes general 

purpose machines and therefore has the ability to be reconfigured and produce a 

variety of products. Also, having machines in close proximity in each cell and 

dedicated to a particular part family efficient flow of material and higher rate of 

production, like a Flow Line Manufacturing system, can be achieved. Finally it can be 

concluded that wherever there is a requirement of producing a medium variety of 

products in medium quantity then CM can prove to be, comparatively, more 

economical, (Black J. [1983]). In case where large volumes are to be produced then 

pure Flow Line Manufacturing is preferable. Similarly, in case where greater variety 

of products is to be produced then pure Job-Shop Manufacturing can be more useful. 

CM over the years has been gaining popularity. Fry et al [1987] observed that several 

US based manufacturers adopted CM instead of the conventional Job-Shop 

Manufacturing.  

L S 
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Figure 1.3: Cellular Type Layout 
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1.6 Advantages of Cellular Manufacturing: 

 There are many advantages that have been associated with CM. A number of 

research studies have been carried out in validating and establishing these benefits 

associated to CM. Some of the well known studies include Greene & Sadowski 

[1984], Chandrasekharan & Rajagopalan [1987], Askin & Standridge [1993], Shafer 

& Charnes [1994], Suresh & Meredith [1994], Singh & Rajamani [1996], and Annan 

Mungawattana [2000]. These advantages are briefly summarized below:        

• Smaller setup times are required: Since each manufacturing cell is 

assigned a family of parts that contains parts of similar design attributes, 

therefore during processing they require similar fixtures and work holding 

devices. This reduces setup time.    

• Smaller lot sizes can be processed: Since machines are in close proximity 

and arranged according to the processing requirements of a particular part 

family, therefore processing of parts in smaller lot sizes is possible and 

economical too.  

• Smaller inventory levels both in terms of in-process and finished items: 

Due to efficient and smooth flow of material, smaller lot sizes and setup 

times, the level of inventory both in terms of in-process and finished items 

is reduced. Another aspect of this efficient material flow is the possibility of 

producing parts either Just-In-Time (JIT) or in small lot sizes 

• Reduction in time and material handling cost: Ideally in CM each part 

family is completely processed inside a particular cell. It saves a lot of time 

(travel + waiting) and material handling cost which is a regular feature of 

the Job-Shop environment. 

• Decrease in flow time is observed: The efficient and smooth flow of 

material through the system reduces the time both in terms of setup and 

handling of material which as a whole decreases the overall flow time. 

• Reduction in the number and types of tools required: In CM each part 

family consists of parts which have similar shapes, sizes and processing 

requirements. This is the reason that similar tools are required by almost all 

the jobs during processing. 
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• Space requirements are reduced: Because of reduction in lot sizes and 

setup times there occurs a reduction in the inventory levels of both in-

process and finished items, which consequently reduces the space 

requirements.  

• Decrease in throughput times: In Job-Shop environment parts get 

processed in almost the entire facility and thus have to travel through long 

distances. On the contrary in CM each part family is processed ideally 

inside a particular cell which means parts have to travel through short 

distances and spend less time in waiting. This reduces the overall 

throughput time. 

• Improvement in the quality of products: In CM parts get processed in 

small lot sizes and on machines which are placed in close proximity. 

Therefore, during processing, any mistake can be quickly identified and 

corrected. This leads to improvement in the quality of products and 

reduction in wastage of material. 

• Improvement in operations’ control: Since in CM jobs are processed 

inside their respective cells therefore the overall control of operations 

(scheduling and material) is much easier as compared to Job-Shop 

manufacturing where mostly jobs have to travel the entire facility while 

getting processed.    

1.7 Problem Definition:   

In spite of the fact that CM is very beneficial, a number of CMS design 

approches - such as Classification and Coding (Hyer & Wemmerlov [1989], Offodile 

[1991]), Array Based Clustering (King [1980], Chandrasekharan & Rajagopalan 

[1986], Chu & Tsai [1990]), Graph Partitioning (Kumar et al. [1986], Vohra et al. 

[1990], Ng [1992 & 1993]), Similarity Coefficient Approach (Lozano et al. [1999], 

Yasuda & Yin [2001], Yin and Yasuda [2006]), Mathematical Programming (Heragu 

[1999], Zhao & Wu [2000], Nsakanda et al [2005]), Artificial Intelligence (Peker & 

Fernando & Mauricio [2002], Kara [2004], Li et al. [2007], Safaei et al. [2008]), 

Heuristic Based Approaches (Geoffrey et al. [1992], Caux et al. [2000]) - proposed 

over the years still have major shortcomings. Almost all the techniques so far 

developed take the CMS design problem as the part machine clustering problem only 

and very little consideration has been given to important production related 
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information such as production volume, processing sequence, processing times etc. 

That is why the portability of such techniques into practice is limited and this is 

causing an increase in gap between practice and research. The linking of CMS design 

problem with the cell scheduling makes it more useful in practice. But this aspect of 

linking CMS design with cell scheduling has been very rarely handled in research. 

Some researchers (Onwubolu [2000], Venkataramanaiah [2006], Celano et al. [2007], 

Lin et al. [2008]) did focus on the scheduling aspect of the CMS. But the drawback of 

these approaches is that their entire focus is on cell scheduling only and the CMS 

design problem has not been considered at all. This shows that the two problems 

(CMS design and cell scheduling) have been frequently dealt with separately rather 

than in a sequential/integrated manner. Therefore, the motivation of this research is to 

develop a methodology that would not only solve the CMS design problem as 

Machine-Part grouping problem, but also schedule the system by considering some of 

the important production related information i.e. processing sequence of each part and 

processing time for each operation of each part on each machine. The system would 

be initially provided with an input in the form of a 1-0 Machine-Part incidence matrix, 

where each “1” would represent an operation of a particular part on a particular 

machine and “0” otherwise. The block-diagonalization of the Machine-Part incidence 

matrix would be carried out with the help of a hybrid technique developed by 

combining GA with a Local Search Heuristic (LSH), while considering maximization 

of Grouping Efficacy (GE) as its performance factor. Once the cellular arrangement 

(machine groups and corresponding part families) is finalized, the user would be 

asked to provide information about the processing sequence of each part and the 

processing time for each operation of each part on each machine. Finally, taking this 

information into account the scheduling problem of the system would be solved as a 

typical JSSP and for that too a hybrid approach would be developed by combining 

GA with an LSH and considering minimization of Makespan as its performance 

factor.  The ultimate output of the system would be a cellular arrangement showing 

machine groups and corresponding part families and a production schedule presented 

on a Gantt chart.  

Since the methodology proposed here would not only provide solution for the 

Machine-Part grouping problem but solve the scheduling part of the problem as well. 

Therefore, it would definitely be more useful in practice and account for some of the 

major limitations of the available CMS design techniques such as “lack of using more 
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production related information in the cell design” and “lack of ability to be practically 

implemented”. 

1.8 Research Objectives: 

The main research objectives are listed and explained below. Each main 

objective has some intended novelties which are also listed and explained alongside 

their respective main objectives: 

1. To develop a GA based hybrid approach (combination of GA with an 

LSH) for Machine-Part grouping - developing machine groups and 

corresponding part families - by considering maximization of GE as its 

performance factor, and validating the model by solving a number of 

benchmark problems from literature and comparing results with some of 

the known techniques. This technique has the following novelties:  

(i) Using integer type representation with the intention that 

information about the different groups of machines and their 

corresponding families of parts would be encoded in each 

chromosome. Another advantage of this type of representation is 

that it minimizes decoding effort. It is a rare practice as most of the 

researchers (for example Fernando & Mauricio [2002]) represent 

their solutions in the form of chromosomes that after decoding 

produce either machine cells or part families.  

(ii) Developing a repair algorithm that checks the legality of each 

solution that is randomly generated and the solutions those are 

resulted from the genetic operators (crossover, mutation and 

inversion). This would ensure that all the solutions in a population 

are legal and produce feasible solutions thus avoiding the penalty 

approach in which a new solution is randomly generated and 

placed in the population instead of an illegal solution which may 

disturb the natural evolution of GA.     

(iii) Developing an LSH that has the ability to increase the capability 

of traditional GA (that is using integer type representation, multi 

cut point crossover, gene to gene mutation and inversion) in terms 

of reaching the optimum in earlier generations. The LSH is to be 
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placed inside the GA loop, so that the best solution of each 

generation is further improved and afterwards placed back into 

population so that it can participate in different genetic operators 

such as crossover, inversion and mutation giving it a chance to 

produce even better solutions. This is a novel approach as most of 

the LSH available in literature are subjected to the final outcome 

of GA.  

All the relevant details are given in chapters to follow.  

2. To develop a GA based hybrid approach (combination of GA with an 

LSH) for JSSP by considering minimization of Makespan as its 

performance factor, and validating the model by solving a number of 

benchmark problems from literature and comparing results with some of 

the known techniques. The intended novelties are as listed below: 

(i) The use of integer type representation and arranging the entries in 

a two dimensional matrix, which is very rare in literature.  

(ii) Devising a repair algorithm which ensures that all the 

chromosomes in population are legal and produce feasible 

solutions when decoded.  

(iii) Here also, like objective 1, such an LSH is intended to be 

developed which can increase the efficiency of traditional GA (that 

is using integer type representation, multi cut point crossover and 

traditional swap mutation) in terms of reaching the optimum in 

earlier generations. Here also the LSH is to be placed inside the 

GA loop so that the best solution of each generation is further 

improved thus helping GA to reach the optimum in earlier 

generations.    

All the relevant details are given in chapters to follow.  

3. Linking the Machine-Part grouping part with the Job-Shop Scheduling 

part in such a way that the output of the Machine-Part grouping part can 

be served as an input to the Job-Shop Scheduling part. Finally, validating 

the combined approach by solving randomly generated or benchmark 
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problems from literature. This is a novel approach as most of the research 

either focuses on cell design or cell scheduling. A combined approach of 

this kind is extremely rare to be found in literature. 

1.9 Conceptual Approach: 

To achieve the objectives discussed earlier the conceptual approach adopted is 

as shown in Figure 1.4. 

 

Figure 1.4 shows that the main parts of the approach are the development of 

hybrid GA based approaches that combine GA with LSH, both for the Machine-Part 

grouping and Job-Shop scheduling. Also, the next important aspect of the conceptual 

model is the linking of the two models together so that the output of Machine-Part 

grouping model can be served as an input to the Job-Shop scheduling model. For the 

hybrid GA in Machine-Part grouping part a simple integer based representation, with 

multi cut point crossover, traditional gene to gene mutation and inversion is applied. 

In order to measure the performance of a solution GE is used due to its inbuilt ability 

to maximize the utilization of a machine inside its cell and minimize the total number 

of intercellular moves. Also the capability of GE, as far as differentiating between the 
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Figure 1.4: Conceptual Approach for the Proposed Research 
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ill-structured and well-structured Machine-Part incidence matrices is concerned, is 

very high. Further, in case of GE no weight factor is required (Fernando and Mauricio 

[2002]). The LSH is placed within the GA loop so that the best solution of each 

generation is subjected to it and after being locally improved it is placed back into the 

population. The process is carried out for fixed number of generations and on 

termination the best result is saved.  

 Similarly, for the hybrid GA in Job-Shop scheduling part, also, a simple 

integer type, operation based representation is used. But it is worth mentioning that 

the way chromosomes are represented here i.e. in two dimensional arrays, is very rare 

to be found in literature. The traditional multi cut point crossover and swap mutation 

is applied here. In this part static scheduling condition is assumed, which definitely 

helps in facilitating the performance comparison of the proposed approach with the 

benchmark problems available in literature. Makespan is used as the performance 

measure, because it is a popular measure of performance and has been very frequently 

used by researchers. Here, also, LSH is incorporated inside the GA loop and the best 

solution of each generation is subjected to it.  

1.10 Contributions: 

This research provides an opportunity to have an in depth knowledge of the 

CMS design problem and the JSSP in general and the application of GA to both these 

problems in particular. Following are the major contributions of this research: 

1. A hybrid GA is developed for solving the CMS design (Machine-Part 

grouping) problem by combining GA with an LSH. The technique, after 

being tested on a number of benchmark problems from literature, is found 

to be very effective as it has been found accurate and consistent 

irrespective of the problem size in comparison to all the other previously 

developed techniques. The effectiveness of the approach is due to the fact 

that a very effective LSH is present at the heart of the GA loop which 

locally improves the best solution of each generation and places it back 

into population so that it can take part in different genetic operators and 

produce even better solutions. The effectiveness of the LSH can be 

assessed by the fact that we have not used any specifically devised non-

traditional genetic operators (crossover, mutation and inversion) but even 
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then results are better and consistent in terms of accuracy. This shows that 

the LSH is having a major effect on the overall GA procedure.   

2. Another, hybrid GA is developed for solving the JSSP and here, too, GA is 

combined with an LSH. The technique, after being tested on a reasonable 

number of benchmark problems, has been found reasonably accurate and 

time efficient, as well. Here, also, the effectiveness of the technique is due 

to the presence of an effective LSH inside the GA loop which has the 

ability to produce accurate results even in combination with the traditional 

crossover (two cut point crossover) and mutation (swap mutation) 

strategies.    

3. The two hybrid GAs (for Machine-Part grouping problem & JSSP) 

developed are linked together in such a manner that the output of the 

Machine-Part grouping (cellular arrangement) is served as an input to the 

Job-Shop scheduling part. The combination, which is extremely rare to be 

found in literature, has given a solution methodology that not only caters 

for the grouping of machines and corresponding part families but also 

provides solution for the system scheduling. This is indeed a 

distinguishing feature of this technique as it definitely accounts for some 

of the major limitations of the current CMS design techniques such as 

“lack of using more production related information in the cell design” and 

“lack of ability to be practically implemented”. 

1.11 Organization of Thesis: 

 This thesis report consists of eight chapters. Chapter 1 provides an 

introduction to this research, description of the research problem, research objectives, 

the conceptual approach to handle the research problem and the contributions of this 

research to the existing knowledge. Chapter 2 mainly focuses on the literature survey 

regarding different techniques of Artificial Intelligence (AI) in general and GA in 

particular as it has been frequently applied during this research. In Chapter 3 a 

comprehensive literature review regarding different techniques of CMS design is 

presented. Since during this research, not only the Machine-Part grouping problem is 

handled but solution for the system scheduling is provided as well, therefore a 

reasonable literature review regarding the Job-Shop Scheduling Problem (JSSP) is 

also carried out and presented in Chapter 4. Chapter 5 mainly describes the hybrid 
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methodology developed to solve the cell design problem which is verified and 

validated through a number of benchmark problems from literature. Chapter 6 

describes in detail a hybrid approach developed to solve the JSSP and also its 

combination with the approach developed for cell design (Machine-Part grouping).  

All the details about verification and validation of the hybrid tools, for Machine-Part 

grouping and Job-Shop scheduling, and further discussion regarding results of the 

problems is given in Chapter 7. Chapter 8 describes the main outcome (conclusion) of 

this research and also provides directions for future research in this area.     

1.12 Summary: 

 This chapter has briefly given a background to the CMS design problem and 

the particular problem to be tackled during this research. The objectives expected to 

be achieved from this research have been described. A conceptual approach for 

solving the research problem has also been outlined that mainly consists of the 

development of hybrid GA based approaches both for the Machine-Part grouping and 

Job-Shop Scheduling parts, separately, and finally combining them together. It also 

describes the main contributions of this research to the area of CMS design. Finally 

the chapter discusses organization of the thesis.   
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CHAPTER 2 
 

LITERATURE REVIEW- GENETIC ALGORITHMS 

2.1 Introduction: 

“Artificial Intelligence (AI) techniques have  increased in terms of application 

in most of the fields in general and in the area of manufacturing system design and 

operations scheduling in particular” [Noor (2007)]. Therefore, it is very necessary to 

review the basics of AI, generally, and Genetic Algorithms (GA), more specifically as 

GA has been applied during this research. This chapter identifies the different AI 

tools, whereas GA has been discussed in detail.  

2.2 Artificial Intelligence (AI): 

 McCarthy [1960] described AI as a subfield of computer science integrating 

the biological and computer intelligence. On the other hand, AI has been defined by 

Rich and Knight [1991] as the study of how to make computers do those things which 

at the moment are being tackled by people, in a better way. A more comprehensive 

definition of AI is given by Souri [2003], according to which it is the capability of a 

device or machine to perform functions which are normally associated with the 

intelligence of human beings. 

 The different branches of AI include Expert Systems (ES), Fuzzy Logic (FL), 

Artificial Neural Networks (ANN), Hybrid Systems and Genetic Algorithms (GA). 

Since GA has been more frequently utilized during this research, therefore, it has been 

further elaborated in detail, below.   

2.3 Genetic Algorithms (GA) 

GA is AI methodology that is inspired by the evolution theory of Darwin. In 

comparatively simpler words it can be said that in GA an evolutionary process solves 

problems and the final result is the best (fittest) solution (survivor) or in other words, 

it can be said that a solution is evolved. A brief description of the natural evolution 

process is discussed below which would help in thoroughly understanding GA. 
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In nature all living organisms basically consist of cells. Every cell consists of a 

set of chromosomes. Each chromosome, in turn, is a string of DNA and serves as a 

model for the whole organism. A chromosome is basically a collection of genes, 

where each gene can be defined as a block of DNA and encodes a particular protein. 

In other words it can be said that each gene encodes a trait, for instance, the colour of 

eyes. The possibilities of different trait settings could be black, brown or blue. These 

settings are known as alleles. Every gene has a particular position in a chromosome 

and that position is termed as locus. As complete set of genes is called a chromosome, 

like wise a genome consists of a complete set of chromosomes. Whereas, a genotype 

is specified by a particular set of genes. It is the genotype that is mainly responsible 

for the after birth developments of the organism's phenotype, the different 

characteristics (mental & physical) for example colour of the eyes, level of 

intelligence, etc. Reproduction is the process during which new chromosomes are 

created. The first thing that occurs and is very important in the creation of new 

chromosomes is called crossover or recombination. During crossover genes from the 

parent chromosomes recombine and create new chromosomes. The other important 

operator that takes place during reproduction is called mutation. During mutation, 

basically, a small change is incorporated in the elements of DNA. Obitko [1998] 

observes that errors in copying genes from parents result in these changes. Survival is 

the measure of fitness of an organism. 

Initially, Holland [1975] developed a methodology for GA that consists of a 

sequence of steps which are followed to move from one generation to another. In each 

generation the operators such as mutation and crossover are used for reproducing new 

chromosomes. Each chromosome’s performance or suitability is measured by some 

fitness value. This fitness value of a chromosome serves as a basis for its selection 

into the next generation. 

Crossover is an operator during which two different chromosomes exchange 

their parts and hence develop offspring.  Whereas, mutation is an operator during 

which a randomly selected gene of a chromosome is changed. As already discussed 

that fitness value is the basis on which the selection of the chromosome in the next 

generation depends, therefore, it can be said that a fitter chromosome has more 

chances of getting selected in the next generation. This fitness based selection ensures 

that the fittest chromosomes survive through generations whereas the least fit 
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becomes extinct. The basic requirements of GA are: a fitness function that can 

measure fitness of a chromosome, an encoding criterion to encode a solution of a 

problem, defining the different constraints and criteria for the optimum value, and 

finally incorporation of suitable crossover and mutation operators. GA has the ability 

to perform efficiently in the evolution of an optimum solution, but the major difficulty 

in its implementation is the encoding of a problem solution, as improper encoding 

may lead to a complete change in the shape of a problem (Obitko [1998], Negnevitsky 

[2002]). 

The first step in the implementation of GA is encoding i.e. the representation 

of a problem solution/ chromosome. Encoding is mainly dependent upon the problem 

to be solved. Some of the different encoding techniques are given in Table 2.1 (Noor 

[2009]). These have been used with some success [Obitko (1998)]. 

Table 2.1: Different Problem Encoding Techniques (Noor [2007]) 

S/No. Encoding 

technique 

Example 

 
1 

 
Binary 

encoding 

 
Chromosome 1 :101100101100101011100101 
  
Chromosome 2 : 111111100000110000011111 

 

 
2 

 
Permutation 

encoding 

 
Chromosome 1: 8 9 7 4 6 2 3 5 1 
 
Chromosome 2 : 2 3 1 4 8 5 6 7 9 

 

 
 

3 

 
 

Value 
encoding 

 

Chromosome 1: 5.3243 1.2324 2.3293 0.4556  2.4545 
 
Chromosome 2 : HDIERJFDJDLDFABDJEIFLFEGT 
 
Chromosome 3 : (right), (back), (left), (back), (forward) 

 

 
 
 

4 
 
 
 
 

 
 
 

Tree 
encoding 

 

+ 

x / 

5 y 

Chromosome A 

Do until 

step wall 

Chromosome B 

(+ x (/ 5 y))                            (do until step wall) 
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After encoding and the random generation of an initial population the next step in GA 

is the selection of chromosomes which would take part as parents in crossover. The 

main problem is how to carryout this selection. As per Darwin’s evolution theory, the 

fittest chromosomes survive through generations and are most likely to take part in 

crossover and create offspring. “Some of the well known techniques of selection are 

tournament selection, roulette wheel selection, steady state selection and rank 

selection” (Noor [2007]). After the selection of chromosomes for crossover, the next 

task is to decide how to carryout the process of crossover so that genes from two 

parents can be recombined and children are created. The most common way of doing 

this is by random selection and then exchange of genes, as shown in example, below.  

(‘|’ is the crossover point): 

Chromosome A=10011 | 10101110111 

Chromosome B=11001 | 01010011010 

Child A=10011 | 01010011010 

Child B=11001 | 10101110111 

Crossover can be carried out in a number of ways. Some of them are shown in Table 

2.2. The type of crossover to be chosen mainly depends upon the type of encoding 

being used and therefore it can be sometimes quite complicated. A suitable selection 

of the type of crossover for a particular problem can definitely improve the GA’s 

performance.  

Table 2.2: Crossover Techniques for Various Encoding Types (Noor [2007]) 

S/No. Encoding 

technique 

Crossover 

technique 

Example 

1. single cut 
point 
crossover 

 
1100/1011+1101/1111= 1100/1111 + 1101/1011 

 

2. Double cut 
point 
crossover 

 
11/00/1011 + 11/01/1111 = 11011011 +11001111 

 

3. Uniform 
crossover 

 
11001011 + 11011101 =11011111 + 11001001 

 

 
 
 
 
 
 

1 

 
 
 
 
 
 

Binary 

 
4. Arithmetic 
crossover 

 
0100110 + 0100101 = 1100110 + 0101111 
 

(the first three digits of each parent are added 

together for child 1 and the remaining digits are 

added for the child 2) 
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2 Permutation 
encoding 

Single cut 
point 

(1 2 3 4 5 6 /7 8 9) + (4 5 3 6 8 9/ 7 2 1) = (1 2 3 

4 5 6 8 9 7) +4 5 3 6 8 9 7 1 2 

3 Real value 
encoding 

Same as in 
binary values 

(1.29 5.68/ 2.86 4.11 5.55)+(3.23 4.45/ 6.13 
5.67 2.98) = (1.29 5.68 6.13 5.67 2.98) +(3.23 
4.45 2.86 4.11 5.55)--single point 

 

 
 
 
 

4 

 
 
 
 

Tree 
encoding 

 
 
 
 

Exchange 

 

Once the issue of crossover is resolved, the next step is mutation. “The main 

aim of carrying out mutation is to induce a certain level of diversity into population so 

that GA can be prevented from getting trapped into a local optimum” (Obitko [1998]). 

It has been already mentioned, previously, that during mutation a slight change is 

incorporated in the genetic structure of a chromosome. An offspring, resulted from 

crossover, is randomly changed by a mutation operator. For binary encoding, 

mutation can be carried out as shown in example below.  

(Bits selected for mutation are shown in bold) 

Chromosome A=1100111000010010 

Chromosome B=1101101111110110 

Mutated chromosome A=1101111000010010 

Mutated chromosome B=1101100111110110 

Like crossover the decision of how to perform mutation, also, depends upon the type 

of encoding being used. The different mutation techniques, for different types of 

encoding, are shown in Table 2.3.   

Table 2.3: Different Mutation Techniques for Various Encoding Types 
(Noor [2007]) 

S/No. Encoding type Mutation 
technique 

Example 

1 Binary Bit inversion 11001001 => 10001001 

/ 

x + 

y 3 

-
- 

x 
^ 

y 2 

+ 

= 

/ 

x ^ 

y 2 

-
- 

x 
+ 

y 3 

+ 
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2 Permutation Change in order (1 2 3 4 5 6 8 9 7) => (1 8 3 4 5 6 2 9 7) 

 

3 

 

Real value 

 
Addition of a 
small number 

 
(1.29 2.86 5.68  4.11 5.55) => (1.29 

 2.86 5.68  4.22 5.55) 
 

 

 
4 

 

 
Tree 

 
 

Change in 
operator 

 

“Crossover and mutation rates are the two basic parameters of GA” (Obitko 

[1998]). The crossover rate determines the number of times crossover of 

chromosomes will be carried out in one generation. The range for selection of 

crossover rate is from 0% to 100%. If the crossover rate is 0% it means that 

chromosomes in the next generation will be the exact copies of chromosomes in the 

current generation. On the other hand if it is 100% then every chromosome in the 

population of next generation will be the result of crossover between any two 

chromosomes of the current generation.  Crossover is carried out in the hope that 

children, created during the process, would contain good parts of their parents and 

consequently perform better as compared to them. Each selection criteria is so 

designed that during selection some part of the population in the current generation do 

get selected in the next generation.  

Similarly, mutation rate means how many genes in a population in one 

generation would get mutated. Here also the range could be from 0% to 100%. If the 

mutation rate is 0% then it means none of the genes would get selected. But, if it is 

100% then it means all the genes in a population of a generation would get mutated. 

As indicated earlier, mutation is an operator that creates a certain level of diversity in 

a population and hence GA is prevented from getting trapped into local optimum. 

Therefore “selection of mutation rate is a delicate decision” (Noor [2007]). Too high a 

mutation rate would convert GA into a kind of random search and the characteristic of 

evolution is lost. Also, if the mutation rate is too low then there would be a tendency 

of GA converging on to a local optimum. In addition to two basic parameters i.e. 

crossover and mutation, there are some additional parameters of GA. One particularly 

important additional parameter of GA is the population size. Population size means 

- 

x + 

y 3 

+ 

 
x 

+ 

y 3 

= 
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total number of chromosomes in a population, in one generation. Population size is 

important because it provides GA the searching space in which search for the 

optimum solution is carried out. If there are too few chromosomes in a population 

then it means GA is given a smaller searching space and this would limit the GA’s 

searching ability and there would be every likelihood of GA getting trapped on a local 

optimum. On the other hand, if there are too many chromosomes, then it means GA is 

provided with a larger searching space which would definitely slow it down by 

increasing its computational effort. Therefore, selecting a reasonable population size 

is again a delicate matter. According to Obitko [1998] it is not useful to use a very 

large population size because it does not solve the problem quickly as compared to a 

moderate sized population. 

2.4 Summary  

In this chapter a brief introduction to GA and its different parameters is 

presented. As far as its application to different fields in general and to the areas of CM 

and Job-Shop Scheduling in particular is concerned that is presented in detail in 

Chapter 3 and Chapter 4, respectively.  

GA is a direct inspiration of the process of natural reproduction which consists 

of the processes of crossover, mutation and selection of chromosomes from one 

generation to another. Whenever, a problem is solved with the help of GA, the first 

hurdle that needs to be tackled is representation/ encoding. Since there are a number 

of encoding techniques available, therefore a suitable technique must be selected. The 

next in line is to select proper crossover and mutation techniques which should be in 

accordance to the    encoding technique, already selected. Another important thing is 

to develop an appropriate fitness function which would evaluate the fitness of all the 

chromosomes in a population. These fitness values are responsible for the selection or 

rejection of a chromosome in the next generation as the fittest chromosomes have 

better chances of survival into the next generation as compared to their weaker 

counterparts. The mutation and crossover rates, number of generations and population 

size are the important GA parameters. These parameters are important because they 

determine the quality of the solution. 
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CHAPTER 3 
 

LITERATURE REVIEW  

CELLULAR MANUFACTURING SYSTEM 

DESIGN TECHNIQUES 
 

3.1  Introduction:  

       GT is in fact a concept of manufacturing that takes into account the similarities 

in design and processing requirements of different parts while grouping them together 

in to families (Irani [1999]). Mitrofanov [1966] and Burbidge [1975] gave the initial 

concept of GT and Burbidge [1975]. GT can be defined as, “a method of 

manufacturing piece parts by the classification of these parts into groups and 

subsequently applying to each group similar technological operations” (Mitrofanov 

[1966]). Another definition of GT is, “the realization that many problems are similar 

and by grouping them a single solution can be found to a set of problems, thus saving 

time and effort” (Shunk [1978]). This definition gives a comparatively wider 

understanding of GT. However, a more general definition of GT is “it is a 

manufacturing philosophy which identifies and exploits the underlying proximity of 

parts and manufacturing processes” (Ham et al. [1985]).  

3.2  Classification of Cellular Manufacturing System (CMS) Design 

Techniques:   

Basically, CM is a concept based on the application of GT to the 

reconfiguration of manufacturing systems. “CM is a hybrid system linking the 

advantages of both job shops (flexibility in producing a wide variety of products) and 

flow lines (efficient flow and high production rate)” (Mungawattana [2000]). In CM 

the machines are normally close to each other and involved in the manufacturing of a 

specific part family. This particular arrangement facilitates the system to have an 

efficient flow of material and a comparatively higher rate of production like an FL. By 

using general-purpose machines the CMS can be easily reconfigured to facilitate the 

production of new product designs and product demand with a comparatively smaller 

amount of effort both in terms of cost and time. This makes the manufacturing system 

more flexible in terms of producing different variety of products.  
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“CM is a manufacturing system that can produce medium-volume/medium-

variety part types more economically than other types of manufacturing systems” 

(Black J. [1983]). The different categories, of the numerous GT algorithms that can be 

repeatedly found in literature, are as follows:  

a) Classification and coding 

b) Array-Based clustering  

c) Graph Partitioning 

d) Similarity Coefficient 

e) Mathematical Programming 

f) Artificial Intelligence (AI) Based  

g) Heuristic based approaches 

 These available techniques have been reviewed in detail by Joines et al. 

[1996]. According to them (Joines et al [1996]) these techniques can be divided into 

two main classes as design oriented techniques and production oriented techniques. 

The criteria of grouping parts in the design oriented techniques is based on similarity 

in design features, whereas, in production oriented techniques grouping is carried out 

on the basis of similar processing requirements. Joines et al. [1996] presented the 

division of CMS design techniques as shown in Figure 3.1: 
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a) Classification and Coding Analysis:  

 This approach uses a coding system to assign numerical weights to parts 

characteristics and identifies part families using some classification scheme. 

The classification and coding of parts is a very complex job and takes a lot of 

time. Perhaps due to the design orientation and proprietary nature of most 

coding systems, they are not popularly known in the research literature for GT 

or cellular manufacturing. Like other grouping techniques this method also 

tries to group parts into families on the basis of similarities in design and 

manufacturing attributes. This concept of grouping similar parts into families 

using design features was initially introduced by Mitrofanov [1966] and Opitz 

et al. [1969]. Different attributes of a part like shape, dimensions, size of hole, 

size of gear tooth etc, are all encoded in the form of a code number. The 

different design manufacturing attributes of parts are summarized in Table 3.1:  

Table 3.1: Design and Manufacturing Attributes of Parts. 

S/No. Design attributes Manufacturing attributes 

1 Basic external shape Major processes 

2 Basic internal shape Minor processes 

3 Rotational or prismatic shape Process plan  

Cellular 
Manufacturing 

Design oriented 
techniques 

Production oriented 
techniques 

Classification and 
coding 

Others  

Array-Based 
clustering  

 

Graph 
partitioning  

Similarity 
coefficient  

Mathematical 
programming  

Heuristic 
Based  

Artificial 
Intelligence 

based  

Figure 3.1: Classification of machine-part grouping techniques 
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4 Length-to-diameter ratio 

(rotational) 

Major dimensions 

5 Aspect ratio (prismatic) Surface finish 

6 Material type Machine tool 

7 Part function Production cycle time 

8 Major dimensions Batch size 

9 Minor dimensions Annual production 

10 Tolerances Fixtures required  

11 Surface finish cutting tools 

 

A code number completely represents the size, dimensions, shape etc of a part. 

Parts carrying same code numbers can be grouped into families as they would 

be having similar attributes and hence similar processing requirements. 

Machines are grouped according to the processing requirements of each part 

family.  

Classification and coding based systems were the primary tool of GT in 

the 1960s and 1970s. A number of classification and coding systems are 

reported in literature. According to Opitz, H., [1970] “classification and 

coding techniques have been used in practice but using features, based on 

shape and then group parts accordingly is a very labor intensive job and in 

order to solve this problem the idea of weighted codes is useful”. Kaparthi and 

Suresh [1990] suggested that the lack of popularity of classification and 

coding based systems might be because they are labor intensive, and thus they 

suggested the automation of the coding part of the method. Ham et al. [1985] 

provided a complete survey of the different classification and coding 

techniques. Kusiak [1987] argued that the unpopularity of coding based 

techniques could be due to the expense and difficulty involved in 

implementing coding and classification systems; however, Hyer and 

Wemmerlov [1989] and Levuhis [1978] viewed it otherwise. For example, 

according to a survey conducted by Hyer and Wemmerlov [1989] showed that 

62% of companies surveyed indicated that they used classification and coding 

systems; therefore one of the reasons for the slow development of coding 

based algorithms could be finding groups with the weighted codes. Offodile 
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[1991] came up with the idea of developing a framework by which the 

weighted codes can be converted into a similarity measure and argued that this 

could alleviate the problem.  

Billo [1999] identified and described several organizing principles 

(Operational Constructors, Meta Models, Dynamic Binding and Associative 

Naming) and argued that if software is developed using these principles then it 

would be more user friendly. Liao [2001] came up with the idea of using 

Fuzzy Logic in devising a classification and coding based system for the 

formation of part families. The authors argued that traditionally all features of 

a part were considered as crisp, whereas realistically some should be fuzzy. 

Barton and Love [2005] developed a novel system that was based on the 

already existing coding system CAMAC which was originally developed by 

Love and George [1985]. “The ability to find designs using a detail drawing 

rather than textual descriptions is a significant achievement in itself” Barton 

and Love [2005]. They further argued that if certain way could be found to 

find parts from simple sketches then this would be more useful and effective in 

practice. 

    There are a number of coding packages available commercially. 

However, none of the systems has universally been adopted because of the fact 

that some require manual coding which is extremely slow (not more than 100 

parts per day) and would take years to code the complete database of even a 

small company having few thousand parts. Automatic coding models using 

three-dimensional models would eliminate this problem but even then the 

overall approach remains non-simultaneous. This (non-simultaneous way of 

grouping parts into families and machines into corresponding groups) is a 

major weakness of the classification and coding based techniques.  

b) Array Based Clustering: 

Array based clustering is one of the simplest as compared to other 

production oriented techniques used to form machine cells and corresponding 

part families, simultaneously. The system is initially arranged in the form of a 

0-1 Machine-Part incidence matrix that consists of entries in the form of either 

1s or 0s. 1 means the operation of a part j on machine i (aij=1), and 0 means 
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otherwise. Once the system is arranged in 1-0 form then with the help of 

shifting columns and rows all or most of the 1s can be rearranged in the form 

of blocks along the diagonal of the matrix. Each block in the diagonal 

represents a family of parts and corresponding machines which are 

simultaneously formed, as shown in example presented in Tables 3.2 & 3.3: 

      Table 3.2: Incidence Matrix                 Table 3.3: Block-diagonalized form 

Machines  
Parts 1 3 7 4 6 2 5 

2 1 1 1 0 0 0 0 

5 1 1 1 0 0 0 0 

3 0 0 0 1 1 0 0 

4 0 0 0 1 1 0 0 

6 0 0 0 1 1 0 0 

1 0 0 0 0 0 1 1 

7 0 0 0 0 0 1 1 

 

   A detailed comparison of some of the well known array-based clustering 

techniques (Rank Order Clustering (ROC), Direct Clustering Analysis (DCA) 

and Bond Energy Analysis (BEA)) is given in Chu and Tsai, [1990].  

   ROC was initially proposed by King, [1980]. In ROC every row and 

column of the machine part incidence matrix is considered as string of binary 

numbers. The block-diagonalization of the matrix is achieved by rearranging 

the rows and columns in the decreasing order of the decimal values of their 

respective binary strings. Chanrasekharan and Rajagopalan, [1986] identified 

the limitations of ROC. They observed that “ROC is highly dependent upon 

the configuration of the input matrix and therefore can only be efficiently 

applied to well-structured Machine-Part incidence matrices”. Despite its 

shortcomings, ROC is considered to be the most simple and popular algorithm 

for cell formation.  

   “BEA is a general clustering algorithm and can be applied to any 

nonnegative array of numbers” (McCormick et al. [1972]). According to this 

technique the interrelationship, between an element in an array and its 

neighboring four elements, is being exploited. The sum of the products of 

these adjoining elements creates bond energy.  The total bond energy (TBE) 

for a particular row ‘x’ and column ‘y’ can be calculated as shown in (3.1): 

Machines  
Parts 1 2 3 4 5 6 7 

1 0 1 0 0 1 0 0 

2 1 0 0 0 0 0 1 

3 0 1 0 0 1 0 0 

4 0 0 1 1 0 1 0 

5 1 0 0 0 0 0 1 

6 0 0 1 1 0 1 0 

7 0 1 0 0 1 0 0 
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   m = the number of machines 

   n = the number of parts 

  The BEA, in fact, maximizes the TBE over all the n!m! permutations 

(Joines et al. [1996]). The main weakness of this method is that it allows the 

formation of a final Machine-Part matrix that contains overlapping blocks 

which makes it difficult for the viewer to identify the natural machine groups 

and their corresponding part families. This becomes impossible when the 

problem size is large.  

   DCA was proposed by Chan and Milner, [1982]. According to their 

approach the initial matrix is rearranged by moving rows with the left most 

positive cell to the top and columns with the top most positive cell to the left. 

A positive cell is the one where aij=1. The main advantages of DCA are that 

unlike ROC it does not have any size limitations, converges to the final 

solution in comparatively lesser number of iterations. Before applying the 

algorithm, all the exceptional elements and bottleneck machines are removed 

after being marked. However, Wemmerlov, [1984] observes that DCA may 

not produce acceptable solutions as the diagonal is redirected in each iteration. 

Therefore he came up with a modified version of DCA. 

   After comparing the three array based clustering techniques it was 

concluded that BEA outperformed the other two methods (ROC & DCA) 

especially in the presence of exceptional elements (Chu and Tsai, [1990]).  

   The main problems with the clustering techniques are the presence of a 

large number of exceptional elements and bottleneck machines on which a 

large number of parts need to be processed. Therefore, “quality of the results 

given by clustering techniques is highly dependent upon the initial input i.e. 

the configuration of the zero-one Machine-Part incidence matrix. Therefore, 
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these approaches loose their effectiveness as the problem size increases and 

the Machine-Part incidence matrix gets more and more ill-structured” (Tariq et 

al. [2007]). These are the reasons that these techniques are very rarely used 

these days. They have been over taken by some of the well known modern 

approaches of cell formation that utilize Simulated Annealing, GA, Artificial 

Neural Networks, Fuzzy Logic etc.  

 c) Graph Partitioning Approaches: 

  The first to implement the graph partitioning approach to the cell 

formation problem were Rajagopalan and Batra, [1975]. The graph they 

developed to solve the cell formation problem was basically a combination of 

nodes and arcs. Each node represented a machine, whereas, each arc indicated 

similarity among the machines. The partitioning of graph or, in other words, 

the formation of machine cells, was carried out by assembling cliques 

determined from the graph. The work of Rajagopalan and Batra, [1975], also, 

pointed out that normally the number of intercellular moves does not reflect 

the true cost of material handling. Especially in the case when an intercellular 

move is somewhere in the middle of the processing sequence of a part. In such 

a situation there will be two intercellular moves required instead of one.   

   “Normally, graph partitioning approaches treat the machines and/or parts 

as nodes and the processing of parts as arcs connecting the nodes” (Askin and 

Chu, [1990]). One thing that is considered as the major weakness of graph 

partitioning approach is its non-simultaneous grouping of parts into families 

and machines into respective cells. The approach developed by Kumar et al. 

[1986] was also based on graph partitioning during which they solved the 

Machine-Part grouping problem for a known number of cells while applying a 

constraint on the size of cell.   

   Other approaches that are actually the extension of the initial graph 

partitioning approach, include, the bipartite graph approach of King and 

Nakornchai, [1982], a heuristic and graph partitioning approach of Askin and 

Chu, [1990], the network flow approach of Vohra et al. [1990], and the 

Minimum Spanning Tree (MST) approach of Ng, [1992] & [1993],  
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   As mentioned earlier this approach is non-simultaneous and that is why 

either would be applied to the formation of part families followed by grouping 

of machines or otherwise. Also, being an analytical approach it cannot handle 

large size of problems especially those which have ill-structured Machine-Part 

incidence matrices. Due to these limitations graph partitioning approaches are 

not very popular and that is why limited number of researchers applied it to the 

cell formation problem. One recent example in which graph partitioning has 

been applied to the cell formation problem is Rebeiro [2009]. In this technique 

graph regarding the production system is generated first and then a coloring 

algorithm is activated to obtain the number cells as desired initially. Though 

the technique is claimed to be an effective one but the results presented show 

that it has been applied to comparatively smaller size of problems and in 

limited number of problems (3 out of a total of 15 problems) improvement 

could be observed.     

d) Similarity Coefficient Approach: 

  In this approach first similarity measures among parts are determined by 

taking into consideration their features, designs and processing requirements 

and then formation of part families and their corresponding machine groups is 

carried out using these similarity measures (Irani [1999]).  

   The main steps to develop machine groups and part families with the 

help of similarity coefficient based approaches generally are, as described 

below: 

i. The initial data is provided in the form of a 0-1 Machine-Part incidence 

matrix of order M×P where, M represents total number of machines and 

P represents total number of parts. Each element (aij) of the initial 

Machine-Part incidence matrix is either 1, if part j has an operation on 

machine i, or 0, if otherwise. 

ii. By using the Machine-Part incidence matrix the similarity coefficient is 

calculated and the initial matrix is converted into a triangular form 

representing either machine-by-machine (M×M) or part-by-part (P×P) 

similarity matrix.  
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iii. Using the information available after step ii a tree/dendrogram is 

constructed which actually represents the hierarchy of similarity among 

all pairs of machines or parts. 

iv. From the tree/dendrogram developed in step iii the corresponding 

machine groups or part families are formed while satisfying the 

constraints e.g. cell size etc.    

  Once the similarity coefficients between all the pairs of machines and 

parts are calculated the initial machine part incidence matrix can be converted 

into a final block-diagonal form showing groups of machines and 

corresponding part families by following steps iii and iv, described above. 

McAuley [1972] was the first to develop machine cells by using the Jaccard 

similarity coefficient.  McAuley’s work was applied to a number of real life 

problems by Carrie [1973]. He came up with the idea to apply similarity 

coefficient approach to form part families first. But it was later on observed by 

White [1980] that it would not be carrying any advantage if part families are 

formed first followed by the grouping of machines into cells or otherwise.  

Since similarity coefficients have the ability to incorporate the 

manufacturing data other than the binary machine part incidence matrix, 

therefore a variety of such methods have been developed, some of the well 

known examples are: the average linkage method of Seifoddini and Wolfe 

[1986], the similarity coefficient approach of Seifoddini [1989] which was 

developed to handle the problem of improper machine assignment, and the 

production data based similarity coefficient approach of Gupta and Seifoddini 

[1990] that had the ability to incorporate a variety of production related 

information such as the Machine-Part incidence matrix, the actual sequence of 

operations, the average production volume of each part, the processing time of 

each operation of a part.  

Mosier and Taube [1985] introduced two kinds of similarity coefficients. 

One is called the Additive Similarity Coefficient (ASC) and the other is called 

Multiplicative Similarity Coefficient (MSC). The ASC is actually the 

implementation of the conventional jaccard similarity coefficient in a weighted 

manner. Each part, in this case, is assigned a weight according to its 
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importance. MSC, on the other hand, is more or less a correlation coefficient. 

The conventional Jaccard Similarity Coefficient was, also, modified by 

Seifoddini and Djassemi [1995] in order to accommodate the information 

related to production volume. The modified version of the conventional 

Jaccard Similarity Coefficient proved more effective both in terms of reducing 

the total number of intercellular moves and improving the process of 

scheduling. Geonwook et al [1998] developed a two-phase procedure for 

configuring a CMS. In phase-I a new similarity coefficient was developed that 

presented the option of alternative routings in case of machine failures, 

whereas, in phase-II a methodology, to consider scheduling and operational 

aspects of the cell design, was developed.   

   There are a number of other similarity coefficients being developed and 

used in solving the cell formation problem. Shafer and Rogers [1993b] carried 

out a comparative study on 16 different similarity coefficients. A number of 

comparatively recent studies carried out in the application of similarity 

coefficients to the CMS design problem, includes, Onwubolu and Mlilo 

[1998], Ben-Arieh and Sreenivasan [1999], Lozano et al. [1999], Baykasoglu 

and Gindy [2000], Samatova et al. [2001].  

   Yasuda and Yin [2001] reviewed two similarity coefficients; Jaccard 

Similarity and Commonality Score, and concluded that these similarity 

coefficients are inefficient to solve the cell formation problem. Yin and 

Yasuda [2005] conducted a comparative study and concluded that though a 

generalized similarity coefficient cannot be devised for the cell formation 

problem but at least it could be found that which similarity coefficient is 

comparatively appropriate for a particular situation. In their further study (Yin 

and Yasuda [2006]) the authors conducted a comprehensive review of 

similarity coefficient based approaches. In addition to presenting a detailed 

review of the similarity coefficient based techniques, a review of the previous 

reviews has also been presented. It has also been argued in this paper that 

similarity coefficient is the most flexible cell formation method.  

   Though similarity coefficients based methods offer greater flexibility in 

terms of incorporating production level data while solving the cell formation 
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problem, there exists a number of deficiencies in the current similarity 

coefficient based methods. Most of the techniques developed so far either form 

part families first followed by machine groups or otherwise. Existence of 

simultaneous Machine-Part grouping approaches based on similarity 

coefficients is very rare in literature. Also, even with the non-simultaneous 

approach handling large size problems is not possible and that is why recent 

similarity coefficient based approaches utilize GA when it comes to solve 

large size cell formation problems.   

e) Mathematical Programming Based Approaches: 

Approaches based on Mathematical Programming actually solve the 

Machine-Part grouping problem as an optimization problem. Due to their 

ability to consider and incorporate a number of critical system design 

information, Mathematical Programming based approaches have been 

extensively used to solve the Machine-Part grouping problem. All the 

mathematical optimization approaches applied to the cell formation are either 

linear or nonlinear integer programming problems. Kusiak’s, [1987 & 1988], 

and Boctor’s, [1991], work has shown that these approaches have the ability to 

incorporate a lot of production related data, for example; processing sequence, 

routing flexibility, setup and processing time etc. Being an optimization 

technique, the objective; while clustering parts or machines; could be to 

maximize the total sum of similarities between each pair of machines/ parts. A 

review of the work of some of the researchers, who used mathematical 

programming techniques to formulate the cell formation problem, is presented 

in Table 3.4. 

Table 3.4: Mathematical Programming Based Approaches   

S/No. Reference Technique Review 

1 Purcheck 
[1974,1975] 

Linear 
integer 
Programming 

The author was the first to have applied 
the approach of mathematical modelling 
to the cell formation problem. The 
research shows that first the part families 
are formed and then machines are 
grouped according to the processing 
requirements of each part family which 
indicates that the approach carries out 
Machine-Part grouping sequentially 
rather than simultaneously.   
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2 Choobineh 
[1988] 

Integer 
Programming 

The methodology presented in this paper 
consisted of two stages. In the first stage 
part families were formed using 
clustering techniques with a proximity 
measure that took manufacturing 
operations and their sequence into 
consideration. In the second stage, also, 
an integer programming model was 
proposed to assign machines to different 
cells. The procedure itself reveals that it 
is not a simultaneous approach.    

3 Shtub [1989] Mathematical 
Programming 

Here a mathematical model for the cell 
formation problem was developed as a 
generalized assignment problem.  

4 Gunasighe & 
Lashkari 
[1989, 1989, 
1990] 

0-1 integer 
programming 

The authors developed two separate 0-1 
integer programming models. One for the 
part family formation and the second one 
for the grouping of machines into cells. 
The objective of their model was to 
minimize the cost involved in the total 
number of intercellular moves and the 
duplication of machines. The concept of 
routing flexibility was also considered 
during this research. Since separate 
models were developed for the part 
family formation and grouping of 
machines therefore this shows that the 
approach is not a simultaneous one and 
also finding solution, analytically, for the 
large scale problems would be difficult.    

5 Srinivassan et 
al. [1990] 

Generalised 
assignment 
approach 

In this research the authors presented a 
generalised assignment approach for the 
cell formation problem and argued that it 
would perform better than the p-median 
model. The main feature of the approach 
was that the number of part families 
(number of cells) was not known as a 
priori. This was also a sequential 
approach of grouping parts into families 
first and then assigning machines to each 
cell afterwards.   

6 Boctor[1991] Mathematical 
Programming 

The author presented an analytical 
optimization model for simultaneous 
Machine-Part grouping with the objective 
of minimizing the total number of 
intercellular moves. Since it was an 
analytical approach therefore it could not 
be applied to problems of large size. This 
made the author to recommend Simulated 
Annealing approach.    

7 Joines et al. Integer Here, also, an integer programming 
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[1996] Programming model was developed for the cell 
formation problem. But instead of 
solving problems analytically, the authors 
made use of GA which speaks itself 
about the limitations of pure 
mathematical based techniques.  

8 Heragu & 
Chen[1997] 

Mathematical 
Programming 

The authors came up with an approach 
based on mathematical programming and 
claimed that they could find an optimal 
solution for a cell formation problem. 
The model consisted of three major 
aspects - routing flexibility, machine 
utilization and practical constraint. 
Though it was an efficient approach but 
could only solve problems of medium 
size.  

9 Cheng et al. 
[1998] 

Mathematical 
Programming 

Here the problem of cell formation was 
initially formulated as the Travelling 
Salesman Problem (TSP) based on 
mathematical modelling. Since finding 
analytical solution is excessively time 
consuming therefore GA was used to find 
solution for the problems while using GE 
as the performance measure. This shows 
the limitations of pure mathematical 
techniques.  

10 Chen & 
Heragu [1999] 

Mathematical 
Programming 

Here the authors improved their previous 
work (Heragu & Chen [1997]) and tried 
to over come some of its limitations (e.g 
its lack of ability to solve large scale 
problems). The methodology presented in 
this paper was based on the stepwise 
decomposition of the large scale cell 
formation problem.   

11 Won [2000] p-median 
based 

During this research the cell formation 
problem was formulated as p-median 
based mathematical model using a 
comparatively new similarity measure 
between pairs of machines. Since 
similarity measure is used between pairs 
of machines this means that first machine 
groups would be formed and then parts 
would be assigned afterwards. This 
shows that the technique is not grouping 
parts and machines simultaneously.  

12 Akturk & 
Turkcan 
[2000] 

Mathematical 
Programming 

In this paper the authors have integrated 
the cell formation problem with the cell 
layout problem while carrying out the 
Machine-Part grouping simultaneously.  

13 Plaquin & 
Pierreval 

Mathematical 
Programming 

An approach based on mathematical 
programming and taking into account 
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[2000] some specific constraints, e.g some 
machines could stay together if they 
shared a common resource and some 
causing interference would be placed 
separately, was presented in this paper. 
The authors devised an evolutionary 
approach to solve the cell formation 
problems which speaks itself about the 
limitation of using mathematical 
modelling and solving the cell formation 
problems analytically.    

14 Zhao & Wu 
[2000] 

Mathematical 
Programming 

In this research the authors have 
developed a multi-objective optimization 
model for the cell formation problem. 
The multiple objectives they considered, 
included minimization of the cost 
involved in intercell and intracell 
movements, minimization of the 
variations in cell load, and minimization 
of the total number of exceptional 
elements. The cell formation problem 
was actually solved as machine grouping 
problem and parts were assigned to each 
group considering their processing 
sequence and production volume. Since 
the problem was formulated as multi-
objective, therefore analytical solution 
for even the problems of medium size 
was not possible and that is why the 
authors used GA. The computational 
experience presented in the paper is 
limited and even in the presence of GA it 
can only sove problems of medium size 
only.    

15 Caux et al. 
[2000] 

Mathematical 
Programming 

Here the authors developed an 
optimization model for the cell formation 
problem while considering alternative 
process plans and the machine capacity 
constraint with the objective of 
minimizing the intercellular moves. Since 
the model was multi-objective therefore 
analytical solutions could not be 
determined and that is why the author 
proposed an SA based methodology and 
combined it with a branch-and-bound 
technique for the routing selection. The 
approach presented is a logical one but 
the computational experience presented 
in the paper is very limited which may 
not be enough to justify its effectiveness 
when applied to large size practical 
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problems both in terms of accuracy and 
computational time. 

Some of the comparatively recent research studies that utilized 

mathematical programming to formulate the cell formation problem includes 

Onwubolu and Mutingi [2001], Uddin and Shanker [2002], Nsakanda et al. 

[2005], Fantahun et al. [2006], Geonwook and Herman [2006], Tariq et al. 

[2006], Tariq et al. [2009].  

Onwubolu and Mutingi [2001] formulated the cell formation problem by 

taking into account the cell-load variation. The work of Uddin and Shanker 

[2002] was based upon integer programming with the consideration of routing 

flexibility. Nsakanda et al. [2005] developed a mathematical approach that 

considered a number of many manufacturing parameters including the part 

demands, multiple routings, operations sequence, multiple process plans, and 

machine capacities. The drawback of their methodology was that it could 

never guarantee optimality.  

Fantahun et al. [2006] formulated the cell formation problem as a 

mathematical optimization problem while considering a number of 

information such as; routing flexibility, operation sequence, machine 

duplication, machine capacity, cell load balancing, and different type of costs 

like operation, tool consumption, setup and subcontracting cost. Since the 

model was multi-objective and was also multi-constrained therefore to solve 

the cell formation problem analytically with the help of this model was a 

challenging task. Therefore, the authors proposed a GA based heuristic 

approach to solve the cell formation problem.  

Geonwook and Herman [2006] presented a two-phase mathematical 

approach for the cell formation problem. In the first phase formation of part 

families was carried out whereas in the second phase in addition to the 

formation of corresponding machine groups, operational issues were also 

handled. Since the problem was multi-objective and multi constrained 

therefore finding solutions analytically for medium and large size problems in 

polynomial time would not be possible and that is why the authors proposed a 

GA based methodology. The approach seems to be an effective one but 
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computational experience presented in the paper is very limited and a 

comparatively smaller size problem is solved.  

Tariq et al. [2006] formulated a mathematical optimization model for the 

cell formation problem with the objective of maximizing GE: which 

consequently minimizes the total number of intercellular moves and 

maximizes a machine’s utilization into its respective cell. Initially they applied 

their model to small and medium sized problems but in their later work (Tariq 

et al. [2009]) a comprehensive computational experience of the same model is 

presented. They also suggested a hybrid GA based methodology to solve the 

cell formation problem.  

Though the mathematical optimization approaches are very attractive in 

terms of incorporating more production level data into cell formation models 

but to find analytical solution of medium and large size cell formation 

problems in polynomial time is not possible which is a major limitation of 

mathematical optimization based techniques. “Obtaining optimal solution for 

the mathematical programming approaches can be infeasible due to 

combinatorial complexity of the CMS design problem” (Mungawattana 

[2000]).  Most of the recent researchers have, therefore, opted for either SA or 

GA based methodologies rather than pure mathematical approaches.      

f) Artificial Intelligence (AI) Based Approaches:  

The application of AI-based approaches to the problem of CMS design 

has increased in recent years. Though it may seem as if these approaches are 

patterned on the same structure as that of the conventional array based 

clustering techniques, but still they are different as they have the ability to 

incorporate AI in their algorithms. Another feature is their searching ability 

through which they can find out optimum or near to optimum solutions with 

comparatively little computational effort. They also have the ability to handle 

multiple objectives and related constraints, quite conveniently. Some of the 

well known AI techniques are listed as follows: 

i. Artificial Neural Networks (ANN) 

ii. Fuzzy Logic (FL) 
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iii. Simulated Annealing (SA) & Genetic Algorithms (GA)  

A brief description of these techniques and the related research work, 

being carried out so far, is given below: 

i. Artificial Neural Network (ANN): 

ANN are the network models developed for computations. They 

contain simple units that carryout processing and communicate with each 

other by exchanging signals through a number of connections where each 

connection carries a weight factor. ANN is actually the inspiration of 

human brain.  

Like a human brain, ANN is also a network containing a number of 

processing units known as artificial neurons. These processing units are 

connected with each other through weighted connections. Each artificial 

neuron transmits the incoming signal to other units through their outgoing 

weighted connections. The information transferred among processing 

units is stored in these weights in the form of specific values. This storage 

of information enables these networks to have the ability of learning from 

experience and memorizing the relationships among different data.  

ANN has been successfully applied to the area of manufacturing. 

Because of some of its unique capabilities ANN is highly suitable for 

application to the area of CMS design. ANN’s use for CM applications is 

justified by the fact that they can learn from experience, recognize 

patterns, and generalize the knowledge they obtain. Another advantage is 

their ability to handle incomplete data which is highly useful when it 

comes to real world applications. Due to these advantages, ANN has been 

extensive used in the area of GT in recent years. 

ANN can be trained in two ways; through supervised learning or 

unsupervised learning. A single layer perceptron and multi-layer 

perceptron are the two important architectures of supervised learning 

(Noor [2007]). “A perceptron can represent a linearly separable function, 

and hence it can learn only OR and AND operations but not the Exclusive-
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OR (XOR) which is not linear in nature” (Noor [2007]). This limitation of 

perceptron can be overcome by training a multilayer ANN with back-error 

propagation (Negnavitskey [2002]). But even, “back-error propagation is not 

the exact emulation of human brain and hence the multi-layer perceptron 

does not have associative memory characteristics like a human brain” (Noor 

[2007]).  Jain and Meeran [1999] and Meeran [2003] reports that ANN 

sometimes perform poorly due to lack of data or the trajectory dependent 

training algorithms which cannot map the complex data precisely.   

The basic requirement of supervised learning techniques is to have 

some knowledge in advance about the number of cells to be formed and a 

set of training data with known output. The fact of the matter is that the 

availability of this kind of knowledge in advance is very hard in case of 

Machine-Part grouping problem. The reason is that, generally, no 

information about the exact number of groups to be formed is known a 

priori. But still, a number of researchers have applied supervised learning 

technique to solve the cell formation problem. A three-layered feed-

forward network with back-propagation (supervised learning) for part 

grouping in CMS was proposed by Kao and Moon [1991]. They overcame 

this difficulty of training data by selecting some seed parts as 

representatives of the part families to be formed. Some of the earlier 

research works in which supervised learning is used for part/ machine 

grouping, include Kao and Moon [1990], Moon [1990], Moon [1990], 

Moon and Chi [1992], Moon and Roy [1992].  

Unsupervised learning is suitable for the initial cell formation. Once 

the initial formation is over then supervised learning can be applied and 

trained to refine the formation and add new parts to cells. That is why 

majority of neural networks that have been developed for parts/ machines 

grouping used unsupervised learning methods. Some of the unsupervised 

learning models developed over the years include, Self Organizing 

Feature Maps (SOFM) - Kohonen [1982], Adaptive Resonance Theory 

(ART) - Carpenter and Grossberg [1987], the modified Hebbian learning 

algorithm of Malave and Ramchandran [1991], and the Fuzzy Adaptive 

Resonance Theory (Fuzzy ART) - Carpenter and Grossberg [1991].  
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“SOFM performs a dimension reduction of the input patterns to the 

two-dimensional space while maintaining the topological relations 

between the elements” (Kiang et al. [1995]). SOFM operates in a similar 

manner as the competitive learning model. SOFM has been found efficient 

when applied to the problem of part grouping.  

Like any competitive learning model the ART tries to group parts 

automatically. In fact the output layer’s neurons directly represent part 

families. The vigilance threshold enables the ART network model to 

control the similarity among parts of a part family. Another advantage of 

this network is that it does not need the information, about the number of 

part families to be developed, in advance. Some of the researchers who 

used ART for part/ machine grouping and investigated some of its 

drawbacks include, Kaparthi and Suresh [1992], Kaparthi et al. [1993], 

Dagli and Huggahalli [1995], Chen and Cheng [1995].  

Fuzzy ART, Carpenter and Grossberg [1991], is an improved form 

of ART carrying the concepts of Fuzzy logic. A basic difference between 

ART network and Fuzzy ART is that both non-binary and binary data can 

be handled by Fuzzy ART. Suresh and Kaparthi [1994] used a Fuzzy ART 

network to develop part families using the Machine-Part incidence matrix. 

They also compared the performance of Fuzzy ART with conventional 

ART as well as ROC [King, (1980)] and found Fuzzy ART superior to 

these techniques. Because of the promising results achieved, Fuzzy ART 

is still considered to be an open area for research. The work of Suresh and 

Park [2003] is basically an extension of the conventional Fuzzy ART and 

which allows the consideration of operation sequence while clustering the 

parts. Peker and Kara’s [2004] work is actually an investigation on 

parameter setting for Fuzzy ART networks.  

Although a lot of research is being carried out in improving the 

ANN algorithms, applied to the problem of cell formation, however little 

work has been carried out to handle the problem of bottleneck machines. 

Also, some additional constraints, for example load balancing, capacity 
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constraints, or part demands etc., need to be considered, at the CMS 

design stage, as well. 

ii. Fuzzy Logic (FL): 

FL was invented by Lofty Zadeh, a professor at the University of 

California at Berkley, in 1965. The motivation for the development of FL 

was that, “imprecisely defined sets or classes play an important role in 

human thinking, particularly in the domain of pattern recognition and 

communication of information” (Zadeh [1965]). FL gives designers the 

abilities; to define relationships in less than exact terms, to handle the 

simulation of real world judgements with ease, to cope with nonlinearity 

with the same ease as linear relationships, to be able to simulate natural 

language intercourse, and finally to have the ability to handle real life 

problems with ease and more flexibility.  FL is an interesting AI tool as it 

gives us a simplified approach to reach the definite solution of a problem 

while utilizing imprecise or ambiguous input information.  

Fuzziness has been handled in many ways in case of cell formation 

problems. A review of some of the earlier research works in this area is 

presented in Table 3.5. 

Table 3.5: FL Based Techniques 

S/No. Reference Technique Review 

1 Xu & Wang 
[1989] 

FL In this research the authors used fuzzy 
mathematics to handle the issue of 
uncertainty/imprecision while calculating 
similarity between parts. Here a dynamic 
part family formation procedure has been 
presented which assigns new parts to an 
already existing part family by using the 
principle fuzzy pattern recognition. The 
weakness of the approach could be its non-
simultaneous approach towards Machine-
Part grouping.      

2 Chu & Hayya 
[1991] 

Fuzzy C-
mean 
algorithm 

The authors were the first to have applied 
the Fuzzy C-mean Algorithm, initially 
developed by Bezdek [1991], to the cell 
formation problem. Their algorithm 
resulted in two matrices one for the 
identification of the part families and 
second for the identification of machine 
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groups. The main problem with their 
algorithm is that there is a possibility of cell 
developed without a part family or machine 
group assigned to it. Another problem that 
could arise is that more than one part family 
may be assigned to one cell. Also, the 
Fuzzy C-mean algorithms work well with 
smaller data sets and well structured 
Machine-Part incidence matrices only and 
clustering errors are observed once the 
problem size increases and data becomes 
more and more ill-structured.     

3 Zhang & Wang 
[1992] 

FL In this research FL was applied to the 
conventional ROC method using input in 
the form of non-binary Machine-Part 
incidence matrix. Initially with the help of 
the conventional ROC method the number 
of clusters were determined and then using 
that information a fuzzy based 
methodology was used to form the part 
families. The weakness of this approach 
could be its non-simultaneous nature of 
grouping parts into families and machines 
into cells.     

4 Leem & Chen 
[1996] 

Fuzzy 
Clustering 
Algorithm 

Here also the authors developed fuzzy 
clustering algorithm based on determining 
the similarity coefficient using input in the 
form of non-binary Machine-Part incidence 
matrix while taking alternative process 
plans into consideration. The algorithm was 
useful in terms considering alternative 
processing of parts and minimization of 
cost involved in intercellular movements. 
The weakness of the approach could be 
solving the cell formation problem in a 
sequential manner (first machine group 
formation followed by part family 
formation) rather than simultaneous.  

   

5 Gill & Bector 
[1997] 

Fuzzy 
linguistics  

Here the authors developed an approach for 
the cell formation problem based on fuzzy 
linguistics. Here first the information 
related features of different parts was 
quantified and then families of parts were 
formed accordingly. The approach was a 
useful one as far as quantification of the 
features of parts, in non exact terms, was 
concerned. Here also the main weakness 
could be the non-simultaneous approach of 
Machine-Part grouping.     
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6 Susano et al. 
[1999] 

Fuzzy C-
mean 
Algorithm 

In this research the authors applied the 
Fuzzy C-mean Algorithm to the cell 
formation problem with the intention to 
overcome the basic short comings of the 
algorithm (lack of ability to solve large size 
and ill-structured problems). The main aim 
of their work was to reduce the infeasibility 
of the conventional Fuzzy C-mean 
Algorithm. They did overcome that but 
with a reduction in GE this indicated 
deficiencies in this approach.      

7 Josien & Liao 
[2000] 

Fuzzy C-
mean 
algorithm 

In this research the authors tried to improve 
the Fuzz C-mean Algorithm initially 
proposed by Chu & Hayya [1991] but had 
little success. Here the Fuzzy C-mean 
Algorithm was integrated with the Fuzzy 
K-nearest neighbour algorithm while using 
some commonly used performance 
measures such as GE, grouping index, 
number of bottleneck machines and 
exceptional parts etc.  

Recently Li et al. [2007] developed an improved fuzzy clustering 

method for the cell formation problem overcoming most of the 

shortcomings being identified in the earlier Fuzzy C-mean clustering 

algorithms. The authors compared their work with other previous studies 

in which Fuzzy C-mean Algorithms were proposed i.e. original Fuzzy C-

mean Algorithm, Chu and Hayya [1991], Susano et al [1999] and reported 

that they have outperformed each one of them. It is worth noting that with 

this approach the authors have been able to bring down the percentage of 

infeasible solutions developed in case of comparatively large and ill-

structured data sets, which remained considerably high in the earlier 

studies.  

Though application of FL to solve the cell formation problem seems 

very attractive, however, issues like; handling large size ill-structured 

problems and lack of ability to find optimum solutions for such problems, 

still need to be tackled.  

iii. Simulated Annealing (SA) & Genetic Algorithm (GA): 

SA and GA are very effective search techniques that actually 

replicate natural phenomena. They have shown effectiveness in solving a 
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number of combinatorial optimization problems. Since Machine-Part 

grouping problem is NP-hard (Yasuda et al. [2005]), therefore, these 

techniques have been very frequently used in literature to solve this 

problem.  

The first researcher to use SA was Kirkpatrick et al. [1983]. His 

methodology was actually based on the research being carried out by 

Metropolis et al. [1953]. The SA algorithm was initially developed to 

handle the optimization of difficult combinatorial problems with the help 

of randomization carried out in a controlled manner. SA, in fact, is the 

replication of the actual annealing process in which a system, at a higher 

energy level, is allowed to be cooled gradually in a controlled 

environment till it attains its lowest energy level.  

There is a great deal of similarity between the actual annealing 

process and the iterative algorithms. An iterative algorithm basically 

consists of solution representation, an objective function, a generation 

mechanism, and a proper schedule to enforce annealing. In SA the 

evolution of the whole algorithm depends upon the generation of the 

initial solution. First an initial solution is generated and then its 

neighbouring solution is evolved from the initially generated solution. If 

the neighbouring solution is better than the initial solution then it replaces 

the initial solution otherwise it is accepted with certain value of 

probability. With each iteration, the value of initially selected temperature 

is reduced which consequently reduces the probability of accepting worst 

solutions. The process is kept continued until the stopping criteria 

(minimum energy level is achieved).  

The work of Lundy and Mees [1986] proved that SA based 

algorithms have greater probability to reach the global optimum or in its 

neighbourhood, under certain assumptions. SA has several advantages, 

when compared to other competitive techniques, e.g. it can be easily and 

quickly implemented. That is the reason that it has been successfully 

applied to difficult problems and reasonable results have been attained. 

Several such examples can be found in literature.  Kirkpatrick et al. [1983] 
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applied SA in the area of computer systems design, Bonomi & Lutton 

[1984] and Aarts & Van Laarhoven [1985] applied it to solve the 

Travelling Salesman Problem, Wilhelm and Ward [1987] used SA to 

solve the Quadratic Assignment Problem, whereas Alfa et al. [1991] 

applied it to the Vehicle Routing Problem.    

Being a strong random search algorithm SA proved to be equally 

efficient when applied to the cell formation problem, as well. Some of the 

earliest work carried out by different researchers in designing CMS using 

SA is presented in Table 3.6.   

Table 3.6: SA Based Techniques 

S/No. Reference Technique Review 

1 Boctor [1991] SA The author initially formulated the cell 
formation problem as a linear mathematical 
model and then utilized SA to solve the 
model.  

2 Venugopal & 
Narendaran 
[1992a] 

SA Here, the authors developed an 
optimization model for the cell formation 
problem based on SA with the objective of 
minimizing the machine load variation.  

3 Chen & 
Srivastava 
[1994] 

SA In this research a quadratic programming 
model was developed for the formation of 
machine cells and SA was used to solve the 
cell formation problem. The approach, 
though seems a logical one, is not grouping 
machines into cells and parts into families 
simultaneously. 

4 Chen et al. 
[1995] 

SA Here, the authors developed a heuristic 
based approach for the cell formation 
problem and used SA to find solution for 
different problems. The objective of their 
approach was to minimize the total number 
of intercellular moves while grouping 
machines into cells and parts into 
corresponding families.  

5 Boctor [1996] SA An SA based algorithm was developed 
during this research with the objective of 
minimizing the total manufacturing cost.  

6 Sofianopoulou 
[1997] 

SA Here, the CMS design problem was 
formulated as the linear integer 
programming model. The technique had an 
objective to minimize the total number of 
intercellular moves while applying a 
constraint on the size of cell and utilising 
Sa to find solution for the problems. The 
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main advantage of the algorithm was that 
the number of cells, the system was 
supposed to be divided into, was not known 
as a priori. But the enforcement of the cell 
size constraint may result an increase in the 
number of intercellular moves in case of 
larger problems having ill-structured 
Machine-Part incidence matrices. Also, the 
size of the problems solved is 
comparatively small.    

7 Su & Hsu 
[1998] 

SA In this research the authors developed an 
optimization model for the cell formation 
problem with multiple objectives of 
minimizing the total cost involved in 
intercell and intracell moves (transportation 
cost), intracell machine load variation and 
intercell machine load variation. A parallel 
SA was proposed to solve the cell 
formation problem. The approach is a 
logical one and can be useful in practice but 
the main challenge would be to implement 
it to a real life situation which is normally 
larger and more complex than the 
computational experience presented in the 
paper.    

8 Caux et al. 
[2000] 

SA Here the authors developed an optimization 
model for the cell formation problem while 
considering alternative process plans and 
the machine capacity constraint with the 
objective to minimize the intercell traffic. 
To solve the cell formation problem they 
proposed an SA based methodology and 
combined it with a branch-and-bound 
technique for the routing selection. The 
approach presented is a logical one but the 
computational experience presented in the 
paper is very limited which may not be 
enough to justify its effectiveness when 
applied to large size practical problems 
both in terms of accuracy and 
computational time.  

Some of the recent research works in which SA is applied to the cell 

formation problem includes Xambre and Vilarinho [2003], Tavakkoli et al 

[2005], Safaei et al. [2008]. Xambre and Vilarinho [2003] developed a 

mathematical programming approach for the cell formation problem and 

allowed the duplication of bottleneck machines with an objective to 

minimize intercellular moves subject to the machine capacity constraint 
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and cell size constraint. Due to the combinatorial nature of the problem 

they used SA to solve it. The authors besides comparing their work, with 

other available similar studies in literature, applied it to one practical 

situation and reported satisfactory results both in terms of accuracy and 

computational time. The point to note in this research is the constraint on 

the cell size and the duplication of bottleneck machines. Restricting the 

cell size means that in certain problems the number of cells may increase 

than the number of naturally available clusters. Also, the duplication of 

bottleneck machines may reduce the total number of intercellular moves 

but would increase the initial cost of machines (multiple copies of one 

machine type), therefore there must be justifiable cost comparison 

(material handling cost vs. machine duplication cost) should also be 

considered.  

Tavakkoli et al [2005] solved the dynamic cell formation problem 

using metaheuristics like SA, GA and Tabu search and compared results 

in the end.  Whereas Safaei et al. [2008] developed a mixed integer 

programming model for the cell formation problem and used hybrid SA to 

solve it.  

“It is an established fact that cell formation problems belong to the 

class of NP-hard combinational problems” Yasuda et al. [2005]. A 

number of optimization algorithms can be found in literature that have the 

ability to find optimal solution, but only for small- and medium-sized 

problems. “Their deficiencies are exposed once the problem size gets 

bigger and the Machine-Part incidence matrices become more and more 

ill-structured” (Tariq et al. [2009]). These are the reason that GA based 

search techniques can be frequently found in literature. A review of some 

of the GA based techniques, available in literature, is presented in Table 

3.7.    

Table 3.7: GA Based Techniques 

S/No. Reference Technique Review 

1 Venugopal & 
Narendran 
[1992b] 

GA The authors applied GA to the cell 
formation problem with the objective of 
considering variations in cell load and 
minimization of the total number of 
intercellular moves. 
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2 Gupta et al. 
[1995] 

GA Here also a GA based methodology is 
developed to solve the cell formation 
problem with the objective of minimizing 
the intercellular and intracellular moves.  

3 Gupta et al. 
[1996] 

GA During this research the authors 
improved their previous work [Gupta et 
al. (1995)] and integrated the cell 
formation problem with the cell layout 
design problem.   

4 Hwang & Sun 
[1996] 

GA based 
heuristic 

Here, the authors developed a two phased 
GA based methodology for the cell 
formation problem. In the first phase GA 
is combined with a heuristic to identify 
machine groups, whereas in the second 
phase the corresponding part families are 
identified. It is evident from the above 
description that the approach is not a 
simultaneous one. The results could have 
been even better had a simultaneous 
approach been used instead of sequential.   

5 Su & Hsu 
[1996] 

GA They also developed a two phased 
methodology for solving the cell 
formation problem. Here also, one could 
argue that the results could have been 
better had a simultaneous approach for 
Machine-Part grouping (cell formation) 
been used.   

6 Joines et al. 
[1996] 

GA During this research initially the cell 
formation problem is formulated as a 
mathematical model based on integer 
programming and later on GA was used 
to solve the optimization problem.  

7 Alsultan & 
Fedjki [1997] 

GA Here the authors formed part families by 
using the combination of quadratic 
integer programming model with GA and 
then later on found corresponding 
machine groups. The sequence of events 
shows that a simultaneous approach for 
Machine-Part grouping has not been used 
and therefore the results may have been 
even better had somehow the Machine-
Part grouping been carried out 
simultaneously.    

8 Lee et al. 
[1997] 

GA The distinguishing feature of this GA 
based approach is the consideration of 
routing flexibility.  

9 Gravel et al. 
[1998] 

GA The authors developed a double-loop GA 
based approach for the cell formation 
problem while considering routing 
flexibility.  

10 Cheng et al. GA In this research the cell formation 
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[1998] problem was solved with the help of GA 
in the same fashion as the travelling 
salesman problem using GE as the 
performance measure. Since simple GA 
was used therefore more than 50% of the 
results were worst than the previously 
reported results.     

11 Moon and Gen 
[1999] 

GA The authors, initially, developed the cell 
formation problem as a 0-1 integer 
programming model and used GA to 
solve it. They tried to develop 
independent machine cells by considering 
routing flexibility and dual copies of 
bottleneck machines. The approach is a 
logical one but can be applied where 
there is reasonable cost justification for 
the duplication of machines.   

12 Moon & Kim 
[1999] 

GA Here the cell formation problem was 
initially developed as a 0-1 integer 
programming model with the objective of 
maximizing the total number of intracell 
moves while considering the cell size 
constraint. The model was later on solved 
by using GA. The approach is an 
effective/logical one, but considering the 
cell size constraint creates other 
complications e.g. avoiding the formation 
of single machine cells, in most of the 
cases, results an increase in total number 
of intercellular moves which 
consequently increases material handling 
cost [Tariq et al. (2007)]. 

13 Lee-Post 
[2000] 

GA The GA based approach presented in this 
paper forms the part families first, 
considering the similarities encoded in an 
exiting classification and coding scheme, 
and then groups machines accordingly. 
The approach is an effective one but 
could have proved to be more effective 
had the two activities (part families 
formation and machines grouping) been 
carried out simultaneously.      

14 Zhao & Wu 
[2000] 

GA The authors presented a GA based 
approach for the machine grouping 
problem considering multiple objectives 
such as minimizing cost involved in 
intracell part movements, cell load 
variation, and number of intercell 
movements. The approach is an effective 
one as the work of some of the previous 
researchers, have been further improved. 
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The obvious shortcomings of the 
approach are its non-simultaneous 
(handling machine grouping and part 
family formation separately) nature and 
the smaller size of the problems solved.     

15 Arzi et al. 
[2001] 

GA During this research the authors 
developed a mixed integer programming 
model for the cell formation problem and 
employed GA to solve problems of larger 
size.  

16 Dimopoulos & 
Mort [2001]  

Genetic 
Programming 
(GP) 

 Here, the authors developed a Genetic 
Programming (GP) based approach for 
the cell formation problem using the 
concept of hierarchical clustering. The 
use of GP for the cell formation problem 
is unique in itself but the point, in this 
research, that one can argue about is its 
limited computational experience and 
application to comparatively simpler 
(well structured Machine-Part incidence 
matrices.  

17 Onwubolu & 
Mutingi [2001] 

GA In this research a GA based approach is 
developed to solve the cell formation 
problem by taking into account the cell 
load variation.  

18 Uddin & 
Shanker 
[2002] 

GA This work consisted on the formation of 
an approach based on GA with the 
objective of minimizing the total number 
of intercellular moves while considering 
multiple process plans.  

19 Wu et al. 
[2002] 

GA The GA based approach presented in this 
paper is an integrated one. Here the cell 
formation problem is integrated with the 
cell layout problem.  

Some of the comparatively recent approaches in which GA has been 

used, include Fernando and Mauricio [2002] who developed a hybrid 

approach by combining GA with an LSH with the objective of 

maximizing grouping efficacy. The approach have presented a detailed 

computational experience and observed improvement in GE for 57% of 

the total tested problems (35) from literature. This improvement was due 

to the fact that the authors have developed a hybrid approach rather than 

pure GA. In spite of these improvements it is still felt that had there 

approach been a simultaneous one the results could have been even better. 

The same point was proved by Tariq et al. [2009].  
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Yasuda et al. [2005] developed a grouping GA for the multi-

objective (minimization of cell load variation and intercellular moves) cell 

formation problem. The main advantage of their approach was that the 

number of cells, the system was supposed to be divided into, was also to 

be determined by the algorithm. The approach would have been more 

realistic had it taken processing sequence and routing flexibility into 

consideration as well. A GA-based concurrent design approach for CM 

was proposed by Wu et al. [2006]. They integrated the problems of cell 

formation and group layout generation. The approach is quite effective but 

as far as the computational experience is concerned it has been applied to 

problems of small and medium size.  

Aaron et al. [2006] developed a hybrid approach for CMS design. 

They integrated the cell formation problem with the machine allocation 

and part routing problem. Their solution methodology was based on the 

combination of GA with large scale optimization techniques. Tariq et al 

[2006], also, developed a hybrid GA by combining GA with an LSH that 

further improved some of the results presented in Fernando & Mauricio 

[2002]. The LSH they developed was so effective that in combination 

with simple multi-cut point crossover and gene to gene mutation it could 

still improve the results of some of the problems. In their later work (Tariq 

et al [2007]) an analysis regarding the handling cost saved by allowing the 

formation of single machine cells is presented. In this research the 

formation of cells having only one machine was allowed which 

consequently resulted in saving some material handling cost by reducing 

the number of intercellular moves. They further improved their previous 

work (Tariq et al. [2006]), and produced a comprehensive paper (Tariq et 

al [2009]) that presented a hybrid GA based methodology and further 

improved the results of most of the problems solved by Fernando & 

Mauricio [2002]. This research has proved that in the presence of an 

effective LSH the dependence of GA on its operators (crossover, 

mutation, and selection) is somewhat relieved.    

Genetic algorithm (GA) and simulated annealing (SA) have proved 

to be prominent algorithms when applied to the cell formation problem in 
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terms of solution quality, size of the problems handled, and convergence 

speed. Therefore, these search techniques, in comparison to many 

traditional techniques, have the capabilities to provide basis for the 

development of more practically useful cell formation algorithms.  

According to Holland [1975] GA has the ability to converge on 

global optimum or nearly so in a large and complicated search space, 

under given certain conditions on the problem domain.  Since GA 

operates independently from the objective function of the problem, 

therefore it gives a designer greater flexibility to interchange different 

objective functions and also make use of the multi-criterion based 

objective functions. Also, GA can form machine cells and part families 

simultaneously therefore they are more suitable for handling real life 

problems which are normally large in size and complicated in nature. 

Therefore, it has been time and again mentioned in literature that 

techniques based on SA in general and GA in particular have 

outperformed most of the conventional cell formation techniques 

especially when it comes to large sized and complicated nature of 

problems.                  

g) Heuristic Based Approaches:   

Apart from mathematical programming based approaches, all of the CMS 

design techniques discussed so far are based on heuristics. All the AI and array 

based clustering techniques are basically heuristics, but since their solution 

approach is general in nature, therefore, they are termed as metaheuristics. 

Apart from these there are also some other heuristics, developed for the cell 

formation problem, which do not fit in the exact definition of metaheuristics. 

Branch and Bound (BB) based algorithms are an example of this class. It was 

originally developed by Kusiak [1990]. BB algorithm is basically an 

improvement of the Cluster Identification (CI) algorithm. CI algorithms were 

actually successful clustering techniques which could only work with perfect 

Machine-Part incidence matrices that could be divided into completely 

separable clusters or in other words have no bottleneck machines and/or parts. 

BB algorithms are actually the same as original CI algorithms but with the 
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induced ability to tackle bottleneck elements. A reasonable review of the 

heuristic based techniques is presented in Table 3.8.   

Table 3.8: Heuristic Based Techniques 

S/No. Reference Technique Review 

1 Wakhodekar & 
Sahu [1984] 

Machine 
component Cell 
(MACE) 
formation 
approach 

It is one of the earliest methods of 
cell formation and that is why can 
handle problems of limited size 
only. 

2 Vanneli & 
Kumar [1986] 

The bottleneck 
cell minimization 
approach 

The paper provided an approach 
of minimizing bottle neck 
machines and/or parts by the 
method of duplication of 
machines and/or subcontracting of 
parts. Though it seems 
appropriate as far as formation of 
perfect groups of machines and 
families of parts is concerned but 
still there has to be more than a 
reasonable justification based on 
cost analysis.       

3 Askin & 
Subramaniam 
[1987] 

A cost based 
heuristic approach 

The author cam up with an 
approach of designing system on 
the basis of minimizing cost that 
involves work in process, material 
handling and fixed machine costs. 
The main challenge for such an 
approach is to implement it to real 
life situations which are normally 
large in size and more 
complicated.   

4 Wei & Kern 
[1989] 

The machine score 
similarity based 
heuristic 

The approach presented was 
based on the calculation of 
commonality score to assess 
similarity between two machines. 
The approach is very simple to 
implement but suitable for smaller 
size of problems only. 

5 Al-Qatan [1990] Branch & Bound 
algorithm 

This technique outperformed the 
traditional ROC technique but still 
could not handle large size of 
problems 

6 Wei & Gaither 
[1990]  

A multi-objective 
based heuristic. 

A 0-1 integer programming model 
is used to develop machine groups 
and corresponding part families 
while minimizing the overall cost 
of producing exceptional parts.   

7 Frazier et al. 
[1990] 

A multi-objective 
cell formation 

In this research an approach is 
developed that could handle 
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heuristic. multiple objectives while solving 
the cell formation problem. The 
researchers used a random seed 
heuristic with non-dominated 
solution theory. Though the 
heuristic seems effective but it 
would have been even more 
effective had it been applied to 
real life. 

8 Harhalakas et al 
[1990] 

An efficient 
heuristic based 
approach for cell 
formation. 

An efficient heuristic based 
approach for cell formation is 
presented with discussion 
regarding its industrial 
applications.   

9 Seifoddini[1990] A probabilistic 
model approach. 

The author presented a 
probabilistic approach for the cell 
formation problem with the 
intention to overcome the 
different assumptions to handle 
the deterministic approach.  

10 Logendran[1990] A heuristic based 
algorithm. 

In this research the author 
developed a heuristic based 
approach for the cell formation 
problem, considering the 
variations in cell load while 
minimizing the total moves 
(intercell+ intracell). The 
approach is effective enough, but 
the computational experience 
presented in the paper is very 
limited.     

11 Boe & Cheng 
[1991] 

A close neighbour 
algorithm. 

In this research many 
shortcomings of the Bond Energy 
Algorithm and the Rank Order 
Clustering approach have been 
overcome. Though the algorithm 
is effective enough but it may 
have proved more effective had 
GE been used instead of Grouping 
efficiency as the performance 
measure.   

12 Geoffrey et al. 
[1992] 

Intercell reduction 
heuristic  

The authors developed a heuristic 
for the cell formation problem 
based on the objective intercell 
reduction. The uniqueness of the 
technique is that several 
performance measures - such as 
machine utilization, queue length, 
flow time etc. - have been used. It 
would have been even more 
effective had GE been used as 
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performance measure too.   

13 Kusiak [1992] Branch & Bound 
algorithm 

Out performed nine other 
algorithms but the deficiency was 
still to handle large size problems  

14 Cheng [1995] Branch & Bound 
algorithm 

The author claimed to have 
produced a more reliable 
approach that produces optimal 
results. This speaks itself about 
the limitation of the method as 
optimal solutions can only be 
obtained for smaller size of 
problems. He compared his 
results with McCormick et al 
[1972], Slagel et al. [1974] and 
ROC[1980]  

15 Caux et al. 
[2000] 

Simulated 
Annealing (SA) 
based algorithm 

In this approach the part routing 
problem was handled by Branch 
& Bound approach, whereas the 
system was designed using SA 
approach. The question left open 
was that whether such multi 
domain solution can be obtained 
for a real life/large size problem?   

3.3 Evaluation of solutions in GT: 

Several objectives for the evaluation of solutions in GT have been defined by 

resaerchers. A list of nine different objectives is given in Ballakur and Steudel [1987]. 

The most commonly used in literature is the minimization of intercellular material 

handling costs. It is because of the fact that intercellular material handling cost would 

be high in case of an inefficient grouping of machines and parts into cells or in other 

words there would be too many exceptional elements (parts being processed in more 

than one cell). Other objectives in the list include: maximizing similarities of parts or 

dissimilarity of machines, minimizing the total amount of production cost, and 

minmizing the total idle time of machines or maximizing the machine utilization in 

cells. The objective of the models formulated by Kusiak [1985] and Seifoddini and 

Wolfe [1987] was to minimize the total number of intercellular moves. On the other 

hand, the two models presented by Gunasinghe and Lashkari [1989, 1989] had the 

objective of maximizing the sum of the compatibility index between all machines and 

parts. 

  A major defficiency in the objectives, used by many cell formation models, is 

that they do not have the ability to evaluate the ‘goodness’ of a solution on absolute 
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basis. Chandrasekharan and Rajagopalan [1989] came up with another measure of 

performance called grouping efficiency (Equation 3.2).  

Grouping efficiency = η = qη1 + (1 - q) η2               (3.2) 

Where: 

η1 = The ratio between the number of 1s in the block diagonal to the total 

number of elements in the block diagonal. 

η2 = The ratio between the number of 0s outside the block diagonal to the total 

number of elements outside the block diagonal. 

q = Weight factor.  

“The major drawback of grouping efficiency is its lower ability to distinguish 

between good and bad solutions for example, a bad solution with many 1s outside the 

block diagonal often shows efficiency figures around 75%” (Fernando and Mauricio 

[2002]). This inability of grouping efficiency increases with increase in the size of the 

Machine-Part incidence matrix. Therefore, Kumar and Chandrasekharan [1990] 

proposed another measure of performance called Grouping Efficacy as shown in 

Equation 3.3.  

 Grouping Efficacy = 
in

out

NN

NN

01

11GE
+

−
=                (3.3) 

 Where: 

 1N  = Total number of 1s in the machine parts incidence matrix  

 
in

N0  = Total Number of 0s inside the block diagonal 

 outN1 = Total number of 1s out side the block diagonal. 

The development of GE was actually an attempt to propose a performance 

measure that does not posses the drawbacks in other objectives especially the 

grouping efficiency that had the lower ability to discriminate between a good and a 

bad solution. Contrary to grouping efficiency, the size of the matrix does not affect 

GE. 

The Machine-Part grouping problem is normally solved by block 

diagonalizing the zero-one Machine-Part incidence matrix, while minimizing 

intercellular movements and maximizing the utilization of machines inside the cell, 

simultaneously. “To obtain these two objectives, at a time, GE can be chosen as the 
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measure of performance, because it has the ability to incorporate both the within-cell 

machine utilization and the intercellular movements, also, it has a higher capability to 

differentiate between well-structured and ill-structured matrices and finally, it does 

not require any weight factor as well” (Fernando and Mauricio [2002]).  

On the basis of the different advantages described above, GE is used as the 

measure of performance during this research.  

3.4 Summary:  

 This chapter has given a brief description of the fundamentals of GT and CMS 

which itself is a conceptual derivative of GT. A comprehensive literature review of 

the different cell formation algorithms has been presented in section 3.2. The cell 

formation techniques have been initially divided into two classes as; design oriented 

and production oriented techniques. Further, the production oriented techniques are 

distributed into six different types as; graph partitioning, array based clustering, 

mathematical programming, similarity coefficient, heuristic based approaches, and 

artificial intelligence. Within each category along with description of the technique a 

reasonable review of related literature is also presented. Finally a brief overview of 

some of the renowned performance measures, pointing out their advantages and 

limitations, is also presented in section 3.3.   

All the CMS design approaches discussed during this chapter have certain 

advantages and disadvantages. Some approaches are very simple as far as their 

practical application is concerned, for example ROC. Whereas, some have the ability 

to formulate the CMS design problem more precisely by considering different 

objectives and constraints, but the problem with such approaches is that they need 

substantially long computational time to find solutions, for example Mathematical 

programming. AI-based approaches including ANN, FL, SA and GA have been 

applied to CMS design, because of their ability to; find solutions in comparatively less 

computational time, capture and employ design knowledge, handle a number of 

constraints, utilize several nonlinear performance measures, and simultaneously form 

machine groups and part families with a lot of ease. Both Heuristic Search and AI-

based approaches are relatively new in this area and therefore most of the recent 

research is utilizing these techniques to handle the cell formation problem.  
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CHAPTER 4 
 

LITERATURE REVIEW  

JOB-SHOP SCHEDULING 

4.1 Introduction: 

Manufacturing industries are the backbone in the economic structure of a 

nation, as they contribute to both increasing GDP/GNP and providing employment. 

Productivity, which directly affects the growth of GDP, and benefits from a 

manufacturing system, can be maximized if the available resources are utilized in an 

optimized manner. Optimized utilization of resources can only be possible if there is 

proper scheduling system in place. This makes scheduling a highly important aspect 

of a manufacturing system. This chapter presents a review of scheduling in general 

and Job-Shop Scheduling in particular. Finally, a brief review of the scheduling 

procedures applied to CMS is also given at the end. 

4.2 Scheduling:   

Scheduling can be defined as, “the allocation of resources over a period of 

time to perform a collection of tasks” (Noor [2007]). Also, another definition of 

scheduling is that, “it is a function to determine an actual (optimal or feasible) 

implementation plan as to the time schedule for all jobs to be executed; that is, when, 

with what machine, and who does what operation” (Hitomi [1996]). Scheduling has 

its applications everywhere, for example; flights scheduling, train scheduling and 

production scheduling. According to Wiers [1997] manufacturing scheduling is the 

performance of operations on a set of jobs, with the help of already allocated set of 

machines, within a specified time. 

According to the nature of activities, scheduling can be broadly divided into 

project scheduling and operations scheduling 

4.2.1 Project Scheduling: 

 It is actually the scheduling of activities involved in carrying out a project. A 

project can be construction of a factory, a bridge, a high way or maintenance and 

repair of a factory or a plant etc. A number of software based approaches are available 
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to handle such type of scheduling. Some well known techniques involve; Graphical 

Evaluation and Review Technique (GERT), Critical Path Method (CPM), Project 

Evaluation and Review Technique (PERT).   

4.2.2 Operations Scheduling: 

 Operation scheduling can be defined as, “the processing of a set of jobs, in a 

given amount of time, on the already allocated corresponding set of machines, in a 

workshop consisting of several machines or production facilities including operative 

workers” (Hitomi [1996]). Jain [1998] classified the available operations scheduling 

models as job sequencing, flow-shop scheduling, mixed-shop scheduling, Job-Shop 

scheduling and open-shop scheduling.  

The job sequencing model determines the sequence or order in which a set of 

jobs would be processed on one machine. For N jobs there are a set of N! number of 

possible schedules (sequences). From these N! number of sequences, one sequence is 

selected based on the maximization or minimization of certain objective functions.  

“A flow-shop has a typical flow pattern for mass production” (Hitomi [1996]). 

Here the processing sequence is the same for all jobs. The flow-shop scheduling is 

carried out by finding out the sequence of machines according to the multiple-stage 

manufacturing.  

In a Job-Shop every job may have a separate processing sequence. “Job-Shop 

has a typical arrangement for the case of varied production of most jobbing types and 

batch types” (Hitomi [1996]). The scheduling of Job-Shop is bit more complicated as 

compared to the flow-shop. Since every job has a separate processing sequence, 

therefore for each machine a separate job sequence has to be determined and these job 

sequences should be inter-related with each other in such a way that all the jobs can 

be processed within the minimum possible time (Makespan minimization).   

A mixed-shop is basically the combination of flow-shop and Job-Shop. In this 

case some jobs have fixed machine sequence like a flow-shop, and some are 

processed in an arbitrary sequence like a Job-Shop. In other words, “jobs must be 

processed in a sequence consistent with a given partial order of machines in mixed 

shop” (Jain [1998]).  



 73 

The proper sequence of machines is not followed in an open-shop and 

therefore the processing of jobs can be carried out in any sequence or order. All the 

models discussed above are actually the derivatives of open-shop model. 

In a manufacturing cell, ideally, all the jobs should have similar processing 

requirements (no intercellular moves), but still the processing sequence may not be 

the same each jobs. Therefore, a manufacturing cell can be termed as a Job-Shop. 

Since this research is mainly concerned with the scheduling of manufacturing cells, 

therefore the main focus will be on Job-Shop scheduling and the rest of the discussion 

would be only related to this class of scheduling only.    

4.3 Job-Shop Scheduling:   

“Job-Shop Scheduling Problem (JSSP) is one of the well known hardest 

combinatorial optimization problems. JSSP being amongst the worst members of the 

class of NP-hard problems” (Gary and Johnson, [1979]), there is still a lot of room for 

improvement in the existing techniques. Because of its large solution space JSSP is 

considered to be comparatively one of the hardest problems to solve. “If there are n 

jobs and m machines the number of theoretically possible solutions is equal to (n!)m” 

(Noor [2007]). Among these solutions an optimal solution, for a certain measure of 

performance, can be found after checking all the possible alternatives. But the 

checking of all the possible alternatives can only be possible in small size problems. 

For example, a very simple problem of 5 jobs and 8 machines will give 4.3x1016 

numbers of alternatives. Even with a high performance computer, that can evaluate 

one alternative per micro second, complete enumeration of this problem to find out 

the optimal solution would take more than 1000 years of continuous processing 

(Hitomi [1996], Morshed [2006]). 

4.4 Solution Techniques to Handle JSSP: 

 A number of solution techniques to handle the JSSP have been developed over 

the years. A broad classification of the scheduling techniques is given in Jain [1998]. 

Initially the techniques are divided into two classes as approximation and optimization 

techniques. A complete classification is shown in Figure 4.1. 
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Optimization based techniques are further classified as efficient techniques 

and enumerative techniques. Enumerative approach has further two subclasses as 

branch and bound algorithms and mathematical optimization (mixed and linear 

integer programming) based algorithms.  On the other side approximation techniques 

are initially classified as general algorithms and tailored algorithms. Tailored 

algorithms are either dispatching rules or heuristic based algorithms, whereas general 

algorithms are classified as AI-based techniques (ANN, GA and Expert Systems) and 

local search based algorithms. A literature review of the optimization and 

approximation approaches is given below. 

4.4.1 Optimization Based Approaches: 

 A lot of research work has been carried out, in this area, in the last fifty years. 

Details are given in the following sections.   

4.4.1.1 Efficient Techniques: 

Johnson [1954] is one of the earliest research works in this area. He developed 

a heuristic based efficient method for finding an optimal solution for the two and three 

Techniques for 
JSSP 

Branch and Bound 
algorithms 

Optimization 
based techniques 

Approximation 
based techniques 

Efficient 
techniques 

Enumerative 
techniques 

Mixed integer 
programming 

Linear integer 
programming 

Mathematical 
optimization 

General 
algorithms 

Tailored 
algorithms 

Dispatching 
rules 

Heuristics 

Local 
search 

Artificial 
Intelligence 

ANN GA Expert system  

Figure 4.1: Solution approaches to JSSP [Jain(1998)] 
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stage production scheduling problem, while considering the setup time as well.  Akers 

[1956] developed a heuristic based graphical approach for solving the production 

scheduling problem. Jackson [1956] extended the Johnson’s rule and developed a 

heuristic based approach for handling the job lot scheduling. Hefetz and Adiri [1982] 

developed an approach for two machines unit time Job-Shop schedule length problem. 

These techniques are applicable to very small problems and cannot handle a big 

problem of more than 3 machines efficiently. 

4.4.1.2 Enumerative Techniques: 

Mathematical programming based approaches have been extensively used to 

solve the JSSP. Balas [1965] developed an addictive algorithm for solving the linear 

programming model that had 0-1 variables. In his [Balas (1969)] further work he 

developed a mixed integer programming model for machine scheduling using the 

disjunctive graphs. Mixed integer programming models for the JSSP were also 

formulated by Mann [1960], Giffler and Thompson [1960] and Balas [1978]. Some of 

the researchers [Giffler and Thompson (1960), Nemhauser and Wolsey (1988) and 

Blazewicz et al (1991)] argued that mixed integer programming had not been leading 

solution approaches to the practical methods of solution. However, the approach 

presented in Harjunkoski et al. [2000] is a hybrid one, in which they formulated the 

JSSP as a combination of mixed integer and constraint logic programming.  

Another popular enumerative technique is Branch and Bound (BB). It was 

initially developed by Bellman [1956]. Florian et al [1971], also, developed a BB 

based algorithm for the machine sequencing problem. The work of Mahon and Florian 

[1975] was based on BB, too. They developed a methodology to handle the issues of 

due dates and maximum lateness in JSSP. Whereas, Martin [1991] and Asano and 

Ohta [2002] proposed heuristics using BB and tried to find optimal solution for the 

JSSP. 

Though mathematical approaches are very attractive as far as formulation of 

the problem is concerned. But, when it comes to solving the model and finding out the 

optimal solution of the problem then it becomes extremely difficult as it could require 

a substantial amount of time. The time requirement increases as the complexity and 

size of the problem increases. Since JSSP has a higher degree of complexity, therefore 
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mathematical optimization has very limited application as far as large and complex 

problems are concerned (Noor [2007]).  

4.4.2 Approximation Based Approaches: 

 Approximation based approaches offer a good alternatives for solving the 

JSSP in terms of the quality of solution and computational time. Though these 

techniques do not guarantee optimality, but still solutions obtained are feasible and 

near to optimum, always. Another main advantage of these techniques is the ease with 

which they can be implemented in practice.  

 Approximation approaches are further classified as Tailored algorithms 

(dispatching rules and heuristics) and General algorithms (local search and AI tools), 

as mentioned in Figure 4.1. A literature review regarding these techniques is 

presented as follows. 

4.4.2.1 Tailored Algorithms: 

 A problem of N jobs to be scheduled on M machines with the objective of 

minimizing Makespan (time elapsed between the start of the first operation and the 

completion of the last operation), Cmax, can be handled in two steps. In first step jobs 

are assigned to each machine according to their processing requirements. While, in 

second step those assigned jobs are sequenced on each machine in such a way that 

Cmax is minimized. The second step is normally handled by algorithms known as 

Tailored Algorithm (Bedworth and Bailey [1987]). Both step one and step two can be 

followed using a variety of heuristics/sequencing rules for the shop floor schedules for 

N jobs and one machine and N jobs and M machines (Bedworth and Bailey [1987]). 

An approach to Job-Shop scheduling or any complex operational scheduling problem 

can be to break down the main problem into a number of sub problems. Sub problems 

are scheduled separately with the help of certain algorithms or decision rules. Such 

methods may not produce guaranteed optimal solution but would definitely present a 

feasible solution evaluated through a particular performance factor.  

 A number of decision rules can be found in literature. Some of the renowned 

ones are described below. 
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First In First Out (FIFO): In this case job sequencing on a machine is carried out on 

the basis of the order of their arrival time. The objective behind the first come first 

serve methodology is to minimize the completion time for individual jobs. This kind 

of scheduling approach is suitable for service organisations (Fogarty et al. [1991]) and 

(Vonderembse and White [1991]). A major disadvantage of this approach is that it 

does not produce consistent results. Momin [1999] observes that the lack of consistent 

results is because of the fact that the job sequencing is totally dependent upon the 

probability distribution of their arrival. Another disadvantage is that apart from arrival 

no other priority is considered. For example, an order released late needs to be moved 

ahead of other orders in schedule because of certain priority (due date etc.) is not 

allowed in by this rule (Veilleux and Petro [1988]).  

Shortest Processing Time (SPT): According to this rule the priority for job 

sequencing on a machine is the length of processing time. The shortest the processing 

time of a job, the earliest the job is to be processed. The objectives associated with 

this rule are reduction in the: average work in process, average job completion and 

average job lateness (Smith [1989], Fogarty et al. [1991] and Vonderembse and White 

[1991]). Though the results of this rule, in terms of its objectives, have been consistent 

but still one disadvantage is that the job with the longest processing time is always 

processed in the last.  

Earliest Due Date (EDD): As per this rule, jobs are sequenced according to their due 

dates. The one having the earliest due date is sequenced first and vice versa. The 

objectives, associated with this rule, are minimization of maximum lateness and 

average tardiness. Fogarty et al. [1989] argue that this rule works well in the 

scheduling scenario where most of the jobs have similar processing times. Since 

priority of job sequencing is their respective due dates, therefore it may be very useful 

for the companies who are very sensitive about delivery deadlines. However, 

Vonderembse and White [1991] observed that since one job is processed at a time, 

therefore it will make other jobs to miss their due dates.  

Critical Ratio (CR): Here the job sequencing priority is a ratio, between the time 

remaining to the work remaining, which is known as critical ratio. Therefore, a job 

having lowest critical ratio is sequenced first and vice versa. Being a dynamic rule it 

is mostly used in practice (Veilleux and Petro [1988], Smith [1989], Vonderembse 
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and White [1991] and Vollmann et al. [1997]). The objectives that may be achieved 

by implementing this rule are minimization of lateness and tardiness.  

Management Priority (MP): According to this rule jobs are sequenced according to 

the priority list provided by the management. The priority may be according to the 

importance level of a client to the management. According to Momin [1999] the 

priority is set in advance and provided as an input, related to jobs, in the beginning of 

a schedule. 

 The above described dispatching rules have been consistently applied to the 

scheduling problem in practice as they provide good solutions to complex problems in 

real-time. One thing that can be concluded from the above discussion is that every 

rule is suitable for a certain condition and can achieve a certain objective, but when it 

comes to practice there are a number of other related objectives too, which have to be 

compromised on. For example in case of SPT rule a job with a longest processing 

time would always be processed last no matter how urgently required. That is the 

reason that some researchers use more than one rule in combination. This shows that 

the selection of a dispatching rule or a combination of dispatching rules actually 

depends upon the type and amount of information that is taken into account while 

carrying out the scheduling process. Wu [1987] presented a classification of these 

rules based on the type and amount of information. Class 1 contains simple priority 

rules that utilizes a particular piece of information, for example, due dates (such as 

EDD), processing times (such as SPT), and arrival times (such as FIFO). Class 2 

consists of combinations of rules from the previous class. The implementation of a 

particular rule depends upon the shop floor situation. For example SPT and FIFO can 

be combined in a way that SPT is used until there are only 5 jobs in queue and once it 

exceeds this limit the system is switched over to FIFO. This may help in preventing 

the jobs with longest processing times to be processed last, always. Class 3 contains 

rules that utilize more than a single piece of information related to jobs and normally 

referred to as Weight Priority Indexes. Every piece of information is assigned a 

weight according to its relative importance. First an objective function is defined, for 

example, f(x) = Processing Time of Jobi × weight1+ (Current Time - Due Date of Jobi) 

× weight2. Then, all the jobs are sequenced according to their respective objective 

function value.  
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 From the classification described above, it is clear that by combining different 

rules or utilizing different information about the jobs more effective approaches for 

scheduling can be developed which can fulfil multiple objectives. 

4.4.2.2 General Algorithms/ Artificial Intelligence: 

 Figure 4.1 shows that general algorithms have been initially classified as AI-

based approaches and techniques based on local search.  According to Jain [1998] the 

AI-based approaches, that mainly include GA and ANN, have proved to be more 

efficient especially in the case of NP-Hard problems, where heuristic based solutions 

are difficult to find. A literature review of AI tools, applied to the problem of JSSP, is 

presented below.  

4.4.2.2.1 Artificial Neural Networks (ANN): 

A reasonably detailed introduction of ANN has already been presented in 

Chapter 3. Therefore, in this section more emphasis would be given to its application 

to JSSP. 

 ANN’s configuration can be carried out in terms of activation functions, 

learning processes, feed forward or feed back, and input type. By changing the 

number of layers, the number of artificial neurons per layer and the algorithm for 

changing the weights of the interconnections a number of different configurations 

with different characteristics can be developed. Each configuration may suit a 

particular situation or problem. The useful applications of ANN have been explored in 

the area of manufacturing by Zhang and Huang [1995]. They presented a 

comprehensive review of the applications of ANN in manufacturing, for example in; 

scheduling, group technology, computer vision, fault detection etc. 

A number of researchers applied ANN to the JSSP. Among these Foo and 

Takefuji [1988] are considered to be the earliest ones. Some of the other researchers 

who also applied ANN to the JSSP includes; Zhou et al. [1991], Arizono et al. [1992], 

Satake et al. [1994] , Jain and Meeran [1998], Hagan [2002], Meeran [2003], Noor et 

al [2005]. Almost all of them have experienced that ANN is data-hungry tool and 

precision of its results depends on the number of examples presented for its training. 



 80 

The output of unknown examples is valid if they lie within 20% range of the training 

examples. 

Some researchers (Montana [1992], Hagan [2002], Meeran [2003], Noor et al 

[2005]) reported that ANN has the tendency of getting trapped in local optimum 

because of the trajectory-dependant algorithm used for training. That is the reason that 

some researchers (Montana [1992], Shazly and Shazly [1999], Yeun et al [1999], 

Sexton and Gupta [2000], Edward and Taylor [2001], Tsakonas and Dounias [2002]) 

proposed hybrid approaches and their results showed that hybrid approaches 

performed better than the traditional ANN.  

4.4.2.2.2 Genetic Algorithms (GA): 

 A reasonably introduction of GA has already been presented in Chapter 2. 

Here its application to the JSSP would be described and some related review would be 

presented.    

 As already described, the four basic steps in the application of GA to a 

problem are: representation, selection, crossover and mutation. A number of research 

papers have been produced by different researchers showing different representations 

and selection procedures with a variety of crossover and mutation schemes.  

Representation is considered to be the first step in the implementation of GA 

to a problem. According to Cheng et al [1996] a total of nine different types of 

representation have been used while applying GA to the JSSP. Details are as under: 

Representation based on: 

Operations 

Jobs 

Preference list 

Job-pair relation 

Priority rule 

Disjunctive graph 

Completion time 

Machines 

Random keys 
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According to Cheng et al. [1996] the first five types are termed as direct 

representations, whereas, the last four are termed as indirect representations. In all the 

direct type of representations a production schedule for a JSSP is directly encoded as 

a chromosome, whereas, in case of indirect representation a sequence of decisions 

related to scheduling a system (for example dispatching rules) is encoded as a 

chromosome. Morshad [2006] carried out a comprehensive review of the different 

representation schemes used by researchers. According to his survey, direct type 

representation have been used by Nakano and Yamada [1991], Yamada and Nakano 

[1992], Fang et al [1993], Gen et al [1994], Norman and Bean [1995], Bierwirth et al 

[1996], Masaru et al [2000],Wang and Zheng [2001], Zhou et al [2001]; whereas, 

examples of indirect representation can be found in; Falkenauer and Bouffoix [1991], 

Tamaki and Nishikawa [1992], Della Corce et al [1995], Donrdoff and Pesch [1995] 

Kobayashi et al [1995],  Donrdoff and Pesch [1995], Ghedjati [1999], Cai et al 

[2002]. 

After finalizing representation the next step is selection of chromosomes that 

may take part in crossover and mutation. A number of established selection 

procedures have already been mentioned in Chapter 2.  

Selection is followed by crossover. Cheng et al. [1999] broadly categorised the 

different crossover operators, used by researchers while solving JSSP, into two classes 

as adapted genetic operators and heuristic-featured genetic operators. According to 

Noor et al [2007] the following (Table 4.1) adapted genetic operators have been used 

in the last two decades.  

Table 4.1: Types of Adapted Genetic Operators (Noor [2007]) 

S/ No. Crossover type Proposed by 

1 Partial-Mapped Crossover (PMX) Goldberg and Lingle [1985] 

2 Order crossover (OX) Devis [1985] 

3 Cyclic Crossover (CX) Oliver et al [1987] 

4 Position Based Crossover Syswerda [1989] 

5 Order Based Crossover Syswerda [1989] 

6 Linear Order Crossover (LOX) Falkenauer and Bouffouix [1991] 

7 Partial Schedule Exchange Crossover Gen et al [1994] 

8 Subsequent Exchange Crossover Kobayashi et al. [1995] 
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9 Job-Based Order Crossover Ono et al. [1996] 

10 Substring Exchange Crossover Cheng et al [1997] 

Gen and Cheng [1997] observed that in case of JSSP permutation-based 

representations have been very frequently used by researchers in literature which 

makes it very easy for some mutation schemes; like insertion, inversion, reciprocal 

exchange mutation, shift mutation, and displacement; to be implemented.  

 Some well known heuristic-based genetic operators reported in literature 

include: Giffler and Thompson [1960], algorithm based crossover of Yamada and 

Nakano [1991] and the neighbourhood search based mutation of Chen [1991].  

 A number of researchers applied GA to the JSSP and presented different views 

about its working. For example, Sakawa and Kubota [2000] observed that GA 

outperformed SA. Also, according to Onwubolu [2000] GA performs more effectively 

in reaching the optimum solution of a JSSP. Whereas, some researchers that include; 

Bierwirth [1995], Dorndorf and Pesch [1995], Morshed [2006]; argue that hybrid GA 

performs better than standard GA. “A standard GA may not be flexible enough for 

practical applications and this becomes increasingly apparent when problem is 

complicated and involves conflict and multi-tasking” (Morshed [2006]). Also, “GAs 

can rapidly converge on possible solutions; they can sample large spaces randomly 

and efficiently” (Serdar Uckun et. al. [1993]). However, “they are also subject to such 

problems as genetic drift and premature convergence” (Serdar Uckun et. al. [1993]). 

Therefore, some researchers developed hybrid GA procedures (Della Croce et al 

[1994], Fang et al. [1994], Liaw [2000], Zhou et al. [2001], Noor et al. [2006], Tariq 

et al. [2007]). “The complementary strengths of GA and local search are such that a 

hybrid framework of GA and local search can achieve more efficient optimization 

than GA alone and relaxes the dependence on parameters” (Cheng-Fa & Feng-Cheng 

[2003]).  

4.5 Summary:  

 Manufacturing scheduling is of paramount importance, as an effective 

scheduling system ensures optimized utilization of resources. Manufacturing 

scheduling is broadly categorized as project scheduling and operations scheduling. A 

project may be a construction of a factory, building or bridge etc. Project scheduling 
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is mainly concerned with the scheduling of activities that are carried out in completing 

a project. On the other hand operations scheduling takes care of the sequencing and 

scheduling of operations of a set of jobs on a set of machines in such a way that 

certain predefined objective is either minimized or maximized. The operation 

scheduling models can be further classified as job sequencing, Job-Shop scheduling, 

flow-shop scheduling, open-shop scheduling and mixed-shop scheduling. 

 Job-Shop scheduling has much in common with the scheduling of 

manufacturing cells in GT and is a well known hardest combinatorial optimization 

problem. The techniques developed, over the years, to solve the JSSP are initially 

classified as optimization and approximation based approaches.   

The optimization based approaches are either efficient algorithms or 

enumerative (Branch and Bound algorithms and Mathematical optimization based 

techniques).  A bulk of optimization approaches are based on Mathematical 

optimization which consist of either linear or mixed integer programming. 

Mathematical optimization techniques have the ability to incorporate a number of 

design related information in the model thus formulating the problem accurately. 

Therefore they are very attractive as far as formulation of the problem is concerned. 

But because they consume a lot of time in finding out solutions, their use is limited to 

small size problems only.  

The approximation based approaches are broadly classified as tailored 

algorithms and general algorithms. Tailored algorithms mainly consist of different 

types of dispatching rules and heuristics, whereas general algorithms include 

techniques that are based on local search and AI. The application of AI tools (ANN 

and GA) is considered as a comparatively recent development in this area. ANN and 

GA have been extensively used in solving the JSSP. Recently, most of the researchers 

are of the view that hybrid AI tools perform better than traditional AI tools and that is 

the reason that trend of using hybrid AI tools to solve the JSSP is on the rise. 
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CHAPTER 5 
 

METHODOLOGY FOR MACHINE-PART 

GROUPING 

5.1 Introduction: 

 The literature review, in the previous chapters, has pointed out two things in 

particular. One is that hybrid GA based methodologies have consistently performed 

better than standard GA. The second is that in case of CMS the focus of the 

researchers has either been on Machine-Part grouping (cell design) or on cell 

scheduling. Whereas the combined approaches that take care of both the issues (cell 

design and cell scheduling) are very rare in literature. This is the reason that a 

combined approach has been developed during this research which not only carries 

out the Machine-Part grouping but also takes care of the operational issues (cell 

scheduling). Separate hybrid methodologies (GA + LSH) are developed both for 

Machine-Part grouping and cell scheduling. Machine-Part grouping is considered to 

be the first step in developing the operational design of CMS. This chapter describes 

in detail the working of the hybrid GA based tool developed for Machine-Part 

grouping by combining GA with an LSH. The LSH is incorporated inside the 

traditional GA loop. The best solution in each generation is locally improved by the 

LSH and the improved solution is placed back into population, so that it can take part 

in different genetic operations (crossover, mutation, inversion) and produce even 

better solutions.       

5.2 Hybrid GA for Machine-Part grouping: 

 As mentioned above, the first and most important step in the operational 

design of a CMS is the grouping of parts into families and machines into 

corresponding groups so that those parts can be processed alongside in one cell which 

require similar processing.  Therefore, for identifying part families and corresponding 

machine groups an approach is developed during this research that combines an LSH 

with GA. LSH takes the best solution from each generation and tries to improve its 

GE by following a number of well defined steps. The procedure continues until no 

further improvement is possible. Afterwards, the solution is placed back into the 
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population so that it may take part in different genetic operators and produce even 

better solutions. Further details of the hybrid approach are given in Section 5.4.    

 5.3 Cell Formation Problem: (Tariq et al. [2006] & [2009]) 

 The problem of cell formation is solved in a simultaneous manner during this 

research. “The simultaneous Machine-Part grouping approaches generally produce 

better results in comparison to sequential approaches, since all decisions are taken at 

the same time” (Mungawattana [2000]).  

 During this research the problem of cell formation is solved by block 

diagonalizing the zero-one initial Machine-Part incidence matrix with the objective of 

maximizing GE which automatically minimizes the total number of intercellular 

moves and maximizes the utilization of machines inside the cells.  “GE has a higher 

capability to differentiate between well-structured and ill-structured matrices and it 

does not require any weight factor” (Fernando and Mauricio [2002]). The basic 

expression of  
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[1990] and was also used by Fernando & Mauricio [2002] as measure of performance. 

 The initial zero-one Machine-Part incidence matrix is represented by MP[i,j] 

and is of order Machs×Parts ( where: Machs = Total machines in the system & Parts 

= Total parts in the system). Every entry (aij) in the Machine-Part incidence matrix 

can be either “1” or “0”. 
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Mathematical Model (Tariq et al. [2006] & [2009]) 

 For the above description of the cell formation problem a mathematical model 

can be developed which in fact is the first step towards finding solution for the cell 

formation problem.  
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k = 1……. NC (Total number of cells) 

x = Total number of 1s in cell k.                                              

Where: 

GE = Grouping Efficacy, 
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 If  0=ijka       then    1=ijkb     else    0=ijkb             (5.5)  

b= Any variable.  

NM = Number of machines in cell k. 

NP = Number of parts in cell k. 

inN1  = Total number of 1s inside the block diagonal. 
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1 1 1

 If 1=ijka                  (5.6) 

outN1 = Total number of 1s outside the block diagonal. 

outN1 = inNN 11 −                   (5.7) 

The objective function (5.2) maximizes GE which in turn minimizes the total 

number of intercellular moves by reducing the number of 1s outside the block 

diagonal ( outN1 ) and minimizes the total number of 0s inside the block diagonal ( in
N0 ) 

that results in increasing the within-cell machine utilization. Whereas, constraint (5.3) 

ensures that at least one part and one machine is allocated to each cell. One other 

thing that needs to be mentioned here is that information about the number of cells has 

to be provided in advance so that the system can be divided into that many number of 

cells. The model ensures that a given set of machines and parts is arranged into a 

CMS in such a way that the number of bottleneck machines (machines that are 
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required by more than one cell) is minimized and their utilization inside their 

respective cells is maximized.       

5.4 Methodology for the Hybrid GA for Machine-Part Grouping: (Tariq et al. 

[2006] & [2009]) 

 To find an optimal solution for the cell formation problem described and 

formulated in Section 5.4, a strategy based on complete enumeration (considering all 

the possible options) can be developed as shown in Figure 5.1. For each set of 

machine groups all the possible part arrangements are considered and on termination 

the optimal solution is found.   

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1: Block diagram representation of the proposed Methodology (Tariq et 

al. [2006] & [2009]) 

START 

Form the machine-part incidence 
matrix (1-0 form) 

Decide about the number of 
cells/groups 

Group parts into families according to the above 
machines arrangement 

Calculate Grouping Efficacy (GE)  

Have all the possible 
part families been 

considered? 

 

Have all the possible 
machine arrangements 

been considered? 
 

Select the best solution 

Yes 

Yes 

No 

No 

Select an arrangement of machines in the already 
allocated number of cells. 

END 
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 A further stepwise description of the methodology, expressed in Figure 5.1, 

can be as follows:  

i. Arrange the Machine-Part incidence matrix in such a manner that each 

row represents a machine and each column represents a part. The matrix 

must contain entries in the form of either 1 or 0. 1 would represent that 

part i has an operation on machine j and 0 would mean otherwise.  

ii. Decide how many cells have to be developed. 

iii. Distribute the total number of machines into the already indicated number 

of groups (cells). 

iv. Tryout, one by one, all the possible combinations of part families and 

calculate respective GE for each arrangement. 

v. Now, repeat step 3, for another combination of machines, and then step 4. 

vi. The procedure in steps 3 and 4 must be repeated until every possible 

arrangement has been considered. 

vii. The arrangement that gives maximum GE is to be finally selected. 

viii. End. 

 “The cell formation problem is a combinatorial optimization problem that is 

NP-hard” (Fernando & Mauricio [2002]). Therefore, complete enumeration can only 

be possible in case of small size problems. But when it comes to handling problems of 

large size, it is almost impossible to consider every possible arrangement/division of 

machines and parts due to rapid increase in computational time and effort. In such a 

case some kind of search method has to be employed. To cope with this problem a 

hybrid GA is proposed by combining the conventional GA with an LSH to search for 

that particular combination of machine groups and corresponding part families which 

generates a maximum value of GE. The best solution of each generation of GA is 

selected and further improved with the help of LSH. The process is repeated for 50 

generations (Section 5.7) and on termination the best result is selected.  

 It has been preferred to use a hybrid GA based approach rather than standard 

GA because of the fact that, over the years, hybrid approaches have generally 

performed exceptionally well as compared to standard GAs. This thinking was further 

strengthened by the work presented by Fernando and Mauricio [2002] in which they 

developed an approach by combining GA with an LSH and as a result there was a 
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substantial improvement in GE for a number of benchmark problems. The hybrid GA 

developed during this research, also, performed efficiently and further improved the 

results, presented in Fernando & Mauricio [2002], of different benchmark problems.  

 All hybrid GAs developed over the years (available in literature) are different 

from each other in many respects. The hybrid GA developed during this research 

possesses the uniqueness of having a strong LSH at the heart of the traditional GA 

loop. The LSH is termed as strong because it produces better results in comparison to 

all other techniques in spite of the fact that it has been used in combination with the 

traditional crossover, mutation and inversion techniques. This proves the fact that an 

efficient LSH relieves a great deal of pressure on the GA operators for producing 

accurate/better results as would be the case in traditional GA. The LSH proposed 

during this research is organized in such a way that for a given solution it can change 

the position of a part and/or machine from one cell to another and observes its effect 

on the value of GE. Further differentiation between this research and Fernando & 

Mauricio [2002] is given in Table 5.1. 

 The hybrid GA based approach developed during this research is presented in 

Figure 5.2. 
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 Apparently the approach developed during this research and shown in Fig 5.2 

may look similar to the one proposed by Fernando & Mauricio [2002] but actually 

they are different from each other in many ways. A description of these differences is 

presented in Table 5.1. 

Table 5.1: Differences between the two Hybrid GAs. (Tariq et al. [2009]) 

S/No. Fernando’s Hyb. GA Hyb. GA proposed in this research 

1 Each chromosome has been 

represented as a vector of random 

keys {u (0, 1)}. 

Here, each Chromosome is represented 

by vectors consist of integers. The 

value of each integer is between 1 and 

the total number of cells. 

2 A chromosome only encodes 

information about the grouping of 

machines in each cell. Therefore, 

its length is equal to Machs+1, 

where Machs is the total number 

of machines in the system. The 

last gene in a chromosome 

A chromosome encodes information 

both about the grouping of machines 

into cells and their respective part 

families. Therefore, its length is equal 

to Machs+Parts. Where Machs is the 

total number of machines and Parts is 

the total number of parts in the system.  

Provide info about 
the total no. of 

parts & total no. of 
machines 

Provide info in 1-0 
form about the mach-
part incidence matrix 

Gen ← 0 

Initialize 
population 
randomly 

Decoding & 
Calculating 

fitness values 

Crossover 

Repairing if 
child is illegal Mutation 

Evaluating 
and placing 
back in pop 

Repairing if 
child is illegal 

 

Evaluating 
and placing 
back in pop 

Inversion 
Repairing if child 

is illegal 

 

Evaluating 
and placing 
back in pop 

Selecting next 
generation by 

Roulette Wheel 
selection procedure  

Identifying the best 
chromosome of the 

generation 

Is 
Gen=0 Has  

it been 
previously 
subjected 
to LSH?  

Local Search Heuristic 

Is 
Gen ≤ Max Gen 

Start 

END 
Gen = Gen+1 

Yes 

No 

Yes No 

Yes 

No 

Figure 5.2: Block diagram representation of the hybrid GA for machine-part grouping 
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represents the total number of cells 

the system is going to be divided 

into. 

3 The type of crossover used is 

Parameterized uniform crossover. 

Where at each gene a biased coin 

(with a probability of tossing 

heads = 0.7) is tossed to decide 

that from which parent this gene is 

going to be selected from. 

Here the conventional multi-cut point 

crossover is used. Four cut points, two 

in the machines’ portion and two in the 

parts’ portion, are randomly selected. 

This helps in interchanging entries 

between the same portions of two 

chromosomes for example entries from 

machines’ portion of one chromosome 

are interchanged with entries of the 

machines’ portion of another 

chromosome. This helps in reducing 

the possibility of illegal solutions 

produced in the process.   

4 Here one or two random solutions 

are inducted into population in 

order to maintain a specific level 

of diversity.  

The conventional gene to gene type 

mutation is used. 

5 LSH is proposed for the formation 

of respective part families for each 

group of machines provided by 

GA. The combination is further 

refined by maximizing the value 

of GE.  

LSH is proposed to be placed inside the 

conventional GA loop. The best 

solution of each generation is further 

locally improved by changing the 

placement of parts and/or machines 

with the objective of maximizing the 

value of GE.  

5.4.1 Genetic Algorithm (GA) (Tariq et al. [2006] & [2009]) 

 “GAs are stochastic search techniques based on the mechanism of natural 

selection and natural genetics” (Irani [1999]). The procedure of GA is started with a 

set of solutions, randomly generated, known as population. Each solution in the 

population is known as a chromosome. The evolution of chromosomes is carried out 

through successive iterations termed as generations. In each generation a selected 



 92 

number of chromosomes are subjected to different operations, for example inversion, 

crossover, mutation, etc, which are known as GA operators. The evaluation of the 

entire population is then carried out using some fitness measure. Each chromosomes 

fitness value decides about its selection into subsequent generations. A complete 

description of GA and its different operators and procedures has already been given in 

chapter 2, whereas a general GA procedure is shown in the following: 

   

 

 

 

 

 

 

 

5.4.1.1 Representation (Tariq et al. [2006] & [2009]) 

 Representation is the first and most important step in the implementation of 

GA. During this research each chromosome (solution) is encoded in the form of 

vectors containing integers. Once the representation scheme to be used is decided; the 

next thing in line is to decide about the length of chromosome.  Since here each 

chromosome would carry information both about the machines and parts, therefore 

length of chromosome is equal to the accumulative number of machines and parts, so 

that a gene is allocated for each machine and each part in every solution. Let us 

consider an example in which there are 4 machines and 4 parts and they have to be 

arranged into two cells then the following vector can be a solution to the problem:  

Chromj = [1 2 2 1  2 2 1 1] 
                        Machines    Parts 

Chromj can be more clearly represented as shown in Table 5.2.  

Table 5.2 Representation of chromosome Chromj (Tariq et al. [2009]) 
Machines/ Parts → M1 M2 M3 M4 P1 P2 P3 P4 

Gene No. → 0 1 2 3 4 5 6 7 

Location → 1 2 2 1 2 2 1 1 

 Machines Parts 

Procedure: Genetic Algorithms (Gen and Cheng, 1997) 
begin 

 t ← 0; 

 initialize P(t); 

 evaluate P(t); 

 while (termination condition not satisfied) do 

    recombine P(t) to yield C(t); 

    evaluate C(t); 

    select P(t + 1) from P(t) and C(t); 

    t ← t + 1; 

 end 

end 
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 Where Chromj is an array of integers containing information about the 

allocation of machines and parts to particular cells (j = 1 to population size). in this 

example, vector Chromj consists of a total number of 8 locations (from 0 to 7); out of 

these 8 locations the first half of the locations (from 0 to 3) represent machines, 

whereas the last half of the locations (from 4 to 7) represent parts. Each machine and 

part is represented by the location of its corresponding gene e.g. the second gene (1) 

in Chromj represents machine1 (M2) and the sixth gene (5) represents part1 (P2). 

Furthermore, each gene’s value (allele) shows the allocation (to be placed in which 

cell) of a particular machine or part e.g. in the solution shown in Table 5.2 the 

allocation of M2 is to cell 2 and P3 is to cell 1.  

5.4.1.2 Initialization: 

 After taking care of representation schemes and length of chromosomes, then 

comes the stage when a population of chromosomes has to be randomly generated, 

accordingly. A stepwise procedure can be devised for the initialization process as 

follows: 

i. Enter the total number of parts (Parts) to be handled.  

ii. Enter the total number of machines (Machs) available for the processing 

of parts. 

iii. Provide information about the total number of cells (NC) in which the 

system is to be divided. 

iv. Now generate a random number ‘K’, so that 1 ≤ K ≤ NC. This would 

ensure that the system is divided into as many number of cells as specified 

in step iii. For further clarification consider Table 5.2 that represents a two 

cell problem and therefore none of the genes is having a value greater than 

2 or less than 1. This means that a machine/part is either placed in cell 1 

(if the value of its corresponding gene is 1) or in cell 2 (if the value of its 

corresponding gene is 2).      

v. Chrom [i,j] ← K.  

vi. IF the number of genes entered in the ith row of Chrom [i,j] are less than 

an accumulative figure of total number of machines and total number of 

parts (Machs + Parts), THEN repeat steps 4 and 5, ELSE go to next step. 

This step ensures that each chromosome, in a population, consists of a 
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total number of genes equal to the sum of Machs and Parts. Table 5.2 

represents a 2 cell problem that consists of 4 machines and 4 parts, 

therefore the chromosome consists of 8 genes.     

vii. Increment the value of row (i ← i + 1). Incrementing i means that after the 

random generation of ith solution is completed, we move on to the next 

(i+1) solution.   

viii. IF the number of rows filled up so far is less than the population size (i < 

Pop Size), THEN repeat steps 4, 5 and 6, ELSE go to next step. This step 

ensures that the number of solutions randomly generated must not exceed 

the population size limit. It is essential because the population size is an 

important GA parameter and its value is set after carrying out a sensitivity 

analysis.  

ix. Stop.  

The above described stepwise procedure can be more clearly expressed in the 

form of a block diagram representation as shown in Figure 5.3.  

 

In Figure 5.3 ‘Chrom [i,j]’ is a two dimensional array for population, where 

each row represents a chromosome/ solution. The total number of chromosomes in 

population (rows in Chrom [i,j]) depends upon the size of population.  

 

 

Enter the total 
number of parts 

(Parts) 

Enter the total 
number of 
machines 
(Machs ) 

Enter the total 
number of cells 

(NC) 
i = 0 

j = 0 

Chrom [i, j] = 

Random number 
between 1 and NC  

j ˂ Machs + 
Parts 

 

i < Pop Size 

 

END 

START 

i = i + 1 

j = j + 1 

Yes No 

Yes 

No 

Figure 5.3: Block diagram representation of the initialization process 
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5.4.1.3 Evaluation and Fitness of Solutions in Machine-Part Grouping: (Tariq et 

al. [2006] & [2009])  

 It has been described in section 5.4 that on the basis of higher differentiating 

ability, between the ill-structured and well-structured Machine-Part incidence 

matrices, GE has been chosen as the performance measure. Since the value of GE has 

to be maximized, therefore, the fitness function can be similar to the objective 

function (Equation 5.2). The reason for this is that in case of maximization problems 

the solution having a higher objective function value is considered to be a 

comparatively fitter chromosome than the one having lower objective function value. 

$$ Before selecting the next generation from the current generation, the fitness value 

of each chromosome is determined. This in turn is responsible for its selection into the 

next generation. The procedure for evaluating each chromosome consists of the 

following two steps: 

1. First the rows and columns of the initial machine part incidence matrix      

(MPini [i,k]) are rearranged according to the arrangement mentioned in a 

chromosome. For this purpose a blank array, (MPfin [i,j]) of the same size 

as that of MPini [i,k], is defined. Then according to the value of each gene 

a particular row or a column from the initial matrix is copied into the final 

matrix. Since each chromosome has two portions: machines’ portion and 

parts’ portion, therefore first columns of MPini [i,j] are rearranged and 

afterwards the rearrangement of rows is carried out. The procedure is 

started, in the machines’ portion, with the minimum value of gene i.e. 1. 

Starting with the first row (x = 0), in Chrom [x,k], the value of each gene 

is checked. If the kth gene is having value equal to 1 then the kth column 

from MPini [i,k] is copied into the j
th column of MPfin [i,j], where j is 

having an initial value of ‘0’ and is incremented by 1 every time a column 

is copied. The same process is repeated for all the genes in machines’ 

portion having value equal to 1, and after that for all the other values of 

genes in the same portion, one by one. Once all the genes, having values 

from 1 to NC, in the machines’ portion are checked and corresponding 

rearrangement of columns’ carried out, the same procedure is repeated in 

the parts’ portion with the exception that here instead of the rearrangement 

of columns, rows are selected from MPfin [i,k] according to a gene’s value 
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and copied into another blank array MPfin1 [i,j]. This procedure is clearly 

represented in Figure 5.4.               

 

In order to further elaborate the procedure presented in Figure 5.4, a two 

cell problem having 4 machines and 4 parts is considered as shown below: 

 

Suppose the first row of Chrom [x,k] is: 

Chrom [0, k] = [1 2 2 1  1 2 2 1]  
           Machs Parts 

START 

x = 0 

i (Row) = 0 

j (Col) = 0 
Gene = 1 

 

k = 0 

Chrom [x,k] = 
Gene 

i = 0 

i = i + 1 
i < Parts 

j = j + 1 

k = k + 1 

k < Machs 

Gene = Gene + 1 

Gene ≤ NC 

i (Row) = 0 

j (Col) = 0 
Gene = 1 

k = Machs 

Chrom [x,k] = 
Gene 

MPfin 1[i,j] ← MPfin [k,j] 

j = j + 1 

j < Machs 

i = i + 1 

k = k + 1 

k < Machs 
+ Parts 

Gene = Gene + 1 

Gene ≤ NC 

MPfin [i,j] ← MPini [i,k]  

j = 0 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

No 

No 

No 

No 

No 

No 

No 

No 

Yes 

Figure 5.4: The process of rearrangement of machine-part incidence 

matrix according to a given chromosome 

END 

Table 5.3: MPini[i,k] 
Machs  

Parts 

1 2 3 4 

1 1 0 0 1 

2 0 1 1 0 

3 0 1 1 0 

4 1 0 0 1 

Initial matrix 

Table 5.4: MPfin[i,j] 
Machs  

Parts 

    

     

     

     

     

Blank matrix 
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Now copying columns and rows, respectively, according to the given 

solution from MPini [i,k] into MPfin [i,j] and MPfin [k,j] into MPfin 1[i,j] as 

shown in Tables 5.5 and 5.6. 

 

2. Then GE is calculated, with the help of Equation (5.2) after determining 

values of the variables mentioned in the equation. This step itself consists 

of several sub steps as follows: 

i. First the total number of operations (N1) are determined in the given 

Machine-Part incidence matrix (MPini [i,k]), which is equal to the total 

number of 1s in the matrix. 

ii. Then from the rearranged matrix (MPfin 1[i,j]), obtained from Step 1, 

the total number of machines (NM[k]) and the total number of parts 

(NP[k]) in cell k  is determined.  

iii. Also, from the rearranged matrix the total number of 1s ( inN1 ) and the 

total number of voids/ zeros ( in
N0 ), inside the block diagonal, is 

determined, which in turn helps in calculating the total number of 

intercellular moves ( outN1 ). 

iv. Now GE can be calculated by putting values of the variables, found in 

step (iii), in Equation (5.2).  

v. Steps (ii) to (iv) are repeated population size times in order to calculate 

GE for all the solutions/chromosomes (Chrom [x,z]) in population.  

 This process, for one solution, is clearly expressed in the form a block diagram 

representation as shown in Figure 5.9.   

Table 5.5: MPfin[k,j] 
Machs  

Parts 

1 4 2 3 

1 1 1 0 0 

2 0 0 1 1 

3 0 0 1 1 

4 1 1 0 0 

Columns are being copied 

Table 5.6: MPfin1[i,j] 
Machs  

Parts 

1 4 2 3 

1 1 1 0 0 

4 1 1 0 0 

2 0 0 1 1 

3 0 0 1 1 

Rows are being copied 
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Let us consider the same example mentioned in Table 5.3. GE for the problem 

can be found using Equation (5.2) and the approach presented in Figure 5.5. 

From MPini[i,j]: 

Total number of 1s in initial Machine-Part incidence matrix = N1 = 8 

Now, from MPfin1[i,j]: 

Total number of machines in cell 1 = 2 

Total number of parts in cell 1= 2 

Total number of machines in cell 2 = 2 

Total number of parts in cell 2 = 2 

Using the above information about the number of machines and parts in each cell and 

the approach presented in Figure 5.5, the following can be found: 

MPfin1[i,j] 
= 1 

START 
i = 0 

N1 = 0 
j = 0 MPini[i,j] 

= 1 

j = j + 1 

N1 = N1 + 1 

j < Parts 

i = i + 1 

i < Machs 

y = 1 
k = 0 
x = 0 

M = 0 
z = 0 

Chrom[x,z]  
= y 

NM[k] = 
M + 1 

z = z + 1 

k = k + 1 
y = y + 1 

z < Machs 

y < NC 

y = 1 
k = 0 

P = 0 
z = Machs 

Chrom[x,z]  
= y 

NP[k] = 
P + 1 

z = z + 1 
z < Machs 

+ Parts 

k = k + 1 
y = y + 1 

y < NC 

k = 0 
inN1  = 0 
in

N0  = 0 
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Figure 5.5: Decoding of a Chromosome 
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Total number of 1s inside the block diagonal = inN1  = 8 

Total number of 0s inside the block diagonal = in
N0  = 0 

Total number of 1s outside the block diagonal = outN1  = N1 - 
inN1  = 8 – 8 = 0 

Now, putting all the values of variables in Equation (5.2), 
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5.4.1.4 Genetic Operators 

 With the help of different genetic operators e.g. mutation, inversion and 

crossover a chromosome selected initially evolves to many other chromosomes. The 

proper use of these different GA operators causes improvement in results in each 

generation and this whole process is stopped when no more improvement is 

experienced. 

5.4.1.4.1 Crossover (Tariq et al. [2006] & [2009]) 

 It is regarded as the major GA operator. Normally, two chromosomes are 

being subjected to the procedure of crossover, at a time. In this process the features of 

the two chromosomes are combined together and the generation of two new 

chromosomes (offspring) is resulted. A crossover approach used during this research 

is termed as multi-cut point crossover. In this approach initially a set of 4 cut points 

are selected. The reason for selecting 4 cut points is that every solution consists of two 

portions: parts’ portion and machines’ portion. Now, in order to utilize the 

effectiveness of the multi-cut point crossover and exchange/crossover the elements of 

the respective parts (machines to machines and parts to parts) a set of two cut points 

are selected both in the machine and parts’ portions of two selected chromosomes.  In 

spite of this arrangement of separate cut points selection in the machines’ and parts’ 

portions there is still a possibility of mixing of elements between the two portions. 

Therefore, a repair algorithm is also developed to tackle such irregularities/ 

illegalities. Also, 2 cut point crossover can also be used instead of the 4 cut points 

crossover.  
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The stepwise procedure used to carryout crossover, during this research, is as 

follows: 

i. Select two chromosomes ChromA and ChromB on the basis of their better 

fitness (top two chromosomes) 

ii. Generate four random numbers a, b (0 ≤ a ˂ Machs and 0 ≤ b ˂ Machs) 

and c, d (Machs ≤ c ˂ Machs+Parts and Machs ≤ d ˂ Machs+Parts).  

iii. IF a < b, AND c < d, THEN proceed to the next step, ELSE go to step 2 

and generate random numbers again. 

iv. Start from the value of a, i.e. j ← a. 

v. Swap the two entries Chrom [A, j] and Chrom [B, j] in the two selected 

chromosomes. 

vi. Increment the value of j i.e. j ← j + 1. 

vii. IF j < b, THEN repeat steps 5 and 6, ELSE go to next step. 

viii. This time j ← c. 

ix. Swap the two entries Chrom [A, j] and Chrom [B, j] in the two selected 

chromosomes. 

x. Increment the value of j i.e. j ← j + 1. 

xi. IF j < d, THEN repeat steps 9 and 10, ELSE go to next step. 

xii. IF the number of chromosomes selected for crossover, so far, is less than 

60% of the population size (Section 5.7), THEN select the next two best 

chromosomes in the population and go to step 2 and start all over again, 

ELSE go to next step. 

xiii. Stop. 

The above described procedure is also shown in the form of a block diagram 

representation as shown in Figure 5.6.  
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  In order to further elaborate the procedure presented in Figure 5.6, let us 

consider the same example of 4 parts and 4 machines. Based on the fitness values the 

selection of two chromosomes, from the population, is carried out e.g. solution 3 and 

5 get selected, as follows:  

(Tariq et al. [2006] & [2009]) 

Chrom [3,j] = [1 2 1 2  2 1 2 1] 

Chrom [5,j] = [1 1 2 2  2 1 1 2] 

 Then a random selection of 4 cut points is carried out (2 each in the machines’ 

and parts’ portions of the two selected chromosomes) as follows: 

 

START 

Two chromosomes ChromA and 

ChromB are selected on the basis 
of their better fitness  

Generate four random numbers: 
 Two a, b (0 ≤ a, b ˂ Machs) 

Two c, d (Machs ≤ c, d ˂ Machs+Parts)  

a < b 
c < d 

j = a  

z = Chrom [A,j] 
Chrom [A,j] = Chrom [B,j] 

Chrom [B,j] = z 

 

j = j + 1 

j ≤ b 

j = c 

z = Chrom [A,j] 
Chrom [A,j] = Chrom [B,j] 

Chrom [B,j] = z 

 

j = j + 1 

j ≤ d 

END 

Figure 5.6: Block diagram representation of the crossover procedure 
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 Chrom [3,j] = [1 2 1 2  2 1 2 1] 

 Chrom [5,j] = [1 1 2 2  2 1 1 2] 

 The resulting offsprings, after interchanging entries between the cut points, are 

as shown below: 

Chrom [3,j] = [1 1 2 2  2 1 1 1] 

Chrom [5,j] = [1 2 1 2  2 1 2 2] 

 The crossover rate used in this research is 60% as discussed in Section 5.7.  

5.4.1.4.2 Mutation: (Tariq et al. [2006] & [2009]) 

It is the GA operator that maintains a certain level of diversity in population 

by incorporating random and spontaneous changes in selected chromosomes. “In GA, 

mutation serves the crucial role of either, (a) replacing the genes lost from the 

population during the selection process so that they can be tried in a new context, or 

(b) providing the genes that were not present in the population” (Gen & Cheng 

[1997]). The stepwise procedure adapted, during this research, to carryout mutation is 

as follows: 

i. First, a gene is randomly selected. For this purpose two random numbers i 

(0 ≤ i ˂ Machs+Parts) and j (0 ≤ j ˂ Population size). 

ii. Select the ith
 gene of the jth chromosome, i.e. Chrom [i,j]. 

iii. Now, generate a random number K (1 ≤ K ≤ NC). 

iv. IF Chrom [i,j] = K, THEN go back to step 3 and generate another random 

number within the same range, ELSE go to next step. 

v. Assign the value of K to the initially selected gene (Chrom [i,j] ← K). 

vi. IF the number of mutated genes is less than 10% of the total number of 

genes in population (Section 5.7), THEN go back to step 1 and start all 

over again, ELSE go to next step. 

vii. Stop.  

This procedure is further clarified the form of a block diagram representation 

as shown in Figure 5.7.   
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To further clarify the procedure of mutation, being employed here, let us 

consider an example in which the total number of cells to be developed is 3. Let a 

gene selected for mutation is Chrom [i,j] = 1. Now, a random number between 1 and 3 

is generated keeping in check that it is not equal to the original value of the gene i.e. 

1. Say, the generated value is 2, so Chrom [i,j] is assigned the value 2 instead of its 

original value 1. The whole process is repeated until 10% (Section 5.7) genes in a 

population undergo mutation. 

5.4.1.4.3 Inversion: (Tariq et al. [2006] & [2009]) 

It is the GA operator that inverts a selected portion of a chromosome thus 

changing its genetic structure. During this research 15% (Section 5.7) chromosomes 

of the total population have been allowed to undergo inversion. Following is the 

stepwise procedure being employed to carryout the inversion process: 

i. Invert ← 0 (where ‘Invert’ is a variable). 

ii. Randomly select a chromosome ‘k’.  

Chrom[i,j]
= K 

START 

Generate two random numbers  
i (0 ≤ i < Machs+Parts) and  

j (0 ≤ j < Population size) 

Select the jth chromosomes’ 
ith gene (Chrom[i,j]) 

Generate a random number 
‘K’ between 1 and NC 
(Total number of cells) 

Chrom [i,j] ← K 

 

Mut = 0 

Mut < 10% of 
total genes 

Mut = Mut + 1 

END 

Yes 

No 

Yes 

No 

Figure 5.7: Block diagram representation of the mutation process 
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iii. Generate two random numbers i (0 ≤ i ˂ Machs+Parts) and j (0 ≤ j ˂ 

Machs+Parts). 

iv. IF i ˂ j, THEN go to next step, ELSE repeat step 3. 

v. Swap Chromk [i] and Chromk [j]. 

vi. Increment the value of i (i ← i+1) and decrement the value of j (j ← j - 1). 

vii. IF still i ˂ j, THEN repeat step 5 and 6, ELSE go to next step.  

viii. Increment the value of variable ‘Invert’ (Invert ← Invert + 1). 

ix. IF Invert < 15% of Pop Size (Section 5.7), THEN repeat steps 2 to step8, 

ELSE go to next step. 

x. Stop. 

The stepwise procedure used is also presented in Figure 5.8, as follows: 

 

In order to further elaborate the process of inversion, let us consider an 

example having 4 parts and 4 machines. Let the following kth chromosome is selected 

randomly from the population: 

Chromk [j] = [2 1 1 2  1 2 1 1] 

Then two random numbers are generated between 0 and the position number 

of the last gene which is 7 in this case. Say 2 and 5 are the numbers randomly 

START 

Invert = 0 

Generate two random 
numbers  

i (0≤ i ˂ Machs+Parts) and j 
(0≤ j ˂ Machs+Parts)  

i < j 

z ← Chromk [i] 
Chromk [i] ← Chromk [j] 

Chromk [j] ← z 

i = i + 1 

j = j - 1 

i < j 

Invert = Invert + 1 

Invert < 15% 
of Population  

size 

END 

Randomly select a 
chromosome  
e.g. Chromk  

Figure 5.8: Block diagram representation of the inversion process 
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generated. The inversion procedure is applied in between the selected range as shown 

below: 

Chromk [j] = [2 1 1 2  1 2 1 1]  (the entries within the selected range “positions 2 to 5” 

are shown in bold) 

Chromk [j] = [2 1 2 1  2 1 1 1]  (the entries are shown in inverted form) 

5.4.1.4.4 Repair Strategy: (Tariq et al. [2006] & [2009]) 

The method of encoding (representation) chromosomes and the type of 

different genetic operators used during this research are such that some 

illegal/infeasible chromosomes may be resulted. A chromosome is termed as 

infeasible or illegal if it, after being decoded, generates a solution having one or more 

cells without a part and/or machine assigned to it i.e. without even a single part and/or 

machine. The repair strategy ensures that at least one part and one machine is assigned 

to each cell which is in accordance with the Equation (5.3).  

i.  Start with y ← 1. 

ii. Gene ← y. 

iii. IF this value of ‘Gene’ is having at least one entry in both the portions i.e. 

machines’ portion and parts’ portion, THEN y ← y + 1, AND go to step 8, 

ELSE go to the next step.  

iv. Now, randomly select another gene (Chromi [j]) in the same portion in 

which ‘Gene’ does not exist. 

v. IF Chromi [j] exists more than once in the portion, THEN go to next step, 

ELSE go step 4 and randomly select another gene. 

vi. Chromi [j] ← Gene (the value of a gene that was missing). 

vii. Increment the value of y (y ← y + 1). 

viii. IF y < NC (total number of cells), THEN go to step 2, ELSE go to next 

step. 

ix. Stop.   

The above described repair strategy can be presented in the form a flow 

diagram as shown in Figure 5.9.  
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For further clarification an example is considered. It consists of 4parts and 4 

machines and they are to be arranged into 3 cells. One of the possible solutions can be 

as follows: 

Chromi [j] = [2 1 1 2  2 2 3 3] 

Here, in the machines’ portion (first 4 genes in Chromi [j]) integer 3 is not 

available and also in the parts’ portion (last 4 genes in Chromi [j]) integer 1 is 

missing. So this solution is termed as an illegal one and its repair is required to be 

carried out. During the repair process a gene, both in the machines’ and parts’ portion, 

is selected randomly and then it is checked whether any other gene has the same value 

as the selected gene. If the answer is “yes” then the selected gene is assigned the value 

of the missing gene. Let us suppose gene2 and gene6 have been picked. 1 and 3 are 

the respective values of these selected genes. Since other genes, having the same 

integer values, do exist in the respective portions of the selected genes    there are 

other genes that have the same values, in their respective portions, therefore, gene2 

START 

y = 1 

Does  
‘Gene’ have at 
least one entry 

in both the 
portions? 

Generate a random number 
‘j' between start and total 
number of genes in that 

portion 

Does  
Chromi [j]  

have multiple 
entries in the  

portion? 

Chromi [j] = Gene 
(that was missing) 

y = y + 1 

 
y ≤ NC (Total 

number of cells 

END 

Gene = y 

Yes 

Yes 

Yes 

No 

No 

No 

Figure 5.9: Block diagram representation of the repair strategy 



 107 

can be given the value of 3 (since in the machines’ portion 3 is missing) and gene6 

can be given the value of 1 (since in the parts’ portion 1 is missing). 

Following is the repaired form of the chromosome. 

Chromi [j] = [2 1 3 2  2 2 1 3] 

5.4.1.4.5 Selection: (Tariq et al. [2006] & [2009]) 

During this research the selection approach adopted is based on roulette wheel 

selection procedure. A roulette wheel selection approach selects a new population 

using the probability distribution based on the value of fitness. The roulette wheel can 

be constructed as follows: 

i. Start with a counter x ← 0, GET ← 0, where GET is the total GE of a whole 

population. 

ii. GET = GET + GE [x], where GE [x] is the GE of Chromx. 

iii. Increment the value of x (x ← x + 1). 

iv. IF x < Pop Size (Population size), THEN repeat steps 2 and 3, ELSE go 

to next step. 

v. x ← 0.  

vi. Calculate selection probability for a chromosome (Sel Prob [x] =
[ ]

TGE

xGE
). 

vii. Increment the value of x (x ← x + 1).  

viii. IF x < Pop Size, THEN repeat step 6 and step 7, ELSE go to next step. 

ix. x ← 0 and Sum ← 0. 

x. Sum ← Sum + Sel Prob [x]. 

xi. Now cumulative probability (Cum Prob [x]) of a chromosome can be 

determined by Cum Prob [x] ← Sum. 

xii. Increment the value of x (x ← x + 1).  

xiii. IF x < Pop Size, THEN repeat step 10 to step 12, ELSE go to next step. 

xiv. x ← 0 and z ← 0. 

xv. Generate a random number ‘R’ (0 < R < 1). 

xvi. IF R ≤ Cum Prob [x], THEN select Chromx, ELSE IF R ≤ Cum Prob 

[x+1], THEN select Chromx+1, ELSE x ← x + 1 AND repeat step 16. 

xvii. Increment the value of z (z ← z + 1). 

xviii. IF z < Pop Size, THEN repeat step 15 to step 17, ELSE go to next step. 
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xix. Stop. 

The above described procedure can be clearly represented in the form of a 

block diagram as shown in Figure 5.10. 

 

 

5.4.2 Local Search Heuristic (LSH): (Tariq et al. [2006] & [2009]) 

The best solution (Best [i]) of each generation is locally further improved with 

the help of the LSH developed during this research. The actual motivation of 

developing this LSH is to increase the effectiveness of GA in reaching the optimum or 

close to the optimum in comparatively earlier generations. The structure of this LSH 

is such that if by incrementing or decrementing the value of a particular gene the 

corresponding GE value is increased then such a change is stored and on completion 

of iteration the same procedure is repeated again. This procedure is kept on repeated 

until no increase is experienced in a complete iteration. This way the best solution of a 

generation can be further improved which is most of the times either equal or better 

than the previously reported best results. Another capability of this LSH is that if a 

problem consists of a well-structured Machine-Part incidence matrix then it is more 
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Figure 5.10: Roulette Wheel selection procedure 
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likely that the best result would be achieved in the first generation. However, for the 

problems having ill-structured Machine-Part incidence matrices it may take more than 

one generation to reach the optimum or close to the optimum. This shows that in spite 

of the fact that LSH displayed considerable effectiveness; it still depends upon the 

searching ability of GA to help it out in finding a comparatively better solution (best 

of the generation) which can be further improved and converted into the best. The 

development of the LSH procedure in a stepwise manner is as follows: 

i. Starting with y ← 1 and i ← 0, the best solution (Best [i]) is checked for 

any gene having value equal to ‘y’ in the Machines’ portion. 

ii. IF Best [i] = y, THEN x ← i, ELSE i ← i+1.  

iii. Check for multiple entries of ‘y’ except at position ‘x’ (stored value of ‘i’). 

iv. IF multiple entries exist THEN go to next step, ELSE go to step1 and 

start the same procedure in the parts' portion. 

v. Best [x] ← Best [x] + w, where w = 1, IF this value of Best [x] is tried 

previously THEN again Best [x] ← Best [x] + w (this is repeated until a 

value is found which has not been previously tested), ELSE go to next 

step. 

vi. IF Best [x] ≤ NC (Total number of cells), THEN decode Best [i] and 

calculate GE, ELSE go to the start of the procedure, stop incrementing and 

start decrementing. 

vii. IF GE > Max GE, THEN Max GE ← GE AND Best [x] ← Best [x] + w, 

ELSE Best [x]← y. 

viii. Repeat steps 5, 6, and 7 until Best [x] + w ≤ NC.  

ix. IF Best [x] + w > NC, THEN Best [x] ← Best [x] – w, AND repeat 5, 6, 7 

until Best [x] – w ≥ 1. 

x. Keep repeating from 2 to 9, until all the genes having value as ‘y’ are 

tested. 

xi. IF all the genes having value equal to ‘y’ are tested, THEN y ← y+1. 

xii. IF y ≤ NC, THEN go to step2, ELSE go to next step.  
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xiii. Has there been any improvement recorded? IF yes, THEN start all over 

again, ELSE stop.  

 

Figure 5.11 is the block diagram representation of the LSH, and it further 

elaborates the stepwise procedure described prior to it.   

5.4.3 Numerical Example for Local Search Heuristic (LSH): 

To further elaborate the working of the LSH developed during this research an 

example is selected from Waghodekar & Sahu [1984]. This numerical example 

consists of 7 parts and 5 machines. Initially the application of LSH in a stepwise 

manner, to the first gene of the best solution (Best [i]) found by GA in its first 

generation, is shown in the following. Details of the complete application of LSH to 

Figure 5.11: Block diagram representation of Local Search Heuristic 
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the remaining genes of the solution are presented in Table 5.9. The problem is as 

shown in Table 5.7.   

Table 5.7: Initial Machine-Part incidence matrix (Tariq et al. [2009]) 

Machines  

Parts 
1 2 3 4 5 

1 1 0 0 1 0 

2 0 1 0 1 1 

3 0 1 1 1 0 

4 0 1 1 1 1 

5 1 1 1 0 1 

6 1 0 1 0 1 

7 1 0 0 0 0 

 This problem is basically about arranging 7pats and 5 machines into a total 

number of 2 cells while achieving maximum possible value of GE. To achieve this 

objective the given data is loaded into a computer code developed during this research 

and based upon the methodology described above. The best chromosome developed 

by GA in its first generation is as follows. 

Best [i] = [1 2 2 1 2    1 2 2 2 2 2 1] 

 The decoded form of the solution Best [i] is shown in Table 5.8.  

Table 5.8: Decoded solution (Best [i]) (Tariq et al. [2009]) 

Machines  

Parts 
1 4 2 3 5 

1 1 1 0 0 0 

7 1 0 0 0 0 

2 0 1 1 0 1 

3 0 1 1 1 0 

4 0 1 1 1 1 

5 1 0 1 1 1 

6 1 0 0 1 1 

Using (5.2) (5.4) (5.5) (5.6) and (5.7) we get GE = 62.50% 

This solution is subjected to LSH: 

 

Step 1: The procedure is started with y = 1, and i = 0, where y is any variable and i is 

the counter for array Best [i].  
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Step 2: All the genes of Best [i] are checked for the value of y, one by one. Starting 

with i = 0, the value of i is incremented by 1 until Best[i] = y.  

 

Best [i] = [1 2 2 1 2    1 2 2 2 2 2 1] 

 

In the above example at i = 0 i.e. Best [0] = y = 1, as shown in grey colored 

background. So that value of i is stored in another variable x and the gene is selected.  

Step 3: Now, the machines’ portion of the array Best [i] is checked for any gene, 

other than at position x (which is the location of the selected gene), that has the same 

value as y (1).  

Step 4: Since Best [3] = 1, it means the value of the selected gene can be 

incremented/decremented in order to change the position of the machine (machine1) 

related to this gene (gene 0). Had there been no multiple entries of the selected gene, 

any change in its value would have led to the creation of an illegal chromosome as 

that would have violated the inequality (5.3).    

.Step 5: So, Best [x] = Best [x] + 1 = 1 + 1 = 2, where x = 0. This new value of Best 

[x] satisfies the constraint Best [x] + 1 ≤ NC, where NC is the total number of cells, 

which is 2 in this case, so the new chromosome, as a result of the change in the 

selected gene’s value, is shown below: 

 

Best [i] = [2 2 2 12   1 2 2 2 2 2 1] 

 

Step 6: On decoding the chromosome, mentioned in step 5 and using (5.2) (5.4) 

(5.5) (5.6) and (5.7) it is found that GE = 55.56%. 

Step 7: Since GE found, as a result of the change, is less than the maximum GE (Max 

GE) found so far therefore the change is reverted back i.e. Best [x] = 1.  

Step 8: Now we move to step 5 and again Best [x] = Best [x] + 1. Since this value of 

Best [x] i.e. 2, is already tested so this time Best [x] = Best [x] + 2. But since Best [x] 

+ 2 > NC, so further incrementing is stopped.  

Step 9: Now Best [x] = Best [x] – 1 = 1 – 1 = 0. But since this value of Best [x] 

violates the constraint Best [x] – 1 ≥ 1, so decrementing is stopped, too.  

Step 10: The same procedure of incrementing and then decrementing can be applied 

to all other genes having the value equal to y that is 1 in array Best [i].  
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Step 11: Once all the genes having value equal to y (1) are subjected to the procedure 

explained above, then y = y + 1 = 1 + 1 = 2.  

Step 12: Steps 2 to 11 are repeated until y ≤ NC. IF y > NC THEN go to next step.  

Step 13: IF there has been any improvement recorded in the value of GE, THEN the 

procedure is started all over gain, ELSE stopped.      

 

Table 5.9: Complete application of LSH to the best solution found by GA (Tariq 
et al. [2009]) 

S/ 

No 

Chromos-

ome 

Best [i] 

Max 

GE 

% 

Selected 

gene’s 

changed 

value (I) 

I≤NC New 

Chromos-

ome 

GE 

% 

GE 

> 

Max 

GE 

Re-marks 

01 [12212 

1222221] 

62.50 2 Yes [22212 

1222221] 

55.56 No Max GE>GE change is reverted 

02 [12212 

1222221] 

62.50 3 No - - - Constraint is violated. So change 

is reverted. 

03 [12212 

1222221] 

62.50 0 No - - - Constraint is violated. So change 

is reverted. 

04 [12212 

1222221] 

62.50 2 Yes [12222 

1222221] 

68.00 Yes Max GE<GE change is stored. 

05 [12222 

1222221] 

68.00 3 No - - - Constraint is violated. So change 

is reverted. 

06 [12222 

1222221] 

68.00 0 No - - - Constraint is violated. So change 

is reverted. 

07 [12222 

1222221] 

68.00 2 Yes [12222 

2222221] 

 60.71 No Max GE>GE change is reverted 

08 [12222 

1222221] 

68.00 3 No - - - Constraint is violated. So change 

is reverted. 

09 [12222 

1222221] 

68.00 0 No - - - Constraint is violated. So change 

is reverted. 

10 [12222 

1222221] 

68.00 2 Yes [12222 

1222222] 

55.17 No Max GE>GE change is reverted 

11 [12222 

1222221] 

68.00 3 No - - - Constraint is violated. So change 

is reverted. 

12 [12222 

1222221] 

68.00 0 No - - - Constraint is violated. So change 

is reverted. 

13 [12222 

1222221] 

68.00 3 No - - - Constraint is violated. So change 

is reverted. 

14 [12222 

1222221] 

68.00 1 Yes [11222 

1222221] 

50.00 No Max GE>GE change is reverted 
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15 [12222 

1222221] 

68.00 0 No - - - Constraint is violated. So change 

is reverted. 

16 [12222 

1222221] 

68.00 3 No - - - Constraint is violated. So change 

is reverted. 

17 [12222 

1222221] 

68.00 1 Yes [12122 

1222221] 

50.00 No Max GE>GE change is reverted 

18 [12222 

1222221] 

68.00 0 No - - - Constraint is violated. So change 

is reverted. 

19 [12222 

1222221] 

68.00 3 No - - - Constraint is violated. So change 

is reverted. 

20 [12222 

1222221] 

68.00 1 Yes [12212 

1222221] 

62.50 No Max GE>GE change is reverted 

21 [12222 

1222221] 

68.00 0 No - - - Constraint is violated. So change 

is reverted. 

22 [12222 

1222221] 

68.00 3 No - - - Constraint is violated. So change 

is reverted. 

23 [12222 

1222221] 

68.00 1 Yes [12221 

1222221] 

50.00 No Max GE>GE change is reverted 

 

24 [12222 

1222221] 

68.00 0 No - - - Constraint is violated. So change 

is reverted. 

25 [12222 

1222221] 

68.00 3 No - - - Constraint is violated. So change 

is reverted. 

26 [12222 

1222221] 

68.00 1 Yes [12222 

1122221] 

56.00 No Max GE>GE change is reverted 

27 [12222 

1222221] 

68.00 0 No - - - Constraint is violated. So change 

is reverted. 

28 [12222 

1222221] 

68.00 3 No - - - Constraint is violated. So change 

is reverted. 

29 [12222 

1222221] 

68.00 1 Yes [12222 

1212221] 

56.00 No Max GE>GE change is reverted 

 

30 [12222 

1222221] 

68.00 0 No - - - Constraint is violated. So change 

is reverted. 

31 [12222 

1222221] 

68.00 3 No - - - Constraint is violated. So change 

is reverted. 

32 [12222 

1222221] 

68.00 1 Yes [12222 

1221221] 

50.00 No Max GE>GE change is reverted 

33 [12222 

1222221] 

68.00 0 No - - - Constraint is violated. So change 

is reverted. 

34 [12222 

1222221] 

68.00 3 No - - - Constraint is violated. So change 

is reverted. 
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35 [12222 

1222221] 

68.00 1 Yes [12222 

1222121] 

62.50 No Max GE>GE change is reverted 

36 [12222 

1222221] 

68.00 0 No - - - Constraint is violated. So change 

is reverted. 

37 [12222 

1222221] 

68.00 3 No - - - Constraint is violated. So change 

is reverted. 

38 [12222 

1222221] 

68.00 1 Yes [12222 

1222211] 

69.57 Yes Max GE<GE change is stored. 

39 [12222 

1222211] 

69.57 0 No - - - Constraint is violated. So change 

is reverted. 

(Genes marked in grey colored background are the selected genes) 

 The best solution found by the LSH is shown below. 

 

Best [i] = [1 2 2 2 2    1 2 2 2 2 1 1]  GE = 69.57% 

 

 Decoding the solution Best[i], modified by LSH, the Machine-Part 

arrangement is shown in Table 5.10.   

Table 5.10: Decoded solution (Best[i]) (Tariq et al. [2009]) 

   Machines  

Parts 
1 2 3 4 5 

1 1 0 0 1 0 

6 1 0 1 0 1 

7 1 0 0 0 0 

2 0 1 0 1 1 

3 0 1 1 1 0 

4 0 1 1 1 1 

5 1 1 1 0 1 

5.5  Numerical Example of Machine-Part Grouping (Tariq et al. [2006] & 

[2009]) 

  A numerical example is selected from Irani [1999] and solved by this 

approach to show its effectiveness. This example consists of a total number of 20 

parts and 10 machines. The system is required to be organized into 3 cells. The input 

information in the form of a Machine-Part incidence matrix is given in Table 5.11: 
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Table 5.11: Initial Machine-Part incidence matrix (Tariq et al. [2006] & [2009]) 

Machines  

Parts 1 2 3 4 5 6 7 8 9 10 

1 1   1   1    

2  1    1   1  

3  1    1   1  

4 1   1   1    

5  1    1   1  

6   1  1   1  1 

7   1  1   1  1 

8  1    1   1  

9 1   1   1    

10   1  1   1  1 

11  1    1   1  

12   1  1   1  1 

13   1  1   1  1 

14  1    1   1  

15 1   1   1    

16 1   1   1    

17  1    1   1  

18   1  1   1  1 

19  1    1   1  

20 1   1   1    
For clarity only 1’s are shown in the Table. 

Number of parts (P) = 20 

Number of machines (M) = 10 

Length of chromosome (L) = 20 + 10 = 30 (Each chromosome will have 30 genes) 

 This data is fed into a computer program, encoded in AM (Applications 

Manager, [2001]) software and based on the methodology explained above. The best 

possible solution was obtained in the first generation. The result is as under: 

Best [i] = [1 3 2 1 2 3 1 2 3 2   1 3 3 1 3 2 2 3 1 2 3 2 2 3 1 1 3 2 3 1] 

 

 Allocating the machines and parts as per the best solution (Best[i]) the 

Machine-Part incidence matrix, shown in Table 7, shapes up as: 

 

 

 

 

 

Machines Parts 
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Table 5.12: Final block diagonal matrix (Tariq et al. [2006] & [2009]) 

Machines  

Parts 1 4 7 3 5 8 10 2 6 9 

1 1 1 1        

4 1 1 1        

9 1 1 1        

15 1 1 1        

16 1 1 1        

20 1 1 1        

6    1 1 1 1    

7    1 1 1 1    

10    1 1 1 1    

12    1 1 1 1    

13    1 1 1 1    

18    1 1 1 1    

2        1 1 1 

3        1 1 1 

5        1 1 1 

8        1 1 1 

11        1 1 1 

14        1 1 1 

17        1 1 1 

19        1 1 1 

Using (5.4) (5.5) (5.7) and (5.2), respectively, the following can be calculated. 

The total number of 1’s in the Machine-Part incidence matrix (N1) = 66 

Total number of 0’s inside the block diagonal ( in
N0 ) = 0 

Total number of 1’s outside the block diagonal ( outN1 ) = 0 

%10000.1
066

066
GE

01

11 ==
+

−
=

+

−
=
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out

NN
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The final block diagonal matrix, shown in Table 5.12, has a GE of 100%. 

5.6 Sensitivity Analysis: 

 The overall performance of GA is considerably affected by its parameters i.e. 

number of generations, population size, crossover, and mutation rates. Though it 

seems beneficial to operate with a large population size through a greater number of 

generations as it provides an opportunity to explore more solution space and 

facilitates GA to converge on a global optimum, but at the same time it increases the 
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computational effort of GA. Therefore, proper adjustment of these parameters is very 

important as it fine tunes the performance of GA and enhances its effectiveness. 

 In the presence of a strong local search, dependence of GA on its parameters is 

reduced and that is why results for most of the problems are achieved in earlier 

generations as compared to simple GA or other competitive algorithms in literature. 

Therefore, a problem of the size 30×50 (Total number of machines = 30 & Total 

number of parts = 50) is selected from literature (Stanfel [1985]) for analysis, as it 

required the maximum number of generations in comparison to other tested problems 

and therefore seems to be a suitable choice. The problem is solved with various 

number of generations, population sizes, crossover, inversion and mutation rates.     

 

Figure 5.12 shows the effect of increase in the number of generations on the 

Percentage (%age) Solution Gap. It can be evidently seen in the Figure that as the 

number of generations increases the %age Solution Gap decreases and at generation 

number 50 it reaches to a value of zero. Therefore the maximum number of 

generations, which the algorithm is allowed to run through, is kept at 50.  

The effect of population size on the %age Solution Gap is shown in Figure 

5.13, below. Lower bound for the problem is obtained when the population size is 

increased to 50 with a constant crossover, inversion and mutation rates of 60%, 15% 

and 10% respectively.            

%age 
solution 

gap 

0.25 

0.5 

Number of generations 

10 20 30 40 50 60 

0.325 

0.175 0.175 

0.05 

0 0 

Figure 5.12: Effect of the number of generations on %age solution gap 

0 
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Number of generations = 50, Crossover rate = 0.6, Inversion rate = 0.15, 

Mutation rate = 0.1 

 Further, the sensitivity of the algorithm against variations in the rate of 

crossover, inversion and mutation is presented in Figures 5.14, 5.15 and 5.16.    

 

 
Number of generations = 50, Population size = 50, Inversion rate = 0.15, 

Mutation rate = 0.1 

 

0.2 

%age 
solution 

gap 

0.1 

Crossover rate 

0.4 0.5 0.6 0.7 0.8 0.9 

0 0 

Figure 5.14: Effect of crossover rate on %age solution gap 

0 0 

0.1375 

 

0.075 

0.0375 

0.1625 

Figure 5.13: Effect of population size on %age solution gap 
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Number of generations = 50, Population size = 50, Crossover rate = 0.6,  

Mutation rate = 0.1 

 
Number of generations = 50, Population size = 50, Crossover rate = 0.6,  

Inversion rate = 0.15 

 From the Figures 5.12, 5.13, 5.14, 5.15 & 5.16 it can be concluded that the 

algorithm achieved maximum value (zero value of the %age Solution Gap) at a 

crossover rate = 0.6, inversion rate = 0.15, mutation rate = 0.1, constant population 

size = 50, and through a constant number of generations = 50. Since the problem used 

here for analysis consumed the maximum number of generations before reaching its 

maximum value, therefore it would be more than reasonable to assume that the 

algorithm with the same set of values for its parameters would perform satisfactorily 

for other problems as well.  
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%age 
solution 

gap 
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Figure 5.16: Effect of mutation rate on %age solution gap 
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Figure 5.15: Effect of inversion rate on %age solution gap 
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5.7 Summary: 

This Chapter has given a detailed description of a hybrid GA based tool that 

has been developed, during this research, for the Machine-Part grouping problem. It 

starts with the initial description of the cell formation problem and the mathematical 

model developed for the problem during this research. Based on the mathematical 

model an approach is presented, which can be used to find the optimum solution for 

any problem based on the principles of complete enumeration. Since complete 

enumeration is possible in problems of limited size only, therefore a GA based hybrid 

methodology is proposed, during this research, which combines GA with an LSH. The 

methodology developed utilizes multipoint crossover, traditional gene to gene 

mutation, inversion, and Roulette Wheel selection procedure. The best solution of 

each generation is subjected to LSH, which is placed at the heart of the GA loop, 

provided that it is different from all the previous solutions that underwent local 

improvement. For better understanding of the programming logic each step of the 

algorithm is clearly explained both with the help of flow diagrams and stepwise 

procedure. Finally, the methodology is further elaborated by solving a benchmark 

problem with the help of the proposed algorithm. In the last part of the Chapter a 

sensitivity analysis is presented to justify the values of the GA parameters (crossover 

= 60%, mutation = 10%, inversion = 15%, population size = 50, number of 

generations = 50).  
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CHPTER 6 

 

METHODOLOGY FOR CELL SCHEDULING AND 

COMBINATION WITH MACHINE-PART 

GROUPING 

6.1 Introduction: 

 It has been previously described that carrying out an operational design of a 

CMS is comparatively more useful in practice than simply grouping parts into 

families and machines into corresponding cells. As mentioned in previous chapters 

that operational design of a CMS consists of two steps (Machine-Part grouping and 

the cell scheduling). The development and implementation of first step (Machine-Part 

grouping) has been described in detail in Chapter 5. Description of the second step is 

given in this chapter that consists of details about the development and operation of 

the hybrid GA based tool for cell scheduling by combining GA with an LSH and then 

its combination with the hybrid GA based tool for Machine-Part grouping (Chapter 5). 

Here also, the LSH is incorporated inside the traditional GA loop in such a way that 

the best solution in each generation is subjected to it. The effectiveness of the LSH is 

evident from the fact that though it has been used in combination with the traditional 

two cut point crossover and swap mutation even then the results produced for all the 

benchmark problems are as accurate as previously reported in literature.   

6.2 Scheduling of a CMS: (Tariq et al. [2007]) 

 As mentioned in section 6.1, the second step in carrying out the operational 

design of a CMS is to provide solution for scheduling of operations on available 

machines in each cell. While solving the cell scheduling problem, during this 

research, it has been assumed that: 

� Each job in a cell has its own processing sequence totally independent of 

the processing sequence of other jobs in the system.  

� None of the jobs visits the same machine twice. 

� An operation once started cannot be interrupted in between.  

� Each machine can process only one job at a time. 
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It can be easily understood from the above assumptions that the problem of 

cell scheduling, as far as this research is concerned, resembles the general JSSP and 

would be handled in a similar manner. Therefore, the methodology developed during 

this research to solve the JSSP is presented in the following sections, which would be 

later on applied to the cell scheduling problem after combining it with the solution 

methodology, already presented, for the cell formation problem. 

6.3 A Hybrid GA for JSSP: (Tariq et al. [2007])      

The general JSSP is known to be extremely hard and requires efficient, 

effective and accurate scheduling techniques to realize its full benefits. In this 

research a hybrid GA is presented to solve n jobs and m machines JSSP. An LSH is 

incorporated within GA to optimize Makespan. LSH considerably improves the result 

of GA and saves a lot of computational effort. The algorithm is tested and verified by 

using a number of benchmark problems from literature and industrial case studies. For 

further elaboration of the algorithm solution for a benchmark problem is also 

presented. The Makespan is used as the main scheduling criterion because of its 

popular use as performance measure in scheduling and therefore the comparison of 

most of the different tools/algorithms is made by this measure.  

The performance of the approach (GA+LSH) developed during this research is 

validated through various benchmark problems and industrial case studies. 

Computational experience with the algorithm proves that in addition to be as accurate 

as previous approaches it also has the ability to search out the best solution in fewer 

number of generations.  

6.4 The Standard JSSP: (Tariq et al. [2007]) 

“In the classic n × m minimum- Makespan JSSP, n different jobs on m 

different machines are scheduled” (Gen & Cheng, [1997]). In JSSP every job contains 

several operations which are to be carried out in pre-specified order. Each operation 

of the job requires a specific machine on which it is processed for a fixed amount of 

time (processing time). In addition to the above information a number of constraints, 

listed below, are also required to be followed.  

� There is only one operation of each job on each machine. 
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� There is no pre-specified sequence of processing between the operations of 

different jobs.  

� Once an operation is started it cannot be stopped in between.  

� Only one job is to be processed, at a time, on each machine. 

� The delivery time of jobs, i.e. due date or time of release, is not pre-

specified. 

While following the above mentioned constraints the JSSP is solved by 

sequencing the operations of all the jobs on the available set of machines with the 

objective to minimize the total Makespan which in fact is the time elapsed between 

the start of the first operation and the completion of the last operation.  

6.5 Methodology (Developed during this research) for the Hybrid GA for 

JSSP: (Tariq et al. [2007]) 

In general it is believed that the best results, as far as the quality of solutions 

and time are concerned, are achieved from hybrid approximation algorithms, as they 

combine several methods. From a general perspective, the solution to JSSP can be 

considered as a collection of local decisions concerning which operation to schedule 

next. Therefore, the methodology developed in this research is in fact the combination 

of conventional GA with the LSH (developed during this research) as shown in Figure 

6.1. The LSH is incorporated inside the GA loop in such a way that each generation’s 

best chromosome is subjected to it provided that it has not been tried previously. This 

procedure is kept repeated for a pre-specified number of generations and once it is 

completed the solution that displayed the best result is selected. This procedure can be 

described in a stepwise manner as follows: 

i. Start with initializing the value of a variable ‘Gen’ (Gen ← 0). 

ii. Initialize population randomly. 

iii. Decode each solution and calculate its fitness value. 

iv. Select the best chromosomes for crossover. 

v. IF children are illegal THEN repair, ELSE go to next step. 

vi. Evaluate children and place them into population. 

vii. Randomly select chromosome and carryout mutation. 

viii. Evaluate the mutated chromosome and place it into population. 

ix. Select the next generation by stochastic universal sampling (SUS). 
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x. Select the best chromosome of the generation. 

xi. IF Gen = 0, THEN subject the best chromosome to LSH, ELSE go to next 

step. 

xii. IF the selected chromosome has not been previously subjected to LSH, 

THEN apply the LSH procedure to it, ELSE go to next step. 

xiii. Increment the value of ‘Gen’ (Gen ← Gen + 1) 

xiv. IF Gen < Max Gen (Maximum number of generations i.e. 100 as discussed 

in Section 6.7), THEN repeat step 4 to step 13, ELSE go to next step. 

xv. Stop. 

The above described procedure can be further explained with the help of a 

block diagram representation as shown in Figure 6.1.  

 6.5.1 Genetic Algorithm (GA): (Tariq et al. [2007]) 

In the hybrid GA, developed during this research, GA starts with an initial 

population size of 75, crossover rate of 60%, mutation rate of 10% and is allowed to 

run through 100 generations (details are given in Section 6.7).  

Crossover 

  

Decoding & 
Calculating 

fitness values 

Initialize 
population 
randomly 

 START 

Mutation 

Evaluating the 
mutated chromosome 

and placing into 
population  

Selecting next 
generation by 

stochastic universal 
sampling (sus)  

Identifying the best 
chromosome of the 

generation 

Is 
Gen=0 

Has  
It been 

previously 
subjected 
to LSH?  

Local 
Search 

Heuristic 
 

END 
Identify the best 

chromosome 

No 

Yes 
No 

Yes 

No 

Yes 

Figure 6.1: Hybrid methodology for JSSP (Tariq et al. [2007]) 

Gen = Gen + 1 
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6.5.1.1 Representation: (Tariq et al. [2007]) 

In the hybrid methodology, proposed during this research, 

chromosomes/solutions are represented in the form of two dimensional arrays of 

integers as shown in Table 6.1. The size of chromosome is determined by multiplying 

the total number of machines with the total number of jobs i.e. Machs × Parts. For 

example, if there are 6 machines and 6 parts and each part has six operations i.e. an 

operation on each machine then every solution/two dimensional array would be 

having 36 entries, as shown in Table 6.1.  

Table 6.1: Chromosome representation (Tariq et al. [2007]) 

3 3 1 5 4 3 

4 2 1 2 5 5 

1 4 6 6 6 4 

2 2 5 1 5 1 

6 6 4 2 2 5 

4 3 3 1 6 3 

Every location of the two dimensional array is filled with an integer having 

value from 1 to 6 i.e. 1≤ integer ≤6. Also, the frequency of existence (how many times 

an integer can exist in a solution) of an integer must be equal to 6. The reason for this 

is that the maximum number of operations on a job can be 6.  

 While retrieving information, about the processing schedule of each operation, from 

a solution entries are taken into consideration along the direction of arrow i.e. row wise, 

starting from the first row.  In the above solution (Table 1) the first entry is ‘3’. Since integer 

‘3’ has been encountered for the first time it means this corresponds to operation 1 of job 3. 

Moving further, the second entry in the same column is ‘4’. Since ‘4’ has also been 

encountered for the first time therefore this also corresponds to the first operation of job ‘4’ 

and its scheduling would be carried out after the first operation of job 3. As soon as all the 

integers in the first column (from row 1 to row 6) have been considered (corresponding 

operations scheduled) the same process is repeated for the 2nd column and so on until all the 

entries in the rest of the columns are considered.    

6.5.1.2 Initialization: 

 A stepwise procedure for the random initialization of a population of solutions 

can be developed as described below: 

Direction 
to read 

entries in a 
solution 
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i. Initialize variables x, y and z (x ← 0, y ← 0, z ← 0). 

ii. i ← 1 (where 1≤ i ≤ Jobs) 

iii. Count ← 0. 

iv. Generate a random number ‘x’ between 0 and total number of machines 

(Machs). 

v. IF 0 ≤ x < Machs, THEN go to next step, ELSE repeat step 4. 

vi. Generate another random number ‘y’ between 0 and total number of jobs 

(Jobs).  

vii. IF 0 ≤ y < Jobs, THEN go to next step, ELSE repeat step 6. 

viii. IF Pop [x, y, z] = 0, where Pop [x, y, z] is a three dimensional array for 

population, THEN Pop [x, y, z] = i, ELSE repeat step 4 to step 8. 

ix. Increment the value of variable ‘Count’ (Count ← Count + 1). 

x. IF Count < Machs, THEN repeat step 4 to step 9, ELSE go to next step. 

xi. Increment the value of i (i ← i + 1). 

xii. IF i ≤ Jobs, THEN repeat step 3 to step 12, ELSE go to next step. 

xiii. Increment the value of z (z ← z + 1), which is a counter for the population 

size. 

xiv. IF z < Pop Size (Population size), THEN repeat step 2 to step 14, ELSE 

go to next step. 

xv. Stop. 

The stepwise procedure, explained above can be further elaborated with the 

help of a block diagram representation as shown in Figure 6.2. 
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6.5.1.3 Evaluation and Fitness: (Tariq et al. [2007]) 

For the purpose of evaluation, Makespan (Cmax) is chosen as the performance 

measure. It is a common performance measure and has been frequently used in 

literature for comparison of the quality of solutions, for different benchmark 

problems, developed by different techniques. Therefore, like other techniques, in this 

research also, each chromosome is decoded and its Makespan is calculated. The 

decoding procedure developed during this research is explained in the form of a 

stepwise procedure as follows:  

i. Start by initializing the counter for rows ‘i’ (i ← 0) and the variable for 

Makespan ‘Cmax’ (Cmax ← 0). 

ii. Initialize the counter for columns ‘j’ (j ← 0). 

iii. Select the integer at position (i,j) (Chrom[i,j]). 

iv. Identify the job (x), its operation number (o) and the machine (k) on which 

it is going to be performed. 

v. IF it is the first operation of job (x) on machine (k) AND also it is the first 

operation of any job on machine (k), THEN assign a value zero to both the 

machine available time (MATk) and the job available time (JATx) (MATk ← 

0, JATx ← 0), ELSE go to step 7.  

vi. Assign a value zero to the earliest start time for operation ‘o’ (ESTo ← 0) 

AND go to step 8.  

z ˂ Pop size 
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= 0 

Pop[x,y,z] = i 

Count = Count + 1 

Count ˂ 
Machs 

i = i + 1 

i ≤ Jobs 
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Figure 6.2: Block diagram representation of the initialization process 
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vii. IF MATk < JATx, THEN ESTo ← MATk, ELSE ESTo ← JATx. 

viii. Calculate completion time for operation ‘o’ (CTo) by adding the earliest 

start time for the operation (ESTo) and it’s given processing time (PTo) 

(CTo = ESTo + PTo). 

ix. IF CTo > Cmax, THEN Cmax = CTo, AND i ← i + 1, ELSE i ← i + 1. 

x. IF i < Jobs, THEN repeat step 3 to step 9, ELSE go to next step. 

xi. Increment the value of column ‘j’ (j ← j + 1). 

xii. IF j < Machs, THEN repeat step 2 to step 11, ELSE go to next step. 

xiii. Makespan ← Cmax. 

xiv. Stop. 

The procedure explained above is further elaborated in the form of a block 

diagram representation as in Figure 6.3.   

 

Once the value of Makespan (Cmax) is found then fitness value for solution can 

be found by taking its reciprocal as shown in Equation (6.1). 

Figure 6.3: Decoding Procedure (Tariq et al. [2007]) 
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Fitness Function = F = 1/Cmax                (6.1) 

6.5.1.4 Genetic Operators: (Tariq et al. [2007]) 

To obtain improved results proper utilization of genetic operators (crossover 

and mutation) is very important. A brief description of the genetic operators used here 

is given in the following. 

6.5.1.4.1 Crossover: (Tariq et al. [2007]) 

The crossover used in this particular case is a two cut point crossover, which is 

very common and has been previously used in literature. The stepwise procedure that 

is adopted to perform crossover is as follows; 

i. Select the two best chromosomes (ChromA and ChromB) of a population. 

ii. Randomly select two cut points a and b, in the range from 0 to total 

number of jobs (Jobs). 

iii. IF a < b, THEN proceed to next step, ELSE repeat step 2. 

iv. Assign the value of ‘a’ to the counter for rows ‘i’ (i ← a). 

v. Initialize the counter for columns ‘j’ (j ← 0). 

vi. Swap the entries ChromA[i,j] and ChromB[i,j]. 

vii. Increment the value of ‘j’ (j ← j + 1). 

viii. IF j < Machs, THEN repeat step 6 and step 7, ELSE go to next step. 

ix. Increment the value of ‘i’ (i ← i + 1). 

x. IF i ≤ b, THEN repeat step 5 to step 9, ELSE go to next step. 

xi. IF the crossover performed so far is less than 60% (Section 5.13) of the 

population size, THEN select the next two best chromosomes, AND 

repeat step 2 to step 10, ELSE go to next step. 

xii. Stop.   

The above stepwise procedure is also explained with the help of a block 

diagram representation, as shown in Figure 6.4. 
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An example is given below to further clarify the procedure described above. 

First two chromosomes are selected (Tables 6.2 & 6.3) on the basis of their 

better fitness (elitist strategy). Then two cut points are selected randomly. Let us say 

the two cut points are 3 and 4. It means the entries in rows 3 and 4 would be 

interchanged as shown in Tables 6.4 & 6.5. (Tariq et al. [2007]) 

 

 

Table 6.4: Child A 

3 3 1 5 4 3 

4 2 1 2 5 5 

1 4 6 6 6 4 

5 4 3 3 3 1 

 5 5 2 2 1 1 

4 3 3 1 6 3 

 

Table 6.5: Child B 

4 5 5 1 2 2 

6 1 4 4 6 6 

6 4 2 6 2 5 

2 2 5 1 5 1 

6 6 4 2 2 5 

4 3 3 3 1 6 

 

  Table 6.2: Chromosome A 

3 3 1 5 4 3 

4 2 1 2 5 5 

1 4 6 6 6 4 

2 2 5 1 5 1 

6 6 4 2 2 5 

4 3 3 1 6 3 

 

 Table 6.3: Chromosome B 

4 5 5 1 2 2 

6 1 4 4 6 6 

6 4 2 6 2 5 

5 4 3 3 3 1 

5 5 2 2 1 1 

4 3 3 3 1 6 

 

START 

Select the two best 
chroms (A & B) of 

the population 

Randomly select two 
cut points a & b 

between 0 & Jobs 
a ˂ b i = a 

z ← ChromA[i,j] 
ChromA[i,j] ← ChromB[i,j] 

ChromB[i,j] ← z 
 

i = i + 1 

i ≤ b 

Crossover 
performed ˂ 
60% of the 

Pop size 

Select the next two 
best chroms of the 

population 

END 

Figure 6.4: Block diagram representation of the crossover procedure 

Yes 

Yes 

Yes 

No 

No 

No 

j = 0 

j < Machs 

j = j + 1 

No 

Yes 
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The problem with this kind of crossover is that the resulting children may be 

of illegal nature. This illegality is because of the fact that when a portion (certain 

number of rows) of a chromosome is exchanged with a portion of the same size(same 

number of rows) of another chromosome then there is every chance that in resulting 

children some integers may reflect more than the specified number (number of 

machines) and some less than that. It has been initially mentioned that each part 

would have a number of operations equal to the number of machines (Section 6.5.1.1). 

Since in the above example (Tables 6.2 and 6.3) 6 machines and 6 parts are 

considered therefore in any solution an integer cannot exist less than or more than 6 

times. But, if child A (Table 6.4) is examined then it can be seen that this condition is 

violated. As some integers exist more than 6 times (e.g. 1s = 7, 3s = 9), whereas some 

exist less than that (e.g. 2s = 4, 6s = 4). This shows illegality and hence some sort of 

repair strategy has to be developed.  

6.5.1.4.2 Repair Algorithm: (Tariq et al. [2007]) 

As mentioned earlier the type of crossover employed may develop illegal 

chromosomes. Therefore, some sort of repair strategy needs to be developed to 

remove any illegality. For this purpose a repair procedure is developed during this 

research. First each child is checked for legality. This can be done by counting the 

number of entries each integer has in a child. If the number of entries of any one or 

more integers is less than or greater than the number of machines then such a 

chromosome is called illegal. If found illegal, then repair is carried out, otherwise the 

repair strategy is skipped. Once illegality is confirmed, then information about the 

positions of those integers which are in excess and those integers which are in 

shortage is stored. Remember only those positions are stored which are outside the 

portion which took part in crossover. Now one by one those integers are selected 

which are in shortage and then randomly any of the stored positions is picked and 

assigned the value equal to the selected integer. This process is repeated until all the 

integers which are in shortage are placed back into the solution/child.   

The procedure developed during this research for repairing illegal solutions is 

mainly divided into two main portions. In the first portion it is determined whether a 

child is legal or not, whereas the second portion deals with repair of an illegal child. 
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Both the portions have been separately represented with the help of block diagrams in 

Figures 6.5 and 6.6.  

A stepwise procedure for the legality check of a Child [i,j] is as follows: 

i. Start with an initial value of a variable ‘Gene’ i.e. 1 (Gene ← 1) 

ii. Initialize variables ‘Count’ (counter for counting the number of entries of 

each integer) and ‘i’ (counter for rows) (Count ← 0, and i ← 0). 

iii. Initialize ‘j’ (counter for columns) (j ← 0). 

iv. IF Child [i,j] = Gene, THEN Count ← Count +1, AND j ← j + 1, ELSE   

j ← j + 1.  

v. IF j < Machs, THEN repeat step 4, ELSE go to next step. 

vi. Increment the counter for rows ‘i’ (i ← i + 1) 

vii. IF i < Jobs, THEN repeat steps 3 to step 6, ELSE go to next step. 

viii. IF Count = Machs, THEN Gene ← Gene + 1, AND go to next step, ELSE 

stop as the illegality of child is proved. 

ix. Increment the value of ‘Gene’ (Gene ← Gene + 1) 

x. IF Gene ≤ Machs, THEN repeat step 2 to step 9, ELSE stop with the 

conclusion that child is legal and doesn’t require any repair.  

The working of the above described stepwise procedure for legality check is 

further explained in the form of a block diagram representation in Figure 6.5.      

 

 

Gene = 1 

i = 0 
Count = 0 

j = 0 

Child [i,j] 
= Gene 

j = j + 1 

j˂ Machs 

i = i + 1 

i ˂ Jobs 

Count = 
Count + 1 

Count = 
Machs 

Gene = 
Gene + 1 

Gene ≤ 

Machs  

END 

Child is 
illegal 

Yes 

Yes 

Yes 

Yes 

Yes 

No 

No 

No 

No 

No 

Child is 
legal 

Figure 6.5: Block diagram representation for legality check 
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Once it is confirmed that a child is illegal then the repair procedure, developed 

during this research, is applied. The sequence of steps is described below to carry out 

repair of an illegal solution.  

i. Start with a minimum value of 1 for a variable ‘Gene’ (Gene ← 1), AND 

initialize counters ‘Count, z, w’ (Count ← 0, z ←0, w ← 0). 

ii. Initialize a variable ‘Num’ (Num ← 0) that is used to count the number of 

entries of each integer in a solution. 

iii. Initialize counter for columns ‘j’ (j ← 0). 

iv. Initialize counter for rows ‘i’ (i ← 0). 

v. IF ChildA[i,j] = Gene, THEN increment the value of ‘Num’ (Num ← 

Num + 1), AND increment the value of the variable for rows ‘i’ (i ← i + 

1), ELSE increment ‘i’ (i ← i + 1). 

vi. IF i < Jobs, THEN repeat step 5, ELSE increment the value of variable 

for columns ‘j’ (j ← j + 1). 

vii. IF j < Machs, THEN repeat step 4 to step 6, ELSE go to next step. 

viii. IF Num = Machs, THEN increment the value of ‘Gene’ (Gene ← Gene + 

1), AND go to next step, ELSE go to step 10. 

ix. IF Gene ≤ Machs, THEN repeat step 2 to step 8, ELSE go to step 13. 

x. IF Num < Machs, THEN store the integer along side those integers which 

are in shortage (Short [z] ← Gene) AND its shortage amount into another 

array (S. Amnt [z] ← Machs – Num) AND Count ← Count + S. Amnt [z] 

AND increment ‘z’ (z ← z + 1), ELSE store that integer into another array 

allocated for those integers which are in excess (Excess[w] ← Gene) AND 

its excess amount into its corresponding array (E. Amnt [w] ← Num – 

Machs) AND increment ‘w’ (w ← w + 1). 

xi. Increment the value of variable ‘Gene’ (Gene ← Gene + 1). 

xii. IF Gene ≤ Machs, THEN repeat step 2 to step 11, ELSE go to next step. 

xiii. X1 ← crossover cut point # 1, X2 ← crossover cut point # 2. 

xiv. Initialize variables ‘Num, z, w’ (Num ← 0, z ← 0, w ← 0). 

xv. Generate two random numbers x (between 0 and Jobs) and y (between 0 

and Machs). 

xvi. IF X1 ≤ x ≤ X2, THEN repeat step 15, ELSE go to next step. 

xvii. IF ChildA[x,y] =  Excess[w], THEN go to next step, ELSE repeat step 15 

and step 16. 
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xviii. ChildA[x,y] ← Short [z] AND S. Amnt[z] ← S. Amnt[z] – 1. 

xix. IF S. Amnt[z] = 0, THEN z ← z + 1 AND E. Amnt[w] ← E. Amnt[w] – 1, 

ELSE E. Amnt[w] ← E. Amnt[w] – 1. 

xx. IF E. Amnt[w] = 0, THEN w ← w + 1 AND Num ← Num + 1, ELSE 

Num ← Num + 1. 

xxi. IF Num < Count, THEN repeat step 15 to step 20, ELSE go to next step. 

xxii. Stop. 

The above described procedure can also be expressed in the form of block 

diagram representation, as shown in Figure 6.6.         

 

In order to explain the repair algorithm being proposed here in more detail, child “A” 

(Table 6.4) is subjected to it.  

Step 1: First the solution is checked for legality as shown in Table 6.6:  

 

Figure 6.6: Block diagram representation for repair algorithm 

START 

Gene = 1, w = 0 
Count = 0, z = 0 

Num = 0 

j = 0 

i = 0 

ChildA[i,j] 
= Gene 

i = i + 1 

i < Jobs 

j = j + 1 

Num = 
Num + 1 

Excess[w] 
= Gene 

E. Amnt[w] = 
Num-Machs 

Short[z] 
= Gene 

S. Amnt[z] = 
Machs-Num 

w = w + 1 z = z + 1 

Gene = Gene + 1 

Gene ≤ 
Machs 

X1, X2 = 
Crossover cut 
points #1 & 2 

w = 0, z = 0, 
Num = 0 y = Random num 

(0, Machs) 

x = Random num 
(0, Jobs) 

X1 ≤ x ≤ X2 

ChildA[x,y] 
= Excess[w] 

ChildA[x,y] 
= Short[z] 

 

S. Amnt[z] =  
S. Amnt[z] - 1 

 

S. Amnt[z]  
= 0 

z = z + 1 

E. Amnt[w] = 
E. Amnt[w] - 1 

E. Amnt[w]  
= 0 

w =  
w + 1 

Num = 
Num + 1 

Num < 
Machs 

END 

Count = Count 
+ S. Amnt [z] 

j < Machs 

Num = 
Machs 

Num < 
Count 

Yes 

Yes 

Yes 

No 

Yes 

Yes 

No 

Yes 

Yes 

Yes 

Yes 

No 

No 

No 

No 

No Yes 

No 

No No 

No 

Yes 
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Table 6.6: Number of times each integer exists in the solution 

Integer Existence (How 

many times?) 

Short/ Excess/ 

Legal 

Num of times in 

excess/shortage 

1 7 Excess  1 

2 4 Short  2 

3 9 Excess  3 

4 6 Legal  0 

5 6 Legal  0 

6 4 Short  2 

 

Step 2: As the frequency of existence of some integers exceeds (excess) the limit 

(total number of machines) and in some cases it is less than (short), therefore 

it shows that the solution is not legal and repair is required. 

 

Step 3: Now we are aware about the number of times each integer exists in the 

solution i.e. about their excess and shortage (if any). So, information about the 

locations of those integers which exceed the limit is stored. Here one thing is 

important to mention that only those locations are considered for storage 

which are on the outer side of the portion which has been crossed over (rows 

3 & 4). The relevant information is presented in Table 6.7. 

Table 6.7: Positions of those integers which are in excess  

Positions Integers 

in excess x (Row) y (Column) 

0 2 

1 2 

2 0 

 
1 

5 3 

0 0 

0 1 

0 5 

5 1 

5 2 

 
 

3 

5 5 

Step 4: Now one by one those integers which are in shortage are selected and placed  

randomly in any of the previously stored positions as shown in Table 6.8. 
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Table 6.8: Repair work 
Randomly 
selected 
positions 

 
Integer in 
shortage 

 
Shortage 
amount 

 
Integers 
in excess 

 
Excess 
amount 

x(row) y(col) 

New value 
assigned 

to selected 
position 

1 1 1 2 2 
2 2 

0 0 2 

0 5 6 
6 2 

 
3 

 
3 

5 5 6 

 

Step 5: It is evident from Table 5.19, that step 4 has been repeated until all the 

integers, in shortage, are being placed in the solution. The repaired solution is 

shown in Table 6.9.   

Table 6.9: Repaired solution 

2 3 1 5 4 6 

4 2 2 2 5 5 

1 4 6 6 6 4 

5 4 3 3 3 1 

5 5 2 2 1 1 

4 3 3 1 6 6 

 
 

6.5.1.4.3 Mutation (Tariq et al. [2007]) 
 

In this case swap mutation is used which has been frequently used in literature. 

Here, the values of two randomly selected genes are swapped. The process is 

continued until 10% randomly selected genes of the total number of genes in 

population get mutated (Section 5.13). This process is further described in a stepwise 

manner as follows: 

i. Start with an initialized value of a variable for mutation ‘Mut’ (Mut ← 0). 

ii. Randomly select a chromosome ‘ChromK’ from the population.  

iii. Initialize the variable for columns ‘j’ (j ← 0). 

iv. Generate two random numbers ‘i & x’ between 0 and Jobs. 

v. Swap the entries ChromK[i,j] and ChromK[x,j]. 

vi. Increment the value of ‘j’ (j ← j + 1). 

vii. IF j < Machs, THEN repeat step 4 to step 6, ELSE go to next step. 

viii. Increment the value of ‘Mut’ (Mut ← Mut + 1). 

ix. IF Mut < 10% of total genes in population (Section 5.13), THEN repeat 

step 2 to step 8, ELSE go to next step. 
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x. Stop.   

The stepwise procedure for mutation described above can also be elaborated in 

the form of a block diagram representation as follows in Figure 6.7. 

 

Mutation performed in this way guarantees to generate legal offspring as 

shown in Tables 6.10 & 6.11. (Tariq et al. [2007]) 

           Table 6.10: Chrom selected    Table 6.11: Mutated chromosome 

  3 3 1 2 6 3 

4 5 1 2 5 5 

5 4 3 6 4 1 

1 4 3 3 3 4 

5 2 2 5 1 1 

4 3 6 1 6 3 

 

6.5.1.4.4 Selection: (Tariq et al. [2007]) 

A number of selection procedures are available in literature that can be used to 

select a new population from the existing one. All these selection procedures are 

actually based on inspiration from the Darwin's Evolution Theory. In roulette wheel 

selection procedure, which is very common and has been frequently used in literature, 

the selection of a chromosome into the next generation depends mainly on its fitness 

value. Therefore, a chromosome with a higher fitness value can get selected more than 

once into the next generation thus reducing the diversity of the population. The 

3 3 1 5 4 3 

4 2 1 2 5 5 

1 4 6 6 6 4 

5 4 3 3 3 1 

5 5 2 2 1 1 

4 3 3 1 6 3 

START Mut = 0 

Randomly select a 
chromosome 

(ChromK)  

j = 0 

z = ChromK[i,j] 
ChromK[i,j] = ChromK[x,j] 

ChromK[x,j] = z 
 j = j + 1 

j ˂ Machs 

Mut ˂ 10% 
of total genes 

Mut = Mut + 1 

Generate two random 
numbers i and x between 

0 and Jobs 

END 

Yes 

Yes No 

No 

Figure 6.7: Block diagram representation of mutation process 

 



 139 

frequency of this behaviour (selection of multiple copies of one chromosome) would 

increase in the coming generations as more and more similar solutions would get 

selected which may lead the algorithm to a premature convergence. On the other hand 

the method used for selection of new population is known as Stochastic Universal 

Sampling (SUS), presented by Chaperfield et al. [2001] and also used by Pohlheim 

[2005], used here for the process of selecting chromosomes in the next generation 

from the present generation. This method is used due to its nature of having minimum 

spread and displaying bias as zero. To clarify it further let us consider an example in 

which there are 10 solutions/chromosomes in a population. The fitness values, 

selection probabilities and cumulative probabilities of all the chromosomes and the 

rest of the procedure is as follows: 

Fitness values: (the fitness function values for each chromosome in the 

population) 

F = 0.81, 0.24, 0.56, 0.72, 0.31, 0.43, 0.54, 0.26, 0.62, 0.45 

Fitness sum: (the total sum of the fitness values of all the chromosomes in the 

population) 

∑F = 4.94  

Selection probability (S. Prob.): (obtained by dividing the individual fitness 

value of a chromosome in a population by the total fitness value of the population) 

S. Prob. = F/ (∑F) =  0.164,  0.049,  0.113,  0.146,  0.063,  0.087,  0.11,  0.053,  

0.126,  0.091 

Cumulative probability (C. Prob.): (obtained by continuously adding the 

fitness values for each chromosome. For example cumulative probability for first 

chromosome is its own fitness value whereas for the second chromosome it would be 

the sum of the fitness values of first two chromosomes, for the third chromosome it 

would be the sum of the fitness values of first three chromosomes and so on)   

C. Prob. = 0.164,  0.213,  0.326,  0.472,  0.535,  0.622, 0.732,  0.785,  0.838, 

1.00 
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Once the cumulative probabilities for all the chromosomes are calculated then 

a random number is generated between 0 and 1/z, where z represents the population 

size. For the above example the value of 1/z is 0.1 as there are 10 chromosomes in the 

population. Now a random number is generated in the range (0, 0.1). For example the 

number randomly generated is 0.09. Since it is less than the cumulative probability of 

first chromosome (0.164) therefore first chromosome is selected into the next 

generation. For the selection of second chromosome the value of randomly generated 

number is doubled. Since the doubled value (0.18) is between the cumulative 

probability values of first and second chromosome, therefore second chromosome is 

selected. Similarly, for the selection of third chromosome the value of the randomly 

generated number is tripled and then compared with the cumulative probability values 

and a respective chromosome is selected. This process is kept continued until all the 

members of the next generation are selected.  

The procedure shows that the chances of selection of multiple copies of one 

chromosome are less as compared to roulette wheel selection approach thus 

maintaining a reasonable diversity in population in each generation.           

  

  This method can be expressed in the form of a sequence of steps as follows: 

i. Start by initializing the values of a variable ‘Sum’ and a counter ‘z’ (Sum 

← 0, z ← 0). 

ii. Sum ← Sum + F. Value [z], where ‘F. Value [z]’ is the fitness value of 

chromosome at position z (Chromz) in the array of population. 

iii. Increment the value of ‘z’ (z ← z + 1). 

iv. IF z < Pop Size, THEN repeat step 2 and step 3, ELSE go to next step. 

v. Initialize the counter ‘z’ (z ← 0). 

vi. Calculate selection probability for Chromz (Sel. Prob [z] = F. Value [z] / 

Sum). 

vii. Increment the value of ‘z’ (z ← z + 1).  

viii. IF z < Pop Size, THEN repeat step 6 and step 7, ELSE go to next step. 

ix. Sum ← 0 AND z ← 0. 

x. Sum ← Sum + Sel. Prob [z]. 

xi. Assign the value of Sum to the cumulative probability of Chromz (Cum 

Prob [z] ← Sum) 
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xii. Increment the value of ‘z’ (z ← z + 1).  

xiii. IF z < Pop Size, THEN repeat step 10 to step 12, ELSE go to next step. 

xiv. Initialize the pointer ‘R’ and a variable ‘K’ (R ← 0 AND K ← 0). 

xv. Generate a random number for pointer ‘R’ between 0 and 1/ Pop Size. 

xvi. Initialize a variable ‘x’ (x ← 0). 

xvii. IF R ≤ Cum Prob [x], THEN select Chromx, ELSE IF R ≤ Cum Prob [x + 

1], THEN select Chromx+1, ELSE x ← x + 1 AND repeat step 17. 

xviii. Increment the value of ‘K’ (K ← K + 1). 

xix. IF K < Pop Size, THEN R ← R + 1/ Pop Size AND repeat step 17 and 

step 18, ELSE go to next step. 

xx. Stop. 

A block diagram representation for the above stepwise procedure can be as 

shown in Figure 6.8. 

 

 

 

START 
Sum = 0 

z = 0 
Sum = Sum +  
F. Value [z] 

z = z + 1 
z < Pop 

Size 

z = 0 

Sel. Prob [z] =  
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Cum Prob [z] 
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END 
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No 
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No 

Figure 6.8: Stochastic Universal Sampling (SUS) 
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6.5.2 Local Search Heuristic (LSH): (Tariq et al. [2007]) 

The LSH, developed during this research, is such that it carries out the local 

improvement of the best solution in each generation. The LSH is started by swapping 

the first two entries (entry in first column and first row with entry in second column 

and first row) in the solution that is undergoing local improvement. If this swapping 

causes a decrease in the actual Makespan or it remains the same then this change is 

stored, else the previous arrangement is restored. After this the position of the same 

gene is swapped with the next gene which is in first row and third column and so on. 

Once swapping with all the genes in first row has been carried out then the same 

procedure for the same gene is kept continued in the second row and so on until all the 

entries in a solution are swapped with the first gene and corresponding Makespan 

values calculated.  Once the testing of a particular gene with all the genes in a solution 

is completed then the same is repeated for the next gene and this process kept 

continued for 50% of the Machs×Jobs times. The justification for this limit 

(50%×Machs×Jobs times) is that because of the fact that once first half of the 

operations are scheduled then by that time a pattern has been developed and therefore 

the scheduling of the last half of the operations does not affect the value of the 

Makespan of the problem. Relevant details are given in the following and complete 

procedure of local improvement for one gene is shown in Table 6.14.     

In spite of the fact that LSH displayed considerable effectiveness; it still 

needed the abilities of GA as a far as searching a better solution is concerned which 

can be further transformed into the best. The LSH, developed during this research, is 

clearly explained with the help of a stepwise procedure as described below: 

i. Start by initializing a counter ‘Count’ (Count ← 0). 

ii. Initialize counters for rows ‘a’ and columns ‘b’ (a ← 0 AND b ← 0). 

iii. Initialize counters for rows ‘i’ and columns ‘j’ (i ← 0 AND j ← 0). 

iv. IF Best [i,j] = Best [a,b], THEN b ← b + 1 AND go to step 9, ELSE go to 

next step. 

v. Swap the entries Best [i,j] and Best [a,b]. 

vi. Decode the solution and calculate its Makespan ‘C’. 

vii. IF C < Cmax, where Cmax is the initial Makespan of the solution, THEN 

store the change AND i ← a, j ← b, ELSE reverse the swapped entries. 
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viii. Increment the value of ‘b’ (b ← b + 1). 

ix. IF b < Machs, THEN repeat step 4 to step 8, ELSE go to next step. 

x. a ← a + 1 AND b ← 0. 

xi. IF a < Jobs, THEN repeat step 4 to step 10, ELSE go to next step. 

xii. Count ← Count + 1. 

xiii. IF Count < ½ (Machs × Jobs), THEN repeat step 2 to step 12, ELSE go to 

next step. 

xiv. Stop. 

This stepwise procedure can also be expressed in the form of a block diagram 

representation as shown in Figure 6.9.  

 

To explain the procedure of LSH, developed during this research, a numerical 

example of order 4×4 is generated randomly as shown in Table 6.12. 

 

START Count = 0 i=0, j=0 

 
 

Best[i,j] = 
Best[a,b] 

Swap Best[i,j] 
and Best[a,b] 

Decode and 
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“C” 

 
 

C < Cmax 

Store change 
i=a, j=b 

b=b+1 

 
 

b < Machs 

a =a+1 
b = 0 
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Count=Count+1 

 
 
 

Count<1/2(Machs× 
Jobs) 

END 
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No 

No 

No 
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Figure 6.9: Local Search Heuristic (LSH) (Tariq et al. [2007]) 

a=0, b=0 
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Table 6.12: A randomly generated 4×4 problem 

Operations (Machine, time) 

1 2 3 4 

 

 

Jobs (m, t) (m, t) (m, t) (m, t) 

1 3,5 2,7 4,6 1,4 

2 2,6 1,8 3,7 4,5 

3 4,9 3,3 1,4 2,2 

4 1,5 4,8 2,6 3,3 

 

The problem is required to be solved with the objective of minimizing the 

Makespan (Cmax). to accomplish this objective the data of the problem is fed into a 

computer code developed in accordance with the methodology explained in Figure 

5.17. In its first generation GA developed the following best solution (Table 6.13). 

Table 6.13: Best chromosome after 1
st
 generation of GA 

2 2 2 4 

4 3 4 3 

3 4 1 2 

1 1 1 3 
 

The Makespan of the solution presented in Table 6.13= Cmax = 33. After being 

decoded the Gantt Chart representation of the solution is as shown in Figure 6.10. 

 

The best solution (Table 6.13) presented by GA in its first generation is now 

further locally improved with the help of LSH. For the first gene of the solution the 

complete LSH procedure is as shown in Table 6.14.  
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st
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GA 
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Table 6.14: Complete stepwise procedure of local improvement for one gene 

Solution 

Showing 

selected 

genes  

Selected 

Genes 

are 

equal? 

Interchange 

of selected 

genes 

C Comparison 

of C and 

Cmax 

Remarks Solution 

after the 

change is 

validated  

2 2 2 4 

4 3 4 3 

3 4 1 2 

1 1 1 3 

 
 

Yes 

 
 
- 

 
 
- 

 
 
- 

 
Since genes 
are equal so 
move to next 

gene 

 

2 2 2 4 

4 3 4 3 

3 4 1 2 

1 1 1 3 

 

2 2 2 4 

4 3 4 3 

3 4 1 2 

1 1 1 3  

 
 

Yes 

 
 
- 

 
 
- 

 
 
- 

 
Since genes 
are equal so 
move to next 

gene 

 

2 2 2 4 

4 3 4 3 

3 4 1 2 

1 1 1 3  
 

2 2 2 4 

4 3 4 3 

3 4 1 2 

1 1 1 3  

 
No 

 

4 2 2 2 

4 3 4 3 

3 4 1 2 

1 1 1 3  

 
42 

 
Cmax < C 

No 
improvement 
so change is 

reverted 

 

2 2 2 4 

4 3 4 3 

3 4 1 2 

1 1 1 3  
 

2 2 2 4 

4 3 4 3 

3 4 1 2 

1 1 1 3  

 
No 

 

4 2 2 4 

2 3 4 3 

3 4 1 2 

1 1 1 3  
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Cmax = C 

 
Change is 

stored 

 

4 2 2 4 

2 3 4 3 

3 4 1 2 

1 1 1 3  
 

4 2 2 4 

2 3 4 3 

3 4 1 2 

1 1 1 3  

 
No 

 

4 2 2 4 

3 2 4 3 

3 4 1 2 

1 1 1 3  
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improvement 
so change is 

reverted 
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2 3 4 3 
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1 1 1 3  
 

4 2 2 4 
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3 4 1 2 

1 1 1 3  

 
No 

 

4 2 2 4 

4 3 2 3 
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1 1 1 3  
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No 
improvement 
so change is 

reverted 
 

 

4 2 2 4 

2 3 4 3 

3 4 1 2 

1 1 1 3  
 

4 2 2 4 

2 3 4 3 

3 4 1 2 

1 1 1 3  

 
No 

 

4 2 2 4 

3 3 4 2 

3 4 1 2 

1 1 1 3  
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Cmax < C 

No 
improvement 
so change is 

reverted 
 

 

4 2 2 4 

2 3 4 3 

3 4 1 2 

1 1 1 3  
 

4 2 2 4 

2 3 4 3 

3 4 1 2 

1 1 1 3  

 
No 

 

4 2 2 4 

3 3 4 3 

2 4 1 2 

1 1 1 3  
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Cmax = C 

 
Change is 

stored 

 

4 2 2 4 

3 3 4 3 

2 4 1 2 

1 1 1 3  
 

4 2 2 4 

3 3 4 3 

2 4 1 2 

1 1 1 3  

 
No 

 

4 2 2 4 

3 3 4 3 

4 2 1 2 

1 1 1 3  

 
33 

 
Cmax = C 

 
Change is 

stored 

 

4 2 2 4 

3 3 4 3 

4 2 1 2 

1 1 1 3  
 

4 2 2 4 

3 3 4 3 

4 2 1 2 

1 1 1 3  

 
No 

 

4 2 2 4 

3 3 4 3 

4 1 2 2 

1 1 1 3  

 
33 

 
Cmax = C 

 
Change is 

stored 

 

4 2 2 4 

3 3 4 3 

4 1 2 2 

1 1 1 3  
 

4 2 2 4 

3 3 4 3 

4 1 2 2 

1 1 1 3  

 
Yes 

 
 
 
 
 
 

 
- 

 
- 

 
- 

 
Since genes 
are equal so 
move to next 

gene 

 

4 2 2 4 

3 3 4 3 

4 1 2 2 

1 1 1 3  
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4 2 2 4 

3 3 4 3 

4 1 2 2 

1 1 1 3  

 
No 

 

4 2 2 4 

3 3 4 3 

4 1 1 2 

2 1 1 3  

 
40 

 
Cmax < C 

No 
improvement 
so change is 

reverted 
 

 

4 2 2 4 

3 3 4 3 

4 1 2 2 

1 1 1 3  
 

4 2 2 4 

3 3 4 3 

4 1 2 2 

1 1 1 3  

 
No 

 

4 2 2 4 

3 3 4 3 

4 1 1 2 

1 2 1 3  

 
33 

 
Cmax = C 

 
Change is 

stored 

 

4 2 2 4 

3 3 4 3 

4 1 1 2 

1 2 1 3  
 

4 2 2 4 

3 3 4 3 

4 1 1 2 

1 2 1 3  

 
No 

 

4 2 2 4 

3 3 4 3 

4 1 1 2 

1 1 2 3  

 
33 

 
Cmax = C 

 
Change is 

stored 

 

4 2 2 4 

3 3 4 3 

4 1 1 2 

1 1 2 3  
 

4 2 2 4 

3 3 4 3 

4 1 1 2 

1 1 2 3  

 
No 

 

4 2 2 4 

3 3 4 3 

4 1 1 2 

1 1 3 2  

 
38 

 
Cmax < C 

No 
improvement 
so change is 

reverted 
 

 

4 2 2 4 

3 3 4 3 

4 1 1 2 

1 1 2 3  
 

Once process for the first gene is completed it is restarted, for the new first gene, all 

over again and the same is kept continued for 50%×Machs×Jobs, times. After the 

procedure is completed the solution locally improved by LSH is presented Table 6.15: 

Table 6.15: Solution after being locally improved 

2 1 3 1 

3 1 3 2 

4 4 1 4 

4 2 3 2 
 

Makespan = Cmax = 28 

 
The solution shown in Table 6.15 can be represented on a Gantt chart as 

shown in Figure 6.11, with a Makespan of 28 (17.85% improvement). 

 

 

Time 

4 2 3 

2 1 4 3 

1 

1 3 2 4 

3 4 1 2 

5 10 15 20 25 
28 

30 

1 

2 

3 

4 

Machines 

Figure 6.11: Schedule developed for the solution improved by LSH 
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6.6 Numerical Example of Job-Shop Scheduling: (Tariq et al. [2007]) 

To further justify the effectiveness of the approach developed for JSSP during 

this research a benchmark numerical example (Fisher & Thompson [1963]) is solved 

here. Information about the processing sequence and corresponding processing times 

is given in Table 6.16. 

A legal schedule can be defined as that schedule in which the sequence, in 

which a job is to be processed on different machines, is to be maintained. This 

actually means that there must not be two operations scheduled on one machine at one 

time, similarly two operations of one job must not be scheduled on two different 

machines at one time.  

Table 6.16: A 6 × 6 bench mark problem [Fisher & Thomson (1963)] 

Operations (Time, Machine) 

1 2 3 4 5 6 

 

 

Jobs (t, m) (t, m) (t, m) (t, m) (t, m) (t, m) 

1 1,3 3,1 6,2 4,7 3,6 6,5 

2 8,2 5.3 10,5 6,10 10,1 4,4 

3 5,3 4,4 8,6 1,9 1,2 7,5 

4 5,2 5,1 5,3 4,3 8,5 9,6 

5 9,3 3,2 5,5 6,4 3,1 1,4 

6 3,2 3,4 9,6 1,10 4,5 1,3 
 

The objective is to solve the problem while minimizing the Makespan. In 

addition to Makespan there are a number of other performance measures but 

Makespan has been widely used as being simple and easy to implement.   

The problem presented in Table 5.27 is loaded into a computer code based on 

the above described methodology (Figure 6.1) and developed in AM (Applications 

Manager, 2001). On completion of first iteration (first generation) the optimum result 

is obtained and is shown in Table 6.17, whereas, the Gantt chart representation of the 

best solution is given in Figure 6.12. 
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Table 6.17: Best Chromosome (Tariq et al. [2007]) 

1 6 2 1 3 3 

2 1 5 4 6 3 

4 5 3 6 2 1 

3 3 4 2 6 2 

2 5 4 5 5 5 

1 6 4 1 4 6 

Makespan = 55 time units. 

 

6.7 Sensitivity Analysis: 

 In order to carryout an analysis to determine the sensitivity of the hybrid GA 

developed for JSSP during this research a similar approach, described in Section 5.7, 

is adopted. For the purpose of this analysis a benchmark problem from Fisher & 

Thompson [1963] of order 10×10 is elected and solved for various: sizes of 

population, number of generations, mutation and crossover rates. Those values, of all 

these parameters, that resulted in minimum solution gape percentage are chosen to be 

used for all the other test problems.   and finally those values of the parameters are 

selected at which the algorithm achieves the minimum percentage solution gap for the 

problem. The sensitivity of the algorithm against variations in the number of 

generations, population size, rate of crossover and mutation is presented in Figures 

6.13, 6.14, 6.15 and 6.16 present the variation in percentage solution gape against 

variations of different GA parameters.   

Figure 6.12: Schedule developed after decoding the best Chrom. (Tariq et al. [2007]) 
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Figure 6.13 shows that in a total number of 100 generations the minimum 

percentage solution gap is obtained. Further, as far as analysis regarding the 

population size, crossover and mutation rates are concerned that is presented in 

Figures 6.14, 6.15, 6.16 respectively. The analysis, on the whole, shows that a 

minimum value for the percentage solution gape is achieved for generations = 100, 

Population size = 75, crossover rate = 0.6 and mutation rate = 0.1.  

 
Number of generations = 100, Crossover rate = 0.6, Mutation rate = 0.1 

 Figures 6.15 and 6.16 present an analysis regarding crossover and mutation 

rates while using population size as 75 and a total number of generations as 100.  
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Figure 6.14: Effect of population size on %age Solution Gap 
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Number of generations = 100, Population size = 75, Mutation rate = 0.1 

 
Number of generations = 100, Population size = 75, Crossover rate = 0.6 

 It can be concluded from the analysis, about different GA parameters, 

presented above that for the satisfactory performance of the proposed algorithm the 

population size should be 75, the number of generation should be kept at 100, the 

crossover and mutation rates should be maintained at 0.6 and 0.1 respectively.   

6.8 Combined Methodology for Operational Design of a CMS: 

According to Wemmerlov and Hyer [1987] while designing a CMS several 

structural and operational issues must be taken into consideration. The first and most 

important task in the implementation of CM is the cell formation - grouping of parts 

into families and corresponding machines into cells. Wemmerlov and Hyer [1987] 

also pointed out that once the Machine-Part grouping has been carried out then the 

2.0 

%age 
solution 

gap 

1.0 

Mutation rate 

0.1 0.09 0.08 0.07 0.06 0.05 
0 

Figure 6.16: Effect of mutation rate on %age Solution Gap 
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Figure 6.15: Effect of crossover rate on %age Solution Gap 
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next step must be scheduling of the system and it is the job of the manufacturing 

engineer or operations manager to address the issue of allocating operations on each 

machine. This shows that carrying out an operational design of a CMS is more 

important rather than simply providing solution for the cell formation problem, as this 

would make an approach more practically useful.  

As described above, operational design of a CMS consists of the following 

two steps:  

1. CMS Design (Machine-Part grouping) 

2. Scheduling of the system in a similar manner as Job-Shop scheduling. 

Therefore, to carry out the operational design of CMS, the above two steps 

were followed and two separate tools have been developed: one for the Machine-Part 

grouping and another for scheduling of the system. The effectiveness of both the tools 

has been separately tested, verified and validated through a number of bench mark 

problems from literature. Since both the approaches have been found working 

satisfactorily, therefore this is the stage where they are Combined so that they can 

operate in a sequence. 

  In Figure 6.17 a block diagram representation for the operational design of a 

CMS is shown. A close look at the figure reveals that it is a combination of the two 

methodologies (Machine-Part grouping and scheduling of JSSP) described above.  

Figure 6.17 also shows that the output of the Machine-Part grouping tool is provided 

as an input to the Job-Shop scheduling tool.  
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 There are two main outputs of the program. First output is obtained from the 

Machine-Part grouping portion (the upper half of Figure 6.17) and that is the final 

Machine-Part incidence matrix which is in block-diagonalized form. The second 
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Figure 6.17: Combined Methodology for operational design of a CMS 
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output is given by the scheduling part (the lower half of Figure 6.17) and is in the 

form of a complete production schedule providing details about each operation of a 

job i.e. at what time and on which machine it is going to be performed.  

6.9 Numerical Example of Combined Model 

 To further elaborate the combined working of the two methodologies, 

described previously in this chapter, let us select a grouping problem from literature 

(King and Nakornchai [1982]) and solve it with the help of the combined 

methodology being proposed here (Figure 6.17). The initial Machine-Part incidence 

for the problem is as shown in Table 6.18. 

Table 6.18: Machine-Part incidence matrix (King and Nakornchai [1982])  

Machines 

Parts 1 2 3 4 5 

1 0 1 1 0 1 

2 1 0 0 1 0 

3 0 1 1 0 0 

4 1 0 0 1 0 

5 1 0 0 0 1 

6 1 0 1 1 0 

7 0 0 1 0 1 

The above initial Machine-Part incidence matrix is provided as an input along 

with the information about the total number of cells (two) that the system is to be 

divided into, to the Machine-Part grouping tool (hybrid GA based approach for 

Machine-Part grouping). The best result was obtained in first generation. The 

chromosome representing the best solution is as shown below: 

Best [i] = [2 1 1 2 1    1 2 1 2 2 2 1] 

The decoded form of the above result is a block-diagonalized form of the initial 

Machine-Part incidence matrix, as shown in Table 6.19. 
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Table 6.19: Final Machine-Part matrix  

Machines 

Parts 2 3 5 1 4 

1 1 1 1 0 0 

3 1 1 0 0 0 

7 0 1 1 0 0 

2 0 0 0 1 1 

4 0 0 0 1 1 

5 0 0 1 1 0 

6 0 1 0 1 1 

Using (5.4) (5.5) (5.7) and (5.2), respectively, the following can be calculated. 

The total number of 1’s in the Machine-Part incidence matrix (N1) = 16 

Total number of 0’s inside the block diagonal ( in
N0 ) = 3 

Total number of 1’s outside the block diagonal ( outN1 ) = 2 

%68.737368.0
316

216
GE

01

11 ==
+

−
=

+

−
=

in

out

NN

NN
 

Once the Machine-Part grouping phase is completed then information about 

the processing sequence and processing time is to be provided by the user. Here, for 

convenience, the processing sequence for each job and the processing time for each 

operation are generated randomly, as shown in Table 6.20 and Table 6.21, 

respectively.  

Table 6.20: Processing sequence for each job  

Operations 

Jobs 1 2 3 4 5 

1 1 5 2 3 4 

2 2 4 1 5 3 

3 4 2 1 5 3 

4 4 2 3 1 5 

5 1 2 3 5 4 

6 4 2 3 1 5 

7 4 3 1 2 5 
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Table 6.21: Processing time for each operation  

Operations 

Jobs 1 2 3 4 5 

1 0 19 11 19 0 

2 0 13 13 0 0 

3 0 19 0 0 11 

4 19 0 0 16 0 

5 10 0 0 18 0 

6 18 0 12 11 0 

7 0 18 0 0 18 
Processing time is randomly generated from an interval of (10,20) 

Though all the values in Table 6.20 and Table 6.21 are randomly generated, but being 

displayed on screen (in program) in the form of input fields, the user would be having 

an opportunity to change these values as per the processing requirements of jobs in 

the system. Another point that one can argue about is that according to Table 6.20 

there are certain operations for each job on certain machines which are mentioned in 

the sequence but according to the Machine-Part incidence matrix, jobs do not even 

have those operations for example: as per Table 6.20 Job 1 has its 1st and 5th operation 

on Machine 1 and Machine 4, whereas according to the Machine-Part incidence 

matrix (Table 6.18) Job 1 does not even have any operation on these Machines (1 and 

4). The reason for such anomaly is that the hybrid GA based tool for scheduling of the 

system is in fact developed for the Job-Shop system, where each job has an operation 

on each machine. Therefore while providing information about the operation sequence 

of each job, those machines must also be included in the sequence on which that job 

does not even have any operation. However, the computer code, initially developed 

for the scheduling of JSSP, has been modified to exclude such operations by assigning 

a processing time of zero to all such operations and processing time for all the other 

operations are randomly generated between 10 and 20, as shown in Table 6.21.  

The information about total number of jobs, total number of machines, 

processing sequence, and corresponding processing times is provided as an input to 

the scheduling tool (hybrid GA for JSSP), described in Section 5.11. In order to save 

computational effort a Lower Bound (LB) value for the Makespan is calculated, as 

shown in Table 6.22 and after each generation the minimum Makespan value is 

compared with it. If at any point, before reaching the maximum number of 

generations, the LB value is reached then further search is stopped. 
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Table 6.22: Calculation of Lower Bound (LB) 

Machines 

Jobs 1 2 3 4 5 Sum of rows 

1 0 11 19 0 19 49 

2 13 0 0 13 0 26 

3 0 19 11 0 0 30 

4 16 0 0 19 0 35 

5 10 0 0 0 18 28 

6 11 0 12 18 0 41 

7 0 0 18 0 18 36 

Sum of columns 50 30 60 50 55  

Lower Bound (LB) = 60 

Although in certain problems, the LB cannot be achieved because of complex 

processing sequence, but still it is an ideal target that keeps the search for best 

Makespan going and in certain cases compels the algorithm to utilize the maximum 

number of generations. 

 Now, allowing the program to run through the maximum number of 

generations (100) while keeping in check the LB value, the best solution obtained on 

termination is presented in Table 6.23. 

Table 6.23: Chromosome/solution after 1
st
 generation 

7 1 7 2 3 

6 6 4 7 1 

6 5 4 4 4 

3 3 6 2 3 

4 6 1 2 7 

2 5 5 5 3 

7 1 5 2 1 

Makespan = 70 time units  

Using the decoding procedure presented in Figure 6.3, the following Gantt chart 

representation (Figure 6.18), for the schedule encoded in the chromosome shown in 

Table 6.23, can be developed. 
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 Although the LB value is 60, the Makespan displayed in Figure 5.34 is 70. 

This does not mean that the result cannot be optimum. Figure 6.18 shows that except 

for Machine 1, the waiting time for all the other machines is zero. Machine 1 has a 

total waiting time of 20 time units, because of the intercellular move of part 6. Part 6 

has its 2nd operation on Machine 3, for which it has to travel from Cell 2 to Cell 1 and 

back to Cell 1 for its third operation.   

The distinguishing feature of the above combined solution approach is that not 

only a grouping solution is provided like most of the techniques available in literature, 

but a solution for the scheduling part of the problem is also provided which definitely 

makes this technique more useful in practice. 

6.10 Summary:  

 Since the problem of operational design of a CMS can be broadly categorised 

as the Machine-Part grouping problem and the cell scheduling problem, therefore the 

solution methodology, developed during this research, has also been divided into two 

main portions.  In the first portion (Chapter 5) the Machine-Part grouping problem is 

solved, whereas in second portion (This Chapter) solution for the cell scheduling 

problem is provided. Separate tools have been developed for both the portions and 

their effectiveness have also been validated through a number of benchmark problems 

from literature (details available in the Next Chapter). 

This Chapter has specifically provided a detailed description of the tool 

developed for solving the cell scheduling problem, based on the principles of JSSP, 

Figure 6.18: Schedule developed after decoding the best Chrom. 
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and then its combination with the tool for Machine-Part grouping which has been 

described in detail in Chapter 5. A similar solution approach, as in the case of 

Machine-Part grouping, has been adopted for solving the JSSP. Here also, GA is 

combined with an LSH using multipoint crossover, swap type mutation, and 

Stochastic Universal Sampling (SUS) as the selection procedure. The best solution in 

each generation is subjected to LSH provided that it has not been previously subjected 

to it. For better understanding of the programming logic each step of the algorithm is 

clearly explained both with the help of flow diagram and stepwise procedure. The 

methodology is further elaborated by solving a benchmark problem with the help of 

the proposed algorithm. To justify the values of the GA parameters (crossover = 60%, 

mutation = 10%, population size = 75, number of generations = 100) a sensitivity 

analysis is also presented.  

 After separate development, testing and validation of both the tools, they have 

been finally combined with each other. The combination of two approaches is carried 

out in such a manner that the output of Machine-Part grouping is used as an input by 

the cell scheduling part. The distinguishing feature of this combination is that it not 

only provides solution for the Machine-Part grouping problem but also solves the cell 

scheduling problem. It makes this approach more useful in practice as compared to all 

those design approaches which consider the CMS design problem as only a Machine-

Part grouping problem.             
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CHAPTER 7 
 

RESULTS AND DISCUSSIONS 

7.1 Introduction: 

 This chapter presents testing and validation of the two models (hybrid GA for 

Machine-Part grouping and hybrid GA for JSSP), developed during this research and 

described in Chapter 5 and 6. Regarding testing and validation of the models, details 

of the selected benchmark problems, their solutions, analysis of results and 

comparison with other techniques are described in detail in this chapter. This chapter 

also provides an insight, as far as the combined working of the two tools is concerned, 

in the form of an analysis based on results of some problems which are solved by the 

combined approach i.e. first Machine-Part grouping and then cell scheduling.      

7.2 Performance and Analysis of Hybrid GA for Machine-Part Grouping: 

 To check the performance of the hybrid model developed during this research 

for Machine-Part grouping, a set of 36 different benchmark problems have been 

selected from literature. The selected problems are of variable sizes as far as their 

Machine-Part incidence matrices are concerned. This is done deliberately so that 

performance of the proposed approach can be tested on different data sets.   

The matrix size of each problem and its source is mentioned in Table 7.1. 

Table 7.1: Selected problems from literature (Tariq et al. [2006] & [2009]) 

S/No. Source Machs×Jobs Matrix size 

1 King and Nakornchai [1982] 5×7 35 

2 Waghodekar and Sahu [1984] 5×7 35 

3 Seifoddini [1989] 5×18 90 

4 Kusiak [1992]  6×8 48 

5 Kusiak and Chow [1987] 7×11 77 

6 Boctor [1991]   7×11 77 

7 Seiffodini and Wolfe [1986] 8×12 96 

8 Chandrasekharan and Rajagopalan [1986a] 8×20 160 

9 Chandrasekharan and Rajagopalan [1986b] 8×20 160 

10 Fernando and Mauricio [2002] 9×11 99 

11 Mosier and Taube [1985a] 10×10 100 

12 Chan and Milner [1982] 10×15 150 

13 Askin and Subrammanian [1987] 14×23 322 

14 Stanfel [1985]  14×24 336 
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15 McCormick et al. [1972] 16×24 384 

16 Srinivasan et al. [1990] 16×30 480 

17 King [1980] 16×43 688 

18 Carrie [1973] 18×24 432 

19 Mosier & Taube [1985b] 20×20 400 

20 Kumar et al. [1986]  20×23 460 

21 Carrie [1973]  20×35 700 

22 Boe and Cheng [1991] 20×35 700 

23 Chandrasekharan & Rajagopalan [1989]-1 24×40 960 

24 Chandrasekharan & Rajagopalan [1989]-2 24×40 960 

25 Chandrasekharan & Rajagopalan [1989]-3 24×40 960 

26 Chandrasekharan & Rajagopalan [1989]-5 24×40 960 

27 Chandrasekharan & Rajagopalan [1989]-6 24×40 960 

28 Chandrasekharan & Rajagopalan [1989]-7 24×40 960 

29 McCormick et al. [1972] 27×27 729 

30 Carrie [1973]  28×46 1,288 

31 Kumar and Vannelli [1987] 30×41 1,230 

32 Stanfel [1985] 30×50 1,500 

33 Stanfel [1985]  30×50 1,500 

34 King & Nakornchai [1982] 30×90 2,700 

35 McCormick et al. [1972]  37×53 1,961 

36 Chandrasekharan & Rajagopalan [1987] 40×100 4,000 

 Table 7.1 can also be interpreted in the form of a graphical representation as 

shown in Figure 7.1. It clearly shows the variation from a minimum value of 35 

(product of total number of machines and total number of parts) to a maximum value 

of 4000, hence covering a reasonably wide range of different problem sizes and 

providing enough challenge to the algorithm to prove its effectiveness.  
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Figure 7.1: Variation in size of Machine-Part incidence matrix   



 161 

 After solving all the problems listed in Table 7.1, the GE reported for the same 

problems by the following techniques is compared with the GE obtained during this 

research. (Tariq et al. [2006] & [2009]) 

a) ZODIAC (Chandrasekharan and Rajagopalan, [1987]) 

b) GRAFICS (Srinivasan and Narenderan, [1991]) 

c) CA - Clustering algorithm (Srinivasan, [1994]) 

d) GATSP - Genetic algorithms (Cheng et al. [1998]) 

e) GA - Genetic algorithm (Onwubolu & Mutingi, [2001]) 

f) GP- Genetic programming (Dimopoulos & Mort, [2001]) 

g) Hyb. GA - Hybrid GA (Fernando and Mauricio, [2002]) 

Best results for the selected benchmark problems from literature, as far as the 

GE values are concerned, have been reported by the above listed techniques. 

Therefore in order to verify the effectiveness of the approach developed during this 

research a comparison, based on the selected benchmark problems,  is carried out with 

the above listed techniques and is presented in Table 7.2. Table 7.2 also displays the 

CPU time for each problem. This time is recorded while solving these problems on a 

machine having 1.86 GHz Intel® T2130 processor with a RAM of 1.0 GB.    

Table 7.2: Test results (GE values) of the selected problems from literature (Tariq 
et al. [2006] & [2009]) 

No. ZODIAC 

[1987] 

GRAFICS 

[1991] 

CA 

[1994] 

GA 

TSP 

[1998] 

GP 

[2001] 

GA 

[2001] 

Hyb. 

GA 

[2002] 

Gens This 

Approach 

Gens CPU 

Time 

(Seconds) 

1 73.68 73.68 - - - - 73.68 1 73.68 1 0.42 

2 56.52 60.87 - 68.00 - 62.50 62.50 1 69.57 1 0.51 

3 77.36 - - 77.36 - 77.36 79.59 1 79.59 1 0.67 

4 76.92 - - 76.92 - 76.92 76.92 1 76.92 1 0.56 

5 39.13 53.12 - 46.88 - 50.00 53.13 6 58.62 1 2.60 

6 70.37 - - 70.37 - 70.37 70.37 1 70.37 1 0.89 

7 68.30 68.30 - - - - 68.30 1 68.30 1 1.40 

8 58.33 58.13 58.72 58.33 58.72 55.91 58.72 2 58.72 1 18.72 

9 85.24 85.24 85.24 85.24 85.24 85.25 85.25 1 85.25 1 14.12 

10 - - - - - - 86.67 1 86.67 1 0.52 

11 70.59 70.59 70.59 70.59 - - 70.59 1 70.59 1 1.52 

12 92.00 92.00 - 92.00 - - 92.00 1 92.00 1 2.12 

13 64.36 64.36 64.36 - - - 69.86 10 70.83 1 22.64 
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14 5 65.55 - 67.44 - 63.48 69.33 1 70.51 1 3.23 

15 32.09 45.52 48.70 - - - 51.96 21 51.96 2 9.82 

16 67.83 67.83 67.83 - - - 67.83 1 67.83 1 4.02 

17 53.76 54.39 54.44 53.89 - - 54.86 1 54.86 1 11.06 

18 41.84 48.91 44.20 - - - 54.46 32 54.95 2 9.89 

19 21.63 38.26 - 37.12 - 34.16 42.96 50 43.45 8 21.48 

20 38.66 49.36 43.01 46.62 49.00 39.02 49.65 78 49.65 1 4.63 

21 75.14 75.14 75.14 75.28 - 66.30 76.14 1 76.14 1 5.06 

22 51.13 - - 55.14 - 44.44 58.07 2 58.38 1 10.29 

23 100.00 100.00 100.00 100.00 100.00 100.00 100.00 1 100.00 1 15.29 

24 85.11 85.11 85.11 85.11 85.11 - 85.11 1 85.11 1 18.47 

25 73.51 73.51 73.51 73.03 73.51 73.03 73.51 1 73.51 1 23.75 

26 20.42 43.27 51.81 49.37 - 37.62 51.85 114 52.50 1 49.11 

27 18.23 44.51 44.72 44.67 - 34.76 46.50 117 46.84 12 231.09 

28 17.61 41.67 44.17 42.50 - 34.06 44.85 75 44.85 8 143.91 

29 52.14 41.37 51.00 - - - 54.27 8 54.31 4 21.07 

30 33.01 32.86 40.00 - - - 43.85 117 46.43 7 204.83 

31 33.46 55.43 55.29 53.80 - 40.96 57.69 111 60.74 4 197.62 

32 46.06 56.32 58.70 56.61 - 48.28 59.43 113 59.66 35 1626.3 

33 21.11 47.96 46.30 45.93 - 37.55 50.51 93 50.51 35 1391.12 

34 32.73 39.41 40.05 - - - 41.71 45 44.67 9 823.52 

35 52.21 52.21 - - - - 56.14 1 59.60 8 55.37 

36 83.66 83.92 83.92 84.03 84.03 83.90 84.03 3 84.03 1 270.76 

(All the rows having a grey coloured background, show that the results have been further improved)  

 Analysing the results presented in Table 7.2, it can be clearly seen that the 

approach developed during this research has given GE for all the benchmark problems 

which is either greater than or equal to the previously reported values and that is why 

it would not be an overstatement to say that this research has outperformed all the 

previous research approaches in terms of accuracy and consistency. By accuracy we 

mean the value of GE which for none of the benchmark problems is less than the 

previously reported values, whereas in 15 problems (41.67% of the total tested 

problems) it is even better than the previously reported results. On the other hand by 

consistency we mean that this behaviour of giving accurate results remains consistent 

throughout i.e. right from the first problem till the 36th problem, whereas all the other 

techniques, used here for comparison, loose their accuracy as the problem size 

increases. It is evident from Table 7.2 that out of the first 18 results (where the 

Machine-Part incidence matrix size varies from 35 to 688 entries) only 5 (27.77%) 



 163 

have been further improved whereas in the last 18 results (where the Machine-Part 

incidence matrix size varies from 400 to 4000 entries), 10 (55.55%) results have been 

further improved. 

    A graphical representation of results presented in Table 7.2 is shown in Figure 7.2.  
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Figure 7.2: Comparison of GE obtained by this research and the best reported in 

literature 

It can be seen, both, in Table 7.2 and Figure 7.2 that the approach, developed 

during this research, have produced results which are either better or equivalent to the 

previously best reported results in literature. For 58.33% (21 problems) of the total 

tested problems (36 problems) the results are equivalent to the best reported in 

literature. For 41.67% (15 problems) the GE values obtained by this approach are 

higher than the previously reported values. Another distinguishing feature of the 

approach is that in case of 66.67% (24 problems) it took only one generation to reach 

the best value of GE which proves that the LSH developed during this research is very 

effective and it has made this approach comparatively more accurate and consistent, 

whereas the all the other approaches used here for comparison have the tendency of 

loosing accuracy as the size of the problem increases and the incidence matrices 

become more ill-structured. In Table 7.2 it can be seen that in 31.82% (7 problems) of 

the first 22 results, where the machine part incidence matrix size is less than or equal 

to 700 entries, the value of GE is higher than the previous best reported. To further 

establish this claim let us consider the results of the last 14 problems i.e. from 

problems 23 to 36 in which the matrix size is either greater than or equal to 960 
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entries (24×40), it can be very clearly observed that 57.14% (8 results) are better than 

previous bests. To dig it even further we can see that in 75 % (6 results) of the last 8 

results, where the Machine-Part incidence matrix size is either greater than or equal to 

729 entries (27×27), have displayed higher GE values. These statistics prove that the 

technique developed during this research is comparatively more consistent and is not 

much affected by the size and structure of the Machine-Part incidence matrix (Tariq et 

al. [2006] & [2009]). 

 The above improvements are because of the strategy of simultaneous 

Machine-Part grouping, used during this research, and the development and 

placement of a strong LSH at the heart of the traditional GA loop. The LSH, 

developed during this research, is organised in such a manner that it changes the 

position of a part and/or machine from one cell to another while checking any 

consequent increase in the value of GE. The procedure is started from the first gene 

and by the time it reaches the last gene a comparatively better solution, having higher 

GE, has evolved. The LSH developed during this research, though does not take all 

the available options (placing a part and/or machine in all the available cells, one by 

one) into consideration, considers enough number of options that makes it 

comparatively more effective. In comparison, the technique developed by Fernando & 

Mauricio [2002] does not group machines into cells and parts into families 

simultaneously and at the same time LSH is first used to make part families in 

accordance with the initial machine groups and then refines the machine arrangement 

into a final arrangement on the available part families. This shows that their technique 

is sequential in nature rather than simultaneous and therefore the results produced, in 

comparison to this research, are less accurate. Also, since the LSH, developed during 

this research, is applied both to the formation of machine groups and corresponding 

part families and considers larger number of options for improvement (search is not 

limited in the neighbourhood only) therefore it is more rigorous as compared to the 

one presented by Fernando & Mauricio [2002].     

A graphical representation, of the analysis being carried out in the preceding 

paragraphs, is shown in Figure 7.3, where all the problems are divided into 6 groups 

each containing 6 problems.   
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Figure 7.3: The number and percentage of problems improved 

It can be clearly seen in Figure 6.3 that the maximum number of problems 

(66.66%) are being further improved in the groups from 25 to 30 and from 31 to 36, 

where the problem size varies from 960 to 4000 entries. This shows the consistency of 

the algorithm in terms of accuracy.    

Another comparison of this approach, on the basis of the total number of 

generations required by GA to reach a maximum value, is also made with the 

technique developed by Fernando and Mauricio [2002]. A graphical representation of 

this comparison is shown in Figure 7.4.  
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Figure 7.4: Comparison (between Fernando’s work and this approach) in terms 

of the number of generations to reach the maximum value of GE for each 

problem 
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 It is clear from Figure 7.4 and Table 7.2 that the approach developed during 

this research needed less number of generations in more than 50% of the problems to 

reach the maximum value of GE, as compared to Fernando and Mauricio [2002]. On 

the other hand, for all the rest of the problems it needed an equivalent number of 

generations except at one instant (Problem 35). This clearly proves the power and 

effectiveness of the LSH being proposed here. It has already been described that this 

effectiveness is due to the fact that it (The LSH) does not limit its search to immediate 

neighbourhood. It takes a large number of options into consideration while improving 

a solution which makes it comparatively more effective. Since the LSH is placed at 

the heart of the traditional GA loop and further improves the best solution of each 

generation, therefore it reaches the optimum/near optimum GE value in comparatively 

lesser number of generations.    

 In order to further elaborate the ability of this approach to produce 

comparatively better results, percentage improvement has been calculated for each of 

the tested problems and is presented in Table 7.3. 

Table 7.3: Results in terms of percentage improvement 

Problem 

# 

Previous best  

(GE) 

This approach 

(GE) 

Percentage 

improvement 

1 73.68 73.68 0 

2 68.00 69.57 2.31 

3 79.59 79.59 0 

4 76.92 76.92 0 

5 53.13 58.62 10.33 

6 70.37 70.37 0 

7 68.30 68.30 0 

8 58.72 58.72 0 

9 85.25 85.25 0 

10 86.67 86.67 0 

11 70.59 70.59 0 

12 92.00 92.00 0 

13 69.86 70.83 1.38 

14 69.33 70.51 1.70 

15 51.96 51.96 0 

16 67.83 67.83 0 

17 54.86 54.86 0 

18 54.46 54.95 0.8997 

19 42.96 43.45 1.145 

20 49.65 49.65 0 

21 76.14 76.14 0 

22 58.07 58.38 0.5338 

23 100 100 0 
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24 85.11 85.11 0 

25 73.51 73.51 0 

26 51.85 52.50 1.254 

27 46.50 46.84 0.7312 

28 44.85 44.85 0 

29 54.27 54.31 0.074 

30 43.85 46.43 5.884 

31 57.69 60.74 5.287 

32 59.43 59.66 0.387 

33 50.51 50.51 0 

34 41.71 44.67 7.097 

35 56.14 59.60 6.163 

36 84.03 84.03 0 

 The data presented in Table 7.3 can also be displayed in the form of a 

graphical representation as shown in Figure 7.5.   
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Figure 7.5: %age improvement in result (GE) of each problem 

Table 7.3 and Figure 7.5 show that percentage improvement has been recorded 

in case of 15 (41.67%) problems. The maximum improvement (10.33%) has been 

recorded in problem 5, whereas the minimum (0.074%) has been recorded in problem 

29. However, on the average an improvement of 1.255% has been recorded.    

7.3 Statistical Analysis: (Tariq et al. [2009]) 

In order to validate the results, obtained during this research, a statistical 

analysis is presented. For this purpose the two techniques, New approach (this 

research) and Hybrid GA (Fernando & Mauricio [2002]), have been compared with 

each other using a 95% Confidence Interval (CI) for the mean difference while 

performing a Paired T-Test. It is to be noted here that zero is not included in the 
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confidence interval between the two techniques for the mean difference. This 

indicates that the two techniques are different from each other. Inconsistency of the 

data is indicated by the small p-value (p = 0.006) with H0: µ d = 0, which suggests 

that the two approaches did not perform equally rather the performance of the new 

approach (mean = 65.3222) was comparatively better than the hybrid approach (mean 

= 64.5081) as far as calculating the value of GE is concerned for the total number of 

36 problems selected form literature (Table 6.1 & Table 6.2). 

Paired T-Test and CI: Hyb.GA (Fernando & Mauricio, 2002), New Approach 

(this research) (Tariq et al. [2009]) 

Paired T for Hyb.GA - New Approach 

 

               N       Mean     StDev   SE Mean 

Hyb.GA        36    64.5081   15.1927    2.5321 

New Approach  36    65.3222   14.7703    2.4617 

Difference    36  -0.814167  1.660087  0.276681 

 

95% CI for mean difference: (-1.375859, -0.252474) 

T-Test of mean difference = 0 (vs not = 0): T-Value = -2.94: P-Value = 0.006 
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Figure 7.6: Normality test for Hybrid GA (Fernando & Mauricio [2002]) and 

New Approach (This research) (Tariq et al. [2009]) 
 

The plot of normal probabilities versus the data is the graphical output as 

shown in Figure 6.6. The departure of data from the fitted line in the extremes 

(distribution tails) can be more evidently viewed. But since the assumption of 

normality in any T-Test is of moderate importance only, therefore the P-value of the 

Anderson Darling (AD) test suggest that it is safe enough to apply the Paired T-Test, 

in spite of the fact that the data looks like departing in lower extremes from the fitted 

line.     
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Our contention is also supported by the graph obtained from the test of equal 

variances.  
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Figure 7.7: Equal Variance test for Hybrid GA and New Approach (Tariq et al. 

[2009]) 

7.4 Formation of Single Machine Cells: (Tariq et al. [2007]) 

 Some of the research works, presented in literature, advocates restriction on 

the formation of single machine cells e.g. Fernando and Mauricio [2002] discarded 

any such solutions from population in which single machine cells were formed. 

Contrary to this, it has been found during this research that the formation of single 

machine cells is in fact beneficial in terms of increase in GE and decrease in 

intercellular moves which consequently reduces the material handling cost. In order to 

show the effectiveness of allowing the formation of single machine cells an analysis is 

presented in the following Section. 

7.4.1 Numerical Example (Formation of Single Machine Cells): (Tariq et al. 

[2007]) 

To judge the effectiveness of allowing the formation of single machine cell, a 

numerical example is selected from Waghodekar and Sahu [1984]. The problem 

consists of a total number of 7 parts and 5 machines. The total number of cells to be 

developed is 2. Table 6.4 presents the initial Machine-Part incidence matrix of the 

problem. First solution for the problem is obtained while restricting the formation of 

cells that posses one machine. Afterwards the same problem is solved while allowing 

the formation of cells that posses one machine and finally the results are compared: 
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Table 7.4: The initial machine part incidence matrix (Tariq et al. [2007]) 

Machs. 

Parts 

1 2 3 4 5 

1 1 0 0 1 0 

2 0 1 0 1 1 

3 0 1 1 1 0 

4 0 1 1 1 1 

5 1 1 1 0 1 

6 1 0 1 0 1 

7 1 0 0 0 0 

 

First the algorithm is modified to restrict the formation of single machine cell. 

The solution obtained is as shown in Table 7.5: 

Table 7.5: Solution without single machine cell (Tariq et al. [2007]) 

Machines   
Parts 

1 4 2 3 5 

1 1 1 0 0 0 

7 1 0 0 0 0 

2 0 1 1 0 1 

3 0 1 1 1 0 

4 0 1 1 1 1 

5 1 0 1 1 1 

6 1 0 0 1 1 

 

 Table 7.5 shows that a total number of five 1s are outside the block diagonal. 

This means that 5 parts (2, 3, 4, 5 and 6) require processing in other cells i.e. other 

than the one to which they are allocated. Since each of these parts would be carried to 

another cell for processing and brought back afterwards, therefore the total number of 

intercellular moves would be twice the total number of 1s outside the block diagonal. 

All the relevant calculations are as follows:   

Grouping Efficacy (GE) = 62.5% 

Number of 1s outside the block diagonal = 5 

Total number of intercellular (IC) moves = 5 × 2 = 10 

Let, material handling cost per IC move = 10 units. 

So, total material handling cost for 10 IC moves = 10 × 10 = 100 units 

 Now, secondly, the algorithm is converted back to its original form i.e. 

formation of single machine cells is allowed. This time the solution, for the same 

example, obtained is as shown in Table 7.6: 
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Table 7.6: Solution with single machine cell (Tariq et al. [2007]) 

Machines  

Parts 
1 2 3 4 5 

1 1 0 0 1 0 

6 1 0 1 0 1 

7 1 0 0 0 0 

2 0 1 0 1 1 

3 0 1 1 1 0 

4 0 1 1 1 1 

5 1 1 1 0 1 

 

It can be clearly seen in Table 7.6, that this time the total number of 1s outside 

the block diagonal are 4 instead of 5. The total number of 0s inside the block diagonal 

has also decreased from 4 to 3. The net effect of this decrease in the total number 1s 

outside, and 0s inside the block diagonal is an increase in the value of GE and 

decrease in the material handling cost, as shown below:   

Grouping efficacy (GE) = 69.57% 

Number of 1s outside the block diagonal = 4 

Total number of IC moves = 4 × 2 = 8 

Total material handling cost for 8 IC moves = 8 × 10 = 80 units 

Total material handling cost saved = 100 – 80 = 20 units. 

7.4.2 Computational Results (Formation of Single Machine Cells): 

 The phenomenon, of increase in GE and decrease in material handling cost as 

a result of allowing the formation of single machine cells is not limited only to the 

example presented above. The same trend is experienced in a number of other, already 

tested, benchmark problems as well. A total number of 8 such problems (out of the 

total 36 tested problems) were found in which the final result contained single 

machine cells. The matrix size and source of these problems are as shown in Table 

7.7. 

Table 7.7: Problems with their sizes and sources (Tariq et al. [2007]) 

Pb/No. Source Size 

1 Stanfel (1985)  14×24 

2 Carrie (1973) 18×24 
3 Mosier & Taube (1985b) 20×20 

4 Boe and Cheng (1991) 20×35 

5 Chandrasekharan & Rajagopalan (1989)-5 24×40 
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6 Carrie (1973)  28×46 

7 Kumar and Vannelli (1987) 30×41 
8 Stanfel (1985)  30×50 

 Results of the problems listed in Table 7.7 are as shown in Table 7.8, in the 

following:  

Table 7.8: Results of the problems shown in Table 7.7 (Tariq et al. [2007]) 
 
 
 

Pb. 

Prev. Best 
(GE) 

without 
single 

mach cells 

Prev. Best  
(IC moves) 

without 
single mach 

cells 

This Paper 
(GE) with 

single 
mach cells 

This Paper 
(IC 

moves) 
with single 
mach cells 

Diff. in 
IC 

moves 
(d) 

Total 
IC 

moves 
saved 
(2×d) 

Cost 
Saved 
d×10 
Units 

1 69.33 09 70.51 06 03 06 60 

2 54.46 27 54.95 27 00 00 00 

3 42.96 53 43.45 48 05 10 100 

4 58.07 41 58.38 41 00 00 00 

5 51.85 47 52.50 47 00 00 00 

6 43.85 97 46.43 94 03 06 60 

7 57.69 38 60.74 29 09 18 180 

8 59.43 50 59.66 49 01 02 20 

  It can be seen in Table 7.8 and Figure 7.7, that GE has been improved in 100% 

of the problems. This is a clear indication that allowing the formation of single 

machine cells is beneficial as far as effective grouping of parts into families and 

machines into corresponding groups is concerned.  
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Figure 7.8: Comparison of GE with and without the presence of single machine 

cells  

 Increase in GE means: increase in machine utilization inside the cell (less 

number of 0s inside the block diagonal) and/or decrease in the number of intercellular 

moves (less number of 1s outside the block diagonal). It can also be seen in Table 7.8 



 173 

that in addition to increase in GE in 100% problems, a decrease in the total number of 

intercellular moves is experienced in more than 60% of the problems (5 out of 8). 

This trend of decrease in intercellular moves is shown in Figure 7.8.   
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Figure 7.9: Comparison in terms of number of intercellular moves with and 

without the presence of single machine cells 

 Reduction in intercellular moves means less material handling cost. This trend 

in the units of material handling cost saved, as a result of reduction in the total number 

on intercellular moves while allowing the formation of single machine cells, is shown 

in Figure 7.9, in the following.     
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Figure 7.10: Cost saved as a result of reduction in total number of IC moves 

7.5 Computational Results and Discussion (Hybrid GA for JSSP): (Tariq et al. 

[2007])  

Table 7.9 presents the results of the tested problems. Though the 

computational experience is very limited, it shows that in case of more than 90% 
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problems the optimum result has been achieved. This shows that the proposed 

algorithm is effective enough as far as its accuracy is concerned.  

Table 7.9: Computational Results (Hybrid GA for JSSP) (Tariq et al. [2007]) 

S/N

o 

Source Prob Size 

Jobs × 

machs 

Makespan 

found here  

Optimal 

Makespan  

%age 

Sol 

Gap 

CPU 

time 

(sec) 

Num 

of 

Gens  

1 Fisher & 
Thompson [1963] 

FT 6 6 × 6 55 55 0 1 1 

2 Lawrence, [1984] LA 1 10 × 5 666 666 0 4 1 

3 Lawrence, [1984] LA 2 10 × 5 655 655 0 328 36 

4 Lawrence, [1984] LA 3 10 × 5 597 597 0 431 38 

5 Lawrence, [1984] LA 4 10 × 5 590 590 0 13 1 

6 Lawrence, [1984] LA 5 10 × 5 593 593 0 1 1 

7 Lawrence, [1984] LA 6 15 × 5 926 926 0 4 1 

8 Lawrence, [1984] LA 7 15 × 5 890 890 0 12 1 

9 Lawrence, [1984] LA 11 20 × 5 1222 1222 0 59 1 

10 Fisher & 
Thompson [1963] 

FT 10 10 × 10 936 930 0.65 6653 90 

11 Noor [2007] CB-
JSSP1 

8×6 505 505 0 8 2 

12 Noor, [2007] CB-
JSSP2 

6×6 444 444 0 3 1 

13 Noor, [2007] CB-
JSSP3 

6×6 379 379 0 18 4 

In Table 7.9, comparatively smaller size of problems is solved. The reason is 

that this approach can handle a maximum problem size (Machs × Parts) of 100 i.e 

Machs × Parts ≤ 100. It is due to the limitation of the software (Applications Manager 

– AM), this technique has been encoded in. The software (AM) does not allow an 

array size having more than 8000 elements which means the population size for a 10 

× 10 problem cannot be more than 80. This is the reason that as the problem size 

increases (gets beyond 10 × 10) the size of population gets smaller in order to keep 

the population array’s size (Machs × Parts × Pop Size) down to 8000 elements 

(Machs × Parts × Pop Size ≤ 8000). The decrease in population size means less space 

for the algorithm to explore, which in turn means that there is every chance for the 

algorithm to get trapped on a local optimum. A reasonably larger population size 

provides a larger searching space and also maintains a satisfactory level of diversity. 

Diversity is important because it keeps the potential areas intact in a population where 

the global optimum may exist. A smaller population size can get monotonous in 

comparatively lesser number of generations thus causing the algorithm to get trapped 

on a local optimum. Now, the question arises that in spite of this limitation why the 
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technique has been encoded in AM? The answer is that we had already encoded the 

tool for Machine-Part grouping in AM and since this tool for Job-Shop scheduling 

was to be combined with that, therefore it had to be encoded in AM. Also, at that time 

this limitation was not known as it did not get discovered during the encoding of 

Machine-Part grouping technique. Besides that, the reason for selecting AM was that 

it is user friendly and can be used for quick development of applications.  

7.6 Computational Results and Discussion (Combined Model): 

  As described earlier the combined model is developed by the combination of 

two tools (hybrid GA for Machine-Part grouping problem and JSSP) in a manner that 

the output of Machine-Part grouping tool is used as input by the Job-Shop scheduling 

tool. A number of problems (20) have been selected from literature to evaluate the 

performance of the Combined model. Results (calculated values of GE and 

Makespan) of the tested problems are presented in Table 7.10, in the following.            

Table 7.10: Results of the problems solved by combined model   
S/ 

No 

Problem 

size 

(Machs×

Parts) 

Source Num 

of 

cells 

Sour

ce 

(GE) 

This 

resear

ch 

(GE) 

%age 

Impr

ovem

ent 

Proces

sing 

sequen

ce  

Proces

sing 

time 

Lo

wer 

bou

nd 

Make

span  

Cmax 

%age 

Sol 

Gap. 

1 5×5 Won & 
Currie [2006] 

2 73.33 73.33 0 Rand Rand 52 62 19.23 

2 5×7 Fernando & 
Mauricio 
[2002] 

2 73.68 73.68 0 Rand Rand 59 59 0 

3 5×7 Fernando & 
Mauricio 
[2002] 

2 62.50 69.57 11.31 Rand Rand 59 68 15.24 

4 6×6 Zhao & Wu 
[2000] 

2 76.19 76.19 0 Rand Rand 79 79 0 

5 6×7 Sunderesh & 
Heragu 
[1994] 

2 65.22 65.22 0 Source Rand 50 63 26.00 

6 6×8 Fernando & 
Mauricio 
[2002] 

2 76.92 76.92 0 Rand Rand 113 113 0 

7 6×8 etidweb.tamu
.edu/ftp/ENT
C380/Exam%
203%20Mate

rial/18-
Cellular%20
Manufacturin

g.pdf    

3 88.89 88.89 0 Rand Rand 64 64 0 

8 6×13 Arzi et al 
[2001] 

2 56.25 56.25 0 Rand Rand 116 116 0 

9 7×8 home.postech
.ac.kr/~jjujju/
data/data/ch1

3 85.00 85.00 0 Rand Rand 58 66 13.79 
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0(KimJ).ppt  

10 7×9 Yasuda & 
Yin [2001] 

2 72.73 72.73 0 Rand Rand 64 77 20.31 

11 7×10 Mungawattan
a [2000] 

3 69.23 69.23 0 Source Rand 82 82 0 

12 7×11 Fernando & 
Mauricio 
[2002] 

3 53.13 58.62 10.33 Rand Rand 77 77 0 

13 7×11 Fernando & 
Mauricio 
[2002] 

3 70.37 70.37 0 Rand Rand 55 65 18.18 

14 7×11 Amirthagades
waran & 

Arunachalam
, [2006] 

2 61.90 61.90 0 Source Source 55 55 0 

15 7×12 Mungawattan
a [2000] 

3 60.00 60.00 0 Source Rand 76 76 0 

16 7×14 Wu et al 
[2006] 

3 65.79 65.79 0 Rand Rand 77 77 0 

17 8×10 Murugan & 
Selladurai, 

[2005] 

3 81.25 81.25 0 Source Rand 74 87 17.56 

18 8×12 Fernando and 
Mauricio 
[2002] 

3 68.30 68.30 0 Rand Rand 102 102 0 

19 9×9 Gongaware 
& Ham 
[1981] 

3 74.29 74.29 0 Rand Rand 82 90 9.75 

20 10×10 Fernando and 
Mauricio 
[2002] 

3 70.59 70.59 0 Rand Rand 56 72 28.57 

 Table 7.10 shows that the Combined model not only provides solution for the 

Machine-Part grouping problem but also provides solution for the system scheduling 

problem. In the part machine grouping stage only two problems (3 & 12) have been 

further improved as far as their GE is concerned. Whereas, in the scheduling part 

eleven problems (55% of the tested problems) achieved the lower bound values which 

shows the effectiveness of the scheduling tool.  A graphical representation of the 

%age solution gap between the lower bound and the Makespan achieved, for each 

problem, by the hybrid GA based scheduling tool developed during this research is 

given in Figure 7.11. 
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Figure 7.11: %age solution gap between LB and result achieved for each 

problem 

  It can also be seen in the Table 7.10 that for 75% of the problems (15 out of 

20) the processing sequence has been randomly generated as it is not provided in the 

source.  Similarly, for 95% of the problems (19 out of 20) the processing times have 

been randomly generated. Whereas for none of the above mentioned problems, the 

values of Makespan are available in literature. This shows that this kind of solution 

approach is very rare to be found in literature as most of the researchers emphasized 

heavily on Machine-Part grouping and little attention has been paid to operational 

issues. 

7.7 Summary: 

 This chapter has presented a detailed analysis based on the testing and 

validation of the tools developed for Machine-Part grouping and Job-Shop scheduling. 

A number of benchmark problems have been selected from literature and after solving 

the results have been compared with the already reported results by different 

researchers. The results show that the Machine-Part grouping tool, besides performing 

satisfactorily has also one other aspect of allowing the formation of single machine 

cells which results in increasing GE while reducing the number of intercellular moves 

and corresponding material handling cost. On the other hand, though the tool 

developed for JSSP performed efficiently for the tested problems, listed in Table 6.9, 

but it still carries a drawback as it could not be applied to large size problems because 

of the limitations (on the size of array) of the software (AM) used for encoding. 

Finally, after separate testing and validation of the two tools (Machine-Part grouping 

problem and JSSP) they have been combined and then the combined model is also 
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tested and validated through a number of problems from literature. The problem with 

validation of the combined model is that benchmark results for the scheduling part of 

the problem are not available in literature, showing that this aspect of CMS design 

(operational) has not been thoroughly considered by researchers.      
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CHAPTER 8 
 

CONCLUSION AND FUTURE RESEARCH 

8.1 Introduction: 

 The main research objectives initially described in Chapter 1 were to develop 

separate hybrid tools for the Machine-Part grouping and Job-Shop scheduling 

problems and then finally integrate them together after verification and validation of 

the tools through a number of benchmark problems form literature. Details regarding 

the development of these tools, their integration, and validation are described in 

Chapter 5, Chapter 6 and Chapter 7. Now, this chapter presents the outcome of the 

technique developed during this research for the operational design of a CMS. In 

addition to the overall conclusion of this research some directions for the future work 

in this area are also identified.   

8.2 Conclusion of Hybrid GA for Machine-Part Grouping:  

 The hybrid GA based approach, for Machine-Part grouping, developed during 

this research, combines an LSH with GA that uses integer type representation, 

multipoint crossover and roulette wheel selection procedure. LSH is placed inside the 

GA loop in such a way that the best solution in each generation is subjected to it. 

After being locally improved the solution is placed back in population so that it can 

take part in different genetic operators like crossover and mutation and produce even 

better solutions. A computational experience (Table 7.1 & Table 7.2) shows that the 

approach developed during this research is not only accurate, as it produce results that 

are equally accurate, but also achieves this goal in comparatively lesser number of 

generations. Further, in case of some problems (41.67% of the total tested problems) 

the values of GE obtained by this approach are greater than the ones reported earlier 

as best. Another differentiating feature of the approach is that it has shown a 

consistent level of accuracy in case of all problem sizes whether small or large. On the 

contrary other approaches reported in literature and used here as benchmarks have the 

tendency to loose their accuracy and effectiveness with the increase in problem size 

and the ill-structured formation of Machine-Part incidence matrices. A statistical 

analysis has also been carried out to further verify and authenticate the effectiveness 

of this approach. 
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 Another important aspect of this technique is that, unlike many other 

approaches, here the formation of cells that posses one machine only is allowed. The 

computational experience (Table 7.7 & Table 7.8), as far as this aspect of the 

algorithm is concerned, shows that by allowing the formation of cells that contain 

only one machine a decrease can be observed in the total number of intercellular 

moves and corresponding material handling costs which results an increase in the 

value of GE.  

8.3 Conclusion of Hybrid GA for Job-Shop Scheduling: 

Similar to the approach developed for Machine-Part grouping a hybrid GA 

based technique is developed for Job-Shop scheduling by combining GA with an LSH 

while representing chromosomes as two-dimensional arrays of integers, making use of 

the swap mutation, multi-cut point crossover, and the selection approach of Stochastic 

Universal Sampling (SUS). The uniqueness of the approach, that was initially 

intended, is that each chromosome (solution) is represented in the form of a two 

dimensional array which is very rare to be found in literature. Also, a repair algorithm 

is developed that ensures the legality of each solution in a population. Here also, the 

LSH developed during this research is placed on the inner side of the GA loop and 

locally improves the best solution of each generation. The main significance of the 

LSH developed during this research is that it produces satisfactory results in 

combination with ordinary two point crossover and swap mutation. It means that the 

LSH is so effective that it has relieved considerable amount of pressure on the GA 

operators (crossover, mutation and selection) which is the main reason for satisfactory 

results.  Computational experience (Table 7.9) with the algorithm shows that in more 

than 90% (12 out of 13) of the problems the results obtained are optimum. Also, in 

77% (10 out of 13) of the total tested problems the algorithm consumed a maximum 

of four generations in reaching the optimum result which proves the effectiveness of 

the LSH which helps the algorithm to converge on to the optimum in lesser number of 

generations.    

Though the technique developed during this research seems effective, as far as 

the reported results are concerned, but it still has one major shortcoming. This 

approach can handle a maximum problem size (Machs × Parts) of 100 i.e Machs × 

Parts ≤ 100. It is due to the limitation of the software (Applications Manager – AM), 
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this technique has been encoded in. The software (AM) does not allow an array size 

greater than 8000 elements that means the population size for a 10 × 10 problem 

cannot be more than 80. This is the reason that as the problem size increases (gets 

beyond 10 × 10) the size of population gets smaller in order to keep the population 

array’s size (Machs × Parts × Pop Size) down to 8000 elements (Machs × Parts × 

Pop Size ≤ 8000). The decrease in population size means less space for the algorithm 

to explore.   

8.4 Conclusion of Combined Model (Operational Design of a CMS): 

The main motivation for this research was to develop a combined technique 

that not only provides solution for the Machine-Part grouping problem (cell design) 

but also handles the system scheduling problem which is unique in itself as both the 

problems have been dealt with separately in literature. After separate development 

and thorough validation of hybrid GA based approaches both for Machine-Part 

grouping and Job-Shop scheduling the two models have been combined with each 

other in such a way that the output of Machine-Part grouping tool is used as an input 

to the Job-Shop scheduling tool. The uniqueness of this model, as already described, 

is that it not only groups machines into cells and parts into corresponding families but 

also provides solution for the system’s scheduling problem. This combined solution 

approach is very rare to be found in literature and thus makes this technique different 

and more useful in practice as far as other competitive existing techniques, in 

literature, are concerned. A reasonable computational experience presented in Table 

7.10 shows that such problems have not been handled previously and that is the 

reason that for none of the problems solution both in terms of GE and Makespan is 

available. In 10 % of the problems (2 out of 20) the GE obtained is better than the 

previously reported results, whereas in 90% of the problems (18 out of 20) the GE 

obtained is equal to the previous best results. In 75% of the total tested problems (15 

out of 20) the processing sequence has been randomly generated as it is not provided 

in the source.  Similarly, for 95% of the problems (19 out of 20) the processing times 

have been randomly generated. Whereas for none of the above mentioned problems, 

the values of Makespan are available in literature. This shows that this kind of 

solution approach is very rare to be found in literature as most of the researchers 

emphasized heavily either on Machine-Part grouping or on system scheduling. 
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8.5 Directions for Future Research:  

 Though the techniques developed during this research both for machine part 

grouping and Job-Shop scheduling performed satisfactorily but still there is a lot of 

room for improvement. In the following sections identification and description of 

certain directions for future research are presented which can further diversify and 

improve the working of these techniques. 

8.5.1 Hybrid GA for Machine-Part grouping: 

 Following are some of the directions for future research that may lead to 

improving the hybrid GA based tool developed for the grouping machines into cells 

and parts into their corresponding families.    

1. Although the developed methodology for the design of CMS produced 

satisfactory results (better than the reported results in literature) but the 

approach was based on static conditions where it is assumed that the parts 

are already available at time zero. It is proposed that in future the dynamic 

conditions should also be considered to come up with a more realistic 

operational design of the CMS. Further it is suggested that demand, 

processing times, etc. should also be considered while designing a CMS 

as opposed to just clustering, partitioning. 

2. In order to take advantage of the available GA tool box in MATLAB and 

to overcome the shortcomings of the AM software this technique is 

proposed to be encoded in MATLAB. 

3. Other performance measures such as minimizing: material handling cost, 

work in process etc may also be included to evaluate the quality of the 

solution.  

4. To make this technique more time efficient the LSH is proposed to be 

made more intelligent by identifying and excluding some of the checks 

which can not improve GE any further. For example; by changing a 

gene’s value which results in placing the corresponding part or machine 

into a cell where it doesn’t have any operation will not improve GE. LSH 

can be made intelligent to identify such checks in advance and avoid 

wasting time in running the whole procedure for such options.  
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8.5.2 A Hybrid GA for Job-Shop Scheduling: 

 Some directions for future research to improve the working and performance 

of the hybrid GA based tool for JSSP are presented in the following: 

1. It has already been pointed out that the major deficiency in the tool 

developed during this research for solving the JSSP is its inability to 

handle large size problems which is due to the limitations of the software 

(Applications Manager – AM) it has been encoded in. Therefore it is 

suggested that the same technique may be encoded in MATLAB software 

to overcome this difficulty (array size limitation). 

2. It is further suggested that different types of crossover and mutation 

operators may be implemented for further improvement in performance.   

3. LSH is suggested to be made more intelligent to avoid such checks which 

may not be able to improve results. This would make the technique more 

time efficient.  

4. The current system is a two-part sequential system in which the first part 

deals with the cell formation and the second part finds a schedule for the 

operations carried out in the cell. The results of scheduling module are not 

used to modify the original cell formation. Therefore, it is suggested that 

the scheduling part of the algorithm should be Combined with the cell 

design so that information about the overall Makespan can be used as a 

feed back and the initial cell design (Machine-Part grouping) can be 

modified for further improvement in the overall Makespan. This would be 

a further improvement as far as integration of the model is concerned.  

5. Other performance measures such as flow time minimization, earliness, 

tardiness etc. may also be considered to check the quality of the solution.  

8.6 Summary:  

 The primary and secondary objectives set for this research have been 

successfully achieved. A hybrid GA based tool for Machine-Part grouping has been 

developed and its performance has been validated through a number of benchmark 

problems from literature. Though this tool has performed satisfactorily but still to 

further improve its performance, some recommendations have been made for future 

work. Another hybrid tool to handle the system scheduling problem has also been 
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developed. The performance of this tool has also been tested and validated through a 

number of benchmark problems from literature. Further, the shortcomings of the tool 

have been identified, and to overcome those some directions for future research have 

also been described. 
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