

COORDINATION IN

MULTI-AGENT ROBOTIC SYSTEMS

By

Omar Ahmad

Submitted to the Department of Computer Engineering
in Partial Fulfillment of the requirements for the Degree of

Master of Science
in

Computer Engineering

Thesis Advisor
Dr. Mahmood Anwar Khan

College of Electrical and Mechanical Engineering
National University of Sciences and Technology, Pakistan

2007

In the name of Allah, the most Merciful and the most Beneficent

TO MY PARENTS AND TEACHERS

i

ACKNOWLEDGEMENTS

I would like to thank my supervisor Dr. Mahmood Anwar Khan, whose sheer

interest and helping hand inculcated in me, the incentive and the dedication for this

project.

I would specially like to thank Dr. Javed Iqbal, my ex-supervisor (he went to

Australia for his post-doc), for inspiring me and guiding me along the path and helping

me out in with any problem I faced during my research. Even from so far away and busy

with his own research he found time to correct my research paper for presentation in an

IEEE conference. I am truly indebted to him.

I would like to thank my friend Ahmad Salman and Ali Hassan for giving me

valuable advice regarding my research and specially report writing.

Finally I am thankful to my parents and my wife for their support, prayers and

patience during the research work.

ii

Abstract
During last few decades, major research efforts were focused on improving the

performance of an individual mobile robot by using advanced sensors, actuators, and

intelligent control algorithms. This was mainly driven by the need to perform

increasingly complex tasks required by real world applications. As a result, individual

mobile robot has become very sophisticated.

The current trend in robotic research, both from engineering and behavioral

viewpoints, has been to move away from the design and deployment of few, rather

complex, usually expensive, application-specific robots. In fact, in the last decade the

interest has shifted towards the design and use of a large number of “generic” robots

which are very simple, with very limited capabilities and, thus, relatively inexpensive, but

capable, together, of performing rather complex tasks. In a system consisting of a set of

totally distributed agents the goal is generally to exploit the multiplicity of the elements

in the system so that the execution of a certain predetermined task occurs in a coordinated

and distributed way.

The advantages of this approach are clear and many, including: reduced costs (due to

simpler engineering and construction costs, faster computation, development and

deployment time, etc); ease of system expandability (just add a few more robots) which

in turns allows for incremental and on-demand deployment (use only as few robots as

you need and when you need them); simple and affordable fault-tolerance capabilities

(replace just the faulty robots); re-usability of the robots in different applications

(reprogram the system to perform a different task). Moreover, tasks that could not be

performed at all by a single agent become manageable when many simple units are used

instead.

I intend to design and implement a distributed multi-robot system using some multi-

robot simulation tool. Coordinating robots in a dynamic environment is a difficult task.

They must be able to carry out their contributions to the overall goal of the system

efficiently and effectively while not impeding each other. The focus of multi-robot

coordination should therefore be twofold: each robot should consider the objectives of the

iii

team while maintaining its own functional integrity. As such, the team plan should exist

at a level where it provides strategies for each robot to contribute to the team’s success.

Each robot must consider the team strategy and execute it as best it can without

compromising its ability to maintain functional operation.

There are two ways of making the robots coordinate. First is to use explicit

communication between the robots so that they may easily coordinate. But in actual

scenarios this explicit communication is usually not possible or feasible (e.g. in a hostile

environment). The other choice is to make the robots coordinate by observing their

environment or the behaviors of the other robots. This latter approach is a new concept in

recent research. I wish to study and implement this approach during the course of my

thesis work.

1

Chapter 1

Introduction

Chapter 1 Introduction

1

Chapter 1: Introduction

1.1 General
The field of distributed and cooperative robotics has its origins in the late 1980s,

when several researchers began investigating issues in multiple mobile robot systems

[5,7]. Prior to this time, research had concentrated on either single-robot systems or

distributed problem-solving systems that did not involve robotic components [3]. Since

then, the field has grown dramatically, with a much wider variety of topics addressed.

An autonomous agent is a computational system that acquires and analyzes

sensory data or external stimulus and executes behaviors that produce effects in the

environment. It decides for itself how to relate sensory data to its behaviors in its efforts

to attain certain goals. Such a system is able to deal with unpredictable problems,

dynamically changing situations, poorly modeled environments, or conflicting

constraints. The motivation behind the research and development in multi-agent robotic

systems comes from the fact that the decentralized multi-robot approach has a number of

advantages over traditional single complex robotic systems approaches.

Distributed robots can readily exhibit the characteristics of structural flexibility,

reliability through redundancy, simple hardware, adaptability, re-configurability, and

maintainability. The robots can interact with their local environments in the course of

collective problem-solving. Responding to different local constraints received from their

task environments, they may select and exhibit different behavior patterns, such as

avoidance, following, aggregation, dispersion, homing, and wandering. These behaviors

are precisely controlled through an array of parameters (such as motion direction, timing,

lifespan, age, etc.), which may be carefully predefined or dynamically acquired by the

robots based on certain computational mechanisms.

Chapter 1 Introduction

2

In order to successfully develop multi-agent robotic systems, the key

methodological issues must be carefully examined. At the same time, the underlying

computational models and techniques for multi-agent systems engineering must be

thoroughly understood.

1.2 Tasks of the Project
The sequence of the project tasks is going to be in the following way.

• Review the current research in Multi-Robot coordination.

• Review coordination techniques which minimize communication.

• The design and simulation of a communication-less coordination scheme.

• Test this new scheme for simple and complex group-level tasks.

• Verification and validation of this new scheme by comparing results.

• Identifying areas where future research can be directed to develop on this

technique.

Figure1.1. The Nerd Herd: A multi-robot test bed developed at the MIT

Chapter 1 Introduction

3

1.3 Overview of Multi-Robot Systems
In this section I discuss the advantages and additional issues involved in the

control of multi-robot systems (MRS) as compared to the single-robot systems (SRS)

discussed in the previous section. An MRS is a system composed of multiple, interacting

robots. The study of MRS has received increased attention in recent years. This is not

surprising, as continually improving robustness, availability, and cost-effectiveness of

robotics technology has made the deployment of MRS consisting of increasingly larger

numbers of robots possible. With the growing interest in MRS comes the expectation

that, at least in some important respects, multiple robots will be superior to a single robot

in achieving a given task. In this section I outline the benefits of a MRS over a SRS and

introduce issues involved in MRS control and how they are similar and different to those

of SRS control.

1.3.1 Advantages of Multi-Robot Systems

Potential advantages of MRS over SRS include a reduction in total system cost by

utilizing multiple simple and cheap robots as opposed to a single complex and expensive

robot. Also, multiple robots can increase system flexibility and robustness by taking

advantage of inherent parallelism and redundancy. Furthermore, the inherent complexity

of some task environments may require the use of multiple robots, as the necessary

capabilities or resource requirements are too substantial to be met by a single robot. To

summarize following are the main advantages of using multiple robots;

• a larger range of task domains

• greater efficiency

• improved system performance

• fault tolerance

• robustness

• lower economic cost

• ease of development

• distributed sensing and action

• inherent parallelism

Chapter 1 Introduction

4

• insight into social and life sciences

1.3.2 Challenges in Design of Multi-Robot Systems

The utilization of MRS poses potential disadvantages and additional challenges

that must be addressed if MRS are to present a viable and effective alternative to SRS. A

poorly designed MRS, with individual robots working toward opposing goals, can be less

effective than a carefully designed SRS. A paramount challenge in the design of effective

MRS is managing the complexity introduced by multiple, interacting robots[12]. As such,

in most cases just taking a suitable SRS solution and scaling it up to multiple robots is not

adequate.

1.4 Coordination in Multi-Robot Systems
In order to maximize the effectiveness of a MRS, the robots' actions must be

spatiotemporally coordinated and directed towards the achievement of a given system-

level task or goal. Just having robots interact is not sufficient in itself to produce

interesting or practical system-level coordinated behavior. The design of MRS can be

quite challenging because unexpected system-level behaviors may emerge due to

unanticipated ramifications of the robots' local interactions. In order for the interacting

robots to produce coherent task-directed behavior, there must be some overarching

Figure1.2. Rug-Warrior: A robot designed for Multi-Robot Systems research.

Chapter 1 Introduction

5

coordination mechanism that spatio-temporally organizes the interactions in a manner

appropriate for the task. The design of such coordination mechanisms can be difficult;

nonetheless, many elegant handcrafted distributed MRS have been demonstrated, both in

simulation and on physical robots [19,20,21]. The methods by which these systems have

achieved task-directed coordination are diverse and the possibilities are seemingly limited

only by the ingenuity of the designer. From a few robots performing a manipulation task

[22,23], to tens of robots exploring a large indoor area [24,25], to potentially thousands of

ecosystem monitoring nano-robots [26,27], as the number of robots in the system

increases, so does the necessity and importance of coordination. The next section

examines mechanisms by which system-level coordination can be successfully achieved

in a MRS.

1.4.1 Classification of group level tasks

The main advantage of using multiple robots is to perform tasks more efficiently

than a single robot, or to perform tasks that a single robot is incapable of doing. Imagine

a single robot wandering in a mine field looking for mines and disabling them. It may

take it hours yet there will be no guarantee that the field has been cleared. In contrast

imagine the same field crowded with small robots all looking for mines and avoiding

other robots in due course. This approach should lead to reduced time and a performance

increase of manifolds. Thus each robot will be running two separate sets of tasks. One is

the group of local tasks that a robot needs to avoid obstacles and other robots, and the

second is the group level tasks of disabling the mines in an efficient manner.

Now group level tasks can be further divided on the basis of task complexity. This

is discussed in the next section.

1.4.2 Simple Tasks

Simple tasks in the context of multi-robot systems are those tasks that can be

completed by using comparatively less intelligent robots. Even robots that can neither

remember nor anticipate can complete these tasks effectively. Foraging is an example of

such a task. In nature we see ants foraging very efficiently yet they don’t have a brain

intelligent enough to remember any thing of the past[24]. Whatever is hard wired in their

Chapter 1 Introduction

6

brains remains so for the duration of their life yet still they show intelligent behavior

unmatchable be the best of robots. Thus I propose that simple tasks can be completed

using very limited capabilities in the robots.

1.4.3 Complex Tasks

Complex tasks are those group-level tasks which require greater intelligence,

computational power and memory in the participating robots. Examples of these tasks are

robots playing football (Figure 1.3), a group of robots collectively carrying a heavy

object to some target location etc. These tasks are more demanding as far as designing

constraints are concerned.

1.5 Interaction in Multi-Robot Systems
Given the importance of coordination in a MRS, I now address the issue of how to

organize the robots’ local interactions in a coherent manner in order to achieve system

level coordination. There are many mechanisms by which the interactions can be

organized. I classify them into three broad and often overlapping classes: interaction

through the environment, interaction through sensing, and interaction through

communication. These classes are not mutually exclusive because MRS can, and often

do, simultaneously utilize mechanisms from any or all of these classes to achieve system

level coordinated behavior. In the following sections I describe each of these interaction

Figure1.3. Robot football: An example of complex multi-robot task

Chapter 1 Introduction

7

classes in detail. Through the discussion of empirical case studies I demonstrate how each

type of interaction can be used to achieve system-level coordination in a MRS.

1.5.1 Interaction through communication

The first mechanism for interaction among robots is through explicit

communication. Such robot-directed communication can be used to request information

or action from other robots or to respond to received requests.

Communication in physical robotics is not free or reliable and can be constrained

by limited bandwidth and range, and unpredictable interference [7,8]. When utilizing it,

one must consider how and toward what end it is used. In some domains, such as the

Internet, communication is reliable and of unlimited range; however, in physical robot

systems, communication range and reliability are important factors in system design

[2,36]. There are many types of communication. Communication could be direct from

one robot to another, direct from one robot to a class of other robots, or broadcast from

one robot to all others. Furthermore, the communication protocol can range from simple

protocol-less schemes to a complex negotiation-based and communication-intensive

schemes The information encoded in a communication may be state information

contained by the communicating robot, a command to one or more other robots, or a

request for additional information from other robots, etc. Communications may be task-

related rather than robot-directed, in which case it is made available to all (or a subset) of

the robots in the MRS. A common task-related communication scheme is

Figure1.4. A ‘Leader’ robot coordinates by communicating with the follower robots

Chapter 1 Introduction

8

publish/subscribe messaging. In publish/subscribe messaging, subscribing robots request

to receive certain categories of messages, and publishing robots supply messages to all

appropriate subscribers. In the next subsection, I describe a case study of the effective use

of interaction through communication.

1.5.2 Interaction through sensing

The second mechanism for interaction among robots is through sensing, described

in [9], interaction through sensing ‘refers to local interactions that occur between robots

as a result of sensing one another, but without explicit communication.’ As with

interaction through the environment, interaction through sensing is also indirect as there

is no explicit communication between robots; however, it requires each robot to be able

to distinguish other robots from miscellaneous objects in the environment. In some

instances, each robot may be required to uniquely identify all other robots, or classes of

other robots. In other instances, it may only be necessary to simply distinguish robots

from other objects in the environment. Interaction through sensing can be used by a robot

to model the behavior of other robots or to determine what another robot is doing in order

to make decisions and respond appropriately. For example, flocking birds use sensing to

monitor the actions of other birds in their vicinity to make local corrections to their own

motion. It has been shown that effective flocking results from quite simple local rules

followed by each bird responding to the direction and speed of the local neighbors [32].

In the follow subsection I describe a case study in a formation marching domain

in which interaction through sensing is used to achieve coordinated group behavior.

Other domains in which interaction through sensing has been utilized in MRS include

flocking [33], in which each robot adjusts it motions according to the motions of locally

observed robots. Through this process, the robots can be made to move as a coherent

flock through an obstacle-laden and dynamic environment. Interaction through sensing

has also been demonstrated in an adaptive division of labor domain [34]. In that domain,

each robot dynamically changes the task it is executing based on the observed actions of

other robots and the observed availability of tasks in the environment. Through this

process, the group of robots coherently divides the labor of the robots appropriately

across a set of available tasks.

Chapter 1 Introduction

9

1.5.3 Interaction via Stigmergy

The third mechanism for interaction is through the robots’ shared environment.

This form of interaction is indirect in that it consists of no explicit communication or

physical interaction between robots. Instead, the environment itself is used as a medium

of indirect communication. This is a powerful approach that can be utilized by very

simple robots with no capability for complex reasoning or direct communication. An

example of interaction through the environment is demonstrated in stigmergy, a form of

interaction employed by a variety of insect societies. Originally introduced in the

biological sciences to explain some aspects of social insect nest-building behavior,

stigmergy is defined as the process by which the coordination of tasks and the regulation

of construction do not depend directly on the workers, but on the constructions

themselves [28]. This concept was first used to describe the nest-building behavior of

termites and ants [29]. It was shown that coordination of building activity in a termite

colony was not inherent in the termites themselves. Instead, the coordination mechanisms

were found to be regulated by the task environment, in that case the growing nest

structure. A location on the growing nest stimulates a termite’s building behavior, thereby

transforming the local nest structure, which in turn stimulates additional building

behavior of the same or another termite. Through the careful design of robot sensing,

actuation, and control features, it is possible to utilize the concept of stigmergy in task-

directed MRS.

This powerful mechanism of coordination is attractive as it typically requires

minimal capabilities of the individual robots. The robots do not require direct

communication, unique recognition of other robots or even distinguishing other robots

from miscellaneous objects in the environment, or the performance of computationally

intensive reasoning or planning. Stigmergy, and more generally interaction through the

environment, has been successfully demonstrated as a mechanism to coordinate robot

actions in a number of MRS. It has been demonstrated in an object manipulation domain

[30] in which a large box was transported to a goal location through the coordinated

pushing actions of a group of robots. There was no globally agreed upon plan as to how

or over what trajectory the box should be moved; however, each robot could indirectly

Chapter 1 Introduction

10

sense the pushing actions of other robots through the motions of the box itself. Through

simple rules, each robot decided whether to push the box or move to another location

based on the motions of the box itself. As a large enough number of robots pushed in

compatible directions, the box moved, which in turn encouraged other robots to push in

the same direction. Other examples of the use of stigmergy in MRS include distributed

construction in which a given structure was built in a specified construction sequence

[31]. The individual robots were not capable of explicit communication and executed

simple rule-based controllers in which local sensory information was directly mapped to

construction actions. The construction actions of one robot altered the environment, and

therefore the subsequent sensory information available for it and all other robots. This

new sensory information then activated future construction actions. In the following

subsection I discuss in detail how the concept of stigmergy was utilized in a MRS object

clustering task domain [28].

11

Chapter 2

Coordination without Communication

Chapter 2 Coordination without Communication

12

Chapter 2: Coordination without Communication

2.1 General
Coordination between multiple agents is an essential requirement for successful

completion of many large-scale tasks. Many tasks require more resources than a single

robot can possibly provide. By enabling many simple robots to cooperate together on a

larger task, it becomes possible to solve a problem that would be infeasible using a single

large-scale machine.

A major concern, however, in many attempts to coordinate multiple-agent

behavior is the perceived requirement that a hierarchy must be present to effectively carry

out a task. A master/slave relationship, although often allowing for a more efficient

conduct of particular tasks, introduces brittleness into the system. This brittleness is

characterized by dependence on a single source (or a few) for guidance of the other

cooperating agents. Three major drawbacks can be seen with this approach. The first

involves the communication bottleneck when a master is trying to coordinate the

behavior of a swarm of slave agents. This can be a severely limiting factor for large

collection of simple robots.

2.2 Is communication necessary for Coordination?
Now a question arises that is communication necessary at all for carrying out

group level tasks? There has been much debate on this issue ever since. We have already

seen the advantages of a communication-less system there for in the following section we

seek answers to the above said questions that whether we require communication, if so to

what extent and if not are there exceptions?

2.3 The Hensel twins
The story of the Hensel twins [16] sowed the seeds of doubt. Abigail and Brittany,

kindergartners, share a body. Their separate heads rise from a single pair of shoulders

topping a body with the usual number of arms and legs. Inside, things are more complex,

with two hearts pumping a single circulatory system, three lungs, two stomachs, and

separate spines jointed at the pelvis. Their nervous systems are disjoint. A touch on the

Chapter 2 Coordination without Communication

13

right side is felt only by Abby. Each controls one arm and one leg. And therein lies the

rub. At fifteen months, they learned to walk. Now they swim, bike, and tie shoe laces, all

requiring considerable coordination of actions.

This coordination is apparently achieved without communication. "But," I've been

told, "they do communicate through the environment. Each is aware of the other's actions

via vision, proprioception, etc. That's communication." Is it? True, all communications

occur when one agent acts on the environment and the other senses the results of that

action. But would all such acting and sensing comprise communications? I think not. It's

far fetched to call my following the tracks of a bobcat in the snow communication

between the bobcat and me. Communication, in the sense of the word I intend, requires

the sending and receiving of signals. Is the bobcat signaling when he leaves tracks in the

snow? I think not. This situation is quite analogous to me following a river downstream

while canoeing

2.4 Lybrinth game
Is such coordination without communication possible only under the most unusual

circumstances of the Hensel twins? Stan Franklin [4] reports and I quote, “Let me give

you another example that should have alerted me to the possibility of coordination

without communication years ago. My older children during their teenage years were

quite fond of a maze game called Labyrinthspiel. Picture a roughly one foot square

wooden box some four inches tall. Mounted in the upper interior of the box were two

nested trays. The inner tray was a maze containing some sixty holes strategically placed

as pitfalls for the unwary traveler. The traveler was a small steel ball, just able to fall

through one of the holes into the bottom of the box. The outer tray, mostly rim, was

mounted at its center on a metal rod running north south. A knob, attached to the rod,

could be rotated, tilting both trays in the east west direction. The inner tray was

independently mounted on a second metal rod perpendicular to the first. Rotating its knob

tilted only the inner tray in the north south direction. With the ball in the starting position,

the player attempted to guide the ball through the maze, avoiding all the holes. This

required well coordinated manipulation of the two knobs using the principle that balls roll

down hill. It wasn't easy.

Chapter 2 Coordination without Communication

14

Over time, two of the children, Phil and Mimi, completely mastered

Labyrinthspiel, being able to reliably guide the ball back and forth through the maze,

missing all the pitfalls. But such mastery led to boredom. So, they invented two-person

Labyrinthspiel, Mimi controlling one knob and Phil the other. To my amazement, they

were soon able to coordinate their movements so as to successfully negotiate the entire

maze.”

It seems to me that this sort of coordination is impossible to achieve in real time

via any sort of signaling. It can only result from each agent frequently sampling the

environment, in this case watching the ball and the attitude of the maze, and reacting to it

with its goal in mind. Reacting, in this case, should be taken as reacting not only to the

ball's location, but to its velocity (including direction)1 as well. Coordination emerges

incidentally. I also suspect that there are no internal signals from the right hand's

controller to the left's when a single human is playing. Probably sampling and reacting

suffices.

2.5 Feasibility of coordination without communication
With all the information I have just gathered it seems quite plausible that

coordination can be achieved without the involvement of any explicit communication.

Many researchers have come across this reality that removing explicit communication in

multi-robot scenario results is much faster task completion but at the cost of reduced

reliability.

Mataric [18] compares the effects of explicit communication, goal communication

and state communication for foraging task. The results suggest that through state

communication results comparable to other approaches can be achieved.

Now question arises that under what conditions is coordination without

communication is feasible. I suggest that under following circumstances coordination

without communication is feasible.

• In hostile environments where eavesdropping is a possibility.

• In noisy environment where reliability of communication cannot be

guaranteed.

Chapter 2 Coordination without Communication

15

• In hi speed applications where communication overhead will slow down

the execution speed.

• In cases where human life is not at stake and inaccuracy can be tolerated.

• In cases where the number of robots in the swarm is great and the cost of

communication is very high.

2.6 Requirements of the task
To achieve coordination without communication robots must possess some

qualities that would enable them to interact with each other in meaningful way and work

together to achieve some group-level goal. In the following section I explore these

necessary qualities in detail

2.6.1 Intelligence

Intelligence is a quality of mind whether human, animal or computer There have

been meny definitions of intelligence throughout the AI history but a definition which is

widely accepted and signed by 52 AI researchers given in ‘wikipedia’ is:

a very general mental capability that, among other things, involves the ability to

reason, plan, solve problems, think abstractly, comprehend complex ideas, learn quickly

and learn from experience. It is not merely book learning, a narrow academic skill, or

test-taking smarts. Rather, it reflects a broader and deeper capability for comprehending

our surroundings—"catching on", "making sense" of things, or "figuring out" what to do.

In our case the robots must be able to exhibit intelligent behavior and carry out

tasks without failing to be labeled as intelligent

2.6.2 Memory

A simple definition of memory is “an organism's ability to store, retain, and

subsequently recall information”. In the case of robots a robot must keep track of its

whereabouts and recall certain experiences (good or bad) and be able to use them

promptly when needed. This would require some adaptability, some physical memory

device and some clever algorithms to achieve this task.

Chapter 2 Coordination without Communication

16

2.6.3 Anticipation

As mentioned above, an anticipatory robot should assess the current situation,

predict the future consequence of the situation, and execute an action to have desired

outcome based on the assessment and the prediction. The concept of an anticipatory robot

may be best represented by Rosen’s diagram (Figure 1). Rosen [12] proposed the notion

of anticipatory systems in order to analyze how adaptive living organisms work. The

labels S, M, and E in the figure stand for object system, model, and effectors,

respectively. More specifically, S represents some dynamical system that interacts with

the environment. For example, the system could be a microorganism, animal, or even an

economy of some country. M is a model of S. Given a current state of S and an

environment, M foretells what state S is likely to reach in the future. E is the effector that

can interact with S or the environment in order to influence the future state of S.

According to Rosen [12], the function of the anticipatory system is to: (a) Do nothing if

M expects that S is likely to stay in a “desirable” state; or (b) activate E to correct the

“trajectory” of S if M forecasts that an unwanted outcome is imminent. One of the

important properties of the anticipatory system is that, unlike a reactive system that

executes actions simply as a response to a current state (stimuli), the system reacts to a

state that is expected to happen in the future.

Figure2.3. Rosen’s Diagram: An anticipatory system

17

Chapter 3

Intelligence in Robots

Chapter 3 Intelligence in Robots

18

Chapter 3: Intelligence in Robots

3.1 General
The science of making machines act intelligently is usually referred to as

Artificial Intelligence, or AI for short. Artificial intelligence has no commonly accepted

definitions. One of the first text books on AI defined it as “the study of ideas that enable

computers to be intelligent,” which seemed to beg the question. A later textbook was

more specific, “AI is the attempt to get the computer to do things that, for now, people

are better at.”[19]. This definition implies that certain AI problems can be solved, which

is generally not true because there can always be a better (more intelligent) ways of doing

things.

3.2 Classical AI approach
The term Artificial Intelligence (AI) was first used by John McCarthy who used it

to mean "the science and engineering of making intelligent machines".[1] It can also refer

to intelligence as exhibited by an artificial (man-made, non-natural, manufactured) entity.

While AI is the generally accepted term others, including both Computational

Intelligence and Synthetic Intelligence have been proposed as potentially being "more

accurate."[2] The terms strong and weak AI can be used to narrow the definition for

classifying such systems. AI is studied in overlapping fields of computer science,

robotics, psychology, philosophy, neuroscience, and engineering, dealing with intelligent

behavior, learning, and adaptation and usually developed using customized machines or

computers.

Research in AI is concerned with producing machines to automate tasks requiring

intelligent behavior. Examples include control, planning and scheduling, the ability to

answer diagnostic and consumer questions, handwriting, natural language, speech, and

facial recognition. As such, the study of AI has also become an engineering discipline,

focused on providing solutions to real life problems, knowledge mining, software

applications, strategy games like computer chess and other video games. One of the

biggest difficulties with AI is that of comprehension. Many devices have been created

Chapter 3 Intelligence in Robots

19

that can do amazing things, but critics of AI claim that no actual comprehension by the

AI machine has taken place.

The symbol system hypothesis, [30], states that intelligence operates on a system

of symbols. The implicit idea is that perception and motor interfaces are sets of symbols

on which the central intelligence system operates. Thus, the central system, or reasoning

engine, operates in a domain independent way on the symbols. Their meanings are

unimportant to the reasoner, but the coherence of the complete process emerges when an

observer of the system knows the groundings of the symbols within his or her own

experience. Somewhat more implicitly in the work that the symbol system hypothesis has

inspired, the symbols represent entities in the world. They may be individual objects,

properties, concepts, desires, emotions, nations, colors, libraries, or molecules, but they

are necessarily named entities. There are a number of effects which result from this

commitment. Recall first, however, that an intelligent system, apart from those which are

experiments in the laboratory, will be embedded in the world in some form or another.

3.2.1 The Interface between Perception and Symbols

The central intelligence system deals in symbols. It must be fed symbols by, the

perception system. But what is the correct symbolic description of the world around the

intelligence system? Surely that description must be task dependent. The default

assumption has been that the perception system delivers a description of the world in

terms of typed, named individuals and their relationships. For instance in the classic

monkeys and bananas problem, the world, description is in terms of boxes, bananas, and

above ness. But for another task (e.g., deciding whether the bananas are rotten) quite a

different representation might be important. Psychophysical evidence [32] certainly

points to perception being an active and task dependent operation. The effect of the

symbol system hypothesis has been to encourage vision researchers to quest after the goal

of a general purpose vision system which delivers complete descriptions of the world in a

symbolic form (e.g. [5]). Only recently has there been a movement towards active vision

[4] which is much more task dependent, or task driven [1].

Chapter 3 Intelligence in Robots

20

3.2.2 Inadequacy of Simple Symbols

Symbol systems in their purest forms assume a knowable objective truth. It is

only with much complexity that modal logics, or non-monotonic logics, can be built

which better enable a system to have, beliefs gleaned from partial views of a chaotic

world. As these enhancements are made, the realization of computations based on these

formal systems becomes more and more biologically implausible. But once the

commitment to symbol systems has been made it is imperative to push on through more

and more complex and cumbersome systems in pursuit of objectivity. This same pursuit

leads to the well known frame problem (e.g., [27]), where it is impossible to assume

anything that is not explicitly stated. Technical deviations around this problem have been

suggested but they are by no means without their own problems.

3.2.3 Symbol Systems Rely on Emergent Properties

In general the reasoning process becomes trivial in an NP-complete space (e.g.,

There have been large efforts to overcome these problems by choosing simple

arithmetically computed evaluation functions or polynomials to guide the search.

Charmingly, it has been hoped that intelligence will somehow emerge from these simple

numeric computations carried out in the sea of symbols. [28] was one of the earliest

examples of this hope, which later turned out to be only partially correct (his learned

polynomials later turned out to be dominated by piece count), but in fact almost all

instances of search in classical AI have relied on such judiciously chosen polynomials to

keep the search space manageable.

3.3 Modern Approaches in AI
Nouvelle AI is based on the physical grounding hypothesis. This hypothesis states

that to build a system that is intelligent it is necessary to have its representations

grounded in the physical world. Our experience with this approach is that once this

commitment is made, the need for traditional symbolic representations soon fades

entirely. The key observation is that the world is its own best model. It is always exactly

up to date. It always contains every detail there is to be known. The trick is to sense it

appropriately and often enough. To build a system based on the physical grounding

Chapter 3 Intelligence in Robots

21

hypothesis it is necessary to connect it to the world via a set of sensors and actuators.

Typed input and output are no longer of interest. They are not physically grounded.

Accepting the physical grounding hypothesis as a basis for research entails building

systems in a bottom up manner. High level abstractions have to be made concrete. The

constructed system eventually has to express all its goals and desires as physical action,

and must extract all its knowledge from physical sensors. Thus the designer of the system

is forced to make everything explicit. Every short-cut taken has a direct impact upon

system competence, as there is no slack in the input/output representations. The forms of

the low-level interfaces have consequences which ripple through the entire system.

3.3.1 Evolution

I already have an existence proof of the possibility of intelligent entities — human

beings. Additionally many animals are intelligent to some degree. (This is a subject of

intense debate, much of which really centers around a definition of intelligence.) They

have evolved over the 4.6 billion year history of the earth. It is instructive to reflect on

the way in which earth-based biological evolution spent its time. Single cell entities arose

out of the primordial soup roughly 3.5 billion years ago. A billion years passed before

photosynthetic plants appeared. After almost another billion and a half years, around 550

million years ago, the first fish and vertebrates arrived, and then insects 450 million years

ago. Then things started moving fast. Reptiles arrived 370 million years ago, followed by

dinosaurs at 330 and mammals at 250 million years ago. The first primates appeared 120

million years ago and the immediate predecessors to the great apes a mere 18 million

years ago. Man arrived in roughly his present form 2.5 million years ago. He invented

agriculture a mere 19000 years ago, writing less than 5000 years ago and "expert"

knowledge only over the last few hundred years. This suggests that problem solving

behavior, language, expert knowledge and application, and reason, are all rather simple

once the essence of being and reacting are available. That essence is the ability to move

around in a dynamic environment, sensing the surroundings to a degree sufficient to

achieve the necessary maintenance of life and reproduction. This part of intelligence is

where evolution has concentrated its time—it is much harder. This is the physically

grounded part of animal systems. An alternative argument to the preceding is that in fact

Chapter 3 Intelligence in Robots

22

once evolution had symbols and representations things started moving rather quickly.

Thus symbols are the key invention and AI workers can sidestep the early morass and

start working directly with symbols. But I think this misses a critical point, as is shown

by the relatively weaker performance of symbol based mobile robots as opposed to

physically grounded robots. Without a carefully built physical grounding any symbolic

representation will be mismatched to its sensors and actuators. These groundings provide

the constraints on symbols necessary for them to be truly useful. [26] has argued rather

eloquently that mobility, acute vision and the ability to carry out survival related tasks in

a dynamic environment provide a necessary basis for the development of true

intelligence.

3.3.2 Reactive control

In artificial intelligence, reactive planning denotes a group of techniques for

action selection by autonomous agents. These techniques differ from classical planning in

two aspects. First, they operate in a timely fashion and hence can cope with highly

dynamic and unpredictable environments. Second, they compute just one next action in

every instant, based on the current context. Reactive planners often (but not always)

exploit reactive plans, which are stored structures describing the agent's priorities and

behavior.

A condition action rule, or if-then rule, is a rule in the form: if condition then

action. These rules are called productions. The meaning of the rule is as follows: if the

condition holds, perform the action. The action can be either external (e.g., pick

something up and move it), or internal (e.g., write a fact into the internal memory, or

evaluate a new set of rules). Conditions are normally Boolean and the action either can be

performed, or not.

Sense

Act

Plan

Figure3.3 The direct coupling of action to sensing is the defining characteristic of
reactive control.

Chapter 3 Intelligence in Robots

23

Production rules may be organized in relatively flat structures, but more often are

organized into a hierarchy of some kind. For example, subsumption architecture consists

of layers of interconnected behaviors, each actually a finite state machine which acts in

response to an appropriate input. These layers are then organized into a simple stack, with

higher layers subsuming the goals of the lower ones. Other systems may use trees, or may

include special mechanisms for changing which goal / rule subset is currently most

important. Flat structures are relatively easy to build, but allow only for description of

simple behavior, or require immensely complicated conditions to compensate for the

lacking structure.

3.3.3 Behavior based AI

Behavior Based Artificial Intelligence (BBAI) is a methodology for developing

AI based on a modular decomposition of intelligence. It was made famous by Rodney

Brooks and his subsumption architecture was one of the earliest attempts to describe a

mechanism for developing BBAI. It is extremely popular in robotics and to a lesser

extent intelligent virtual agents because it allows the successful creation of real-time

dynamic systems that can run in complex environments. For example, it underlies the

intelligence of the Sony Aibo and many RoboCup robot teams.

The most important attribute of a behavior based system is that the intelligence is

controlled by a set of independent semi-autonomous modules. In the original systems,

each module was actually a separate device or was at least conceived of as running on its

own processing thread. Generally though the modules are just abstractions. BBAI may be

seen as a software engineering approach to AI, perhaps akin to object oriented design.

BBAI is often associated with reactive planning, but the two are not synonymous.

Brooks advocated an extreme version of cognitive minimalism which required initially

that the behavior modules were finite state machines and thus contained no conventional

memory or learning. This is associated with reactive AI because reactive AI requires

reacting to the current state of the world, not to an agent's memory or preconception of

that world. However, learning is obviously key to realistic strong AI, so this constraint

has been relaxed, though not entirely abandoned.

Chapter 3 Intelligence in Robots

24

Mataric [18] states that behavior-based robotics designs controllers for omarwing

robots with intelligent behavior, based on “a biologically inspired philosophy that favors

parallel, decentralized architectures.” It draws on the idea of providing the robots with a

range of basic behaviors and letting the environment determine which behavior is more

suitable as a response to a certain stimulus. Sukhatme and Mataric [21] define behaviors

as “real-time processes that take inputs from sensors and/or other behaviors and send

outputs to actuators and/or other behaviors.” In behavior-based robotics, basic behaviors

are fundamental units for control, reasoning, and learning. The environment plays a

central role in activating a certain basic behavior at any given time. The behavior

modules and the coordination mechanisms are usually designed through a trialand- error

process in which a designer progressively changes them and tests the resulting behavior

in the environment.

Extending the reactive and behavior-based approaches to a multi-agent domain

will lead to completely distributed systems with no centralized controller. Behavior-based

robotics has been an active and popular approach to robot control in the multi-robot

domain, allowing multi-robot systems to adapt to realworld environments.

Behavior-based systems are praised for their robustness and simplicity of

construction. Based on Brooks’ behavior based subsumption architecture [6], for

example, Parker developed the ALLIANCE architecture [4] for controlling groups of

heterogeneous robots and demonstrated it on a group of four physical robots performing

puck manipulation and box-pushing. He divides tasks into subtasks, with groups of

behaviors addressing each subtask. At the highest level, “mutually inhibitory

motivational behaviors are designed to direct the overall behavior of a robot, which in

turn activates lower-level behaviors to perform a subtask” [4]. Along with the typical

sensor-based conditions that might trigger motivational behaviors, Parker adds

impatience and acquiescence. Impatience increases if no other robot is tempting to solve

the subtask associated with a motivational behavior, while acquiescence inhibits the

behavior if the robot is not successful in the subtask. The combination of the ordinary

conditions of impatience and acquiescence in a group enables the robots to cooperate in

striving to achieve an overall task.

Chapter 3 Intelligence in Robots

25

Balch [7] takes motor schemas as an example of behavior-based robot control.

Motor schemas are the reactive components in an Autonomous Robot Architecture

(AuRA) [7]. AuRA’s design integrates “deliberative planning at the top level with

behavior-based motor control at the bottom.” The lower levels are concerned with

executing reactive behaviors. Individual motor schemas, or primitive behaviors, express

separate goals or constraints for a task. For example, the schemas for a navigational task

may involve avoiding obstacles and moving to a goal. Since schemas are independent,

they can run concurrently, providing parallelism and efficiency. Motor schemas may be

grouped to form more complex, emergent behaviors.

26

Chapter 4

Design and Implementation of the Proposed

Coordination Scheme

Chapter 4 Proposed Coordination Scheme

27

Chapter 4: Design and Implementation of the Proposed

Coordination Scheme

4.1 Finite State Automation (FSA)
Finite state machine (FSM) is model of behavior of a system. FSMs are used

widely in computer science. Modeling behavior of agents is only one of their possible

applications. A typical FSM, when used for describing behavior of an agent, consists of a

set of states and transitions between these states. The transitions are actually condition

action rules. In every instant, just one state of the FSM is active, and its transitions are

evaluated. If a transition is taken it activates another state. That means, in general

transitions are the rules in the following form: if condition then activate-new-state. But

transitions can also connect to the 'self' state in some systems, to allow execution of

transition actions without actually changing the state.

There are two ways of how to produce behavior by a FSM. They depend on what

is associated with the states by a designer --- they can be either 'acts', or scripts. An 'act' is

an atomic action that should be performed by the agent if its FSM is the given state. This

action is performed in every time step then. However, more often is the latter case. Here,

every state is associated with a script, which describes a sequence of actions that the

Figure4.1. A state diagram for a trash collecting robot

Chapter 4 Proposed Coordination Scheme

28

agent has to perform if its FSM is in a given state. If a transition activates a new state, the

former script is simply interrupted, and the new one is started. If a script is more

complicated, it can be broken down to several scripts and a hierarchical FSM can be

exploited. In such an automaton, every state can contain substrates. Only the states at the

atomic level are associated with a script (which is not complicated) or an atomic action.

Computationally, hierarchical FSMs are equivalent to FSMs. That means that

each hierarchical FSM can be converted to a classical FSM. However, hierarchical

approaches facilitate designs better. See the paper of Mataric [25] for an example of

ASM of computer game bots, which uses hierarchical FSMs.

4.1.1 Design of the mine-clearing robot using FSA technique
Design of the mine-clearing robot required that I write schemas for ‘mine

detection’, ‘obstacle detection’, ‘robot detection’, ‘avoid obstacles’ etc so that they could

then be strung up in a flow chart to form an FSA. Moreover the FSA should be that such

that no planning or lengthy data processing should be done by the robot. The algorithm

should be ‘constant time’ ‘Sense-Act’ mechanism that is the basis of all the behavioral

systems. Keeping these constraints in mind I designed the basic FSAs for simple tasks

and then combined them to form a complete control algorithm for different tasks that

were assigned to the robots. Keep in mind that a very big constraint in the robot

coordination was that no communication should be involved between the robots. This

made the task quite difficult.

In the following pages in Figures 4.2 to 4.5 I have listed the algorithms for these

basic tasks using flow charts.

Chapter 4 Proposed Coordination Scheme

29

Move Towards
Success Circle

Set Movement
Completion
Flag

Calculate
Movement
Vectors for
Motors

Within
Success
Circle ?

START

END

Yes

No

Figure4.2. Flow Chart for ‘Move to Goal’ Behavior

Chapter 4 Proposed Coordination Scheme

30

Calculate New
Motion Vector

Too Close
to Other
Robot ?

START

Yes

No

Figure4.3. Flow Chart for ‘Avoid Robot’ Behavior

Get Sensors
Readings

Move
Towards

Goal

Chapter 4 Proposed Coordination Scheme

31

Calculate New
Motion Vector

Too Close
to Static
Object ?

START

Yes

No

Figure4.4. Flow Chart for ‘Avoid Static Object’ Behavior

Get Sensors
Readings

Move
Towards

Goal

Chapter 4 Proposed Coordination Scheme

32

Pick up the
Mine

Close to a
Mine?

START

Yes

No

Figure4.5. Flow Chart for ‘Search for Mine’ Behavior

Get Sensors
Readings

Wander in
Search for

Mines

Move
Towards

Goal

Chapter 4 Proposed Coordination Scheme

33

4.2 Reinforcement learning
In computer science, reinforcement learning is a small area of machine learning

that deals with how a robot should take actions in an environment so as to maximize a

long-term reward. Reinforcement learning algorithms try to find a policy that maps states

of the world to the actions the robot should take in those states.

The environment is typically formed as a finite-state Markov decision process

(MDP), and reinforcement learning algorithms for this context are highly related to

dynamic programming techniques. State transition probabilities and reward probabilities

in the MDP are typically stochastic but stationary over the course of the problem.

Reinforcement learning differs from the supervised learning problem in that

correct input/output pairs are never presented, nor sub-optimal actions explicitly

corrected. Further, there is a focus on on-line performance, which involves finding a

balance between exploration (of uncharted territory) and exploitation (of current

knowledge). The exploration vs. exploitation tradeoff in reinforcement learning has been

mostly studied through the multi-armed bandit problem.

Formally, the basic reinforcement learning model consists of:

• a set of environment states S;

• a set of actions A; and

• a set of scalar "rewards" in .

At each time t, the agent perceives its state st S and the set of possible actions

A(st). It chooses an action a A(st) and receives from the environment the new state st+1

and a reward rt+1. Based on these interactions, the reinforcement learning agent must

develop a policy π:S A which maximizes the quantity R=r0+r1+...+rn for MDPs which

have a terminal state, or the quantity R=Σtγtrt for MDPs without terminal states (where γ

is some "future reward" discounting factor between 0.0 and 1.0).

Thus, reinforcement learning is particularly well suited to problems which include

a long-term versus short-term reward tradeoff. It has been applied successfully to various

Chapter 4 Proposed Coordination Scheme

34

problems, including robot control, elevator scheduling, telecommunications,

backgammon and chess

After I have defined an appropriate return function to be maximized, I need to

specify the algorithm that will be used to find the policy with the maximum return. There

are two main approaches, the value function approach and the direct approach.

The direct approach entails the following two steps: a) For each possible policy,

sample returns while following it. b) Choose the policy with the largest expected return.

One problem with this is that the number of policies can be extremely large, or even

infinite. Another is that returns might be stochastic, in which case a large number of

samples will be required to accurately estimate the return of each policy. The direct

approach is the basis for the algorithms used in Evolutionary robotics.

The problems with the direct approach might be ameliorated if I assume some

structure in the problem and somehow allow samples generated from one policy to

influence the estimates made for another. Value function approaches do this by only

maintaining a set of estimates of expected returns for one policy π (usually either the

current or the optimal one). In such approaches one attempts to estimate either the

expected return starting from state s and following π thereafter,

V(s) = E[R|s,π],

or the expected return when taking action a in state s and following π thereafter,

Q(s,a) = E[R|s,π],

If someone gives us Q for the optimal policy, I can always choose optimal actions

by simply choosing the action with the highest value at each state. In order to do this

using V, I must either have a model of the environment, in the form of probabilities

P(s'|s,a), which allow us to calculate Q simply through

Q(s,a) = ∑ V(s')P(s' | s,a),

Chapter 4 Proposed Coordination Scheme

35

or I can employ so-called Actor-Critic methods, in which the model is split into two

parts: the critic, which maintains the state value estimate V, and the actor, which is

responsible for choosing the appropriate actions at each state.

Given a fixed policy π, Estimating E[R|.] for γ=0 is trivial, as one only has to

average the immediate rewards. The most obvious way to do this for γ>0 is to average the

total return after each state. However this type of Monte Carlo sampling requires the

MDP to terminate.

Thus carrying out this estimation for γ > 0 in the general does not seem obvious.

In fact, it is quite simple once one realizes that the expectation of R forms a recursive

Bellman equation: E[R | st] = rt + γE[R | st + 1]

By replacing those expectations with our estimates, V, and performing gradient

descent with a squared error cost function, I obtain the temporal difference learning

algorithm TD(0). In the simplest case, the set of states and actions are both discrete and I

maintain tabular estimates for each state. Similar state-action pair methods are Adaptive

Heuristic Critic(AHC), SARSA and Q-Learning. All methods feature extensions whereby

some approximating architecture is used, though in some cases convergence is not

guaranteed. The estimates are usually updated with some form of gradient descent,

though there have been recent developments with least squares methods for the linear

approximation case.

The above methods not only all converge to the correct estimates for a fixed

policy, but can also be used to find the optimal policy. This is usually done by following

a policy π that is somehow derived from the current value estimates, i.e. by choosing the

action with the highest evaluation most of the time, while still occasionally taking

random actions in order to explore the space. Proofs for convergence to the optimal

policy also exist for the algorithms mentioned above, under certain conditions. However,

all those proofs only demonstrate asymptotic convergence and little is known

theoretically about the behavior of RL algorithms in the small-sample case, apart from

within very restricted settings.

An alternative method to find the optimal policy is to search directly in policy

space. Policy space methods define the policy as a parameterized function π(s,θ) with

Chapter 4 Proposed Coordination Scheme

36

parameters θ. Commonly, a gradient method is employed to adjust the parameters.

However, the application of gradient methods is not trivial, since no gradient information

is assumed. Rather, the gradient itself must be estimated from noisy samples of the

return. Since this greatly increases the computational cost, it can be advantageous to use a

more powerful gradient method than steepest gradient descent. Policy space gradient

methods have received a lot of attention in the last 5 years and have now reached a

relatively mature stage, but they remain an active field. There are many other approaches,

such as simulated annealing, that can be taken to explore the policy space. Work on these

other techniques is less well developed

4.2.1 Coordination based on learning

I believed that coordination could be further improved if the robots could

remember and learn with experience so that they could anticipate and improvise more.

For this purpose I used the method of Q-learning to program robots to learn from their

experiences. As I will show in the next sections, the technique works fine with simple

tasks but with complex tasks further capabilities like fast episodic memory recall is

needed to achieve better results. These I have left for future work during my PhD.

4.2.2 Learning in simple tasks
Q-learning is a reinforcement learning technique that works by learning an action-

value function that gives the expected utility of taking a given action in a given state and

following a fixed policy thereafter. A strength with Q-learning is that it is able to

compare the expected utility of the available actions without requiring a model of the

environment. A recent variation called delayed-Q learning has shown substantial

improvements, bringing PAC bounds to Markov Decision Processes.

The core of the algorithm is a simple value iteration update. For each state, s,

from the state set S, and for each action, a, from the action set A, I can calculate an

update to its expected discounted reward with the following expression:

Chapter 4 Proposed Coordination Scheme

37

where r is an observed real reward, α is the learning rate such that 0 < α < 1, and φ is the

discount rate such that 0 < φ < 1

4.3 Implementation of the design in hardware

4.3.1 Robot Platform

Differential Drive with Encoder Feedback

For wheeled and tracked robots, differential steering is the most common method

for getting the machine to go in a different direction. The technique is exactly the same as

steering a military tank: one side of wheels or treads stops or reverses direction while the

other side keeps going. The result is that the robot turns in the direction of the stopped or

reversed wheel or tread. Because of friction effects, differential steering is most practical

with two-wheel-drive systems. Additional sets of wheels, as well as rubber treads, can

increase friction during steering.

Ackerman Drive

Pivoting the wheels in the front is yet another method for steering a robot. Robots with

car-type steering are not as maneuverable as differentially steered robots, but they are

better suited for outdoor uses, especially over rough terrain. You can obtain somewhat

better traction and steering accuracy if the wheel on the inside of the turn pivots more

Figure4.6. A Typical Differential Drive Robot

Chapter 4 Proposed Coordination Scheme

38

than the wheel on the outside. This technique is called Ackerman steering and is found on

most cars but not on as many robots.

Differential Drive

One of the greatest drawbacks of the differentially steered robot is that the robot will veer

off course if one motor is even a wee bit slow. You can compensate for this by

monitoring the speed of both motors and ensuring that they operate at the same rpm. This

typically requires a control computer, as well as added electronics and mechanical parts

for sensing the speed of the wheels. Car-type steering, described in the last section, is one

method for avoiding the problem of “crabbing” as a result of differences in motor speed

simply because the robot is driven by just one motor. But car-type steering makes for

fairly cumbersome indoor mobile robots. A better approach is to use a single drive motor

powering two rear wheels and a single steering wheel in the front. This arrangement is

just like a child’s tricycle. The robot can be steered in a circle just slightly larger than the

width of the machine. Be careful about the wheelbase of the robot (distance from the

back wheels to the front steering wheel). A short base will cause instability in turns, and

the robot will tip over opposite the direction of the turn. Tricycle-steered robots must

have a very accurate steering motor in the front. The motor must be able to position the

front wheel with sub-degree accuracy. Otherwise, there is no guarantee the robot will be

able to travel a straight line. Most often, the steering wheel is controlled by a servo

motor. Servo motors use a “closed-loop feedback” system that provides a high degree of

positional accuracy.

Laser Range finder

The LRS90-3 Laser Radar Scanner is an adaptation of the basic LD90-3 electronics, fiber

optically coupled to a remote scanner unit. The scanner package contains no internal

electronics and is thus very robust under demanding operating conditions typical of

industrial or robotics scenarios. The motorized scanning head pans the beam back and

forth in the horizontal plane at a 10-Hz rate, resulting in 20 data-gathering sweeps per

second. Beam divergence is 0.3° (5 milli radians), with the option of expanding in the

vertical direction if desired up to 2°.

Chapter 4 Proposed Coordination Scheme

39

4.4 Implementation of the design in software

For implementation of my design in software I needed a multi-robot simulator. The

commercial ones available were very expensive and were not meant for research. I first

tried ‘Player-Stage’ but it had some errors. Then I found MissionLab® from Georgia

Institute of Technology. It is a wonderful software. Its only limitation is that it is Linux

based and its full documentation is not available, but one can experiment around and use

it to accurately simulate multi robot scenarios. I have given detail about this software in

Appendix B.

Figure4.7. A Finite State Automation (FSA) diagram for mine clearing robots

Chapter 4 Proposed Coordination Scheme

40

4.4.1 Simulation setup for FSA for mine-clearing robot

An area of 100 x 100 m was chosen as the test field for simulated robots. The automation

diagram for the robots for this task is shown in Fig4.7. The experiment was carried out

using varying number of robots, mines and obstacles. The results are presented in the

next chapter.

4.4.2 Simulation setup for mine-clearing robots using Q-
Learning

MissionLab provides built-in functions for Q-Learning. In Fig:. the experimental setup

for this task is shown. Again varying numbers of Robots were used for this experiment

and the results are presented in the next chapter.

Figure4.8. Implementing Q-learning in Mission Lab for foraging task

Chapter 4 Proposed Coordination Scheme

41

4.5 Experimental setup: Sut-Pala game
I chose a playground competitive game to demonstrate the coordination skills of

the robots. The game ‘sut-pala’ is shown in Fig.4.9. The game is played between two

teams consisting of equal number of players (robots in our case).

The task of first team (shown in blue) is to start at ‘side A’, cross the playing field

(drawn on the ground) to side B, and then come back to side A. Meanwhile they have to

avoid the players of the other team which try to catch them. Second team (red) is

restricted in its movements by the lines drawn on the ground. The captain can move in

the first horizontal area as well as the central vertical area. The rest of the players of this

team can only move in their respective horizontal areas.

Both the teams consisted of intelligent robots and as the game progressed

different patterns emerged both in predators and the prey. An important thing to note is

that there was no real intelligence (memory based) involved, only the state transitions

sufficed.

Figure4.9. Sut-Pala a competitive game of two teams

42

Chapter 5

Simulation Results and Discussion

Chapter 5 Simulation Results and Discussion

43

Chapter 5: Simulation Results and Discussion

5.1 Simulation Results for Mine Clearing robots using
FSA Technique
The experiments started with deploying simple robots with no communication and

anticipatory powers and the results were used in comparative studies of other

experiments. The simulation environment was filled with many movable target objects

(mines). The robots once localized repelled each other and were attracted by the goal

objects (mines). Once a robot had picked up a mine it went to drop it at an EOD area. If a

wandering robot saw another robot moving the object it did not interfere and left to find

some other target object.

From Table5.1 we see that the robots expertly handled the task. With the increase

in number of robots up to an optimal value the time of finishing the task reduces

Figure5.1. Four robots clearing a minefield while avoiding each other and obstacles

Chapter 5 Simulation Results and Discussion

44

significantly. If the number of robots is increased beyond this optimal value then there is

a decline in efficiency of the robots as the time to finish the job increases. The robots now

take longer to finish the task because now most of the time is wasted in recognizing and

avoiding the other robots.

In the second phase of experiments where we added 10 obstacles in the arena, we

see a similar result, though many of the mines are also left out. This behavior is due to the

fact that many of the mines are hidden behind the obstacles and are avoided along with

the obstacle. A better obstacle avoidance algorithm may rectify this problem.

5.2 Simulation Results for Mine Clearing robots using
Q-Learning

In this phase of experiments robots which used Q-Learning method to learn to

collect the mines and bring back to the EOD area were used. The robots started learning

Table5.1. Mine Searching Task with an area of 100 x 100 m and no obstacles.

Table5.2. Mine Searching Task with an area of 100 x 100 m and 10 obstacles.

Chapter 5 Simulation Results and Discussion

45

by trying to maximize the rewards. The rewards were offered for moving, finding a mine,

picking up a mine and bringing it back to the EOD area. The rewards would decrease if

the robot remained stationary, collided with and obstacle or did not find a mine. The

behaviors or schemas for these actions like moving, finding a mine, picking up a mine etc

were already programmed but there was no FSA this time round. The robots learned in

real time by maximizing rewards. Table5.3 shows the results for these experiments. As

expected the robots need more time to learn but the quickly adapt to the environment.

Figure5.2. Four robots clearing the mines and avoiding obstacles while learning

Table5.3. Mine Searching Task using Q- Learning Approach.

Chapter 5 Simulation Results and Discussion

46

5.3 Simulation Results for Sut-Pala Game

These experiments were carried out with teams consisting of 2, 3, 4 and 5

simulated robots. The results showed that nearly 61% of the times the robots exhibited

intelligent emergent behavior and successfully dogged or hunted down the robots of the

opposing team. Another important thing is that no communication was involved in both

the teams.

Figure5.2. Robots making trails as the game progresses

47

Chapter 6

Conclusions and Continuing Work

Chapter 6 Conclusions and Further Work

48

Chapter 6: Conclusions and Further Work

6.1 Achievements
Lets recap on what have we achieved up till now and what remains to be done. At

the start I listed some goals that needed to be achieved, to be of any contributable value to

the ultimate task of multi-robot coordination. I shall now list the achievements in a

similar manner so that a comparison of goals and achievements can be made.

• I was able to achieve communication-less coordination in simple tasks such as

foraging (mine clearing robot in our case)

• I was able to achieve (a degree less efficient though) communication-less

coordination in complex tasks such as the competitive game Sut-Pala

• Learning capability was successfully incorporated in robots doing simple group-

level tasks which shows great promise in this field.

• I could not properly use Q-learning for complex tasks but as Newton said “I did

not fail, I just found another way that doesn’t work”.

6.2 Future targets and open issues
When we explore things that are unknown to us previously we end up getting the

knowledge of a few of them but finding many other things that need to be explored.

Similar was the case with this project. I found ways to achieved coordination without

communication in some cases but this led to so many more questions that it would

require another research project to uncover those.

Future research should focus on making the robots anticipate and improvise to

truly capture the essence of intelligence that humans possess. A well coordinated team of

football players rarely uses verbal calls or signals to coordinate their attack; rather they

have prior plan settings and coordinate by observing others and anticipating their next

moves.

Chapter 6 Conclusions and Further Work

49

It remains an open issue, whether such improvisation would be possible in

behavior based systems or will it slow down the system performance to a level which is

not entirely acceptable.

6.3 Coordination in complex tasks
Further research is needed to find methodologies that allow for designing, and

reliably predicting, swarm behavior, given only features of the individual swarm

members. Here, stigmergy is an essential tool for systematically studying swarm-

behavior, even though other tracking methods are available. Recently Bristol robotics

laboratory has developed an ultrasonic position tracking system for swarm research

purposes.

Complex problems can be solved using multiple robots but coordinating these

robots carry out these tasks is a more difficult problem. New ways have to be explored to

effectively control a swarm of robots and make the swarm operate reliably to solve

problems.

6.4 Anticipation and improvisation
In artificial intelligence, anticipation is the concept of an agent making decisions

based on predictions, expectations, or beliefs about the future. It is widely considered that

anticipation is a vital component of complex natural cognitive systems. As a branch of

AI, anticipatory systems are a specialization still echoing the debates from the 1980s

about the necessity for AI for an internal model.

The anticipation of future states is also a major evolutionary and cognitive

advance. Anticipatory agents belonging to Rosen's definition are closer to humans

capabilities of taking decisions at a certain time T taking into account the effects of their

own actions at different future timescales T + k. Machine learning methods started to

integrate these capabilities in an implicit form as in reinforcement learning systems [49]

where they learn to anticipate future rewards and punishments caused by current actions

(Sutton & Barto, [49]. Moreover anticipation enhanced performance of machine learning

Chapter 6 Conclusions and Further Work

50

techniques to face with complex environments where agents have to guide their attention

to collect important information to act.

6.5 On the horizon
Swarm Intelligence-based techniques can be used in a number of applications.

The U.S. military is investigating swarm techniques for controlling unmanned vehicles.

ESA is thinking about orbital swarm for self assembly and interferometry. NASA is

investigating the use of swarm technology for planetary mapping. A 1992 paper by M.

Anthony Lewis and George A. Bekey discusses the possibility of using swarm

intelligence to control nano-bots within the body for the purpose of killing cancer tumors.

Artists are using swarm technology as a means of creating complex interactive

environments. Disney's The Lion King was the first movie to make use of swarm

technology (the stampede of the wildebeasts scene). The Lord of the Rings film trilogy

also made use of similar technology, known as Massive, during battle scenes. Swarm

technology is particularly attractive because it is cheap, robust, and simple.

6.6 FPGA based controller for reactive control of a
mobile robot

The recent trend in robot control is to have a microcontroller based robot brain to control

the robot motion as well as do the sensing and planning part. As discussed earlier in

behavior based robot control the planning part is done at the design level and the robot

control is left to sense and act cycle. It is important to note here that there is a ‘Cycle’ of

sensing and acting in robot control algorithms, whereas in insects and low intelligence

animals there is no sign of a ‘Cycle’ in sensing and acting. Instead the sensing and acting

is carried out in parallel. This is due to the fact that robots run their algorithms

sequentially or at most using time division as in case of multitasking but still true

parallelism is lacking. Also we have seen that the level of intelligence presented at a

group level by the social insect like bees and ants is much higher than that of the state of

the art robots of the present day. Perhaps this large gap it is due to this intrinsic

parallelism found in insect’s brain. So in future work I would like to design an FPGA

Chapter 6 Conclusions and Further Work

51

based controller for the behaviors in a robot. The advantages of this approach would

include 1. Close resemblance in control mechanism to there real life counterparts. 2.

Parallelism in computation will hopefully bring a revolutionary change in the growth of a

robots brain. A rough first draft of the design is presented in Figure6.1.

Move to Goal Avoid Objects

Behavior
Addition

Recharge Perform
Task1

Position
sensing

Motion Vector Calculation for Motor Control

E
nvironm

ent Sensing for O
ther O

bjects

Figure6.1. An FPGA implementation of the behavior based controller

Appendix A References

52

References
[1] Balch, T., Arkin, R.C. “Behavior-based formation control for multirobot teams”

1998 IEEE Transactions on Robotics and Automation 14 (6), pp. 926-939

[2] Balch, Tucker, Arkin, Ronald C. “Communication in reactive multiagent robotic
systems” 1994 Autonomous Robots 1 (1), pp. 27-52

[3] Arkin, Ronald C “Cooperation without Communcation: Multiagent Schema based
Robot navigation” 1992 Journal of robotic Systems 9(3) pp 351-364

[4] Stan Franklin “Coordination without Communication”,unpublished.
http://www.cs.memphis.edu/~franklin/coord.html

[5] Balch, Tucker, Arkin, Ronald C. “AuRA: Principles and Practice in Review”
Journal of Experimantal and Theoretical Artificial Intelligence 9:2-3 pp. 175-189
April-September 1997.

[6] Brooks, Rodney A. “Elephants don't play chess” 1990 Robotics Amsterdam 6 (1-
2), pp. 3-15

[7] Kaiser, M., Dillmann, R., Friedrich, H., Lin, I., Wallner, F., Weckesser, P.
“Learning coordination skills in multi-agent systems” 1996 IEEE International
Conference on Intelligent Robots and Systems 3, pp. 1488-1495

[8] Paul E. Rybski, Amy Larson, Harini Veeraraghavan, Monica LaPoint, and Maria
Gini, “Communication strategies in Multi-Robot Search and Retrieval: Experiences
with MinDART", DARS 2004, Toulouse, France, June 2004.

[9] Arkin, Ronald C “A Neural Schema Architechture for mobile robots”

[10] Brooks, R.A. “New approaches to robotics” 1991 Science 253 (5025), pp. 1227-
1232

[11] Brooks, R.A. “Intelligence without representation” Artificial Intelligence 47 (1-3),
pp. 139-159

[12] Holland, O., Melhuish, C. “Stigmergy, self-organization, and sorting in collective
robotics” 1999 Artificial Life 5 (2), pp. 173-202

[13] MacKenzie, Douglas C., Arkin, Ronald C. “Evaluating the usability of robot
programming toolsets” 1998 International Journal of Robotics Research 17 (4), pp.
381-401.

[14] Di Caro, Gianni, Dorigo, Marco “Mobile agents for adaptive routing” 1998
Proceedings of the Hawaii International Conference on System Sciences 7, pp. 74-
83

[15] Endo, Y. “Anticipatory and Improvisa-tional robot via recollection and exploitation
of episodic memories”. 2005 AAAI Fall Symposium - Technical Report FS-05-05,
pp. 57-64

[16] Life, April 1996, p. 44; Time, March 25, 1996, p. 60

Appendix A References

53

[17] Robin Murphy. “Introduction to AI Robotics”. MIT Press 2000.

[18] Matarić, M. (1997). Behavior-Based Control: Examples from Navigation, Learning,
and Group Behavior. Hexmoor, H., Horswill, I., and Kortenkamp, D., eds., Journal
of Experimental and Theoretical Artificial Intelligence, special issue on Software
Architectures for Physical Agents 9(2-3):323-336.

[19] Brooks, R. (1986). A Robust Layered Control System for a Mobile Robot. IEEE
Journal of Robotics and Automation 2(1):14-23.

[20] Maes, P. (1989). The Dynamics of Action Selection. In Proceedings of the
International Joint Conference on Artificial Intelligent (IJCAI-89). Detroit, MI, pp.
991- 997.

[21] Pirjanian, P. (2000). Multiple Objective Behavior-based Control. Robotics and
Autonomous Systems 31(1-2):53-60.

[22] Payton, D., Keirsey, D., Kimble, D., Krozel, J., Rosenblatt, J. (1992). Do Whatever
Works: A Robust Approach to Fault-tolerant Autonomous Control. Applied
Intelligence

[23] Maes, P.,Brooks, R. (1990). Learning to Coordinate Behaviors. In Proceedings of
the American Association of Artificial Intelligence (AAAI-91), Boston, MA, pp.
796- 802.

[24] Pirjanian, P. (1999). Behavior Coordination Mechanisms – State-of-the-Art.

University of Southern California Institute of Robotics and Intelligent IRIS
Technical Report IRIS-99-375.

[25] Matarić, M. (1992). Integration of Representation Into Goal-Driven Behavior-
Based Robots. In IEEE Transactions on Robotics and Automation 8(3):304-312.

[26] Nicolescu, M., Matarić, M. (2001). Experience-based Representation Construction:
Learning from Human and Robot Teachers. In Proceedings of IEEE/RSJ
International Conference on Robots and Systems (IROS-01). Maui, Hawaii, pp.
740-745.

[27] Nicolescu, M., Matarić, M. (2000). Extending Behavior-Based Systems Capabilities
Using An Abstract Behavior Representation. University of Southern California
Institute for Robotics and Intelligent Systems IRIS Technical Report IRIS-00-389.

[28] Cao, Y., Fukunaga, A., Kahng, A. (1997). Cooperative Mobile Robotics:
Antecedents and Directions. Autonomous Robots 4:7-27.

[29] Dudek, G., Jenkin, M., Milios, E. (2002). A Taxonomy of Multirobot Systems. In
Balch, T. and Parker, L., eds. Robot Teams: From Diversity to Polymorphism,
Natick, Massachusetts: A.K. Peters, pp. 3-22.

[30] Balch, T., Parker, L., eds. (2002). Robot Teams: From Diversity to Polymorphism.
A. K. Peters.

[31] Bohringer, K., Brown, R., Donald, B., Jennings, J. (1997). Distributed Robotic
Manipulation: Experiments in Minimalism. In O. Khatib ed. Experimental Robotics

Appendix A References

54

IV, Lecture Notes in Control and Information Sciences 223, pp. 11-25. Berlin:
Springer Verlag.

[32] Gerkey, B., Matarić, M. (2004). A Formal Analysis and Taxonomy of Task
Allocation in Multi-robot Systems. International Journal of Robotics Research
23(9):939- 954.

[33] Howard, A., Parker, L., Sukhatme, G. (2004). The SDR Experience: Experiments
with a Large-scale Heterogenous Mobile Robot Team. In 9th International
Symposium on Experimental Robotics. Singapore. June 18-20.

[34] Konolige, K., Fox, D., Ortiz, C., Agno, A., Eriksen, M., Limketkai, B., Ko, J.,
Morisset, B., Schulz, D., Stewart, B., Vincent, R. (2004). Centibots: Very Large
Scale Distributed Robotic Teams. In 9th International Symposium on Experimental
Robotics. Singapore. June 18-20.

[35] Rahimi, M., Pon, R., Kaiser, W., Sukhatme, G., Estrin, D., Srivastava, M. (2004).
Adaptive Sampling for Environmental Robotics. In Proceedings of the International
Conference on Robotics and Automation, pp. 3537-3544. New Orleans, Louisiana.

[36] Zhang, B., Sukhatme. G., Requicha, A. (2004). Adaptive Sampling for Marine
Microorganism Monitoring. To appear in Proceedings IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). Sendai, Japan. October 30-
September 2.

[37] Holland, O., Melhuish, C. (1999) Stigmergy, Self-organization, and Sorting in
Collective Robotics. Artificial Life 5(2):173-202.

[38] Franks, N., Deneubourg J-L (1997) Self-organising Nest Construction in Ants:
Individual Worker Behavior and the Nest’s Dynamics. Animal Behaviour 54:779-
796.

[39] Kube, C., Zhang, H. (1996). The Use of Perceptual Cues in Multi-robot
Boxpushing. In Proceedings IEEE International Conference on Robotics and
Automation (ICRA-96), pp. 2085-2090, Minneapolis, Minnesota.

[40] Jones, C., Matarić, M. (2004). Automatic Synthesis of Communication-Based
Coordinated Multi-Robot Systems. In Proceedings IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). Sendai, Japan. October 30-
September 2.

[41] Reynolds, C. (1987). Flocks, Herds, and Schools: A Distributed Behavior Model.
Computer Graphics 21(4):25-34.

[42] Matarić, M. (1995). Designing and Understanding Adaptive Group Behavior.
Adaptive Behavior 4(1):51-80.

[43] Jones, C., Matarić, M. (2003). Adaptive Division of Labor in Large-Scale
Minimalist Multi-Robot Systems. In Proceedings of the IEEE/RSJ International
Conference on Robotics and Intelligent Systems (IROS). Las Vegas, Nevada. pp.
1969- 1974.

Appendix A References

55

[44] Fredslund, J., Matarić, M. (2002). A General, Local Algorithm for Robot
Formations. IEEE Transactions on Robotics and Automation, Special Issue on
Multi- Robot Systems 18(5):837-846.

[45] Gerkey, B., Matarić, M. (2001). Principled Communication for Dynamic Multi-
Robot Task Allocation. In Proceedings International Symposium on Experimental
Robotics 2000. Waikiki, Hawaii, pp. 341-352.

[46] Parker, L. (1997). Behavior-Based Cooperative Robotics Applied to Multi-Target
Observation. In Bolles, R., Bunke, R., Noltemeier, H. eds. Intelligent robots:
Sensing, modeling, and planning, R. Bolles, H. Bunke, and H. Noltemeier. World
Scientific. pp. 356-373.

[47] Lerman, K., Galstyan, A. (2002). Mathematical Model of Foraging in a Group of
Robots: Effects of Interference. Autonomous Robots 13(2):127-141.

[48] Lerman, K., Galstyan, A., Martinoli, A., Ijspeert, A. (2001). A Macroscopic
Analytical Model of Collaboration in Distributed Robotic Systems. Artificial Life
7(4):375-393.

[49] Richard S. Sutton and Andrew G. Barto, Reinforcement Learning: An introduction.
MIT Press

Appendix B Mission Lab Overview

56

What isMissionLab?

MissionLab Overview

MissionLab is a powerful set of software tools for developing and testing

behaviors for single robots and a group of robots. Code generated by MissionLab can

directly control commercial robots. ATRV-Jr / Urban Robot (iRobot), AmigoBot /

Pioneer AT / Pioneer 2DX (ActivMedia, Inc.), and Nomad-150 / 200 (Nomadic

Technologies, Inc.) are among those robots MissionLab has supported successfully. A

primary strength of MissionLab is its support of both simulated and real robots. A

developer can experiment with behaviors in simulation and then run those same

configurations on mobile robots (Figure 1).

Appendix B Mission Lab Overview

57

MissionLab has a distributed architecture. Thus, the main user’s console can run

on one computer while multiple robot control executables are distributed across a

network, potentially on-board the actual robots they control. The core of the MissionLab

tool-set is composed of six primary components:

• mlab: mlab is a console-like program from which a user monitors the progress

of experimental runs of the robot executables. Locations of the robots and detected

obstacles are examples of various data mlab can monitor. When mlab is used for

simulation (as opposed to controlling mobile robots), it serves as a sensor and actuator

simulator from the point of view of the robot executable. On mobile robots, the actual

sensors are used instead. of mlab.

• CfgEdit: The Configuration Editor, or CfgEdit, is a graphical tool for building

robot behaviors. The designer can build complex control structures with the point and

click of a mouse. CfgEdit generates source code which, when compiled, can directly

control a simulated or real robot.

 • cdl: The cdl code generator translates the CDL (Configuration Description

Language), which is generated by CfgEdit, into CNL (Configuration Network Language)

code. In general, users will not need to be concerned with CNL. However, because

programming in CNL is very similar to programming in the C language, advanced users

may develop their own primitive behaviors and store them as a library and/or write their

own control programs without using CfgEdit.

• cnl: The cnl compiler compiles CNL code generated by the cdl code generator,

and produces C++ code. Once this C++ coded is compiled with the GNU C Compiler

(gcc), the compiled program (or robot executable) may now directly control a robot. The

cnl compiler is automatically invoked by CfgEdit when needed.

• HServer: HServer (Hardware Server) directly controls all the robot hardware,

either via TCP/IP or a serial link, and provides a standard interface for all the robots and

sensors. The CfgEdit generated code uses this standard interface to control the real

Appendix B Mission Lab Overview

58

robots. HServer also provides direct control, configuration, and status of the robots and

sensors.

• CBRServer: CBRServer (CaseBased Reasoning Server) generates a mission

plan based on specs provided by the user by retrieving and assembling components of

previously stored successful mission plans.. In addition to CDL and CNL described

above, there are two more original languages that were specifically developed for the

MissionLab system:

• CMDL: The Command Description Language (CMDL) may optionally be used

for describing simple sequential robot missions. A CMDL file, containing both

background and command information will run the code.

Appendix C Code Listing

59

Code Listing
/**
 ** **
 ** MOVE_TO_GOAL.cnl **
 ** **
 ** **
 **
**/

/* $Id: MOVE_TO_GOAL.cnl,v 1.1.1.1 2006/07/12 13:37:59 omar Exp $ */

#include "cnl.inc"

/**
*/

procedure Vector MOVE_TO_GOAL with
 Vector goal_rel_loc;
 double success_radius;
header
body
 if(len_2d(goal_rel_loc) > success_radius)
 {
 /* generate a vector towards the goal */
 output = goal_rel_loc;
 unit_2d(output);
 }
 else
 {
 /* return a zero vector if within the success circle */
 VECTOR_CLEAR(output);
 }

 if(debug)
 {
 fprintf(stderr,"MOVE_TO_GOAL(%d) r=%.1f output=(%.1f %.1f)\n",
 robot_id, success_radius,output.x,output.y);
 }
pend

/**
$Log: MOVE_TO_GOAL.cnl,v $
Revision 1.1.1.1 2007/04/12 13:37:59 omar
MissionLab 7.0
Added RCS id and log strings.
#**
/

Appendix C Code Listing

60

/*--

 avoid_robot.cnl

 Avoid other robots.

 Written by: Omar

--*/

/* $Id: AVOID_ROBOT.cnl,v 1.1.1.1 2007/04/13 13:37:58 omar Exp $ */

#include "cnl.inc"

procedure Vector AVOID_ROBOT with

double sphere;
double min_range;
Robots readings;

header

Vector sum;
Vector t1,t2;
int i;
double len, mag;

body

VECTOR_CLEAR(output);
VECTOR_CLEAR(sum);

for(i=0; i<readings.cnt; i++)
 {

 if(debug)
 fprintf(stderr,"AVOID_ROBOT: robot detected at <%.1f %.1f>\n",
 readings.v[i].x, readings.v[i].y);

 len = len_2d(readings.v[i]);
 if (len < EPS_ZERO)
 {
 len = 0.0001;
 readings.v[i].y = 1.0;
 }
 mag = 0;
 if (len <= min_range)
 {
 mag = GT_INFINITY;
 }
 else if (len < sphere)
 {
 double denom = sphere - min_range;
 if(fabs(denom) < EPS_ZERO)

Appendix C Code Listing

61

 {
 mag = GT_INFINITY;
 }
 else
 {
 mag = (sphere - len) / denom;
 }
 }
 if (fabs(mag) > EPS_ZERO)
 {
 t1.x = -readings.v[i].x;
 t1.y = -readings.v[i].y;
 unit_2d(t1);
 times_2d(t1, mag, t2);
 add_2d(t2, sum, sum);
 }
 }
output = sum;

if(debug)
 fprintf(stderr,"AVOID_ROBOT: <%.1f %.1f>\n",output.x, output.y);

pend

/**
$Log: AVOID_ROBOT.cnl,v $
Revision 1.1.1.1 2006/07/12 13:37:58 omar
MissionLab 7.0

#***/

/*--

 AVOID_OBJECTS.cnl

 Written by: omar

--*/

/* $Id: AVOID_OBJECTS.cnl,v 1.1.1.1 2006/07/12 13:37:58 omar Exp $ */

#include "cnl.inc"

/**
*/

procedure Vector AVOID_OBJECTS with
 double sphere;

Appendix C Code Listing

62

 double safety_margin;
 ObjectList objlist;
header
 int first_time=TRUE;
 double old_safety_margin = 0;
body
 if(debug)
 {
 fprintf(stderr,"AVOID_OBJECTS(sphere = %.1f, safety_margin =
%.1f\n",
 sphere, safety_margin);
 }

 if(first_time || old_safety_margin != safety_margin)
 {
 /*
 * Report the safety margin I are using to the console so the
 * graphics can use it for showing virtual collisions
 */
 char buf[80];

 sprintf(buf, "%f",safety_margin);
 exec_put_console_state(SAFETY_MARGIN_MSG,buf);

 old_safety_margin = safety_margin;
 first_time = FALSE;
 }

 VECTOR_CLEAR(output);

 // For each object
 for(int i=0; i<objlist.count; i++)
 {
 if(debug)
 cerr << objlist.objects[i] << '\n';

 gt_Point contribution;

 // compute the closest point of the obstacle to the center of the
robot.
 gt_Point pt = objlist.objects[i].closest_point();
 double dist = len_2d(pt);

 /* Handle the case where within the max repulsion zone */
 if (dist < safety_margin)
 {
 /* generate an infinite (around 100000) vector away from the
obstacle*/

 if (dist < EPS_ZERO) // Epsilon Zero (~0.00001): Stop divide
by 0 error
 {
 /* Handle the case where an obstacle is EXACTLY centered
 where the robot is as a special case because I can't
 use the vector to determine a direction to move.
 So, arbitraily choose straight ahead direction for vector.
 */

Appendix C Code Listing

63

 contribution.x = -GT_INFINITY;
 contribution.y = 0;
 }
 else
 {
 contribution = pt;
 unit_2d(contribution);
 mult_2d(contribution, GT_INFINITY);
 }
 }

 /* handle case where within the linear repulsion zone */
 else if (dist <= safety_margin + sphere)
 {
 /* set the magnitude of the repulsion vector (0...1) based on
how
 far I have intruded into the zone.
 Magnitude is 0 on outside edge (dist = sphere).
 Magnitude is 1 on inside edge (dist = safety_margin)

 sphere is the size of the zone.
 I are at distance (dist - safety_margin) beyond the inner
edge of
 the zone or (sphere - (dist - safety_margin)) from the outer
edge.

 So, take our distance from the outer edge and divide by the
size
 of the zone to get a ratio from 0 to 1 with zero at the
outside
 and 1 at the inside.
 */

 double mag = (sphere - (dist - safety_margin)) / sphere;

 contribution = pt;
 unit_2d(contribution);
 mult_2d(contribution, mag);
 }

 /* otherwise, outside obstacle's sphere of influence, so ignore
it */
 else
 {
 contribution.x = 0;
 contribution.y = 0;
 }

 if(debug)
 fprintf(stderr,"contribution = <%.1f, %.1f>\n",
 contribution.x, contribution.y);

 // Add it to the running sum */
 plus_2d(output, contribution);
 }

 // Note: Vector generated is pointing towards the obstacle,

Appendix C Code Listing

64

 // now flip it to be a movement vector away from the obstacles
 output.x = -output.x;
 output.y = -output.y;

 if(debug)
 {
 fprintf(stderr,"AVOID_OBJECTS: output vector <%.1f %.1f>\n",
 output.x, output.y);
 }
pend

/**
$Log: AVOID_OBJECTS.cnl,v $
Revision 1.1.1.1 2007/03/06 13:37:58 omar
MissionLab 7.0

#**
/

/**
 ** **
 ** QLEARN.cc **
 ** **
 ** Written By: Omar **
 ** **

**/

/* $Id: qlearn.cc,v 1.1.1.1 2006/07/12 13:38:00 omar Exp $ */

#include <string.h>
#include <time.h>
#include <iostream>

#include "qlearn.h"

using std::cout;
using std::endl;

/* Constructor for Qlearn
 * Parameters may be adjusted using accessor methods.
 *
 * numstates---the number of states the system could be in.
 * numactions--the number of actions or outputs to
 * select from.
 * criteria----should be DISCOUNTED or AVERAGE.
 * seedin------the seed.
 */

double ** array2d(int x, int y)
{
 double **temp;
 int i, j;

Appendix C Code Listing

65

 // OMAR - gcc 3.4
 //temp = new (double *)[x];
 temp = new double *[x];

 for (i = 0; i < x; i++)
 {
 temp[i] = new double[y];
 }

 for (i = 0; i < x; i++)
 {
 for (j = 0; j < y; j++)
 {
 temp[i][j] = 0;
 }
 }

 return (temp);
}

//make sure this doesn't leak
void delarray2d(double **array, int x)
{
 int i;

 if (array == NULL)
 return;

 for (i = 0; i < x; i++)
 {
 if (array[i] != NULL)
 delete[]array[i];
 }

 delete[]array;
}

Qlearn::Qlearn (int numstatesin, int numactionsin, char *filename,
 int robot_id, double alphaIn, double alphaDecay,
 double randomRate, double rScenarioDecay,
 int criteriain, int seedin)
{
 int i, j;
 FILE *file;
 int highest;

 dataName = new char[128];
 sprintf (dataName, "%d%c", robot_id, '\0');
 dataName = strcat (dataName, filename);
 dataName = strcat (dataName, ".dat");

 cout << "passed it to Q... " << dataName << endl;

 dataName = new char[128];
 sprintf (dataName, "%d%c", robot_id, '\0');
 dataName = strcat (dataName, filename);

Appendix C Code Listing

66

 dataName = strcat (dataName, ".dat");

 tableName = new char[128];
 sprintf (tableName, "%d%c", robot_id, '\0');
 tableName = strcat (tableName, filename);
 tableName = strcat (tableName, ".tab");

 AVERAGE = 0;
 DISCOUNTED = 1;

 numstates = numstatesin;
 numactions = numactionsin;

 cout << "STATEs.." << numstates << " Actions.." << numactions <<
endl;

 if ((criteriain != DISCOUNTED) && (criteriain != AVERAGE))
 {
 cout << "Error: INVALID CRITERIA. Setting to DISCOUNTED" <<
endl;
 criteria = DISCOUNTED;
 }
 else
 criteria = criteriain;

 seed = seedin;
 srand ((unsigned) time (NULL));

 q = array2d (numstates, numactions);

 profile = array2d (numstates, numactions);

 p = array2d (numstates, numactions);

 last_policy = new int[numstates];
 for (i = 0; i < numstates; i++)
 last_policy[i] = 0;

 //NOTE---MAKE MY OWN RANDOM NUMBER GENERATOR
 for (i = 0; i < numstates; i++)
 {
 highest = 0;
 for (j = 0; j < numactions; j++)
 {
 // q[i][j] = ((double) rand()/(double) RAND_MAX) - 1;
 q[i][j] = (rand () / (RAND_MAX + 1.0)) + 1;
 //q[i][j] = 0;
 p[i][j] = 0;
 profile[i][j] = 0;
 if (q[i][highest] > q[i][j])
 highest = j;
 }
 last_policy[i] = j;
 }
 xn = an = 0;

Appendix C Code Listing

67

//variable initialization
 changes = 0;
 changesAll = 0;
 queries = 0;
 total_reward = 0;
 first_of_trial = 1;
 gamma = 0.8;
 alpha = alphaIn;
 randomrate = randomRate;
 randomratedecay = rScenarioDecay;
 seed = seedin;
 debug = FALSE;

 // Read the Qtable...
 // replace all variables just initialized with
 // values from Qtable, if it exists

 if (dataName != NULL)
 {
 file = fopen (dataName, "r");
 if (file != NULL)
 {
 fclose (file);
 read ();
 }
 }

 alpha = alpha * alphaDecay;
 randomrate = randomrate * randomratedecay;
 first_of_trial = 1;

}

/*
 * Select an output based on the state and reward.
 *
 * curstate---the current state.
 * curreward--reward for the last output, positive
 * numbers are "good."
 */

int Qlearn::query(int curstate, double curreward)
{
 int action;
 double randomnum;
 int highest;

 total_reward += curreward;
 queries++;

 //Check to see if the current state is out of range.
 if ((curstate > (this->numstates - 1)) || (curstate < 0))
 {
 return -1;

Appendix C Code Listing

68

 }

 //Find approximate value of present state, and best action.
 //ie: max q[yn][i] over all i, i is the best action.

 double Vn = -999999; //very bad
 action = 0;
 for (int i = 0; i < numactions; i++)
 {
 if (q[curstate][i] > Vn)
 {
 Vn = q[curstate][i];
 action = i;
 }
 }
 if (first_of_trial != 1)
 {

 q[xn][an] = q[xn][an] + alpha * (curreward + gamma * Vn -
q[xn][an]);

 p[xn][an]++; //count times in the last state/action
 profile[xn][an]++; //count times for this trial
 }
 else
 first_of_trial = 0;

 for (int i = 0; i < numstates; i++)
 {
 highest = 0;
 for (int j = 1; j < numactions; j++)
 {
 if (q[i][highest] < q[i][j])
 highest = j;
 }

 if (highest != last_policy[i])
 {
 last_policy[i] = highest;
 changesAll++;

 if (i < numstates / 2)
 changes++;

 }
 }

 //Select random action, possibly
 //NOTE---MAKE MY OWN RANDOM NUMBER GENERATOR

 randomnum = rand () / (RAND_MAX + 1.0);
 if (randomnum <= randomrate)
 {
 action = ((int) (rand () / 10)) % numactions;
 if (action < 1)
 action = -1 * action;
 }

Appendix C Code Listing

69

 printf ("%s LAST(STATE: %d, ACTION: %d) Action Chosen: %d reward:
%f\n",
 dataName, xn, an, action, curreward);

 //Remember for next time
 xn = curstate;
 an = action;

 // if (logging) CheckForChanges();

 return action;
}

/**
 * Called when the current trial ends.
 *
 * @param Vn double, the value of the absorbing state.
 * @param reward double, the reward for the last output.
 */
void
Qlearn::endTrial (double Vn, double rn)
{
 total_reward += rn;

 if (criteria == DISCOUNTED)
 {
 // Watkins update rule:
 q[xn][an] = (1 - alpha) * q[xn][an] + alpha * (rn + gamma * Vn);
 }
 else // criteria == AVERAGE
 {
 // average update rule
 q[xn][an] = (p[xn][an] * q[xn][an] + rn) / (p[xn][an] + 2);
 // see update above in query() for explanation
 // of this rule
 }

 p[xn][an] += 1;
 profile[xn][an] += 1;
}

/**
 * Called to initialize for a new trial.
 */
int
Qlearn::initTrial (int s)
{
 first_of_trial = 1;
 changes = 0;
 queries = 0;
 total_reward = 0;
 delarray2d (profile, numstates);
 profile = array2d (numstates, numactions);
 return (query (s, 0));

Appendix C Code Listing

70

}

void
Qlearn::print ()
{
 int i, j;
 FILE *record;

 record = fopen (tableName, "a+");

 for (i = 0; i < numstates; i++)
 {
 for (j = 0; j < numactions; j++)
 {
 fprintf (record, "%g ", q[i][j]);
 }

 }
 fprintf (record, "\n");
 fclose (record);
}

//void Qlearn::save(char *filename)
void
Qlearn::save ()
{
 FILE *file;
 int i, j;

 file = fopen (dataName, "w");

 fwrite (&numstates, 1, sizeof (int), file);
 fwrite (&numactions, 1, sizeof (int), file);
 fwrite (&criteria, 1, sizeof (int), file);
// fwrite(&changes, 1, sizeof(int), file);
 fwrite (&queries, 1, sizeof (int), file);
 fwrite (&first_of_trial, 1, sizeof (int), file);
 fwrite (&xn, 1, sizeof (int), file);
 fwrite (&an, 1, sizeof (int), file);
 fwrite (&debug, 1, sizeof (int), file);
 fwrite (&seed, 1, sizeof (long), file);

 fwrite (&total_reward, 1, sizeof (double), file);
 fwrite (&gamma, 1, sizeof (double), file);
 fwrite (&alpha, 1, sizeof (double), file);
 fwrite (&randomrate, 1, sizeof (double), file);
 fwrite (&randomratedecay, 1, sizeof (double), file);

 for (i = 0; i < numstates; i++)
 {
 for (j = 0; j < numactions; j++)
 {
 fwrite (&(q[i][j]), 1, sizeof (double), file);
 fwrite (&(p[i][j]), 1, sizeof (double), file);
 fwrite (&(profile[i][j]), 1, sizeof (double), file);
 }

Appendix C Code Listing

71

 fwrite (&(last_policy[i]), 1, sizeof (int), file);
 }
// readPolicy();

 fclose (file);

}

//void Qlearn::read(char *filename)
void
Qlearn::read ()
{
 FILE *file;
 int i, j;

 file = fopen (dataName, "r");

 fread (&numstates, 1, sizeof (int), file);
 fread (&numactions, 1, sizeof (int), file);
 fread (&criteria, 1, sizeof (int), file);
// fread(&changes, 1, sizeof(int), file);
 fread (&queries, 1, sizeof (int), file);
 fread (&first_of_trial, 1, sizeof (int), file);
 fread (&xn, 1, sizeof (int), file);
 fread (&an, 1, sizeof (int), file);
 fread (&debug, 1, sizeof (int), file);
 fread (&seed, 1, sizeof (long), file);

 fread (&total_reward, 1, sizeof (double), file);
 fread (&gamma, 1, sizeof (double), file);
 fread (&alpha, 1, sizeof (double), file);
 fread (&randomrate, 1, sizeof (double), file);
 fread (&randomratedecay, 1, sizeof (double), file);

 for (i = 0; i < numstates; i++)
 {
 for (j = 0; j < numactions; j++)
 {
 fread (&(q[i][j]), 1, sizeof (double), file);
 fread (&(p[i][j]), 1, sizeof (double), file);
 fread (&(profile[i][j]), 1, sizeof (double), file);
 }
 fread (&(last_policy[i]), 1, sizeof (int), file);
 }

// readPolicy();

 fclose (file);
}

void
Qlearn::readPolicy ()
{
 for (int i = 0; i < numstates; i++)
 {
 printf ("%d ", last_policy[i]);
 }

Appendix C Code Listing

72

 printf ("\n");
}

/**
$Log: qlearn.cc,v $
Revision 1.1.1.1 2007/03/14 13:38:00 omar
MissionLab 7.0

**/

/**
*
* This file DROP_OBJECT.cc was created with the command
* "/home/omar/MissionLab-7.0/bin/cnl -c -I../include -
I/home/omar/MissionLab-7.0/src/ipt/include DROP_OBJECT.cnl"
* using the CNL compiler, version 4.0.
*
**/

extern "C"
{
#include <cthread.h>
#include "../include/ipt/ipt.h"
}
#include <string.h>

#ifndef NULL
#define NULL 0
#endif
#define SRC_TYPE_LOCAL_NODE (0)
#define SRC_TYPE_REMOTE (1)
#define SRC_TYPE_CONSTANT (2)
#define require_input(name) parms->##name##require = true
#define NAME2NAME_REQUIRE(name) name##_require

extern int _num_nodes;
extern int _done_count;
extern mutex_t _done_count_lock;
extern condition_t _new_cycle;
extern char* _prefix;
extern char* _ipt_home;
extern IPCommunicator* _communicator;
extern IPConnection** _ipt_modules;
extern int _ipt_is_active;
extern double _zero_time;

/* Execution philosophy:
*
* Start of cycle
* o Each node checks all of its users to see if its output will be
used

Appendix C Code Listing

73

* if no user wants the output, then the node is blocked. Void
output
* nodes never block.
*
* o Nodes which are not blocked then execute, begining with the
sensors.
*
* End of cycle
*/

/**
***/
// Task Control Block class externs
template<class T> class _list {

 struct SLink
 {
 struct SLink *next;
 T data;

 // constructor: create objects
 SLink(const T val) {

 data = val;
 }

 // destructor: needed so don't delete the data objects
 ~SLink() {

 // Nothing to do, here to keep from deleting the data
 }
 };
 SLink *last_ptr;

public:
 // constructor: create objects
 _list() {

 last_ptr = NULL;
 }

 // Is list empty?
 int isempty(void) const {

 return last_ptr == NULL;
 }

 // Append to end of list
 // Note: last_ptr->next is first record
 void append(const T data) {

 SLink *rec = new SLink(data);
 if(last_ptr)
 {
 rec->next = last_ptr->next;
 last_ptr->next = rec;

Appendix C Code Listing

74

 }
 else
 {
 rec->next = rec;
 }
 last_ptr = rec;
 }

 // Return first element without removing it
 // Note: last_ptr->next is first record
 // Returns NULL if list is empty
 void *first(T *rec) const {

 if(this == NULL || last_ptr == NULL)
 return NULL;

 *rec = last_ptr->next->data;

 return (void *)last_ptr->next;
 }

 // Return next element without removing it
 // Note: must call first to setup the iterator
 // Returns NULL if list is empty
 void *next(T *rec, void *cur) const {

 if((SLink *)cur == last_ptr)
 return NULL;

 *rec = ((SLink *)cur)->next->data;
 return (void *)((SLink *)cur)->next;
 }
};

enum _STAT_TYPE {STAT_UNKNOWN, STAT_BLOCKED, STAT_RUNNING};
class tcb {

public:
 enum _STAT_TYPE status_;
 list<tcb *> users;
 const char *task_name;
 bool output_valid_;
 bool done_;
 char *activeFlag; // if not null, set to '1' if node ran
this cycle, '0' if blocked

 void update_status(void *port);
 virtual bool will_use_port(void *port) = 0;
 virtual void update_run_status() = 0;
 void reset_status();
 bool blocked();
 bool done();
 void block_me();
 void set_name(const char *name);
};

Appendix C Code Listing

75

void reset_all_tasks();
void update_all_tasks();
extern _list<tcb *> list_of_tasks;

#line 1 "cnl.inc"
#line 9 "cnl.inc"

#include <stdio.h>
#include <stdlib.h>
#include <cmath>
#include <string>

#include "gt_simulation.h"
#include "cnl.h"
#include "gt_std_types.h"
#include "gt_std.h"
#include "FSA_status.h"
#include "qlearn.h"

using std::cerr;
using std::string;

#line 25 "cnl.inc"
#line 180 "DROP_OBJECT.cc"

struct T_CMDLi : public tcb
{
 char* node_name;
 bool *recon_done;
 int recon_done_type;
 int recon_done_module;
 char* recon_done_src;
 tcb *recon_done_tcb;

 bool *moveto_done;
 int moveto_done_type;
 int moveto_done_module;
 char* moveto_done_src;
 tcb *moveto_done_tcb;

 Vector *recon;
 int recon_type;
 int recon_module;
 char* recon_src;
 tcb *recon_tcb;

 Vector *moveto;
 int moveto_type;
 int moveto_module;
 char* moveto_src;
 tcb *moveto_tcb;

 CNLString_t *cmdlFilename;
 int cmdlFilename_type;
 int cmdlFilename_module;
 char* cmdlFilename_src;

Appendix C Code Listing

76

 tcb *cmdlFilename_tcb;

 CNLString_t *envFilename;
 int envFilename_type;
 int envFilename_module;
 char* envFilename_src;
 tcb *envFilename_tcb;

Table of Contents

ACKNOWLEDGEMENTS ... i

Abstract ... ii

Chapter 1: Introduction ... 1

1.1 General .. 1
1.2 Tasks of the Project ... 2
1.3 Overview of Multi-Robot Systems ... 3

1.3.1 Advantages of Multi-Robot Systems .. 3

1.3.2 Challenges in Design of Multi-Robot Systems ... 4

1.4 Coordination in Multi-Robot Systems .. 4
1.4.1 Classification of group level tasks .. 5

1.4.2 Simple Tasks ... 5

1.4.3 Complex Tasks.. 6

1.5 Interaction in Multi-Robot Systems .. 6
1.5.1 Interaction through communication .. 7

1.5.2 Interaction through sensing ... 8

1.5.3 Interaction via Stigmergy .. 9

Chapter 2: Coordination without Communication .. 12

2.1 General .. 12
2.2 Is communication necessary for Coordination? .. 12
2.3 The Hensel twins... 12
2.4 Lybrinth game ... 13
2.5 Feasibility of coordination without communication ... 14
2.6 Requirements of the task ... 15

2.6.1 Intelligence .. 15

2.6.2 Memory ... 15

2.6.3 Anticipation... 16

Chapter 3: Intelligence in Robots ... 18

3.1 General .. 18
3.2 Classical AI approach ... 18

3.2.1 The Interface between Perception and Symbols ... 19

3.2.2 Inadequacy of Simple Symbols .. 20

3.2.3 Symbol Systems Rely on Emergent Properties .. 20

3.3 Modern Approaches in AI .. 20
3.3.1 Evolution ... 21

3.3.2 Reactive control .. 22

3.3.3 Behavior based AI... 23

Chapter 4: Design and Implementation of the Proposed .. 27

Coordination Scheme .. 27
4.1 Finite State Automation (FSA) ... 27

4.1.1 Design of the mine-clearing robot using FSA technique 28

4.2 Reinforcement learning ... 33
4.2.1 Coordination based on learning .. 36

4.2.2 Learning in simple tasks ... 36

4.3 Implementation of the design in hardware .. 37
4.3.1 Robot Platform .. 37

4.4 Implementation of the design in software ... 39
4.4.1 Simulation setup for FSA for mine-clearing robot 40

4.4.2 Simulation setup for mine-clearing robots using Q-Learning 40

4.5 Experimental setup: Sut-Pala game .. 41

Chapter 5: Simulation Results and Discussion ... 43

5.1 Simulation Results for Mine Clearing robots using FSA Technique 43
5.2 Simulation Results for Mine Clearing robots using Q-Learning 44
5.3 Simulation Results for Sut-Pala Game ... 46

Chapter 6: Conclusions and Further Work ... 48

6.1 Achievements .. 48
6.2 Future targets and open issues .. 48
6.3 Coordination in complex tasks .. 49
6.4 Anticipation and improvisation... 49
6.5 On the horizon... 50
6.6 FPGA based controller for reactive control of a mobile robot 50

References ... 52

What isMissionLab? ... 56

MissionLab Overview ... 56

Code Listing .. 59

