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Abstract 
During last few decades, major research efforts were focused on improving the 

performance of an individual mobile robot by using advanced sensors, actuators, and 

intelligent control algorithms. This was mainly driven by the need to perform 

increasingly complex tasks required by real world applications. As a result, individual 

mobile robot has become very sophisticated. 

The current trend in robotic research, both from engineering and behavioral 

viewpoints, has been to move away from the design and deployment of few, rather 

complex, usually expensive, application-specific robots. In fact, in the last decade the 

interest has shifted towards the design and use of a large number of “generic” robots 

which are very simple, with very limited capabilities and, thus, relatively inexpensive, but 

capable, together, of performing rather complex tasks. In a system consisting of a set of 

totally distributed agents the goal is generally to exploit the multiplicity of the elements 

in the system so that the execution of a certain predetermined task occurs in a coordinated 

and distributed way.  

The advantages of this approach are clear and many, including: reduced costs (due to 

simpler engineering and construction costs, faster computation, development and 

deployment time, etc); ease of system expandability (just add a few more robots) which 

in turns allows for incremental and on-demand deployment (use only as few robots as 

you need and when you need them); simple and affordable fault-tolerance capabilities 

(replace just the faulty robots); re-usability of the robots in different applications 

(reprogram the system to perform a different task). Moreover, tasks that could not be 

performed at all by a single agent become manageable when many simple units are used 

instead. 

I intend to design and implement a distributed multi-robot system using some multi-

robot simulation tool. Coordinating robots in a dynamic environment is a difficult task. 

They must be able to carry out their contributions to the overall goal of the system 

efficiently and effectively while not impeding each other. The focus of multi-robot 

coordination should therefore be twofold: each robot should consider the objectives of the 
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team while maintaining its own functional integrity. As such, the team plan should exist 

at a level where it provides strategies for each robot to contribute to the team’s success. 

Each robot must consider the team strategy and execute it as best it can without 

compromising its ability to maintain functional operation. 

There are two ways of making the robots coordinate. First is to use explicit 

communication between the robots so that they may easily coordinate. But in actual 

scenarios this explicit communication is usually not possible or feasible (e.g. in a hostile 

environment). The other choice is to make the robots coordinate by observing their 

environment or the behaviors of the other robots. This latter approach is a new concept in 

recent research. I wish to study and implement this approach during the course of my 

thesis work. 
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Chapter 1: Introduction 

1.1 General 
The field of distributed and cooperative robotics has its origins in the late 1980s, 

when several researchers began investigating issues in multiple mobile robot systems 

[5,7]. Prior to this time, research had concentrated on either single-robot systems or 

distributed problem-solving systems that did not involve robotic components [3]. Since 

then, the field has grown dramatically, with a much wider variety of topics addressed. 

An autonomous agent is a computational system that acquires and analyzes 

sensory data or external stimulus and executes behaviors that produce effects in the 

environment. It decides for itself how to relate sensory data to its behaviors in its efforts 

to attain certain goals. Such a system is able to deal with unpredictable problems, 

dynamically changing situations, poorly modeled environments, or conflicting 

constraints. The motivation behind the research and development in multi-agent robotic 

systems comes from the fact that the decentralized multi-robot approach has a number of 

advantages over traditional single complex robotic systems approaches. 

Distributed robots can readily exhibit the characteristics of structural flexibility, 

reliability through redundancy, simple hardware, adaptability, re-configurability, and 

maintainability. The robots can interact with their local environments in the course of 

collective problem-solving. Responding to different local constraints received from their 

task environments, they may select and exhibit different behavior patterns, such as 

avoidance, following, aggregation, dispersion, homing, and wandering. These behaviors 

are precisely controlled through an array of parameters (such as motion direction, timing, 

lifespan, age, etc.), which may be carefully predefined or dynamically acquired by the 

robots based on certain computational mechanisms.  
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In order to successfully develop multi-agent robotic systems, the key 

methodological issues must be carefully examined. At the same time, the underlying 

computational models and techniques for multi-agent systems engineering must be 

thoroughly understood. 

 

 

 

 

 

 

 

 

1.2 Tasks of the Project 
The sequence of the project tasks is going to be in the following way. 

• Review the current research in Multi-Robot coordination. 

• Review coordination techniques which minimize communication. 

• The design and simulation of a communication-less coordination scheme. 

• Test this new scheme for simple and complex group-level tasks. 

• Verification and validation of this new scheme by comparing results. 

• Identifying areas where future research can be directed to develop on this 

technique. 

Figure1.1. The Nerd Herd: A multi-robot test bed developed at the MIT 
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1.3 Overview of Multi-Robot Systems 
In this section I discuss the advantages and additional issues involved in the 

control of multi-robot systems (MRS) as compared to the single-robot systems (SRS) 

discussed in the previous section. An MRS is a system composed of multiple, interacting 

robots. The study of MRS has received increased attention in recent years. This is not 

surprising, as continually improving robustness, availability, and cost-effectiveness of 

robotics technology has made the deployment of MRS consisting of increasingly larger 

numbers of robots possible. With the growing interest in MRS comes the expectation 

that, at least in some important respects, multiple robots will be superior to a single robot 

in achieving a given task. In this section I outline the benefits of a MRS over a SRS and 

introduce issues involved in MRS control and how they are similar and different to those 

of SRS control. 

1.3.1 Advantages of Multi-Robot Systems 

Potential advantages of MRS over SRS include a reduction in total system cost by 

utilizing multiple simple and cheap robots as opposed to a single complex and expensive 

robot. Also, multiple robots can increase system flexibility and robustness by taking 

advantage of inherent parallelism and redundancy. Furthermore, the inherent complexity 

of some task environments may require the use of multiple robots, as the necessary 

capabilities or resource requirements are too substantial to be met by a single robot. To 

summarize following are the main advantages of using multiple robots; 

• a larger range of task domains 

• greater efficiency 

• improved system performance 

• fault tolerance 

• robustness 

• lower economic cost 

• ease of development 

• distributed sensing and action 

• inherent parallelism 
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• insight into social and life sciences 

1.3.2 Challenges in Design of Multi-Robot Systems 

The utilization of MRS poses potential disadvantages and additional challenges 

that must be addressed if MRS are to present a viable and effective alternative to SRS. A 

poorly designed MRS, with individual robots working toward opposing goals, can be less 

effective than a carefully designed SRS. A paramount challenge in the design of effective 

MRS is managing the complexity introduced by multiple, interacting robots[12]. As such, 

in most cases just taking a suitable SRS solution and scaling it up to multiple robots is not 

adequate. 

1.4 Coordination in Multi-Robot Systems 
In order to maximize the effectiveness of a MRS, the robots' actions must be 

spatiotemporally coordinated and directed towards the achievement of a given system-

level task or goal. Just having robots interact is not sufficient in itself to produce 

interesting or practical system-level coordinated behavior. The design of MRS can be 

quite challenging because unexpected system-level behaviors may emerge due to 

unanticipated ramifications of the robots' local interactions. In order for the interacting 

robots to produce coherent task-directed behavior, there must be some overarching 

Figure1.2. Rug-Warrior: A robot designed for Multi-Robot Systems research. 
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coordination mechanism that spatio-temporally organizes the interactions in a manner 

appropriate for the task. The design of such coordination mechanisms can be difficult; 

nonetheless, many elegant handcrafted distributed MRS have been demonstrated, both in 

simulation and on physical robots [19,20,21]. The methods by which these systems have 

achieved task-directed coordination are diverse and the possibilities are seemingly limited 

only by the ingenuity of the designer. From a few robots performing a manipulation task 

[22,23], to tens of robots exploring a large indoor area [24,25], to potentially thousands of 

ecosystem monitoring nano-robots [26,27], as the number of robots in the system 

increases, so does the necessity and importance of coordination. The next section 

examines mechanisms by which system-level coordination can be successfully achieved 

in a MRS.  

1.4.1 Classification of group level tasks 

The main advantage of using multiple robots is to perform tasks more efficiently 

than a single robot, or to perform tasks that a single robot is incapable of doing. Imagine 

a single robot wandering in a mine field looking for mines and disabling them. It may 

take it hours yet there will be no guarantee that the field has been cleared. In contrast 

imagine the same field crowded with small robots all looking for mines and avoiding 

other robots in due course. This approach should lead to reduced time and a performance 

increase of manifolds. Thus each robot will be running two separate sets of tasks. One is 

the group of local tasks that a robot needs to avoid obstacles and other robots, and the 

second is the group level tasks of disabling the mines in an efficient manner.  

Now group level tasks can be further divided on the basis of task complexity. This 

is discussed in the next section. 

1.4.2 Simple Tasks 

Simple tasks in the context of multi-robot systems are those tasks that can be 

completed by using comparatively less intelligent robots. Even robots that can neither 

remember nor anticipate can complete these tasks effectively. Foraging is an example of 

such a task. In nature we see ants foraging very efficiently yet they don’t have a brain 

intelligent enough to remember any thing of the past[24]. Whatever is hard wired in their 
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brains remains so for the duration of their life yet still they show intelligent behavior 

unmatchable be the best of robots. Thus I propose that simple tasks can be completed 

using very limited capabilities in the robots. 

1.4.3 Complex Tasks 

Complex tasks are those group-level tasks which require greater intelligence, 

computational power and memory in the participating robots. Examples of these tasks are 

robots playing football (Figure 1.3), a group of robots collectively carrying a heavy 

object to some target location etc. These tasks are more demanding as far as designing 

constraints are concerned. 

 
 
 
 
 
 
 
 
 

1.5 Interaction in Multi-Robot Systems 
Given the importance of coordination in a MRS, I now address the issue of how to 

organize the robots’ local interactions in a coherent manner in order to achieve system 

level coordination. There are many mechanisms by which the interactions can be 

organized. I classify them into three broad and often overlapping classes: interaction 

through the environment, interaction through sensing, and interaction through 

communication. These classes are not mutually exclusive because MRS can, and often 

do, simultaneously utilize mechanisms from any or all of these classes to achieve system 

level coordinated behavior. In the following sections I describe each of these interaction 

Figure1.3. Robot football: An example of complex multi-robot task 
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classes in detail. Through the discussion of empirical case studies I demonstrate how each 

type of interaction can be used to achieve system-level coordination in a MRS. 

1.5.1 Interaction through communication 

The first mechanism for interaction among robots is through explicit 

communication. Such robot-directed communication can be used to request information 

or action from other robots or to respond to received requests. 

 

 

 

 

 

 

Communication in physical robotics is not free or reliable and can be constrained 

by limited bandwidth and range, and unpredictable interference [7,8]. When utilizing it, 

one must consider how and toward what end it is used. In some domains, such as the 

Internet, communication is reliable and of unlimited range; however, in physical robot 

systems, communication range and reliability are important factors in system design 

[2,36]. There are many types of communication. Communication could be direct from 

one robot to another, direct from one robot to a class of other robots, or broadcast from 

one robot to all others. Furthermore, the communication protocol can range from simple 

protocol-less schemes to a complex negotiation-based and communication-intensive 

schemes The information encoded in a communication may be state information 

contained by the communicating robot, a command to one or more other robots, or a 

request for additional information from other robots, etc. Communications may be task-

related rather than robot-directed, in which case it is made available to all (or a subset) of 

the robots in the MRS. A common task-related communication scheme is 

Figure1.4. A ‘Leader’ robot coordinates by communicating with the follower robots 
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publish/subscribe messaging. In publish/subscribe messaging, subscribing robots request 

to receive certain categories of messages, and publishing robots supply messages to all 

appropriate subscribers. In the next subsection, I describe a case study of the effective use 

of interaction through communication. 

1.5.2 Interaction through sensing 

The second mechanism for interaction among robots is through sensing, described 

in [9], interaction through sensing ‘refers to local interactions that occur between robots 

as a result of sensing one another, but without explicit communication.’ As with 

interaction through the environment, interaction through sensing is also indirect as there 

is no explicit communication between robots; however, it requires each robot to be able 

to distinguish other robots from miscellaneous objects in the environment. In some 

instances, each robot may be required to uniquely identify all other robots, or classes of 

other robots. In other instances, it may only be necessary to simply distinguish robots 

from other objects in the environment. Interaction through sensing can be used by a robot 

to model the behavior of other robots or to determine what another robot is doing in order 

to make decisions and respond appropriately. For example, flocking birds use sensing to 

monitor the actions of other birds in their vicinity to make local corrections to their own 

motion. It has been shown that effective flocking results from quite simple local rules 

followed by each bird responding to the direction and speed of the local neighbors [32].  

In the follow subsection I describe a case study in a formation marching domain 

in which interaction through sensing is used to achieve coordinated group behavior. 

Other domains in which interaction through sensing has been utilized in MRS include 

flocking [33], in which each robot adjusts it motions according to the motions of locally 

observed robots. Through this process, the robots can be made to move as a coherent 

flock through an obstacle-laden and dynamic environment. Interaction through sensing 

has also been demonstrated in an adaptive division of labor domain [34]. In that domain, 

each robot dynamically changes the task it is executing based on the observed actions of 

other robots and the observed availability of tasks in the environment. Through this 

process, the group of robots coherently divides the labor of the robots appropriately 

across a set of available tasks.  
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1.5.3 Interaction via Stigmergy 

The third mechanism for interaction is through the robots’ shared environment. 

This form of interaction is indirect in that it consists of no explicit communication or 

physical interaction between robots. Instead, the environment itself is used as a medium 

of indirect communication. This is a powerful approach that can be utilized by very 

simple robots with no capability for complex reasoning or direct communication. An 

example of interaction through the environment is demonstrated in stigmergy, a form of 

interaction employed by a variety of insect societies. Originally introduced in the 

biological sciences to explain some aspects of social insect nest-building behavior, 

stigmergy is defined as the process by which the coordination of tasks and the regulation 

of construction do not depend directly on the workers, but on the constructions 

themselves [28]. This concept was first used to describe the nest-building behavior of 

termites and ants [29]. It was shown that coordination of building activity in a termite 

colony was not inherent in the termites themselves. Instead, the coordination mechanisms 

were found to be regulated by the task environment, in that case the growing nest 

structure. A location on the growing nest stimulates a termite’s building behavior, thereby 

transforming the local nest structure, which in turn stimulates additional building 

behavior of the same or another termite. Through the careful design of robot sensing, 

actuation, and control features, it is possible to utilize the concept of stigmergy in task-

directed MRS. 

This powerful mechanism of coordination is attractive as it typically requires 

minimal capabilities of the individual robots. The robots do not require direct 

communication, unique recognition of other robots or even distinguishing other robots 

from miscellaneous objects in the environment, or the performance of computationally 

intensive reasoning or planning. Stigmergy, and more generally interaction through the 

environment, has been successfully demonstrated as a mechanism to coordinate robot 

actions in a number of MRS. It has been demonstrated in an object manipulation domain 

[30] in which a large box was transported to a goal location through the coordinated 

pushing actions of a group of robots. There was no globally agreed upon plan as to how 

or over what trajectory the box should be moved; however, each robot could indirectly 
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sense the pushing actions of other robots through the motions of the box itself. Through 

simple rules, each robot decided whether to push the box or move to another location 

based on the motions of the box itself. As a large enough number of robots pushed in 

compatible directions, the box moved, which in turn encouraged other robots to push in 

the same direction. Other examples of the use of stigmergy in MRS include distributed 

construction in which a given structure was built in a specified construction sequence 

[31]. The individual robots were not capable of explicit communication and executed 

simple rule-based controllers in which local sensory information was directly mapped to 

construction actions. The construction actions of one robot altered the environment, and 

therefore the subsequent sensory information available for it and all other robots. This 

new sensory information then activated future construction actions. In the following 

subsection I discuss in detail how the concept of stigmergy was utilized in a MRS object 

clustering task domain [28]. 
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Chapter 2: Coordination without Communication 

2.1 General 
Coordination between multiple agents is an essential requirement for successful 

completion of many large-scale tasks. Many tasks require more resources than a single 

robot can possibly provide. By enabling many simple robots to cooperate together on a 

larger task, it becomes possible to solve a problem that would be infeasible using a single 

large-scale machine. 

A major concern, however, in many attempts to coordinate multiple-agent 

behavior is the perceived requirement that a hierarchy must be present to effectively carry 

out a task. A master/slave relationship, although often allowing for a more efficient 

conduct of particular tasks, introduces brittleness into the system. This brittleness is 

characterized by dependence on a single source (or a few) for guidance of the other 

cooperating agents. Three major drawbacks can be seen with this approach. The first 

involves the communication bottleneck when a master is trying to coordinate the 

behavior of a swarm of slave agents. This can be a severely limiting factor for large 

collection of simple robots. 

2.2 Is communication necessary for Coordination? 
Now  a question arises that is communication necessary at all for carrying out 

group level tasks? There has been much debate on this issue ever since. We have already 

seen the advantages of a communication-less system there for in the following section we 

seek answers to the above said questions that whether we require communication, if so to 

what extent and if not are there exceptions? 

2.3 The Hensel twins 
The story of the Hensel twins [16] sowed the seeds of doubt. Abigail and Brittany, 

kindergartners, share a body. Their separate heads rise from a single pair of shoulders 

topping a body with the usual number of arms and legs. Inside, things are more complex, 

with two hearts pumping a single circulatory system, three lungs, two stomachs, and 

separate spines jointed at the pelvis. Their nervous systems are disjoint. A touch on the 
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right side is felt only by Abby. Each controls one arm and one leg. And therein lies the 

rub. At fifteen months, they learned to walk. Now they swim, bike, and tie shoe laces, all 

requiring considerable coordination of actions.  

This coordination is apparently achieved without communication. "But," I've been 

told, "they do communicate through the environment. Each is aware of the other's actions 

via vision, proprioception, etc. That's communication." Is it? True, all communications 

occur when one agent acts on the environment and the other senses the results of that 

action. But would all such acting and sensing comprise communications? I think not. It's 

far fetched to call my following the tracks of a bobcat in the snow communication 

between the bobcat and me. Communication, in the sense of the word I intend, requires 

the sending and receiving of signals. Is the bobcat signaling when he leaves tracks in the 

snow? I think not. This situation is quite analogous to me following a river downstream 

while canoeing 

2.4 Lybrinth game 
Is such coordination without communication possible only under the most unusual 

circumstances of the Hensel twins? Stan Franklin [4] reports and I quote, “Let me give 

you another example that should have alerted me to the possibility of coordination 

without communication years ago. My older children during their teenage years were 

quite fond of a maze game called Labyrinthspiel. Picture a roughly one foot square 

wooden box some four inches tall. Mounted in the upper interior of the box were two 

nested trays. The inner tray was a maze containing some sixty holes strategically placed 

as pitfalls for the unwary traveler. The traveler was a small steel ball, just able to fall 

through one of the holes into the bottom of the box. The outer tray, mostly rim, was 

mounted at its center on a metal rod running north south. A knob, attached to the rod, 

could be rotated, tilting both trays in the east west direction. The inner tray was 

independently mounted on a second metal rod perpendicular to the first. Rotating its knob 

tilted only the inner tray in the north south direction. With the ball in the starting position, 

the player attempted to guide the ball through the maze, avoiding all the holes. This 

required well coordinated manipulation of the two knobs using the principle that balls roll 

down hill. It wasn't easy. 
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Over time, two of the children, Phil and Mimi, completely mastered 

Labyrinthspiel, being able to reliably guide the ball back and forth through the maze, 

missing all the pitfalls. But such mastery led to boredom. So, they invented two-person 

Labyrinthspiel, Mimi controlling one knob and Phil the other. To my amazement, they 

were soon able to coordinate their movements so as to successfully negotiate the entire 

maze.”  

It seems to me that this sort of coordination is impossible to achieve in real time 

via any sort of signaling. It can only result from each agent frequently sampling the 

environment, in this case watching the ball and the attitude of the maze, and reacting to it 

with its goal in mind. Reacting, in this case, should be taken as reacting not only to the 

ball's location, but to its velocity (including direction)1 as well. Coordination emerges 

incidentally. I also suspect that there are no internal signals from the right hand's 

controller to the left's when a single human is playing. Probably sampling and reacting 

suffices. 

2.5 Feasibility of coordination without communication 
With all the information I have just gathered it seems quite plausible that 

coordination can be achieved without the involvement of any explicit communication. 

Many researchers have come across this reality that removing explicit communication in 

multi-robot scenario results is much faster task completion but at the cost of reduced 

reliability.  

Mataric [18] compares the effects of explicit communication, goal communication 

and state communication for foraging task. The results suggest that through state 

communication results comparable to other approaches can be achieved.  

Now question arises that under what conditions is coordination without 

communication is feasible. I suggest that under following circumstances coordination 

without communication is feasible. 

• In hostile environments where eavesdropping is a possibility. 

• In noisy environment where reliability of communication cannot be 

guaranteed. 
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• In hi speed applications where communication overhead will slow down 

the execution speed. 

• In cases where human life is not at stake and inaccuracy can be tolerated. 

• In cases where the number of robots in the swarm is great and the cost of 

communication is very high. 

2.6 Requirements of the task 
To achieve coordination without communication robots must possess some 

qualities that would enable them to interact with each other in meaningful way and work 

together to achieve some group-level goal.  In the following section I explore these 

necessary qualities in detail 

2.6.1 Intelligence 

Intelligence is a quality of mind whether human, animal or computer There have 

been meny definitions of intelligence throughout the AI history but a definition which is 

widely accepted and signed by 52 AI researchers given in ‘wikipedia’ is: 

a very general mental capability that, among other things, involves the ability to 

reason, plan, solve problems, think abstractly, comprehend complex ideas, learn quickly 

and learn from experience. It is not merely book learning, a narrow academic skill, or 

test-taking smarts. Rather, it reflects a broader and deeper capability for comprehending 

our surroundings—"catching on", "making sense" of things, or "figuring out" what to do. 

In our case the robots must be able to exhibit intelligent behavior and carry out 

tasks without failing to be labeled as intelligent 

2.6.2 Memory 

A simple definition of memory is “an organism's ability to store, retain, and 

subsequently recall information”. In the case of robots a robot must keep track of its 

whereabouts and recall certain experiences (good or bad) and be able to use them 

promptly when needed. This would require some adaptability, some physical memory 

device and some clever algorithms to achieve this task. 
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2.6.3 Anticipation 

As mentioned above, an anticipatory robot should assess the current situation, 

predict the future consequence of the situation, and execute an action to have desired 

outcome based on the assessment and the prediction. The concept of an anticipatory robot 

may be best represented by Rosen’s diagram (Figure 1). Rosen [12] proposed the notion 

of anticipatory systems in order to analyze how adaptive living organisms work. The 

labels S, M, and E in the figure stand for object system, model, and effectors, 

respectively. More specifically, S represents some dynamical system that interacts with 

the environment. For example, the system could be a microorganism, animal, or even an 

economy of some country. M is a model of S. Given a current state of S and an 

environment, M foretells what state S is likely to reach in the future. E is the effector that 

can interact with S or the environment in order to influence the future state of S. 

According to Rosen [12], the function of the anticipatory system is to: (a) Do nothing if 

M expects that S is likely to stay in a “desirable” state; or (b) activate E to correct the 

“trajectory” of S if M forecasts that an unwanted outcome is imminent. One of the 

important properties of the anticipatory system is that, unlike a reactive system that 

executes actions simply as a response to a current state (stimuli), the system reacts to a 

state that is expected to happen in the future.  

 
 
 
 
 
 
 

Figure2.3. Rosen’s Diagram: An anticipatory system 
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Chapter 3: Intelligence in Robots 

3.1 General 
The science of making machines act intelligently is usually referred to as 

Artificial Intelligence, or AI for short. Artificial intelligence has no commonly accepted 

definitions. One of the first text books on AI defined it as “the study of ideas that enable 

computers to be intelligent,” which seemed to beg the question. A later textbook was 

more specific, “AI is the attempt to get the computer to do things that, for now, people 

are better at.”[19]. This definition implies that certain AI problems can be solved, which 

is generally not true because there can always be a better (more intelligent) ways of doing 

things.  

3.2 Classical AI approach 
The term Artificial Intelligence (AI) was first used by John McCarthy who used it 

to mean "the science and engineering of making intelligent machines".[1] It can also refer 

to intelligence as exhibited by an artificial (man-made, non-natural, manufactured) entity. 

While AI is the generally accepted term others, including both Computational 

Intelligence and Synthetic Intelligence have been proposed as potentially being "more 

accurate."[2] The terms strong and weak AI can be used to narrow the definition for 

classifying such systems. AI is studied in overlapping fields of computer science, 

robotics, psychology, philosophy, neuroscience, and engineering, dealing with intelligent 

behavior, learning, and adaptation and usually developed using customized machines or 

computers. 

Research in AI is concerned with producing machines to automate tasks requiring 

intelligent behavior. Examples include control, planning and scheduling, the ability to 

answer diagnostic and consumer questions, handwriting, natural language, speech, and 

facial recognition. As such, the study of AI has also become an engineering discipline, 

focused on providing solutions to real life problems, knowledge mining, software 

applications, strategy games like computer chess and other video games. One of the 

biggest difficulties with AI is that of comprehension. Many devices have been created 
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that can do amazing things, but critics of AI claim that no actual comprehension by the 

AI machine has taken place. 

The symbol system hypothesis, [30], states that intelligence operates on a system 

of symbols. The implicit idea is that perception and motor interfaces are sets of symbols 

on which the central intelligence system operates. Thus, the central system, or reasoning 

engine, operates in a domain independent way on the symbols. Their meanings are 

unimportant to the reasoner, but the coherence of the complete process emerges when an 

observer of the system knows the groundings of the symbols within his or her own 

experience. Somewhat more implicitly in the work that the symbol system hypothesis has 

inspired, the symbols represent entities in the world. They may be individual objects, 

properties, concepts, desires, emotions, nations, colors, libraries, or molecules, but they 

are necessarily named entities. There are a number of effects which result from this 

commitment. Recall first, however, that an intelligent system, apart from those which are 

experiments in the laboratory, will be embedded in the world in some form or another. 

3.2.1 The Interface between Perception and Symbols 

The central intelligence system deals in symbols. It must be fed symbols by, the 

perception system. But what is the correct symbolic description of the world around the 

intelligence system? Surely that description must be task dependent. The default 

assumption has been that the perception system delivers a description of the world in 

terms of typed, named individuals and their relationships. For instance in the classic 

monkeys and bananas problem, the world, description is in terms of boxes, bananas, and 

above ness. But for another task (e.g., deciding whether the bananas are rotten) quite a 

different representation might be important. Psychophysical evidence [32] certainly 

points to perception being an active and task dependent operation. The effect of the 

symbol system hypothesis has been to encourage vision researchers to quest after the goal 

of a general purpose vision system which delivers complete descriptions of the world in a 

symbolic form (e.g. [5]). Only recently has there been a movement towards active vision 

[4] which is much more task dependent, or task driven [1]. 
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3.2.2 Inadequacy of Simple Symbols 

Symbol systems in their purest forms assume a knowable objective truth. It is 

only with much complexity that modal logics, or non-monotonic logics, can be built 

which better enable a system to have, beliefs gleaned from partial views of a chaotic 

world. As these enhancements are made, the realization of computations based on these 

formal systems becomes more and more biologically implausible. But once the 

commitment to symbol systems has been made it is imperative to push on through more 

and more complex and cumbersome systems in pursuit of objectivity. This same pursuit 

leads to the well known frame problem (e.g., [27]), where it is impossible to assume 

anything that is not explicitly stated. Technical deviations around this problem have been 

suggested but they are by no means without their own problems.  

3.2.3 Symbol Systems Rely on Emergent Properties 

In general the reasoning process becomes trivial in an NP-complete space (e.g., 

There have been large efforts to overcome these problems by choosing simple 

arithmetically computed evaluation functions or polynomials to guide the search. 

Charmingly, it has been hoped that intelligence will somehow emerge from these simple 

numeric computations carried out in the sea of symbols. [28] was one of the earliest 

examples of this hope, which later turned out to be only partially correct (his learned 

polynomials later turned out to be dominated by piece count), but in fact almost all 

instances of search in classical AI have relied on such judiciously chosen polynomials to 

keep the search space manageable. 

3.3 Modern Approaches in AI 
Nouvelle AI is based on the physical grounding hypothesis. This hypothesis states 

that to build a system that is intelligent it is necessary to have its representations 

grounded in the physical world. Our experience with this approach is that once this 

commitment is made, the need for traditional symbolic representations soon fades 

entirely. The key observation is that the world is its own best model. It is always exactly 

up to date. It always contains every detail there is to be known. The trick is to sense it 

appropriately and often enough. To build a system based on the physical grounding 
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hypothesis it is necessary to connect it to the world via a set of sensors and actuators. 

Typed input and output are no longer of interest. They are not physically grounded. 

Accepting the physical grounding hypothesis as a basis for research entails building 

systems in a bottom up manner. High level abstractions have to be made concrete. The 

constructed system eventually has to express all its goals and desires as physical action, 

and must extract all its knowledge from physical sensors. Thus the designer of the system 

is forced to make everything explicit. Every short-cut taken has a direct impact upon 

system competence, as there is no slack in the input/output representations. The forms of 

the low-level interfaces have consequences which ripple through the entire system. 

3.3.1 Evolution 

I already have an existence proof of the possibility of intelligent entities — human 

beings. Additionally many animals are intelligent to some degree. (This is a subject of 

intense debate, much of which really centers around a definition of intelligence.) They 

have evolved over the 4.6 billion year history of the earth. It is instructive to reflect on 

the way in which earth-based biological evolution spent its time. Single cell entities arose 

out of the primordial soup roughly 3.5 billion years ago. A billion years passed before 

photosynthetic plants appeared. After almost another billion and a half years, around 550 

million years ago, the first fish and vertebrates arrived, and then insects 450 million years 

ago. Then things started moving fast. Reptiles arrived 370 million years ago, followed by 

dinosaurs at 330 and mammals at 250 million years ago. The first primates appeared 120 

million years ago and the immediate predecessors to the great apes a mere 18 million 

years ago. Man arrived in roughly his present form 2.5 million years ago. He invented 

agriculture a mere 19000 years ago, writing less than 5000 years ago and "expert" 

knowledge only over the last few hundred years. This suggests that problem solving 

behavior, language, expert knowledge and application, and reason, are all rather simple 

once the essence of being and reacting are available. That essence is the ability to move 

around in a dynamic environment, sensing the surroundings to a degree sufficient to 

achieve the necessary maintenance of life and reproduction. This part of intelligence is 

where evolution has concentrated its time—it is much harder. This is the physically 

grounded part of animal systems. An alternative argument to the preceding is that in fact 
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once evolution had symbols and representations things started moving rather quickly. 

Thus symbols are the key invention and AI workers can sidestep the early morass and 

start working directly with symbols. But I think this misses a critical point, as is shown 

by the relatively weaker performance of symbol based mobile robots as opposed to 

physically grounded robots. Without a carefully built physical grounding any symbolic 

representation will be mismatched to its sensors and actuators. These groundings provide 

the constraints on symbols necessary for them to be truly useful. [26] has argued rather 

eloquently that mobility, acute vision and the ability to carry out survival related tasks in 

a dynamic environment provide a necessary basis for the development of true 

intelligence. 

3.3.2 Reactive control 

In artificial intelligence, reactive planning denotes a group of techniques for 

action selection by autonomous agents. These techniques differ from classical planning in 

two aspects. First, they operate in a timely fashion and hence can cope with highly 

dynamic and unpredictable environments. Second, they compute just one next action in 

every instant, based on the current context. Reactive planners often (but not always) 

exploit reactive plans, which are stored structures describing the agent's priorities and 

behavior. 

 

 

 

 

A condition action rule, or if-then rule, is a rule in the form: if condition then 

action. These rules are called productions. The meaning of the rule is as follows: if the 

condition holds, perform the action. The action can be either external (e.g., pick 

something up and move it), or internal (e.g., write a fact into the internal memory, or 

evaluate a new set of rules). Conditions are normally Boolean and the action either can be 

performed, or not. 

 
Sense 

 
Act 

Plan

Figure3.3 The direct coupling of action to sensing is the defining characteristic of 
reactive control. 
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Production rules may be organized in relatively flat structures, but more often are 

organized into a hierarchy of some kind. For example, subsumption architecture consists 

of layers of interconnected behaviors, each actually a finite state machine which acts in 

response to an appropriate input. These layers are then organized into a simple stack, with 

higher layers subsuming the goals of the lower ones. Other systems may use trees, or may 

include special mechanisms for changing which goal / rule subset is currently most 

important. Flat structures are relatively easy to build, but allow only for description of 

simple behavior, or require immensely complicated conditions to compensate for the 

lacking structure. 

3.3.3 Behavior based AI 

Behavior Based Artificial Intelligence (BBAI) is a methodology for developing 

AI based on a modular decomposition of intelligence. It was made famous by Rodney 

Brooks and his subsumption architecture was one of the earliest attempts to describe a 

mechanism for developing BBAI. It is extremely popular in robotics and to a lesser 

extent intelligent virtual agents because it allows the successful creation of real-time 

dynamic systems that can run in complex environments. For example, it underlies the 

intelligence of the Sony Aibo and many RoboCup robot teams. 

The most important attribute of a behavior based system is that the intelligence is 

controlled by a set of independent semi-autonomous modules. In the original systems, 

each module was actually a separate device or was at least conceived of as running on its 

own processing thread. Generally though the modules are just abstractions. BBAI may be 

seen as a software engineering approach to AI, perhaps akin to object oriented design. 

BBAI is often associated with reactive planning, but the two are not synonymous. 

Brooks advocated an extreme version of cognitive minimalism which required initially 

that the behavior modules were finite state machines and thus contained no conventional 

memory or learning. This is associated with reactive AI because reactive AI requires 

reacting to the current state of the world, not to an agent's memory or preconception of 

that world. However, learning is obviously key to realistic strong AI, so this constraint 

has been relaxed, though not entirely abandoned. 
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Mataric [18] states that behavior-based robotics designs controllers for omarwing 

robots with intelligent behavior, based on “a biologically inspired philosophy that favors 

parallel, decentralized architectures.” It draws on the idea of providing the robots with a 

range of basic behaviors and letting the environment determine which behavior is more 

suitable as a response to a certain stimulus. Sukhatme and Mataric [21] define behaviors 

as “real-time processes that take inputs from sensors and/or other behaviors and send 

outputs to actuators and/or other behaviors.” In behavior-based robotics, basic behaviors 

are fundamental units for control, reasoning, and learning. The environment plays a 

central role in activating a certain basic behavior at any given time. The behavior 

modules and the coordination mechanisms are usually designed through a trialand- error 

process in which a designer progressively changes them and tests the resulting behavior 

in the environment.  

Extending the reactive and behavior-based approaches to a multi-agent domain 

will lead to completely distributed systems with no centralized controller. Behavior-based 

robotics has been an active and popular approach to robot control in the multi-robot 

domain, allowing multi-robot systems to adapt to realworld environments.  

Behavior-based systems are praised for their robustness and simplicity of 

construction. Based on Brooks’ behavior based subsumption architecture [6], for 

example, Parker developed the ALLIANCE architecture [4] for controlling groups of 

heterogeneous robots and demonstrated it on a group of four physical robots performing 

puck manipulation and box-pushing. He divides tasks into subtasks, with groups of 

behaviors addressing each subtask. At the highest level, “mutually inhibitory 

motivational behaviors are designed to direct the overall behavior of a robot, which in 

turn activates lower-level behaviors to perform a subtask” [4]. Along with the typical 

sensor-based conditions that might trigger motivational behaviors, Parker adds 

impatience and acquiescence. Impatience increases if no other robot is tempting to solve 

the subtask associated with a motivational behavior, while acquiescence inhibits the 

behavior if the robot is not successful in the subtask. The combination of the ordinary 

conditions of impatience and acquiescence in a group enables the robots to cooperate in 

striving to achieve an overall task. 
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Balch [7] takes motor schemas as an example of behavior-based robot control. 

Motor schemas are the reactive components in an Autonomous Robot Architecture 

(AuRA) [7]. AuRA’s design integrates “deliberative planning at the top level with 

behavior-based motor control at the bottom.” The lower levels are concerned with 

executing reactive behaviors. Individual motor schemas, or primitive behaviors, express 

separate goals or constraints for a task. For example, the schemas for a navigational task 

may involve avoiding obstacles and moving to a goal. Since schemas are independent, 

they can run concurrently, providing parallelism and efficiency. Motor schemas may be 

grouped to form more complex, emergent behaviors. 
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Chapter 4: Design and Implementation of the Proposed  

Coordination Scheme 

4.1 Finite State Automation (FSA) 
Finite state machine (FSM) is model of behavior of a system. FSMs are used 

widely in computer science. Modeling behavior of agents is only one of their possible 

applications. A typical FSM, when used for describing behavior of an agent, consists of a 

set of states and transitions between these states. The transitions are actually condition 

action rules. In every instant, just one state of the FSM is active, and its transitions are 

evaluated. If a transition is taken it activates another state. That means, in general 

transitions are the rules in the following form: if condition then activate-new-state. But 

transitions can also connect to the 'self' state in some systems, to allow execution of 

transition actions without actually changing the state. 

There are two ways of how to produce behavior by a FSM. They depend on what 

is associated with the states by a designer --- they can be either 'acts', or scripts. An 'act' is 

an atomic action that should be performed by the agent if its FSM is the given state. This 

action is performed in every time step then. However, more often is the latter case. Here, 

every state is associated with a script, which describes a sequence of actions that the 

Figure4.1. A state diagram for a trash collecting robot  
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agent has to perform if its FSM is in a given state. If a transition activates a new state, the 

former script is simply interrupted, and the new one is started. If a script is more 

complicated, it can be broken down to several scripts and a hierarchical FSM can be 

exploited. In such an automaton, every state can contain substrates. Only the states at the 

atomic level are associated with a script (which is not complicated) or an atomic action. 

Computationally, hierarchical FSMs are equivalent to FSMs. That means that 

each hierarchical FSM can be converted to a classical FSM. However, hierarchical 

approaches facilitate designs better. See the paper of Mataric [25] for an example of 

ASM of computer game bots, which uses hierarchical FSMs. 

4.1.1 Design of the mine-clearing robot using FSA technique 
Design of the mine-clearing robot required that I write schemas for ‘mine 

detection’, ‘obstacle detection’, ‘robot detection’, ‘avoid obstacles’ etc so that they could 

then be strung up in a flow chart to form an FSA. Moreover the FSA should be that such 

that no planning or lengthy data processing should be done by the robot. The algorithm 

should be ‘constant time’ ‘Sense-Act’ mechanism that is the basis of all the behavioral 

systems. Keeping these constraints in mind I designed the basic FSAs for simple tasks 

and then combined them to form a complete control algorithm for different tasks that 

were assigned to the robots. Keep in mind that a very big constraint in the robot 

coordination was that no communication should be involved between the robots. This 

made the task quite difficult. 

In the following pages in Figures 4.2 to 4.5 I have listed the algorithms for these 

basic tasks using flow charts. 

 

 

 

 

 

 



Chapter 4  Proposed Coordination Scheme 

29 

 

 

 

 

 

 

 

Move Towards 
Success Circle 

Set Movement 
Completion 
Flag 

Calculate 
Movement 
Vectors for 
Motors  

Within 
Success 
Circle ?

START 

END 

Yes

No
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4.2 Reinforcement learning 
In computer science, reinforcement learning is a small area of machine learning 

that deals with how a robot should take actions in an environment so as to maximize a 

long-term reward. Reinforcement learning algorithms try to find a policy that maps states 

of the world to the actions the robot should take in those states. 

The environment is typically formed as a finite-state Markov decision process 

(MDP), and reinforcement learning algorithms for this context are highly related to 

dynamic programming techniques. State transition probabilities and reward probabilities 

in the MDP are typically stochastic but stationary over the course of the problem. 

Reinforcement learning differs from the supervised learning problem in that 

correct input/output pairs are never presented, nor sub-optimal actions explicitly 

corrected. Further, there is a focus on on-line performance, which involves finding a 

balance between exploration (of uncharted territory) and exploitation (of current 

knowledge). The exploration vs. exploitation tradeoff in reinforcement learning has been 

mostly studied through the multi-armed bandit problem. 

 

Formally, the basic reinforcement learning model consists of: 

• a set of environment states S;  

• a set of actions A; and  

• a set of scalar "rewards" in .  

At each time t, the agent perceives its state st S and the set of possible actions 

A(st). It chooses an action a A(st) and receives from the environment the new state st+1 

and a reward rt+1. Based on these interactions, the reinforcement learning agent must 

develop a policy π:S A which maximizes the quantity R=r0+r1+...+rn for MDPs which 

have a terminal state, or the quantity R=Σtγtrt for MDPs without terminal states (where γ 

is some "future reward" discounting factor between 0.0 and 1.0). 

Thus, reinforcement learning is particularly well suited to problems which include 

a long-term versus short-term reward tradeoff. It has been applied successfully to various 
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problems, including robot control, elevator scheduling, telecommunications, 

backgammon and chess 

After I have defined an appropriate return function to be maximized, I need to 

specify the algorithm that will be used to find the policy with the maximum return. There 

are two main approaches, the value function approach and the direct approach. 

The direct approach entails the following two steps: a) For each possible policy, 

sample returns while following it. b) Choose the policy with the largest expected return. 

One problem with this is that the number of policies can be extremely large, or even 

infinite. Another is that returns might be stochastic, in which case a large number of 

samples will be required to accurately estimate the return of each policy. The direct 

approach is the basis for the algorithms used in Evolutionary robotics. 

The problems with the direct approach might be ameliorated if I assume some 

structure in the problem and somehow allow samples generated from one policy to 

influence the estimates made for another. Value function approaches do this by only 

maintaining a set of estimates of expected returns for one policy π (usually either the 

current or the optimal one). In such approaches one attempts to estimate either the 

expected return starting from state s and following π thereafter, 

V(s) = E[R|s,π],  

or the expected return when taking action a in state s and following π thereafter, 

Q(s,a) = E[R|s,π],  

If someone gives us Q for the optimal policy, I can always choose optimal actions 

by simply choosing the action with the highest value at each state. In order to do this 

using V, I must either have a model of the environment, in the form of probabilities 

P(s'|s,a), which allow us to calculate Q simply through 

Q(s,a) = ∑ V(s')P(s' | s,a),  
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or I can employ so-called Actor-Critic methods, in which the model is split into two 

parts: the critic, which maintains the state value estimate V, and the actor, which is 

responsible for choosing the appropriate actions at each state. 

Given a fixed policy π, Estimating E[R|.] for γ=0 is trivial, as one only has to 

average the immediate rewards. The most obvious way to do this for γ>0 is to average the 

total return after each state. However this type of Monte Carlo sampling requires the 

MDP to terminate. 

Thus carrying out this estimation for γ > 0 in the general does not seem obvious. 

In fact, it is quite simple once one realizes that the expectation of R forms a recursive 

Bellman equation: E[R | st] = rt + γE[R | st + 1] 

By replacing those expectations with our estimates, V, and performing gradient 

descent with a squared error cost function, I obtain the temporal difference learning 

algorithm TD(0). In the simplest case, the set of states and actions are both discrete and I 

maintain tabular estimates for each state. Similar state-action pair methods are Adaptive 

Heuristic Critic(AHC), SARSA and Q-Learning. All methods feature extensions whereby 

some approximating architecture is used, though in some cases convergence is not 

guaranteed. The estimates are usually updated with some form of gradient descent, 

though there have been recent developments with least squares methods for the linear 

approximation case. 

The above methods not only all converge to the correct estimates for a fixed 

policy, but can also be used to find the optimal policy. This is usually done by following 

a policy π that is somehow derived from the current value estimates, i.e. by choosing the 

action with the highest evaluation most of the time, while still occasionally taking 

random actions in order to explore the space. Proofs for convergence to the optimal 

policy also exist for the algorithms mentioned above, under certain conditions. However, 

all those proofs only demonstrate asymptotic convergence and little is known 

theoretically about the behavior of RL algorithms in the small-sample case, apart from 

within very restricted settings. 

An alternative method to find the optimal policy is to search directly in policy 

space. Policy space methods define the policy as a parameterized function π(s,θ) with 
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parameters θ. Commonly, a gradient method is employed to adjust the parameters. 

However, the application of gradient methods is not trivial, since no gradient information 

is assumed. Rather, the gradient itself must be estimated from noisy samples of the 

return. Since this greatly increases the computational cost, it can be advantageous to use a 

more powerful gradient method than steepest gradient descent. Policy space gradient 

methods have received a lot of attention in the last 5 years and have now reached a 

relatively mature stage, but they remain an active field. There are many other approaches, 

such as simulated annealing, that can be taken to explore the policy space. Work on these 

other techniques is less well developed 

 

4.2.1 Coordination based on learning 

I believed that coordination could be further improved if the robots could 

remember and learn with experience so that they could anticipate and improvise more. 

For this purpose I used the method of Q-learning to program robots to learn from their 

experiences. As I will show in the next sections, the technique works fine with simple 

tasks but with complex tasks further capabilities like fast episodic memory recall is 

needed to achieve better results. These I have left for future work during my PhD. 

4.2.2 Learning in simple tasks 
Q-learning is a reinforcement learning technique that works by learning an action-

value function that gives the expected utility of taking a given action in a given state and 

following a fixed policy thereafter. A strength with Q-learning is that it is able to 

compare the expected utility of the available actions without requiring a model of the 

environment. A recent variation called delayed-Q learning has shown substantial 

improvements, bringing PAC bounds to Markov Decision Processes. 

The core of the algorithm is a simple value iteration update. For each state, s, 

from the state set S, and for each action, a, from the action set A, I can calculate an 

update to its expected discounted reward with the following expression: 
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where r is an observed real reward, α is the learning rate such that 0 < α < 1, and φ is the 

discount rate such that 0 < φ < 1 

4.3 Implementation of the design in hardware 

4.3.1 Robot Platform 
 
Differential Drive with Encoder Feedback 
 

For wheeled and tracked robots, differential steering is the most common method 

for getting the machine to go in a different direction. The technique is exactly the same as 

steering a military tank: one side of wheels or treads stops or reverses direction while the 

other side keeps going. The result is that the robot turns in the direction of the stopped or 

reversed wheel or tread. Because of friction effects, differential steering is most practical 

with two-wheel-drive systems. Additional sets of wheels, as well as rubber treads, can 

increase friction during steering.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Ackerman Drive 

Pivoting the wheels in the front is yet another method for steering a robot. Robots with 

car-type steering are not as maneuverable as differentially steered robots, but they are 

better suited for outdoor uses, especially over rough terrain. You can obtain somewhat 

better traction and steering accuracy if the wheel on the inside of the turn pivots more 

Figure4.6. A Typical Differential Drive Robot 
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than the wheel on the outside. This technique is called Ackerman steering and is found on 

most cars but not on as many robots. 

Differential Drive 

One of the greatest drawbacks of the differentially steered robot is that the robot will veer 

off course if one motor is even a wee bit slow. You can compensate for this by 

monitoring the speed of both motors and ensuring that they operate at the same rpm. This 

typically requires a control computer, as well as added electronics and mechanical parts 

for sensing the speed of the wheels. Car-type steering, described in the last section, is one 

method for avoiding the problem of “crabbing” as a result of differences in motor speed 

simply because the robot is driven by just one motor. But car-type steering makes for 

fairly cumbersome indoor mobile robots. A better approach is to use a single drive motor 

powering two rear wheels and a single steering wheel in the front. This arrangement is 

just like a child’s tricycle. The robot can be steered in a circle just slightly larger than the 

width of the machine. Be careful about the wheelbase of the robot (distance from the 

back wheels to the front steering wheel). A short base will cause instability in turns, and 

the robot will tip over opposite the direction of the turn. Tricycle-steered robots must 

have a very accurate steering motor in the front. The motor must be able to position the 

front wheel with sub-degree accuracy. Otherwise, there is no guarantee the robot will be 

able to travel a straight line. Most often, the steering wheel is controlled by a servo 

motor. Servo motors use a “closed-loop feedback” system that provides a high degree of 

positional accuracy. 

Laser Range finder 

The LRS90-3 Laser Radar Scanner is an adaptation of the basic LD90-3 electronics, fiber 

optically coupled to a remote scanner unit. The scanner package contains no internal 

electronics and is thus very robust under demanding operating conditions typical of 

industrial or robotics scenarios. The motorized scanning head pans the beam back and 

forth in the horizontal plane at a 10-Hz rate, resulting in 20 data-gathering sweeps per 

second. Beam divergence is 0.3° (5 milli radians), with the option of expanding in the 

vertical direction if desired up to 2°. 
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4.4 Implementation of the design in software 
 

For implementation of my design in software I needed a multi-robot simulator. The 

commercial ones available were very expensive and were not meant for research. I first 

tried ‘Player-Stage’ but it had some errors. Then I found MissionLab® from Georgia 

Institute of Technology. It is a wonderful software. Its only limitation is that it is Linux 

based and its full documentation is not available, but one can experiment around and use 

it to accurately simulate multi robot scenarios. I have given detail about this software in 

Appendix B.    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure4.7. A Finite State Automation (FSA) diagram for mine clearing robots 
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4.4.1 Simulation setup for FSA for mine-clearing robot 
 

An area of 100 x 100 m was chosen as the test field for simulated robots. The automation 

diagram for the robots for this task is shown in Fig4.7. The experiment was carried out 

using varying number of robots, mines and obstacles. The results are presented in the 

next chapter. 

4.4.2 Simulation setup for mine-clearing robots using Q-
Learning 

 

MissionLab provides built-in functions for Q-Learning. In Fig:. the experimental setup 

for this task is shown. Again varying numbers of Robots were used for this experiment 

and the results are presented in the next chapter. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure4.8. Implementing Q-learning in Mission Lab for foraging task 
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4.5 Experimental setup: Sut-Pala game 
I chose a playground competitive game to demonstrate the coordination skills of 

the robots. The game ‘sut-pala’ is shown in Fig.4.9. The game is played between two 

teams consisting of equal number of players (robots in our case).  

The task of first team (shown in blue) is to start at ‘side A’, cross the playing field 

(drawn on the ground) to side B, and then come back to side A. Meanwhile they have to 

avoid the players of the other team which try to catch them. Second team (red) is 

restricted in its movements by the lines drawn on the ground. The captain can move in 

the first horizontal area as well as the central vertical area. The rest of the players of this 

team can only move in their respective horizontal areas.  

Both the teams consisted of intelligent robots and as the game progressed 

different patterns emerged both in predators and the prey. An important thing to note is 

that there was no real intelligence (memory based) involved, only the state transitions 

sufficed.  

 

 

 

 

 

 

 

 

 

 
 
 
 
 

Figure4.9. Sut-Pala a competitive game of two teams 
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Chapter 5: Simulation Results and Discussion 

5.1 Simulation Results for Mine Clearing robots using 
FSA Technique 
The experiments started with deploying simple robots with no communication and 

anticipatory powers and the results were used in comparative studies of other 

experiments. The simulation environment was filled with many movable target objects 

(mines). The robots once localized repelled each other and were attracted by the goal 

objects (mines). Once a robot had picked up a mine it went to drop it at an EOD area. If a 

wandering robot saw another robot moving the object it did not interfere and left to find 

some other target object. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

From Table5.1 we see that the robots expertly handled the task. With the increase 

in number of robots up to an optimal value the time of finishing the task reduces 

Figure5.1. Four robots clearing a minefield while avoiding each other and obstacles 
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significantly. If the number of robots is increased beyond this optimal value then there is 

a decline in efficiency of the robots as the time to finish the job increases. The robots now 

take longer to finish the task because now most of the time is wasted in recognizing and 

avoiding the other robots. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

In the second phase of experiments where we added 10 obstacles in the arena, we 

see a similar result, though many of the mines are also left out. This behavior is due to the 

fact that many of the mines are hidden behind the obstacles and are avoided along with 

the obstacle. A better obstacle avoidance algorithm may rectify this problem. 

 
 
 
 
 
 
 
 
 
 
 

5.2 Simulation Results for Mine Clearing robots using 
Q-Learning 

 

In this phase of experiments robots which used Q-Learning method to learn to 

collect the mines and bring back to the EOD area were used.  The robots started learning 

Table5.1. Mine Searching Task with an area of 100 x 100 m and no obstacles. 

Table5.2. Mine Searching Task with an area of 100 x 100 m and 10 obstacles. 



Chapter 5  Simulation Results and Discussion  

45 

by trying to maximize the rewards. The rewards were offered for moving, finding a mine, 

picking up a mine and bringing it back to the EOD area. The rewards would decrease if 

the robot remained stationary, collided with and obstacle or did not find a mine. The 

behaviors or schemas for these actions like moving, finding a mine, picking up a mine etc 

were already programmed but there was no FSA this time round. The robots learned in 

real time by maximizing rewards.   Table5.3 shows the results for these experiments. As 

expected the robots need more time to learn but the quickly adapt to the environment. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure5.2. Four robots clearing the mines and avoiding obstacles while learning 

Table5.3. Mine Searching Task using Q- Learning Approach. 
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5.3 Simulation Results for Sut-Pala Game 
 

These experiments were carried out with teams consisting of 2, 3, 4 and 5 

simulated robots. The results showed that nearly 61% of the times the robots exhibited 

intelligent emergent behavior and successfully dogged or hunted down the robots of the 

opposing team. Another important thing is that no communication was involved in both 

the teams. 

 

 

 

 

 

 

 

 

 

 

 

Figure5.2. Robots making trails as the game progresses 
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Chapter 6: Conclusions and Further Work 

6.1 Achievements 
Lets recap on what have we achieved up till now and what remains to be done. At 

the start I listed some goals that needed to be achieved, to be of any contributable value to 

the ultimate task of multi-robot coordination. I shall now list the achievements in a 

similar manner so that a comparison of goals and achievements can be made. 

• I was able to achieve communication-less coordination in simple tasks such as 

foraging (mine clearing robot in our case) 

• I was able to achieve (a degree less efficient though) communication-less 

coordination in complex tasks such as the competitive game Sut-Pala 

• Learning capability was successfully incorporated in robots doing simple group-

level tasks which shows great promise in this field. 

• I could not properly use Q-learning for complex tasks but as Newton said “I did 

not fail, I just found another way that doesn’t work”. 

6.2 Future targets and open issues 
When we explore things that are unknown to us previously we end up getting the 

knowledge of a few of them but finding many other things that need to be explored. 

Similar was the case with this project. I found ways to achieved coordination without 

communication in some cases but this led to so many more questions that it would 

require another research project to uncover those. 

Future research should focus on making the robots anticipate and improvise to 

truly capture the essence of intelligence that humans possess. A well coordinated team of 

football players rarely uses verbal calls or signals to coordinate their attack; rather they 

have prior plan settings and coordinate by observing others and anticipating their next 

moves. 
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It remains an open issue, whether such improvisation would be possible in 

behavior based systems or will it slow down the system performance to a level which is 

not entirely acceptable. 

6.3 Coordination in complex tasks 
Further research is needed to find methodologies that allow for designing, and 

reliably predicting, swarm behavior, given only features of the individual swarm 

members. Here, stigmergy is an essential tool for systematically studying swarm-

behavior, even though other tracking methods are available. Recently Bristol robotics 

laboratory has developed an ultrasonic position tracking system for swarm research 

purposes. 

Complex problems can be solved using multiple robots but coordinating these 

robots carry out these tasks is a more difficult problem. New ways have to be explored to 

effectively control a swarm of robots and make the swarm operate reliably to solve 

problems. 

6.4 Anticipation and improvisation 
In artificial intelligence, anticipation is the concept of an agent making decisions 

based on predictions, expectations, or beliefs about the future. It is widely considered that 

anticipation is a vital component of complex natural cognitive systems. As a branch of 

AI, anticipatory systems are a specialization still echoing the debates from the 1980s 

about the necessity for AI for an internal model. 

The anticipation of future states is also a major evolutionary and cognitive 

advance. Anticipatory agents belonging to Rosen's definition are closer to humans 

capabilities of taking decisions at a certain time T taking into account the effects of their 

own actions at different future timescales T + k. Machine learning methods started to 

integrate these capabilities in an implicit form as in reinforcement learning systems [49] 

where they learn to anticipate future rewards and punishments caused by current actions 

(Sutton & Barto, [49]. Moreover anticipation enhanced performance of machine learning 
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techniques to face with complex environments where agents have to guide their attention 

to collect important information to act. 

6.5 On the horizon 
Swarm Intelligence-based techniques can be used in a number of applications. 

The U.S. military is investigating swarm techniques for controlling unmanned vehicles. 

ESA is thinking about orbital swarm for self assembly and interferometry. NASA is 

investigating the use of swarm technology for planetary mapping. A 1992 paper by M. 

Anthony Lewis and George A. Bekey discusses the possibility of using swarm 

intelligence to control nano-bots within the body for the purpose of killing cancer tumors. 

Artists are using swarm technology as a means of creating complex interactive 

environments. Disney's The Lion King was the first movie to make use of swarm 

technology (the stampede of the wildebeasts scene). The Lord of the Rings film trilogy 

also made use of similar technology, known as Massive, during battle scenes. Swarm 

technology is particularly attractive because it is cheap, robust, and simple. 

 

6.6 FPGA based controller for reactive control of a 
mobile robot 

 
The recent trend in robot control is to have a microcontroller based robot brain to control 

the robot motion as well as do the sensing and planning part. As discussed earlier in 

behavior based robot control the planning part is done at the design level and the robot 

control is left to sense and act cycle. It is important to note here that there is a ‘Cycle’ of 

sensing and acting in robot control algorithms, whereas in insects and low intelligence 

animals there is no sign of a ‘Cycle’ in sensing and acting. Instead the sensing and acting 

is carried out in parallel. This is due to the fact that robots run their algorithms 

sequentially or at most using time division as in case of multitasking but still true 

parallelism is lacking. Also we have seen that the level of intelligence presented at a 

group level by the social insect like bees and ants is much higher than that of the state of 

the art robots of the present day. Perhaps this large gap it is due to this intrinsic 

parallelism found in insect’s brain. So in future work I would like to design an FPGA 
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based controller for the behaviors in a robot. The advantages of this approach would 

include 1. Close resemblance in control mechanism to there real life counterparts. 2. 

Parallelism in computation will hopefully bring a revolutionary change in the growth of a 

robots brain. A rough first draft of the design is presented in Figure6.1. 
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Figure6.1. An FPGA implementation of the behavior based controller 
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What isMissionLab? 
 

MissionLab Overview 
 

MissionLab is a powerful set of software tools for developing and testing 

behaviors for single robots and a group of robots. Code generated by MissionLab can 

directly control commercial robots. ATRV-Jr / Urban Robot (iRobot), AmigoBot / 

Pioneer AT / Pioneer 2DX (ActivMedia, Inc.), and Nomad-150 / 200 (Nomadic 

Technologies, Inc.) are among those robots MissionLab has supported successfully. A 

primary strength of MissionLab is its support of both simulated and real robots. A 

developer can experiment with behaviors in simulation and then run those same 

configurations on mobile robots (Figure 1). 
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MissionLab has a distributed architecture. Thus, the main user’s console can run 

on one computer while multiple robot control executables are distributed across a 

network, potentially on-board the actual robots they control. The core of the MissionLab 

tool-set is composed of six primary components: 

• mlab: mlab is a console-like program from which a user monitors the progress 

of experimental runs of the robot executables. Locations of the robots and detected 

obstacles are examples of various data mlab can monitor. When mlab is used for 

simulation (as opposed to controlling mobile robots), it serves as a sensor and actuator 

simulator from the point of view of the robot executable. On mobile robots, the actual 

sensors are used instead. of mlab. 

• CfgEdit: The Configuration Editor, or CfgEdit, is a graphical tool for building 

robot behaviors. The designer can build complex control structures with the point and 

click of a mouse. CfgEdit generates source code which, when compiled, can directly 

control a simulated or real robot. 

 • cdl: The cdl code generator translates the CDL (Configuration Description 

Language), which is generated by CfgEdit, into CNL (Configuration Network Language) 

code. In general, users will not need to be concerned with CNL. However, because 

programming in CNL is very similar to programming in the C language, advanced users 

may develop their own primitive behaviors and store them as a library and/or write their 

own control programs without using CfgEdit. 

• cnl: The cnl compiler compiles CNL code generated by the cdl code generator, 

and produces C++ code. Once this C++ coded is compiled with the GNU C Compiler 

(gcc), the compiled program (or robot executable) may now directly control a robot. The 

cnl compiler is automatically invoked by CfgEdit when needed. 

• HServer: HServer (Hardware Server) directly controls all the robot hardware, 

either via TCP/IP or a serial link, and provides a standard interface for all the robots and 

sensors. The CfgEdit generated code uses this standard interface to control the real 
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robots. HServer also provides direct control, configuration, and status of the robots and 

sensors.  

• CBRServer: CBRServer (CaseBased Reasoning Server) generates a mission 

plan based on specs provided by the user by retrieving and assembling components of 

previously stored successful mission plans.. In addition to CDL and CNL described 

above, there are two more original languages that were specifically developed for the 

MissionLab system: 

• CMDL: The Command Description Language (CMDL) may optionally be used 

for describing simple sequential robot missions. A CMDL file, containing both 

background and command information will run the code. 
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Code Listing 
/********************************************************************** 
 **                                                                  ** 
 **                         MOVE_TO_GOAL.cnl                         ** 
 **                                                                  ** 
 **                                                                  ** 
 **  
**********************************************************************/ 
 
/* $Id: MOVE_TO_GOAL.cnl,v 1.1.1.1 2006/07/12 13:37:59 omar Exp $ */ 
 
#include "cnl.inc" 
 
/**********************************************************************
*/ 
 
procedure Vector MOVE_TO_GOAL with 
   Vector  goal_rel_loc; 
   double  success_radius; 
header 
body 
   if( len_2d(goal_rel_loc) > success_radius ) 
   { 
      /* generate a vector towards the goal */ 
      output = goal_rel_loc; 
      unit_2d(output); 
   } 
   else 
   { 
      /* return a zero vector if within the success circle */ 
      VECTOR_CLEAR(output); 
   } 
 
   if( debug ) 
   { 
      fprintf(stderr,"MOVE_TO_GOAL(%d) r=%.1f output=(%.1f %.1f)\n", 
   robot_id, success_radius,output.x,output.y); 
   } 
pend 
 
 
/********************************************************************** 
# $Log: MOVE_TO_GOAL.cnl,v $ 
# Revision 1.1.1.1  2007/04/12 13:37:59  omar 
# MissionLab 7.0 
# Added RCS id and log strings. 
#**********************************************************************
/ 
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/*-------------------------------------------------------------------- 
 
 avoid_robot.cnl 
 
 Avoid other robots. 
 
 
 Written by:  Omar 
 
  
--------------------------------------------------------------------*/ 
 
/* $Id: AVOID_ROBOT.cnl,v 1.1.1.1 2007/04/13 13:37:58 omar Exp $ */ 
 
 
#include "cnl.inc" 
 
procedure Vector AVOID_ROBOT with 
 
double sphere; 
double min_range; 
Robots readings; 
 
header 
 
Vector sum; 
Vector t1,t2; 
int i; 
double len, mag; 
 
body 
 
VECTOR_CLEAR(output); 
VECTOR_CLEAR(sum); 
 
for(i=0; i<readings.cnt; i++) 
 { 
 
  if( debug ) 
   fprintf(stderr,"AVOID_ROBOT: robot detected at <%.1f %.1f>\n", 
     readings.v[i].x, readings.v[i].y); 
 
 len = len_2d(readings.v[i]); 
 if (len < EPS_ZERO) 
  { 
  len = 0.0001; 
  readings.v[i].y = 1.0; 
  } 
 mag = 0; 
 if (len <= min_range) 
  { 
  mag = GT_INFINITY; 
  } 
 else if (len < sphere) 
  { 
                double denom = sphere - min_range; 
                if( fabs(denom) < EPS_ZERO ) 
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                { 
     mag = GT_INFINITY; 
                } 
                else 
                { 
     mag = (sphere - len) / denom; 
                }  
  } 
 if (fabs(mag) > EPS_ZERO) 
  { 
  t1.x = -readings.v[i].x; 
  t1.y = -readings.v[i].y; 
  unit_2d(t1); 
  times_2d(t1, mag, t2); 
  add_2d(t2, sum, sum); 
  } 
 } 
output = sum; 
 
if( debug ) 
   fprintf(stderr,"AVOID_ROBOT: <%.1f %.1f>\n",output.x, output.y); 
 
pend 
 
 
/********************************************************************** 
# $Log: AVOID_ROBOT.cnl,v $ 
# Revision 1.1.1.1  2006/07/12 13:37:58  omar 
# MissionLab 7.0 
# 
#*********************************************************************/ 
 

 

 

/*-------------------------------------------------------------------- 
 
 AVOID_OBJECTS.cnl 
 
 
 Written by:  omar 
 
  
--------------------------------------------------------------------*/ 
 
/* $Id: AVOID_OBJECTS.cnl,v 1.1.1.1 2006/07/12 13:37:58 omar Exp $ */ 
 
 
#include "cnl.inc" 
 
/**********************************************************************
*/ 
 
procedure Vector AVOID_OBJECTS with 
   double sphere; 
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   double safety_margin; 
   ObjectList   objlist; 
header 
   int          first_time=TRUE;  
   double       old_safety_margin = 0; 
body 
   if( debug ) 
   { 
      fprintf(stderr,"AVOID_OBJECTS(sphere = %.1f, safety_margin = 
%.1f\n", 
 sphere, safety_margin); 
   } 
 
   if( first_time || old_safety_margin != safety_margin ) 
   { 
      /*  
       * Report the safety margin I are using to the console so the 
       * graphics can use it for showing virtual collisions 
       */ 
      char buf[80]; 
 
      sprintf(buf, "%f",safety_margin); 
      exec_put_console_state(SAFETY_MARGIN_MSG,buf); 
 
      old_safety_margin = safety_margin; 
      first_time = FALSE; 
   } 
 
   VECTOR_CLEAR(output); 
 
   // For each object 
   for(int i=0; i<objlist.count; i++) 
   { 
      if( debug ) 
         cerr << objlist.objects[i] << '\n'; 
 
      gt_Point contribution; 
 
      // compute the closest point of the obstacle to the center of the 
robot. 
      gt_Point pt = objlist.objects[i].closest_point(); 
      double dist = len_2d(pt); 
 
      /* Handle the case where within the max repulsion zone */ 
      if (dist < safety_margin ) 
      { 
  /* generate an infinite (around 100000) vector away from the 
obstacle*/ 
 
         if (dist < EPS_ZERO) // Epsilon Zero (~0.00001): Stop divide 
by 0 error 
         { 
     /* Handle the case where an obstacle is EXACTLY centered 
        where the robot is as a special case because I can't 
        use the vector to determine a direction to move. 
        So, arbitraily choose straight ahead direction for vector. 
     */ 
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     contribution.x = -GT_INFINITY; 
     contribution.y = 0; 
  } 
  else 
  { 
     contribution = pt; 
            unit_2d(contribution); 
            mult_2d(contribution, GT_INFINITY); 
  } 
      } 
 
      /* handle case where within the linear repulsion zone */ 
      else if (dist <= safety_margin + sphere ) 
      { 
         /* set the magnitude of the repulsion vector (0...1) based on 
how  
     far I have intruded into the zone. 
     Magnitude is 0 on outside edge (dist = sphere). 
     Magnitude is 1 on inside edge (dist = safety_margin) 
 
     sphere is the size of the zone. 
     I are at distance (dist - safety_margin) beyond the inner 
edge of 
     the zone or (sphere - (dist - safety_margin)) from the outer 
edge. 
 
     So, take our distance from the outer edge and divide by the 
size 
     of the zone to get a ratio from 0 to 1 with zero at the 
outside 
     and 1 at the inside. 
   */ 
 
         double mag = (sphere - (dist - safety_margin)) / sphere; 
 
  contribution = pt; 
         unit_2d(contribution); 
         mult_2d(contribution, mag); 
      } 
 
      /* otherwise, outside obstacle's sphere of influence, so ignore 
it */ 
      else 
      { 
         contribution.x = 0; 
         contribution.y = 0; 
      } 
 
      if( debug ) 
         fprintf(stderr,"contribution = <%.1f, %.1f>\n", 
     contribution.x, contribution.y); 
 
      // Add it to the running sum */ 
      plus_2d(output, contribution); 
   } 
 
   // Note: Vector generated is pointing towards the obstacle, 
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   //       now flip it to be a movement vector away from the obstacles 
   output.x = -output.x; 
   output.y = -output.y; 
 
   if( debug ) 
   { 
      fprintf(stderr,"AVOID_OBJECTS: output vector <%.1f %.1f>\n", 
  output.x, output.y); 
   } 
pend 
 
 
/********************************************************************** 
# $Log: AVOID_OBJECTS.cnl,v $ 
# Revision 1.1.1.1  2007/03/06 13:37:58  omar 
# MissionLab 7.0 
# 
#  
# 
#**********************************************************************
/ 
 
 
/********************************************************************** 
 **                                                                  ** 
 **                         QLEARN.cc                                ** 
 **                                                                  ** 
 **  Written By:  Omar         ** 
 **                                                                  ** 
 
**********************************************************************/ 
 
/* $Id: qlearn.cc,v 1.1.1.1 2006/07/12 13:38:00 omar Exp $ */ 
 
#include <string.h> 
#include <time.h> 
#include <iostream> 
 
#include "qlearn.h" 
 
using std::cout; 
using std::endl; 
 
/* Constructor for Qlearn 
 * Parameters may be adjusted using accessor methods. 
 * 
 * numstates---the number of states the system could be in. 
 * numactions--the number of actions or outputs to  
 *             select from. 
 * criteria----should be DISCOUNTED or AVERAGE. 
 * seedin------the seed. 
 */ 
 
double ** array2d(int x, int y) 
{ 
  double **temp; 
  int i, j; 
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  // OMAR - gcc 3.4 
  //temp = new (double *)[x]; 
  temp = new double *[x]; 
 
  for (i = 0; i < x; i++) 
    { 
      temp[i] = new double[y]; 
    } 
 
  for (i = 0; i < x; i++) 
    { 
      for (j = 0; j < y; j++) 
        { 
          temp[i][j] = 0; 
        } 
    } 
 
  return (temp); 
} 
 
//make sure this doesn't leak 
void delarray2d(double **array, int x) 
{ 
  int i; 
 
  if (array == NULL) 
    return; 
 
  for (i = 0; i < x; i++) 
    { 
      if (array[i] != NULL) 
        delete[]array[i]; 
    } 
 
  delete[]array; 
} 
 
Qlearn::Qlearn (int numstatesin, int numactionsin, char *filename, 
                int robot_id, double alphaIn, double alphaDecay, 
                double randomRate, double rScenarioDecay, 
                int criteriain, int seedin) 
{ 
  int i, j; 
  FILE *file; 
  int highest; 
 
  dataName = new char[128]; 
  sprintf (dataName, "%d%c", robot_id, '\0'); 
  dataName = strcat (dataName, filename); 
  dataName = strcat (dataName, ".dat"); 
 
  cout << "passed it to Q... " << dataName << endl; 
 
  dataName = new char[128]; 
  sprintf (dataName, "%d%c", robot_id, '\0'); 
  dataName = strcat (dataName, filename); 
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  dataName = strcat (dataName, ".dat"); 
 
  tableName = new char[128]; 
  sprintf (tableName, "%d%c", robot_id, '\0'); 
  tableName = strcat (tableName, filename); 
  tableName = strcat (tableName, ".tab"); 
 
 
  AVERAGE = 0; 
  DISCOUNTED = 1; 
 
  numstates = numstatesin; 
  numactions = numactionsin; 
 
  cout << "STATEs.." << numstates << "  Actions.." << numactions << 
endl; 
 
  if ((criteriain != DISCOUNTED) && (criteriain != AVERAGE)) 
    { 
      cout << "Error: INVALID CRITERIA.  Setting to DISCOUNTED" << 
endl; 
      criteria = DISCOUNTED; 
    } 
  else 
    criteria = criteriain; 
 
  seed = seedin; 
  srand ((unsigned) time (NULL)); 
 
  q = array2d (numstates, numactions); 
 
  profile = array2d (numstates, numactions); 
 
  p = array2d (numstates, numactions); 
 
  last_policy = new int[numstates]; 
  for (i = 0; i < numstates; i++) 
    last_policy[i] = 0; 
 
 
  //NOTE---MAKE MY OWN RANDOM NUMBER GENERATOR 
  for (i = 0; i < numstates; i++) 
    { 
      highest = 0; 
      for (j = 0; j < numactions; j++) 
        { 
          //      q[i][j] = ((double) rand()/(double) RAND_MAX) - 1; 
          q[i][j] = (rand () / (RAND_MAX + 1.0)) + 1; 
          //q[i][j] = 0; 
          p[i][j] = 0; 
          profile[i][j] = 0; 
          if (q[i][highest] > q[i][j]) 
            highest = j; 
        } 
      last_policy[i] = j; 
    } 
  xn = an = 0; 
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//variable initialization 
  changes = 0; 
  changesAll = 0; 
  queries = 0; 
  total_reward = 0; 
  first_of_trial = 1; 
  gamma = 0.8; 
  alpha = alphaIn; 
  randomrate = randomRate; 
  randomratedecay = rScenarioDecay; 
  seed = seedin; 
  debug = FALSE; 
 
 
  //  Read the Qtable... 
  //   replace all variables just initialized with  
  //   values from Qtable, if it exists 
 
  if (dataName != NULL) 
    { 
      file = fopen (dataName, "r"); 
      if (file != NULL) 
        { 
          fclose (file); 
          read (); 
        } 
    } 
 
  alpha = alpha * alphaDecay; 
  randomrate = randomrate * randomratedecay; 
  first_of_trial = 1; 
 
} 
 
/* 
 * Select an output based on the state and reward. 
 * 
 * curstate---the current state. 
 * curreward--reward for the last output, positive 
 *            numbers are "good." 
 */ 
 
int Qlearn::query(int curstate, double curreward) 
{ 
  int action; 
  double randomnum; 
  int highest; 
 
 
  total_reward += curreward; 
  queries++; 
 
  //Check to see if the current state is out of range. 
  if ((curstate > (this->numstates - 1)) || (curstate < 0)) 
    { 
      return -1; 
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    } 
 
  //Find approximate value of present state, and best action. 
  //ie:  max q[yn][i] over all i, i is the best action. 
 
  double Vn = -999999;          //very bad 
  action = 0; 
  for (int i = 0; i < numactions; i++) 
    { 
      if (q[curstate][i] > Vn) 
        { 
          Vn = q[curstate][i]; 
          action = i; 
        } 
    } 
  if (first_of_trial != 1) 
    { 
 
      q[xn][an] = q[xn][an] + alpha * (curreward + gamma * Vn - 
q[xn][an]); 
 
      p[xn][an]++;              //count times in the last state/action 
      profile[xn][an]++;        //count times for this trial 
    } 
  else 
    first_of_trial = 0; 
 
  for (int i = 0; i < numstates; i++) 
    { 
      highest = 0; 
      for (int j = 1; j < numactions; j++) 
        { 
          if (q[i][highest] < q[i][j]) 
            highest = j; 
        } 
 
      if (highest != last_policy[i]) 
        { 
          last_policy[i] = highest; 
          changesAll++; 
 
          if (i < numstates / 2) 
            changes++; 
 
        } 
    } 
 
  //Select random action, possibly 
  //NOTE---MAKE MY OWN RANDOM NUMBER GENERATOR 
 
  randomnum = rand () / (RAND_MAX + 1.0); 
  if (randomnum <= randomrate) 
    { 
      action = ((int) (rand () / 10)) % numactions; 
      if (action < 1) 
        action = -1 * action; 
    } 
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  printf ("%s LAST(STATE: %d, ACTION: %d) Action Chosen: %d reward: 
%f\n", 
          dataName, xn, an, action, curreward); 
 
  //Remember for next time 
  xn = curstate; 
  an = action; 
 
  //  if (logging) CheckForChanges(); 
 
  return action; 
} 
 
 
/** 
 * Called when the current trial ends. 
 * 
 * @param Vn     double, the value of the absorbing state. 
 * @param reward double, the reward for the last output. 
 */ 
void 
Qlearn::endTrial (double Vn, double rn) 
{ 
  total_reward += rn; 
 
  if (criteria == DISCOUNTED) 
    { 
      // Watkins update rule: 
      q[xn][an] = (1 - alpha) * q[xn][an] + alpha * (rn + gamma * Vn); 
    } 
  else                          // criteria == AVERAGE 
    { 
      // average update rule 
      q[xn][an] = (p[xn][an] * q[xn][an] + rn) / (p[xn][an] + 2); 
      // see update above in query() for explanation  
      // of this rule 
    } 
 
  p[xn][an] += 1; 
  profile[xn][an] += 1; 
} 
 
 
/** 
 * Called to initialize for a new trial. 
 */ 
int 
Qlearn::initTrial (int s) 
{ 
  first_of_trial = 1; 
  changes = 0; 
  queries = 0; 
  total_reward = 0; 
  delarray2d (profile, numstates); 
  profile = array2d (numstates, numactions); 
  return (query (s, 0)); 
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} 
 
void 
Qlearn::print () 
{ 
  int i, j; 
  FILE *record; 
 
  record = fopen (tableName, "a+"); 
 
 
  for (i = 0; i < numstates; i++) 
    { 
      for (j = 0; j < numactions; j++) 
        { 
          fprintf (record, "%g ", q[i][j]); 
        } 
 
    } 
  fprintf (record, "\n"); 
  fclose (record); 
} 
 
//void Qlearn::save(char *filename) 
void 
Qlearn::save () 
{ 
  FILE *file; 
  int i, j; 
 
  file = fopen (dataName, "w"); 
 
  fwrite (&numstates, 1, sizeof (int), file); 
  fwrite (&numactions, 1, sizeof (int), file); 
  fwrite (&criteria, 1, sizeof (int), file); 
//  fwrite(&changes, 1, sizeof(int), file); 
  fwrite (&queries, 1, sizeof (int), file); 
  fwrite (&first_of_trial, 1, sizeof (int), file); 
  fwrite (&xn, 1, sizeof (int), file); 
  fwrite (&an, 1, sizeof (int), file); 
  fwrite (&debug, 1, sizeof (int), file); 
  fwrite (&seed, 1, sizeof (long), file); 
 
  fwrite (&total_reward, 1, sizeof (double), file); 
  fwrite (&gamma, 1, sizeof (double), file); 
  fwrite (&alpha, 1, sizeof (double), file); 
  fwrite (&randomrate, 1, sizeof (double), file); 
  fwrite (&randomratedecay, 1, sizeof (double), file); 
 
  for (i = 0; i < numstates; i++) 
    { 
      for (j = 0; j < numactions; j++) 
        { 
          fwrite (&(q[i][j]), 1, sizeof (double), file); 
          fwrite (&(p[i][j]), 1, sizeof (double), file); 
          fwrite (&(profile[i][j]), 1, sizeof (double), file); 
        } 
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      fwrite (&(last_policy[i]), 1, sizeof (int), file); 
    } 
//  readPolicy(); 
 
  fclose (file); 
 
} 
 
//void Qlearn::read(char *filename) 
void 
Qlearn::read () 
{ 
  FILE *file; 
  int i, j; 
 
  file = fopen (dataName, "r"); 
 
  fread (&numstates, 1, sizeof (int), file); 
  fread (&numactions, 1, sizeof (int), file); 
  fread (&criteria, 1, sizeof (int), file); 
//  fread(&changes, 1, sizeof(int), file); 
  fread (&queries, 1, sizeof (int), file); 
  fread (&first_of_trial, 1, sizeof (int), file); 
  fread (&xn, 1, sizeof (int), file); 
  fread (&an, 1, sizeof (int), file); 
  fread (&debug, 1, sizeof (int), file); 
  fread (&seed, 1, sizeof (long), file); 
 
  fread (&total_reward, 1, sizeof (double), file); 
  fread (&gamma, 1, sizeof (double), file); 
  fread (&alpha, 1, sizeof (double), file); 
  fread (&randomrate, 1, sizeof (double), file); 
  fread (&randomratedecay, 1, sizeof (double), file); 
 
  for (i = 0; i < numstates; i++) 
    { 
      for (j = 0; j < numactions; j++) 
        { 
          fread (&(q[i][j]), 1, sizeof (double), file); 
          fread (&(p[i][j]), 1, sizeof (double), file); 
          fread (&(profile[i][j]), 1, sizeof (double), file); 
        } 
      fread (&(last_policy[i]), 1, sizeof (int), file); 
    } 
 
//  readPolicy(); 
 
  fclose (file); 
} 
 
void 
Qlearn::readPolicy () 
{ 
  for (int i = 0; i < numstates; i++) 
    { 
      printf ("%d ", last_policy[i]); 
    } 
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  printf ("\n"); 
} 
 
/********************************************************************** 
# $Log: qlearn.cc,v $ 
# Revision 1.1.1.1  2007/03/14 13:38:00  omar 
# MissionLab 7.0 
# 
**********************************************************************/ 
 
 
/************************************************** 
* 
* This file DROP_OBJECT.cc was created with the command 
* "/home/omar/MissionLab-7.0/bin/cnl -c -I../include -
I/home/omar/MissionLab-7.0/src/ipt/include DROP_OBJECT.cnl" 
* using the CNL compiler, version 4.0. 
* 
**************************************************/ 
 
 
extern "C" 
{ 
#include <cthread.h> 
#include "../include/ipt/ipt.h" 
} 
#include <string.h> 
 
#ifndef NULL 
#define NULL 0 
#endif 
#define SRC_TYPE_LOCAL_NODE (0) 
#define SRC_TYPE_REMOTE     (1) 
#define SRC_TYPE_CONSTANT   (2) 
#define require_input(name) parms->##name##require = true 
#define NAME2NAME_REQUIRE(name) name##_require 
 
extern int             _num_nodes; 
extern int             _done_count; 
extern mutex_t         _done_count_lock; 
extern condition_t     _new_cycle; 
extern char*           _prefix; 
extern char*           _ipt_home; 
extern IPCommunicator* _communicator; 
extern IPConnection**  _ipt_modules; 
extern int             _ipt_is_active; 
extern double          _zero_time; 
 
 
 
 
 
/* Execution philosophy: 
* 
* Start of cycle 
*      o Each node checks all of its users to see if its output will be 
used 
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*        if no user wants the output, then the node is blocked.  Void 
output 
*        nodes never block. 
* 
*      o Nodes which are not blocked then execute, begining with the 
sensors. 
* 
* End of cycle 
*/ 
 
/**********************************************************************
***/ 
// Task Control Block class externs 
template<class T> class _list { 
 
    struct SLink 
    { 
        struct SLink *next; 
        T             data; 
 
        // constructor: create objects 
        SLink(const T val) { 
 
            data = val; 
        } 
 
        // destructor: needed so don't delete the data objects 
        ~SLink() { 
 
            // Nothing to do, here to keep from deleting the data 
        } 
    }; 
    SLink *last_ptr; 
 
 
public: 
    // constructor: create objects 
    _list() { 
 
        last_ptr = NULL; 
    } 
 
    // Is list empty? 
    int isempty(void) const { 
 
        return last_ptr == NULL; 
    } 
 
    // Append to end of list 
    // Note: last_ptr->next is first record 
    void append(const T data) { 
 
        SLink *rec = new SLink(data); 
        if( last_ptr ) 
        { 
            rec->next = last_ptr->next; 
            last_ptr->next = rec; 
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        } 
        else 
        { 
            rec->next = rec; 
        } 
        last_ptr = rec; 
    } 
 
    // Return first element without removing it 
    // Note: last_ptr->next is first record 
    // Returns NULL if list is empty 
    void *first(T *rec) const { 
 
        if( this == NULL || last_ptr == NULL ) 
            return NULL; 
 
        *rec = last_ptr->next->data; 
 
        return (void *)last_ptr->next; 
    } 
 
    // Return next element without removing it 
    // Note: must call first to setup the iterator 
    // Returns NULL if list is empty 
    void *next(T *rec, void *cur) const { 
 
        if( (SLink *)cur == last_ptr ) 
            return NULL; 
 
        *rec = ((SLink *)cur)->next->data; 
        return (void *)((SLink *)cur)->next; 
    } 
}; 
 
enum _STAT_TYPE {STAT_UNKNOWN, STAT_BLOCKED, STAT_RUNNING}; 
class tcb { 
 
public: 
    enum _STAT_TYPE status_; 
    _list<tcb *>    users_; 
    const char     *task_name; 
    bool            output_valid_; 
    bool            done_; 
    char           *activeFlag; // if not null, set to '1' if node ran 
this cycle, '0' if blocked 
 
    void update_status(void *port); 
    virtual bool will_use_port(void *port) = 0; 
    virtual void update_run_status() = 0; 
    void reset_status(); 
    bool blocked(); 
    bool done(); 
    void block_me(); 
    void set_name(const char *name); 
}; 
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void reset_all_tasks(); 
void update_all_tasks(); 
extern _list<tcb *> list_of_tasks; 
 
#line 1 "cnl.inc" 
#line 9 "cnl.inc" 
 
#include <stdio.h> 
#include <stdlib.h> 
#include <cmath> 
#include <string> 
 
#include "gt_simulation.h" 
#include "cnl.h" 
#include "gt_std_types.h" 
#include "gt_std.h" 
#include "FSA_status.h" 
#include "qlearn.h" 
 
using std::cerr; 
using std::string; 
 
#line 25 "cnl.inc" 
#line 180 "DROP_OBJECT.cc" 
 
struct T_CMDLi : public tcb 
{ 
    char* node_name; 
    bool *recon_done; 
    int recon_done_type; 
    int recon_done_module; 
    char* recon_done_src; 
    tcb *recon_done_tcb; 
 
    bool *moveto_done; 
    int moveto_done_type; 
    int moveto_done_module; 
    char* moveto_done_src; 
    tcb *moveto_done_tcb; 
 
    Vector *recon; 
    int recon_type; 
    int recon_module; 
    char* recon_src; 
    tcb *recon_tcb; 
 
    Vector *moveto; 
    int moveto_type; 
    int moveto_module; 
    char* moveto_src; 
    tcb *moveto_tcb; 
 
    CNLString_t *cmdlFilename; 
    int cmdlFilename_type; 
    int cmdlFilename_module; 
    char* cmdlFilename_src; 
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    tcb *cmdlFilename_tcb; 
 
    CNLString_t *envFilename; 
    int envFilename_type; 
    int envFilename_module; 
    char* envFilename_src; 
    tcb *envFilename_tcb; 
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