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Abstract 

CORDIC is an acronym for Coordinate Rotation Digital Computer. It is a class of shift 

adds algorithms for rotating vectors in a plane, which is usually used for the calculation 

of trigonometric functions, multiplication, division and conversion between binary and 

mixed radix number systems of DSP applications, such as Fourier Transform. The Jack 

E. Volder's CORDIC algorithm is derived from the general equations for vector rotation. 

The CORDIC algorithm has become a widely used approach to elementary function 

evaluation when the silicon area is a primary constraint. The implementation of CORDIC 

algorithm requires less complex hardware than the conventional method. 

In digital communication, the straightforward evaluation of the cited functions is 

important, numerous matrix based adaptive signal processing algorithms require the 

solution of systems of linear equations, the computation of eigen values, eigenvectors or 

singular values. All these tasks can be efficiently implemented using processing elements 

performing vector rotations. The (CORDIC) offers the opportunity to calculate all the 

desired functions in a rather simple and elegant way. Due to the simplicity of the 

involved operations the CORDIC algorithm is very well suited for VLSI implementation. 

Verilog coding and simulation of bit serial CORDIC algorithm for sine and cosine, the 

comparison of resultant implementations and the specifics of the FPGA implementation 

has been discussed. 

In this thesis, the CORDIC algorithm has been implemented in XILINX Spartan 3E 

FPGA kit using Verilog and is found to be accurate. It also contains bit serial 

implementation of CORDIC algorithm on the same FPGA kit which is actually the 

problem statement. Due to the high speed, low cost and greater flexibility offered by 

FPGAs over DSP processors the FPGA based computing is becoming the heart of all 

digital signal processing systems of modern era. Moreover the generation of test bench by 

Xilinx ISE 9.2i verifies the results. 
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Chapter 1 

Introduction 

The  COordinate Rotation DIgital Computer (CORDIC)  algorithm was first introduced 

by Jack E. Volder [1] in the year 1959 for the computation of Trigonometric functions 

such as Multiplication, Division, Data type conversion, Square Root and Logarithms. It is 

a highly efficient, low-complexity, and robust technique to compute the elementary 

functions. The basic Algorithm structure is actually a set of equations which iteratively 

converge to give the desired results. The CORDIC algorithm has found its way in various 

applications such as pocket calculators, numerical co-processors, to high performance 

radar signal processing, supersonic bomber aircraft with a digital counterpart. 

Bekooij, Huisken’s et.al have  also explored  different applications  of CORDIC in the 

computation of the sine and cosine and its  effects on the numerical accuracy and 

hardware size by changing the number of iterations. 

 
1.1 Preamble 

 
CORIDC calculates the value of trigonometric functions like sine, cosine, hyperbolic 

functions magnitude and phase (arctangent) to any desired precision. The CORDIC 

algorithm does not use calculus based methods such as polynomial or rational function 

approximation rather it gives approximate function values on all popular graphic 

calculators such as HP-48G since the  hardware restriction of calculators require that the 

elementary functions should be computed using only additions, subtractions, digit shifts, 

comparisons and stored constants. 

Recently CORDIC algorithm is used in Neural Network VLSI design [4], high 

performance vector rotation DSP applications [5], advanced circuit design, optimized low 

power design. CORDIC algorithm revolves around the idea of "rotating" the phase of a 

complex number, by multiplying it by a succession of constant values. However, the 

"multiplication" can all be powers of 2 so that they can be done using just shifts and adds 

in binary arithmetic and no such actual "multiplier" is needed. Thus it quite simple and 
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does not require complex hardware structure as in the case of multiplier. Earlier methods 

used are Table look up method [1], Polynomial approximation method [4]etc. for 

evaluation of trigonometric functions. The problem with table look up CORDIC is the 

huge sized ROM CORDIC and the disadvantage of Polynomial approximation is as the 

polynomial order increases  the system of equations become ill contained. CORDIC is 

hardware efficient algorithm with no requirement of multiplier as in case of 

microcontroller. The drawback in CORDIC is that after completion of each iteration, 

there is a gain which is added to the magnitude of resulting vector which can easily be 

removed by multiplying the resulting magnitude with the inverse of the gain. There are 

two modes in CORDIC algorithm for calculation of trigonometric functions  are rotation 

mode and vectoring mode, both of these methods initialize the angle accumulator with 

the desired angle value as a step one. The rotation mode, determines the right sequence as 

the angle accumulator approaches zero while the Vectoring mode minimizes the y 

component of the input vector. CORDIC is generally faster than other approaches when a 

hardware multiplier is unavailable (e.g. in a microcontroller), or when the number of 

gates required to implement are to be minimized (e.g. in an FPGA). On the other hand, 

when a hardware multiplier is available (e.g. in a DSP microprocessor), table-lookup 

methods and power series are generally faster than CORDIC. Since it is an iterative 

method it has the advantage over the other methods of being able to get better accuracy 

by doing more iteration.Where as the Taylor approximation and the Polynomial 

interpolation methods need to be re derived to get better results. These properties, in 

addition to getting a very accurate approximation is perhaps the reason why CORDIC is 

used in many scientific calculators today. Due to the simplicity of the involved operations 

the CORDIC algorithm is very well suited for VLSI implementation. However, the 

CORDIC iteration is not a perfect rotation which would involve multiplications with sine 

and cosine.  Various CORDIC architectures like bit parallel iterative CORDIC, a bit 

parallel unrolled CORDIC, a bit-serial iterative CORDIC and bit serial modified 

CORDIC are discussed in this thesis and it can be seen that CORDIC is a feasible way to 

approximate cosine and sine. CORDIC is useful in designing computing devices. As 
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CORDIC was originally designed for hardware applications, there are features that make 

CORDIC an excellent choice for small computing devices.  

 

1.2 Bit Serial CORDIC DDFS 

Problems which involve repeated evaluation of a fixed set of nonlinear, algebraic 

equations appear frequently in scientific and engineering applications. Examples of such 

problems can be found in the robotics, engineering graphics, and signal processing areas. 

Evaluating complicated equation sets can be very time consuming in software, even when 

co-processors are used, especially when these equations contain a large number of 

nonlinear and transcendental functions as well as many multiplication and division 

operations. Both, the unrolled and the iterative bit-parallel designs, show disadvantages in 

terms of complexity and path delays going along with the large number of cross 

connections between single stages. To reduce this complexity we can change the design 

into a completely bit-serial iterative architecture. Bit-serial means only one bit is 

processed at a time and hence the cross connections become one bit-wide data paths. 

Clearly, the throughput becomes a function of 

                                                                    Clock rate 
                                               ------------------------------------------ 
                                               Number of iterations × word width 

 

In spite of  bit serial the output rate can be almost as high as achieved with the unrolled 

design. The reason is the structural simplicity of a bit-serial design and the 

correspondingly high clock rate achievable. 

Direct Digital Frequency Synthesizer (DDFS) is a digital technique for the generation of 

sine and cosine. In this thesis the idea is to directly generate the sine/cosine value using 

the angle rotation scheme as per the working of CORDIC algorithm with a little 

difference i.e the data is serial and the working of basic CORDIC has been modified to 

achieve the desired results. 
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1.3 Thesis objective 

Based on the above discussion the thesis has following objectives: 

� To study and implement CORDIC algorithm using VHDL/Verilog programming 

code. 

� To develop efficient bit serial CORDIC which can be used as Direct Digital 

Frequency synthesizer(DDFS) having a small sized Read only memory(ROM) in 

VHDL/Verilog code and verify the results in ModelSim and MATLAB. 

� To implement proposed Bit serial CORDIC algorithm on XILINX Vertex II kit. 

1.4 Methodology 

In this thesis, VHDL / Verilog and MATLAB programming has been used to implement 

CORDIC algorithm (to calculate Sine and Cosine value for a given angle). Further 

XILINX SPARTAN 3E kit is used for FPGA implementation of the generated HDL 

code. 

Programming tools used for the implementations are: 

• Operating system WINDOWS XP 

• ModelSim SE PLUS 5.5c  

• MATLAB 

• XILINX 9.2i 

• FPGA kit SPARTAN 3E 

 

1.5 Thesis Organization 

Chapter 2 discusses basics of CORDIC algorithm, how it came into picture, its basic 

equations, different implementation styles, CORDIC iteration and how it works. 

Chapter 3 discusses about the calculation of sine-cosine using CORDIC algorithm, 

different architectures to perform CORDIC iteration and their block diagram. Chapter 4 

discusses the Bit serial implementation of CORDIC algorithm for calculating sine and 

cosine, it also discusses the proposed bit serial architecture which is modified version. 

Chapter 5 contains the results of simulation using ModelSim, Matlab and XILINX. The 

thesis concludes in chapter 6 which also discusses future scope of work. 
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Chapter 2 

Literature Review 

In 1959, Jack E. Volder [1] described the Coordinate Rotation Digital Computer or 

(CORDIC) for the calculation of trigonometric functions, multiplication, division and 

conversion between binary and mixed radix number systems. The CORDIC algorithm 

provides an iterative method of performing vector rotations by arbitrary angles using only 

shift and add.  

2.1 Background and History of CORDIC algorithm 

CORDIC algorithm has found its way in many applications. The CORDIC was 

introduced in 1956 by Jack Volder as a highly efficient, simplicity and robust technique 

to compute the elementary functions. It is initially intended for navigation technology, the 

CORDIC algorithm has found its way in a wide range of applications, ranging from 

pocket calculators, numerical co-processors, to high performance radar signal processing. 

After invention CORDIC worked as the replacement for the analog navigation computers 

aboard the B-58 supersonic bomber aircraft with a digital counterpart. The CORDIC 

airborne navigational computer built for this purpose, outperformed conventional 

contemporary computers by a factor of 7, mainly due to the revolutionary development of 

the CORDIC algorithm. Further Steve Walther [6] continues work on CORDIC with the 

application of the CORDIC algorithm in the Hewlett-Packard calculators, such as the HP-

9100 and the famous HP-35 in year 1972, the HP-41C in year1980. Today’s fast rotation 

techniques are closely related to CORDIC, to perform orthonormal rotation at a very low 

cost. Although fast rotations exist for certain angles only, they are sufficiently versatile, 

and have already been widely applied in signal processing. 

Hekstra found a large range of known, and previously unknown, fast rotation methods. 

An overall evaluation of the methods exposes the trade-offs that exist between the angle 

of rotation, the accuracy in scaling and the cost of rotation. Van der Kolk, Deprettere, and 

Lee [7] formalized the problem of (approximate) vectoring for fast rotations in year 2000. 

They treated the fast and efficient selection of the appropriate fast rotation, and showed 
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the advantage to be gained when applied to Enhanced Versatile Disc (EVD). The 

selection technique works equally well for redundant arithmetic and floating-point 

computations. Antelo, Lang, and Bruguera[8] considers going to a higher radix than the 

radix-2 for the classical algorithm, so that less iterations are required. The choice of a 

higher radix implies that the scaling factor is no longer constant. The authors propose an 

on-line calculation of the algorithm of the scale factor and subsequent compensation. 

Hsiao, Lau, and Delosme [9] considered multi-dimensional variants of CORDIC, such as 

the 4-D (dimention) householder CORDIC transform, and their application to singular 

value deposition (SVD). Rather than building a multi-dimensional transform out of a 

sequence of 2-D (dimention) CORDIC operations, they proposed to work with multi-

dimensional micro-rotations, immediately at the iteration level. Their method is evaluated 

and benchmarked against solutions by others. Kwak, Choi, and Swartzlander [10] aimed 

to overcome the critical path in the iteration through sign prediction and addition. 

They proposed to overlap the sign prediction with the addition, by computing the results 

for both outcomes of the sign, and to select the proper one at the very end of the iteration. 

Novel in their approach is to combine the adder logic for the computation of both results. 

Volder's algorithm is derived from the general equations for a vector rotation. If a vector 

V with coordinates (x, y) is rotated through an angle φ then a new vector V ' can be 

obtained with coordinates( x1, y1) where x1 and y1 can be obtained using x, y and φ by 

the following method as shown in Figure 2.1. 

Mathematically it can be written as  

2 1 1*cos( ) *sin( )x x yφ φ= −                                                               (2.1)

2 1 1*sin( ) *cos( )y x yφ φ= +                                                               (2.2)  

Where   2 1φ φ φ= −                                                              (2.3)
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Fig. 2.1 Angle Rotation 

The complete angle with required precision is executed in several iterations. In matrix 

form we can write the above Eq. as: 

2 1

2 1

cos sin
sin cos

x x
y y

φ φ
φ φ

−⎛ ⎞ ⎛ ⎞⎛ ⎞
=⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠
 

(2.4)

                                                                          

The general representation of above Eq.2.4 with taking cosφ as common from Eq. 2.4  

1

1

1 tan
cos

tan 1

tan( ) 2 tan( )
arctan(2 )

i ii
i

ii i

i

i

x x
y y

where is a hardware shift

φ
φ

φ

φ φ

φ

+

+

−

−

−⎛ ⎞ ⎛ ⎞⎛ ⎞
=⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠
=     

=

                                          

(2.5)

 

The multiplication by the tangent term can be avoided if the rotation angles and therefore 

tan(φ ) are restricted so that tan( ) 2 iφ −= , in digital hardware this denotes a simple shift 

operation,  if those rotations are performed iteratively and in both directions, then every 

value of tan(φ ) is representable. With arctan(2 )iφ −= ,the cosine term could also be 

simplified and since cos(φ ) = cos(−φ ) ,it is  constant for a fixed number of iterations. 

This iterative rotation can now be expressed as: 
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1 [ . .2 ]i
i i i i ix k x y d −
+ = −  (2.6)

                                                                                                

1 [ . .2 ]i
i i i i iy k y x d −
+ = +   (2.7)

Where, i denote the number of rotation required to reach the required angle of the 

required vector,   1cos(arctan(2 ))ik −=  and 1id = ± , the product of the ik  represents the so-

called K factor [6]: 
1

0

n

i
i

k k
−

=

= ∏  
(2.8)

                                                                                                                       
 

Where  
di is determined by the direction of necessary correction  and  
 

1

0 1 2 3 1
0

cos cos cos cos ..................cos
n

i n
i

k φ φ φ φ φ
−

−
=

=∏  (φ is the angle of rotation).  

The above rotations requires, adding and subtracting of the different φ . 

ik  is the gain and its value changes as the number of iterations increase. The value of ik  
is approximated for 8 bit CORDIC as follows:  

7

0 1 2 3 7
0

cos cos cos cos cos ..................cosi i
i

k φ φ φ φ φ φ
=

= =∏
(2.9)

0 0cos 45 .cos 26.565 ..............cos0.4469o      = 0.6073  (2.10)

 

 The table 2.1 shows the 8 bit CORDIC hardware. The first column is the index from 0-7,  

column 2 is the inverse value of 2 to the power of index in column 1, column 3 is the 

inverse tan of the  column 2, these all are interrelated and this is basically the working of 

the CORDIC algorithm. 
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Table 2.1: 8 Bit Cordic Hardware 

 

 

 

After having a look at the table 2.1 we see that the inverse tan value of index 7 is  

0.4469o , which is basically the precision possible for an 8 bit cordic, here the angle iφ  is 

stored in a ROM of the hardware of  CORDIC  as a look up table. Now the working of 

cordic algorithm is explained by using the balance example as follows. 

 

Figure 2.2: Balance having θ at one side and Φ on the other side. 
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In the above figure, first of all, keep the input angle θ on the left pan of balance and if the 

balance rotates around the anticlockwise direction then add the highest value in the table at 

the other side. 
 

 

Figure 2.3: Inclined balance due to difference in weights of two sides 

 

Then, if balance shows a left inclination as in figure 2.3 (a) then other weights are 

required to add in the right pan or in the term of angle if θ is greater than total iφ then add 

other weights to reach as near to the θ as possible but in other hand if the balance shows a 

right inclination as in figure 2.3 (b) then a weight required to be removed from the right 

pan or in the term of angle if θ is less than total iφ then we subtract other weights this 

process is repeated to reach as near to the θ as possible. 

Matrix representation of the CORDIC algorithm for 8-bit hardware: 

1

1

cos sin
sin cos

i ii i

i ii i

x x
y y

φ φ
φ φ

+

+

±⎛ ⎞ ⎛ ⎞⎛ ⎞
=⎜ ⎟ ⎜ ⎟⎜ ⎟±⎝ ⎠⎝ ⎠ ⎝ ⎠

 
                                                                          (2.11)
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1 0 0 1 1

0 0 1 11

7 7

7 7

cos sin cos sin
....

sin cos sin cos

cos sin
..............................

sin cos

i

i

i

i

x
y

x
y

φ φ φ φ
φ φ φ φ

φ φ
φ φ

+

+

± ±⎛ ⎞ ⎛ ⎞⎛ ⎞
=⎜ ⎟ ⎜ ⎟⎜ ⎟± ±⎝ ⎠⎝ ⎠⎝ ⎠

± ⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟±⎝ ⎠⎝ ⎠

 

(2.12)

1 0 1
0 1 7

0 11

7

7

1 tan 1 tan
cos .cos .......cos .....

tan 1 tan 1

1 tan
.................

tan 1

i

i

i

i

x
y

x
y

φ φ
φ φ φ

φ φ

φ
φ

+

+

± ±⎛ ⎞ ⎛ ⎞⎛ ⎞
=⎜ ⎟ ⎜ ⎟⎜ ⎟± ±⎝ ⎠⎝ ⎠⎝ ⎠

± ⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟±⎝ ⎠⎝ ⎠

 

          (2.13)

 

The scale factor = 0 1 7cos .cos .......cosφ φ φ  

                              =0.6073 

(2.14)

                               

Thus we can rewrite above equation as  

0 1

0 1

7

7

1 tan 1 tancos
.....

tan 1 tan 1sin

1 tan 0.6073
.................

tan 1 0

φ φθ
φ φθ

φ
φ

± ±⎛ ⎞⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟⎜ ⎟ ± ±⎝ ⎠ ⎝ ⎠⎝ ⎠

±⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟± ⎝ ⎠⎝ ⎠

(2.15)

                                            

2.2 Basic CORDIC iterations 

To simplify each rotation, picking iα  such that  

iα = .2 i
id −                                                         (2.16)

id  is such that it has a value either +1 or -1 depending upon the rotation  . 

Then we have  
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1

1
1

1

2

2

tan 2

i
i i i i

i
i i i i

i
i i i

x x d y

y y d x

z z d

−
+

−
+

− −
+

= −

= +

= −
 

(2.17)

                                                                                                              

The computation of 1ix +  or 1iy +  requires i-bit right shift and add /subtract. If the function 

1tan 2 i− − is pre computed and stored in table (Table 2.1) for different values of i, a single 

add/subtract suffices to compute 1iz + . CORDIC iteration involves two shifts, a table 

lookup and three additions. 

If the rotation is done by the same set of angles (with + or- signs), then the expansion 

factor K, is a constant, and can be pre computed. For example to rotate by 30 degrees, the 

following sequence of angles be followed that add up to ≈ 30 degree. 

 

30.0≈45.0-26.6+14.0-7.1+3.6+1.8-0.9+0.4-0.2+0.1   

=30.1 

 

(2.18)

                           

In effect, what actually happens in CORDIC is that z is initialized to 30 degree and then, 

in each step, the sign of the next rotation angle is selected to try to change the sign of z; 

that is, d i =sign (z i) is chosen, where the sign function is defined to be - 1 or 1 

depending on whether the argument is negative or nonnegative. This is reminiscent of no 

restoring division. Table 2.2 shows the process of selecting the signs of the rotation 

angles for a desired rotation of +30 degree. Figure 3.1 depicts the first few steps in the 

process of forcing z to zero. 

In CORDIC terminology the preceding selection rule for d i, which makes z converge to zero, 

is known as rotation mode. Rewriting the CORDIC iteration, where 

iα = arctan .2 i−    
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Table 2.2: iα = arctan .2 i−   

 

  

1 2 i
i i i ix x d y −
+ = −  (2.19)

1 2 i
i i i iy y d x −
+ = +  (2.20)

1i i i iz z d α+ = −  (2.21)

                                                                     

After n iterations we have  

i zα =∑  and the CORDIC equation becomes 

( cos sin )
( cos sin )

n

n

x k x z y z
y k y z x z

= −
= +

 
(2.22)
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Table 2.3: Example for 30° calculation 
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Figure 2.4: First few iterations for 30° calculation 

 

For k bits of precision in the resulting trigonometric functions, k CORDIC iterations are 

needed. The reason is that for large i it can be approximated that 1tan 2 2i i− − −≈ .  
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Chapter 3 

COMPUTATION OF SINE AND COSINE 

Elementary functions, especially trigonometric functions, play important roles in various 

digital systems, such as graphic systems, automatic control systems, and so on. The 

CORDIC [11], [12] is known as an efficient method for the computation of these 

elementary functions. Recent advances in VLSI technologies make it attractive to 

develop special purpose hardware such as elementary function generators. Several 

function generators based on the CORDIC have been developed [13]. The CORDIC can 

also be applied to matrix triangularization, singular value decomposition, and so on [14], 

[6]. In this chapter, different hardware is dealt for sine and cosine computation using 

CORDIC. In sine and cosine computation by the CORDIC, iterative rotations of a point 

around the origin on the X-Y plane are considered. In each rotation, the coordinates of 

the rotated point and the remaining angle to be rotated are calculated. The calculations in 

each iteration step are performed by shift, addition and subtraction, and recall of a 

prepared constant. Since the rotation is not a pure rotation but a rotation-extension, the 

number of rotations for each angle should be a constant independent of the operand so 

that the scale factor becomes a constant. When implementing a sine and cosine calculator 

in digital hardware, the expense of the multiplication needed for many algebraically 

methods, should be kept in mind. Alternative techniques are based on polynomial 

approximation, table-lookup [15] etc. as well as shift and add algorithms [15]. Among the 

various properties that are desirable, we can cite speed, accuracy or the reasonable 

amount of resource [15]. The architecture of FPGAs specifies suitable techniques or 

might even change desirable properties. Because the number of sequential cells and 

amount of storage area, needed for table-lookup algorithms, are limited but 

combinational logic in terms of LUT (Look Up Table) in the FPGA's (Field 

Programmable Gate Array) CLBs (Configurable Logic Blocks) is sufficiently available, 

shift and add algorithms fit perfectly into an FPGA. 
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3.1 CORDIC HARDWARE 

A straight forward hardware implementation for CORDIC arithmetic is shown below in 

figure 3.1. It requires three registers for x, y and z, a look up table to store the values of 

iα = arctan .2 i−  , and two shifter to supply the terms 2 i− x and 2 i− y to the adder/subs 

tractor units. The d i factor (-1 and 1) is accommodated by selecting the (shift) operand or 

its complement. 

Of, course a single adder and one shifter can be shared by three computations if a 

reduction in speed by a factor of 3 is acceptable. In the extreme, CORDIC iterations can 

be implemented in firmware (micro program) or even software using the ALU and 

general purpose registers of a standard microprocessor. In this case, the look up table 

supplying the term   α i  can be stored in the control ROM or in main memory. 

 

Figure 3.1: CORDIC hardware 
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Where high speed is not required and minimizing the hard ware cost is important (as in 

calculator), the adder in fig 3.1 can be a bit serial adder. Then with k bit operands, O (k) 

clock cycle would be required to complete the k CORDIC iterations. This is acceptable 

for hand handled calculators, since even a delay of tens of thousands of clock cycles 

constitutes a small fraction of a second and thus is hardly noticeable to a human user. 

Intermediate between the fully parallel and fully bit-serial realizations are a wide array of 

digit serial (for example decimal or radix-16) implementation that provide trade off speed 

versus cost. 

3.2 The CORDIC algorithm for computing sine and cosine 

Jack E. Volder [1] described the Coordinate Rotation Digital Computer or CORDIC for 

the calculation of trigonometric functions, multiplication, division and conversion 

between binary and mixed radix number systems. The CORDIC-algorithm provides an 

iterative method of performing vector rotations by arbitrary angles using only shifts and 

adds. Volder's algorithm is derived from the general equations for vector rotation. If a 

vector v with components (x, y) is to be rotated through an angle φ a new vector v' with 

components (x’, y’) is formed. 

cos
sin

x r
y r

θ
θ

=
=  

(3.1)

/
/

/

.cos( ) .sin( )

.cos( ) .sin( )
x x y

v
y xy

φ φ
φ φ

⎛ ⎞ −⎛ ⎞
= =⎜ ⎟ ⎜ ⎟⎜ ⎟ +⎝ ⎠⎝ ⎠

 
(3.2)
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Figure 3.2: Angular rotation 

 
/

/

.cos( ) .sin( )
.cos( ) .sin( )

x x y
y y x

φ φ

φ φ

= −

= +
 

(3.3)

 

Taking cos( )φ  as common we have  

 

[ ]
[ ]

/

/

cos( ) tan( )

cos( ) . tan( )

x x y

y y x

φ φ

φ φ

= −

= +
 

  
(3.4)

 

The multiplication by the tangent term can be avoided if the rotation angles and therefore 

tan(φ ) are restricted so that tan(φ ) = 2 i− .In digital hardware this denotes a simple shift 

operation. Furthermore, if those rotations are performed iteratively and in both directions 

every value of tan(φ ) is representable. With φ = arctan( 2 i− ) the cosine term could also be 

simplified and since cos(φ ) = cos(−φ ) it is a constant for a fixed number of iterations. 

This iterative rotation can now be expressed as: 

1

1

2

2

i
i i i i i

i
i i i i i

x k x y d

y k y x d

−
+

−
+

⎡ ⎤= −⎣ ⎦
⎡ ⎤= +⎣ ⎦

 
(3.5)
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1
0

n
i ik k−
== ∏   (3.6)

                                                                                                                                                       

 

This k factor can be calculated in advance and applied elsewhere in the system. A good 

way to implement the k factor is to initialize the iterative rotation with a vector of length 

k which compensates the gain inherent in the CORDIC algorithm. The resulting vector v' 

is the unit vector as shown in Figure 3.3. 

 

Figure 3.3: Iterative rotation  

1

1

2

2

i
i i i i

i
i i i i

x x y d

y y x d

−
+

−
+

⎡ ⎤= −⎣ ⎦
⎡ ⎤= +⎣ ⎦

 
(3.7) 

                                                                                                  

 

The direction of each rotation is defined by d i and the sequence of all d i’s determines 

the final  vector. This yields to a third equation which acts like an angle accumulator and 

keeps track of the angle already rotated. Each vector v can be described by both the 

vector length and angle or by its coordinates x and y. Following this incident, the 

CORDIC algorithm knows two ways of determining the direction of rotation: the rotation 

mode and the vectoring mode. Both methods initialize the angle accumulator with the 

desired angle z 0. The rotation mode, determines the right sequence as the angle 
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accumulator approaches 0 while the vectoring mode minimizes the y component of the 

input vector. 

1 .arctan(2 )i
i i iz z d −
+ = −  (3.8)

                                                   

Where the sum of an infinite number of iterative rotation angles equals the input angle 

[14]: 

0
.arctan(2 )i

i
i

d
α

φ −

=

= ∑  
(3.9)

 

Those values arctan ( 2 i− ) can be stored in a small lookup table or hardwired depending 

on the way of implementation. Since the decision is which direction to rotate instead of 

whether to rotate or not, d i is sensitive to the sign of z i .Therefore d i can be described 

as: 

1, 1id = − +  (3.10)

                               

 
 

3.3 Implementation of Various CORDIC architectures 

As intended by Volder, the CORDIC algorithm only performs shift and add operations 

and is therefore easy to implement and resource-friendly. However, when implementing 

the CORDIC algorithm one can choose between various design methodologies and must 

balance circuit complexity with respect to performance. The most obvious methods of 

implementing a CORDIC, bit-serial, bit-parallel, unrolled and iterative, are described and 

compared in the following sections. 

3.3.1 A Bit-Parallel Iterative CORDIC 

The CORDIC structure as described in Figure 3.4 when directly translated into hardware. 

Each branch consists of an adder-sub tractor combination, a shift unit and a register for 

buffering the output. At the beginning of a calculation initial values are fed into the 

register by the multiplexer where the MSB of the stored value in the z-branch determines 
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the operation mode for the adder-sub tractor. Signals in the x and y branch pass the shift 

units and are then added to or subtracted from the unshifted signal in the opposite path. 

 

 
Figure 3.4:   Iterative CORDIC 

 

The z branch arithmetically combines the registers values with the values taken from a 

lookup table (LUT) whose address is changed accordingly to the number of iteration. For 

n iterations the output is mapped back to the registers before initial values are fed in again 

and the final sine value can be accessed at the output. A simple finite-state machine is 

needed to control the multiplexers, the shift distance and the addressing of the constant 

values. When implemented in an FPGA the initial values for the vector coordinates as 

well as the constant values in the LUT can be hardwired in a word wide manner. The 

adder and the sub tractor component are carried out separately and a multiplexer 
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controlled by the sign of the angle accumulator distinguishes between addition and 

subtraction by routing the signals as required.  

shift operations as implemented change the shift distance with the number of iterations 

but those require a high fan in and reduce the maximum speed for the application [18]. In 

addition the output rate is also limited by the fact that operations are performed iteratively 

and therefore the maximum output rate equals 1/n times the clock rate. 

3.3.2 A Bit-Parallel Unrolled CORDIC 
 

Instead of buffering the output of one iteration and using the same resources again, one 

could simply cascade the iterative CORDIC, which means rebuilding the basic CORDIC 

structure for each iteration. Consequently, the output of one stage is the input of the next 

one, as shown in Figure 3.5, and in the face of separate stages two simplifications become 

possible. First, the shift operations for each step can be performed by wiring the 

connections between stages appropriately. Second, there is no need for changing constant 

values and those can therefore be hardwired as well. 

The purely unrolled design only consists of combinatorial components and computes one 

sine value per clock cycle. Input values find their path through the architecture on their 

own and do not need to be controlled. Obviously the resources in an FPGA are not very 

suitable for this kind of architecture. As we talk about a bit-parallel unrolled design with 

16 bit word length, each stage contains 48 inputs and outputs plus a great number of 

cross-connections between single stages. Those cross-connections from the x-path 

through the shift components to the y-path and vice versa make the design difficult to 

route in an FPGA and cause additional delay times. From table 4.1 it can be seen how 

performance and resource usage change with the number of iterations if implemented in 

an XILINX FPGA. Naturally, the area and therefore the maximum path delay increase as 

stages are added to the design where the path delay is an equivalent to the speed which 

the application could run at. 
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Table 3.1: Performance and CLB usage in an XC4010E [19] 

 

No. of iterations 8 9 10 11 12 13 

Complexity[CLB] 184 208 232 256 280 304 

Max path 

delays[ns] 

163.75 177.17 2.906 225.7 263.8 256.8 

 

As described earlier, the area in FPGAs can be measured in CLBs, each of which consist 

of two lookup tables as well as storage cells with additional control components [20], 

[21]. For the purely combinatorial design the CLB's function generators perform the  add 

and shift operations and no storage cells are used. This means registers could be inserted 

easily without significantly increasing the area. 

However, inserting registers between stages would also reduce the maximum path delays 

and correspondingly a higher maximum speed can be achieved. It can be seen, that the 

number of CLBs stays almost the same while the maximum frequency increases as 

registers are inserted. The reason for that is the decreasing amount of combinatorial logic 

between sequential cells. Obviously, the gain of speed when inserting registers exceeds 

the cost of area and makes therefore the fully pipelined CORDIC a suitable solution for 

generating a sine wave in FPGAs. Especially if a sufficient number of CLBs is at one's 

disposal, as is the case in high density devices like XILINX's Virtex or ALTERA's FLEX 

families, this type of architecture becomes more and more attractive. 
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Figure 3.5: Unrolled CORDIC 
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Chapter 4 

Bit Serial Cordic 

4.1 A Bit-Serial Iterative CORDIC 

Problems which involve repeated evaluation of a fixed set of nonlinear, algebraic 

equations appear frequently in scientific and engineering applications. Examples of such 

problems can be found in the robotics, engineering graphics, and signal processing areas. 

Evaluating complicated equation sets can be very time consuming in software, even when 

co-processors are used, especially when these equations contain a large number of 

nonlinear and transcendental functions as well as many multiplication and division 

operations. Both, the unrolled and the iterative bit-parallel designs, show disadvantages in 

terms of complexity and path delays going along with the large number of cross 

connections between single stages. To reduce this complexity we can change the design 

into a completely bit-serial iterative architecture. Bit-serial means only one bit is 

processed at a time and hence the cross connections become one bit-wide data paths. 

Clearly, the throughput becomes a function of 

Clock rate 
------------------------------------------ 
Number of iterations × word width 

 

In spite of bit serial the output rate can be almost as high as achieved with the unrolled 

design. The reason is the structural simplicity of a bit-serial design and the 

correspondingly high clock rate achievable. Figure 4.1 shows the basic architecture of the 

bit serial CORDIC processor as implemented in a XILINX Spartan. 

In this architecture the bit-serial adder-subtractor component is implemented as a full 

adder where the subtraction is performed by adding the 2's complement of the actual 

subtrahend [22]. The subtraction is again indicated by the sign bit of the angle 

accumulator. A single bit of state is stored at the adder to realize the carry chain [23] 

which at the same time requires the LSB to be fed in first. The shift-by- i operation can 

be realized by reading the bit i −1 from its right end in the serial shift registers. A 
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multiplexer can be used to change position according to the current iteration. The initial 

values x0 ,  y0 and  z0 are fed into the array at the left end of the serial-in serial-out 

register and as the data enters the adder component the multiplexer at the input switch 

and map back the results of the bit-serial adder into the registers.  

 

 
Figure 4.1: Bit serial CORDIC 

 

The constant LUT for this design is implemented as a multiplexer with hardwired 

choices. Finally, when all iterations are passed the input multiplexers switch again and 

initial values enter the bit-serial CORDIC processor as the computed sine values exit. The 

design as implemented runs at a much higher speed than the bit-parallel architectures 

described earlier and fits easily in a XILINX SPARTAN device. The reason is the high 

ratio of sequential components to combinatorial components. The performance is 

constrained by the use of multiplexers for the shift operation and even more for the 

constant LUT. The latter could be replaced by a RAM or serial ROM where values are 
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read by simply incrementing the memory's address. This would clearly accelerate the 

performance. 

4.2 Proposed Bit-Serial modified CORDIC 

As duscussed in previous chapter we have the following equations for CORDIC. 

1

1

2

2

i
i i i i

i
i i i i

x x y d

y y x d

−
+

−
+

⎡ ⎤= −⎣ ⎦
⎡ ⎤= +⎣ ⎦

 
(4.1)

 

0
2 i

i i
i

dφ
∞

−

=

= ∑  
 

(4.2)  

We assume that in modified CORDIC id  is either 1 or 0, In the binary notation of iφ for 

positive rotation we wil use (+1) when id =1 and for negative rotation we wil use (-1) 

when id =0. 

 

This idea is clearified in the example below 

iφ =101100 (4.3)

( 1)( 1)( 1)( 1)( 1)( 1)id = + − + + − −  (4.4)

                                                               

The pre-calculation of id  removes the dependency of each iteration waiting for previous 

iteration to complete, which is a major limitation in architecting a bit serial parallel 

architecture. This modification has enabled the design to work in parallel a bit serial 

level. 

1 1

1 1

1

(2 )

(2 )

i

n
n n n

n
n n n

d

x x y

y y x

−
− −

−
− −

= +

= −

= +

 (4.5)

1 1

1 1

1

(2 )

(2 )

i

n
n n n

n
n n n

d

x x y

y y x

−
− −

−
− −

= −

= +

= −

  (4.6)
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Our Proposed Bit Serial CORDIC Algorithm uses Rom for the initial five values where 

nφ  varies significantly and for the remaining iterations it uses Eq. 4.5 and 4.6.  

By looking at above equations we need single bit adder / subtractor along with right 

hardware shifts as required. Our pre computed highest value can be represented in 13 bit 

binary format but for the shift purposes we extend it by six bits, though the final 

representation is in 13 bit.  

For initializing purpose an index is calculated and based on that index value the initial 

value i.e X5 and Y5 are selected from pre calculated values generated after extensive test 

and trials as shown in Table 4.1 below. 

 

 
Table 4.1: Initialization of X and Y 

 

Sr. 

No. 

Initial X5 

(decimal              binary) 

Initial Y5 

(decimal              binary) 

 

1 8187  1111111111011 

 

256      0000100000000 

2 8091  1111110011011 

 

1274    0010011111010 

3 7869   1111010111101 

 

2273    0100011100001 

4 7524   1110101100100 

 

3237    0110010100101 

5 7062   1101110010110 

 

4149    1000000110101 
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6 6489   1100101011001 

 

4998    1001110000110 

7 5816   1011010111000 

 

5768    1011010001000 

8 5051   1001110111011 6448    1100100110000 

 

9 4208   1000001110000 

 

7027    1101101110011 

10 3299   0110011100011 

 

7497    1110101001001 

11 2339   0100100100011 

 

7850    1111010101010 

12 1342   0010100111110 

 

8080    1111110010000 

13 324     0000101000100 

 

8184    1111111111000 

 

The initial five iterations 5xand are stored in the Rom in 19 bit binary format and the 

value of id  is pre calculated for the whole 14 iterations, the value of id  is either +1 or -1, 

X6 and Y6  are calculated as under: if  

1 1

1 1

1

(2 )

(2 )

i
n

n n n

n
n n n

d

x x y

y y x

−
− −

−
− −

= +

= −

= +

 

                                                 (4.7)

 

We have  

 

 

6 5 5

6 5 5

[0] 0
[1] [1] [7] [0]
[2] [2] [8] [1]

Cin
x x y Cin
x x y Cin

=
= − +
= − +

 
                                     (4.8)
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6 5 5

6 5 5

6 5 5

[3] [3] [9] [2]
[4] [4] [10] [3]
[5] [5] [11] [4]

x x y Cin
x x y Cin
x x y Cin

= − +
= − +
= − +

 
 

6 5 5

6 5 5

6 5 5

[6] [6] [12] [5]
[7] [7] [13] [6]
[8] [8] [14] [7]

x x y Cin
x x y Cin
x x y Cin

= − +
= − +
= − +

 

 

6 5 5

6 5 5

6 5 5

[9] [9] [15] [8]
[10] [10] [16] [9]
[11] [11] [17] [10]

x x y Cin
x x y Cin
x x y Cin

= − +
= − +
= − +

 

 

6 5 5

6 5 5

[12] [12] [18] [11]
[13] [13] [19] [12]

x x y Cin
x x y Cin

= − +
= − +

 
 

It is to be noted here that for negative sign 2’s compliment addition is used 

Similarly for y6 we have 

6 5 5

6 5 5

[0] 0
[1] [1] [7] [0]
[2] [2] [8] [1]

Cin
y y x Cin
y y x Cin

=
= + +
= + +

 
 

6 5 5

6 5 5

6 5 5

[3] [3] [9] [2]
[4] [4] [10] [3]
[5] [5] [11] [4]

y y x Cin
y y x Cin
y y x Cin

= + +
= + +
= + +

 

                                  (4.9)

 

6 5 5

6 5 5

6 5 5

[6] [6] [12] [5]
[7] [7] [13] [6]
[8] [8] [14] [7]

y y x Cin
y y x Cin
y y x Cin

= + +
= + +
= + +

 
 

6 5 5

6 5 5

6 5 5

[9] [9] [15] [8]
[10] [10] [16] [9]
[11] [11] [17] [10]

y y x Cin
y y x Cin
y y x Cin

= + +
= + +
= + +

 

 

6 5 5

6 5 5

[12] [12] [18] [11]
[13] [13] [19] [12]

y y x Cin
y y x Cin

= + +
= + +
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Similarly we can calculate X14 and Y14 by using the same technique, we require 13 

iterations for each value of X and we need another 14 iterations in order to reach the final 

value i.e. x14 and y14 which is Sin and Cos of required angle.  

The above technique is simulated in Matlab and the segment of code is as under.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 4.2a Segment of MATLAB code 

4.3 Flow of the MATLAB Code 

clear all ;clc; 
theta = input('theta = ');  
N = 14;  
tablex = [8187 8091 7869 7524 7062 6489 5816 5051 4208 3299 
2339 1342 324];  
tabley = [256 1275 2273 3237 4149 4998 5768 6448 7027 7497 7850 
8080 8184];  
  
actual = [sin(theta) cos(theta)]  
  
theta = fix(theta * 2^(N-1));  
for k=1:N  
   b(N+1-k) = abs(rem(theta, 2));  
   theta = fix(theta/2);  
end  
  
for k=1:N  
   r(k) = 2*(b(k)) - 1;  
end  
  
  
index = b(4) + b(3)*2 + b(2)*4 + b(1)*8 + 1;    
  
x(5) = tablex(index);  
y(5) = tabley(index);  
  
% atan table for k=6:17  
for k=6:N  
        x(k) = x(k-1) - r(k) * 2^(-k) * y(k-1);  
        y(k) = y(k-1) + r(k) * 2^(-k) * x(k-1);  
end  
  
yk = y(k);  
xk = x(k);  
ddfs = [y(k) x(k)] *2^(-(N-1)) 
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The MATLAB Code developed for the calculation of Sine and cosine has the following 

flow diagram. 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.2b Flow diagram of MATLAB Code 

4.4 Proposed Bit-Serial modified CORDIC Architecture 

Input Angle

Fixed point conversion
for k=1:N 
   b(N+1-k) = 
abs(rem(theta, 2)); 
   theta = 
fix(theta/2); 

ROMIndex Calculator
index = b(4) + b(3)*2 + b(2)*4 

+ b(1)*8 + 1

Initial X5
Initial Y5

x(k) = x(k-1) - r(k) 
* 2^(-k) * y(k-1)

y(k) = y(k-1) + 
r(k) * 2^(-k) * 

x(k-1)

Cos(angle)= X(N)*2^(-
(N-1)

Sin(angle)= Y(N)*2^(-(N-1)

No. of iterations

No. of iterations
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The proposed bit serial architecture consists of adder / subtractor, shift registers and a 

ROM. There is also some gating or multiplexers to select the taps of the shift registers for 

the right shifted cross terms. The Bit serial CORDIC was successfully implemented as a 

part of a communication system, the input to the system is a 1’s compliment value of 

angle from -  π to π , the architecture is shown in Fig.4.3. The value of angle is converted 

in radians and then fixed point which returns a binary equivalent, after that the values 

goes to the index calculator which returns the address of Rom which has 13 values  stored 

for X and 13 values stored for Y, which are used to  initialize the value of X5 and Y5. 

The ROM has 13 values for X and 13 values for Y. The out put of index calculator 

initializes the value of X5 and Y5 in the shift register. When the value of the bit (LSB to 

MSB) in binary format for angle is ‘0’ the value for the Rn is ‘-1’ and when the value of 

angle is ‘1’ the value of Rn is ‘+1’. The binary format of angle plays an important role as 

it directly calculates the value of Rn which is used in the calculation of sine and cosine, it 

means we deal with only two equation in this modified Bit serial CORDIC in stead of 

three equations. This means that the inter equation dependency is no more and the angle 

has all the information about the sine and cosine. 
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Fig. 4.3 Bit Serial modified CORDIC Architecture  
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Eq. 4.8 and 4.9 are used to calculate the value of X6 and y6, it takes total of (13 x14) 

iterations to calculate the value of Sin and Cos of the given angle. ROM has a size of 13 

bit x 26 word. The value of X14 and y14 returns the Sin and Cos of desired angle. 

4.4 Algorithm Flow of Proposed Architecture with Example 

In order to understand the complete working of the proposed algorithm we take a 

example of 30° i.e 0.5236 radians. 

 Now 0.5236* 132 = 4289=01000011000001 which is an input to the b array as per fig. 

4.3. 

Table 4.2: Calculation of B(n) and R(n) 
 

Serial  B(n) R(n) 

 

1 0 -1 

2 1 1 

3 0 -1 

4 0 -1 

5 0 -1 

6 0 -1 

7 1 1 

8 1 1 

9 0 -1 

10 0 -1 

11 0 -1 

12 0 -1 

13 0 -1 

14 1 1 

 

The index is calculated as follows as per the MATLAB code segment in Fig. 4.2. 

Index = B (4) + B(3)*2 + B(2)*4 + B(1)*8 + 1           (5.1)
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By using the values from table 2a the value of index comes out to be 5 there fore the 

initial value of X5 and Y5 are as under: 

X5=1101110010110                                                                    (5.2) 

Y5=1000000110101                                       (5.3)

 

Now we will use the following set of equations as our data is bit serial in order to get X6 

and Y6, for X6 we have  

6 5 5

6 5 5

[0] 0
[1] [1] [7] [0]
[2] [2] [8] [1]

Cin
x x y Cin
x x y Cin

=
= − +
= − +

 

  

(5.4)

 

6 5 5

6 5 5

6 5 5

[3] [3] [9] [2]
[4] [4] [10] [3]
[5] [5] [11] [4]

x x y Cin
x x y Cin
x x y Cin

= − +
= − +
= − +

 

6 5 5

6 5 5

6 5 5

[6] [6] [12] [5]
[7] [7] [13] [6]
[8] [8] [14] [7]

x x y Cin
x x y Cin
x x y Cin

= − +
= − +
= − +

 

6 5 5

6 5 5

6 5 5

[9] [9] [15] [8]
[10] [10] [16] [9]
[11] [11] [17] [10]

x x y Cin
x x y Cin
x x y Cin

= − +
= − +
= − +

 

6 5 5

6 5 5

[12] [12] [18] [11]
[13] [13] [19] [12]

x x y Cin
x x y Cin

= − +
= − +

 

 
In every cycle we get one bit out and finally we get : 

X6=1101111010110                                        

Similarly for Y6 we have following set of equations  

6 5 5

6 5 5

[0] 0
[1] [1] [7] [0]
[2] [2] [8] [1]

Cin
y y x Cin
y y x Cin

=
= + +
= + +

 
 

6 5 5

6 5 5

6 5 5

[3] [3] [9] [2]
[4] [4] [10] [3]
[5] [5] [11] [4]

y y x Cin
y y x Cin
y y x Cin

= + +
= + +
= + +
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6 5 5

6 5 5

6 5 5

[6] [6] [12] [5]
[7] [7] [13] [6]
[8] [8] [14] [7]

y y x Cin
y y x Cin
y y x Cin

= + +
= + +
= + +

 

  

(5.5)

 

6 5 5

6 5 5

6 5 5

[9] [9] [15] [8]
[10] [10] [16] [9]
[11] [11] [17] [10]

y y x Cin
y y x Cin
y y x Cin

= + +
= + +
= + +

 

 

6 5 5

6 5 5

[12] [12] [18] [11]
[13] [13] [19] [12]

y y x Cin
y y x Cin

= + +
= + +

 
 

 

In every cycle we get one bit out for Y6 as well  

 

Y6=0111111000110  

 

Now by repeating the set of equations we have used for X6 and Y6 we get the values as 

per Table 4.3.  

 
Table 4.3: Bit Serial CORDIC Calculation  

 
Sr. No. X 

 
 

Y 

5 1101110010110 
 

1000000110101 

6 1101111010110 
 

0111111000110 

7 1101110110111 
 

0111111111110 

8 1101110100111 
 

1000000011010 

9 1101110101111 
 

1000000001100 

10 1101110110011 
 

1000000000101 

11 1101110110101 
 

1000000000001 

12 1101110110110 1000000000000 
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13 1101110110110 

 
0111111111111 

14 1101110000000 
 

1000000100000 

 
 

From Table 3 we see that the value of X14 and Y14 are as under: 

X14=1101110000000   =7040                        (5.6)

Y14=1000000100000 =4128                          (5.7)

 By dividing both the values by 132 we get  

Cos (30) =X14=7040/ 132 =0.857395≈ 0.866  

Sin (30) =Y14=4128/ 132 =0.5036     ≈ 0.5 

We have seen that the value of B is directly calculated from the angle for which the Cos 

and Sin is to be determined, B is also used for the calculation of di and index, there fore 

by using this algorithm only by knowing angle we can calculate B (n) index and Rn for 

all the 14 iterations, and this is the reason we say that the iterations are independent from 

the start we know the value of di which is used to select the set of equations. 
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Chapter 5 

Results and Block Description 

 
5.1 ModelSim Simulation Results 
 
Figure 5.1 shows the ModelSim simulation result for binary input angle 30˚ and binary 

outputs xnew (sin (30˚)), ynew (cos (30˚)) in the form of waveform and their 

corresponding magnitude respectively. Figure 5.2 consists the ModelSim simulation 

result for real input angle 30˚ and real outputs xnew (sin (30˚)), ynew (cos (30˚)) in the 

form of waveform and their corresponding magnitude respectively. 

 
Fig 5.1 Sine and Cosine valves generated for an input angle 30(binary value) 
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Fig. 5.2 Sine and sine value generated for 30(integer value) 

 

5.2   Block Description of Verilog Code 

A brief description of various modules used to implement the bit serial modified 

CORDIC is described as under: 

 5.2.1 Block CORDIC Main module 

The name is this module is “it” in the Verilog code .Block diagram generated by 

XILINX 9.2i for sine-cosine using CORDIC is shown in figure 5.3. Here inputs 

are ta (input angle), clk (clock) and output is DDFS i.e the sine and cosine of the 

input angle. The module named “it” is calling the modules named “mn” and 

“ROM” in it. 
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Fig. 5.3 Main Module RTL schematic for Bit Serial modified CORDIC 

  

5.2.2 Internal RTL schematic of Main Module 

The internal RTL schematic of main module is shown as per Figure 5.4. The 

module name is “mn”. Here the inputs are the initial values of X and Y which is 

13 bit each, the angle ta which is 16 bit with clock and reset and the out put is the 

sine and cosine and a 4 bit “id” which is used for index calculation of ROM. The 

name is this module is mn in the verilog code. 

 

 

Fig. 5.4 Internal RTL schematic of Main Module for Bit Serial modified CORDIC 

 

The detailed schematic of above module is as per figure 5.5 
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Fig. 5.5 RTL schematic for Bit Serial modified CORDIC 

 

5.2.3  Internal RTL schematic of ROM 

The module ROM has the initial values of X and Y stored in it. As per the angle 

the index is calculated and the value of X and Y is initialized from that index. The 

ROM has the initial five values and the rest are calculated iteratively in a bit serial 

manner. The schematic of ROM is as per Figure 5.7. 
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Fig. 5.6. Detailed RTL schematic of ROM 

 

Figure 5.7 and table 5.1 shows the synthesis report generated by XILINX 9.2i showing 

number of multiplexers, number of adder, number of flip-flops used and timing of the 

chip generated respectively. 
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Fig. 5.7 Synthesis Report of bit serial Modified CORDIC 
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Table 5.1: Advanced HDL Synthesis Report for sine cosine 

 

Macro Statistics 

Total  Adders/Subtractors                                        : 7 

16-bit adder                                                                 : 3 

16-bit subtractor                                                          : 4 

Total Counters                                                           : 1 

4-bit up counter                                                            : 1 

#Total Registers                                                          : 12 

13-bit register                                                               : 2 

16-bit register                                                               : 9 

4-bit register                                                                 : 1 

CPU time                                                                       :13.69 ns    

 

5.3 Error Analysis 
The Error in  the values of different angles is as per the fig. 5.8, this  results show that the 
error value is negligiable as compared to the  performance. 
 

 

 

 

 

 

Fig.5.8 Error Analysis 
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5.4 Discussions 

The modified bit serial CORDIC was successfully synthesized on Xilinx Vertex II and 

the  maximum frequency of the bit serial modified CORDIC is 73 Mz on Xilinx Vertex II 
Xc2v6000  (6bf957). 

The Architecture has a ROM in which first five values are stored maintaining a small 

size, these values are calculated after hit and trial and are found to be accurate. The 

working principal is simple as the value of  desired angle is converted into binary, the 

iterative addition/subtraction is calculated, the binary value of the angle gives us the add / 

subtract strategy for iterations to be performed so as to speedup the process. This shows 

that the iterative process has nearly zero inter-iteration dependency, the results are 

accurate and the small ROM size makes the architecture efficient as compared to other 

models in practice with a average error value of .005852%. 
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Chapter 6 

Conclusion 

6.1 Overview 

The CORDIC algorithm is a powerful and widely used tool for digital signal processing 

applications and can be implemented using PDPs (Programmable Digital Processors). 

The Jack E. Volder's CORDIC algorithm is derived from the general equations for vector 

rotation. The CORDIC algorithm has become a widely used approach to elementary 

function evaluation when the silicon area is a primary constraint. The implementation of 

CORDIC algorithm requires less complex hardware than the conventional method. 

Bit-serial means only one bit is processed at a time and hence the cross connections 

become one bit-wide data paths. Normally in Bit Serial iterative CRODIC architectures 

the bit-serial adder- subtractor component is implemented as a full adder where the 

subtraction is performed by adding the 2's complement of the actual subtrahend. The 

subtraction is again indicated by the sign bit of the angle accumulator. A single bit of 

state is stored at the adder to realize the carry chain which at the same time requires the 

LSB to be fed in first. The shift-by- i operation can be realized by reading the bit i −1 

from its right end in the serial shift registers. A multiplexer can be used to change 

position according to the current iteration. The initial values x0 ,  y0 and  z0 are fed into 

the array at the left end of the serial-in serial-out register and as the data enters the adder 

component the multiplexer at the input switch and map back the results of the bit-serial 

adder into the registers. The constant LUT is implemented as a multiplexer with 

hardwired choices. When all iterations are passed the input multiplexers switch again and 

initial values enter the bit-serial CORDIC processor as the computed sine values exit. The 

performance is constrained by the use of multiplexers for the shift operation and even 

more for the constant LUT. The latter could be replaced by a RAM or serial ROM where 

values are read by simply incrementing the memory's address.  
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6.2 Proposed Approach 

The problem given was to develop a bit serial CORDIC which has no inter iteration 

dependency and which uses a small ROM. Keeping in view the problem in this thesis the 

Bit serial modified CORDIC DDFS based generator is simulated using ModelSim ,then 

the implementation of Bit Serial CORDIC DDFS based generators is done on XILINX 

Vertex II Xc2v6000 (6bf957). The results are verified by test bench generated by the 

FPGA and MATLAB as well. This thesis shows that CORDIC is available for use in 

FPGA based computing machines, which are the likely basis for the next generation DSP 

systems. It can be concluded that the designed RTL model for bit serial modified 

CORDIC is accurate and can be used in real time applications. 

The simplicity of the proposed bit serial design is apparent from its architecture, it is a 

novel idea and can be extended for any value of angle theta, for more precision we just 

need to increase the iterations and keeping the first five iterations in the Rom. It can be 

seen that the Results of our proposed bit serial CORDIC are better than other bit serial 

CORDIC processors. The proposed architecture is area efficient as well and is best 

characterized due to its speed and simplicity of design.  

 

6.2 Future Work 

Future work in can be the bit width optimization of CORDIC algorithm as a first step and 

then as a second step enhancing this optimization against the Black Boxes present in the 

FPGA’s. The modern FPGAs are having optimization boxes in them for high speed 

applications , if we some how know the internal detail design of FPGA then by making 

our design to fully map onto the FPGA architecture can enhance the performance many 

folds. 
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