

BIT SERIAL CORDIC DDFS

By
Aqib Perwaiz

(2004-NUST-MS PhD-Com 07)

Advisor
DR. SHOAB AHMED KHAN

This thesis is submitted in the partial fulfillment of requirement
for the degree of

MASTERS IN COMPUTER ENGINEERING

Department of Computer Engineering

College of Electrical and Mechanical Engineering

National University of Sciences and Technology

Rawalpindi, Pakistan

2009

Table of contents

Dedication i

Acknowledgement ii

Abstract iii

List of acronyms iv

List of tables v

List of figures vi

Chapter 1. Introduction

 1.1 Preamble…………………………………………………... 1

 1.2 Bit Serial CORDIC DDFS……………...………………… 3

 1.3 Thesis Objective…………………………………………... 4

 1.4 Methodology……… …………………………………….. 4

 1.5 Thesis Organization… …………………………………… 5

Chapter 2. Literature Review

 2.1 Background and History of CORDIC Algorithm………… 6

 2.2 Basic CORDIC Iteration………………………………….. 12

Chapter 3. Computation of Sine and Cosine

 3.1 CORDIC Hardware………………………………………... 18

 3.2 The CORDIC Algorithm for computing Sine and Cosine… 19

 3.3 Implementation Of Various CORDIC Architectures……... 22

 3.3.1 A Bit Parallel Iterative CORDIC……………………. 22

 3.3.2 A Bit Parallel Unrolled CORDIC…………………… 24

Chapter 4. Bit Serial CORDIC

 4.1 Bit serial iterative CORDIC……………………………… 27

 4.2 Proposed Bit serial modified CORDIC…………………… 29

 4.3 Flow of MATLAB Code …………………………………. 34

 4.4 Proposed Bit serial Modified CORDIC architecture……... 35

 4.5 Algorithm flow of proposed Architecture With Example… 37

Chapter. 5 Results and Block Description

 5.1 MODELSIM Simulation Results…………………………. 41

 5.2 Block Description of Verilog Code 42

 5.2.1 Block CORDIC Main Module 42

 5.2.2 Internal RTL Schematic of Main Module 43

 5.2.3 Internal RTL Schematic of ROM 44

 5.3 Error Analysis…………………………………………... 47

…..5.4 Discussion………………………………………………… 48

Chapter. 6 Conclusion

 6.1 Overview…………………………………………………. 49

 6.2 Proposed Approach……………………………………..... 50

 6.3 Future Work……………………………………………… 50

References……………………………………………………….. 51

 i

DEDICATION

This work is dedicated

to my Wife, my dear

parents and my

respectful teachers who

have influenced the

course of my life by

educating me and by

giving me a vision to go

beyond the limits.

 ii

Acknowledgement

I am grateful to Almighty ALLAH who has showered me with His valuable blessings

throughout my life, given me strength and spirit to complete this research.

I was truly blessed by beings surrounded by extremely intelligent world class faculty, I

have my all praises for my head of department Dr. Younus Javed whos dedication

toward his profession was a source of motivation for me. I am indebted to my project

advisor Dr. Shoab Ahmed khan, College of E&ME, NUST for giving me a guide line and

helping me out even at odd hours to complete this project efficiently.

I have lots of appreciation for my parents and family members for their overwhelming

support and prayers throughout my project research.

I would also like to thank all the committee members, who have always been a source of

inspiration, for their cooperation and healthy academic environment throughout my

studies at College OF E&ME Rawalpindi.

 iii

Abstract

CORDIC is an acronym for Coordinate Rotation Digital Computer. It is a class of shift

adds algorithms for rotating vectors in a plane, which is usually used for the calculation

of trigonometric functions, multiplication, division and conversion between binary and

mixed radix number systems of DSP applications, such as Fourier Transform. The Jack

E. Volder's CORDIC algorithm is derived from the general equations for vector rotation.

The CORDIC algorithm has become a widely used approach to elementary function

evaluation when the silicon area is a primary constraint. The implementation of CORDIC

algorithm requires less complex hardware than the conventional method.

In digital communication, the straightforward evaluation of the cited functions is

important, numerous matrix based adaptive signal processing algorithms require the

solution of systems of linear equations, the computation of eigen values, eigenvectors or

singular values. All these tasks can be efficiently implemented using processing elements

performing vector rotations. The (CORDIC) offers the opportunity to calculate all the

desired functions in a rather simple and elegant way. Due to the simplicity of the

involved operations the CORDIC algorithm is very well suited for VLSI implementation.

Verilog coding and simulation of bit serial CORDIC algorithm for sine and cosine, the

comparison of resultant implementations and the specifics of the FPGA implementation

has been discussed.

In this thesis, the CORDIC algorithm has been implemented in XILINX Spartan 3E

FPGA kit using Verilog and is found to be accurate. It also contains bit serial

implementation of CORDIC algorithm on the same FPGA kit which is actually the

problem statement. Due to the high speed, low cost and greater flexibility offered by

FPGAs over DSP processors the FPGA based computing is becoming the heart of all

digital signal processing systems of modern era. Moreover the generation of test bench by

Xilinx ISE 9.2i verifies the results.

 iv

List of Acronyms

ASICs Application-Specific Integrated Circuits

CLBs Configurable Logic Blocks

CORDIC Coordinate Rotation Digital Computer

DDFS Direct Digital Frequency Synthesizer

FPGA Field Programmable Gate Array

LUT Look Up Table

RAM Random Access Memory

ROM Read Only Memory

RTL Register Transfer Level

SRAM Static RAM

SVD Singular Value Deposition

ULP Unit in the Last Place

VHSIC Very High Speed Integrated Circuit

VHDL VHSIC Hardware Description Language

VLSI Very Large Scale Integration

 v

List of Tables
Table Number Caption Page Number

2.1 8 bit CORDIC hardware…………………………………… 10

2.2
iα = arctan .2 i−

…………………………………………...
14

2.3 Example of 30 Degree calculation…………………………. 15

3.1 Performance and CLB usage in an XC4010E……………… 25

4.1 Initialization of X and Y…………………………………… 30

4.2 Calculation of B(n) and R(n)………………………………… 37

4.3 Bit Serial CORDIC calculation……………………………… 39

5.1 Advanced HDL synthesis Report for sine and cosine………... 47

 vi

List of Figures

Figure Number Caption Page Number

2.1 Angle rotation………………………………………….. 8

2.2 Balance having θ at one side and Φ on the other side…. 10

2.3 Inclined balance due to difference in weights of two….
side

11

2.4 First few iterations for 30 calculation………………….. 15

3.1 CORDIC hardware…………………………………….. 18

3.2 Angular rotation……………………………………….. 20

3.3 Iterative rotation……………………………………….. 21

3.4 Iterative CORDIC……………………………………… 23

3.5 Unrolled CORDIC……………………………………... 26

4.1 Bit serial CORDIC…………………………………….. 28

4.2a Segment of MATLAB code…………………………… 33

4.2b Flow Diagram ………………….……………………… 34

4.3 Bit Serial Modified CORDIC Architecture 36

5.1 Sine and cosine values generated for an input of ……..
30(binary value)

41

5.2 Sine and cosine values generated for an input of ……...
30(integer value)

42

5.3-5.6 Top level RTL schematic of bit serial modified……….
CORDIC

43-45

5.7 Synthesis report………………………………………... 46

5.8 Error Analysis………………………………………….. 47

Bit Serial CORDIC DDFS 2009

1

Chapter 1

Introduction

The COordinate Rotation DIgital Computer (CORDIC) algorithm was first introduced

by Jack E. Volder [1] in the year 1959 for the computation of Trigonometric functions

such as Multiplication, Division, Data type conversion, Square Root and Logarithms. It is

a highly efficient, low-complexity, and robust technique to compute the elementary

functions. The basic Algorithm structure is actually a set of equations which iteratively

converge to give the desired results. The CORDIC algorithm has found its way in various

applications such as pocket calculators, numerical co-processors, to high performance

radar signal processing, supersonic bomber aircraft with a digital counterpart.

Bekooij, Huisken’s et.al have also explored different applications of CORDIC in the

computation of the sine and cosine and its effects on the numerical accuracy and

hardware size by changing the number of iterations.

1.1 Preamble

CORIDC calculates the value of trigonometric functions like sine, cosine, hyperbolic

functions magnitude and phase (arctangent) to any desired precision. The CORDIC

algorithm does not use calculus based methods such as polynomial or rational function

approximation rather it gives approximate function values on all popular graphic

calculators such as HP-48G since the hardware restriction of calculators require that the

elementary functions should be computed using only additions, subtractions, digit shifts,

comparisons and stored constants.

Recently CORDIC algorithm is used in Neural Network VLSI design [4], high

performance vector rotation DSP applications [5], advanced circuit design, optimized low

power design. CORDIC algorithm revolves around the idea of "rotating" the phase of a

complex number, by multiplying it by a succession of constant values. However, the

"multiplication" can all be powers of 2 so that they can be done using just shifts and adds

in binary arithmetic and no such actual "multiplier" is needed. Thus it quite simple and

Bit Serial CORDIC DDFS 2009

2

does not require complex hardware structure as in the case of multiplier. Earlier methods

used are Table look up method [1], Polynomial approximation method [4]etc. for

evaluation of trigonometric functions. The problem with table look up CORDIC is the

huge sized ROM CORDIC and the disadvantage of Polynomial approximation is as the

polynomial order increases the system of equations become ill contained. CORDIC is

hardware efficient algorithm with no requirement of multiplier as in case of

microcontroller. The drawback in CORDIC is that after completion of each iteration,

there is a gain which is added to the magnitude of resulting vector which can easily be

removed by multiplying the resulting magnitude with the inverse of the gain. There are

two modes in CORDIC algorithm for calculation of trigonometric functions are rotation

mode and vectoring mode, both of these methods initialize the angle accumulator with

the desired angle value as a step one. The rotation mode, determines the right sequence as

the angle accumulator approaches zero while the Vectoring mode minimizes the y

component of the input vector. CORDIC is generally faster than other approaches when a

hardware multiplier is unavailable (e.g. in a microcontroller), or when the number of

gates required to implement are to be minimized (e.g. in an FPGA). On the other hand,

when a hardware multiplier is available (e.g. in a DSP microprocessor), table-lookup

methods and power series are generally faster than CORDIC. Since it is an iterative

method it has the advantage over the other methods of being able to get better accuracy

by doing more iteration.Where as the Taylor approximation and the Polynomial

interpolation methods need to be re derived to get better results. These properties, in

addition to getting a very accurate approximation is perhaps the reason why CORDIC is

used in many scientific calculators today. Due to the simplicity of the involved operations

the CORDIC algorithm is very well suited for VLSI implementation. However, the

CORDIC iteration is not a perfect rotation which would involve multiplications with sine

and cosine. Various CORDIC architectures like bit parallel iterative CORDIC, a bit

parallel unrolled CORDIC, a bit-serial iterative CORDIC and bit serial modified

CORDIC are discussed in this thesis and it can be seen that CORDIC is a feasible way to

approximate cosine and sine. CORDIC is useful in designing computing devices. As

Bit Serial CORDIC DDFS 2009

3

CORDIC was originally designed for hardware applications, there are features that make

CORDIC an excellent choice for small computing devices.

1.2 Bit Serial CORDIC DDFS

Problems which involve repeated evaluation of a fixed set of nonlinear, algebraic

equations appear frequently in scientific and engineering applications. Examples of such

problems can be found in the robotics, engineering graphics, and signal processing areas.

Evaluating complicated equation sets can be very time consuming in software, even when

co-processors are used, especially when these equations contain a large number of

nonlinear and transcendental functions as well as many multiplication and division

operations. Both, the unrolled and the iterative bit-parallel designs, show disadvantages in

terms of complexity and path delays going along with the large number of cross

connections between single stages. To reduce this complexity we can change the design

into a completely bit-serial iterative architecture. Bit-serial means only one bit is

processed at a time and hence the cross connections become one bit-wide data paths.

Clearly, the throughput becomes a function of

 Clock rate
 --
 Number of iterations × word width

In spite of bit serial the output rate can be almost as high as achieved with the unrolled

design. The reason is the structural simplicity of a bit-serial design and the

correspondingly high clock rate achievable.

Direct Digital Frequency Synthesizer (DDFS) is a digital technique for the generation of

sine and cosine. In this thesis the idea is to directly generate the sine/cosine value using

the angle rotation scheme as per the working of CORDIC algorithm with a little

difference i.e the data is serial and the working of basic CORDIC has been modified to

achieve the desired results.

Bit Serial CORDIC DDFS 2009

4

1.3 Thesis objective

Based on the above discussion the thesis has following objectives:

� To study and implement CORDIC algorithm using VHDL/Verilog programming

code.

� To develop efficient bit serial CORDIC which can be used as Direct Digital

Frequency synthesizer(DDFS) having a small sized Read only memory(ROM) in

VHDL/Verilog code and verify the results in ModelSim and MATLAB.

� To implement proposed Bit serial CORDIC algorithm on XILINX Vertex II kit.

1.4 Methodology

In this thesis, VHDL / Verilog and MATLAB programming has been used to implement

CORDIC algorithm (to calculate Sine and Cosine value for a given angle). Further

XILINX SPARTAN 3E kit is used for FPGA implementation of the generated HDL

code.

Programming tools used for the implementations are:

• Operating system WINDOWS XP

• ModelSim SE PLUS 5.5c

• MATLAB

• XILINX 9.2i

• FPGA kit SPARTAN 3E

1.5 Thesis Organization

Chapter 2 discusses basics of CORDIC algorithm, how it came into picture, its basic

equations, different implementation styles, CORDIC iteration and how it works.

Chapter 3 discusses about the calculation of sine-cosine using CORDIC algorithm,

different architectures to perform CORDIC iteration and their block diagram. Chapter 4

discusses the Bit serial implementation of CORDIC algorithm for calculating sine and

cosine, it also discusses the proposed bit serial architecture which is modified version.

Chapter 5 contains the results of simulation using ModelSim, Matlab and XILINX. The

thesis concludes in chapter 6 which also discusses future scope of work.

Bit Serial CORDIC DDFS 2009

5

Chapter 2

Literature Review

In 1959, Jack E. Volder [1] described the Coordinate Rotation Digital Computer or

(CORDIC) for the calculation of trigonometric functions, multiplication, division and

conversion between binary and mixed radix number systems. The CORDIC algorithm

provides an iterative method of performing vector rotations by arbitrary angles using only

shift and add.

2.1 Background and History of CORDIC algorithm

CORDIC algorithm has found its way in many applications. The CORDIC was

introduced in 1956 by Jack Volder as a highly efficient, simplicity and robust technique

to compute the elementary functions. It is initially intended for navigation technology, the

CORDIC algorithm has found its way in a wide range of applications, ranging from

pocket calculators, numerical co-processors, to high performance radar signal processing.

After invention CORDIC worked as the replacement for the analog navigation computers

aboard the B-58 supersonic bomber aircraft with a digital counterpart. The CORDIC

airborne navigational computer built for this purpose, outperformed conventional

contemporary computers by a factor of 7, mainly due to the revolutionary development of

the CORDIC algorithm. Further Steve Walther [6] continues work on CORDIC with the

application of the CORDIC algorithm in the Hewlett-Packard calculators, such as the HP-

9100 and the famous HP-35 in year 1972, the HP-41C in year1980. Today’s fast rotation

techniques are closely related to CORDIC, to perform orthonormal rotation at a very low

cost. Although fast rotations exist for certain angles only, they are sufficiently versatile,

and have already been widely applied in signal processing.

Hekstra found a large range of known, and previously unknown, fast rotation methods.

An overall evaluation of the methods exposes the trade-offs that exist between the angle

of rotation, the accuracy in scaling and the cost of rotation. Van der Kolk, Deprettere, and

Lee [7] formalized the problem of (approximate) vectoring for fast rotations in year 2000.

They treated the fast and efficient selection of the appropriate fast rotation, and showed

Bit Serial CORDIC DDFS 2009

6

the advantage to be gained when applied to Enhanced Versatile Disc (EVD). The

selection technique works equally well for redundant arithmetic and floating-point

computations. Antelo, Lang, and Bruguera[8] considers going to a higher radix than the

radix-2 for the classical algorithm, so that less iterations are required. The choice of a

higher radix implies that the scaling factor is no longer constant. The authors propose an

on-line calculation of the algorithm of the scale factor and subsequent compensation.

Hsiao, Lau, and Delosme [9] considered multi-dimensional variants of CORDIC, such as

the 4-D (dimention) householder CORDIC transform, and their application to singular

value deposition (SVD). Rather than building a multi-dimensional transform out of a

sequence of 2-D (dimention) CORDIC operations, they proposed to work with multi-

dimensional micro-rotations, immediately at the iteration level. Their method is evaluated

and benchmarked against solutions by others. Kwak, Choi, and Swartzlander [10] aimed

to overcome the critical path in the iteration through sign prediction and addition.

They proposed to overlap the sign prediction with the addition, by computing the results

for both outcomes of the sign, and to select the proper one at the very end of the iteration.

Novel in their approach is to combine the adder logic for the computation of both results.

Volder's algorithm is derived from the general equations for a vector rotation. If a vector

V with coordinates (x, y) is rotated through an angle φ then a new vector V ' can be

obtained with coordinates(x1, y1) where x1 and y1 can be obtained using x, y and φ by

the following method as shown in Figure 2.1.

Mathematically it can be written as

2 1 1*cos() *sin()x x yφ φ= − (2.1)

2 1 1*sin() *cos()y x yφ φ= + (2.2)

Where 2 1φ φ φ= − (2.3)

Bit Serial CORDIC DDFS 2009

7

Fig. 2.1 Angle Rotation

The complete angle with required precision is executed in several iterations. In matrix

form we can write the above Eq. as:

2 1

2 1

cos sin
sin cos

x x
y y

φ φ
φ φ

−⎛ ⎞ ⎛ ⎞⎛ ⎞
=⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠

(2.4)

The general representation of above Eq.2.4 with taking cosφ as common from Eq. 2.4

1

1

1 tan
cos

tan 1

tan() 2 tan()
arctan(2)

i ii
i

ii i

i

i

x x
y y

where is a hardware shift

φ
φ

φ

φ φ

φ

+

+

−

−

−⎛ ⎞ ⎛ ⎞⎛ ⎞
=⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠
=

=

(2.5)

The multiplication by the tangent term can be avoided if the rotation angles and therefore

tan(φ) are restricted so that tan() 2 iφ −= , in digital hardware this denotes a simple shift

operation, if those rotations are performed iteratively and in both directions, then every

value of tan(φ) is representable. With arctan(2)iφ −= ,the cosine term could also be

simplified and since cos(φ) = cos(−φ) ,it is constant for a fixed number of iterations.

This iterative rotation can now be expressed as:

Bit Serial CORDIC DDFS 2009

8

1 [. .2]i
i i i i ix k x y d −
+ = − (2.6)

1 [. .2]i
i i i i iy k y x d −
+ = + (2.7)

Where, i denote the number of rotation required to reach the required angle of the

required vector, 1cos(arctan(2))ik −= and 1id = ± , the product of the ik represents the so-

called K factor [6]:
1

0

n

i
i

k k
−

=

= ∏
(2.8)

Where
di is determined by the direction of necessary correction and

1

0 1 2 3 1
0

cos cos cos coscos
n

i n
i

k φ φ φ φ φ
−

−
=

=∏ (φ is the angle of rotation).

The above rotations requires, adding and subtracting of the different φ .

ik is the gain and its value changes as the number of iterations increase. The value of ik
is approximated for 8 bit CORDIC as follows:

7

0 1 2 3 7
0

cos cos cos cos coscosi i
i

k φ φ φ φ φ φ
=

= =∏
(2.9)

0 0cos 45 .cos 26.565cos0.4469o = 0.6073 (2.10)

 The table 2.1 shows the 8 bit CORDIC hardware. The first column is the index from 0-7,

column 2 is the inverse value of 2 to the power of index in column 1, column 3 is the

inverse tan of the column 2, these all are interrelated and this is basically the working of

the CORDIC algorithm.

Bit Serial CORDIC DDFS 2009

9

Table 2.1: 8 Bit Cordic Hardware

After having a look at the table 2.1 we see that the inverse tan value of index 7 is

0.4469o , which is basically the precision possible for an 8 bit cordic, here the angle iφ is

stored in a ROM of the hardware of CORDIC as a look up table. Now the working of

cordic algorithm is explained by using the balance example as follows.

Figure 2.2: Balance having θ at one side and Φ on the other side.

Bit Serial CORDIC DDFS 2009

10

In the above figure, first of all, keep the input angle θ on the left pan of balance and if the

balance rotates around the anticlockwise direction then add the highest value in the table at

the other side.

Figure 2.3: Inclined balance due to difference in weights of two sides

Then, if balance shows a left inclination as in figure 2.3 (a) then other weights are

required to add in the right pan or in the term of angle if θ is greater than total iφ then add

other weights to reach as near to the θ as possible but in other hand if the balance shows a

right inclination as in figure 2.3 (b) then a weight required to be removed from the right

pan or in the term of angle if θ is less than total iφ then we subtract other weights this

process is repeated to reach as near to the θ as possible.

Matrix representation of the CORDIC algorithm for 8-bit hardware:

1

1

cos sin
sin cos

i ii i

i ii i

x x
y y

φ φ
φ φ

+

+

±⎛ ⎞ ⎛ ⎞⎛ ⎞
=⎜ ⎟ ⎜ ⎟⎜ ⎟±⎝ ⎠⎝ ⎠ ⎝ ⎠

 (2.11)

Bit Serial CORDIC DDFS 2009

11

1 0 0 1 1

0 0 1 11

7 7

7 7

cos sin cos sin
....

sin cos sin cos

cos sin
..............................

sin cos

i

i

i

i

x
y

x
y

φ φ φ φ
φ φ φ φ

φ φ
φ φ

+

+

± ±⎛ ⎞ ⎛ ⎞⎛ ⎞
=⎜ ⎟ ⎜ ⎟⎜ ⎟± ±⎝ ⎠⎝ ⎠⎝ ⎠

± ⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟±⎝ ⎠⎝ ⎠

(2.12)

1 0 1
0 1 7

0 11

7

7

1 tan 1 tan
cos .coscos

tan 1 tan 1

1 tan
.................

tan 1

i

i

i

i

x
y

x
y

φ φ
φ φ φ

φ φ

φ
φ

+

+

± ±⎛ ⎞ ⎛ ⎞⎛ ⎞
=⎜ ⎟ ⎜ ⎟⎜ ⎟± ±⎝ ⎠⎝ ⎠⎝ ⎠

± ⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟±⎝ ⎠⎝ ⎠

 (2.13)

The scale factor = 0 1 7cos .coscosφ φ φ

 =0.6073

(2.14)

Thus we can rewrite above equation as

0 1

0 1

7

7

1 tan 1 tancos
.....

tan 1 tan 1sin

1 tan 0.6073
.................

tan 1 0

φ φθ
φ φθ

φ
φ

± ±⎛ ⎞⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟⎜ ⎟ ± ±⎝ ⎠ ⎝ ⎠⎝ ⎠

±⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟± ⎝ ⎠⎝ ⎠

(2.15)

2.2 Basic CORDIC iterations

To simplify each rotation, picking iα such that

iα = .2 i
id − (2.16)

id is such that it has a value either +1 or -1 depending upon the rotation .

Then we have

Bit Serial CORDIC DDFS 2009

12

1

1
1

1

2

2

tan 2

i
i i i i

i
i i i i

i
i i i

x x d y

y y d x

z z d

−
+

−
+

− −
+

= −

= +

= −

(2.17)

The computation of 1ix +  or 1iy +  requires i-bit right shift and add /subtract. If the function

1tan 2 i− − is pre computed and stored in table (Table 2.1) for different values of i, a single

add/subtract suffices to compute 1iz + . CORDIC iteration involves two shifts, a table

lookup and three additions.

If the rotation is done by the same set of angles (with + or- signs), then the expansion

factor K, is a constant, and can be pre computed. For example to rotate by 30 degrees, the

following sequence of angles be followed that add up to ≈ 30 degree.

30.0≈45.0-26.6+14.0-7.1+3.6+1.8-0.9+0.4-0.2+0.1

=30.1

(2.18)

In effect, what actually happens in CORDIC is that z is initialized to 30 degree and then,

in each step, the sign of the next rotation angle is selected to try to change the sign of z;

that is, d i =sign (z i) is chosen, where the sign function is defined to be - 1 or 1

depending on whether the argument is negative or nonnegative. This is reminiscent of no

restoring division. Table 2.2 shows the process of selecting the signs of the rotation

angles for a desired rotation of +30 degree. Figure 3.1 depicts the first few steps in the

process of forcing z to zero.

In CORDIC terminology the preceding selection rule for d i, which makes z converge to zero,

is known as rotation mode. Rewriting the CORDIC iteration, where

iα = arctan .2 i−

Bit Serial CORDIC DDFS 2009

13

Table 2.2: iα = arctan .2 i−

1 2 i
i i i ix x d y −
+ = − (2.19)

1 2 i
i i i iy y d x −
+ = + (2.20)

1i i i iz z d α+ = − (2.21)

After n iterations we have

i zα =∑ and the CORDIC equation becomes

(cos sin)
(cos sin)

n

n

x k x z y z
y k y z x z

= −
= +

(2.22)

Bit Serial CORDIC DDFS 2009

14

Table 2.3: Example for 30° calculation

Bit Serial CORDIC DDFS 2009

15

Figure 2.4: First few iterations for 30° calculation

For k bits of precision in the resulting trigonometric functions, k CORDIC iterations are

needed. The reason is that for large i it can be approximated that 1tan 2 2i i− − −≈ .

Bit Serial CORDIC DDFS 2009

16

Chapter 3

COMPUTATION OF SINE AND COSINE

Elementary functions, especially trigonometric functions, play important roles in various

digital systems, such as graphic systems, automatic control systems, and so on. The

CORDIC [11], [12] is known as an efficient method for the computation of these

elementary functions. Recent advances in VLSI technologies make it attractive to

develop special purpose hardware such as elementary function generators. Several

function generators based on the CORDIC have been developed [13]. The CORDIC can

also be applied to matrix triangularization, singular value decomposition, and so on [14],

[6]. In this chapter, different hardware is dealt for sine and cosine computation using

CORDIC. In sine and cosine computation by the CORDIC, iterative rotations of a point

around the origin on the X-Y plane are considered. In each rotation, the coordinates of

the rotated point and the remaining angle to be rotated are calculated. The calculations in

each iteration step are performed by shift, addition and subtraction, and recall of a

prepared constant. Since the rotation is not a pure rotation but a rotation-extension, the

number of rotations for each angle should be a constant independent of the operand so

that the scale factor becomes a constant. When implementing a sine and cosine calculator

in digital hardware, the expense of the multiplication needed for many algebraically

methods, should be kept in mind. Alternative techniques are based on polynomial

approximation, table-lookup [15] etc. as well as shift and add algorithms [15]. Among the

various properties that are desirable, we can cite speed, accuracy or the reasonable

amount of resource [15]. The architecture of FPGAs specifies suitable techniques or

might even change desirable properties. Because the number of sequential cells and

amount of storage area, needed for table-lookup algorithms, are limited but

combinational logic in terms of LUT (Look Up Table) in the FPGA's (Field

Programmable Gate Array) CLBs (Configurable Logic Blocks) is sufficiently available,

shift and add algorithms fit perfectly into an FPGA.

Bit Serial CORDIC DDFS 2009

17

3.1 CORDIC HARDWARE

A straight forward hardware implementation for CORDIC arithmetic is shown below in

figure 3.1. It requires three registers for x, y and z, a look up table to store the values of

iα = arctan .2 i− , and two shifter to supply the terms 2 i− x and 2 i− y to the adder/subs

tractor units. The d i factor (-1 and 1) is accommodated by selecting the (shift) operand or

its complement.

Of, course a single adder and one shifter can be shared by three computations if a

reduction in speed by a factor of 3 is acceptable. In the extreme, CORDIC iterations can

be implemented in firmware (micro program) or even software using the ALU and

general purpose registers of a standard microprocessor. In this case, the look up table

supplying the term α i can be stored in the control ROM or in main memory.

Figure 3.1: CORDIC hardware

Bit Serial CORDIC DDFS 2009

18

Where high speed is not required and minimizing the hard ware cost is important (as in

calculator), the adder in fig 3.1 can be a bit serial adder. Then with k bit operands, O (k)

clock cycle would be required to complete the k CORDIC iterations. This is acceptable

for hand handled calculators, since even a delay of tens of thousands of clock cycles

constitutes a small fraction of a second and thus is hardly noticeable to a human user.

Intermediate between the fully parallel and fully bit-serial realizations are a wide array of

digit serial (for example decimal or radix-16) implementation that provide trade off speed

versus cost.

3.2 The CORDIC algorithm for computing sine and cosine

Jack E. Volder [1] described the Coordinate Rotation Digital Computer or CORDIC for

the calculation of trigonometric functions, multiplication, division and conversion

between binary and mixed radix number systems. The CORDIC-algorithm provides an

iterative method of performing vector rotations by arbitrary angles using only shifts and

adds. Volder's algorithm is derived from the general equations for vector rotation. If a

vector v with components (x, y) is to be rotated through an angle φ a new vector v' with

components (x’, y’) is formed.

cos
sin

x r
y r

θ
θ

=
=

(3.1)

/
/

/

.cos() .sin()

.cos() .sin()
x x y

v
y xy

φ φ
φ φ

⎛ ⎞ −⎛ ⎞
= =⎜ ⎟ ⎜ ⎟⎜ ⎟ +⎝ ⎠⎝ ⎠

(3.2)

Bit Serial CORDIC DDFS 2009

19

Figure 3.2: Angular rotation

/

/

.cos() .sin()
.cos() .sin()

x x y
y y x

φ φ

φ φ

= −

= +

(3.3)

Taking cos()φ as common we have

[]
[]

/

/

cos() tan()

cos() . tan()

x x y

y y x

φ φ

φ φ

= −

= +

(3.4)

The multiplication by the tangent term can be avoided if the rotation angles and therefore

tan(φ) are restricted so that tan(φ) = 2 i− .In digital hardware this denotes a simple shift

operation. Furthermore, if those rotations are performed iteratively and in both directions

every value of tan(φ) is representable. With φ = arctan(2 i−) the cosine term could also be

simplified and since cos(φ) = cos(−φ) it is a constant for a fixed number of iterations.

This iterative rotation can now be expressed as:

1

1

2

2

i
i i i i i

i
i i i i i

x k x y d

y k y x d

−
+

−
+

⎡ ⎤= −⎣ ⎦
⎡ ⎤= +⎣ ⎦

(3.5)

Bit Serial CORDIC DDFS 2009

20

1
0

n
i ik k−
== ∏ (3.6)

This k factor can be calculated in advance and applied elsewhere in the system. A good

way to implement the k factor is to initialize the iterative rotation with a vector of length

k which compensates the gain inherent in the CORDIC algorithm. The resulting vector v'

is the unit vector as shown in Figure 3.3.

Figure 3.3: Iterative rotation

1

1

2

2

i
i i i i

i
i i i i

x x y d

y y x d

−
+

−
+

⎡ ⎤= −⎣ ⎦
⎡ ⎤= +⎣ ⎦

(3.7)

The direction of each rotation is defined by d i and the sequence of all d i’s determines

the final vector. This yields to a third equation which acts like an angle accumulator and

keeps track of the angle already rotated. Each vector v can be described by both the

vector length and angle or by its coordinates x and y. Following this incident, the

CORDIC algorithm knows two ways of determining the direction of rotation: the rotation

mode and the vectoring mode. Both methods initialize the angle accumulator with the

desired angle z 0. The rotation mode, determines the right sequence as the angle

Bit Serial CORDIC DDFS 2009

21

accumulator approaches 0 while the vectoring mode minimizes the y component of the

input vector.

1 .arctan(2)i
i i iz z d −
+ = − (3.8)

Where the sum of an infinite number of iterative rotation angles equals the input angle

[14]:

0
.arctan(2)i

i
i

d
α

φ −

=

= ∑
(3.9)

Those values arctan (2 i−) can be stored in a small lookup table or hardwired depending

on the way of implementation. Since the decision is which direction to rotate instead of

whether to rotate or not, d i is sensitive to the sign of z i .Therefore d i can be described

as:

1, 1id = − + (3.10)

3.3 Implementation of Various CORDIC architectures

As intended by Volder, the CORDIC algorithm only performs shift and add operations

and is therefore easy to implement and resource-friendly. However, when implementing

the CORDIC algorithm one can choose between various design methodologies and must

balance circuit complexity with respect to performance. The most obvious methods of

implementing a CORDIC, bit-serial, bit-parallel, unrolled and iterative, are described and

compared in the following sections.

3.3.1 A Bit-Parallel Iterative CORDIC

The CORDIC structure as described in Figure 3.4 when directly translated into hardware.

Each branch consists of an adder-sub tractor combination, a shift unit and a register for

buffering the output. At the beginning of a calculation initial values are fed into the

register by the multiplexer where the MSB of the stored value in the z-branch determines

Bit Serial CORDIC DDFS 2009

22

the operation mode for the adder-sub tractor. Signals in the x and y branch pass the shift

units and are then added to or subtracted from the unshifted signal in the opposite path.

Figure 3.4: Iterative CORDIC

The z branch arithmetically combines the registers values with the values taken from a

lookup table (LUT) whose address is changed accordingly to the number of iteration. For

n iterations the output is mapped back to the registers before initial values are fed in again

and the final sine value can be accessed at the output. A simple finite-state machine is

needed to control the multiplexers, the shift distance and the addressing of the constant

values. When implemented in an FPGA the initial values for the vector coordinates as

well as the constant values in the LUT can be hardwired in a word wide manner. The

adder and the sub tractor component are carried out separately and a multiplexer

Bit Serial CORDIC DDFS 2009

23

controlled by the sign of the angle accumulator distinguishes between addition and

subtraction by routing the signals as required.

shift operations as implemented change the shift distance with the number of iterations

but those require a high fan in and reduce the maximum speed for the application [18]. In

addition the output rate is also limited by the fact that operations are performed iteratively

and therefore the maximum output rate equals 1/n times the clock rate.

3.3.2 A Bit-Parallel Unrolled CORDIC

Instead of buffering the output of one iteration and using the same resources again, one

could simply cascade the iterative CORDIC, which means rebuilding the basic CORDIC

structure for each iteration. Consequently, the output of one stage is the input of the next

one, as shown in Figure 3.5, and in the face of separate stages two simplifications become

possible. First, the shift operations for each step can be performed by wiring the

connections between stages appropriately. Second, there is no need for changing constant

values and those can therefore be hardwired as well.

The purely unrolled design only consists of combinatorial components and computes one

sine value per clock cycle. Input values find their path through the architecture on their

own and do not need to be controlled. Obviously the resources in an FPGA are not very

suitable for this kind of architecture. As we talk about a bit-parallel unrolled design with

16 bit word length, each stage contains 48 inputs and outputs plus a great number of

cross-connections between single stages. Those cross-connections from the x-path

through the shift components to the y-path and vice versa make the design difficult to

route in an FPGA and cause additional delay times. From table 4.1 it can be seen how

performance and resource usage change with the number of iterations if implemented in

an XILINX FPGA. Naturally, the area and therefore the maximum path delay increase as

stages are added to the design where the path delay is an equivalent to the speed which

the application could run at.

Bit Serial CORDIC DDFS 2009

24

Table 3.1: Performance and CLB usage in an XC4010E [19]

No. of iterations 8 9 10 11 12 13

Complexity[CLB] 184 208 232 256 280 304

Max path

delays[ns]

163.75 177.17 2.906 225.7 263.8 256.8

As described earlier, the area in FPGAs can be measured in CLBs, each of which consist

of two lookup tables as well as storage cells with additional control components [20],

[21]. For the purely combinatorial design the CLB's function generators perform the add

and shift operations and no storage cells are used. This means registers could be inserted

easily without significantly increasing the area.

However, inserting registers between stages would also reduce the maximum path delays

and correspondingly a higher maximum speed can be achieved. It can be seen, that the

number of CLBs stays almost the same while the maximum frequency increases as

registers are inserted. The reason for that is the decreasing amount of combinatorial logic

between sequential cells. Obviously, the gain of speed when inserting registers exceeds

the cost of area and makes therefore the fully pipelined CORDIC a suitable solution for

generating a sine wave in FPGAs. Especially if a sufficient number of CLBs is at one's

disposal, as is the case in high density devices like XILINX's Virtex or ALTERA's FLEX

families, this type of architecture becomes more and more attractive.

Bit Serial CORDIC DDFS 2009

25

Figure 3.5: Unrolled CORDIC

Bit Serial CORDIC DDFS 2009

26

Chapter 4

Bit Serial Cordic

4.1 A Bit-Serial Iterative CORDIC

Problems which involve repeated evaluation of a fixed set of nonlinear, algebraic

equations appear frequently in scientific and engineering applications. Examples of such

problems can be found in the robotics, engineering graphics, and signal processing areas.

Evaluating complicated equation sets can be very time consuming in software, even when

co-processors are used, especially when these equations contain a large number of

nonlinear and transcendental functions as well as many multiplication and division

operations. Both, the unrolled and the iterative bit-parallel designs, show disadvantages in

terms of complexity and path delays going along with the large number of cross

connections between single stages. To reduce this complexity we can change the design

into a completely bit-serial iterative architecture. Bit-serial means only one bit is

processed at a time and hence the cross connections become one bit-wide data paths.

Clearly, the throughput becomes a function of

Clock rate
--
Number of iterations × word width

In spite of bit serial the output rate can be almost as high as achieved with the unrolled

design. The reason is the structural simplicity of a bit-serial design and the

correspondingly high clock rate achievable. Figure 4.1 shows the basic architecture of the

bit serial CORDIC processor as implemented in a XILINX Spartan.

In this architecture the bit-serial adder-subtractor component is implemented as a full

adder where the subtraction is performed by adding the 2's complement of the actual

subtrahend [22]. The subtraction is again indicated by the sign bit of the angle

accumulator. A single bit of state is stored at the adder to realize the carry chain [23]

which at the same time requires the LSB to be fed in first. The shift-by- i operation can

be realized by reading the bit i −1 from its right end in the serial shift registers. A

Bit Serial CORDIC DDFS 2009

27

multiplexer can be used to change position according to the current iteration. The initial

values x0 , y0 and z0 are fed into the array at the left end of the serial-in serial-out

register and as the data enters the adder component the multiplexer at the input switch

and map back the results of the bit-serial adder into the registers.

Figure 4.1: Bit serial CORDIC

The constant LUT for this design is implemented as a multiplexer with hardwired

choices. Finally, when all iterations are passed the input multiplexers switch again and

initial values enter the bit-serial CORDIC processor as the computed sine values exit. The

design as implemented runs at a much higher speed than the bit-parallel architectures

described earlier and fits easily in a XILINX SPARTAN device. The reason is the high

ratio of sequential components to combinatorial components. The performance is

constrained by the use of multiplexers for the shift operation and even more for the

constant LUT. The latter could be replaced by a RAM or serial ROM where values are

Bit Serial CORDIC DDFS 2009

28

read by simply incrementing the memory's address. This would clearly accelerate the

performance.

4.2 Proposed Bit-Serial modified CORDIC

As duscussed in previous chapter we have the following equations for CORDIC.

1

1

2

2

i
i i i i

i
i i i i

x x y d

y y x d

−
+

−
+

⎡ ⎤= −⎣ ⎦
⎡ ⎤= +⎣ ⎦

(4.1)

0
2 i

i i
i

dφ
∞

−

=

= ∑

(4.2)

We assume that in modified CORDIC id is either 1 or 0, In the binary notation of iφ for

positive rotation we wil use (+1) when id =1 and for negative rotation we wil use (-1)

when id =0.

This idea is clearified in the example below

iφ =101100 (4.3)

(1)(1)(1)(1)(1)(1)id = + − + + − − (4.4)

The pre-calculation of id removes the dependency of each iteration waiting for previous

iteration to complete, which is a major limitation in architecting a bit serial parallel

architecture. This modification has enabled the design to work in parallel a bit serial

level.

1 1

1 1

1

(2)

(2)

i

n
n n n

n
n n n

d

x x y

y y x

−
− −

−
− −

= +

= −

= +

 (4.5)

1 1

1 1

1

(2)

(2)

i

n
n n n

n
n n n

d

x x y

y y x

−
− −

−
− −

= −

= +

= −

 (4.6)

Bit Serial CORDIC DDFS 2009

29

Our Proposed Bit Serial CORDIC Algorithm uses Rom for the initial five values where

nφ varies significantly and for the remaining iterations it uses Eq. 4.5 and 4.6.

By looking at above equations we need single bit adder / subtractor along with right

hardware shifts as required. Our pre computed highest value can be represented in 13 bit

binary format but for the shift purposes we extend it by six bits, though the final

representation is in 13 bit.

For initializing purpose an index is calculated and based on that index value the initial

value i.e X5 and Y5 are selected from pre calculated values generated after extensive test

and trials as shown in Table 4.1 below.

Table 4.1: Initialization of X and Y

Sr.

No.

Initial X5

(decimal binary)

Initial Y5

(decimal binary)

1 8187 1111111111011

256 0000100000000

2 8091 1111110011011

1274 0010011111010

3 7869 1111010111101

2273 0100011100001

4 7524 1110101100100

3237 0110010100101

5 7062 1101110010110

4149 1000000110101

Bit Serial CORDIC DDFS 2009

30

6 6489 1100101011001

4998 1001110000110

7 5816 1011010111000

5768 1011010001000

8 5051 1001110111011 6448 1100100110000

9 4208 1000001110000

7027 1101101110011

10 3299 0110011100011

7497 1110101001001

11 2339 0100100100011

7850 1111010101010

12 1342 0010100111110

8080 1111110010000

13 324 0000101000100

8184 1111111111000

The initial five iterations 5xand are stored in the Rom in 19 bit binary format and the

value of id is pre calculated for the whole 14 iterations, the value of id is either +1 or -1,

X6 and Y6 are calculated as under: if

1 1

1 1

1

(2)

(2)

i
n

n n n

n
n n n

d

x x y

y y x

−
− −

−
− −

= +

= −

= +

 (4.7)

We have

6 5 5

6 5 5

[0] 0
[1] [1] [7] [0]
[2] [2] [8] [1]

Cin
x x y Cin
x x y Cin

=
= − +
= − +

 (4.8)

Bit Serial CORDIC DDFS 2009

31

6 5 5

6 5 5

6 5 5

[3] [3] [9] [2]
[4] [4] [10] [3]
[5] [5] [11] [4]

x x y Cin
x x y Cin
x x y Cin

= − +
= − +
= − +

6 5 5

6 5 5

6 5 5

[6] [6] [12] [5]
[7] [7] [13] [6]
[8] [8] [14] [7]

x x y Cin
x x y Cin
x x y Cin

= − +
= − +
= − +

6 5 5

6 5 5

6 5 5

[9] [9] [15] [8]
[10] [10] [16] [9]
[11] [11] [17] [10]

x x y Cin
x x y Cin
x x y Cin

= − +
= − +
= − +

6 5 5

6 5 5

[12] [12] [18] [11]
[13] [13] [19] [12]

x x y Cin
x x y Cin

= − +
= − +

It is to be noted here that for negative sign 2’s compliment addition is used

Similarly for y6 we have

6 5 5

6 5 5

[0] 0
[1] [1] [7] [0]
[2] [2] [8] [1]

Cin
y y x Cin
y y x Cin

=
= + +
= + +

6 5 5

6 5 5

6 5 5

[3] [3] [9] [2]
[4] [4] [10] [3]
[5] [5] [11] [4]

y y x Cin
y y x Cin
y y x Cin

= + +
= + +
= + +

 (4.9)

6 5 5

6 5 5

6 5 5

[6] [6] [12] [5]
[7] [7] [13] [6]
[8] [8] [14] [7]

y y x Cin
y y x Cin
y y x Cin

= + +
= + +
= + +

6 5 5

6 5 5

6 5 5

[9] [9] [15] [8]
[10] [10] [16] [9]
[11] [11] [17] [10]

y y x Cin
y y x Cin
y y x Cin

= + +
= + +
= + +

6 5 5

6 5 5

[12] [12] [18] [11]
[13] [13] [19] [12]

y y x Cin
y y x Cin

= + +
= + +

Bit Serial CORDIC DDFS 2009

32

Similarly we can calculate X14 and Y14 by using the same technique, we require 13

iterations for each value of X and we need another 14 iterations in order to reach the final

value i.e. x14 and y14 which is Sin and Cos of required angle.

The above technique is simulated in Matlab and the segment of code is as under.

Fig. 4.2a Segment of MATLAB code

4.3 Flow of the MATLAB Code

clear all ;clc;
theta = input('theta = ');
N = 14;
tablex = [8187 8091 7869 7524 7062 6489 5816 5051 4208 3299
2339 1342 324];
tabley = [256 1275 2273 3237 4149 4998 5768 6448 7027 7497 7850
8080 8184];

actual = [sin(theta) cos(theta)]

theta = fix(theta * 2^(N-1));
for k=1:N
 b(N+1-k) = abs(rem(theta, 2));
 theta = fix(theta/2);
end

for k=1:N
 r(k) = 2*(b(k)) - 1;
end

index = b(4) + b(3)*2 + b(2)*4 + b(1)*8 + 1;

x(5) = tablex(index);
y(5) = tabley(index);

% atan table for k=6:17
for k=6:N
 x(k) = x(k-1) - r(k) * 2^(-k) * y(k-1);
 y(k) = y(k-1) + r(k) * 2^(-k) * x(k-1);
end

yk = y(k);
xk = x(k);
ddfs = [y(k) x(k)] *2^(-(N-1))

Bit Serial CORDIC DDFS 2009

33

The MATLAB Code developed for the calculation of Sine and cosine has the following

flow diagram.

Fig. 4.2b Flow diagram of MATLAB Code

4.4 Proposed Bit-Serial modified CORDIC Architecture

Input Angle

Fixed point conversion
for k=1:N
 b(N+1-k) =
abs(rem(theta, 2));
 theta =
fix(theta/2);

ROMIndex Calculator
index = b(4) + b(3)*2 + b(2)*4

+ b(1)*8 + 1

Initial X5
Initial Y5

x(k) = x(k-1) - r(k)
* 2^(-k) * y(k-1)

y(k) = y(k-1) +
r(k) * 2^(-k) *

x(k-1)

Cos(angle)= X(N)*2^(-
(N-1)

Sin(angle)= Y(N)*2^(-(N-1)

No. of iterations

No. of iterations

Bit Serial CORDIC DDFS 2009

34

The proposed bit serial architecture consists of adder / subtractor, shift registers and a

ROM. There is also some gating or multiplexers to select the taps of the shift registers for

the right shifted cross terms. The Bit serial CORDIC was successfully implemented as a

part of a communication system, the input to the system is a 1’s compliment value of

angle from -  π to π , the architecture is shown in Fig.4.3. The value of angle is converted

in radians and then fixed point which returns a binary equivalent, after that the values

goes to the index calculator which returns the address of Rom which has 13 values stored

for X and 13 values stored for Y, which are used to initialize the value of X5 and Y5.

The ROM has 13 values for X and 13 values for Y. The out put of index calculator

initializes the value of X5 and Y5 in the shift register. When the value of the bit (LSB to

MSB) in binary format for angle is ‘0’ the value for the Rn is ‘-1’ and when the value of

angle is ‘1’ the value of Rn is ‘+1’. The binary format of angle plays an important role as

it directly calculates the value of Rn which is used in the calculation of sine and cosine, it

means we deal with only two equation in this modified Bit serial CORDIC in stead of

three equations. This means that the inter equation dependency is no more and the angle

has all the information about the sine and cosine.

Bit Serial CORDIC DDFS 2009

35

Fig. 4.3 Bit Serial modified CORDIC Architecture

Bit Serial CORDIC DDFS 2009

36

Eq. 4.8 and 4.9 are used to calculate the value of X6 and y6, it takes total of (13 x14)

iterations to calculate the value of Sin and Cos of the given angle. ROM has a size of 13

bit x 26 word. The value of X14 and y14 returns the Sin and Cos of desired angle.

4.4 Algorithm Flow of Proposed Architecture with Example

In order to understand the complete working of the proposed algorithm we take a

example of 30° i.e 0.5236 radians.

 Now 0.5236* 132 = 4289=01000011000001 which is an input to the b array as per fig.

4.3.

Table 4.2: Calculation of B(n) and R(n)

Serial B(n) R(n)

1 0 -1

2 1 1

3 0 -1

4 0 -1

5 0 -1

6 0 -1

7 1 1

8 1 1

9 0 -1

10 0 -1

11 0 -1

12 0 -1

13 0 -1

14 1 1

The index is calculated as follows as per the MATLAB code segment in Fig. 4.2.

Index = B (4) + B(3)*2 + B(2)*4 + B(1)*8 + 1 (5.1)

Bit Serial CORDIC DDFS 2009

37

By using the values from table 2a the value of index comes out to be 5 there fore the

initial value of X5 and Y5 are as under:

X5=1101110010110 (5.2)

Y5=1000000110101 (5.3)

Now we will use the following set of equations as our data is bit serial in order to get X6

and Y6, for X6 we have

6 5 5

6 5 5

[0] 0
[1] [1] [7] [0]
[2] [2] [8] [1]

Cin
x x y Cin
x x y Cin

=
= − +
= − +

(5.4)

6 5 5

6 5 5

6 5 5

[3] [3] [9] [2]
[4] [4] [10] [3]
[5] [5] [11] [4]

x x y Cin
x x y Cin
x x y Cin

= − +
= − +
= − +

6 5 5

6 5 5

6 5 5

[6] [6] [12] [5]
[7] [7] [13] [6]
[8] [8] [14] [7]

x x y Cin
x x y Cin
x x y Cin

= − +
= − +
= − +

6 5 5

6 5 5

6 5 5

[9] [9] [15] [8]
[10] [10] [16] [9]
[11] [11] [17] [10]

x x y Cin
x x y Cin
x x y Cin

= − +
= − +
= − +

6 5 5

6 5 5

[12] [12] [18] [11]
[13] [13] [19] [12]

x x y Cin
x x y Cin

= − +
= − +

In every cycle we get one bit out and finally we get :

X6=1101111010110

Similarly for Y6 we have following set of equations

6 5 5

6 5 5

[0] 0
[1] [1] [7] [0]
[2] [2] [8] [1]

Cin
y y x Cin
y y x Cin

=
= + +
= + +

6 5 5

6 5 5

6 5 5

[3] [3] [9] [2]
[4] [4] [10] [3]
[5] [5] [11] [4]

y y x Cin
y y x Cin
y y x Cin

= + +
= + +
= + +

Bit Serial CORDIC DDFS 2009

38

6 5 5

6 5 5

6 5 5

[6] [6] [12] [5]
[7] [7] [13] [6]
[8] [8] [14] [7]

y y x Cin
y y x Cin
y y x Cin

= + +
= + +
= + +

(5.5)

6 5 5

6 5 5

6 5 5

[9] [9] [15] [8]
[10] [10] [16] [9]
[11] [11] [17] [10]

y y x Cin
y y x Cin
y y x Cin

= + +
= + +
= + +

6 5 5

6 5 5

[12] [12] [18] [11]
[13] [13] [19] [12]

y y x Cin
y y x Cin

= + +
= + +

In every cycle we get one bit out for Y6 as well

Y6=0111111000110

Now by repeating the set of equations we have used for X6 and Y6 we get the values as

per Table 4.3.

Table 4.3: Bit Serial CORDIC Calculation

Sr. No. X

Y

5 1101110010110

1000000110101

6 1101111010110

0111111000110

7 1101110110111

0111111111110

8 1101110100111

1000000011010

9 1101110101111

1000000001100

10 1101110110011

1000000000101

11 1101110110101

1000000000001

12 1101110110110 1000000000000

Bit Serial CORDIC DDFS 2009

39

13 1101110110110

0111111111111

14 1101110000000

1000000100000

From Table 3 we see that the value of X14 and Y14 are as under:

X14=1101110000000 =7040 (5.6)

Y14=1000000100000 =4128 (5.7)

 By dividing both the values by 132 we get

Cos (30) =X14=7040/ 132 =0.857395≈ 0.866

Sin (30) =Y14=4128/ 132 =0.5036 ≈ 0.5

We have seen that the value of B is directly calculated from the angle for which the Cos

and Sin is to be determined, B is also used for the calculation of di and index, there fore

by using this algorithm only by knowing angle we can calculate B (n) index and Rn for

all the 14 iterations, and this is the reason we say that the iterations are independent from

the start we know the value of di which is used to select the set of equations.

Bit Serial CORDIC DDFS 2009

40

Chapter 5

Results and Block Description

5.1 ModelSim Simulation Results

Figure 5.1 shows the ModelSim simulation result for binary input angle 30˚ and binary

outputs xnew (sin (30˚)), ynew (cos (30˚)) in the form of waveform and their

corresponding magnitude respectively. Figure 5.2 consists the ModelSim simulation

result for real input angle 30˚ and real outputs xnew (sin (30˚)), ynew (cos (30˚)) in the

form of waveform and their corresponding magnitude respectively.

Fig 5.1 Sine and Cosine valves generated for an input angle 30(binary value)

Bit Serial CORDIC DDFS 2009

41

Fig. 5.2 Sine and sine value generated for 30(integer value)

5.2 Block Description of Verilog Code

A brief description of various modules used to implement the bit serial modified

CORDIC is described as under:

 5.2.1 Block CORDIC Main module

The name is this module is “it” in the Verilog code .Block diagram generated by

XILINX 9.2i for sine-cosine using CORDIC is shown in figure 5.3. Here inputs

are ta (input angle), clk (clock) and output is DDFS i.e the sine and cosine of the

input angle. The module named “it” is calling the modules named “mn” and

“ROM” in it.

Bit Serial CORDIC DDFS 2009

42

Fig. 5.3 Main Module RTL schematic for Bit Serial modified CORDIC

5.2.2 Internal RTL schematic of Main Module

The internal RTL schematic of main module is shown as per Figure 5.4. The

module name is “mn”. Here the inputs are the initial values of X and Y which is

13 bit each, the angle ta which is 16 bit with clock and reset and the out put is the

sine and cosine and a 4 bit “id” which is used for index calculation of ROM. The

name is this module is mn in the verilog code.

Fig. 5.4 Internal RTL schematic of Main Module for Bit Serial modified CORDIC

The detailed schematic of above module is as per figure 5.5

Bit Serial CORDIC DDFS 2009

43

Fig. 5.5 RTL schematic for Bit Serial modified CORDIC

5.2.3 Internal RTL schematic of ROM

The module ROM has the initial values of X and Y stored in it. As per the angle

the index is calculated and the value of X and Y is initialized from that index. The

ROM has the initial five values and the rest are calculated iteratively in a bit serial

manner. The schematic of ROM is as per Figure 5.7.

Bit Serial CORDIC DDFS 2009

44

Fig. 5.6. Detailed RTL schematic of ROM

Figure 5.7 and table 5.1 shows the synthesis report generated by XILINX 9.2i showing

number of multiplexers, number of adder, number of flip-flops used and timing of the

chip generated respectively.

Bit Serial CORDIC DDFS 2009

45

Fig. 5.7 Synthesis Report of bit serial Modified CORDIC

Bit Serial CORDIC DDFS 2009

46

Table 5.1: Advanced HDL Synthesis Report for sine cosine

Macro Statistics

Total Adders/Subtractors : 7

16-bit adder : 3

16-bit subtractor : 4

Total Counters : 1

4-bit up counter : 1

#Total Registers : 12

13-bit register : 2

16-bit register : 9

4-bit register : 1

CPU time :13.69 ns

5.3 Error Analysis
The Error in the values of different angles is as per the fig. 5.8, this results show that the
error value is negligiable as compared to the performance.

Fig.5.8 Error Analysis

Bit Serial CORDIC DDFS 2009

47

5.4 Discussions

The modified bit serial CORDIC was successfully synthesized on Xilinx Vertex II and

the maximum frequency of the bit serial modified CORDIC is 73 Mz on Xilinx Vertex II
Xc2v6000 (6bf957).

The Architecture has a ROM in which first five values are stored maintaining a small

size, these values are calculated after hit and trial and are found to be accurate. The

working principal is simple as the value of desired angle is converted into binary, the

iterative addition/subtraction is calculated, the binary value of the angle gives us the add /

subtract strategy for iterations to be performed so as to speedup the process. This shows

that the iterative process has nearly zero inter-iteration dependency, the results are

accurate and the small ROM size makes the architecture efficient as compared to other

models in practice with a average error value of .005852%.

Bit Serial CORDIC DDFS 2009

48

Chapter 6

Conclusion

6.1 Overview

The CORDIC algorithm is a powerful and widely used tool for digital signal processing

applications and can be implemented using PDPs (Programmable Digital Processors).

The Jack E. Volder's CORDIC algorithm is derived from the general equations for vector

rotation. The CORDIC algorithm has become a widely used approach to elementary

function evaluation when the silicon area is a primary constraint. The implementation of

CORDIC algorithm requires less complex hardware than the conventional method.

Bit-serial means only one bit is processed at a time and hence the cross connections

become one bit-wide data paths. Normally in Bit Serial iterative CRODIC architectures

the bit-serial adder- subtractor component is implemented as a full adder where the

subtraction is performed by adding the 2's complement of the actual subtrahend. The

subtraction is again indicated by the sign bit of the angle accumulator. A single bit of

state is stored at the adder to realize the carry chain which at the same time requires the

LSB to be fed in first. The shift-by- i operation can be realized by reading the bit i −1

from its right end in the serial shift registers. A multiplexer can be used to change

position according to the current iteration. The initial values x0 , y0 and z0 are fed into

the array at the left end of the serial-in serial-out register and as the data enters the adder

component the multiplexer at the input switch and map back the results of the bit-serial

adder into the registers. The constant LUT is implemented as a multiplexer with

hardwired choices. When all iterations are passed the input multiplexers switch again and

initial values enter the bit-serial CORDIC processor as the computed sine values exit. The

performance is constrained by the use of multiplexers for the shift operation and even

more for the constant LUT. The latter could be replaced by a RAM or serial ROM where

values are read by simply incrementing the memory's address.

Bit Serial CORDIC DDFS 2009

49

6.2 Proposed Approach

The problem given was to develop a bit serial CORDIC which has no inter iteration

dependency and which uses a small ROM. Keeping in view the problem in this thesis the

Bit serial modified CORDIC DDFS based generator is simulated using ModelSim ,then

the implementation of Bit Serial CORDIC DDFS based generators is done on XILINX

Vertex II Xc2v6000 (6bf957). The results are verified by test bench generated by the

FPGA and MATLAB as well. This thesis shows that CORDIC is available for use in

FPGA based computing machines, which are the likely basis for the next generation DSP

systems. It can be concluded that the designed RTL model for bit serial modified

CORDIC is accurate and can be used in real time applications.

The simplicity of the proposed bit serial design is apparent from its architecture, it is a

novel idea and can be extended for any value of angle theta, for more precision we just

need to increase the iterations and keeping the first five iterations in the Rom. It can be

seen that the Results of our proposed bit serial CORDIC are better than other bit serial

CORDIC processors. The proposed architecture is area efficient as well and is best

characterized due to its speed and simplicity of design.

6.2 Future Work

Future work in can be the bit width optimization of CORDIC algorithm as a first step and

then as a second step enhancing this optimization against the Black Boxes present in the

FPGA’s. The modern FPGAs are having optimization boxes in them for high speed

applications , if we some how know the internal detail design of FPGA then by making

our design to fully map onto the FPGA architecture can enhance the performance many

folds.

Bit Serial CORDIC DDFS 2009

50

References

[1] Volder J. E., .The CORDIC trigonometric computing technique, IRE Trans.

Electronic Computing, Volume EC-8, pp 330 - 334, 1959.

[2] Lindlbauer N., www.cnmat.berkeley.edu/~norbert/CORDIC/node3.htmlhtt.

[3] Avion J.C., http://www.argo.es/~jcea/artic/CORDIC.htm

[4] Qian M., .Application of CORDIC Algorithm to Neural Networks VLSI Design.,

IMACS Multiconference on .Computational Engineering in Systems Applications

(CESA)., Beijing, China, October 4-6, 2006.

[5] Lin C. H. and Wu A. Y., .Mixed-Scaling-Rotation CORDIC (MSR-CORDIC)

Algorithm and Architecture for High-PerformanceVector Rotational DSP Applications.,

Volume 52, pp 2385- 2398, November 2005

[6] Walther J.S.A, .Unified algorithm for elementary functions., Spring Joint Computer

Conference, pp 379 - 385, Alantic city, 1971.

[7] Kolk K. J. V., Deprettere E.F.A. and Lee J. A., . A Floating Point Vectoring

Algorithm Based on Fast Rotations., Journal of VLSI Signal Processing, Volume25, pp

125.139, Kluwer Academic Publishers, Netherlands, 2000.

[8] Antelo E., LangT. and Bruguera J. D., .Very-High Radix CORDIC Rotation Based on

Selection by Rounding., Journal of VLSI Signal Processing, Vol.25, 141.153, Kluwer

Academic Publishers, Netherlands, 2000.

[9] Delosme M. J.,Lau C. Y. and Hsiao S. F., .Redundant Constant-Factor

Implementation of Multi-Dimensional CORDIC and Its Application to Complex SVD.,

Journal of VLSI Signal Processing, Volume 25, pp 155.166, Kluwer Academic

Publishers, Netherlands, 2000.

[10] Choi J. H., Kwak J. H. and Swartzlander, Journal of VLSI Signal Processing,

Volume 25, Kluwer Academic Publishers, Netherlands, 2000.

[11] Roads C., .The Computer Music Tutorial., MIT Press, Cambridge, 1995.

Bit Serial CORDIC DDFS 2009

51

[12] Rhea T., .The Evolution of electronic musical instruments., PhD thesis, Nashville:

George Peabody College for Teachers, 1972.

[13] Goodwin M., .Frequency-domain analysis-synthesis of musical sounds. Master's

thesis, CNMAT and Department of Electrical Engineering and Computer Science, UCB,

1994.

[14] Muller J. M., .Elementary Functions - Algorithms and Implementation.Birkhauser

Boston, New York, 1997.

[15] H. M. Ahmed, J. M. Delosme, and M. Morf, .Highly concurrent com- Comput.

Mag., Volume 15, no. 1, pp. 65-82, Jan. 1982.

[16] Parhami B., .Computer Arithmetic . Algorithms and hardware designs,. Oxford

University Press, New York, 2000.

[17] Considine V., .CORDIC trigonometric function generator for DSP., IEEE- 89th,

International Conference on Acoustics, Speech and Signal Processing, pp 2381 - 2384,

Glasgow, Scotland, 1989.

[18] Andraka R.A., .Survey of CORDIC algorithms for FPGA based computers.,

Proceedings of the 1998 ACM/SIGDA sixth international symposium on FPGAs, pp 191-

200, Monterey, California, Feb.22-24, 1998.

[19] http://www.dspguru.com/info/faqs/CORDIC.htm

[20] www.xilinx.com/partinfo/#4000.pdf

[21] Troya A., Maharatna K., Krstic M., Crass E., Kraemer R.,.OFDM synchronizer

Implementation for an 1EEE 802.1 la Compliant Modem", Proc. IASTED International

Conference on Wireless and Optical Communications, Banff, Canada,July 2002.

[22] Andraka R., .Building a high performance bit serial processor in an FPGA., On-Chip

System Design Conference, North Kingstown, 1996.

[23] http://comparch.doc.ic.ac.uk/publications/files/osk00jvlsisp.ps.

[24] Krsti M., Troyu A., Muharutnu K. and Grass E., .Optimized low-power synchronizer

design for the IEEE 802.11a standard., Frankfurt (Oder), Germany, 2003.

Bit Serial CORDIC DDFS 2009

52

[25] Proakis J. G.,Manolakis D. G., .Digital signal processing principles, algorithms and

applications., Prentice Hall, Delhi, 2008.

	title page.pdf
	DEDICATIO1.pdf
	A Thesis Report emefinal.pdf

