
i 

 

Investigation of Turning Parameter of Machining Inconel 718 

 

 

Author 

M. Zeeshan Siddique 

Regn Number 

00000318127 

 

Supervisor 

Dr. Syed Hussain Imran Jaffery 

 

DEPARTMENT OF DESIGN & MANUFACTURING ENGINEERING 

SCHOOL OF MECHANICAL & MANUFACTURING ENGINEERING 

        NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY 

ISLAMABAD 

AUGUST 2023 

 

 

 

 



ii 

 

Investigation of Turning Parameter of Machining Inconel 718 

Author 

M. ZEESHAN SIDDIQUE 

Reg. Number 

00000318127 

 

A thesis submitted in partial fulfillment of the requirements for the degree of 

MS Design & Manufacturing Engineering 

 

Thesis Supervisor: 

DR. SYED HUSSAIN IMRAN JAFFERY 

 

Thesis Supervisor’s Signature:  

 

DEPARTMENT OF DESIGN & MANUFACTURING ENGINEERING 

SCHOOL OF MECHANICAL & MANUFACTURING ENGINEERING 

NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY,  

ISLAMABAD 

AUGUST, 2023 

 

 

 

 

 



iii 

 

  



iv 

 

 



v 

 

 



vi 

 

 



vii 

 

  



viii 

 

1 Copyright statement  

• Copyright in the text of this thesis rests with the student author. Copies (by any process) 

either in full or in extracts, may be made only in accordance with instructions given by the 

author and lodged in the Library of NUST School of Mechanical & Manufacturing 

Engineering (SMME). Details may be obtained by the Librarian. This page must form part 

of any such copies made. Further copies (by any process) may not be made without the 

permission (in writing) of the author. 

• The ownership of any intellectual property rights which may be described in this thesis is 

vested in the NUST School of Mechanical & Manufacturing Engineering, subject to any 

prior agreement to the contrary, and may not be made available for use by third parties 

without the written permission of the SMME, which will prescribe the terms and conditions 

of any such agreement. 

• Further information on the conditions under which disclosures and exploitation may take 

place is available from the Library of NUST School of Mechanical & Manufacturing 

Engineering, Islamabad. 

  

 



ix 

 

2 Acknowledgment  

I would like to thank my parents and teachers for guiding me through this work. They were the 

ones to help me out every time I felt difficulty. I acknowledge their patience. They have contributed 

the most to my study. 

  

 



x 

 

 

 

 

 

 

 

 

 

 

 

Dedicated to my parents for their support 



xi 

 

3 Abstract 

Sustainable manufacturing systems depends upon two important elements i.e., economy and 

productivity. While economy is associated to the processes that are energy efficient having high 

output to input ratio, productivity focuses on the quality and quantity.  Due to high energy loss and 

tool wear, machinability of hard to cut materials such as nickel alloys are always challenging. 

Usage of cutting fluids have positive effect on tool life, surface quality while reducing the cutting 

forces and temperature. In this study, the effect of input cutting parameters including feed, speed, 

cutting depth, and three different types cooling conditions (dry, MQL and wet) on surface 

roughness, specific cutting energy and tool wear during turning of Inconel 718 was investigated. 

Taguchi design of experiment has been employed for experimental design. To find out the 

influence of each input parameter on various output responses Analysis of Variance was 

conducted. When machining at optimal machining conditions obtained through ANOVA, energy 

consumption was reduced by 27%, while improvement of 30% and 15 % was observed in tool 

wear and surface roughness, respectively.  

 

Key Words: Inconel 718, turning, surface roughness, tool wear, specific cutting energy, 

minimum quantity lubrication, ANOVA 
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1 CHAPTER 1: INTRODUCTION 

In recent years, researchers have directed their efforts towards increasing the overall productivity and 

efficiency of industrial processes. One of the main contributors to these developments is environmental 

degradation resulting from the release of carbon dioxide (CO2) by the industries, which results in 26% of total 

carbon dioxide emissions [1]. Approximately 50% of the carbon dioxide (CO2) emissions can be attributed to 

the manufacturing sector. The research focus in manufacturing processes is primarily centered on 

sustainability, economy, and productivity, driven by the growing environmental concerns and the complexities 

associated with energy security. The aforementioned challenges motivated researchers to pursue the goal of 

process optimization, wherein input parameters are precisely chosen to improve the output parameters.  

Nickel-based alloys comprise approximately 70% of the total alloys utilized in aero engines [2]. Table 1 

demonstrates the exceptional attributes of Inconel 718, including its elevated hardness, strength, temperature 

resistance, fatigue resistance, and corrosion resistance. The corrosion and wear resistance of Inconel 718 can 

be attributed to the presence of iron, chromium, nickel, and other elements [3], [4]. Inconel 718 is utilized in 

several industries such as aerospace and marine due to its unique properties. The utilization of Inconel 718 in 

the production of gas turbine blades for aviation engines is due to its ability to withstand the severe conditions 

of elevated pressure and temperature. In contrast to steel and aluminum alloys, which experience softening at 

elevated temperatures, Inconel 718 maintains its strength and toughness across an extensive range of 

temperatures [2]. Furthermore, the challenging machinability of Inconel 718 can be linked to its low heat 

conductivity value, as well as its elevated work hardening and strain rates, which therefore result in elevated 

cutting temperatures and forces. These properties lead to higher amounts of tool wear, greater power 

consumption, and surface damages [5, 6]. 

Dry cutting is often chosen in the manufacturing sector due to the significant expense involved with the 

utilization of coolants, which can account for around 17 percent of the entire manufacturing cost [7].  

Furthermore, the utilization of dry cutting techniques not only reduces manufacturing expenses but also 

eliminates the adverse environmental impacts associated with the use of lubricants [8]. While dry cutting is 

generally preferred over the use of oil-based coolants due to environmental considerations, the challenging 

nature of cutting nickel alloys necessitates the use of cooling media to enhance the efficiency, quality, and 

productivity of the workpiece. The proper utilization of cutting fluid in machining operations has been found 

to enhance various aspects of the process, including tool life, power usage, dimensional accuracy, and surface 

quality. It is important to consider the expenses related to the utilization of coolants in relation to their benefits, 

as they constitute approximately 20% of the whole manufacturing cost [9], [10]. Numerous authors underscore 
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the significance of this characteristic. To optimize tool life during machining operations, it is imperative to 

carefully consider the selection of appropriate machining conditions and the utilization of coolant [11]. The 

use of suitable coolant together with optimized machining parameters has the potential to enhance both 

productivity and economic efficiency. Researchers have conducted optimization of different output responses 

on various work pieces by taking into consideration a number of input parameters [12]. In several studies, 

Khan et al. conducted optimization experiments to observe the effects on R, SCE, and Ra during the cutting 

process of Ti-6Al-4V in three separate cutting conditions [13]–[16]. In another study, Sheheryar et 

al. observed the impact of input parameters, namely feed rate, depth of cut, and cutting speed, while micro-

milling the Inconel 718. The objective was to optimize the burr formation, tool wear and surface roughness. 

To accomplish their objective, the researcher employed three different tool coatings [17]. In their 

investigation, Khan et al. conducted optimization of R in the process of machining titanium alloy. This 

optimization was carried out in dry and cryogenic cutting conditions [18]. 

As a result of a range of health and environmental concerns, the researcher shifts their focus towards a more 

sustainable and ecologically friendly machining technique, namely minimum quantity lubrication (MQL). The 

implementation of this approach resulted in a decrease in both machining costs and coolant consumption. 

MQL is believed to provide improved environmental conditions with reduced levels of pollutants, oxidation, 

and enhanced stability [19]. 

MQL, often referred to as micro-lubrication or near-dry lubrication, is characterized by its use of a much-

reduced quantity of lubricant when compared to the standard approach of flooded lubrication [20], [21]. In the 

field of MQL, compressed air is employed to disperse a minimal quantity of lubricating oil within the cutting 

zone in the form of an aerosol, while maintaining a flow rate ranging from 10 to 100 ml/h [8], [22]. Several 

studies have conducted a comparative analysis of the outcomes of MQL machining in relation to machining 

performed under dry and wet circumstances, revealing notable enhancements [21], [23]. Kamata and Obikawa 

et al. conducted a research and found that usage of Minimum Quantity Lubrication (MQL) conditions yielded 

more favorable outcomes in terms of surface finish and tool life when compared to both dry and flooded 

cutting conditions during the turning process of Inconel 718 [24]. Thakur et al. conducted research on 

machining of nickel alloy, examining influence of cutting parameters on several performance indicators 

including tool wear, cutting pressure, force and temperature, and surface finish. Study employed a tungsten 

carbide tool for the machining process [25]. Cantero et al. [26] while finish turning Inconel 718, observed the 

pattern of tool wear. In their study on the turning of nickel alloy, Yazid et al. observed the impact of machining 

variables and lubrication/cutting conditions on work-piece surface quality. They found out that minimum 

quantity lubrication (MQL) resulted in a superior surface finish as compared to cutting under dry conditions, 

particularly at various flow rates [8]. 
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Table 1.1; Aerospace alloys properties at room temperature 
 

 
 

1.1 Aim of research work  

Aim of this research is to increase manufacturing quality of aerospace-grade materials such as Ni-based 

superalloys. This can be improved by simultaneously enhancing the sustainability, efficiency, and productivity 

by optimizing the outputs responses in terms input machining parameters. Sustainability can be defined in 

terms of SCE while efficiency and productivity can be measured as R and Ra, respectively. Main objectives 

of current study are mentioned below: 

• To examine the behavior of nickel alloys under a different combination of input parameters. 

• To studied different cooling conditions effects on turning performance. 

• To evaluate the Ra, SCE and Ra while machining Inconel 718. 

1.2 Application of work  

Inconel 718 is mainly used in various industries including defense, automotive, electronics etc. It has different 

range of applications in jet engines, power plants, automotive, electronics, turbine blades, aircraft engines etc. 

Moreover, this study also helps us to achieve various sustainable development goal (SDG). 
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1.3 Research Methodology 
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1.4 Thesis Layout 

Chapter 1 gives the introduction of the topic and briefly describes the aim, area of application, and research 

methodology of the study. 

 

Chapter 2 discusses the process of reviewing previous literature on the subject and presents the findings.  

 

Chapter 3 describes the experimental process, methodology, and design of the experiment.  Also, discuss 

the different cutting parameters in detail.  

 

Chapter 4 presents the experimental results as well as ANOVA results and their discussion  

 

Chapter 5 concludes the Thesis. It focuses on the conclusions of the study and future recommendations. 
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2 CHAPTER 2: LITERATURE REVIEW 

In this chapter, prior research articles on important overview of the machining process, tool geometry 

parameters, machining of nickel alloys are discussed. In addition, research is being done on workpiece surface 

integrity and the application of different cooling conditions for improvement in tool life and energy 

consumption in the turning of Inconel 718. In light of the above literature assessment, further research is 

needed to fill in the gaps in our knowledge. 

2.1 Machining: An Overview 

 According to a study conducted by researchers, manufacturing industries globally account for around 20% of 

the overall energy usage. The energy usage has significant negative effects on the environment, as indicated 

by a 90 percent. According to a study [55], the implementation of optimal cutting parameters, as well as the 

design of appropriate tools and tool paths, has the potential to decrease energy consumption by a range of 6% 

to 40% in machining processes. Furthermore, within the industrial sector, there is a growing need for energy 

efficient operations due to the rising energy demands and carbon emissions. In the field of machining, turning 

has emerged as a cost-effective and highly efficient technology for the machining of complex components, 

enabling higher production rates while requiring less complex setup. 

In their study on effect of cutting processes on surface roughness and machining performance, Outeiro et 

al. observed that uncoated carbide tools produce higher levels of surface residual stresses compared to coated 

tools [56]. In their research on the wear of tools during the turning process of Inconel 718, Grzesik et al. [57] 

determined that the utilization of titanium aluminum nitride coated tools resulted in an improvement in tool 

life. Dudzinski et al. [58] have verified that tool wear is a significant challenge encountered during the 

machining of Inconel 718. Several studies have documented a reduction in cutting force when Minimum 

Quantity Lubrication (MQL) is employed during the machining process of Inconel 718, as reported by several 

researchers [59]–[61]. 

2.2 Research Motivation 

To improve the sustainability and productivity of manufacturing systems, it is necessary to optimize key 

output variables, including Ra, SCE, and R. Objective of current study is to optimize the responses in terms 

of input parameters to promote sustainability, efficiency, and productivity simultaneously. The addition of 

MQL, combined with other machining conditions, offers advantages in terms of promoting green 

manufacturing and sustainability. The significance of this matter can be assessed by considering the 

achievement of various sustainable development goals (SDGs) [28]. 
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2.3 Superalloys based on nickel: an overview 

The alloys that are manufactured for use in high-temperature environments have been commonly termed as 

"superalloys." The main qualities of a super alloy are its ability to withstand high level of stresses near to its 

melting point, its long-term resistance to mechanical degradation, and its resilience in adverse operating 

conditions. The yield and ultimate tensile strength are static properties [62]. Fracture toughness can be defined 

as a static property. Consequently, nickel-based superalloys have emerged as the most optimal material for 

high-temperature applications, specifically in the exhaust stream of gasoline, turbines, and jet engines [63]. 

Figure 2.1 illustrates the exceptional creep and stress rupture resistance exhibited by nickel-based superalloys. 

The aluminum, titanium, and magnesium alloys employed in the manufacturing of airplanes are known for 

their comparatively low weight. 

 

Figure 2.1; Stress rupture curves for various aerospace alloys [64] 

Nickel-based superalloys typically have a nickel composition of approximately 50% in terms of weight. 

Chromium, titanium, aluminum, and cobalt are frequently utilized as alloying elements in a variety of 

superalloys, with chromium typically comprising 10-20 percent, titanium and aluminum collectively 

accounting for up to 8 percent, and cobalt constituting 5-15 percent. Little quantities of molybdenum, tungsten, 



 

23 

 

and carbon are additionally present. Table 2.1 presents a comprehensive list of various nickel-based 

superalloys used in jet engines.  

 

Table 2.1; Composition of various nickel-based alloys [64] 

 

In the oil and gas industry, Inconel 718 is frequently employed as a highly utilized austenitic superalloy, 

characterized by its composition of nickel and chromium. At elevated temperatures, Inconel 718 has 

exceptional strength and demonstrates remarkable resistance to corrosion. The high-temperature mechanical 

properties of Inconel 718 make it well-suited for the different applications, including various fields of 

biomedical, automotive, and aerospace [65,66]. Machining nickel alloy presents challenges due to its low 

thermal conductivity, which promotes the BUE formation during turning process, as well as its inherent 

hardness and strong affinity towards tool materials. During the process of machining, the limited heat 

conductivity of Inconel 718 results in a significant increase in the temperature of the cutting zone, hence 

imposing limitations on the life the tool. 

Historically, turbine discs and blades have been manufactured using nickel-based superalloys. Usage of 

Inconel 718 has gained a lot of popularity in the realm of high-temperature applications, particularly when 

compared to other available superalloys. Additional applications of this material encompass usage in gas 

turbine engines for maritime vessels, industrial operations, and automobiles, as well as in the production of 

rocket engine components. Furthermore, it finds application in nuclear power facilities, turbine casing engine 

mounts, rocket propulsion systems, pumps, and chemical equipment [67]. 

2.3.1 Machinability of Inconel 718 

Nickel superalloys are commonly employed in numerous aero-engine applications owing to their outstanding 

properties, including elevated thermal strength, exceptional fatigue, and corrosion resistance. The low value 
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of thermal conductivity and high hardness of these alloys pose several challenges in the machining process. 

The presence of hard abrasives inside the microstructure, coupled with the potential for a reaction with the 

tool material, exacerbates the challenges faced during the machining process. Consequently, the exceptional 

tensile and yield strength of the material can be ascribed to the formation of precipitate hardening through the 

secondary phase strengthening mechanism involving Ni3Nb. During the process of machining, the rapid strain 

hardening shown by these alloys can lead to higher cutting temperatures and forces. According to previous 

research [68,69], it has been observed that machined nickel alloys exert approximately twice the amount of 

stress on cutting tools compared to steels, even when the cutting speed is nearly the same. It has been reported 

that nickel superalloys have been subjected to machining operations at velocities of 300m/s, while being 

exposed to elevated temperatures of up to 1000 °C [70]. The aforementioned elements possess the potential 

to exert a substantial influence on both the tool life and surface quality of the components. 

2.3.2 Surface Roughness 

The manufacturing process of nickel-based superalloys presents significant challenges in achieving desired 

output and quality standards. Furthermore, the aerospace sector is obligated to uphold stringent quality 

standards for machined components because of safety rules and regulations. The significance of surface 

integrity in nickel alloy machining has been a subject of great importance due to the critical role that nickel 

alloys play as components in aero-engines [71]. The concept of "surface integrity" refers to the correlation 

between the different properties including metallurgical, mechanical, chemical and topographical, properties 

of a surface of the manufactured  component as well as part’s overall functional performance. Most of both 

typical and modern machining techniques result in surface changes, and the extent of these changes is 

dependent upon the severity of the operating conditions [72]. Nickel alloys have been seen to exhibit plastic 

deformation, the formation of cracks, significant changes in microhardness, the presence of residual stresses, 

and modifications in microstructure on the machined surface when subjected to typical machining techniques. 

The mechanical and metallurgical qualities of aerospace industry surfaces necessitate investigation in order 

to assess their potential impact on fatigue strength, stress-corrosion resistance, and life of the machined 

component. Previous studies conclusion indicate that fatigue strengths of Waspalloy, 410 SS  and titanium are 

reduced by approximately 50% when subjected to electrical discharge machining (EDM) as compared to 

mechanical milling [73]. 

2.3.3 Specific Cutting Energy 

To evaluate the effectiveness of cutting process and to defines the machinability of the material, SCE is the 

good indicator. The concept of SCE is established by calculating the ratio between power cut and the rate at 
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which material is removed during the cutting process. SCE is not dependent upon on machine type, size, 

power rating or efficiency [35].  

2.3.4 Tool Wear Rate 

R is an indicator of material machinability [39], is a notable output parameter that has been found to be 

associated with Ra and SCE [40][41]. In their research Jaffery et al. [42] performed a statistical analysis on 

the dry micro-milling process of titanium alloy. The study determined that the feed rate exhibited the largest 

contribution ratio (41%) in influencing tool wear. The impacts of process factors during titanium alloy turning 

in cryogenic conditions were analyzed by Khan et al. [43]. The predominant factor influencing R was 

determined by the fluctuation in v, accounting for 44% of the overall contribution. A research was done to 

investigate the impact of cutting parameters on tool wear in a dry environment using titanium alloy. The 

findings of the study revealed that by employing optimal machining settings, a reduction in tool wear of around 

7% can be achieved. 

2.4 Cooling Conditions  

Three type of cutting conditions (dry, MQL, and wet) are employed during the experimental procedure. In 

wet conditions, the water-based oil coolant known as Shell Dromus B flows through the cooling system of a 

CNC machine. This circulation was facilitated by a 0.8kW coolant pump, which ensured a consistent flow 

rate of 6L min-1. The mist sprayer system developed by COOLRUN was utilized in the experimental 

investigation of Minimum Quantity Lubrication (MQL). The system is comprised of a mixing chamber that 

is connected by two flexible pipes, each equipped with a nozzle at both the intake and outlet. Compressed air 

is introduced into the system using a single flexible inlet pipe, which is securely connected to the compressor. 

Another pipe is then coupled to the container containing the coolant. The flow rate of MQL was regulated 
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using adjustable controls that were located on the mist sprayer. Both flexible nozzles were pointed towards 

the cutting zone, as depicted in Figure 2. 

 

  

Work piece 

Mixing box 

Oil pipe 

Air pipe 

Spindle 

Nozzles  Cutting insert 

Figure 2.2; MQL setup on CNC Machine 
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3 CHAPTER 3: DESIGN OF EXPERIMENT AND METHODOLOGY 

This chapter presents the experimental investigation of turning on nickel-based superalloy i.e., Inconel 718 in 

dry, MQL and wet lubricating conditions.  This work was investigated under various cutting parameters 

including speed (v), feed (f), and cutting depth (d), and cooling conditions (CC). The cooling conditions and 

machining parameter effects on surface finish/roughness, energy consumption as well as tool wear are also 

studied. 

3.1 CNC Machine setup and detail 

The turning studies of Inconel 718 were carried out on highly precise YIDA manufactured CNC Turning 

Center (ML-300) having the spindle speed of 3500 RPM and rated power of 26kW. Pictorial of CNC machine 

is shown in Figure 3.2.  

 

Figure 3.1; Pictorial view of CNC Turning machine 
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3.2 Design of Experiment  

The effects of 04 input variables on Ra, R, and SCE were examined because selected input variable greatly 

influence the output responses. These input variables are as follows.  

a) Three different cooling conditions 

b) Three levels of feed (f) 

c) Three levels of speed (v) 

d) Three levels of cutting depth (d) 

Table 3.2.1 shows the input machining variables with their levels. L9 array obtained through Taguchi 

technique of design of experiment is show in Table 3.2.2. All the input variable levels are defined as per ISO 

standard (1993) and recommendations of manufacturer of cutting insert (Laminar Technologies).  All 

experiments are repeated twice to cater for any variability and repeatability of results. Length of cut for each 

experimental run was kept at 50mm. 

Table 3.1.1; Machining variable details 

Cutting 

Parameter 

f (mm/rev) v (m/min) d (mm) CC 

Level 1 0.05 25 0.6 Dry 

Level 2 0.10 50 0.8 MQL 

Level 3 0.15 75 1 Wet 

 

Table 3.2.2; L9 Array of input cutting variables  

Exp. 

Run 

f (mm/rev) v (m/min) d (mm) Cooling conditions* 

1 1 1 1 1 

2 1 2 2 2 

3 1 3 3 3 

4 2 1 2 3 

5 2 2 3 1 

6 2 3 1 2 

7 3 1 3 2 

8 3 2 1 3 

9 3 3 2 1 

*1= dry, 2=MQL, 3=Wet 
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3.3 Workpiece characteristics   

For experimentation Inconel 718 rod of 73mm diameter and 200mm length was used. The rod was 

manufactured as per ASTM B637. HRC of rod is around 55. Table 3.3 shows the chemical composition of 

work piece.  

Table 3.3; Inconel 718 Chemical Composition (wt%) 

Ni Cr FeCr Mo Co Al Si Mn Cu C 

50-55 17-21 15.65 2.8-3.3 1.0 0.85 0.35 0.35 0.3 0.08 

 

3.4 Cutting tool specifications  

PVD coated tungsten carbide inserts are utilized during experimentations. CNMG 120404NN inserts were 

manufactured and supplied by Laminar Technology. These inserts have the nose radius of 0.4mm. Only one 

face of the insert was used for each experimental run for analysis and for record purpose. Inserts used in 

experimentation has been figure. 3.2. 

 

Figure 3.2; Pictorial view of cutting insert used in study 
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3.5 Surface roughness measurement 

Surace roughness Ra values after each experimental trial was measured with the help of TR 110 roughness 

tester as shown in Figure 3.3. This roughness tester has the measuring range of 0.05 to 10 µm. The length of 

contact between work piece and meter is 40mm. After each run Ra was measured thrice and averaged to cater 

for any error in the reading.  

 

3.6 Specific cutting energy measurement  

Specific cutting energy measurement was carried out using CW-240-F Power Analyzer meter manufactured 

by YOKOGAWA Electric Corporation as shown in Figure 3.4. Power consumption during each trial was 

measured. 04 clamp of the power meter were attached to the CNC machine. Power meter can instantaneously 

measure the current, voltage, power factor and power data with the measuring interval of 0.1s. Two steps 

procedure was followed. In first step power of the air cut was measured with all components of the machine 

being activated. In the second step actual power was measured when actual experiment is being conducted. 

Difference of both powers will give us the cutting power of the specific experiment as shown in the Equation 

1. SCE is finally calculated with the help of Equation 2. 

     𝑃𝑐𝑢𝑡(𝑊) = 𝑃𝑎𝑐𝑡𝑢𝑎𝑙(𝑊) − 𝑃𝑎𝑖𝑟(𝑊)   (1) 

𝑆𝐶𝐸 (𝐽𝑚𝑚−3) =  
𝑃𝑐𝑢𝑡(𝑊)

𝑀𝑅𝑅(𝑚𝑚3𝑠−1)
   (2) 

In above equation MRR is the rate of material removal and is the measured of v, f and d as shown in Equation 

3.   

Figure 3.3; Pictorial view of TR 110 Roughness meter 
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𝑀𝑅𝑅 = 𝑓 × 𝑣 × 𝑑     (3) 

 

Figure 3.4; CW-240-F Power Analyzer 

3.7 Tool wear measurement 

Measurement of R was done by Olympus DXS1000 digital microscope as shown in Figure 3.5. The flank face 

wear measurement was used to predict the tool wear because it is the good indicator of tool wear because 

flank wear indicates the work piece accuracy and quality [30]. ISO 3685 (1993) was used for which is the 

standard of single point turning and it defines the criteria that is either the average of 0.3 or 0.6 mm. 

Tool wear R was calculated with the help of Equation 4. In this equation greater the negative value of R depicts 

the lower tool wear.  

    𝑅 = log [
𝑉𝐵

𝑙𝑠
] = log [

𝑉𝐵

1000𝑡𝑣
]               (4) 

 

ls is spiral cut length, v shows the speed and t is time of the cut. 
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Figure 3.5; Digital Microscope DXS1000 

3.8 Methodology  

The present study utilized the ANOVA method to assess the impact of various factors on the variables Ra, 

SCE, and R. Additionally, the Taguchi method was employed to identify the optimal criteria for minimizing 

Ra, SCE, and R. S/N ratio calculation varied depending on the type of data. Three distinct formulas were 

utilized to calculate the S/N ratio, namely the lower, nominal, and greater values considered acceptable. In 

this study, smaller values of Ra, SCE, and R were preferred for the calculation of S/N ratios due to their 

relevance to the research objectives. 

𝑆

𝑁
𝑟𝑎𝑡𝑖𝑜 =  −10 log10 (∑

𝑌𝑖
2

𝑛⁄𝑛
𝑖=1 )                      (5) 

It was determined the mean S/N ratio at each level, and the optimal parameters were chosen by selecting those 

with a maximum mean S/N ratio.  
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4 CHAPTER 4: RESULTS AND DISCUSSION  

In turning of Inconel 718 superalloys, this study examined the impact of various cooling conditions, cutting 

parameters on Ra, SCE and R. Analyzing the statistical relevance of the turning on surface roughness, energy 

consumption, and tool-wear was done using the ANOVA method. The mechanism of R while turning of 

Inconel 718 was studied using digital microscopic. Studies of energy consumption during experimentation 

and subsurface integrity were examined. This chapter presents the details of the results obtained from this 

research.  

4.1 Results  

4.1.1 ANOVA Results  

To verify / examine the significance of each input cutting parameter on output responses the ANOVA was 

done by using the Minitab software. Finding of ANOVA shows the significance of each input parameter on 

each of Ra, SCE and R. Table 4.1 to 4.3 depicts the results.  

Table 4.1; ANOVA for Ra 

 

Table 4.2; ANOVA for SCE 

 
 

 



 

34 

 

Table 4.3; ANOVA for R 

 

4.1.2 Experimental results  

The results reported from the experiment for Ra, SCE and R, are all displayed in Table 4.4. There were 

multiple runs of each experiment, and the average of those runs was used in the study. The different between 

results from the first and second runs is due to differences in machine noise, tool quality, human error during 

measuring, and setting the DOC. 

Table 4.4; Experimental design using L9 array and measured experimental responses 

Sr. No. R SCE (J/mm 3) Ra (µm) 

Trail A Trail B Trail A Trail B Trail A Trail A 

1 -8.8865 -8.8552 8.80 8.58 0.22 0.25 

2 -8.9662 -8.9915 5.47 5.80 0.21 0.20 

3 -8.9919 -9.0263 13.28 12.96 0.37 0.34 

4 -8.8553 -8.7932 26.40 27.60 0.75 0.71 

5 -8.8147 -8.8003 1.56 1.68 0.81 0.78 

6 -8.8135 -8.9218 3.20 3.33 0.89 0.91 

7 -8.7128 -8.6894 2.92 3.20 2.04 2.09 

8 -8.6895 -8.6546 10.53 10.80 1.53 1.45 

9 -8.7590 -8.6980 0.73 0.66 2.83 2.74 

 

4.2 Discussion  

Machining parameters affect aspects of surface quality, sustainability, and economy in terms of surface 

roughness Ra, SCE and R respectively. Based on ANOVA and experimental result, detailed discussion of 

various machining parameter on Ra, SCE and R, are given in this section.  

4.2.1 Surface Roughness  

The Ra value holds significant importance since it is related to the overall product quality. Figure 4.1 illustrates 

a positive correlation between f and Ra. The two additional input variables, namely v and d, exhibit conflicting 

effects on the Ra. The rise in Ra, or surface roughness, due to feed is attributed to the formation of 
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microgrooves on the material's surface caused by a high feed rate. These microgrooves lead to stretching and 

an increase in surface roughness [48]. The value of Ra increases at higher feed rates as a result of the formation 

of high peaks and crests on the machined surfaces (49). Furthermore, the greater value of Ra at elevated feed 

values might also be attributed to the concurrent rise in vibrations [39].  

In dry condition value of Ra is highest, while the lowest Ra value was observed under wet conditions, with 

the MQL condition falling in between. The presence of coolant might contribute to improved surface 

roughness due to its lubricating properties, which facilitate smoother sliding interactions between surfaces 

[50]. Furthermore, the coefficient of friction is notably altered by the presence of coolant between sliding 

surfaces between the tool-workpiece [51]. Several researchers have independently observed and documented 

the occurrence of coolant penetration [49], [52], [53]. Mia et al.  found that a high Ra value in dry cutting can 

be attributed to increased tool wear, which counteracts the thermal softening effect.  

The study of contribution factors is presented in Table 4.3. The factor that has the highest contribution ratio, 

accounting for 86.09%, is feed. It is followed by speed, cooling conditions, and cutting depth. 

 

 

Figure 4.1; Ra main effect plot 

4.2.2 Specific Cutting Energy Analysis  

Figure 5 displays the main effects plots depicting the relationship between the SCE measured in Jmm -3 and 

input machining parameters. The plot demonstrates that with the rise in speed leads to a decrease in SCE. The 

observed phenomenon can be due to a decline in cutting forces at the interface between the tool and workpiece. 

This decrease is primarily caused by the thermal softening of Inconel 718 at elevated temperatures, which is 
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a result of the lower value of thermal conductivity shown by nickel alloys. Parida and Hao et al. (44, 45) 

observed a reduction in cutting forces during the machining of Inconel 718, correlating this phenomenon with 

an increase in machining speed. The relation between cutting forces and SCE is direct [46]. Therefore, a drop 

in cutting forces will reduce the SCE. An increase in the shear angle of nickel alloy with increasing v results 

in reduction in forces.  

SCE exhibits a pattern of initial increase followed by a subsequent decrease as the feed increases. This pattern, 

as depicted in the main effect plots presented in Figure 4.2, demonstrates an inconsistency. The power 

consumption associated with Minimum Quantity Lubrication (MQL) is comparatively lower when compared 

to that of flooded cooling. The observed patterns align with the findings presented in a prior study conducted 

by Pinherio et al.  machining of a nickel super alloy, specifically Inconel 718 [47]. In machining operations, 

the cutting force serves as a primary measure of energy consumption and is subject to the influence of cutting 

and lubricating conditions. The trials clearly demonstrated that the use of MQL resulted in significantly lower 

cutting forces as compared to the flooded situation. 

An ANOVA was conducted to examine the impact of each input cutting parameters on SCE. Results of this 

analysis can be found in Table 4.2. The influence of all input machining factors on the output response is 

demonstrated by the P value. The findings of the analysis indicate that the cooling and lubricating condition 

is the most influential element, accounting for 63.43% of the observed effects. Following this, speed is 

identified as the second most influential factor, contributing to 18.56% of the observed effects.  
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Figure 4.2; The main effect plot for SCE 

4.2.3 Tool Wear Analysis 

The measurement of flank wear (VB) of cutting insert was done for each experimental run.  The calculation 

of tool wear rate was performed using Equation 4. Figure 4.3 illustrates the primary effects plot pertaining to 

tool wear (R). The plot demonstrates a positive correlation between wear rate and feed rate, indicating that 

wear rate rises as feed rate increases. Conversely, wear rate exhibits an opposite relationship with cutting 

speed, suggesting that wear rate drops as cutting speed decreases. However, with regards to depth of cut, the 

relationship is more complex, as wear rate initially decreases and then increases, displaying an inconsistent 

pattern of response. In relation to coolant and lubrication conditions, the value of R is lower in MQL as 

compared to dry and wet cutting. 

The reason for rise in R as the f increases is attributed to the reduction in the tool-chip interface contact area. 

Reduction in contact area results in a rise of temperature in proximity of the cutting edge [37]. The observed 

phenomenon of increased tool wear when the feed rate is raised can be attributed to two main factors: a 

decrease in the rate of heat dissipation [38] and an increase in vibration at tool-workpiece interface [39]. The 

reduction in R observed with rise in v can be attributed to the less thermal diffusion or heat transfer occurring 

between tool-workpiece at elevated cutting rates. Furthermore, the decrease in tool wear can be attributed to 

the reduction in the production of Build-up-edges (BUE) and the thermal softening of Inconel-718 at higher 

v. This is because the temperature of Inconel 718 can reach levels between 1100°C and 1300°C as the cutting 

speed increases, as indicated in literature [40], [41], and [42]. In their research, Anthony et al. [43] observed 

that the usage of MQL resulted in improvement in tool life at lower cutting rates in comparison with both dry 

and wet conditions.  

Results of analysis of variance (ANOVA) are displayed in Table 4.3. This table provides information 

regarding the significance of each input factor on the variable R. The S and R-Sq values suggest that the 

experimental data may be employed to make predictions for subsequent data points. According to the data 

shown in Table 4.1, f accounts for the largest proportion of influence on wear rate (82.63%), followed by 

cutting speed (6.64%). These parameters are identified as the primary contributors to variations in wear rate 

(R). 
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Figure 4.3; The main effect plot for R 
 

 

4.2.4 Confirmatory Experimentation 

The aim of current research is to examine the machining responses by using cooling conditions as an input 

cutting parameter in conjunction with other machining variables. The study methodology aims to observe the 

individual influence of each input variable and subsequently select specific values based on their respective 

contributions, to achieve favorable outcomes. In the current study, the output responses of Ra, SCE, and R 

were chosen on the principle of smaller being better. Taguchi technique is employed to forecast the optimal 

input parameter values, as seen in Table 4.5. 

The validation of experimental data was conducted through confirmatory tests using both the optimal and 

worst combinations of input cutting parameters. The outcomes of confirmatory trials are compared with the 

most favorable and least favorable outcomes, specifically those achieved using Taguchi Analysis, as presented 

in Table 4.6. Results presented in Table 4.6 demonstrate the consistency of the confirmatory tests with the 

predicted patterns derived from the Taguchi Design of Experiments and ANOVA. Figures 4.4 and 4.5 depict 

the microscopic images corresponding to the situations of maximum and minimum tool wear, respectively. 

Table 4.5; Best and worst response machining conditions 

Output 

Response 

Machining parameter 

 f (mm/rev) v (m/min) d (mm) CC 

R Best 0.05 75 0.8 2 

Worst 0.15 25 0.6 1 
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SCE (J/mm3) Best 0.15 75 1 1 

Worst 0.10 25 0.8 3 

Ra (µm) Best 0.05 50 0.6 3 

Worst 0.15 75 0.8 1 

 

Table 4.6; Comparison of initial runs result with the confirmatory test results 

Responses Conditions Confirmatory test Initial run Percentage difference 

R Best -9.122 -9.0263 30% 

Worst -8.0871 -8.6546 58% 

SCE (J/mm3) Best 0.48 0.66 27% 

Worst 27.60 27.60 0% 

Ra (µm) Best 0.17 0.2 15% 

Worst 2.83 2.83 0% 

 

 

Fig.4.4: Optical image of Maximum wear (f=0.05, 

v=25, d=0.6, dry) 
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Fig.4.5: Optical image of Minimum wear (f=0.05, 

v=75, d=0.8, MQL) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5 CHAPTER 5: CONCLUSION  
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This study involved the turning of Inconel 718 in dry, MQL, and wet cutting conditions. The primary emphasis 

of this research centers on the examination and analysis of the sustainability, efficiency, and productivity 

aspects pertaining to machining operations. In the context of sustainability, the output parameter of specific 

cutting energy was chosen, while efficiency and productivity were evaluated based on tool wear and surface 

roughness. Based on the obtained outcomes, it is possible to draw the following conclusions. ANOVA analysis 

found that the most important factors to reduce surface roughness were cutting speed and tool coating.  

• A substantial decrease in tool wear was seen with the implementation of MQL cooling conditions. 

Additional improvement of 30% in tool life observed when MQL turning was executed at the most 

favorable cutting conditions. 

• The rate of tool wear was shown to be significantly impacted by the feed rate, which accounted for 

82.63%. Cutting speed was also found to have a notable influence, contributing to 6.64% of the 

observed variation in tool wear. 

• In comparison to machining under wet conditions, machining under minimum quantity lubrication 

(MQL) conditions results in a reduced consumption of specific cutting energy. A reduction of 

approximately 27% in energy usage was seen when machining operations were conducted using 

optimal machining settings. 

• The cooling condition exhibited the greatest influence on the specific cutting energy (SCE), accounting 

for 63.43% of the observed variation. Cutting speed followed with a contribution of 18.56%, while 

feed rate contributed 10.15%. Conversely, the depth of cut had a relatively minor impact, accounting 

for only 7.78% of the observed variation in SCE. 

• The surface roughness is shown to rise when the f increases. However, presence of coolant, which acts 

as a lubricant, leads to an improvement in surface roughness. A 15% improvement in surface roughness 

was observed when machining was conducted under wet conditions using optimal machining 

parameters. 

• The feed parameter exhibited a substantial impact on surface roughness, accounting for 86.09% of the 

overall contribution. In contrast, the contribution ratios of cooling conditions, cutting depth, and speed 

were 4.08%, 3.18%, and 6.56% respectively. 
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