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ABSTRACT 

Crop management extensively utilizes remote sensing data for predicting crop yield. Freely 

available data products (Landsat, sentinel) have been used extensively. This study explores the 

potential of remote sensing and machine learning for wheat yield estimation of the Faisalabad 

division of Punjab, by utilizing Landsat-8 surface reflectance data. Time series of vegetation 

indices as Normalized Difference Vegetation indices (NDVI) and Enhanced Vegetation Indices 

(EVI) for the years 2019-2020 and 2020- 2021 were extracted. Several machine learning models 

were tested and two models were selected for the final yield prediction after feature selection 

using correlation analysis. Random Forest Regression (RFR) and Decision Tree Regression 

(DTR) are the two models that were used for wheat yield prediction. Feature selection was 

critical in reducing input data to avoid uncertainty, and only important data was used as input 

to the models. The 8th time step was found to have a high correlation with yield, and data from 

this step was used for model input. For the two years separately, separate feature selections 

were made and meteorological variables of other time steps were found to be correlated with 

yield. Training and testing results and model accuracy were based on the Root mean square 

Error (RMSE) and Root Square. The results of the Decision Tree Regression (DTR) in training 

(RMSE = 0.062, R2 = 0.952 t/ha, RMSE = 0.062, R2 = 0.952 t/ha) and testing (RMSE = 0.150, 

R2 = 0.700 t/ha, RMSE = 0.120, R2= 0.799 t/ha) for both of the years shows that the model 

overfitted in the training phase. The results of Random Forest Regression (RFR) in training 

(RMSE = 0.076, R2 = 0.929 t/ha, RMSE = 0.075, R2= 0.930 t/ha) and testing (RMSE = 0.144, 

R2=0.725 t/ha, RMSE = 0.106, R2 = 0.842 t/ha) for both of the years. The finding suggests that 

the RFR models resist overfitting and have strong adaptability for the variables and wheat yield 

prediction. This study demonstrates the potential of remote sensing and machine learning in 

precision agriculture and provides on sights into the selection of relevant input data for accurate 

yield prediction. 



 
1 

Chapter 1 
 

INTRODUCTION 

1.1 Background 

Accurate and real-time crop yield prediction is now very important in the context of food 

security and precision agriculture and has significant value in the formulation of food 

policies, decision-making, adjustment of food prices and management of agriculture (Mueller 

et al., 2012). Future population projections put Pakistan at a very high increasing rate which 

shows that the population in Pakistan would be 271 million by 2050. however, the rate of 

food production does not meet the increasing rate (Schafer and Victor, 2000). Due to climate 

change, Pakistan faces severe drought and floods which affects food availability. Access of 

planners and policymakers to real-time yield estimation and monitoring of the crop condition 

is very important to sustain and manage the availability of food for the ever-growing 

population of Pakistan (Briscoe and Qamar, 2006). Agriculture constitutes the largest sector 

of Pakistan’s economy, and the main portion of our population directly or indirectly depends 

on the agriculture sector. Wheat is the major crop in Pakistan which is grown over a large 

area and a wide range of soil and climatic conditions. Up to 2.0 per cent of GDP and 9.9 per 

cent of the total agriculture productivity comprises wheat production (Faruque et al., 1996). 

Wheat yield estimation before harvesting is important for guidance and timely decision. 

Traditional approaches are based on field surveys and high-quality measurements for crop 

yield estimation which are costly and time-consuming. Due to the inefficiency of traditional 

methods, it is sometimes very hard to predict yield on a larger scale. Modern approaches are 

based on remote sensing data, vegetation indices based on satellite data, and various crop 

models used for the early estimation of crop yield (Dorosh and Salam, 2008). Remote sensing 

data which is acquired with high spatial and temporal resolution can provide data in high 

volumes to study several terrestrial phenomena such as crop health and stress monitoring. 

Remote sensing data is obtained in several electromagnetic regions however, instead of using 

raw reflectance values in vegetation indices works well to study vegetation and agriculture 

since they highlight the properties of vegetation and suppress the secondary information. 

Vegetation indices like normalized difference vegetation index (NDVI), Enhanced vegetation 

index (EVI), and Land surface temperature (LST) are used to monitor crop yield, vegetation 

stress, and biomass (Friedl et al, 2002). For crop yield prediction, mainly two kinds of 

techniques are used: (1) physical crop simulation models, and (2) statistical models. Physical 

models due to their detailed nature are widely used for crop yield estimations. However, they 

require expert knowledge and very detailed data on several parameters which is sometimes 
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challenging to collect. Statistical regression methods due to their simplicity and ease of usage 

are widely used, but the limitation of statistical models is that it is not extendable to other 

areas, as typically localized (Pede et al., 2019). In recent years with some explicit cause-and- 

effect relationship, crop models are progressively replaced by statistical regression models 

due to their spatial generalization and explanatory power (Chen et al., 2017). In addition, soil 

data and climate data such as temperature and precipitation are the primary inputs for the 

model as they can capture important environmental information used for crop yield 

prediction. In most of the statistical models, regression equations are developed between 

measured yields at different spatial and temporal scales and climate variables like 

precipitation, temperature and solar radiation etc. For the yield prediction (Zhang et al.,2015). 

Many researchers are focused on improving crop prediction by using different methods and 

machine learning models (ML), which performed better than the traditional statistical models. 

Machine learning models, due to their efficiency in classification and predictions are well 

suited for such problems. Due to the availability of high spatial and temporal data of 

explanatory variables, the usage of machine learning is increasing for yield prediction. 

Compared to a statistical model, the machine learning model prefers weights rather than the 

probability or likelihood of any information prediction (Lee et al., 2018). Machine learning is 

a subfield of artificial intelligence which enables the machine (computer) to learn from the 

data and experiences without explicit instructions or programming. 

Machine learning is self-learning based on algorithms, which means the system learns 

from its experience as the input data type grasps the pattern and the responding result is the 

model learning as output. It is a sub-class of artificial intelligence and automatically learns 

based on data representation without human help (Sharma et al., 2021). In recent decades, 

machine learning techniques have been used for data mining and have demonstrated their 

powerful performance in agriculture analysis, including yield prediction and crop type 

classification (Cai et al., 2018). Although in previous studies, the accuracy in crop yield 

prediction has improved from spatial and temporal domains, they have only focused on the 

smaller scale region due to the complicated data process (Aghighi et al., 2018). The larger- 

scale crop yield prediction generally requires large and complex data that need more time and 

cost to process huge data sets (Jin et al., 2019). Fortunately, the Google earth engine (GEE) is 

a cloud-based computing platform that freely provides data along with processing capabilities 

(at petabyte-scale). GEE contains raw and processed data such as Vegetation indices, Land 

surface temperature and satellite data for the geospatial analysis and also visualization of the 

geospatial data set (Gorelick et al., 2017). The research was carried out on wheat yield 
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prediction using remote sensing data acquired from the GEE of the study area. Landsat-8 

satellite temporal (2019- 2020 to 2020 to 2021 with a gap of one year) imagery was used to 

calculate the vegetation indices such as normalized difference vegetation Indices (NDVI) and 

enhanced vegetation index (EVI). Wheat yield (kg) correlation with time series NDVI and 

EVI was generated from Landsat-8 surface reflectance of both of the years. NDVI and EVI 

time series and phenological stages of sowing, anthesis and maturity stages were generated. 

The correlation was carried out between time series yield and meteorological data of the 

study area's maximum temperature, minimum temperature, and precipitation. Machine 

learning models such as Decision Tree Regression and Random Forest Regression were 

trained and tested on predicted yield and measured yield. Finally, both model's performances 

and accuracy comparison were carried out using R2, RMSE. 

1.2 Research Gap 

There are some studies on the usage of machine learning and crop yield prediction. 

However, most of the studies focused on the usage of statistical and machine learning for 

image classification and vegetation indices calculation to study crops. Based on the 

classification results, the studies extract different crops and subsequent areas of those crops. 

This further leads to yield prediction models for crop yield prediction. In this study, we do 

not use any crop type classification as it can lead to uncertainties in the actual crop fields and 

area. We directly use the plot scale data and extracted the remote sensing data based on the 

location of the plots. This study focuses on the advantage of using surface reflectance data 

from the GEE and machine learning models for wheat yield prediction. This study also 

Compares the performance of different machine learning models, and the two best models 

were then used to predict the yield of the study area. 

1.3 Problem Statement 

As crop yield prediction is very important for precision agriculture, policymakers to make 

early decisions for the food stock and export and import of the wheat crop. As wheat is one of 

the main crops in Pakistan, facing the challenge of increasing population along with other 

climate crises. The study area has a high potential to cultivate more and a high yield of wheat 

crops. Early prediction of the wheat yield helps in the prior strategies that can help in 

improving the wheat yield. 
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1.4 Significance of Research 

Crop yield prediction is very important from several perspectives such as food security, 

precision agriculture, farm management and crop breeding. The early prediction of yield can 

support policy decision-making. In this context, yield prediction is very important and 

challenging in agriculture decision-making. The study was done to compare the best machine 

learning model used to predict crop yield. The study outcomes will help policymakers in 

early decision-making about the food stocks, export and import of the respective crop. From 

the early prediction of crop yield farmers can be drawn decisions on what to do during the 

growing of crops and what crops to grow to meet the required target of food production 

according to the rate of increasing population. This study can help the farmers will take on 

new precision agriculture techniques and collaborate with the government. Furthermore, 

conventional techniques of yield prediction are costly and not very accurate. Another major 

challenge is that it is not possible to estimate large-scale yields in a short period. Remote 

sensing data and machine learning methods provide a quick and less expensive solution to 

resolve this and provide an early estimation of vegetation indices. 

1.5 Objectives 

• To predict wheat yield using Landsat-8 surface reflectance and machine-learning 

models. 

• To compare the performance of different machine learning algorithms on multiple 

datasets such as remote sensing and meteorological data for wheat yield prediction. 
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Chapter 2 

 
LITERATURE REVIEW 

 

At present, satellite remote sensing-based technologies are widely used for the 

monitoring of standing crops, their health condition, water stress, and the early prediction of 

crop yield. All of the above information is helped to the policy maker to make decisions for 

the betterment of the crops and to incorporate with the farmers to take the steps like precise 

fertilization on other management, which is an effective way to ensure food security 

(Bongiovanni and Lowenberg-Deboer, 2004). In the satellite, remote sensing vegetation 

indices are used to study the plant's health and growth with the help of different sensors that 

carry by the satellite. Normalized difference vegetation index (NDVI) and Enhanced 

vegetation index (EVI), as both of the indices, is based on near-infrared (NIR) and red 

portion (670nm, 800nm) of the spectrum help regarding vegetation analysis (Fu et al., 2014). 

High-resolution remote sensing data of the unmanned vehicle (UAV) were used for the crop 

yield prediction of winter wheat at field scale in Xuzhou City, Jiangsu Province, China. For 

this regional scale study, six machine learning (ML) models and ten different vegetation (VI) 

were used for the five key growth stages of the wheat crop. Among the five ML models the 

Gaussian Process Regression (GPR) achieved the highest accuracy of R2= 0.87 to predict the 

crop yield at the field scale (Bian et al., 2022). For the management of crops and global food 

security, early and reliable crop yield prediction is very important. At the regional and 

national scales investigations of crop yield are made from the use of remote sensing data and 

climate data. The study was made to attempt the national level yield prediction of wheat of 

the years 2002-2010 in 1582 counties of China, by using the nine different variables of the 

climate, and three different machine learning models (RF, SVM, and LASSO). The result of 

the study was diverse, as Water-related and Temperature variables outer performed in the 

yield prediction. Random forest regression performed better with an R2 of 0.79. the study 

demonstrated the effectiveness of the integration of data as both climate and remote sensing 

at the county level will help the researchers and advisors (Zhou et al., 2022). 

Remote sensing satellite Landsat 5 TM and crop yield data at plot scale have been 

used for the early crop prediction (Maize) of the Russel Ranch Sustainable Agriculture 

Facility (RRSAF) near the University of California, Davis campus from 1994 to 2007. Other 

multi-sources including, soil data, monthly climate data, vegetation indices (VI) and 

fertilizers data were also used in the machine learning (ML) models to check the accuracy of 
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different inputs in crop yield prediction. Incorporating all of the datasets the results showed 

that Random Forest (RF) model and Adaptive Boosting (AD) model achieved the best 

accuracy of (R2: 0.85, 0.98). Besides that, the combination of the climate data, VI and soil 

data can predict crop yield more efficiently than the other combinations (Meng et al., 2021). 

To meet the challenges of increasing population, climate change and increasing food demand, 

accurate, reliable, and timely crop yield estimation at a large scale is immediately needed. 

The study was done on wheat yield estimation in thirteen provinces, in China, in which 

comparisons were made between the traditional machine learning models and three deep 

learning models. Satellite data, climate data, spatial information data, and soil properties were 

acquired from the publicly available data within the Google Earth Engine (GEE). Random 

Forest Regression (RFR) model from Machine Learning and Deep Neural Networks (DNN), 

1D Convolutional Neural Networks (1D-CNN), and Long Short-term Memory Networks 

(LSTM) were used to predict the wheat crop yield estimation. The result of the model 

comparison showed that the performance of RF and DNN at the field level was relatively 

good. The study findings demonstrated a simple inexpensive, and scalable framework at 

various scales of crop estimation which is important for agriculture disaster monitoring, yield 

forecasting of crops, food security warnings, and food trade policy (Cao et al., 2021). Yield 

maps play an important role in guiding precision agriculture as it provides the necessary 

information. Many yield predictions studied were done by the researcher for different crops 

like corn, maize, rice, and wheat but not for sugarcane. The study was conducted to develop 

the yield estimation model, by integrating time-series images and machine learning models 

for sugarcane in the small areas comprises of four fields in Sao Paulo, brazil. Sentinel-2 

images were downloaded from the two consecutive cropping periods and used in the Random 

Forest (RF) and Multiple Linear Regression (MLR) models to generate the yield maps. 

Filtered original data was interpolated with the orbital images with the same spatial 

resolution. Before the execution of the machine learning models, the entire dataset was 

divided into two datasets as testing and training datasets. At the thrilling stage of the crop, the 

near-infrared spectral band show a greater contribution in the prediction of sugarcane yield as 

compared to the derived spectral vegetation indices. The study results showed that the RF 

regression based on multiple spectral bands models shows performance was better than the 

MLR, with R2 of 0.70 and Root Mean Square Error (RMSE) of 4.63 Mg/ha for the testing 

datasets (Canata et al., 2021). 

Wheat is one of the main crops and its early yield prediction is very important for 

national food security and regional trade. For its increasing concerns that how to integrate 
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machine learning techniques and multi-sources data to establish an accurate, simple and 

timely model for crop yield estimation at an administrative unit. Much main focus was to use 

the whole growing period of the crop through remote sensing, climate data and expensive 

manual surveys. The study was done using only the effective different time windows of yield, 

which separates the whole growth period into four windows of wheat crop in China. 

Modelling frameworks were developed to integrate the remote sensing data with soil data, 

and climate data based on the Google Earth Engine (GEE) platform to predict the winter 

wheat yield. The study results showed that the models can predict the accurate yield with an 

error of less than 10% and the R2 > 0.75 before 1-2 months of the harvesting of the wheat at 

the county level. Different Machine Learning (ML) models are used for the study area, 

Gaussian Process Regression (GPR), Support Vector Machine (SPV), and Random Forest 

(RF) methods performed best for the prediction of yield. Research work aimed to highlight a 

potentially powerful tool that helps in the prediction of crop yield using multi-source data and 

machine learning in other regions (Han et al., 2020). New technologies enable to analysis and 

synthesis the big data, and that accurately predicts crop yield. As compared to the typical 

simulation of crop modelling, Machine Learning provides faster and more reasonable yield 

prediction. The study was carried out to forecast the corn yield in the US Corn Belt states 

(Illinois, Indiana, and Iowa) at the county level scale. For the designing of the machine 

learning framework data used for the forecast of the corn yield were weather data, soil data, 

yield, and management data. Spatial and temporal correlations were checked between the 

yield and other data. Machine Learning (ML) models such as Multiple linear regression 

(MLR) and Random Forest (RF) achieved the result of 9.5% and 9.2% respectively. The 

study findings suggest that the weather data used in the forecasting of corn yield has also a 

very important feature (Shahhosseini et al., 2020). 

In the previous studies researchers either used satellite data or climate data or usually 

a combination of both used in the building of the empirical models for the various crop 

prediction. However, the empirical model performance in the yield prediction was improved 

by feeding the climate and satellite data but the contribution is still not clear from the data 

sources. Similarly, the comparison of the performances between the machine learning models 

and regression-based models in yield prediction is still unclear and needs in-depth 

investigations. In the study, wheat yield predictions were made by integrating various sources 

of data from the years 2000 to 2014, at the statistical division (SD) level in Australia. Wheat 

is the staple and most important growing crop in Australia, and wheat is the top exporting 

product of Australia globally. The most well-known regression method Least Absolute 
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Shrinkage and Selection (LASSO) was adopted and three main machine learning methods as 

Random forest (RF), Support Vector Machine (SVM), and Neural Network (NN) were used 

for yield prediction and to build various empirical models. Approximate crop productivity 

was drawn from satellite data as Enhanced Vegetation Indices from the MODIS and Solar- 

induced Chlorophyll Fluorescence (SIF) from GOME-2. The results of the study confirm that 

the combination of both data as satellite and climate data gives the high performance of 

R2=0.75 in yield prediction at the SD level. The machine learning-based models perform 

better in yield prediction than the regression methods. Crop growing conditions were tracked 

from the satellite data and it also gradually captures the variability of yield evolving during 

the growing season and usually at the peak of the growing season satellite data contributes to 

the yield prediction. The addition of climate variables to the empirical models shows that it 

exists over the whole season not only at certain stages, as Climate data provide unique and 

extra information for yield prediction. The study also finds that using the vegetation indices 

information as input achieves better performance in yield prediction. EVI gives good results 

in yield prediction than satellite-based SIF, due to course resolution both in time and space it 

consists of large noise. The study has the best results as it explored the potential for the 

optimal prediction of two-month-ahead wheat yield prediction in the study area (Cai et al., 

2019). The study emphasizes the use of freely available satellite data of Sentinel-2 for the 

wheat yield estimation within a field of one year, in two different regions of 28 fields in the 

UK. Environmental data such as topographical and metrological data and soil data were 

combined with the Sentenil-2 data of different periods of the growing season. Using different 

combinations of input data helped in exploring the impact of data availability and resolution 

on yield estimation. The machine learning model Random Forest (RF) was used for data 

training and validation in yield estimation. Over 8000 points of data were collected from the 

29 wheat fields with the help of a combine harvester yield monitor. The study results showed 

that it is possible to produce an accurate yield map with the field at a 10-meter resolution 

using the sentinel-2 data (Hunt et al., 2019). 

Satellite remote sensing using optical sensors is used to study the growth of plants and 

to calculate different vegetation indices. Assessing crop yield using vegetation indices is the 

key significance of the satellite data. The study was conducted in Northern Italy in an area of 

11.7 ha under the Mediterranean climate to explore the spatial relationship and variability 

between the grain yield and six remotely sensed vegetation indices (VI). Freely available data 

from Landsat 5, Landsat 7, and Landsat 8 images were used. All of the images were 

downloaded, during the crop growing period and six vegetation indices were extracted as the 
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Normalized difference vegetation index (NDVI), Enhanced Vegetation Index (EVI), Soil 

Adjusted Vegetation Index (SAVI), Green Normalized difference vegetation index (GNVI), 

Green chlorophyll Index (GCI), and Sample Ratio (SR). Through the statistical analysis, 

different crops surveyed as wheat (2010), coriander (2013), sunflower (2011) and bread 

wheat (2012 and 2014), their geo-referenced grain yield and vegetation indices were used to 

generate the spatial trend maps across the experimental field. A correlation was performed 

between the grain yield and vegetation indices at the 30-meter spatial resolution. At the crop 

stages, the best-given correlation period was used for the grain yield prediction. The results of 

the study showed that the vegetation indices, SR, EVI, and NDVI give a high correlation with 

the respective crop as compared to SAVI, GNDVI, and GCI. Landsat imagery has proved a 

good potential for estimating the final grain yield with its spatial and temporal resolution over 

different crops in a rotation of a small field (Ali et al., 2019). 

The study examined the maize yield prediction by using the time series of the NDVI 

vegetation index extracted from the Landsat-8 OLI imagery of Iran. Advance Machine 

Learning approaches such as Support Vector Regression (SVR), Boosted Vector Regression 

(BVR), Random Forest Regression (RFR), and Gaussian Process Regression (GPR) was used 

and their performances were compared. In the evaluation of their performances, RFR showed 

a higher R2 of 0.87 and outer performed the other machine learning models. The 

demonstration of the study showed that RFR was the most stable model for the prediction of 

2015 maize yield, by u as it was trained and tested for the previous year’s data (Aghighi et 

al., 2018). Timely acquisition of yield maps and crop yield estimation of high quality and low 

cost are required for the adaptation of precision agriculture. In the comparison of 

conventional approaches, the integration of machine learning models and remotely sensed 

data offers cost and time-effective approaches for crop yield prediction and soil properties. 

The study was conducted to evaluate the role of remote sensing data and comparison of the 

performances of the machine learning algorithms for the yield prediction of corn in Madison 

County, Ohio, USA. Soil properties, yield data, topographic data, and multispectral images 

were used to derive vegetation indices. Five machine learning models as Support Vector 

Machine (SVM), Neural Network (NN), Random Forest (RF), Gradient Boosting Model 

(GBM), Cubist (CU), and Multiple Linear Regression (MLR) are trained and tested on the 

datasets for the yield prediction of corn of the study area. The accuracy and results were 

based on the Root Mean Square Error (RMSE) and Root Square (R2). The output of the 

machine learning models showed that the results outer performed Multiple Linear 

Regression. Between the performances of the machine learning algorithms Random forest 
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(RF) performance best with the highest accuracy of R2 = 0.53 and RMSE = 0.97. The study 

outcomes can be implemented in site-specific farming (Khanal et al., 2018). 

Studies mentioned above used different techniques and sets of input features to 

predict yield on different scales. This study examined the feasibility of vegetation indices 

such s NDVI and EVI for crop yield estimations in the study area. Vegetation indices and 

surface reflectance data were obtained from GEE and pre-processed to match the study 

locations. Two machine learning approaches were used Random Forest Regression (RFR) 

and Decision Tree Regression (DTR) for the yield prediction and comparisons were made for 

better performance between the models. The best models were tested on data of growing 

seasons of both year and final training and testing results were derived and exported. 
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Chapter 3 

MATERIAL AND METHODS 
 

3.1 Study Area 

The Faisalabad division is an administrative division of Punjab and consists of four 

districts including Faisalabad, Jhang, Toba Tek Singh and Chiniot (figure 1). The 

geographical location of the district Faisalabad division lies between the longitude of 71° and 

73° East, latitude 30° and 31.5° north. According to the 2017 census, the population of 

district Faisalabad is 7.87 million, Jhang is 2.74 million, Toba Tek Singh is 2.19 million and 

Chiniot is 1.37 million respectively. The study area receives water from river Ravi from the 

eastern and southern parts as it touches the district Toba Tek Singh, and the district Chiniot 

boundaries touch the bank of river Chenab. The northwest part of the district Jhelum receives 

the river Jhelum and flows along the southern-west part of the district. The Faisalabad district 

is located in the centre of the Rachna Doab, which lies between the two rivers as Ravi and 

Chenab. The overall study area topography consists of the local depressions, alluvial plains 

consisting of rocky sandstone and slate, high grounds, low land, valleys, and some parts 

receiving a semi- desert area of Thal. For irrigation, the study area utilizes a canal system 

originating from the nearby headworks as Trimmu headworks but some parts are also 

irrigated through tube wells. The Faisalabad division is famous for its good amount of wheat 

production because of its suitable soil, temperature, suitable pattern of rainfall and good 

irrigation system. The Faisalabad division contributes 45% of wheat production in the total 

national wheat production. The study area consists of 715.47 thousand hectares of cultivation 

land for wheat crops producing 2329.60 thousand tons of wheat yield per annum. The climate 

of the study area is semi-arid with very hot and humid summers starting from mid-April and 

last till late October and dry cool winters from November up to February. The temperature of 

the study area goes higher in summer and low in winter. The average maximum temperature 

of the study area is between 45.5 °C and 26.9 °C. June is the hottest month of the summer. 

The average minimum temperature is 19.4 °C and 4.1 °C. January is the coolest month of the 

winter month. The average rainfall received in monsoon in the month of the July and August 

is approximately 375 mm annually.  
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Figure 3.1. Study area map showing (a) Punjab administrative boundaries, (b) Faisalabad division in the 

Punjab province along with the selected study the Faisalabad division consists of four districts, Chiniot, 

Jhang, Toba Tek Singh, and Faisalabad. 
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3.2 Types of Crops in Faisalabad Division 

In the Faisalabad division, mixed cropping pattern ins followed. Major crops of the 

area are Cotton, Wheat, Maize, Grain, and other cash crops are grown. Rice and Sugarcane 

are mainly dominated in the riverine areas. In open filled and tunnels, a wide range of 

vegetables are grown in the districts. In orchids, Mangoes, Guava, and Citrus are major 

orchids. In the whole division, a wide range of fodder crops is grown to feed the cattle. The 

Faisalabad division produced a huge quantity of wheat and contributes about 45% of wheat to 

the national production. The area of cultivation for wheat in the whole division including four 

districts is 715.47 thousand hectares of which approximately 2329.60 thousand tons of wheat 

were produced annually (Ahmad et al., 2019). 

3.3 The Environmental and Geographical Characteristics of the Faisalabad Division 

In the Faisalabad division, the district Faisalabad is located at the centre of the lower 

Rechna Doab, the area is situated between the Ravi and Chenab rivers. The topography of the 

district of Faisalabad is marked by local depression, high grounds and valleys. The district 

Chiniot is located on the bank of the river Chenab. The topography consists of alluvial plains, 

spread with rocky sandstone and slate. The river Ravi runs along the southern part and 

southeastern borders of the district Toba Tek Singh. The topography consists of a large area 

of the lowlands. Usually, floods are generated by the river Ravi at the border. The fourth 

district of the Faisalabad division is Jhang, which received the river Chenab from the 

northeastern part and flows toward the southwest. 

The river Jhelum enters in the northwest part and flows in the nourth_south direction. 

Finally, the joining point of both river Jhelum and river Chenab is Athara Hazari's north- 

trimmed headworks originating from the Trimmu headworks. The Chenab district has a 

variety of topography as it has a low-lying area along the Chenab and Jehlum rivers and a 

semi-desert area of Thal that is located at the west of the Chenab and Jhelum rivers (Ahmad 

et al., 2019). 

The climate of the Faisalabad division is semi-arid with dry cool winters and very hot 

humid summers (Chaudhry and Rasul., 2004). The summer season starts in mid-April and 

continues until late October. The hottest months are June and May. At the end of June, July, 

August, and mid of September the climate becomes hot and humid, but when it rains the 

temperature comes down. In June dust storms are very common and as it is the hottest month 

the climate conditions are very hot. The winter season starts in November and early 

February. January is the coldest month with extremely dense fog in the early morning and 
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night hours (Shamshad., 1988). Springs start in the last February and March. The annual 

average rainfall is approximately 375 mm, which usually takes place during the monsoon 

season in July and August. The average maximum temperature in June is up to 45.5 °C and 

26.9 °C and the temperature has downed a minimum of 19.4 °C and 4.1 °C in January 

(Pakistan meteorological department., 2013). The Faisalabad division received good fertile 

soil but some of the areas are affected by water logging and salinity. 

3.4 Wheat Crop Production 

In Pakistan “Atta” or Wheat flour is a very common food and supplies 72% of caloric 

energy in the average diet. Wheat is valued as the main nutritional food cereal crop in 

Pakistan than the other food and cereals. The wheat consumption rate per capita in Pakistan is 

estimated as 124 kg per year, which is the highest quantity in the world, reflecting the 

importance of wheat in Pakistan (Imran and Noureen., 2021). The total yield production of 

wheat varies every year due to various weather and climatic variations such as drought and 

flooding etc., which directly affects the social balance and economy of our country. As wheat 

is a Rabi crop which is grown in the winter season of October to December and March and 

May are the harvesting months. In the Faisalabad division total of 717.47 thousand hectares 

of area are used to cultivate the wheat crop, which produced 2329.60 thousand tons of wheat 

yield according to the 2019-2020 final report of the crop reporting services Punjab. The 

Faisalabad division consists of four districts each area has its contribution. 

Wheat crop is grown on an area of 230.67 thousand hectares and the yield produced 

was 793.86 thousand tons in the Faisalabad district,75.67 thousand hectare area in the Chiniot 

district and the yield produced was 238.51 tons, 267.09 thousand hectare area in the Jhang 

district and the yield produced was 799.18 thousand tons and 142.04 thousand hectare area in 

Toba Tek Singh and 498.05 thousand tons respectively. Up to 98 % of the area is irrigated 

through the irrigation system originating from the river in the respective districts. Besides the 

implementation of modern technology, the demand for wheat production is not met at the rate 

of increasing population. 

3.5 Remote Sensing Data Acquisition 

Remote sensing data i.e. surface reflectance of Landsat-8 satellite reflectance of years 

October 2019 to April 2020 and October 2020 to April 2021, was acquired from Google 

Earth Engine (GEE). Satellite Landsat-8 carries two types of sensors: Operational Land 

Imager (OLI), and Thermal Infrared Sensor (TIRS). The spectral resolution of the Landsat-8 

is of 11 bands ranging from 433 nm to 13800 nm and thermal bands are of range between 

10600 nm -12510 nm. The OLI sensor has nine spectral bands and TIRS have two spectral 
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bands. Landsat-8 imagery has a Spatial resolution of 30 meters in visible, near-infrared 

(NIR), shortwave infrared (SWIR), and 100 meters in Thermal. The resolution of the 

panchromatic band is 15 meters. Thermal bands are of range between 10600 nm – 12510 nm. 

The temporal resolution of the Landsat-8 is of 16 days. The images of the study area acquired 

of the wheat crop period are of growing till harvesting, with the specific dates of both of the 

years shown in tables 3.1 and 3.2. 

3.6 Google Earth Engine 

Google Earth Engine (GEE) is cloud base platform that provides freely preprocessed 

data of satellite, Vegetation indices, and Land Surface Temperature at a petabyte scale, which 

can be used for geospatial analysis. The GEE platform was announced in 2010 and the 

availability of the data was from 2015. The platform accepts the parameter as input in the 

format of CSV, Shapefiles, TF Record (simple format for storing a sequence of binary 

records), and Geo TIFF which should be provided as an asset. Java and Python language 

scripts can be used in the analysis. Data computation and data analysis both can be done at 

any scale. The GEE platform also provides some machine learning model implementation 

such as using tensor flow to resolve problems related to regression, classification and 

statistical analysis in TensorFlow (Gorelick et al., 2017). 

3.7 Crop Yield Ground Truth Data 

Wheat Crop yield ground data of the whole Faisalabad division was acquired from the 

Director of Agriculture Crop Reporting Service, Punjab. The data is in the point data taken 

from the standing wheat field during the survey. The plot cut technique was used which is of 

30 * 30 feet area and a random sampling technique was used for the sampling of the wheat 

crops. All of the data with sources are mentioned below in table 3.3. 

3.8 Meteorological Data 

Maximum and minimum temperature and Precipitation data of monthly averages of 

the Faisalabad division is acquired from the Director of Agriculture Crop Reporting Service, 

Punjab. The metrological data was taken at the same time as a survey of the specific point in 

the field. 

3.9 Software and Library Used 

To analyze the data, mapping of the study area, preprocess the data and use machine 

learning models the tools and software used in the study are listed in table 3.4. 
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             Table 3.1 Landsat 8 acquisition dates for the study area in 2019-20. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

       Table 3.2 Landsat 8 acquisition dates for the study area in 2020-21. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

  

Dates of 2019 to 2020  

2019-10-01 2020-02-06 

2019-10-17 2020-02-22 

2019-11-02 2020-03-09 

2019-11-18 2020-03-25 

2019-12-04 2020-04-10 

2020-01-21 2020-04-26 

Dates of 2020 to 2021  

2020-10-12 2021-01-16 

2020-10-28 2021-02-01 

2020-11-13 2021-02-17 

2020-11-29 2021-03-05 

2020-12-14 2021-04-04 

2020-12-31 2021-04-22 
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Table 3.3. List of datasets with specification and their sources. 

 

 

Table 3.4. Tools and software used for the analysis and preprocessing of the data. 

 

 

SN Data Specification Source 

1 Satellite Imagery Landsat-8 surface reflectance of years 

October 2019 to April 2020 & October 2020 

to April 2021; Spatial resolution 30 m 

(visible, NIR, SWIR); 100 m (thermal); 15 m 

(panchromatic). Spectral resolution (11 

bands) ranges from 433 nm -2300 nm; 

thermal bands are 10600 nm – 12510 nm. 

The temporal resolution of 16 days. 

Google Earth 

Engine (GEE) 

2 Wheat Yield (kg) Crop yield ground truth data Director of 

Agriculture Crop 

Reporting Service, 

Punjab 

3 Meteorological 

data 

Maximum and Minimum Temperature, 

Relative Humidity, Precipitation (monthly 

averages) 

Director of 

Agriculture Crop 

Reporting Service, 

Punjab 

SN Software Version 

1 ArcMap 10.8 

2 Google Earth Engine (GEE) Python version: 3.8.16 

3 Jupyter Notebook Python version 3.8.16 

4 Machine learning libraries Scikit-learn, Matplotlib 
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3.10 Data Processing 

Remote sensing data of Landsat-8 surface reflectance was acquired from GEE for 

each yield point temporally. A buffer of 15 meters was drawn for each point as the yield 

collected from the wheat crop field was taken by plot cut method of 30 * 20 feet. The WRS 

(world reference system, which is a global national system for Landsat data) row path used 

was 149/38. The Shapefile of the wheat yield points was uploaded to GEE. Data for the 

whole season of both the years 2019-2020 and 2020 -2021 from October to April was 

selected for those points (from shapefile) as per the crop calendar of the wheat crop. All of 

the raw reflectance values from all bands along with surface temperature were downloaded. 

The surface temperature unit was Kelvin. For the elimination of the records with no data or 

duplication of the data, data was then filtered for each year for the specified dates. This is 

because we needed a consistent time series for every point in the shapefile. Since some of the 

points were covering two tiles, the only selected tile was 149/28 so the consistent time series 

for each point were acquired. Data for each point was combined temporally and cleaned. The 

final dataset contains 238 points for both the years 2019 to 2020 and 2020 to 2021, with 16 

days of temporal data from October 2019 to April 2020 and October 2020 to April 2021. 

3.11 Vegetation Indices 

Remotely sensed Landsat-8 surface reflectance data were used throughout the 

Faisalabad division, of Punjab. Normalized difference vegetation index (NDVI) and 

Enhanced Vegetation Index (EVI) were used as explanatory variables in crop yield prediction 

based on correlation with yield. NDVI is used for remote estimation of plant health. It gives a 

special reflectance curve by the difference between two bands (visible red and near-infrared) 

ranging from -1 to 1 (Robinson et al., 2017). The mathematical equation to derive NDVI is 

illustrated in equation 1. 

                                               NDVI=
NDVI-RED

NDVI+RED
                                               Equation 1 

Where NIR is the reflectance in a near-infrared band while red is the reflectance in the 

red band of the electromagnetic spectrum. Enhanced vegetation index (EVI) is used to 

quantify vegetation greenness and is similar to the NDVI. EVI helps in the correction of 

canopy background noise, and atmospheric conditions and becomes more sensitive in an area 

with dense vegetation (Trujillo et al., 2020). The formula for the EVI used is in equation 2. 

EVI=2.5 × 
(NIR-RED)

(NIR+C1×RED-C2×BLUE+L)
            Equation 2                
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The “L” in the formula adjusts the canopy background, “C” values as coefficients for 

atmospheric resistance, and “B” from the blue band. As the ratio is the same as NDVI 

between the NIR and R along with the reducing effects of atmospheric noise, atmospheric 

noise and saturation in most cases. 

3.12 Vegetation Indices Calculation 

From the Landsat-8 surface reflectance vegetation indices NDVI and EVI were 

calculated. Time series graphs were formed with the phenological stages of the wheat crop of 

both the years 2019- 2020 and 2020- 2021 as shown in Figure 3.2 respectively. 

3.13 Feature Selection 

Based on correlation analysis, suitable features were selected. In machine learning, it 

is not always suitable to feed all the features to the model. This is because models trained 

with all features are prone to overfitting which makes the model generalizing abilities very 

poor and results in very poor performance on testing data. Furthermore, collecting data on a 

very large number of variables is not always feasible and is time-consuming and cost- 

expensive. In the case of remote sensing, very dense time-series data is sometimes not 

available. In such cases, feature selection becomes very important. In this study, a 

correlation-based feature selection technique was adopted. In this technique, the correlation 

of the dependent variable is calculated with several explanatory variables and based on a 

predefined threshold of correlation only those features are selected which fulfil the criteria of 

the correlation threshold. 

3.14 Machine Learning Model’s Implementation 

Machine learning models were used for the crop yield estimation by analyzing the 

data from various sources such as satellite imagery data, weather data and historical yield 

data of the Faisalabad division. The choice of machine learning model is very important for 

better results. There are several machine learning models which can be utilized for tasks such 

as classification and regression such as Random Forest Regression, Decision Trees, and 

Neural Network models. Since wheat yield prediction is a regression problem, several 

machine learning models were initially tested on the data and only the two best models were 

selected based on initial results. Those models were random forest regression (RFR) and 

decision tree regression (DTR). Both models and their details are explained in the subsequent 

section. 
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Figure 3.2. NDVI time-series & phenological stages (2019-20) (a), EVI time-series & phenological stages (2019-20) (b), NDVI time series and 

phenological stages (2020-21) (c), EVI time-series & phenological stages (2020-21) (d). 
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3.15 The Random Forest Regression (RFR) Model 

The random forest regression model is a machine learning algorithm which was used 

for the crop yield estimation of the Faisalabad division. RFR is a supervised learning 

algorithm and model that uses an ensemble of decision trees to make decision predictions. In 

the case of crop yield estimation, firstly the model got trained on a dataset using a library 

such as sci-kit-learn in Python that consists of subsets variables of 8th-time steps (such as 

temperature, humidity, vegetation indices such as NDVI and EVI) and corresponding crop 

yield values. In this model, the algorithm builds multiple decision trees by selecting subsets 

of the features randomly and data points from the training set. In the RFR each decision tree 

predicts crop yield independently for the particular set of input features. The final prediction 

makes based on the average predictions of all the individual decision trees. 

3.16 The Decision Tree Regression (DTR) Model 

Decision tree regression is also a machine learning model used in this study for the 

prediction of wheat yield. The model used the relationship between the set of input features 

(temperature, humidity, vegetation indices, and vegetation indices NDVI and EVI) and a 

continuous target variable such as crop yield. It works by partitioning the input feature space 

into smaller and smaller subsets and assigning a prediction to each subset based on the 

average value of the target variable in that subset. 

3.17 Experimental Setup 

The step-by-step process of machine learning model building for crop yield prediction 

adapted in this study is explained as follows. 

• The first step is the data collection process. It was done by collecting the data variables 

such as temperature and humidity data, and vegetation indices data (NDVI and EVI) 

from remote sensing data. All of the above data and input variables for the ML models. 

• The second step is data preprocessing which is done by data cleaning, and time steps 

series of data were formed. The correlation of the data variables was performed for the 

most relevant feature selection between the yield and the meteorological data and 

vegetation indices, for predicting the crop yield from the available data sources. 

• In the third step, the data is split into parts, training data and testing data. The training 

data was used to build the ML model, while the testing data was used for the evaluation 

of the ML models. 

• In the model building the fourth step involves defining the model hyperparameter 

determination. The hyperparameters of Random Forest Regression are the number of 

trees in the forest, the number of features to consider at each split and the maximum 
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depth of each tree. In the case of Decision Tree Regression, the hyperparameters are the 

maximum tree depth, minimum samplers per leaf and the splitting criterion. 

• The fifth step is the training of the model. Training of the models allows the models to 

learn how to predict crop yields based on the input data. In the case of Random Forest 

Regression, the algorithm would create a large number of decision trees, each of which 

would be trained on a different subset of the training data. Each decision tree used a 

random subset of the variable feature to make predictions about crop yield. This 

approach helps to reduce the risk of model overfitting. Decision Tree Regression 

involves partitioning the data space based on the selected features and assigning a 

prediction to each partition based on the average value of the crop yield. 

• Evaluation of the model means the accuracy of the model's performance of the trained 

model on the testing data. For the present study, we used the Root Mean Squared Error 

(RMSE), and Coefficient of Determination (R-squared). 

• The last steps consist of the testing of the model. Once the model is trained and 

optimized, the model got ready to make new predictions on new data remaining from the 

training data. The step involves comparing the predicted wheat crop yield values with 

the actual crop yield values for the testing data. 

3.18 Model Accuracy Assessment 

The model's accuracy assessment was done using the R2 and RMSE. Training and 

testing R2 of decision tree regression were 0.952 and 0.700, respectively. Training and testing 

R2 of random forest regression were 0.929 and 0.725 for the estimated crop yield for the 

years 2019-20. Training and testing R2 of decision tree regression were 0.952 and 0.799 

respectively. Training and testing R2 of random forest regression were 0.930 and 0.842 for the 

estimated crop yield for the year 2020-21. 
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Figure 3.3. Complete flow chart methodology of the study area. 
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Chapter 4 

RESULTS AND DISCUSSION 

 
4.1 Relationship of Metrological Variables with Yield  

Performing correlation analysis involving NDVI, EVI, temperature, humidity, and wheat 

yield can help identify the extent to which these variables are related and provide insights into 

the potential impact they may have on wheat yield. NDVI is commonly used as an indicator 

of vegetation health and biomass production. Higher NDVI values generally indicate 

healthier and more productive vegetation, including crops like wheat. A positive correlation 

between NDVI and wheat yield suggests that as NDVI values increase, wheat yield is likely 

to increase as well. The correlation analysis of yield with time-series NDVI in the growing 

season of 2019-20 (table 4.1) and the season 2020-21 (table 4.2). The significance of each 

correlation coefficient was presented through several asterisks. The significance of the 

correlation coefficient was taken as (P-value<=0.01) high significance, (P-value<=0.05) 

moderate significance, and (P-value <=0.1) shows low significance. The 8th time series of 

NDVI was showing a high correlation with yield i.e. 0.602 (table 4.1) and 0.6 (table 4.2). The 

lowest correlation of yield was noted with the 7th and 11th timestep which is -0.07 and 0.07 

respectively, for the year 2019-20 (table 4.1). For the year 2020-21, the lowest correlation of 

yield is with the 6th and 7th timestep which is -0.06 and 0.06 (table 4.2) respectively. EVI is 

another vegetation index that considers atmospheric influences and enhances the sensitivity to 

vegetation changes. Similar to NDVI, a positive correlation between EVI and wheat yield 

suggests that higher EVI values correspond to higher wheat yields. The correlation analysis 

of yield with time-series EVI in the growing season of 2019- 20 with a high correlation with 

yield in the 8th timestep was showing as 0.6 (table 4.3) and the lowest correlation with yield 

in the 5th and 12th timestep is -0.03 and 0.03 (table 4.3). For the season 2020-21, a high 

correlation with yield in the 8th timestep is 0.602 (table 4.4) and the lowest correlation of the 

6th timestep is -0.01 (table 4.4) respectively. 

 Temperature plays a crucial role in determining crop growth and development. 

However, the relationship between temperature and wheat yield is not necessarily 

straightforward. Wheat has specific temperature requirements at different growth stages, and 

extreme temperatures (both high and low) can negatively impact yield. In general, an optimal 

temperature range during the growing season is associated with higher wheat yields. The 

correlation between temperature and wheat yield can vary depending on the specific 

temperature conditions experienced by the crop. Yield Correlation with time series T2MAX 

(Maximum temperature at 2 meters) of the years 2019-20 (table-1) and of the years 2020-21 
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(table -2). Overall the T2MAX shows weak relation however, we selected the 8th time series 

as it is comparatively better and also aligned temporally with vegetation indices as 0.22 

(table-1) and the 10th time series as it is comparatively better with 0.20 (table-2). In the 

feature selection, the T2MIN was not considered overall as it has shown a weak correlation 

with yield for both of the years. Humidity, or relative humidity, refers to the amount of 

moisture present in the air. Wheat requires adequate moisture for optimal growth and yield. 

High humidity can create favourable conditions for diseases, such as fungal infections, which 

may negatively impact wheat yield. On the other hand, low humidity can lead to increased 

evaporation and water stress, also affecting yield. The relationship between humidity and 

wheat yield can be complex and dependent on other factors like precipitation patterns. Yield 

Correlation with time series RH2M (Relative humidity at 2 meters) for the year 2019-20 

(table-3) and for the year 2002-21 (table -4). RH2M shows a weak relation, however, selected 

the 8th time series as it is comparatively better and aligned temporally with vegetation indices 

as 0.16 (table-3) and the 9th time series it still has some correlation is -0.25 (table-4).  

The obtained results agree with the results obtained by previous studies (Li et al., 2019).  

NDVI and EVI data have been used for yield predictions very widely and different machine-

learning models have been compared for yield predictions (Shammi & Meng, 2021; Sharifi, 

2021). One of the main advantages of using NDVI and EVI for yield predictions is its ability 

to highlight information related to crop health and its response to growing conditions. This 

makes the vegetation indices such as NDVI and EVI very useful for yield predictions 

(Bannari et al., 1995). Although the vegetation indices perform well for yield prediction due 

to their ability to model the crop conditions; they are not a direct indicator of crop health 

status. Since vegetation indices are solely based on reflectance, they can sometimes be 

misleading and need to be used carefully. Furthermore, the usage of meteorological 

information as we have seen in this case can complement the other datasets and provides 

better performance for yield prediction (Schwalbert et al., 2020). 

4.2  Subset Variables Selected from the Correlation Analysis 

After the correlation analysis of yield data with all possible variables, the variables 

were selected based on the correlation coefficient value. Variables having a high correlation 

with yield mostly existed in the later stages of the crop which is mostly near to three 

maturities such as the 8th times step according to the correlation analysis. A subset of 

variables of both years (2019-20) and (2020-21) according to high correlation coefficient was 

chosen (table 4.5 & 4.6) with their significance levels. The variable minimum temperature at 

2 meters (T2MIN) was excluded from the analysis based on correlation coefficient value and 

the 8th-time step of all other variables was selected for the year 2019-20. The p-value is  P < 
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0.01, P = 0.05, and P = 0.1, where 8 at the end of every variable shows that the variable 

selected is from the 8th time step. ST_B10 is the surface temperature obtained from remote 

sensing data, NDVI is the normalized difference vegetation index, EVI is the enhanced 

vegetation index, T2MAX is the maximum temperature at 2 meters and RH2M is relative 

humidity at 2 meters. 

4.3 Models Training Results 

Machine learning model: (1) decision tree regression (DTR), and (2) random forest 

regression (RFR) were trained on the selected variables. The training results of both machine 

learning models (figure 4.1) for the crop year 2019-20 and 2020-21 respectively. For the crop 

year 2019-20, the training R2 for DTR and RFR was 0.952 and 0.929 respectively. The 

RMSE of both models was 0.062 and 0.076 respectively. From the training results, it is very 

clear that the DTR model is overfitting the training data. This is very common in machine 

learning models is overfitting the training data. This has a bad impact on testing results since 

machine learning models learn the training data too well and are not able to generalize based 

on that. The training results for the year 2020-21 (figure 4.1). The training results for the 

year 2019-20 achieved R2 of 0.952 and 0.930. the DTR model again overfits the training data 

in the year 2020-21. In machine learning, overfitting occurs when a model learns the training 

data too well. Learning training data too well impacts the testing performance of machine 

learning models when the model performs poorly on testing and cross-validation. 

4.4 Models Testing Results 

Decision tree regression (DTR), and random forest regression (RFR) were tested on the 

variables that remained from the training. The testing results of both machine learning 

models (figure 4.2) for crop years 2019-20 and 2020-21 respectively. For the year 2019-20, 

the testing R2 for DTR and RFR was 0.700 and 0.725 respectively. The RMSE of both of the 

models was 0.150 and 0.144. The testing result for the year 2020- 21, the testing result of 

DTR and RFR model R2 is 0.799 and 0.842 and RMSE is 0.120 and 0.106 respectively. 

From the testing result it’s clear that the RFR model R2 is better than DTR with less RMSE 

error. 

4.5 Analysis of Models 

The training and testing results of machine learning models presented above indicate the 

performance measures of models for crop yield prediction. The RFR model outperformed the 

DTR model for wheat yield prediction. The DTR model overfitted the training data and the 

generalizing power was very poor for yield prediction which is why it achieved a perfect 

training R2 but lower testing R2 for both year testing results, the RFR model achieved better 

testing performance. This is because the RFR model is based on several decision tree models 
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and combines the output from several decision tree models. In classification problems, RFR 

takes a majority vote while in regression problems it averages the output of several decision 

tree models which is why it performs better than single DTR models. This is why RFR is also 

sometimes called assembled learning model. The overfitting issue of DTR is consistent with 

other research specifically when the number of samples is not very large (Kotsiantis, 2013).  

Other than DTR, the issue of overfitting with small samples is an overall problem in the 

machine learning community as machine learning models require increasing amounts of data 

for training purposes.  The performance of the DTR model was also consistent with other 

studies in the context of crop yield prediction where the RFR model outperformed the DTR 

model (Khan et al., 2022).   The results of the RFR model were also in agreement with other 

studies where it outperformed other machine learning models. This can be attributed to the 

working of RFR where instead of one decision tree it trains hundreds of decision trees and 

averages the outcome of all trees thus avoiding overfitting and improving the model 

performance. Although the overall performance of RFR was comparatively better, the models 

need to be tested in more diverse environments and different conditions to check their 

robustness. 

4.6 Identify the Best Model 

By comparing the results and based on the accuracy Random forest Regression 

performance is better than the Decision tree regression model because it reduces overfitting 

and captures more complex interaction between the features. However, a random forest 

model may be slower to train and harder to perform better than a single decision tree model. 

The random forest regression model has high R2 values and low RMSE in training (RMSE = 

0.076, R2 = 0.929, RMSE = 0.075, R2 = 0.930) and testing (RMSE = 0.144, R2=0.725, 

RMSE = 0.106, R2 = 0.842) for both of the years. As discussed earlier, as compared to DTR, 

the RFR model performed relatively well due to its ability to use several decision trees 

instead of single tree fitting. RFR trains hundreds of decision trees instead of a few and then 

averages the predictions of all the trees to make the final predictions (Smith et al., 2013). 

This makes RFR more valuable in terms of avoiding overfitting and increasing performance. 
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  Table 4.1. NDVI time series correlation with the yield (kg) 2019-20. 
 

 

 

 
yield ndvi_1 ndvi_2 ndvi_3 ndvi_4 ndvi_5 ndvi_6 ndvi_7 ndvi_8 ndvi_9 ndvi_10 ndvi_11 ndvi_12 

yield 1 0.198*** -0.102 0.198*** -0.102 -0.107* -0.059 -0.07 0.602*** 0.163** 0.103 0.072 0.108* 

ndvi_1 0.198*** 1 0.42*** 1.0*** 0.42*** 0.08 0.068 -0.07 0.227*** 0.112* 0.098 0.09 0.071 

ndvi_2 -0.102 0.42*** 1 0.42*** 1.0*** 0.461*** 0.291*** 0.045 0.028 0 0.045 0.028 0.02 

ndvi_3 0.198*** 1.0*** 0.42*** 1 0.42*** 0.08 0.068 -0.07 0.227*** 0.112* 0.098 0.09 0.071 

ndvi_4 -0.102 0.42*** 1.0*** 0.42*** 1 0.461*** 0.291*** 0.045 0.028 0 0.045 0.028 0.02 

ndvi_5 -0.107* 0.08 0.461*** 0.08 0.461*** 1 0.306*** 0.145** 0.221*** -0.123* -0.109* -0.126* -0.139** 

ndvi_6 -0.059 0.068 0.291*** 0.068 0.291*** 0.306*** 1 0.807*** -0.045 -0.154** -0.19*** 
- 

0.228*** 
-0.065 

ndvi_7 -0.07 -0.07 0.045 -0.07 0.045 0.145** 0.807*** 1 -0.065 -0.114* 
- 

0.251*** 

- 

0.319*** 
-0.147** 

ndvi_8 0.602*** 0.227*** 0.028 0.227*** 0.028 0.221*** -0.045 -0.065 1 0.202*** 0.145** 0.087 0.077 

ndvi_9 0.163** 0.112* 0 0.112* 0 -0.123* -0.154** -0.114* 0.202*** 1 0.897*** 0.798*** 0.618*** 

ndvi_10 0.103 0.098 0.045 0.098 0.045 -0.109* -0.19*** 
- 

0.251*** 
0.145** 0.897*** 1 0.932*** 0.741*** 

ndvi_11 0.072 0.09 0.028 0.09 0.028 -0.126* 
- 

0.228*** 
- 

0.319*** 
0.087 0.798*** 0.932*** 1 0.809*** 

ndvi_12 0.108* 0.071 0.02 0.071 0.02 -0.139** -0.065 -0.147** 0.077 0.618*** 0.741*** 0.809*** 1 

   Significance level *; p-value <= 0.1, **; p-value <= 0.05, ***; p-value <= 0.01 
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           Table 4.2. NDVI time series correlation with the yield (kg) 2020-2021. 
 

 

 yield ndvi_1 ndvi_2 ndvi_3 ndvi_4 ndvi_5 ndvi_6 ndvi_7 ndvi_8 ndvi_9 ndvi_10 ndvi_11 ndvi_12 

yield 1 0.19*** -0.11* 0.19*** -0.11* -0.11* -0.06 -0.07 0.6*** 0.16** 0.09 0.06 0.1 

ndvi_1 0.19*** 1 0.42*** 1.0*** 0.42*** 0.08 0.07 -0.06 0.22*** 0.12* 0.1 0.09 0.07 

ndvi_2 -0.11* 0.42*** 1 0.42*** 1.0*** 0.47*** 0.29*** 0.05 0.02 0.01 0.05 0.03 0.02 

ndvi_3 0.19*** 1.0*** 0.42*** 1 0.42*** 0.08 0.07 -0.06 0.22*** 0.12* 0.1 0.09 0.07 

ndvi_4 -0.11* 0.42*** 1.0*** 0.42*** 1 0.47*** 0.29*** 0.05 0.02 0.01 0.05 0.03 0.02 

ndvi_5 -0.11* 0.08 0.47*** 0.08 0.47*** 1 0.31*** 0.15** 0.22*** -0.12* -0.11* -0.12* -0.14** 

ndvi_6 -0.06 0.07 0.29*** 0.07 0.29*** 0.31*** 1 0.81*** -0.04 -0.14** -0.18*** -0.23*** -0.07 

ndvi_7 -0.07 -0.06 0.05 -0.06 0.05 0.15** 0.81*** 1 -0.06 -0.1 -0.24*** -0.31*** -0.14** 

ndvi_8 0.6*** 0.22*** 0.02 0.22*** 0.02 0.22*** -0.04 -0.06 1 0.2*** 0.14** 0.08 0.07 

ndvi_9 0.16** 0.12* 0.01 0.12* 0.01 -0.12* -0.14** -0.1 0.2*** 1 0.9*** 0.8*** 0.62*** 

ndvi_10 0.09 0.1 0.05 0.1 0.05 -0.11* -0.18*** -0.24*** 0.14** 0.9*** 1 0.93*** 0.74*** 

ndvi_11 0.06 0.09 0.03 0.09 0.03 -0.12* -0.23*** -0.31*** 0.08 0.8*** 0.93*** 1 0.81*** 

ndvi_12 0.1 0.07 0.02 0.07 0.02 -0.14** -0.07 -0.14** 0.07 0.62*** 0.74*** 0.81*** 1 

                Significance level *; p-value <= 0.1, **; p-value <= 0.05, ***; p-value <= 0.01 
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              Table 4.3. EVI time-series correlation with the yield (kg) 2019-2020. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                Significance level *; p-value <= 0.1, **; p-value <= 0.05, ***; p-value <= 0.01

 yield evi_1 evi_2 evi_3 evi_4 evi_5 evi_6 evi_7 evi_8 evi_9 evi_10 evi_11 evi_12 

yield 1 0.15** -0.05 0.15** -0.05 -0.03 0 0.03 0.6*** 0.21*** 0.15** 0.08 0.03 

evi_1 0.15** 1 0.65*** 1.0*** 0.65*** 0.33*** 0.07 -0.01 0.2*** 0.05 0.07 0.07 0 

evi_2 -0.05 0.65*** 1 0.65*** 1.0*** 0.52*** 0.15** -0.04 0 -0.07 0.02 0.04 -0.01 

evi_3 0.15** 1.0*** 0.65*** 1 0.65*** 0.33*** 0.07 -0.01 0.2*** 0.05 0.07 0.07 0 

evi_4 -0.05 0.65*** 1.0*** 0.65*** 1 0.52*** 0.15** -0.04 0 -0.07 0.02 0.04 -0.01 

evi_5 -0.03 0.33*** 0.52*** 0.33*** 0.52*** 1 0.3*** 0.15** 0.14** -0.09 -0.07 -0.06 -0.05 

evi_6 0 0.07 0.15** 0.07 0.15** 0.3*** 1 0.82*** -0.03 -0.03 -0.12* -0.14** 0.08 

evi_7 0.03 -0.01 -0.04 -0.01 -0.04 0.15** 0.82*** 1 0.01 0.06 -0.13** -0.18*** 0.1 

evi_8 0.6*** 0.2*** 0 0.2*** 0 0.14** -0.03 0.01 1 0.27*** 0.21*** 0.13** 0.09 

evi_9 0.21*** 0.05 -0.07 0.05 -0.07 -0.09 -0.03 0.06 0.27*** 1 0.88*** 0.77*** 0.58*** 

evi_10 0.15** 0.07 0.02 0.07 0.02 -0.07 -0.12* -0.13** 0.21*** 0.88*** 1 0.92*** 0.69*** 

evi_11 0.08 0.07 0.04 0.07 0.04 -0.06 -0.14** -0.18*** 0.13** 0.77*** 0.92*** 1 0.79*** 

evi_12 0.03 0 -0.01 0 -0.01 -0.05 0.08 0.1 0.09 0.58*** 0.69*** 0.79*** 1 
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               Table 4.4. EVI time-series correlation with the yield (kg) 2020-21. 
 

 

                                 

Significance level *; p-value <= 0.1, **; p-value <= 0.05, ***; p-value <= 0.01  

 yield evi_1 evi_2 evi_3 evi_4 evi_5 evi_6 evi_7 evi_8 evi_9 evi_10 evi_11 evi_12 

yield 1 0.14** -0.06 0.14** -0.06 -0.04 -0.01 0.02 0.6*** 0.2*** 0.14** 0.08 0.02 

evi_1 0.14** 1 0.65*** 1.0*** 0.65*** 0.34*** 0.07 0 0.2*** 0.06 0.08 0.07 0 

evi_2 -0.06 0.65*** 1 0.65*** 1.0*** 0.53*** 0.15** -0.03 -0.01 -0.06 0.02 0.04 -0.01 

evi_3 0.14** 1.0*** 0.65*** 1 0.65*** 0.34*** 0.07 0 0.2*** 0.06 0.08 0.07 0 

evi_4 -0.06 0.65*** 1.0*** 0.65*** 1 0.53*** 0.15** -0.03 -0.01 -0.06 0.02 0.04 -0.01 

evi_5 -0.04 0.34*** 0.53*** 0.34*** 0.53*** 1 0.3*** 0.16*** 0.14** -0.09 -0.07 -0.06 -0.05 

evi_6 -0.01 0.07 0.15** 0.07 0.15** 0.3*** 1 0.82*** -0.03 -0.02 -0.12* -0.14** 0.08 

evi_7 0.02 0 -0.03 0 -0.03 0.16*** 0.82*** 1 0.02 0.07 -0.12* -0.17*** 0.11* 

evi_8 0.6*** 0.2*** -0.01 0.2*** -0.01 0.14** -0.03 0.02 1 0.27*** 0.21*** 0.13** 0.09 

evi_9 0.2*** 0.06 -0.06 0.06 -0.06 -0.09 -0.02 0.07 0.27*** 1 0.89*** 0.78*** 0.59*** 

evi_10 0.14** 0.08 0.02 0.08 0.02 -0.07 -0.12* -0.12* 0.21*** 0.89*** 1 0.92*** 0.69*** 

evi_11 0.08 0.07 0.04 0.07 0.04 -0.06 -0.14** -0.17*** 0.13** 0.78*** 0.92*** 1 0.79*** 

evi_12 0.02 0 -0.01 0 -0.01 -0.05 0.08 0.11* 0.09 0.59*** 0.69*** 0.79*** 1 
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Table 4.5 Yield correlation with a subset of variables selected from the correlation analysis 

(2019-20). 

 

Table 4.6 Yield correlation with a subset of variables selected from correlation analysis 

(2020- 21). 

 yield ST_B10_8 ndvi_8 evi_8 T2MAX_10 RH2M_9 

yield 1 0.52*** 0.6*** 0.6*** 0.2*** -0.25*** 

ST_B10_8 0.52*** 1 0.82*** 0.71*** 0.24*** -0.02 

ndvi_8 0.6*** 0.82*** 1 0.84*** 0.1 -0.08 

evi_8 0.6*** 0.71*** 0.84*** 1 0.05 -0.1 

T2MAX_10 0.2*** 0.24*** 0.1 0.05 1 -0.04 

RH2M_9 -0.25*** -0.02 -0.08 -0.1 -0.04 1 

 yield ST_B10_8 ndvi_8 evi_8 T2MAX_8 RH2M_8 

Yield 1 0.62*** 0.6*** 0.6*** 0.22*** -0.16*** 

ST_B10_8 0.62*** 1 0.91*** 0.81*** 0.07 -0.09 

ndvi_8 0.6*** 0.91*** 1 0.84*** 0.08 -0.04 

evi_8 0.6*** 0.81*** 0.84*** 1 0.05 -0.06 

T2MAX_8 0.22*** 0.07 0.08 0.05 1 -0.05 

RH2M_8 -0.16*** -0.09 -0.04 -0.06 -0.05 1 
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a. Shows the model training results of DTR and RFR (2019-20) 

 

 

 

 

 

 

b. Shows the model training results of DTR and RFR (2020-21) 

 

 
Figure 4.1. Model training results of DTR and RFR (2019-20) (a) & (2020-21) (b). 
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a. Shows the model testing results of DTR and RFR (2019-20) 

 

 

 

 

 

 

 

b. Shows the model testing results of DTR and RFR (2020-21) 

 

Figure 4.2. Model testing results of DTR and RFR (2019-20) (a) & (2020-21).
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                                                                                                                                                       Chapter 5 
 
 

CONCLUSION AND RECOMMENDATIONS 

5.1 Conclusion 

The study demonstrates the successful use of remote sensing and machine learning in 

wheat yield prediction. The use of Landsat-8 surface reflectance data acquired from GEE and 

the time series of vegetation indices enabled accurate prediction of wheat yield. Feature 

selection using correlation analysis was critical in reducing input data to avoid uncertainty, 

and only relevant data was used as input to the model. The 8th time step was found to have a 

high correlation with yield, and data from this step was used for model input. The study 

trained models for both of the years separately and made separate feature selections, 

providing insights into relevant input data for accurate yield predictions. Decision Tree 

Regression (DTR) and Random Forest Regression (RFR) results show that the RFR gives the 

best performance for wheat yield prediction. One of the advantages of random forest 

regression is that it is resistant to overfitting. This can occur when a model becomes too 

complex and starts to fit noise in the data rather than the underline patterns. This is because 

the random forest algorithm uses multiple decision trees with different subsets of features and 

data points, which helps to reduce the variance in the predictions. Overall, machine learning 

models can help farmers and agronomists make informed decisions about crop management 

practices and improve crop yields by providing accurate yield estimation and predictions.  

The study was able to successfully test machine learning models for yield predictions. 

However, there are some uncertainties related to this study. Firstly, the yield range was very 

narrow. Estimation of variables which has a narrow range prohibits machine learning models 

from better generalising the data, thus making some of the estimation uncertain or incorrect. 

Secondly, the sample size of the yield was small. Machine learning models required large 

amounts of data to better generalize. These issues need to be addressed in the future. 

 

5.2 Recommendations 

Based on the study, the following recommendations are made 

• Further research should explore the potential of combining remote sensing and 

machine learning with other data sources, such as metrological data, to improve 

accuracy in crop yield prediction. 

• As more remote sensing data become available, researchers should investigate the 

use of deep learning techniques to improve yield prediction accuracy. 
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• The study highlights the importance of feature selection in reducing input data and 

avoiding uncertainty. Future studies should explore different feature selection 

techniques and their impact on yield prediction accuracy. 

• Finally, the stakeholders in the agriculture industry should leverage the potential of 

remote sensing and machine learning to improve crop management practices, 

decision-making, the potential for precision agriculture and its ability to increase 

yields and improve overall efficiency in agriculture practices. 
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  Appendix-1. Yield correlation with time series T2MAX (the maximum temperature at 2) (2019-20). 
 

 

 yield T2MAX_1 T2MAX_2 T2MAX_3 T2MAX_4 T2MAX_5 T2MAX_6 T2MAX_7 T2MAX_8 T2MAX_9 T2MAX_10 

yield 1 0.14** -0.01 0.04 0 0.07 0.08 0.06 0.22*** 0.22*** 0.24*** 

T2MAX_1 0.14** 1 0.94*** 0.97*** 0.95*** 0.98*** 0.97*** 0.93*** 0.97*** 0.97*** 0.97*** 

T2MAX_2 -0.01 0.94*** 1 0.99*** 0.99*** 0.98*** 0.97*** 0.98*** 0.94*** 0.91*** 0.92*** 

T2MAX_3 0.04 0.97*** 0.99*** 1 1.0*** 1.0*** 0.99*** 0.98*** 0.96*** 0.95*** 0.96*** 

T2MAX_4 0 0.95*** 0.99*** 1.0*** 1 0.99*** 0.98*** 0.97*** 0.95*** 0.94*** 0.94*** 

T2MAX_5 0.07 0.98*** 0.98*** 1.0*** 0.99*** 1 1.0*** 0.96*** 0.97*** 0.97*** 0.97*** 

T2MAX_6 0.08 0.97*** 0.97*** 0.99*** 0.98*** 1.0*** 1 0.96*** 0.97*** 0.97*** 0.97*** 

T2MAX_7 0.06 0.93*** 0.98*** 0.98*** 0.97*** 0.96*** 0.96*** 1 0.96*** 0.91*** 0.93*** 

T2MAX_8 0.22*** 0.97*** 0.94*** 0.96*** 0.95*** 0.97*** 0.97*** 0.96*** 1 0.97*** 0.98*** 

T2MAX_9 0.22*** 0.97*** 0.91*** 0.95*** 0.94*** 0.97*** 0.97*** 0.91*** 0.97*** 1 0.99*** 

T2MAX_10 0.24*** 0.97*** 0.92*** 0.96*** 0.94*** 0.97*** 0.97*** 0.93*** 0.98*** 0.99*** 1 

 

   Significance level *; p-value <= 0.1, **; p-value <= 0.05, ***; p-value <= 0.01 
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   Appendix-2. Yield correlation with time series T2MAX (the maximum temperature at 2 meters) (2020-21). 

 

 yield T2MAX_1 T2MAX_2 T2MAX_3 T2MAX_4 T2MAX_5 T2MAX_6 T2MAX_7 T2MAX_8 T2MAX_9 T2MAX_10 

yield 1 0.1 -0.04 0.01 -0.02 0.05 0.06 0.04 0.18*** 0.19*** 0.2*** 

T2MAX_1 0.1 1 0.95*** 0.97*** 0.95*** 0.97*** 0.97*** 0.93*** 0.97*** 0.97*** 0.98*** 

T2MAX_2 -0.04 0.95*** 1 0.99*** 0.98*** 0.97*** 0.96*** 0.98*** 0.95*** 0.92*** 0.93*** 

T2MAX_3 0.01 0.97*** 0.99*** 1 1.0*** 1.0*** 0.99*** 0.98*** 0.96*** 0.96*** 0.96*** 

T2MAX_4 -0.02 0.95*** 0.98*** 1.0*** 1 0.99*** 0.99*** 0.98*** 0.95*** 0.94*** 0.94*** 

T2MAX_5 0.05 0.97*** 0.97*** 1.0*** 0.99*** 1 1.0*** 0.96*** 0.97*** 0.97*** 0.96*** 

T2MAX_6 0.06 0.97*** 0.96*** 0.99*** 0.99*** 1.0*** 1 0.96*** 0.97*** 0.97*** 0.96*** 

T2MAX_7 0.04 0.93*** 0.98*** 0.98*** 0.98*** 0.96*** 0.96*** 1 0.96*** 0.92*** 0.93*** 

T2MAX_8 0.18*** 0.97*** 0.95*** 0.96*** 0.95*** 0.97*** 0.97*** 0.96*** 1 0.97*** 0.98*** 

T2MAX_9 0.19*** 0.97*** 0.92*** 0.96*** 0.94*** 0.97*** 0.97*** 0.92*** 0.97*** 1 0.99*** 

T2MAX_10 0.20*** 0.98*** 0.93*** 0.96*** 0.94*** 0.96*** 0.96*** 0.93*** 0.98*** 0.99*** 1 

 

   Significance level *; p-value <= 0.1, **; p-value <= 0.05, ***; p-value <= 0.01
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        Appendix-3. Yield correlation with time series relative humidity (relative humidity at 2 meters) (2019-20). 

 

 
yield RH2M_1 RH2M_2 RH2M_3 RH2M_4 RH2M_5 RH2M_6 RH2M_7 RH2M_8 RH2M_9 RH2M_10 

yield 1 -0.12* -0.11* -0.13** -0.01 0.01 -0.09 -0.13*** -0.16*** -0.14*** -0.11*** 

RH2M_1 -0.12* 1 0.93*** 0.94*** 0.96*** 0.91*** 0.95*** 0.96*** 0.96*** 0.95*** 0.94*** 

RH2M_2 -0.11* 0.93*** 1 0.97*** 0.97*** 0.95*** 0.99*** 0.96*** 0.97*** 0.97*** 0.97*** 

RH2M_3 -0.13** 0.94*** 0.97*** 1 0.96*** 0.94*** 0.96*** 0.93*** 0.96*** 0.97*** 0.96*** 

RH2M_4 -0.01 0.96*** 0.97*** 0.96*** 1 0.95*** 0.97*** 0.96*** 0.97*** 0.94*** 0.93*** 

RH2M_5 0.01 0.91*** 0.95*** 0.94*** 0.95*** 1 0.95*** 0.88*** 0.9*** 0.91*** 0.91*** 

RH2M_6 -0.09 0.95*** 0.99*** 0.96*** 0.97*** 0.95*** 1 0.96*** 0.97*** 0.97*** 0.97*** 

RH2M_7 -0.13*** 0.96*** 0.96*** 0.93*** 0.96*** 0.88*** 0.96*** 1 0.99*** 0.97*** 0.96*** 

RH2M_8 -0.16*** 0.96*** 0.97*** 0.96*** 0.97*** 0.9*** 0.97*** 0.99*** 1 0.98*** 0.97*** 

RH2M_9 -0.14*** 0.95*** 0.97*** 0.97*** 0.94*** 0.91*** 0.97*** 0.97*** 0.98*** 1 1.0*** 

RH2M_10 -0.11*** 0.94*** 0.97*** 0.96*** 0.93*** 0.91*** 0.97*** 0.96*** 0.97*** 1.0*** 1 

        Significance level *; p-value <= 0.1, **; p-value <= 0.05, ***; p-value <= 0.01  
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       Appendix-4. Yield Correlation with time series relative humidity (relative humidity at 2 meters) (2020-21). 

 

       

       Significance level *; p-value <= 0.1, **; p-value <= 0.05, ***; p-value <= 0.01 

 

 

 

 yield RH2M_1 RH2M_2 RH2M_3 RH2M_4 RH2M_5 RH2M_6 RH2M_7 RH2M_8 RH2M_9 RH2M_10 

yield 1 -0.13** -0.12* -0.14** -0.02 0 -0.11 -0.19*** -0.18*** -0.25*** -0.25*** 

RH2M_1 -0.13** 1 0.94*** 0.94*** 0.97*** 0.91*** 0.95*** 0.97*** 0.96*** 0.95*** 0.94*** 

RH2M_2 -0.12* 0.94*** 1 0.97*** 0.97*** 0.95*** 0.99*** 0.96*** 0.97*** 0.97*** 0.97*** 

RH2M_3 -0.14** 0.94*** 0.97*** 1 0.96*** 0.94*** 0.96*** 0.94*** 0.96*** 0.97*** 0.96*** 

RH2M_4 -0.02 0.97*** 0.97*** 0.96*** 1 0.95*** 0.98*** 0.96*** 0.97*** 0.94*** 0.93*** 

RH2M_5 0 0.91*** 0.95*** 0.94*** 0.95*** 1 0.96*** 0.88*** 0.91*** 0.91*** 0.91*** 

RH2M_6 -0.11 0.95*** 0.99*** 0.96*** 0.98*** 0.96*** 1 0.96*** 0.97*** 0.97*** 0.97*** 

RH2M_7 -0.19*** 0.97*** 0.96*** 0.94*** 0.96*** 0.88*** 0.96*** 1 0.99*** 0.97*** 0.96*** 

RH2M_8 -0.18*** 0.96*** 0.97*** 0.96*** 0.97*** 0.91*** 0.97*** 0.99*** 1 0.98*** 0.98*** 

RH2M_9 -0.25*** 0.95*** 0.97*** 0.97*** 0.94*** 0.91*** 0.97*** 0.97*** 0.98*** 1 1.0*** 

RH2M_10 -0.25*** 0.94*** 0.97*** 0.96*** 0.93*** 0.91*** 0.97*** 0.96*** 0.98*** 1.0*** 1 


