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ABSTACT 

 

The most important aspect of human behaviour is learning. One of the learning 

methodologies applied by humans is learning through iteration. This human capability 

has recently been used by control engineers to design Iterative Learning Controls (ILC). 

The problem with ILC is that it is designed for a specific system and a specific desired 

response. Moreover, the number of iterations is high, especially if the system dynamics 

are not known. Our research work aims at reducing the number of iterations for 

convergence and evolving a design mechanism that can adapt for changing systems and 

varying desired responses, without the need to redesign the ILC. This thesis develops a 

number of Iterative Learning Controllers to meet these requirements. Stability and 

convergence criteria of these controllers are also established.  

Fuzzy control is another emerging control methodology focusing on human 

perception and fuzzy thinking. The problem with fuzzy design is the uncertainties 

associated with the design of membership functions and rule base. Moreover, controlled 

design requirements are generally given in the form of steady state error, percentage over 

shoot etc. These requirements need to be translated into fuzzy design. The work also 

establishes a number of fuzzy controllers combined with ILC to over come these short 

comings in fuzzy design. The designs are tested through simulations and practical setups. 

For the practical setups, a Six Degree of Freedom Hexapod, a DC motor kit by Quanser 

and a custom built Two Degree of Freedom Tracker were used. Stability and convergence 

of these Iterative Learning Fuzzy Controllers are also discussed. 

The research concludes that in order to reduce uncertainties associated with fuzzy 

logic based design we have to incorporate learning. This hybrid approach can open up a 

new era of controller design. 
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1  INTRODUCTION 

 

Humans have a remarkable capability to perform a wide variety of physical and 

mental tasks without any apparent difficulty. Tasks like parking a car, driving in traffic, 

playing cricket, understanding speech and summarizing a story. All these and other 

variety of tasks are being performed by the same controller, the brain. Though modern 

day technology has accomplished great feats like landing on the moon, sophisticated 

flight control systems, robots that can paint cars, yet we are still unable to assemble and 

control machines that can talk like humans, build robots that can drive in heavy traffic, 

prepare programs that can summarize non trivial stories. Also, these controllers need to 

be redesigned for every new task in hand. Current technologies have still not been able to 

satisfactorily solve these problems, which seem quite easy for humans. 

The key components of human capability lie in learning and forming perceptions. 

Humans learn form experience, from trials and from repeatedly performing a task. If we 

want to design controllers with human-like capabilities, we should be designing 

controllers that are able to iteratively learn from previous attempts. Those controllers 

should also be able to treat quantities like speed, distance, temperature etc. as perceptions 

and should be able to function on their imprecise representations rather than their crisp 

values, just as humans do. For example, actions should be taken on “high speed”, or “low 

temperature” rather than “greater than 100m/h speed” or “less than 10 degree Celsius” 

temperature. 

With the ever increasing complexity of practical systems and the demand for 

diverse functionalities, we need new technologies and intelligent systems that can 

combine knowledge, techniques and methodologies from various sources. These 

intelligent systems should possess human like capabilities, should be able to adapt 

themselves and should do better in changing environment. Combining knowledge is the 

way forward. As in the words of J.S.R. Jang, C.T. Sun and E. Mizutani:- 
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“It is frequently advantageous to use several computing techniques synergistically rather 

than exclusively, resulting in construction of complementary hybrid intelligent systems.” 

[75] 

 

This research has focused on combining Iterative Learning and Fuzzy Logic to 

achieve robust, adaptive and simple-to-design controllers. Before indulging in more 

technical discussions, a short survey of developments in iterative learning control and 

fuzzy logic is presented. 

 

1.1   Iterative Learning Control 

 

Iterative Learning Control (ILC) is an approach to improve the performance of a 

system, operating repetitively, by suitably changing the input to the system. This change 

in input is done through learning or training. Consider an example of a child throwing 

stones at a log submerged in a stream. At first, the stone misses the target because the 

refractive index of the water gives a misleading sense of its location in the water. The 

child learns to compensate for this effect by throwing the stones slightly off from the 

required mark. This is not done by changing any fundamental structure of the sensory 

system, which still observes the log to be at the wrong place. Instead, the child changes 

the command to the muscles of his arm, telling them to throw at a different mark. The 

key is to find that change in command or input to the system. Iterative learning control 

aims at finding such an input command. 

The phrase “learning” often causes misunderstanding. This is especially true, 

given the current interest in artificial neural networks. “Learning” is a broad concept 

which means different things to different people. In a general sense, learning refers to the 

action of a system to adapt and change its behaviour based on input/output observations. 

Many systems have this ability, including adaptive control systems and neural network 

based systems. In ILC, learning means to learn the next input based on the error signal 

[83]. This is a fundamental change in control philosophy compared to conventional 
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thinking where change in input is not a primary goal. Main landmarks of ILC as 

developed by leading researchers are presented in Appendix B. 

For a general introduction on ILC, [83, 84, 120] are good references. Though in 

the 1980’s researchers were primarily concerned with the question of finding 

convergence conditions, it has come a long way since then. Some of the main areas 

where ILC researchers have mainly focused are Direct Learning ILC [77, 79, 100, 129, 

130], frequency domain analysis and development of ILC techniques [1, 33, 69, 98, 122], 

multivariable systems [81, 109], non-minimal phase systems [112], feedback systems 

[10], norm optimal ILC [114, 139], time delay systems [78, 97, 99], time invariant 

systems [32, 125, 149], time variant systems [125, 140], two dimensional systems [15, 

21, 65, 146], repetitive control [13, 124, 142], convergence [24, 85, 97, 150], robustness 

[111, 138], higher order ILC [30, 149] and neural networks [14, 147, 153]. 

Iterative Learning Control has found practical applications in almost all the major 

fields, like robotics [5, 6, 80, 129, 130, 131], automotive vehicles [12, 27, 86], chemical 

processing [8], mechanical systems control [11, 67, 155], hard drives [61] and even in 

nuclear reactor [141]. 

As regards the future scope of work in ILC, researchers have been pointing out in 

different directions. Some of the directions are mentioned below:- 

 

(a) We need to explore new ILC paradigm: variable structure iterative learning 

control. Since there is no coupling between any two consecutive iterations, we can 

let the ILC mechanism switch its structure from one to another during iterations. 

The simplest way could be to change the learning gains, and the general one could 

be to change ILC algorithm during iterations [148]. 

(b) Adaptive control has attracted extensive research efforts and has found successful 

applications. The ILC scheme combined with the adaptive control will be attractive 

in future [145]. 

(c) The actual way we should go is, in fact, in a framework of the 2-D system theory 

[23]. 

(d) The iterative learning controllers plugged into the existing robust controllers 

should give quite interesting results [64]. 
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(e) Developing ILC algorithms with lower level of tracking error is theoretically 

challenging [117]. 

(f) If we already have several learned desired inputs for the desired trajectories, how 

to utilize them is an interesting problem [128]. 

(g) Currently, in ILC research, the learning gain is designed based on the ILC 

convergence condition which may not lead to a good design in terms of knowledge 

assumed. Therefore, systematic design method is in great desire [145]. 

(h) It is well known that output tracking is much more complicated than state tracking 

and is still an open research area even for linear systems [148]. 

(i) From practical point of view, perfect resetting especially the initial state resetting 

could hardly be achieved. Therefore, it is very important and interesting to 

investigate the conditions under which resetting requirement can be removed 

[148]. 

 

More recently, N. Amann, D. H. Owens, E. Rogers, M. Norrlof, Mo. Jamshadi, 

Jian-Xin Xu, Yangquan Chen, L.X. Wang and K.L Moore have been actively pursuing 

ILC research [15, 28, 34, 41, 44, 52, 53, 60, 77, 78, 79, 83, 84, 85, 103, 105, 106, 113, 

115, 116, 127, 144, 145, 151, 152].  

The conclusion is simple “Repetition improves skill, for either man or machine.” 

[145] 

 

1.2   Fuzzy Logic / Fuzzy Control 

 

Fuzzy logic [43,46] was first introduced by Lotfi A. Zadeh [50], Professor of 

Systems Theory at the University of California, Berkeley, USA,  in a publication in 1965 

[94]. However, during its early years, it was met with a lot of criticism, some of which 

were from Prof. Zadeh's colleagues themselves.  

Rudolph E. Kalman [55] had this to say in 1972:-  
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"I would like to comment briefly on Prof. Zadeh's presentation. His proposals could be 

severely, ferociously, even brutally criticized from a technical point of view. This would 

be out of place here. But a blunt question remains: Is Prof. Zadeh presenting important 

ideas or is he indulging in wishful thinking? No doubt Prof. Zadeh's enthusiasm for 

fuzziness has been reinforced by the prevailing climate in the US - one of unprecedented 

permissiveness. 'Fuzzification' is a kind of scientific permissiveness; it tends to result in 

socially appealing slogans unaccompanied by the discipline of hard scientific work and 

patient observation." 

 

Similarly, his esteemed and brilliant colleague Prof. William Kahan [47,51] 

whose Evans Hall office is a few doors from Zadeh's, stated the following in 1975:  

 

"Fuzzy theory is wrong, wrong, and pernicious. I cannot think of any problem that could 

not be solved better by ordinary logic. What Zadeh is saying is the same sort of things: 

Technology got us into this mess and now it can't get us out. Well, technology did not get 

us into this mess. Greed and weakness and ambivalence got us into this mess. What we 

need is more logical thinking, not less. The danger of fuzzy theory is that it will 

encourage the sort of imprecise thinking that has brought us so much trouble." 

 

Even in the 1990s when hundreds of successful applications of fuzzy logic were 

being developed, some scientists still condemned the concept, like Jon Konieki who 

stated in 1991:  

 

"Fuzzy logic is based on fuzzy thinking. It fails to distinguish between the issues 

specifically addressed by the traditional methods of logic, definition, and statistical 

decision-making." [47] 

 

Criticisms however did not stop the spread of fuzzy logic. Fuzzy logic, invented 

in the US, was engineered to perfection in Europe, mass-marketed in Japan, and only 

then recently returned to US. It can be argued that fuzzy logic has its roots from logic 

science [101]. A brief historical overview of fuzzy logic is presented in Appendix C.  
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The full scale operation of fuzzy logic controlled Sendai subway [39] in 1986-87 

by Hitachi performed better than any human operator. The subway train, in fact, had a 

better on-time schedule history, used less energy, and ran smoother than the same train 

operated by a human. After the success of Sendai subway project hundreds of fuzzy logic 

based products were produced in Japan, like Mitsubishi’s fuzzy logic transmission, 

Canon’s auto focusing mechanism, Minolta’s subject tracking system (Maxxum 7xi) and 

Panasonic Electronic Image Stabilizer.  

Theoretically fuzzy controllers should run slower than conventional controllers 

because of additional computations involved in fuzzifiers, defuzzifiers and inference 

engines. But the introductions of fuzzy micro chips by companies like Omron, which 

perform thousands of fuzzy inferences per second, have made this difference irrelevant. 

In U.S. software companies began offering tools to create fuzzy systems for families of 

microprocessors. The first was by Togai Infralogic [56] in Irvine, California and the 

second was by Aptronix Inc.[48] in San Jose, California. Fuzzy logic has not been 

restricted to engineering disciplines, it has found its way into almost all the fields of 

human interaction, like intelligent project management, project risk assessment, financial 

statement analyser, forecasting, fleet container management, database retrieval system, 

abuse detection system [17], to name a few. 

Fuzzy control is the most widely used application of fuzzy logic [73]. Fuzzy logic 

controller (FLC) provides a method to construct controller algorithms in a user friendly 

way, mimicking human thinking and perception. FLC has successfully outperformed the 

traditional control systems (like PID controllers) in many areas [18, 19]. But still there 

are many sources of uncertainties facing the FLC in dynamic real world environment 

[31]. Uncertainties are independent of the kind of Fuzzy System (FS) or methodology one 

uses to handle them. Some sources of uncertainties facing the FLC design are as follows: 

 

(a) Uncertainties in inputs to the FLC, which translate into uncertainties in the 

antecedent’s memberships as the sensor measurements are effected by noises 

from various sources. 

(b) Uncertainties in control output, which translate into uncertainties in the 

consequent’s membership functions of FLC. Such uncertainties can result from 
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change of actuator characteristics, which can be due to wear, tear, environment 

changes etc. 

(c) Linguistic uncertainties as words mean different things to different people [73]. A 

survey of experts will usually lead to a number of possibilities for the antecedents 

and consequent of rules. These variations represent uncertainty. J. M. Mendel 

describes this uncertainty as,  

“Uncertainty about the antecedent and consequent membership functions as 

experts do not agree on one membership function end-points.” [73]  

(d) Uncertainties associated with the change in operating conditions of the controller. 

Such uncertainties can also be translated into uncertainties in the membership 

functions. 

(e) Uncertainties associated with the use of noisy training data that could be used to 

learn, tune or optimise the FLC. 

 

As regards the problem areas and future work in fuzzy, researchers have been 

pointing out in different directions. Some of the directions being hinted are annotated 

below:- 

 

(a) Fuzzy has progressed a lot during the last decades and the research is going on in 

the fields like, fuzzy mathematics, fuzzy systems, fuzzy control, image 

processing, stability analysis, information retrieval, prediction etc. but the two 

problem areas are the convergence analysis and handling uncertainties [103]. 

(b) Possible future work includes adaptation of membership functions so that higher 

degree of flexibility in search of optima can be achieved [75]. 

(c) Conventional fuzzy logic (now called “type-1” fuzzy logic) has limited 

capabilities to directly handle data uncertainties [71]. 

(d) For dynamic unstructured environments and many real world applications, there 

is a need to cope with large amounts of uncertainties. The traditional fuzzy logic 

control can not directly handle such uncertainties to produce a better performance 

[31]. 

(e) Unfortunately it (type-1) has completely ignored the uncertainties associated with 
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the two end points of a membership function [71]. 

(f) It is anticipated that by using more general fuzzy logic formulation (now called 

“type-2” fuzzy logic) [59], it will be possible to capture higher order uncertainties 

about words. Much remains to be done [71]. 

(g) Employment of type-2 fuzzy sets usually increases the computational complexity 

in comparison with type-1 fuzzy sets due to additional dimension of having to 

compute secondary grades for each primary membership [22]. 

(h) Choosing rules, membership functions are in general still done by hand [119]. 

(i) L. A. Zadeh [89] presents a powerful argument for the use of fuzzy logic to 

manipulate perceptions. His argument is that  

“Perceptions reflect finite ability of sensory organs and the brain to resolve detail 

and store information. We have partial knowledge, partial understanding, partial 

certainty, partial belief and accept partial solutions, partial truth and partial 

causality.” [89] 

Perceptions (e.g. perceptions of size, speed, temperature etc.) cannot be modelled 

by traditional mathematical techniques and that fuzzy logic is more useful in 

these regards. He also mentions terms like “Computing with words” and 

“Computing with perceptions” as future research areas.  

 

Current number of researchers mushrooming around the world shows the 

attractiveness of the fuzzy theory. “Computer world” in its August, 2004 issue reported 

that there were over 10,000 active fuzzy researchers in China alone [49]. 

The conclusion is that fuzzy logic has given us a more natural way of looking at 

the problems and a new way of designing our controllers. 

 

1.3   Scope and organisation of this thesis 

 
We now discuss the scope and organisation of this thesis. 
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1.3.1   Scope of research 
 

The main aim of the research is to combine Iterative Learning Control and Fuzzy 

Logic to evolve new methodologies for designing intelligent controllers. These 

controllers should lower the number of iterations to learn, reduce dependency on 

knowledge about system dynamics and eliminate uncertainty in the design process. To 

accomplish this, various ILC techniques and Fuzzy Logic based schemes need to be 

investigated. Also, their implication in terms of performance parameters like peak 

overshoot and steady state error should be determined.   

 

1.3.2   Organisation of the thesis 
 

Chapter 2 starts with the development of the mathematical basis for ILC design. 

Three ILCs are developed and their stability and convergence criteria are established. 

Chapter 3 takes the research further and presents a number of adaptive ILCs. These ILCs 

reduced the number of iterations and enhanced adaptability against changes in the system 

and the desired response. Stability and convergence criteria are also derived. These ILCs 

were tested using simulations and practical experimental setups. Chapter 4 deals with 

“Learning Fuzzy” based approach with an emphasis on eliminating uncertainties 

associated with fuzzy design. Here also, stability and convergence criteria are presented. 

To test the performance of this controller, a two degree of freedom tracking device was 

designed and constructed. The robustness of the proposed controller is demonstrated 

using this tracking device. Chapter 5 combines ILC and Fuzzy Logic to schedule gain 

values in conventional proportional (P), proportional-integral (PI) and proportional-

integral-derivative (PID) controllers. This unique combination of ILC and Fuzzy 

performed much better than the conventional controllers. Chapter 6 presents a Fuzzy 

based ILC controller, in which fuzzy logic was used to update the underlying learning 

law as opposed to the method adopted in chapter 4, where learning was used to update 

fuzzy controller parameters. Chapter 7 summarises the inferences of this research and 

also proposes a number of recommendations for future work. 
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2 TWO DIMENSIONAL APPROACH TO ITERATIVE 
LEARNING CONTROL 

 

This chapter formulates a mathematical framework for developing Iterative 

Learning Controllers (ILCs). Based on this framework, three controllers are presented. 

Stability and convergence analysis is also discussed in detail. The controllers are 

validated through a number of simulations and an experimental setup. 

 

2.1   Two Dimensional Learning Process 

 

Researchers have used different ways to mathematically represent iterative 

learning controllers. Some have used continuous time domain [68, 107, 108], some, 

discrete time domain [95], most have used one dimensional representation [153], while 

there are some who have used two dimensional representation [146, 112]. Two 

dimensional (2-D) approache seems a natural way to represent iterative learning 

processes as we can learn from iteration to iteration and also from sample to sample 

basis.  

A 2-D learning process is one in which inputs, outputs and system states depend 

on two independent variables i.e. its dynamics are propagated along two independent 

directions. In fact these are two dynamic processes. One process, indicated by the 

variable ’ k ’, reflects the dynamics of the system in terms of time history. The other 

process, indicated by the variable ‘ j ’, reflects the learning iteration and resultant 

performance improvement in terms of learning times [143, 21, 151]. For example,  u (k)j  

expresses the thk  item of the input in the thj  execution cycle ( thj  learning iteration). 

Here k = 1...N  and j = 1...M , where N and M are finite integers. A good introduction of 

ILC is given in [83]. 
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2.2   Mathematical Foundation 

 
Following variables are defined:- 

u (k)j  = Input at current iteration or trial 

u (k)j+1 = Input at next iteration or trial 

u (k)j∆ = Change in input calculated at current iteration 

(k)jy = Output at current iteration or trial 

(k +1)jy = Next output at current iteration or trial 

e (k)j = Error at current iteration 

yd (k)j = Desired output at current iteration 

Appendix B presents a brief history of ILC with a list of definitions as given by 

different researchers. It can be concluded from these definition that, the main aim of ILC 

is to change next input so as to reduce error. This means that after several learning cycles, 

u (k)j  is modified to approach a desired control input which can generate the desired 

output. Mathematically the modification can be expressed as 

u (k) = u (k) +∆u (k)j+1 j j  (2.1)

The equation states that the next input to the system for sample k is equal to the current 

input plus ∆u (k)j , where ∆u (k)j  is in general a function of the error between the 

system’s actual output y (k)j  and the desired output yd (k)j . Here j+1 means that the 

new control input is for the next execution or learning cycle.  

The error is given by 

e (k) = yd (k) - y (k)j j j  (2.2)

A general structure adapted for the proposed iterative learning controls, similar to 

the one given in [83], is shown in figure 2.1. 
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Figure 2.1: A general structure of an iterative learning control system. 

 

Input at iteration 1, u (k)1 , for k = 1...N , is applied to the plant. This input produces an 

output y (k)1 . According to the equation (2.1), u (k)1  needs to be modified. This 

modification, u (k)1∆ , can be a function of u (k)1 , e (k)1 , y (k)1 , yd (k)1  etc. As 

explained before, the purpose of learning process is to generate a new control input, 

u (k)2 , in this case, that can reduce or eliminate the error e (k)2 . This change in input, 

∆u (k)1 , and error at first iteration, e (k)1 , must be related. Values of u (k)1 , e (k)1 , y (k)1  

and yd (k)1  are stored in memory, to be used in future iterations. The new input, u (k)2  is 

applied to the plant again, resulting in y (k)2 . The process is repeated again and again 

until the error comes down to acceptable limit. 

To modify  u (k)j  into u (k)j+1 , error information e (k)j , e (k +1)j , e (k -1)j  etc. 

are used. The following equation for change in input is suggested. 
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0 1∆u (k) = K e (k) + K e (k +1)j j j  (2.3)

Where 0K and 1K are gain values. There can be a separate value of 0K and 1K  for each 

sample or one gain value for all the samples. If a separate gain value is required for each 

sample, 0K and 1K  are of the form 

0 0 0 0 0= (k) [K (1) K (2) K (N)]=K K … and 

1 1 1 1 1= (k) [K (1) K (2) K (N)]=K K …  

Where 0K (1) , 0K (2) ,… 0K (N) and 1K (1) , 1K (2) ,… 1K (N)  are the gains associated with 

samples 1,2,…N. For example, for sample 3, equation (2.3) becomes  

0 1∆u (3) = K (3)e (3) + K (3)e (4)j j j   

Here 0K (3) is the gain assigned to sample number 3. This structure has a problem 

associated with its last sample. For example, for sample N, the value of 1K e (N +1)j  can 

not be resolved, as e (N +1)j  is not available. Different methods, like using rate of change 

of error, average of error were used. It was found that the best method, considering 

execution time and final results, is to use the previous error value for e (N +1)j . That is, 

e (N +1) = e (N)j j . Through out this thesis, e (N +1)j  error value is taken as, e (N)j  (error 

value at sample N). 

The general block diagram of the proposed schemes is given in figure 2.2. 

 

 

Figure 2.2: Learning control configuration of the proposed schemes using 2-D theory. 
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The Learning controller calculates ∆u (k)j  based on information on error and current 

input.  

Putting (2.3) in (2.1), the learning process proceeds as  

0 1u (k) = u (k) + K e (k) + K e (k +1)j+1 j j j  (2.4)

Many learning control algorithms proposed by different researchers are of the 

form similar to (2.1). Several interesting facts concerning these algorithms were 

observed. For example:- 

 

(a) Most current methods adopt fixed learning laws. Only control input sequence is 

modified. Although this type of learning laws can be easily implemented they are 

unable to cope with changing requirements, uncertainties in model of the system and 

change in model parameters. This type of control is most useful where the tasks 

always have the same desired trajectory. 

(b) In order to find the learning gains, 0K  and 1K , some specific knowledge of 

controlled system is needed. In case of model based learning, an explicit expression 

of system inverse dynamic model should be available. 

(c) The learning performance depends on the accuracy of the inverse model used in the 

design. 

 

The development of the ILCs has focused at following aims:- 

 

(a) They should require minimum knowledge about the plant. 

(b) They should converge even if there is uncertainty in plant model. 

(c) They should converge even if the resetting is not perfect. 

(d) They should be able to handle desired trajectory changes. The knowledge learnt 

from one task should be utilized for other tasks as well. 

(e) They should be able to adjust for small changes in the controlled system due to 

wear, tear and aging. 

(f) They should be usable for non-linear systems. 

(g) The number of iterations should be reduced to an acceptable level. 
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In order to develop such an approach, the behaviour of 0K  and 1K were first 

studied. Throughout this thesis, simulation results from different linear and non-linear 

systems are presented. The systems are named Simple System (SS), Cruise Control 

System (CCS), Car Suspension System (CSS), Non-linear System (NLS), Motor Speed 

Control System (MSCS) and Inverted Pendulum System (INVPL). The SS, CCS, CSS 

and MSCS will also be refered by 1G (z) , 2G (z) , 3G (z)  and 4G (z)  in this thesis. These 

systems are described in Appendix A. 

 

2.3   How Humans Learn? 

 

The iterative learning control tries to mimic the most important aspect of human 

behaviour, i.e. learning from experience. To get a quantitative measure of how a human 

will learn an input, that will make a motor run at a predefined speed, interactive software 

was developed. The software gave the human operator control over the input. This input, 

the corresponding output and the error were continuously displayed to help the human 

operator select the next input. The software also varied the desired speed at run time, to 

record human operator’s response to change in requirements. The responses were then 

analysed. A snap shot of one such test performed by one human is given in figure 2.3. 

 

 
Figure 2.3: Graphical Interface for human operators to control input for a motor. 



16 

The plot shows motor speed as input is applied by the human operator using the slide bar. 

The required speed is 1 radians/second. Gain was also recorded for better data analysis.  

Humans from varying age groups took the test. A plot of input applied by three 

such humans, at their third iteration, to achieve a speed of 1 radians/second is shown in 

figure 2.4. 
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Figure 2.4: Different inputs applied by human operators to attain a speed of 1 

radian/second. 

 

The similarity of human response is quite evident. A few interesting points noted were:- 

 

 (a) Human operator was, almost, never able to achieve desired response at first go. 

They needed repetition. 

(b) Initially, human operator tends to give higher gains, partially because of higher 

error at the start and partially to get a feeling of the system response. 

(c) The experience of the previous inputs helps in determining the next input. 

(d) The next input applied is mainly a function of error. 

(e) Human response is usually under damped. 

(f) Human operator usually waits to see the output of the system before guessing the 

next required input. 
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(g) When following a predefined shape, human operator tends to break the desired 

shape in smaller pieces or intervals. The more the human operator concentrates, to 

reduce error, the smaller the interval. The concept is that if error is reduced in those 

small intervals, the overall error is also reduced. 

 

The result of these simulations contributed in the formulation of learning control 

laws, presented in this chapter. 

 

2.4   How many gains? 

 

The control law of equation (2.4) can be extended to  

 

0 1 N-1u (k) = u (k) + K e (k) + K e (k +1) + + K e (k + N -1)j+1 j j j j…   

 

This law requires N gains. As discussed in section 2.2, each gain can be a separate value 

for each sample or one gain value for all the samples. All these gains are not only heavy 

in terms of computation but also complicate the stability of the control law. There was a 

need to investigate, “How many minimum numbers of gains are sufficient to achieve 

convergence?” Simulation results from different kinds of systems, using control law of 

equation (2.4), revealed following interesting facts:- 

 

(a) The possible minimum numbers of iterations were different for different systems. 

These possible minimum numbers of iterations are called optimal number of 

iterations in this thesis. 

(b) There was always a range of values of 0K  and 1K , for each system, that produced 

optimal number of iterations; meaning that, different combinations of  0K  and 1K  

can give same results. 

(c) The term  1K e (k +1)j  in equation (2.4), some times introduced oscillations and even 
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instability. 

(d) Considering 0K  alone can also achieve optimal number of iterations. 

 

These observations are demonstrated in results from one such simulation on 

1G (z) . Figure 2.5 gives a plot of number of iterations vs. values of  0K  and 1K .  

  

 

Figure 2.5: Surface and contour plot of 0K  and 1K  vs. number of iterations for 1G (z) . 

 

As can been seen there is a range of values of 0K  and 1K  that give optimal iterations. 

The minimum achievable iterations for this system were 4. For the same system, figure 

2.6 gives a plot of number of iterations as 0K  is varied, keeping 1K 0= .  
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Figure 2.6: Number of iterations against 0K  for 1G (z)  

 

Again the minimum number of iterations achieved was 4, though with higher values of 

0K . Similar simulations on different systems concluded that: 

 

(a) Tune the control algorithm initially, by using 0K  alone. 

(b) Consider 1K  and higher gains only, if the requirements are not met.  

 

This procedure of selection of gains is followed through out this thesis. 

 

2.5   One Sample At A Time Iterative Learning Controller 

(OSATILC) 

 
A survey of ILC research already published revealed, that the corrective input was 

updated for all the samples, for all iterations, until the desired response was achieved. 

This means that even if most part of the desired response was achieved, the whole input 

was changed. In other words all the samples were modified at all the iterations. One 
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Sample At a Time (OSAT) approach focuses on converging one sample at a time. In this 

approach each sample is given a priority. The order of priority is from sample 1 to N. 

This means that if samples 1 to k have converged i.e. their output match the desired 

output, no correction in input is made for these samples. The rules for OSATILC are 

stated below:-  

 

(1) Samples should be given a priority from sample 1 to N, where sample 1 has the 

highest priority and sample N has the least priority. 

(2) There should be no gap between the samples, i.e. samples 1 to 10 should converge 

before sample 11 is considered for convergence. 

(3) The input changes for only that sample which is under consideration. 

(4) Once a sample input has converged i.e. the input value of thk  sample is calculated, 

the value of that input should be applied as a starting value for thk +1 sample. i.e. 

u (k +1) = u (k)j j  (2.5)

(5) Once the input for a sample has been calculated, no change in that input will be 

made in any subsequent iterations i.e.  

c cu (1...k ) = u (1...k )j+1 j  (2.6)

 Where, ck  represents the number of converged samples. 

 

We now develop the mathematical frame work for OSATILC and other ILCs 

presented in this chapter. 

 

2.5.1   Mathematical background 

 
This section develops the mathematical basis required to formulate Iterative 

Learning Controllers. As our ILCs are discrete controllers, we take the discrete time 

representation of a system, given by equation:- 

y(k +1) = Ay(k) + Bu(k)  (2.7)
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Where current output, current input and next output are represented by y(k) , u(k)  and 

y(k +1) . The system coefficients are represented by A and B. 

In 2-D format this representation can be written as 

y (k +1) = Ay (k) + Bu (k)j j j  (2.8)

Where y (k +1)j is the next output at  jth  iteration. 

In discrete terms, the effect of input sample k  is observed at sample k + n , at the 

output. Where n is the delay of the system. Therefore, the number of samples for y  is 

from 1...(N+n). Putting it another way, this means that the input at sample (k + 5)  will 

have no effect at output sample (k + 5)  and lower. Using the delay of the system the error 

equation (2.2) is written, in a more generalized form as 

e (k) = yd (k) - y (k + n)j j j  (2.9)

Which means that the error at sample k  is the difference between the desired output at 

sample k , minus the actual output delayed by n  samples. 

 

2.5.2   Two-Dimensional model of the proposed learning control 
system 

 

A 2-D state space representation of the ILC scheme will be developed in this 

section. 

Error equation (2.9), for next sample, can be extended to 

e (k +1) = yd (k +1) - y (k +1+ n)j j j  (2.10)

Putting the values of e (k)j  and e (k +1)j from (2.9) and (2.10) in (2.4) ⇒  

0 1u (k) = u (k) + K (yd (k) - y (k + n)) + K (yd (k +1) - y (k +1+ n))j+1 j j j j j  

0 0 1 1u (k) = u (k) + K yd (k) - K y (k + n) + K yd (k +1) - K y (k +1+ n)j+1 j j j j j  (2.11)

Discrete representation of a 2-D system from (2.8) can be extended, for a system 

with n sample delay, to 
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y (k +1+ n) = Ay (k + n) + Bu (k)j j j  (2.12)

Using (2.12) in (2.11) gives 

0 0 1 1u (k) = u (k) + K yd (k) - K y (k + n) + K yd (k +1) - K (Ay (k + n) + Bu (k))j+1 j j j j j j  

0 0 1 1 1u (k) = u (k) + K yd (k) - K y (k + n) + K yd (k +1) - K Ay (k + n) - K Bu (k)j+1 j j j j j j  

0 1 1 0 1u (k) = -K y (k + n) - K Ay (k + n) + u (k) - K Bu (k) + K yd (k) + K yd (k +1)j+1 j j j j j j
 

(2.13) 

 

0 1 1 0 1u (k) = (-K - K A)y (k + n) + (I - K B)u (k) + K yd (k) + K yd (k +1)j+1 j j j j  (2.14)

Equation (2.12) and (2.14) in compact matrix form give 

0 1 1 0 1

y (k +1+ n) y (k + n) yd (k)A B 0 0j j j
= +

-K - K A I - K B K Ku (k) u (k) yd (k +1)j+1 j j

                             
 

(2.15)

This is the 2-D state space representation of the proposed ILC. 

 

2.5.3   Stability and convergence analysis using error equations 

 

Stability and convergence issues were studied using the Roesser model given by 

R. P. Roesser [123]. Roesser presents a two-dimensional discrete state-space model in 

which the state of the system is divided into “horizontal” and a “vertical” state. The 

model is given by 

A A Bh hx (i +1, j) x (i, j)1 2 1= + u(i, j)v vA A Bx (i, j+1) x (i, j)3 4 2

      
      
            

 
(2.16)

where i  and j  are non negative integers, named horizontal and vertical coordinates and 

h n1 v n2x R , x R∈ ∈  are local states of the system which are propagated horizontally and 

vertically by the first order difference equations respectively. Input vector is represented 

by ru R∈ and output vector by my R∈ . Matrices A1, A2 , A3, A4 , B1 , B2 , C1  and C2  

have appropriate dimensions. It is well known that Roesser’s model is the most general 2-
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D state space model. For a special case of Roesser model where A = 02 and A = 03 , the 

necessary conditions for a system, of form (2.16), to be stable are 

(A ) < 11ρ , (A ) < 14ρ  (2.17)

Here ρ  is the 1-D spectral radii [133]. The spectral radius of a matrix or a bounded linear 

operator is the supremum among the moduli of the elements in its spectrum [40]. That is, 

if A1 is some complex or real element with eigenvalues λ1, …, λn . Then the spectral 

radius (A )1ρ  of A1 is  

1
(A ) max λ1 ii n

ρ
≤ ≤

=  

Equation (2.17) means that for the model in (2.16) with A2  and A3 set to zero, if 

spectral radii of A1and A4  is less than 1, the 2-D system is stable. Hence if any 2-D 

approach can be represented in Roesser model format, the stability and convergence 

criteria can be applied. 

By letting iteration j  increase to j+1, equation (2.10) and (2.12)⇒  

e (k +1) = yd (k +1) - y (k +1+ n)j+1 j+1 j+1  (2.18)

y (k +1+ n) = Ay (k + n) + Bu (k)j+1 j+1 j+1  (2.19)

Putting (2.19) in (2.18) ⇒  

e (k +1) = yd (k +1) - (Ay (k + n) + Bu (k))j+1 j+1 j+1 j+1  (2.20)

e (k +1) = yd (k +1) - Ay (k + n) - Bu (k)j+1 j+1 j+1 j+1  

Adding Ayd (k)j+1  on both sides 

Ayd (k) + e (k +1) = Ayd (k) + yd (k +1) - Ay (k + n) - Bu (k)j+1 j+1 j+1 j+1 j+1 j+1  

e (k +1) = yd (k +1) - Ayd (k) + Ayd (k) - Ay (k + n) - Bu (k)j+1 j+1 j+1 j+1 j+1 j+1  

e (k +1) = yd (k +1) - Ayd (k) + A(yd (k) - y (k + n)) - Bu (k)j+1 j+1 j+1 j+1 j+1 j+1  

e (k +1) = yd (k +1) - Ayd (k) + Ae (k) - Bu (k)j+1 j+1 j+1 j+1 j+1  (2.21)

Putting (2.12) in (2.10) ⇒  
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e (k +1) = yd (k +1) - (Ay (k + n) + Bu (k))j j j j  (2.22)

e (k +1) = yd (k +1) - Ay (k + n) - Bu (k)j j j j  (2.23)

Adding Ayd (k)j  on both sides of equation (2.23) ⇒  

Ayd (k) + e (k +1) = Ayd (k) + yd (k +1) - Ay (k + n) - Bu (k)j j j j j j  

e (k +1) = yd (k +1) - Ayd (k) + Ayd (k) - Ay (k + n) - Bu (k)j j j j j j  

e (k +1) = yd (k +1) - Ayd (k) + A(yd (k) - y (k + n)) - Bu (k)j j j j j j  

e (k +1) = yd (k +1) - Ayd (k) + Ae (k) - Bu (k)j j j j j  (2.24)

Subtracting (2.24) from (2.21) ⇒  

e (k +1) - e (k +1) = yd (k +1) - yd (k +1) - Ayd (k) + Ayd (k) +...j+1 j j+1 j j+1 j
Ae (k) - Ae (k) - Bu (k) + Bu (k)j+1 j j+1 j

 
(2.25)

Assuming that the desired output does not change, i.e. 

yd (k +1) = yd (k +1)j+1 j  and yd (k) = yd (k)j+1 j  

Equation (2.25) becomes  

e (k +1) - e (k +1) = Ae (k) - Ae (k) - Bu (k) + Bu (k)j+1 j j+1 j j+1 j  (2.26)

We now discuss two cases one when 1K = 0  and the other when 1K 0≠ . 

 

2.5.3.1   Case 1: When 1K = 0  

 

Defining 

(k) = e (k) - e (k)j j+1 j�  (2.27)

and 

(k +1) = e (k +1) - e (k +1)j j+1 j�  (2.28)

Putting (2.28) in (2.26) ⇒  

(k +1) = Ae (k) - Ae (k) - Bu (k) + Bu (k)j j+1 j j+1 j�  (2.29)
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As 1K = 0 , equation (2.4) can be rewritten as 

0u (k) = u (k) + K e (k)j+1 j j  (2.30)

Using (2.30) in (2.29) ⇒  

0(k +1) = Ae (k) - Ae (k) - B(u (k) + K e (k)) + Bu (k)j j+1 j j j j�  

0(k +1) = Ae (k) - Ae (k) - Bu (k) - K Be (k) + Bu (k)j j+1 j j j j�  (2.31)

0(k +1) = Ae (k) - Ae (k) - K Be (k)j j+1 j j�  

0(k +1) = A(e (k) - e (k)) - K Be (k)j j+1 j j�  

Using definition in (2.27) ⇒  

0(k +1) = A (k) - K Be (k)j j j� �  (2.32)

Rearranging (2.27) ⇒  

e (k) = (k) + e (k)j+1 j j�  (2.33)

Writing (2.32) and (2.33) in Roesser model form 

0
(k +1) (k)A -K Bj j

e (k) I I e (k)j+1 j

       =         

� �
 

(2.34)

 

Using the Roesser model convergence criteria in (2.17), following convergence 

theorem is presented. 

 

Theorem 1: 

 

The Roesser model in (2.16), its convergence criteria in (2.17) and the Roesser 

model of the proposed scheme in (2.34)⇒  

(A ) < 11ρ  ⇒  (A) < 1ρ  (2.35)

Inequality (2.35) requires that the original system should be stable i.e. its poles should be 

with in the unit circle. 

And 
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A = 02   ⇒  0K B = 0  (2.36)

Equation (2.36) states that if the value of 0K is chosen such that, 0K B = 0 , the resulting 

2-D error system is stable and the learning process will converge. 

 

2.5.3.2   Case 2: When 1K 0≠  

 

Defining 

1(k) = e (k) - e (k) + K Be (k)j j+1 j j�  (2.37)

and 

1(k +1) = e (k +1) - e (k +1) + K Be (k +1)j j+1 j j�  (2.38)

Putting (2.4) in (2.26) ⇒  

0 1e (k +1) - e (k +1) = Ae (k) - Ae (k) - B(u (k) + K e (k) + K e (k +1)) + Bu (k)j+1 j j+1 j j j j j
0 1e (k +1) - e (k +1) = Ae (k) - Ae (k) - Bu (k) - K Be (k) - K Be (k +1) + Bu (k)j+1 j j+1 j j j j j

1 0e (k +1) - e (k +1) + K Be (k +1) = Ae (k) - Ae (k) - Bu (k) - K Be (k) + Bu (k)j+1 j j j+1 j j j j

1 0e (k +1) - e (k +1) + K Be (k +1) = Ae (k) - Ae (k) - K Be (k)j+1 j j j+1 j j  

Adding 1K ABe (k)j  on both sides and rearranging 

1 1 1 0e (k +1) - e (k +1) + K Be (k +1) = Ae (k) - Ae (k) + K ABe (k) - K ABe (k) - K Be (k)j+1 j j j+1 j j j j

1 1 1 0e (k +1) - e (k +1) + K Be (k +1) = A(e (k) - e (k) + K Be (k)) - K ABe (k) - K Be (k)j+1 j j j+1 j j j j  

1 1

1 0

e (k +1) - e (k +1) + K Be (k +1) = A(e (k) - e (k) + K Be (k))j+1 j j j+1 j j
- (K AB + K B)e (k)j  

(2.39)

Using (2.37) and (2.38) in (2.39) 

1 0(k +1) = A (k) - (K AB + K B)e (k)j j j� �  (2.40)

Rearranging (2.37) ⇒  

1e (k) = (k) + e (k) - K Be (k)j+1 j j j�  

1e (k) = (k) + (I - K B)e (k)j+1 j j�  (2.41)
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Writing (2.40) and (2.41) in Roesser model form 

1 0

1

(k +1) (k)A -(K AB + K B)j j
I I - K Be (k) e (k)j+1 j

       =         

� �
 

(2.42)

Using the Roesser model convergence criteria in (2.17), following convergence 

theorem is presented 

 

Theorem 2: 

 

The Roesser model in (2.16) the convergence criteria in (2.17) and the Roesser 

model of the proposed scheme ⇒  

(A ) < 11ρ  ⇒  (A) < 1ρ  (2.43)

This means that the original system should be stable i.e. its poles should be with in the 

unit circle. Criteria 

A = 02   ⇒  1 0(K AB + K B) = 0  (2.44)

And criteria 

(A ) < 14ρ   ⇒  1I - K B < 1 (2.45)

Inequality (2.43) and equations (2.44) and (2.45) state that: 

If the system is stable and the values of 0K  and 1K are chosen such that 

1 0(K AB + K B) = 0  and 1I - K B < 1, then the resulting 2-D error system is stable and the 

learning process will converge. 

To test the OSATILC, a numbers of simulations were carried out. Some of the 

results are presented in the following section. 

 

2.5.4   Simulation results 

 

This section presents simulation results from 1G (z) , 2G (z) , 3G (z)  and NLS 

systems. The following results were taken with values of 0K = 0.1 , 1K = 0  and sampling 

time ( Ts ) = 0.1. The system convergence criteria was  
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e (k) < 0.01j  (2.46)

Figure 2.7 shows the learning behaviour for the non-linear system (NLS). The 

dotted lines are the desired response and the solid lines represent the actual output of the 

system. The system converged in 877 iterations. 

 

 

Figure 2.7: A non linear system using OSATILC. 

 

The same system when tested on classical ILC technique [125] showed mixed 

results. The performance was very good in the beginning as error decreased sharply but it 

started increasing later on and then became unstable. The response is shown in figure 2.8. 

 

Figure 2.8: Performance of the approach using the classical ILC given by Arimoto. 
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For the classical ILC, the norm of error as iterations were increased is plotted in 

figure 2.9. 

 

 

Figure 2.9: Error vs. number of iterations. 

 

The error decreases sharply but then at about 35th iteration starts to increase. The system 

would not have diverged if the convergence criteria was relaxed to e (k) < 0.4j . In fact 

most approaches have this problem of divergence if the convergence criterion is tightened 

i.e. the permissible error is reduced beyond a certain limit. With the proposed scheme the 

output reaches the desired output and does not alter as the numbers of iterations are 

increased further or permissible error is reduced. The four systems, converged in 2086, 

686007, 5083 and 877 iterations, respectively. The behaviour of OSATILC for the four 

systems is presented in figure 2.10. 
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Figure 2.10: Behaviour of error for SS, CCS, CSS and NLS 

 

A highly non-linear problem of an inverted pendulum on a cart (Appendix A) was also 

used to test OSATILC. The pendulum was required to track a sigmoid trajectory and then 

maintain an angle of -1 radians. Figure 2.11 shows the angle of the rod (pendulum) and 

the input learnt to achieve the desired path. 

 

 

Figure 2.11: The pendulum maintaining a desired angle with the learnt input. 
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OSATILC showed better performance than the classical ILC but the convergence 

time needed to be improved. 

 

2.6   Multiple Samples at a Time Iterative Learning Controller 

(MSATILC) 

 
To increase the convergence rate, more samples needed to be taken in to account. 

This resulted in the modification of rule 3 given for OSATILC. The rules for MSATILC 

are:-  

 

(1) Samples are given a priority from sample 1 to N, where sample 1 has the highest 

priority and sample N has the least priority. 

(2) There should be no gap between the samples, i.e. samples 1 to 10 should converge 

before sample 11 is considered for convergence. 

(3) The input changes for all those samples that have not converged. 

(4) Once a sample input has converged i.e. the input value of thk  sample is calculated, 

the value of that input should be applied as a starting value for thk +1 sample. i.e. 

u (k +1) = u (k)j j   

(5) Once the input for a sample has been calculated, no change in that input will be 

made in any subsequent iterations i.e.  

c cu (1...k ) = u (1...k )j+1 j   

 Where, ck  represents the number of converged samples. 

 

Rule (3) is the heart of MSATILC. Instead of, only changing the input of the sample 

under consideration, all the sample inputs that have not converged are changed.  

Results from same four systems, as were used for OSATILC, are presented for 

comparison. The results in this section were taken with values of 0K = 0.1 , 1K = 0  and 

Ts = 0.1. Figure 2.12 shows the learning behaviour for a simple system, 1G (z) . The 
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dotted lines are the desired response and the solid lines represent the actual output of the 

system.  

 

Figure 2.12: Desired output and actual output as iterations increase for 1G (z) . 

 

The system converged in 63 iterations. MSATILC performed better than OSATILC as it 

took more samples into account. The key in both schemes (OSATILC and MSATILC) is 

that the input for samples that have converged is not changed, unlike other ILC schemes 

presented in literature. This guarantees that once convergence is achieved, for a range of 

samples (in priority order) it never diverges. Figure 2.13 shows the error plot 

for 1G (z) , 2G (z)  and 3G (z)  as iterations increase. 

 

Figure 2.13: Error curves for 1G (z) , 2G (z)  and 3G (z) . 
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All the systems show continuous decrease in error as iterations increase. The error 

behaviour for NLS is exhibited in figure 2.14. 

 

 

Figure 2.14: Behaviour of error for NLS. 

 

Changing inputs for more samples have an unwanted effect of temporarily 

increased error, similar to the effect seen in conventional ILC. This increase is catered for 

by the priority assigned and by not changing the inputs of samples which have 

converged. Therefore the error is pulled back in subsequent iterations. It took 63, 11629, 

886 and 2141 iterations to converge for the four systems.  

Both OSATILC and MSATILC used a randomly chosen value of 0K  and 1K . If 

we can make an initial guess at these values, just as the human operator experiment 

revealed, we can reduce the number of iteration further. 

 

2.7   Modified Multiple Samples At a Time Iterative Learning 

Controller (MMSATILC) 

 

This modified approach makes an initial guess at the values of 0K  and 1K . The 

initial value of 0K  is taken as the DC gain of the system while the initial value of 1K  is 

10% of the DC gain of the system. 
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For sampled systems the DC gain is given by 

zG(z) = G(1)lim
z 1→

 

If the system is not known, a trial input can be given to the system to calculate its 

DC gain. Results from the same four systems, as used in the previous section, are 

presented to see the effect of this guess. 

The performance of this modified approach as iterations increased for 2G (z)  is 

given in figure 2.15. The results in this section were taken with values of 0K = 0.1 , 

1K = 0  and Ts = 0.1. 

 

 

Figure 2.15: Output trying to track the desired output for 2G (z) . 

 

The error performance of the four systems under consideration is given in figure 

2.16 and figure 2.17. 

 



35 

 

Figure 2.16: Behaviour of error 1G (z) , 2G (z)  and 3G (z) . 

 

 

Figure 2.17: Error performance with NLS. 

 

The figures show marked improvement in performance over OSATILC. The rate of 

convergence is much better. To see this improvement in performance, a comparison of 

results from the three schemes is made. 
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2.8   Comparative Results 

 
The results obtained by applying the classical ILC, OSATILC, MSATILC and 

MMSATILC on the four selected systems are presented in this section for quick 

comparison. Table 2.1 presents these results for convergence criteria of e (k) < 0.01j . 

Here DNC stands for ‘Did Not Converge’.  

 

   Approach 

System 

Classical ILC 

(iterations) 

OSAT ILC 

(iterations) 

MSAT ILC 

(iterations) 

MMSAT ILC 

(iterations) 

SS 146 2086 63 1 

CCS DNC 686007 11629 8 

CSS 1335 5083 886 2 

NLS DNC 877 2141 228 

Table 2.1: A quick comparison of results. 

 

All the results were taken under similar conditions. Classical ILC was not able to 

converge for CCS and NLS. Though OSATILC converged for all systems, numbers of 

iterations were very high. These iterations were significantly reduced in MSATILC and 

further reduced in MMSATILC. OSATILC gives us the power to apply ILC technique to 

systems, in real time as each sample can be treated as one trial. MSATILC and 

MMSATILC can divide an input into smaller regions for better control and convergence. 

The other advantage of the proposed schemes is that the desired error can be made as 

small as possible, though at the cost of more iterations. 

 

2.9   Two Degree of Freedom Tracking Platform 

 
To test OSATILC, MSATILC and MMSATILC for real time tasks, a simple 

mathematical model of a two degree of freedom platform was developed. The platform 
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carries a camera mounted on it. The camera takes the pictures of a scene at regular 

intervals and thus tracks an object of interest. The model was named Two Degree of 

Freedom Tracking Platform (2DOFTP).  

A few assumptions were made for developing a model of this 2DOFTP. 

 

(a) The two DC motors have rigid rotor and shaft. 

(b) There is no backlash and gear slip. 

(c) The pixels of camera are continuously distributed i.e. no gap exists between two 

consecutive pixels. 

(d) The camera has a pixel resolution of 320x240. 

(e) The two motors are uncoupled. 

(f) The viewing area is at a fixed distance from the platform. 

 

Both the motors, called the pitch motor and the yaw motor, were assumed to be of 

the same specifications. The motors parameters are given below.  

 

J (moment of inertia of motor) =3.2284E-6;   

b (damping ratio of the mechanical system) =3.5077E-6; 

K (electromotive force constant) =0.0274;  

R (electric resistance) =4; 

L (electric inductance) =2.75E-6;  

 

The motor’s transfer function is as given below  

 

0.0274H(s) = -12 2 -5 28.878×10 s +1.291×10 s + 0.0007648s
 

(2.47)

 

The entire setup, showing its degrees of freedom, is exhibited in figure 2.18. 
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Figure 2.18: Movement angles of the platform. 

 

In figure 2.18, x,y,z are the axis of the Cartesian coordinate system. The two degrees of 

freedom are the pitch ( v ) and yaw ( w ) angles.  

The camera was assumed to have a viewing area of 2m x 2m. This means that 

there are 240 pixels to view 2m in vertical direction and 320 pixels to view 2m in 

horizontal direction. For this proposed viewing area, each pixel represents approx. = 

1/120 = 0.0083m in vertical direction and approx. = 1/160 = 0.0063m in horizontal 

direction. 

Another assumption made was that the object can move in this defined viewing 

area of 2x2 meter only. The pertinent geometry is explained in figure 2.19. 

 

 

Figure 2.19: Mapping of the viewing area with the camera’s pixel area. 
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The camera pixels were divided into four regions with (0,0) at the centre of 

camera as shown in figure 2.20. 

 

 

Figure 2.20: Division of camera’s resolution into platform resolution. 

 
The aim is to have the object at (0,0) of platform resolution or (160,120) of camera 

resolution. A conceptual view of an object being viewed by a camera, 1m away from the 

object, is described in figure 2.21. 

 

 

Figure 2.21: An object as viewed by the camera. 

 

An object in viewing area, represented by a star, occupies some pixels in the camera. The 

position of the object is reckoned by the centre of the object, calculated by an image 

processing module. Defining the current x and y positions of the object to be px (pixels) 

and py (pixels), the error can be calculated as 

ex (k) = 160 - pxj  (2.48)
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ey (k) = 120 - pyj  (2.49)

The location (160,120) is the (0,0) of the platform resolution and is the centre of the 

camera. Figure 2.22 shows the trigonometric representation of an object at upper left 

corner of the viewing area. 

 

 

Figure 2.22: Trigonometric representation of object projected on x,y axis (left) and 

trigonometric representation of object projected on x axis (right). 

 

The motor movements are labelled α  rad/sec and θ  rad/sec, for the pitch and yaw motors 

respectively. From the figure, tangent of the angle θ  can be written as 

1tan(θ) =
1

 

giving 
-1θ = tan (1) = 0.7854  radians = 45degrees 

This means that the camera can view 45o± in the yaw directions. Using this trigonometric 

representation and its equivalent mathematical formulation, objects can be moved in the 

viewing area, and the required motor movements can be calculated. For example, for an 

object at (140,120) camera coordinates, the error is computed as  

ex (k) = 160 -140j = 20 pixels = 20x0.0063 = 0.126m  

ey (k) = 120 -120j =0 pixels = 0 x 0.0083 = 0 m 

Meaning that, the object is 0.126m away from the centre in x direction and 0 m away 

from the centre in y direction. 
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Therefore, the yaw motor has to be moved -1θ = tan (0.125) = 0.1253 radians. Hence the 

motor should move left to position the object at camera centre. The appropriate inputs to 

the motors were calculated by the proposed ILCs. 

Once the movements have taken place, the new platform origin is recalculated by 

the following equations. 

new_platform_origion_x =160- pixels moved because of yaw motor (2.50)

new_platform_origion_y =120- pixels moved because of pitch motor (2.51)

Using this 2DOFTP, the real time performance of any scheme can be tested. The 

results recorded using OSATILC are presented in next section. 

 

2.9.1   Simulation results for 2DOFTP 

 

The results from one of the proposed controller OSATILC are presented in this 

section. MSATILC and MMSATILC showed similar results. The behaviour of OSATILC 

while tracking an object at (61,1) is demonstrated in figure 2.23. For this performance the 

values of gains assumed were 0K 0.1=  and 1K 0= . In this figure the object does not 

move.  

 

 

Figure 2.23: Tracking behaviour as an object at (61,0) is being tracked. 
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The frame rate of the camera was assumed to be 5 frames per second. The frame rate can 

be increased or decreased (if hardware allows) as per requirement. A typical camera can 

take 20 frames per second, easily now days. The result of another such simulation, with 

gain, 0K 0.1= , and the object moving, is shown in figure 2.24.  

 

 

Figure 2.24: A moving object being tracked using the Two degree of freedom model. 

 

The object started its journey at (1,80) pixels i.e. (159,40) pixels away from the camera 

centre. It then slowly moved upwards. The error performances, for this moving object, in 

both x and y axis is demonstrated in figure 2.25. 

 

 

Figure 2.25: Error behaviour as moving object is tracked. 
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As can be seen from plots (2.24) and (2.25), both static and moving objects were 

successfully tracked using the OSATILC. The speed of tracking can be improved by 

increasing the frame rate. 

Once the scheme was tested through simulations and fine-tuned, it was ready to 

be tested through a practical setup. 

 

2.10   Experimental Setup 

 
The practical setup was similar in functionality to the 2DOFTP model. The 

platform also had a camera mounted on it and had the capability to move in different 

degrees of freedom with great accuracy. The platform was $60,000 equipment with very 

high accuracy. The platform was M-850 Hexapod. 

 

2.10.1   Six Degree of Freedom Hexapod 

 

The M-850 Hexapod is a 6-axis positioning system by Physik Instrumente (PI). 

The M-850 hexapod provides motion in 3 translation axes and 3 rotational axes. A 

picture of the hexapod is presented in figure 2.26. 

 

 

Figure 2.26: Six degree of freedom Hexapod by PI. 
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Repeatability for a six-axis move is ± 1µm  in Z direction and ± 2µm in X and Y 

directions respectively. Repeatability for rotational axes are ± 10µrad . The three 

translational movements X,Y and Z are performed on a straight path. The three rotational 

movements produce three rotational angles u , v , w  called rotation angle, pitch angle and 

yaw angle respectively. All these movements are shown in figure 2.27. 

 

 

Figure 2.27: Hexapod coordinates and movements. 

 

M-850 can lift a load of 200Kg. The hexapod system consists of Hexapod 

mechanism, a movable platform supported by six linear actuators, the control electronics 

and the connecting cables. Movements in all six degrees of freedom can be accomplished 

using the DC-motor-driven linear actuators, which extend and contract the struts of the 

Hexapod platform. The actuators have a backlash-free spindle combined with a backlash- 

free gear head. The Hexapod can be controlled by a PC based 6-axis DC motor-

controller. The micrometer accuracy of the platform makes it an ideal choice for testing 

and implementing high performance tracking and control algorithms. The components 

are mounted free of backlash which gives the mechanical system exceptional stiffness 

and excellent positioning repeatability. The material and lubricants used also assure long 

term operation in different conditions and temperature ranges. 

To create a link between the Hexapod and the PC, control software was first 

developed using the Borland C compiler. It was fine tuned and then developed in 

MATLAB for ease of implementation of the proposed schemes. A Graphical user 

interface (GUI) was also developed to monitor the performance in real time.  
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The complete setup with the GUI is shown in figure 2.28. 
 

 
 

Figure 2.28: The complete Hexapod set up (left) and the GUI (right). 

 

The figure on the left shows the camera mounted on the hexapod facing the target area. 

The GUI on the right is a simple way of looking at the object, as seen by the camera and 

gauging control algorithm performance. The centre rectangular box, on the right picture, 

is the locking area. The object is considered locked if with in this area. The circle is the 

object spotted by the camera and the image processing module. 

Using OSATILC we now propose a scheme to control the Hexapod in real time 

[126]. 

 

2.10.2   Proposed Approach 

 

The proposed scheme is shown in figure 2.29. 
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Figure 2.29: Block diagram representation of the proposed scheme. 

 

Here current input for the pitch angle ( uv (k)j ) and current input for the yaw angle 

( uw (k)j ), are supplied to the hexapod. The hexapod platform moves, moving the 

mounted camera with it. The camera was taking snapshots of the scene regularly. Every 

snapshot goes through an image processing module for recognition and positioning of the 

target object. The desired x,y position in an x,y coordinate system are labelled ydx (k)j  

and ydy (k)j . This desired position for tracking purposes is the centre of the camera. The 

output of the hexapod in terms of the x,y coordinate system are measured as yx (k)j  and 

yy (k)j . Using the desired platform position and the current hexapod position the error is 

calculated as ex (k)j  and ey (k)j . These values are used by the proposed ILC to calculate 

the next pitch and yaw inputs ( uv (k)j+1 , uw (k)j+1 ). The input modification equation is 

re written for the two degrees of freedom as 

uv (k) = uv (k) +∆uv (k)j+1 j j  (2.52)

uw (k) = uw (k) +∆uw (k)j+1 j j  (2.53)
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The difference between the desired and actual object positions are given by the 

error equations 

ex (k) = ydx (k) - yx (k)j j j  (2.54)

ey (k) = ydy (k) - yy (k)j j j  (2.55)

The errors, the desired output and the actual output are in pixels. The camera 

could have different resolution as per accuracy requirements. For a 320x240 camera 

resolution the target plane was divided into four regions, as in the development of 

2DOFTP. Those regions are shown in figure 2.20. The aim was to have the target as close 

to (0,0) as possible. Therefore, an object at coordinate (0,0) is perfectly tracked while an 

object at (60,0) is 60 pixels away in x direction. For the presented experiment the system 

operated in two modes; the learning mode and the tracking mode. The learning mode 

learns the gains iteratively. The hexapod is made to go to its initial position at every 

iteration i.e. yx (1) = yx (1)1j  and yy (1) = yy (1)1j . Here ( yx (1)1 , yy (1)1 ) is the initial 

position of the hexapod at first iteration. The proposed gain modification scheme is given 

below 

Kv (k) = Kv (k) + µex (k)j+1 j j  (2.56)

 

Kw (k) = Kw (k) + µey (k)j+1 j j  (2.57)

 

Kv1 (k) = Kv1 (k) + µex (k +1)j+1 j j  (2.58)

 

Kw1 (k) = Kw1 (k) + µ ey (k +1)j+1 j j∆  (2.59)

Where µ  is the step size parameter. The Kv , Kv1 are the pitch gains and Kw , Kw1 are 

the yaw gains. The next inputs to the hexapod were calculated using  

uv (k) = uv (k) + Kvs (k)ex (k) + Kv1s (k)ex (k +1)j+1 j j j j j  (2.60)

 

uw (k) = uw (k) + Kws (k)ey (k) + Kw1s (k)ey (k +1)j+1 j j j j j  (2.61)
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Here Kvs , Kv1s , Kws and Kw1s  are the stored pitch and yaw gains during the previous 

learning cycle. The tracking mode used the learnt input values, to track the laser. The 

initial state of one learning cycle is the final state of the previous learning cycle i.e. 

yx (1) = yx (N)j+1 j and yy (1) = yy (N)j+1 j .  

 

2.10.3   Results 

 

A CO2 laser beam spot was chosen as a potential target. In the learning mode the 

values of Kv (k)j and Kw (k)j  were learnt against different object positions from the 

centre. One such learnt set of values for Kw (k)j  are shown in figure 2.30. 

 

 

Figure 2.30: Learnt values of  Kw (k)j  in the learning phase. 

 

The small variations in the shape of the plot in figure 2.30 are due to flickering of laser 

beam. This produced small variations in the illuminated spot and hence caused small 

error in recognizing the centre of the spot by the image processing module. In almost all 

cases the error is not more than ±1  pixel. These learnt values of the pitch and yaw gains 

were stored in memory. Using these stored values, the Hexapod was made to track and 
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follow different moving targets. A xy plot of one such target being chased is indicated in 

figure 2.31. 

 

 

Figure 2.31: A xy plot of a target being chased. 

 

The target was initially at (150,32) pixels. It was successfully tracked in 10 frames. The 

error generated during this tracking is described in figure 2.32. Here number of iterations 

can be thought of as number of times the input was adjusted.  

 

 

Figure 2.32: Normalized error as the laser is tracked. 
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The plots show the laser being successfully tracked. For a 20 frames per second camera 

the object was tracked with in 0.5 seconds. 

 

2.11   Summary 
 

Basic framework for Iterative Learning Control (ILC) is developed in this chapter. 

Characteristics of human leaning, gathered from experimental results, helped in the 

development of this frame work and consequently, three iterative learning controllers 

were deigned and presented in this chapter. Stability and convergence criteria for these 

ILCs are also established. The three controllers OSATILC, MSATILC and MMSATILC 

are tested through simulations. These controllers can also be used in real time 

applications. One such application in which a Six Degree of Freedom Hexapod tracks a 

laser spot is also presented.  

Most ILC controllers are still based on the classical ILC presented by Arimoto. 

All the three controllers presented in this chapter performed better than the classical ILC. 

Research shows that there are always some optimal values of gains that give us best 

results. We need to have a procedure to find these optimal values. Also, in real world 

applications there are usually changes in system dynamics, due to wear and tear. The 

desired response requirements also vary from time to time. Both of these cases require a 

change in the learning law for optimal performance. Hence the Iterative Learning scheme 

needs to be adaptive.  

The next chapter develops such schemes. 
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3 INTELLIGENT CONTROLLERS USING ADAPTIVE 
ITERATIVE LEARNING 

 

In recent years, a lot of research efforts have been directed towards self-learning 

and adaptable systems. One of the very promising methodology for self-learning control 

systems is Iterative Learning Control (ILC) which is an algorithm capable of tracking a 

desired trajectory, within a specific period of time. Conventional ILC algorithms have the 

problem of relatively slow convergence rate and lack of adaptability. Most of the current 

ILC methods adopt fixed learning laws where only control input scheme is modified 

during learning iterations. Since only control input is changed during learning for a 

specified trajectory, it is difficult to generalize the knowledge learned from one desired 

trajectory to another, even if they are similar. Therefore, this type of learning control is 

restrictive to repetitive tasks which have same desired trajectory. A survey of current 

literature indicates that ILC schemes in tandem with adaptive control are growing into a 

very promising research area [145]. This chapter continues from the research work 

described in chapter 2, to evolve adaptive ILCs.  

We begin with an introduction of the theory and present a 2-D learning process 

similar to the one given in [152]. This process considers time horizon and iteration axis 

simultaneously, giving us more dimensions for control [148]. Based on this theory, a 

specific mathematical framework is formulated upon which different ILC methodologies 

are developed. The methodologies makes use of system identification technique, steepest 

descent method, different conventional and custom built cost functions and a learning 

gain method to introduce adaptivity. The problem of slow convergence is resolved by 

adaptive control laws. The model dependency of the current ILC schemes is dealt by an 

identification approach. Simulations of linear and non-linear systems are presented to 

illustrate the design procedure and to confirm the effectiveness and robustness of the 

algorithms. A Quanser’s DC motor kit is also used to demonstrate the usefulness of these 

adaptive schemes for real time applications. The optimal gain values are calculated using 

the steepest descent approach. Convergence and stability conditions are also derived. 
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Diminishing cost and increasing computational power of computers and embedded 

systems make the implementation of such schemes highly feasible. 

The main features of such a scheme are 

 

(1) It does not require an inverse dynamic model of the controlled system for designing 

the control scheme as many other ILC schemes do. Instead, it tries to estimate the 

learning gains by using input and output data. Both learning law and the control 

input sequence are modified to improve the tracking performance of the system. 

(2) No prior knowledge of the system is required. Therefore, the same scheme can be 

used for different systems as the control algorithm will adapt to the system and the 

control gain(s) will be learned automatically. 

(3) The approach can be used in learning tasks where the desired trajectory changes 

during operation. 

(4) The knowledge learnt from one particular task can be utilized in similar tasks 

reducing the learning time. 

We now develop basic framework for these adaptive controllers. 

 

3.1   Adaptive Learning Controllers 

 
A Single Input Single Output (SISO) discrete system is shown in figure 3.1. 

 

 

Figure 3.1: A SISO system with disturbances. 
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The input u(k) , output y(k)  and disturbance v(k) are taken as 

(k) = [u(1) u(2) ... u(N)]u   

 

(k) = [y(1) y(2) ... y(N)]y   

 

(k) = [v(1) v(2) ... v(N)]v   

 

Where N  is the total number of samples.  

Input and output are observed while disturbance in most cases is not observed. 

The disturbance is considered as generated by filtered white noise. Taking z  as a shift 

operator and assuming disturbance to be generated by filtered white noise ε(z)  a SISO 

system can be represented as 

 

 

Figure 3.2: A SISO system with disturbances. 

 

This can be written in z transform form as 

Y(z) = G(z)U(z) + H(z)ε(z)  (3.1)

There are many models available to represent this SISO system. One of the models 

using Autoregressive with exogenous variables (ARX) is 

-1B(z )G(z) = -1A(z )
 

(3.2)
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1H(z) = -1A(z )
 

(3.3)

Where 

-1 -1 -naA(z ) = 1+ a z +...+ a zna1  (3.4)

 

-1 -1 -2 -nbB(z ) = b z + b z +...+ b z1 2 nb  (3.5)

Putting (3.2) and (3.3) in (3.1) ⇒  

-1B(z ) 1Y(z) = U(z) + ε(z)-1 -1A(z ) A(z )
 

(3.6)

Using values of -1A(z )  and -1B(z )  from  (3.4) and (3.5) and considering no extra delay 

and zero disturbances gives 

-1 -2 -nbb z + b z +...+ b z1 2 nbY(z) = U(z)-1 -na1+ a z +...+ a zna1
 

(3.7)

This in difference equation format can be written as 

y(k) = -a y(k -1) - a y(k - 2) - - a y(k - n ) + b u(k -1) + b u(k - 2) + + b u(k - n )na a1 2 1 2 nb b… … (3.8)

Using this representation of the system we now develop different adaptive iterative 

learning controllers. 

 

3.2   When System is Known  (Approach-1) 

 
We now consider the case when complete knowledge about the system is 

available. For this approach zero initial conditions are assumed i.e. u(k) = 0  for k < 0  

and y(k) = 0  for k < 1, with at least a single sample system delay.  

Observations [y(1) y(2) ... y(N)]  generated by applying an input sequence 

[u(0) u(1) ... u(N-1)]  can be written as 

y(1) = -a y(0) + b u(0)1 1   

 



55 

y(1) = b u(0)1  (3.9)

y(2) = -a y(1) - a y(0) + b u(1) + b u(0)1 2 1 2  

y(2) = -a b u(0) + b u(0) + b u(1)1 1 2 1  

y(2) = (-a b + b )u(0) + b u(1)1 1 2 1  (3.10)

 

y(3) = -a y(2) - a y(1) - a y(0) + b u(2) + b u(1) + b u(0)1 2 3 1 2 3   

 

( )y(3) = -a -a b u(0) + b u(0) + b u(1) - a b u(0) + b u(2) + b u(1) + b u(0)1 1 1 2 1 2 1 1 2 3   

 

y(3) = a a b u(0) - a b u(0) - a b u(1) - a b u(0) + b u(2) + b u(1) + b u(0)1 1 1 1 2 1 1 2 1 1 2 3   

 

y(3) = a a b u(0) - a b u(0) - a b u(0) + b u(0) - a b u(1) + b u(1) + b u(2)1 1 1 1 2 2 1 3 1 1 2 1   

 

y(3) = (a a b - a b - a b + b )u(0) + (-a b + b )u(1) + b u(2)1 1 1 1 2 2 1 3 1 1 2 1  (3.11)

#  
Or 

b 0 0 0 …y(1) u(0)1
-a b + b b 0 0 …y(2) u(1)1 1 2 1
a a b - a b - a b + b -a b + b b 0 …y(3) u(2)1 1 1 1 2 2 1 3 1 1 2 1

y(4) u(3)a a b - a b - a b + b -a b + b b …1 1 1 1 2 2 1 3 1 1 2 1
…

=

                             

#
# ## # # #

 

(3.12) 

This can be written in compact form as  

=Y GU  (3.13)

Where 

T = [y(1) y(2) … y(N)]Y  (3.14)
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T = [u(0) u(1) … u(N -1)]U  (3.15)

And 

b 0 0 01
-a b + b b 0 01 1 2 1

= a a b - a b - a b + b -a b + b b 01 1 1 1 2 2 1 3 1 1 2 1
a a b - a b - a b + b -a b + b b1 1 1 1 2 2 1 3 1 1 2 1

 
 
 
 
 
 
 
  

G

…

…

…

# …

# # # # #

 

(3.16)

For the next iteration we can also write (3.13) as 

=j+1 j+1Y GU  (3.17)

Assuming that the desired output sequence, [yd(1) yd(2) ... yd(N)] , is given. 

The input sequence applied and the output sequence generated because of it, give rise to a 

sequence of residuals. 

e(1) = yd(1) - y(1)   

e(2) = yd(2) - y(2)   

#  
e(N) = yd(N) - y(N)   

Or 

= -dE Y Y  (3.18)

Where 

T = [e(1) e(2) … e(N)]E  (3.19)

 

T = [yd(1) yd(2) … yd(N)]dY  (3.20)

The two dimensional vector notation for input, output, error and desired output 

are (k)jU , (k)jY , (k)jE  and (k)jYd . For ease of mathematical representation these 

vectors will also be written as U , Y , E  and Yd . 

In the next section an adaptive law is developed to find the optimal value of gain. 

For this development a novel cost function is proposed. 
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3.2.1   Gradient descent for adaptive gain(s) 

 
Gradient descent approach was used to find an adaptive mechanism for estimating 

gains. For the approaches in this chapter, it is assumed, without any loss of generality, 

that 0K K=  and 1K 0= . An important modification in the cost function is made to assist 

in the development of the ILC algorithms i.e. instead of eliminating error in the current 

iteration, elimination of error in the next iteration is proposed. Taking K as an unknown 

parameter the cost function J(K)  for minimizing sum of error square for next iteration 

can now be written as 

2N TJ(K) = e (k) =j+1 j+1 j+1k=1
 ∑   

E E  
(3.21)

Where j+1E  is the error vector for the next iteration and is given by equation 

= -j+1 j+1E Y Yd  (3.22)

As the aim is to reduce error in the next iteration, we can write 

0lim j+1j
→

→∞
E   

Using (3.22) and (3.17) in (3.21), ⇒  

TJ(K) = ( - ) ( - )j+1 j+1Y GU Y GUd d  (3.23) 

Here j+1U  is the input vector, calculated for next iteration. Using equation (2.4) and 

neglecting 1K , this input vector can be written as :- 

= + Kj+1U U E  (3.24)

Expanding equation (3.23) ⇒  

T T T T T TJ(K) = - - +j+1 j+1 j+1 j+1Y Y Y GU U G Y U G GUd d d d  (3.25)

As T T T=j+1 j+1Y GU U G Yd d   and every term here is a scalar. 

T T T T TJ(K) = - 2 +j+1 j+1 j+1Y Y U G Y U G GUd d d  (3.26)
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Putting value of j+1U  from equation (3.24), equation (3.26) ⇒  

T T T T TJ(K) = - 2( + K ) + ( + K ) ( + K )Y Y U E G Y U E G G U Ed d d  (3.27)

 

T T T T T T T T T T TJ(K) = - 2 - 2K + + K +
T T T T TK + K K

Y Y U G Y E G Y U G GU E G GUd d d d
U G GE E G GE

 
(3.28)

As T T T T TK = KE G GU U G GE   and every term is a scalar. 

T T T T T T T T T T TJ(K) = - 2 - 2K + + 2K +
T T TK K

Y Y U G Y E G Y U G GU E G GUd d d d
E G GE

 
(3.29)

 

Plotting cost function J  against different values of K  gave the error performance 

curves for each system. This error performance curve for 1G (z)  is shown in figure 3.3. 

 

 

Figure 3.3: Cost function against different values of  K . 

 

The figure shows that the cost function has a minimum for certain values of K . Similar 

plots were obtained for other systems also. 

Applying the ∇  operator to the cost function J(K)   

T T T T T T Tg = J(K) = -2 + 2 + 2K∇ E G Y E G GU E G GEd  (3.30)
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T T TJ(K) = -2 ( - - K )∇ E G Y GU GEd  (3.31)

 

T T TJ(K) = -2 ( - ( + K ))∇ E G Y G U Ed  (3.32)

 

T TJ(K) = -2 ( - )j+1∇ E G Y GUd  (3.33)

Using steepest decent to find  K  which results in minimum number of iterations. 

1K = K - µ( J(K))j+1 j 2
∇  

(3.34)

Or 

1K = K - µgj+1 j 2
 

(3.35)

Where K j  is the gain for current iteration, K j+1is the gain to be calculated for next 

iteration and µ  is the step size parameter. Putting value of g  from equation (3.33) in 

equation (3.35) we get 

1 T TK = K - µ(-2 ( - )j+1 j j+12
E G Y GUd  

(3.36)

 

T TK = K + µ ( - )j+1 j j+1E G Y GUd  (3.37)

Using this learning law for gain, the proposed approach is presented in block diagram 

format in figure 3.4. 
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Figure 3.4: Block diagram of the scheme for Approach-1. 

 

Input u (k)j  is applied to the plant. This input results in an output sequence (k)jy . Using 

output and the desired output sequence yd (k)j , error e (k)j  is calculated. This error, the 

knowledge about previous values of K , the present input and the knowledge about the 

plant G  is used to calculate the next value of K  i.e. j+1K . This value will be used during 

the next iteration by the ILC. The ILC calculates the next input to the plant, u (k)j+1 , 

which is applied to reduce error. This process continues until the desired output is 

achieved. 

  

3.2.2   Simulation results 

 

A number of simulations were performed to test this approach. The results of one 

such simulation using 1G (z)  are discussed. The results were obtained with starting values 

of K = 0.1 and µ = 0.01 . As discussed in chapter 2, there is always a range of values of 

K  which converge with minimum number of iterations. They are called the optimal 

values of K . For this system, a plot of values of K  against number of iterations it took to 

converge is given in figure 3.5 below. 
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Figure 3.5: Number of iterations taken to converge for different values of K . 

 

The optimal values of  K  are approximately between 1.7 – 2.3. Hence if equation (3.37) 

can find a value between this range, convergence in terms of finding value of  K will be 

achieved. 

The system, 1G (z) , in difference equation form can be written as 

y(k +1) = 0.8187y(k) + 0.09063u(k)  (3.38)

Here 1a = 0.8187 and 1b = 0.09063  

As this system has only 1a  and 1b , equation (3.8) reduces to 

1 1y(k +1) = a y(k) + b u(k)  (3.39)

Output sequences generated for different values of k  can be written as 

1y(1) = b u(0)  (3.40)

 

1 1 1y(2) = a b u(0) + b u(1)  (3.41)

 

1 1 1 1 1 1y(3) = a a b u(0) + a b u(1) + b u(2)  (3.42)

 

1 1 1 1 1 1 1 1 1 1y(4) = a a a b u(0) + a a b u(1) + a b u(2) + b u(3)  (3.43)
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1 1 1 1 1 1 1 1 1 1 1 1 1 1 1y(5) = a a a a b u(0) + a a a b u(1) + a a b u(2) + a b u(3) + b u(4)  (3.44)

#  
or 

1

1 1 1

1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

y(1) b 0 0 0 0 … u(0)
y(2) a b b 0 0 0 … u(1)
y(3) a a b a b b 0 0 … u(2)

=
y(4) a a a b a a b a b b 0 … u(3)
y(5) a a a a b a a a b a a b a b b … u(4)

     
     
     
     
     
     
     
     
     # # # # # # #

 

(3.45)

Putting the values of 1a and 1b in (3.45) gives 

y(1) 0.09063 0 0 0 0 … u(0)
y(2) 0.07404 0.09063 0 0 0 … u(1)
y(3) 0.06049 0.07404 0.09063 0 0 … u(2)

=
y(4) 0.04942 0.06049 0.07404 0.09063 0 … u(3)
y(5) 0.04037 0.04942 0.06049 0.07404 0.09063 … u

   
   
   
   
   
   
   
   
   # # # # # #

(4)

 
 
 
 
 
 
 
 
 #

 

(3.46)

Where 

0.09063 0 0 0 0 …
0.07404 0.09063 0 0 0 …
0.06049 0.07404 0.09063 0 0 …

=
0.04942 0.06049 0.07404 0.09063 0 …
0.04037 0.04942 0.06049 0.07404 0.09063 …

 
 
 
 
 
 
 
 
 

G

# # # # #

 

(3.47)

 

Using this proposed approach, the output of the system, as number of iterations 

increase, is given in figure 3.6. The bold dotted lines show the desired response and the 

thin continuous lines show the actual response of the system. 
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Figure 3.6: The proposed approach learning the desired output. 

 

The norm of error as this learning was taking place is presented in figure 3.7. 

 

 

Figure 3.7: Norm of error as iterations increase. 

 

The figure shows a rapid decrease in error as K  is learnt iteratively using equation 

(3.37). The learning behaviour of K is shown in figure 3.8. 
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Figure 3.8: Learning behaviour of K . 

 

This convergence behaviour was achieved even while the initial value of K  was 

changed. For a starting value of K = 5  the error response of the system as iterations 

increased is presented in figure 3.9. 

 

 

Figure 3.9: Error response with a starting value of, K = 5 . 

 

Figure 3.10 exhibits a plot of learnt values of K  for different starting values of K . 
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Figure 3.10: Learning behaviour of K  for different initial values. 

 

As can be seen in the figure, K  always settles within the range 1.7 – 2.3, which is the 

optimal range for 1G (z) . For an initial value of K = 0.1, K  reaches 1.7528 at first run. 

This value is stored in memory and used in subsequent runs. After a few runs, K  settles 

at 2.0193.  

 

3.3   When System is Partially Known  (Approach-2) 

 

For this approach zero initial conditions are assumed i.e. u(k) = 0  for k < 0  and 

y(k) = 0  for k < 1, with at least a single sample system delay.  

Using equation (3.8), observations [y(1) y(2) ... y(N)] , generated by 

applying an input sequence [u(0) u(1) ... u(N-1)] , for the system 1G (z)  can be 

written as 

1 1y(1) = -a y(0) + b u(0)  (3.48)

 

1 2 1 2y(2) = -a y(1) - a y(0) + b u(1) + b u(0)   
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2 1 2 1y(2) = -a y(0) - a y(1) + b u(0) + b u(1)  (3.49)

 

1 2 3 1 2 3y(3) = -a y(2) - a y(1) - a y(0) + b u(2) + b u(1) + b u(0)   

 

3 2 1 3 2 1y(3) = -a y(0) - a y(1) - a y(2) + b u(0) + b u(1) + b u(2)  (3.50)

#  
or 

1 1

2 1 2 1

3 2 1 3 2 1

y(1) a 0 0 … -y(0) b 0 0 u(0)
y(2) a a 0 … -y(1) b b 0 u(1)

= +
y(3) a a a … -y(2) b b b … u(2)

         
         
         
         
         
         

…
…

# # # # # # # # #

 

(3.51)

Considering a single scalar gain in equation (2.4), equation (3.51) can be expanded to  

1 1

2 1 2 1

3 2 1 3 2 1

y(1) a 0 0 … -y(0) b 0 0 u(-1) + Ke(-1)
y(2) a a 0 … -y(1) b b 0 u(0) + Ke(0)

= +
y(3) a a a … -y(2) b b b … u(1) + Ke(1)

         
         
         
         
         
         

…
…

# # # # # # # # #

 

(3.52)

 

1 1 1

2 1 2 1 2 1

3 2 1 3 2 1 3 2 1

y(1) a 0 0 … -y(0) b 0 0 u(-1) b 0 0 e(-1)
y(2) a a 0 … -y(1) b b 0 u(0) b b 0 e(0)

= + + K
y(3) a a a … -y(2) b b b … u(1) b b b … e(1)

            
            
            
           
           
            

… …
… …

# # # # # # # # # # # # #





 
 


 

(3.53) 

This can be written in vector notation as 

= + + K1 1 2 2 2 3Y G X G X G X  (3.54)

Where 

1

2 1

3 2 1

a 0 0 …
a a 0 …

=1 a a a …

 
 
 
 
 
 

G

# # #

 

(3.55)
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1

2 1

3 2 1

b 0 0
b b 0

=2 b b b …

 
 
 
 
 
 

G

…
…

# # #

 

(3.56)

 

T = [- y(0) -y(1) … -y(N -1)]1X  (3.57)

 

T = [u(-1) u(0) … u(N - 2)]2X  (3.58)

 

T = [e(-1) e(0) … e(N - 2)]3X  (3.59)

Putting (3.54) in (3.18) gives 

= - - - K1 1 2 2 2 3E Y G X G X G Xd  (3.60)

 

3.3.1   Gradient descent for adaptive gain(s) 

 

Taking cost function, J(K)  as sum of error squared for current iteration, it can be 

written as 
N 2 TJ(K) = e(k) =

k=1
∑ E E  

(3.61)

Putting the value of E  from equation (3.60) in (3.61) ⇒  

TJ(K) = ( - - - K ) ( - - - K )1 1 2 2 2 3 1 1 2 2 2 3Y G X G X G X Y G X G X G Xd d  (3.62)

Expanding (3.62) ⇒  

T T T T T T T TJ(K) = - - - K - + +1 1 2 2 2 3 1 1 1 1 1 1
T T T T T T T T T T+ K - + +1 1 2 2 1 1 2 3 2 2 2 2 1 1 2 2 2 2

T T T T T T T T T T T+ K - K + K + K2 2 2 3 3 2 3 2 1 1 3 2 2 2
T T T- K K3 2 2 3

Y Y Y G X Y G X Y G X X G Y X G G Xd d d d d d

X G G X X G G X X G Y X G G X X G G Xd

X G G X X G Y X G G X X G G Xd

X G G X

 

(3.63)



68 

As T T T=1 1 1 1Y G X X G Yd d , T T T=2 2 2 2Y G X X G Yd d , T T T TK = K2 3 3 2Y G X X G Yd d  and 

every term here is a scalar. 

T T T T T T T T T TJ(K) = - 2 - 2 - 2K +1 1 2 2 3 2 1 1 1 1
T T T T T T T T+ + K + +1 1 2 2 1 1 2 3 2 2 1 1 2 2 2 2
T T T T T T T T T T T+ K + K + K + K K2 2 2 3 3 2 1 1 3 2 2 2 3 2 2 3

Y Y X G Y X G Y X G Y X G G Xd d d d d

X G G X X G G X X G G X X G G X

X G G X X G G X X G G X X G G X

 

(3.64)

As T T T T TK = K1 1 2 3 3 2 1 1X G G X X G G X  and every term here is a scalar. 

T T T T T T T T T TJ(K) = - 2 - 2 - 2K +1 1 2 2 3 2 1 1 1 1
T T T T T T T T+ + 2 K + +1 1 2 2 1 1 2 3 2 2 1 1 2 2 2 2
T T T T T T T T+ K + K + K K2 2 2 3 3 2 2 2 3 2 2 3

Y Y X G Y X G Y X G Y X G G Xd d d d d

X G G X X G G X X G G X X G G X

X G G X X G G X X G G X

 

(3.65)

As T T T T TK = K2 2 2 3 3 2 2 2X G G X X G G X  and every term here is a scalar. 

T T T T T T T T T TJ(K) = - 2 - 2 - 2K +1 1 2 2 3 2 1 1 1 1
T T T T T T T T+ + 2 K + +1 1 2 2 1 1 2 3 2 2 1 1 2 2 2 2

T T T T T T+ 2K + K K3 2 2 2 3 2 2 3

Y Y X G Y X G Y X G Y X G G Xd d d d d

X G G X X G G X X G G X X G G X

X G G X X G G X

 

(3.66)

Applying the ∇  operator to the cost function J(K)  

J T T T T T Tg = J = = -2 + 2 + 2 +3 2 1 1 2 3 3 2 2 2K
T T T2K 3 2 2 3

∂
∇

∂
X G Y X G G X X G G Xd

X G G X
 

(3.67)

 

T T T T T T T= - 2( - - - K )1 1 2 2 2 3 2 3Y X G G X G X G Xd   

 

T= - 2 2 3E G X  (3.68)

Putting this value of g  in (3.34) to find  K  which results in minimum number of 

iterations, gives 

1 TK = K - µ(-2 )2 3j+1 j 2
E G X  
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TK = K + µE 2 3j+1 j G X  (3.69)

This adaptive mechanism requires only partial knowledge of the system. It 

requires only the knowledge about b  coefficients. The approach is exhibited in block 

diagram in figure 3.11. 

 

 

Figure 3.11: Block diagram for Approach-2. 

 

Input u (k)j  is applied to the plant. This input results in an output sequence (k)jy . Using 

the desired output sequence yd (k)j , error e (k)j  is calculated. This error, the knowledge 

about previous values of K and the partial knowledge about the plant 2G  is used to 

calculate the next value of K  i.e. K j+1. This value will be used during the next iteration 

by the ILC. The ILC calculates the next input to the plant u (k)j+1 which is applied to 

reduce error. This process continues until the desired out is achieved. 

 

3.3.2   Simulation results 

 
Many systems were simulated to test this approach. For comparison with previous 

approach, simulation results from using system 1G (z)  are presented in this section. Using 



70 

the difference equation representation given in (3.38), the output sequences generated for 

different values of  k  can be written as 

y(1) = 0.8187y(0) + 0.09063u(0)  (3.70)

 

y(2) = 0.8187y(1) + 0.09063u(1)  (3.71)

 

y(3) = 0.8187y(2) + 0.09063u(2)  (3.72)

#  
or 

y(1) 0.8187 0 0 … y(0) 0.09063 0 0 u(0)
y(2) 0 0.8187 0 … y(1) 0 0.09063 0 u(1)

= +
y(3) 0 0 0.8187 … y(2) 0 0 0.09063 … u(2)

         
         
         
         
         
         

…
…

# # # # # # # # #
 

(3.73) 

 

y(1) 0.8187 0 0 … y(0) 0.09063 0 0 u(-1)
y(2) 0 0.8187 0 … y(1) 0 0.09063 0 u(0)

= +
y(3) 0 0 0.8187 … y(2) 0 0 0.09063 … u(1)

M

0.09063 0 0
0 0.09063 0

+ K
0 0 0.09063 …

         
         
         
         
         
         

…
…

# # # # # # # #
…
…

# # #

e(-1)
e(0)
e(1)

   
   
   
   
   
   #

 

(3.74) 

Here 

0.09063 0 0
0 0.09063 0

=2 0 0 0.09063 …

 
 
 
 
 
 

G

…
…

# # #

 

(3.75)
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e(-1)
e(0)

=3 e(1)

 
 
 
 
 
 

X

#

 

(3.76)

 

e(1)
e(2)

=
e(3)

 
 
 
 
 
 

E

#

 

(3.77)

Figure 3.12 shows the output of the system using this approach against the desired 

output as number of iterations increase. The bold dotted lines show the desired response 

and the thin continuous lines show the actual response of the system. 

 

 

Figure 3.12: The proposed approach learning the desired output. 

 

The output reaches the desired output in 17 iterations. During those iterations the error is 

reduced as exhibited in figure 3.13. 
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Figure 3.13: Norm of error as iterations increase. 

 

During this run K  is updated using (3.69). The learnt values of K  for this run are 

presented in figure 3.14.  

 

 

Figure 3.14: Learning behaviour of K at first run. 

 

This value is further updated in subsequent runs until it reaches the optimal range. 

Though this approach takes more iterations than the previous approach, it requires only 

partial knowledge about the plant.  
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3.4   When System is Completely Unknown  (Approach-3) 

 
Learning controllers are well known to converge slowly. Simulation results from 

linear and non linear systems have shown that fixed values of gain matrices are one of the 

reasons for the slow convergence rate. They clearly need to be adaptive. Also, in most 

cases the complete knowledge of the system is not available. An approach that does not 

depend on the knowledge of the system was one of the aims of our research. 

This section suggests a novel scheme shown in Figure 3.15. It is assumed that the 

plant (system) is completely unknown and hence its parameters are estimated to assist in 

the ILC scheme. For a detailed description on System Identification techniques see 

reference [96]. 

 

 

Figure 3.15: Block diagram representation of the proposed scheme. 
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Input u (k)j  is applied to the plant. This input produces an output y (k)j . With the 

knowledge about the desired output yd (k)j , the error e (k)j  is calculated. This error is 

used by the adaptive gain matrix calculation block to adjust gain matrices and by the ILC 

block to calculate next input to the plant, u (k)j+1 . Predictor with adjustable θ  block 

produces the predicted output 
^
y (k)j , which is used to generate system identification 

error esi (k)j . This error is then used to iteratively identify the unknown plant parameters 

θ . Adaptive gain matrix calculation block uses this information, about the plant, to 

readjust K . 

Equation (3.8), with disturbances, can be written in 2-D format as 

y (k) = -a y (k -1) - a y (k - 2) -... - a y (k - n ) + b u (k -1) +...na a1 2 1j j j j j
+ b u (k - n ) + ε (k)nb j b j

 
(3.78)

Here ε (k)j  is the white noise and ana  and bnb  are the orders of the respective 

polynomials. Observations [y (1) y (2) ... y (N)]j j j  generated by applying an input 

sequence [u (0) u (1) ... u (N-1)]j j j  , using (3.78) are as follows 

y (1) = b u (0)1j j  (3.79)

 

y (2) = (-a b + b )u (0) + b u (1)1 1 2 1j j j  (3.80)

 

y (3) = (-a a b - a b - a b + b )u (0) + (-a b + b )u (1) + b u (2)1 1 1 1 2 2 1 3 1 1 2 1j j j j  (3.81)

#  

 

Two vectors called the input and output vectors and a matrix called the G  matrix are 

defined as 
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T = [y (1) y (2) … y (N)]j j jY  (3.82)

 

T = [u (0) u (1) … u (N -1)]j j jU  (3.83)

 

g(1) 0 ... 0
g(2) g(1) 0 0

=
0

g(N) g(N -1) g(1)

 
 
 
 
 
 

G
# # %

 

(3.84)

The G  matrix, which is some times called the design matrix, is lower triangular and for 

linear systems it is also Toeplitz [106]. The values g(1) , g(2) , …, g(N)  are the impulse 

response coefficients of G . 

Using this 2-D representation, the system can be written in vector notation form 

as 

= j+Y GU ε  (3.85)

or for next iteration as 

= +j+1 j+1 j+1Y GU ε  (3.86)

Here jε  is the white noise vector and is defined as 

T [ (1), (2),... (N)]j j jj
ε ε ε=ε  

 

3.4.1   Identification 

 
Identification of a system [134] is computationally heavy. It is suggested to 

identify the system once in the beginning and after words only if required. The system 

equation (3.78) in 2-D representation can also be expressed in the following form. 

j j j
T= (k) + (k)Y x θ ε  (3.87)
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Here j(k)x  is a vector of past observations for k = [1, 2,...N] . For the first learning cycle 

(3.87) is re written as 

T= (k) + (k)1 1 1Y x θ ε  (3.88)

Here (k)1x is a vector of past observations at first learning cycle and is given by 

-y (1) ... -y (N)1 1
-y (2) ... -y (N+1)1 1

-y (na) ... -y (N+na-1)1 1T(k) =1 u (1) ... u (N)1 1
u (2) ... u (N+1)1 1

u (nb) ... u (N+nb-1)1 1

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

x

# # #

# # #

 

(3.89)

The dimensions of (k)1x  depend on the number of parameters to be identified. For 

example if only a1 and b1 are identified, equation (3.89) reduces to 

-y (1) ... -y (N)1 1T(k) =1 u (1) ... u (N)1 1

 
 
  

x  
(3.90)

Theta,θ  in equation (3.88) is a vector of unknown system parameters and is defined as 

T = a a … a b b … b1 2 na 1 2 nb  θ  (3.91)

Using (3.88) for the first learning cycle and ignoring noise,{ }(k)jε , gives us the predicted 

output as 

^ T= (k)1 1Y x θ  
(3.92)

Here 
^

1Y  is the predicted output for the first iteration. According to figure 3.15, this gives 

rise to a residual, the system identification error, for first learning cycle, which is given 

by  
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y
^

esi (k) = y (k) - (k)1 1 1
 

(3.93)

Here esi  denotes residual error in the identification process. This in vector notation form 

can be written as 

(k) = - 11 1
^

Esi Y Y  
(3.94)

Putting (3.92) in (3.94) ⇒  

T(k) = - (k)1 1 1Esi Y x θ  (3.95)

Where 

T(k) = esi (1) esi (2) … esi (N)1 1 1 1
 
 Esi  (3.96)

and 

T = y (1) y (2) … y (N)1 1 1 1
 
 Y  (3.97)

So, observations { }y (1), y (2),…, y (N)1 1 1 have been generated by applying an 

input sequence { }u (1), u (2),…, u (N)1 1 1  which gives rise to a sequence of residuals 

{ }esi (1),esi (2),…,esi (N)1 1 1 . For the first learning cycle, equation (3.95) for different 

values of k  , gives. 

Tesi (1) = Y (1) - (1)1 1 1x θ  (3.98)

 

Tesi (2) = Y (2) - (2)1 1 1x θ  (3.99)

…  
Tesi (N) = Y (N) - (N)1 1 1x θ  (3.100)

To identify θ  we define the cost function J( )θ  as the sum of error square. 

N 2 TJ( ) = esi (k) = (k) (k)1 1 1k=1
∑θ Esi Esi  

(3.101)

Using equation (3.97) in (3.101) and expanding ⇒  
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T T T T T TJ( ) = (k) (k) - (k) (k) - (k) (k) + (k) (k)1 1 1 1 1 1 1 1θ Y Y Y x θ θ x Y θ x x θ  (3.102)

As T T T(k) (k) = (k) (k)1 1 1 1Y x θ θ x Y and every term here is a scalar 

T T T T TJ( ) = (k) (k) - 2 (k) (k) + (k) (k)1 1 1 1 1 1θ Y Y θ x Y θ x x θ  (3.103)

Differentiating with respect to θ , equation (3.103) gives 

J T T= 2 (k) (k) - 2 (k) (k)1 1 1 1
∂    

   ∂
x x θ x Y

θ
 

(3.104)

For minimum value J = 0∂
∂θ

. Which gives 

-1^ T T= (k) (k) (k) (k)1 1 1 1
 
 

θ x x x Y  
(3.105)

Equation (3.105) gives us the power to estimate a , b1 1 using { }u (1), u (2),…, u (N)1 1 1 and 

{ }y (1), y (2),…, y (N)1 1 1 sequences. If the input signal is not rich enough to excite all 

modes of the system for identification purposes, this process can be done separately with 

a sequence of pseudo random signal. 

 

3.4.2   Gradient descent for adaptive gain(s) 

 

Defining an error vector jE  which is an Nx1 vector for current iteration as 

T = e (1) e (2) … e (N)j j j j
 
  

E  (3.106)

And an error vector for next iteration as 

T = e (1) e (2) … e (N)j+1 j+1 j+1 j+1
 
  

E  (3.107)

The aim is to eliminate or reduce error in the next iteration or next learning cycle. 

T 0lim j+1j
→

→∞
E  (3.108)

To achieve this reduction in error for next learning cycle, cost function J(K) as sum of 

error square for next learning cycle is defined as 
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N 2 TJ(K) = e (k) =j+1 j+1 j+1k=1
∑ E E  

(3.109)

Defining output vector j+1Y  for the next iteration and desired output vector jYd as 

T = y (1) y (2) … y (N)j+1 j+1 j+1 j+1
 
  

Y  (3.110)

and 

T = yd (1) yd (2) … yd (N)j j j j
 
  

Yd  (3.111)

For the following derivation, (k) =jYd Yd , for simplicity in mathematical representation. 

Using the definition of error in equation (3.22), the error for next iteration can be 

written as: 

= -j+1 j+1E Yd Y  (3.112)

Substituting this value in equation (3.109) ⇒  

( ) ( )T
J(K) = - -j+1 j+1Yd Y Yd Y  

(3.113)

Expanding (3.113) ⇒  

T T T T T TJ(K) = - - +j+1 j+1 j+1 j+1Yd Yd Yd GU U G Yd U G GU  (3.114)

As T T T=j+1 j+1Yd GU U G Yd , where every term is a scalar. Equation (3.114) reduces to 

T T T T TJ(K) = - 2 +j+1 j+1 j+1Yd Yd U G Yd U G GU  (3.115)

For the following discussion, K will be taken as scalar quantity i.e. one value of 

gain for all the samples, as discussed in chapter 2. This K  will also be written as Kj , in 

some equations, to show change from iteration to iteration. Despite the duplicate usage in 

nomenclature, for all practical purposes K = Kj.  

Equation  (2.4) can be written as:- 

u (k) = u (k) + K (k)e (k)j+1 j j j  (3.116)

This in vector notation form is 
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= + Kj+1 j j jU U E  (3.117)

Where 

T = u (1) u (2) … u (N)j+1 j+1 j+1 j+1
 
  

U  (3.118)

and K j is a scalar value of gain at iteration j . Putting (3.117) in (3.115) ⇒  

T T T T TJ(K) = - 2( + K ) + ( + K ) ( + K )j j j j j j j j jYd Yd U E G Yd U E G G U E  (3.119)

 

T T T T T T T T TJ(K) = - 2 - 2K + + Kj j j j j j j j
T T T T+ + K Kj j j j j j j

Yd Yd U G Yd E G Yd U G GU E G GU

U G GE K E G GE
 

(3.120)

As T T T TK = Kj j j j j jE G GU U G GE   and every term is a scalar 

T T T T T T T T TJ(K) = - 2 - 2K + + 2K +j j j j j j j j
T TK Kj j j j

Yd Yd U G Yd E G Yd U G GU E G GU

E G GE
 

(3.121)

Applying the ∇  operator to the cost function J(K)      

T T T T T Tg = J(K) = -2 + 2 + 2Kj j j j j j∇ E G Yd E G GU E G GE  (3.122)

Ignoring error square terms ⇒  

T TJ(K) = -2 ( - )j j+1∇ E G Yd GU  (3.123)

To find the value of jK  which will give us minimum number of iterations we use the 

steepest descent given in (3.34). Putting (3.124) in (3.34) ⇒    

T TK = K + µ ( - )j+1 j j j+1E G Yd GU  (3.124)

Here µ  is the step size parameter. It should be noted here that equation (3.117) should be 

calculated before equation (3.124) can be executed. 
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3.4.3   Convergence analysis 

 

By convergence we mean that the system output y (k)j  approaches desired output 

yd (k)j  as the learning process continues i.e. 

y (k) yd (k)j j→   for k 0,N  ∈   as j→∞  

or 

e (k) 0j →   for k 0,N  ∈   as j→∞  

First the convergence criterion of the learning control law is established followed 

by the convergence of the adaptive gain law. 

 

3.4.3.1   Convergence of iterative learning control law 

 

Using the control scheme in equation (3.117) the system description equation 

(3.86) can be expanded to 

= ( + K )j+1 j j jY G U E  (3.125)

 

= + Kj+1 j j jY GU GE  (3.126)

Multiplying both sides with -1 and adding Yd   we get 

- = - - Kj+1 j j jYd Y Yd GU GE  (3.127) 

 

Using 2-D system representation in (3.85) and ignoring noise 

- = - - Kj+1 j j jYd Y Yd Y GE  (3.128) 

 

Using error equation in (3.22) 

= - - Kj+1 j j jE Yd Y GE  (3.129)

This can be written as 
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= - Kj+1 j j jE E GE  (3.130)

    

= (I - K )j+1 j jE G E  (3.131)

Based on equation (3.131) it can be shown that if the value K j  is selected such that 

I - K < 1jG  then the error will decrease continuously and the system will converge at 

some iteration. 

 

3.4.3.2   Convergence for adaptive gain 

 

Adaptive gain K j  is calculated using the technique of steepest descent. Our 

adaptive iterative learning controller and the steepest descent method combine well as 

both are iterative techniques. In our case K = K (k)j j , as the gain is same for all values of 

k  for a particular j . 

We consider a cost function J(K (k))j  which is continuously differentiable 

function of some unknown gain K (k)j . We want to find an optimal solution Kop (k)j that 

satisfies the condition 

J(Kop (k)) J(K (k))j j≤  for all values of K j  (3.132)

This is a mathematical statement of unconstrained optimization. A class of unconstrained 

optimization algorithms that is found to be well suited in ILC is based on the idea of local 

iterative descent. 

Starting with an initial guess Ki (k)j we have to generate subsequent gains such 

that  

J(K (k)) < J(K (k))j+1 j  (3.133)

where J(K (k))j is the old value of the gain and J(K (k))j+1  is the updated value. 
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It is anticipated that the algorithm will eventually converge on to the optimal 

value Kop (k)j . In the simple form of iterative descent known as the method of steepest 

descent, the successive adjustments applied to the gain K (k)j are in the direction of 

steepest descent that is in a direction opposite to the gradient vector of the cost function 

J(K (k))j which is denoted by∆J(K (k))j . For convenience of presentation we write 

g = ∆J(K (k))j  (3.134)

According to the steepest descent, the suggested algorithm is formally described by 

equation (3.34) and is re-written as 

1K (k) = K (k) - µ(∆J(K (k)))j+1 j j2
 

(3.135)

Where j  denotes the iterations, µ is a factor represents the step size parameter and 1
2  

term is introduced for mathematical convenience. 

In going from iteration j  to j+1 the algorithm applies the gain adjustment 

δK (k) = K (k) - K (k)j j+1 j  (3.136)

Using (3.135) in (3.136) 

1δK (k) = - µ(∆J(K (k)))j j2
 

(3.137)

To show that formulation of steepest descent algorithm satisfies the condition in 

(3.132), Taylor series expansion around K (k)j  can be used to obtain approximation 

J(K (k))  J(K (k)) +∆J(K (k))δK (k)j+1 j j j≅  (3.138)

Substituting (3.137) in (3.138) we get 

21J(K (k))  J(K (k)) - µ ∆J(K (k))jj+1 j 2≅  
(3.139)

Which shows that J(K (k))j+1 is smaller than J(K (k))j provided that the step size 

parameter µ  is positive. Hence, it follows that with increasing j  the cost function 

J(K (k))j  progressively decreases, approaching the minimum value Jmin  in terms of 
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error at j→∞ . This shows that we are always moving towards Kop (k)j , after each 

iteration. 

 

3.4.4   Simulation results 

 

The scheme presented in this section was also tested through simulations. Results 

from three systems, described in Appendix A, are presented in this section. For this 

section the system is identified using a1 and b1 only, as it was observed that these two 

parameters had the maximum impact on the results. More parameters can be identified, if 

required. 

 

3.4.4.1   A Simple System 
 

The system 1G (z)  is written in difference equation form as 

y(k +1) = 0.8187y(k) + 0.09063u(k)  (3.140)

With a = 0.81871 , b = 0.090631  and 

b n = 11g(n) =
a g(n -1) N n 21

  
 ≤ ≥  

 
(3.141)

As shown before, in figure (3.10), there is a range of values of optimal values of 

K  that give optimal results. For 1G (z) , this range is 1.84 to 2.19. By optimal value we 

mean that value of K  which takes the minimum number of ILC iterations to converge. 

Using the conventional ILC scheme and starting with a value of  K = 0.1 the system 

converges at iteration 146. 

Using the proposed approach, the values of a1 and b1 is identified after first 

iteration with a 0.81871 =  and b = 0.09061 . Starting with the same chosen starting value 

of K = 0.1 and µ = 0.1 , the system converges at iteration 6 on first run. Here first run 

means, system used for the first time. Other starting values of K  could also have been 
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chosen with similar results, as K  is learnt adaptively. The value of K  is stored in 

memory after each run. The number of iterations decrease at each run until K  reaches its 

optimal value. 

Even if K  starts from a much higher value, say 5,  K  re-adjusts and settles at 

some optimal value between 1.84 to 2.19. A plot of K  vs. number of runs is shown in 

Figure 3.16.  

 

 

Figure 3.16: Learnt values of K  with an initial value of  0.1. 

 

The plot clearly shows K  being learnt towards the optimal value as number of runs 

increase. A plot of norm of error vs. number of iterations is exhibited in figure 3.17. 

 

 

Figure 3.17: Behaviour of norm of error as iterations increase. 
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If the system undergoes a change in parameter due to wear or any other reason the 

approach has the capability to readjust its learnt parameters. As an example, suppose 

another first order system  

y(k +1) = 0.9046y(k) + 0.09516u(k)  (3.142)

With a = 0.81871  and b = 0.090631 . 

A plot of  K  vs. number of iterations for this system, using conventional ILC, is 

given in figure 3.18. 

 

 

Figure 3.18: Number of iterations taken to converge against different values of K . 

 

The optimal range for K  is approximately 0.96-1.1. We now suppose that the system in 

equation (3.140) changes to (3.142) at sixth iteration, just when the system is about to 

converge. A 3D plot of yd (k)j  (thick dotted line) and y (k)j (thin solid line) vis-a-vis 

number of iterations, is shown in figure 3.19. 
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Figure 3.19: The proposed approach tracking the desired output as the system is changed 

in 6th iteration. 

 

The behaviour of  K  during this shift in system is recorded in figure 3.20. 

 

 

Figure 3.20: Readjustment done by the approach in the value of K as the system is 

changed in 6th iteration. 

 

The scheme was able to readjust the value of K , within the new optimal range, 

for the modified system. 
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3.4.4.2   Car Suspension System 
 

Simulation results from another system, 3G (z) , given in Appendix A, are 

discussed below. The system can be written in difference equation form as 

y(k + 2) = 0.2779y(k +1) - 0.006738y(k) + 0.03052u(k +1) + 0.005925u(k)   

With b = 0.030521 , b = 0.0059252 , a = 0.27791 , a = -0.0067382 and 

b , n = 11
g(n) = a b + b , n = 21 1 2

, N n 3a g(n -1) + a g(n - 2)1 2

 
  
 
 ≤ ≥  

 

(3.143)

A plot of  K  vs. number of iterations for this system using conventional ILC is 

given in figure 3.21 below. 

 

 

Figure 3.21: Number of iterations taken to converge against different values of K . 

 

The gain, K  here has optimal values from approximately 18 to 22. Using conventional 

ILC scheme and starting with a value of K = 0.1 the system converges at iteration 1335. 

Other starting values of K  gave similar results. 

Using the proposed approach the values of  a1 and b1were identified after first 

iteration. These are a = 0.27791  and b = -0.00671 . The parameters a2  and b2  were not 
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identified as it was observed that parameters a1 and b1 always had maximum effect on 

the final results and in most cases there was no need to identify any more parameters. 

Starting with K = 0.1 and µ = 0.1  the system converged at iteration 83 on first run. A 

plot of norm of error vs. number of iterations is shown in figure 3.22 below. 

 

 
Figure 3.22: Behaviour of Euclidean norm of error for 3G (z) . 

 

Figure 3.23 shows the plot of yd (k)j  (thick dotted line) and y (k)j (thin solid line) 

against number of iterations. 

 

 

Figure 3.23: The proposed approach tracking the desired output. 
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The approach has the capability to adapt for change in performance requirements 

at run time. As an example, if the desired output is changed during run time the behaviour 

of the approach is presented in figure 3.24. 

 

 

Figure 3.24: The proposed approach tracking the changing desired output. 

 

The error recorded during this learning process as desired output was changed 

during run time is presented in figure 3.25. 

 

 

Figure 3.25: Behavior of Euclidean norm of error for a changing desired response. 
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The learning performance of K during this run is shown in figure 3.26. 

 

Figure 3.26: Learnt values of K  as the desired response changes in real time. 

 

The plot shows a readjustment in K as the desired response changes. 

 

3.4.4.3   A Non-Linear System 
 

The results from a second order non-linear system (NLS) are also presented to 

show the effectiveness of the approach. A plot of K  vs. no. of iterations using the 

conventional ILC scheme is shown in figure 3.27.  

 

Figure 3.27: Number of iterations taken to converge against different values of K . 
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This plot again emphasises the fact that there is a range of values of  K  that produce 

minimum iterations. For the non-linear system this range is approximately between 0.8 

and 1.05.  

The values of a1 and b1 identified after first iteration were a = 0.41481  and 

b = 0.59021 . Figure 3.28 describes the behaviour of the system as it converges at 6th 

iteration.  

 

Figure 3.28: The proposed approach learning the desired output. 

During this process the response of norm of error is plotted in figure 3.29. 

 

 

Figure 3.29: Behaviour of Euclidean norm of error for a non-linear system. 
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To get a measure of the effectiveness of this Identification based Adaptive 

Iterative Learning Scheme, a comparison between this scheme and the conventional ILC 

is given in the next section. 

  

3.4.5   Discussion and comparison 

 

Simulation results presented in previous section are tabulated in Table 3.1 and 

Table 3.2 for comparison. All results were taken with K = 0.1 as the initial value. Other 

values of K , gave similar results as K  was learnt adaptively. For example, starting with 

an initial value of K = 5  for 1G (z) , the approach converges at iteration 8 at first run and 

iteration 5 on second run. Table 3.1, column 2, under the heading “Conventional ILC” 

gives the number of iterations it took to converge with a conventional ILC. The number 

of iterations will not decrease under the conventional scheme; no matter how many times 

(runs) the scheme is used. Column 3 presents the number of iterations it takes to converge 

using the proposed schemes. The numbers of iterations are significantly lower compared 

to the conventional scheme even at first run. This is due to the adaptive nature of the 

scheme. After every run the values of gain matrices are stored in memory and are used in 

the next run as initial values. The last column in Table 3.1, show the number of iterations 

it took to converge at second run.  

 

System Conventional ILC 
 

(Iterations) 

Proposed Scheme 
After 1st run 

(Iterations) 

Proposed Scheme 
After 2nd run 

(Iterations) 

SS 146 6 2 

CSS 1335 83 42 

NLS 35 6 3 

Table 3.1:  Comparison between the conventional ILC and the proposed scheme. 
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In this table, for SS and CSS the convergence criteria is e (k) < 0.01j , while for NLS 

with conventional ILC, it is e (k) < 0.4j . 

Table 3.2 shows the values of K  learnt as the approach is repeatedly used. For a 

conventional system, 2nd column, under the heading “Conventional ILC”, the value of 

K  used is noted for the three systems presented in previous section. This value of K  

does not change, no matter how many times the system is used. This is because 

conventional scheme is not adaptive. For the proposed scheme as K is adaptive, its value 

changes from iteration to iteration. This can be seen from the last two columns of Table 

3.2. As the number of runs increase, the proposed approach learns the value of K that 

will give the minimum iterations. 

 

System Conventional ILC 
 

(value of K) 

Proposed Scheme 
After 1st run 

(value of K) 

Proposed Scheme
After 2nd run 

(value of K) 

SS 0.1 1.98 1.99 

CSS 0.1 2.32 3.01 

NLS 0.1 0.781 0.788 

Table 3.2: Values of K learnt for different systems, using conventional ILC and the 

proposed algorithm with a starting initial value of  0.1. 

 

As opposed to conventional ILC which uses fixed gain, the suggested approach adjusts 

the gain adaptively and consequently the numbers of iterations are significantly reduced. 

For the Simple System, number of iterations came down from 146 to 6, for Car 

Suspension System, from 1335 to 83 and for non-linear system, from 35 to 5 at first run, 

as shown in Table 3.1. It is pointed out that ‘Memory’ helps to reduce the number of 

iterations further in subsequent runs. Though this comparison is not exhaustive, it clearly 
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shows that the number of iterations decreases continuously as optimal value of  K  is 

being learnt. 

 

3.5   Cost Function 

 

Usually the cost function applied is to minimize square of error or sum of square 

of error. As explained in section 3.2.1 and 3.4.2, we proposed a novel cost function, sum 

of square of error for next iteration. This cost function, helped in the derivation of 

proposed adaptive schemes. The proposed schemes are not only focusing on reducing 

error but also are looking at finding the next input to the plant. This opens the opportunity 

to develop other cost functions. The research on these innovative, unconventional cost 

functions, gave interesting results. One of the more useful results are presented in this 

section. 

 

3.5.1   Difference of Input (Approach-4) 

 

Let the cost function be the difference in current input and next input, squared. 

( )2J = u (k) - u (k)j j+1∑  
(3.144)

Using (3.116) 

( )
2

J = u (k) - u (k) + Ke (k)j j j
 ∑ 
 

 
(3.145)

 

( )2J = u (k) - u (k) - Ke (k)j j j∑  
(3.146)

 

( )2J = -Ke (k)j∑  
(3.147)

Equation (3.147) can be written in vector notation form as 
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T TJ = K (- )(- )KE E  (3.148)

Applying the ∇  operator to the cost function 

Tg = J = 2 K∇ E E  (3.149)

To find the value of jK  which will give us minimum number of iterations we use 

the steepest descent formula given in (3.34). As E  is negative in the gradient function the 

direction of the steepest descent will be opposite to what it would have been with positive 

E , i.e. (3.34) ⇒  

1K = K + µgj+1 j 2
 

(3.150)

 

( )1 TK = K + µ 2 Kj+1 j 2
E E  

(3.151)

 

( )TK = K + µ Kj+1 j E E  (3.152)

 

( )TK = K + µ Kj+1 j E E  (3.153)

Rearranging equation (3.117) ⇒  

K j+1= −E U U  (3.154)

Putting (3.154) in (3.153) ⇒  

TK = K + µ ( - )j+1 j j+1E U U  (3.155)

 

The difference in inputs and the error are used for the calculation of next gain value. 

These values are already available. We now present some simulation results to show the 

effectiveness of this adaptive gain law. 
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3.5.1.1   Simulation results 

 

Results from three systems 1G (z) , 3G (z) and NLS are presented in this section. 

For 1G (z) , a plot of error norm as number of iterations increase, for a starting value of 

K = 0.1, is given in figure 3.30 below. 

 

Figure 3.30: Behaviour of error as iterations increase. 

 

It took 44 iterations to converge at first run. The learnt value of K  is stored in memory 

and used again in the next run. The number of iterations decreased after every run, until 

K  reached the optimal range, 1.84 to 2.19. The learnt values of K  for a starting value of  

0.1 are shown in figure 3.31. 

 

Figure 3.31: Learnt values of K as task is repeated. 
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Though a bit slow, the scheme was able to learn the optimal value of K . The 

number of iterations it took to converge as the system is used again and again is plotted in 

figure 3.32. 

 

Figure 3.32: Number of iterations for convergence as the task is repeated. 

 

The iterations are decreasing continuously. Similar behaviour was observed for different 

systems and with different starting values of K .  

For 3G (z)  it took 238 iterations to converge at first run. The error produced 

during that run is exhibited in figure 3.33. 

 

 

Figure 3.33: Behaviour of error as iterations increase. 
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The output of the system with the desired output, using this scheme is exhibited in a 3-D 

plot in figure 3.34. 

 

Figure 3.34: The proposed approach trying to follow the desired output. 

 

Using NLS, it took 30 iterations on first run which steadily came down to 16 

iterations at the 5th run. At 5th run the behaviour of error is plotted in figure 3.35. 

 

 

Figure 3.35: The performance of error as iterations increase. 

The plot shows an exponential decrease in error. 

 The next section uses the ideas that if Iterative Learning Control (ILC) can 

benefit from previous trails, why not use a similar law to update gain values. 
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3.6   Iterative Learning Control with an Iterative Learning Gain  

(Approach-5) 

  

This section describes the design of an adaptive iterative learning controller with 

an iterative learning gain (ILCILG). This proposed scheme extends the idea of ILC 

further and suggests that the information obtained from one trial should also be used to 

improve control algorithm parameter, the gain matrix.  

The proposed approach is explained in block diagram form in figure 3.36. 

 

 

 

Figure 3.36: Block diagram of the proposed scheme. 

 
Input u (k)j is applied to the plant which produces an output y (k)j . Error e (k)j  is the 

difference between the desired output yd (k)j  and the actual output of the system y (k)j . 

This error and the value of the previous gain are used in the block “Iterative Learning 

Gain (ILG)” to adjust gain. The “ILC” block also uses the same error to calculate next 

input to the plant, u (k)j+1 . After every iteration the value of K  is stored in memory and 

retrieved before each iteration. 
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It is suggested to calculate K using the equation below. 

K (k) = K (k) + µ( yd (k) - y (k) )j+1 j j j  (3.156)

Here K j+1is the value of K  to be calculated for next iteration, K j  is the current value of 

K , yd (k) - y (k)j j  is the difference between the norm of desired output and norm of 

current output and µ  is the step size parameter.  

3.6.1   Convergence analysis 

 

For equation (3.156), we define convergence as finding a value of K j  that will 

produce jy - y (k) εd ≤ ,  in minimum number of iterations. Here ε  is the tolerance in 

error.  

There can be three possible cases.  

Case 1: jy y (k)d =  

In this case desired output and system output are same. Therefore, there is no 

change in K j . According to equation (3.166) K = Kj+1 j  and convergence is governed 

by (3.116) alone. 

Case 2: jy y (k)d >  

In this case the desired output is larger than the actual output so the term 

jy - y (k)d  will give a positive number. Under this condition, K > Kj+1 j , which in 

turn will raise the input to the system according to equation (3.116), resulting in an 

increase in output. This in turn will bring yd  and jy (k) closer to each other. 

Case 3: jy y (k)d <  

In this case the desired output is smaller than the actual output, so the term 

jy - y (k)d  will give a negative number. Under this condition, K < Kj+1 j , which in 
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turn will reduce the input to the system according to equation (3.116), resulting in a 

decrease in output. This will in turn bring yd and jy (k) closer to each other. 

For both cases 2 and case 3, the system will behave as to reduce jy - y (k)d . For 

smooth convergence whenever there is a change in sign in jy - y (k)d  or when ever 

there is a shift from case 2 to case 3 or case 3 to case 2 we can reduce µ . For this, µ  can 

be tied up with rate of change of jy - y (k)d . However, in this section µ  is kept 

constant. 

The number of iterations has always been an issue with ILC. This scheme because 

of its simple mathematical structure can easily be implemented with lower memory 

requirements and simpler hardware as opposed to other such adaptive schemes which are 

computationally expensive. 

We now present some simulation results obtained from three selected systems 

from Appendix A. 

 

3.6.2   Simulation results 

 

Simulation results from three systems 1G (z) , NLS and 4G (z) are discussed in this 

section. First, results from 1G (z)  are presented. As shown previously in figure 3.10, this 

system has a range of values of K , which results in minimum number of iterations. The 

range for 1G (z)  is 1.84 to 2.19.  

Using the ILCILG technique, with starting values of K = 0.1 and µ = 0.01 , the 

system converged at iteration 18, with a final value of K = 0.86718 , on first run. As 

shown in figure 3.36, the value of K j  is stored in memory after each run. The value 

stored in memory is used as the initial value for the next run. After a few runs this value 

settles with in the optimal range. Even if, initially a much higher value of K j  say 5 is 
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taken, K j  readjusts and settles at some value between 1.84 to 2.19. The rate of learning 

is governed by µ . A plot of norm of error against number of iterations for first run is 

shown in figure 3.37. 

 

 

Figure 3.37: Behavior of Euclidean norm of error for the first order system. 

 

The conventional ILC took 146 iterations to converge for this system, with similar 

settings. 

The motor speed control system (MSCS) was also tested using the same initial 

gain, K = 0.1. Using the conventional ILC it took 661 iterations to converge. As the 

conventional ILC scheme is not adaptive it will always take 661 iterations to converge 

with K = 0.1. Using the proposed approach and starting with K = 0.1 and µ = 0.01  the 

system converged at iteration 63 with a final value of gain K = 1.23j , at first run. 

A plot of norm of error against number of iterations for first run is shown in figure 

3.38  below. 
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Figure 3.38: Behaviour of Euclidean norm of error for a motor speed control system. 

 

Subsequent runs decreased the number of iterations further. A 3-dimensional plot of the 

desired output (shown in bold dotted lines) vs. actual output (shown in thin solid lines) 

against number of iterations is presented in figure 3.39 below. The plot clearly shows the 

output reaching the desired output as iterations increase. 

 

 

Figure 3.39: Output converging towards desired output. 

 

Subsequent runs showed a decrease in number of iterations as K j  was updated.  
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If there is a change in system dynamics e.g. the damping ratio is doubled during 

operation, the approach can readjust at run time. Figure 3.40 shows the behaviour of error 

in case the system changes during run time. For this simulation the system was changed 

at iteration 20. 

 
Figure 3.40: Behaviour of Euclidean norm of error as the system changes. 

 

With this change in system dynamics, it took 95 iterations to converge. The behaviour of 

K j  is shown in figure 3.41. It can be clearly seen that gain makes a small readjustment at 

iteration 21. 

 

Figure 3.41: Behaviour of K  against number of runs. 
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This readjustment is further clarified by a 3-D plot of the output in figure 3.42. The 

desired output (in dotted bold lines), is also presented for better comparison. 

 

 

Figure 3.42: The proposed approach tracking the changing desired output. 

 
The desired output was changed during iteration 20. It took 65 iterations to converge this 

time at first run. 

For the non-linear system, the behaviour of K j  for different initial values of K  is 

shown in figure 3.43. This figure shows that even starting with different initial values of 

K j  the scheme eventually settles to an optimal range, which for this non-linear system is 

between 0.8 and 1.05. 

 

Figure 3.43: Behaviour of K  against number of runs with different initial values of K . 
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The system converged at 11th  iteration on first run. The behaviour of the norm of error 

for first run is shown in figure 3.44. 

 

 

Figure 3.44: Behaviour of Euclidean norm of error for a non-linear system. 

 

Subsequent runs reduced the number of iterations further. The results show that 

ILCILG performed better then the two cost function based schemes. A comparison with 

the conventional scheme will give us a measure of improvement made by ILCILG. 

 

3.6.3   Discussions and comparison 

 

Simulation results are tabulated in Table 3.3 for comparison. All results were 

obtained with K = 0.1and µ = 0.01  as initial starting values. A desired output, given in 

Appendix A, was defined for all these systems. Column 2 under the heading 

“Conventional ILC” shows the number of iterations it took to converge for a first order 

( 1G (z) ), motor speed control ( 4G (z) ) and a non linear system. They are 146, 661 and 35 

respectively. Column 3 shows the number of iterations taken to converge at first run 

using ILCILG. The numbers of iterations are significantly lower as compared to the 

conventional ILC scheme even at first run. At fifth run, as shown in the last column, the 
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numbers of iterations are reduced further as K j  is updated. Though this comparison is 

not extensive but the trend is obvious. 

 

System Conventional ILC 

 

(Iterations) 

ILCILG 

At 1st run 

(Iterations) 

ILCILG 

At 5th run 

(Iterations) 

First order 146 18 4 

Motor speed control 661 63 24 

Non linear 35 11  4 

Table 3.3: Some comparative results showing reduction in number of iterations for 

ILCILG controller. 

 

Excellent results shown by the ILCILG controller made it a good choice to test it on a 

practical setup. The setup with results is presented in the next section. 

 

3.6.4   Experimental setup and results 

 

Experiments were made using QET DC motor kit by Quanser Consulting Inc 

[57]. The complete set up is shown in figure 3.45 below. 

 

Figure 3.45: Quanser’s DC motor kit used to test the approach. 
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The aim was to follow the desired signal which is to make the motor run at a 

speed of 100 rad/sec. The control software was developed in MATLAB. A 3-dimensional 

plot of the desired output (shown in dotted lines) vs. actual output (shown in solid lines) 

against number of iterations for the first five iterations are shown below. The plot clearly 

shows the system output reaching the desired output as iterations increase. 

 

 

Figure 3.46: Output converging towards desired output. 

 

A plot of norm of error for different iterations is shown in figure 3.47. The plot shows 

continuous decrease in error. 

 

Figure 3.47: Behaviour of Euclidean norm of error. 
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As per equation (3.156), the ILCILG controller learns the values of gain K j ,  

increasing speed of convergence. The value of K j  learnt at first iteration was 0.278. This 

value as per figure 3.36 is stored in memory, to be used in later iterations.  The behaviour 

of  K j  is presented in figure 3.48. 

 

 

Figure 3.48: Learnt values of gain as iterations increase. 

 

This adaptive behaviour of K j  helped to reduce the number of iterations. The ILC 

used in this approach was OSATILC. Using this setting, the ILCILG was made to track 

real time trajectories also. 

 

3.6.5   Real time tracking using iterative learning control with an 
iterative learning gain 

 

The scheme has the capability to track objects and paths in real time, unlike ILC 

schemes given in the literature. For µ = 0.001 , equation (3.156) can be written as 

K (k) = K (k) + 0.001( yd (k) - y (k) )j+1 j j j  (3.157)

For real time implementation this equation is readjusted to 
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K(k) = K(k -1) + 0.001e(k)  (3.158)

Where K(k)  is the value of K  for current sample. K(k -1)  is the value of  K  for 

previous sample and e(k)  is the difference between the desired output and actual output. 

 

3.6.5.1   Simulation results 

 

For simulation purposes 4G (z)  system was used. A desired motor speed 

trajectory was fed into the scheme. The scheme tried to follow the trajectory in real time. 

The performance is shown in figure 3.49. 

 

 

Figure 3.49: Tracking behaviour. 

 

The behaviour of error as the trajectory is being followed is shown in figure 3.50. 
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Figure 3.50: Error as desired trajectory is being tracked. 

 

During this tracking performance the values of K  learnt are indicated in figure 3.51. 

 

 
Figure 3.51: Learnt values of  K  as desired trajectory is tracked. 

 

The same system was also made to track other waveforms, like sigmoid, different 

sinusoidals, parabolic etc. The tracking performance while following a sinusoidal track is 

exhibited in figure 3.52. 
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Figure 3.52: Tracking a sine wave. 

 

The plot shows very good tracking performance by the ILCILG controller. The error 

during this tracking performance is plotted in figure 3.53. 

 

 

Figure 3.53: Behaviour of error as sine wave is tracked. 

 

During this sinusoidal speed chase the values of  K ’s used are shown in figure 3.54. 
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Figure 3.54: Learnt values of  K  as desired trajectory is tracked. 

 
The tracking performance was tested using the same QET DC motor kit by 

Quanser Consulting Inc. The results from one such experiment are discussed in the next 

section. 

 

3.6.5.2   Real time tracking using an experimental set up 

 

The QET DC motor kit with the ILCILG controller was also made to track a 

speed of 100 rad /sec in real time. The control software was developed in MATLAB. A 

3-dimensional plot of the desired output (shown in dotted lines) vs. actual output (shown 

in solid lines) against number of iterations for the first five iterations are shown in figure 

3.55 below. The plot clearly shows the output reaching the desired output as iterations 

increase. 
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Figure 3.55: Output converging towards desired output. 

 

For the first 13 samples this tracking is shown in figure 3.56. 

 

 

Figure 3.56: Quanser’s DC motor tracking a desired step response with adaptive gain. 

 

For a sampling rate of 10 samples per second the motor achieved the required speed in 1 

sec. The performance of error as the desired speed is met is shown in figure 3.57. 
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Figure 3.57: Error as trajectory is tracked. 

 

To achieve this performance the input calculated by the proposed scheme is presented in 

figure 3.58. 

 

 

Figure 3.58: Input voltages learnt and supplied to the motor with adaptive gain. 

 

The values of  K  learnt during this tracking is shown in figure 3.59. 
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Figure 3.59: Learnt values of gain. 

 

After initial learning, the value of  K  settles to approximately 0.47. 

In all adaptive schemes presented so far, the step size parameter has been kept 

constant. This step size parameter can be varied also to increase or decrease the rate of 

convergence of  K . The following section looks at one such possibility. 

 

3.7   Iterative Learning Control with an Iterative Learning Gain 

and Adaptive Step Size 

 

The proposed scheme is presented in figure 3.60 below. 
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Figure 3.60: Block diagram representation of the proposed scheme. 

 

Input u (k)j  is applied to the plant. This input produces an output y (k)j . Error e (k)j  is 

the difference between the desired output yd (k)j  and the actual output of the system 

y (k)j . This error is used by the adaptive gain matrix block to adjust gain matrices. The 

iteration horizon is made use of by calculating the difference in magnitude of this error 

during different iterations to adjust the step size. The ILC block also uses the same error 

to calculate next input to the plant. The adjusted values of K  and µ  are stored in 

memory. 

Using steepest decent to find K  which results in minimum number of iterations. 

j
1K = K - µ (k)gj+1 j 2

 
(3.159)

Equation (3.124) can be rewritten for adaptive µ .  

j
T TK = K + µ (k)E (k)G (Yd - GU (k))j+1 j j j+1  (3.160)

Here µ (k)j is the step size parameter and G  matrix is an NxM matrix. The G  matrix is 

lower triangular and for linear systems it is also Toeplitz. 
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3.7.1   Adaptive step size 

 

The second dimension of a 2-D learning process called the learning horizon is 

used to make the step size adaptive.  

j
j

j

2.0×µ (k)
µ (k) =

0.5×µ (k)
 
 
 

 
, 

, 
j-1 j

j-1 j

e (k) - e (k) > 0

e (k) - e (k) 0≤
 

(3.161)

Here e (k)j-1  is the Euclidean norm of error vector in the previous iteration and e (k)j  

is the Euclidean norm of the error vector in the current iteration. 

 

3.7.2   Simulation results 

 

The scheme presented in this paper was tested through simulations using 1G (z) , 

3G (z)  and NLS. For 1G (z) , using the proposed approach and starting with a K  of 0.1 

and µ  of 0.1, the system converges when the gain reaches 1.715 and µ  reaches 0.32 at 

iteration 6, on first run. The behaviour of K  for the first run is shown in figure 3.61 

below. 

 

 

Figure 3.61: Variation of K  for first run. 
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The value of K  was stored in memory after each run. The number of iterations decreased 

after each run, until K settled in the optimal range. Figure 3.62 shows how the norm of 

error behaved during the first run. 

 

 

Figure 3.62: Behaviour of Euclidean norm of error. 

 

For 3G (z) , again starting with K = 0.1 and µ = 0.1 , K  reaches 12.61 and µ  

reaches 163.8 after first run. The system converges at iteration 17 on first run as opposed 

to iteration 1335, if only the conventional ILC scheme is used. A plot of norm of error vs. 

number of iterations is shown in figure 3.63. 

 

 

Figure 3.63: Behaviour of Euclidean norm of error for a mass, spring and damper system. 
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A 3-dimensional plot of the desired output (shown in dotted lines) vs. actual output 

(shown in solid lines) against number of iterations is shown in figure 3.64 below. The 

plot clearly shows the output reaching the desired value at the 17th iteration.  

 

 

Figure 3.64: Output converging towards desired output. 

 

Subsequent runs resulted in even fewer numbers of iterations, as value of K  reacheed 

optimal range. 

Similar data was recorded for the non-linear system. The figure below shows the 

system converging at 4th iteration. The adaptiveness of  µ  is shown in figure 3.65 below. 
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Figure 3.65: Variation of  µ  for first run. 

 

The system converged at 4rd iteration on first run. The behaviour of the norm of error is 

shown in figure 3.66. 

 

 

Figure 3.66: Behaviour of Euclidean norm of error for a non-linear system. 

 
The error quickly reduced to within acceptable limit. The performance can be best 

compared through a table given in the next section. 
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3.7.3   Discussion and comparison 

 

Simulation results are tabulated in Table 3.4 for comparison. All results were 

taken with  K  and µ  having an initial starting value of 0.1. A desired output was defined 

for all these systems. Number of iterations taken to learn an input which produced the 

desired output is given. The table shows a significant decrease in number of iterations, 

even at first run, using the proposed scheme as compared with conventional ILC scheme. 

 

 Normal ILC 
 
 
 
(Iterations)  

ILCILG 
With adaptive gain only 
 
 
(Iterations) 

ILCILG 
With adaptive gain 
and adaptive step size 
 
(Iterations) 

First order system  

(SS) 

146 7 6 

Second order system 

(CSS) 

1335 61 17 

Non linear system 

(NLS) 

35 5  4 

Table 3.4: Some comparative results. 

 

The learning is further enhanced with adaptive step size parameter. 

  

3.8   Summary 
 

Following the research work presented in chapter 2, this chapter describes a 

number of adaptive iterative learning controllers. For these controllers a specific 

mathematical frame work was developed. The different schemes made use of 

combination of novel cost functions, gradient descent approach and innovative control 

laws. Stability and convergence criteria are also established. The performances are 

confirmed using a number of simulations on different models of practical systems. 
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A practical setup, using DC motor kit by Quanser Consulting was also used to test 

the effectiveness of the controllers in real world applications. All the controllers were 

able to readjust for changes in plant as well as desired response. The chapter ends with a 

proposal to control rate of adaptation using the step size parameter of the control laws.  

The main focus of this research aimed at capturing the two main aspects of human 

behaviour, namely 

(a) Learning from experience. 

(b) Perception based approach.  

We propose to tackle “Learning from experience” aspect through adaptive iterative 

learning. To tackle “perceptions”, we need to incorporate fuzzy logic.  

The next chapter develops this philosophy.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



125 

4 SELF LEARNING FUZZY CONTROLLERS USING 
ITERATIVE LEARNING TUNER 

 

This chapter describes the design of an adaptive fuzzy controller using iterative 

learning to tune input membership functions and scaling factor(s). The control scheme 

consists of a fuzzy controller and learning control laws. People’s perception about the 

meaning of a linguistic variable differs from person to person or even from expert to 

expert. This difference in perception usually leads to different fuzzy control designs. 

Somewhere within these designs lies the required design which meets specific 

performance criteria. The result of this research proposes an approach to tackle this 

uncertainty in perception, i.e., to find the required design by adjusting membership 

functions. This uncertainty was rarely tackled as a concept before Type-2 Fuzzy (T2-F) 

was invented. The membership functions are adaptively adjusted using iterative learning 

technique. The results show that the scheme is robust, cost effective and very simple to 

implement. It makes use of the non-linearity inherent in the fuzzy systems. Designing 

fuzzy controllers with desired performance specifications is not a trivial task. Even the 

specification of linguistic variables, a key concept in fuzzy system design, can be 

different from different experts, creating uncertainty in the design. This scheme tries to 

fill this gap by using a unique adaptive procedure for designing fuzzy controllers through 

iterative learning process. 

 

4.1   Problems in Fuzzy Logic Based Design 

 
It all started with the seminal concept of using fuzzy sets [94] to tackle 

imprecision in the definition of classes of objects. This concept gave a continuum of 

grades of membership to classes of objects like “the class of tall men” or “the class of 

real numbers greater than ten”. Zadeh [93] went on to present the concept of linguistic 

variables and laid down the basic framework that underlie most of the practical 

applications of the fuzzy set theory. He also introduced the concept of “if-then rules” to 
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characterize the working of a fuzzy system [92]. The overall concept is now referred to as 

the “linguistic approach to describe and solve problems”. One of the recent offshoots of 

this approach is the “Computational Theory of Perception” or CTP in short [90,91]. This 

methodology aims at “Computing with Words”. 

Although Procyk and Mamdani [20, 137] were the first ones to demonstrate the 

construction of fuzzy controller, it became the main focus of research in Japan where 

hundreds of applications were developed, from washing machines to fuzzy subway 

control system, in the 1990’s. 

Humans have capability to perform a very wide variety of physical and mental 

tasks without any computations. Familiar examples of such tasks are parking a car, 

driving in heavy traffic, playing cricket and summarizing a story. Underlying this 

remarkable capability is the brain’s crucial ability to manipulate perceptions. Perceptions 

can be of distance, size, weight, colour, speed, time, direction, force, number, truth, 

likelihood and other characteristics of physical objects. Manipulation of perception plays 

a key role in human decision making. Zadeh argues that we need ways to deal with 

perception, in addition to the tools that we have for dealing with measurement, to 

advance in the frontiers of technology beyond where we are today. Especially, in the 

fields of machine intelligence and automation of decision making processes. 

Differences in perceptions give rise to uncertainties [89]. Uncertainty is defined as 

partial truth by some [89] and lack of complete information by others [25]. When dealing 

with real world problems one can rarely avoid uncertainty. It is an inseparable part of any 

measurement. It can even be due to reading errors or imprecision in measuring 

instruments. With regard to fuzzy systems, it is due to vagueness and ambiguity inherent 

in natural languages. Even at social level, people create and maintain uncertainty to 

exercise secrecy or privacy [26]. In engineering terms uncertainty comes from lack of 

complete information and reflects incompleteness, imprecision, missing information or 

randomness in data and process. Two important kinds of uncertainties are linguistic and 

random. The former is associated with words, and the fact that word mean different 

things to different people, and the later is associated with unpredictability. Probability 

theory is used to handle random uncertainty and Fuzzy Systems (FSs) are used to handle 
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linguistic uncertainties. Some times FSs are used to handle both kinds of uncertainties 

[71]. 

To handle linguistic uncertainties, Type-2 Fuzzy sets (T2 FS) and their related 

logic was developed [73]. In such uncertainties it is difficult to determine the exact 

Membership functions (MF) for a fuzzy system (FS). As an example, suppose the 

variable of interest is motor speed, denoted by x  where x [0,100]∈  and this gives a 

speed of 0 to 100 rev/sec. One of the terms that might characterize the amount of 

perceived speed is ‘slow’. Now if one asks 10 experts to locate the ends of an interval for 

slow speed on the scale of 0 -100 , different experts will give different ranges for a 

particular application in mind. To demonstrate whether uncertainty is associated with 

words or not, different surveys were made. The results of one such survey conducted by 

the author, quantizing the range of slowness of motor car speed is tabulated below. 

 

Serial No. Range for slowness 

(km/h) 

1 10 – 40 

2 0 – 40 

3 10 – 50 

4 10 – 30 

5 15 – 40 

6 20 – 40 

7 10 – 40 

8 10 – 30 

9 15 – 40 

10 20– 40 

Table 4.1: Survey results. 

 

The survey clearly reflects the difference in perception of the concept / linguistic variable 

“slowness of speed” and the uncertainly associated with it. This uncertainty will not only 

make the membership function creation difficult but will also hamper the controller 

performance. 
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According to the data above, the left and right end points of the MF slow (S) are blurred 

as shown in figure 4.1.  
 

 

Figure 4.1: Triangular MFs when base end points have uncertainty associated with them. 

 

This region is described as the footprint of uncertainty (FOU) in T-2 FS theory. 

Somewhere in this FOU are located the lower and upper extremities of our desired MF. 

There can be N  membership functions in this region of uncertainty. The goal is to find 

MF = MF (x) OR MF (x)... OR MF (x)N1 2desired  

 In T-2 FS, each potential MF is assigned a weight, extending the concept into third 

dimension. This makes representation and computation extremely difficult. 

The challenging tasks associated with fuzzy control design has always been to 

choose appropriate membership functions, minimum rule base and the most suitable 

fuzzifier and defuzzifier. Having made these choices, the fuzzy controller has to be tuned 

to deliver the desired response. Multiple simultaneous adjustments (rules, membership 

functions and gains) make the optimum tuning even more difficult. Many techniques 

have been used to overcome this difficulty including a phase plane technique for rule 

base design [62], neural network techniques [29, 74] and gain phase margin analysis 

technique [76]. 

Before any rules can be made we need to find the membership functions. Now 

membership functions, as discussed above, have uncertainties associated with them 
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which have a trickle down effect on other processes of a fuzzy control system. The 

research in this chapter proposes to tackle this root cause of uncertainty using a learning 

approach. The learning approach adjusts these MFs and is also linked with steady state 

error and overshoot, which are used to specify design requirements. 

Almost all fuzzy controllers to date have been made using type-1 fuzzy systems 

(T-1 FS).  However, such fuzzy systems (FSs) have limited capabilities to directly handle 

data uncertainties [71]. Our approach remains in type-1 but still achieves the purpose for 

which type-2 was created. 

Controllers, be they fuzzy or conventional, are robust when they have some 

adaptability in them. Most adaptive fuzzy systems use neural networks to incorporate 

adaptability and are called Adaptive Neuro Fuzzy Inference System (ANFIS) [75]. Such 

adaptive techniques generally make use of some model of the system or signal that one is 

trying to predict or control.  

We will first discuss basics of fuzzy, very briefly and then present some results 

gathered form our research on membership function design. These results will form the 

basics of the adaptive fuzzy controller, named iterative learning fuzzy tuner (ILFT), in 

this chapter. 

 

4.2   Basics of Fuzzy Control 

 

Although the founding father of fuzzy logic [94] initially expected its main 

applications in economics, medicines, psychology, biology and linguistics, most of the 

real applications have been developed in engineering system control. A typical block 

diagram of a fuzzy control system is explained in figure 4.2. 
 

 

Figure 4.2: Block diagram of a fuzzy control system. 
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Here r (k)j  represents the reference signal for k = 1...N  and j = 1...∞ . Variable j  

represents the iteration number and  k  represents the samples. The error is represented by 

e (k)j , the input to the plant is u (k)j  and the next plant output is y (k +1)j . Using the 

error the FLC produces the desired input to the plant. 

It is recommended to normalize the universe of discourse of input and output 

variables. Universe of discourse basically determines the applicable range for a 

characteristic variable in the context of the system designed. Because of this 

normalization, it is also recommend using the input and output scaling factors so as to 

adjust input from sensors and output to actuators. The modified block diagram of the 

fuzzy logic controller is described in figure 4.3 below. 
 

 

Figure 4.3: Modified block diagram of a fuzzy control system. 

 

Factors ge and gu are the input and output scaling factors. The Fuzzy Logic Controller 

(FLC) adjusts the input to the plant. This input is multiplied by the output scaling factor 

before being applied to the plant. The output of the FLC is dependent on the choice of all 

four blocks of a fuzzy controller. These four blocks are shown in figure 4.4 below 
 

 

Figure 4.4: A typical structure of a fuzzy controller. 
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Here U and V are the universes of discourse for input and output membership functions. 

Universe of discourse is the n-dimensional Euclidean space nR . Fuzzifier is defined as a 

mapping from a real valued point *x U∈ to fuzzy set 'A  in U  [103]. The input to the 

fuzzifier is crisp. Typically a fuzzifier could be a Singleton fuzzifier, a Gaussian fuzzifier 

or a Triangular fuzzifier. Singleton fuzzifier is represented as 
 

*1 if x = xµ (x) =A' 0 otherwise

  
 
  

 

In a fuzzy inference engine, fuzzy logic principles are used to combine the fuzzy 

IF-THEN rules in the fuzzy rule base into a mapping from a fuzzy set 'A  in U  to a fuzzy 

set B'  in V . There are many choices of inference engines. Some of the most popular 

ones are product, minimum, Lukasiewicz, Zadeh and Dienes-Rescher inference engines. 

Fuzzy rule base is the heart and soul of the fuzzy system. It contains rules of the 

form 

IF x1 is A1 and…and xn  is An  THEN y  is B  

Where x1,… xn are linguistic variables, A1… An and B are fuzzy sets. 

Defuzzifier is defined as mapping from fuzzy set B'  in V R⊂ (which is the 

output of the fuzzy inference engine) to crisp point *y V∈ . The defuzzifier output is a 

crisp value. Three of the most popular defuzzifiers are centre of gravity, centre average 

and maximum defuzzifier. 

 

4.3   Supporting Work 

 
In order to find out the effect of linguistic uncertainties on Fuzzy controller and 

because of it on membership functions, scaling factors, rule base, fuzzifier, defuzzifier 

and on inference engine performances, a lot of research was done. This research 

comprised simulations. These simulations were run for different systems and with 

different combinations of the above mentioned factors. The data was analyzed and links 

between required performance criteria like steady state error and percentage overshoot 
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were established. Some of the results achieved using a second order cruise control system 

with input as force in Newtons (N) and output as velocity in m/sec are discussed below. 

The system transfer function was given by 

Y(s) 75= 2U(s) s + 20s + 75
 

(4.1)

Simulations were performed with different number of input and output 

membership functions using both Mamdani and Sugeno type rule processing. In 

Mamdani type rule processing both input and output of the fuzzy system are fuzzy sets 

(i.e., words in natural languages). This creates problem while designing engineering 

systems. In Sugeno type rule processing the consequent part of the rule is a mathematical 

function of the input variables. This helps designers represent real-valued variables. The 

results of some of the simulations, performed on system of equation (4.1) are discussed 

below. One such simulation involved the use of 3 input MFs for error and 3 output MFs 

for velocity as shown in figure 4.5. 
 

 

 

Figure 4.5: Input Membership functions. 

 

Here NB stands for Negative Big, Z stands for Zero and PB for Positive Big. Degree of 

the input (force) membership function, is represented by µ(x) . The left and right end 

points of the membership function are represented by ‘–a’ and ‘a’. The output 

membership function is presented in figure 4.6. 
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Figure 4.6: Output Membership functions for Mamdani rule processing. 

 

Here –b and b are the left and right end points of the output (velocity) membership 

function. This output serves as an input to the plant. Research has shown that Sugeno 

type rule processing works better for the proposed scheme. The output membership 

functions for the Sugeno type rule processing is exhibited in figure 4.7. 
 

 

Figure 4.7: Output Membership functions for Sugeno rule processing. 

 

For all these membership functions, the end points are to be adaptively adjusted.  

Response of the second order cruise control system ( 2G (z) ) against a step input 

with different values of  ‘ a ’ are given in figure 4.8. 
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Figure 4.8: Response with different values of  ‘ a ’. 

 

Clearly the response is different for different membership function widths and it increases 

with decreasing ‘a’. The control surfaces (input-output plot) with these membership 

functions are shown in figure 4.9. 
 

 

Figure 4.9: Control surfaces with different values of  ‘ a ’. 

 



135 

The slope of the control surface is increasing with decrease in value of ‘a ’. These control 

surfaces highlight the fact that Fuzzy Controller (FC) response can be varied with varying 

membership function widths.  

Response of the second order cruise control system for different output 

membership function widths and the corresponding control surface plots are shown in 

figure 4.10 and 4.11. 
 

 

Figure 4.10: Response with different values of  ‘ b ’. 

 

 

Figure 4.11: Control surfaces with different values of  ‘ b ’. 
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Response shows that a decrease in output membership function width or reducing the 

value of end point  ‘ b ’, decreases the output of the system. Also, reducing the value of 

‘ b ’ reduces the slope of the control surface.   

Simulations were also run to find the effect of ge  and gu  on the response. This 

effect was recorded keeping the input and output membership functions fixed. The effect 

of gu  on system response is shown in figure 4.12. The input and output membership 

function end point values for this result were, a = 1.0 and b = 1.0 .  
 

 

Figure 4.12: Systems response with different values of gu . 

 

The response shows gu ’s effect on damping and hence over-shoot in the system’s 

response. 

In a fuzzy controller there are different parameters to play with, like ge , gu , a , 

b , number of input and output membership functions and the number of rules. The 

research aimed at finding a link or links between these parameters and the steady state 

error, percentage overshoot and the peak time of the response. Lots of simulations and 

tabulated results were analyzed and some conclusions were derived. Some of the results 

are discussed below. 
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Table 4.2 presents the data showing values of steady state error, percentage 

overshoot and peak time against a changing value of ‘ a ’, while keeping all other 

parameters constant. 

 

Input Membership 

function end point 

‘a’ 

Steady state Error 

(sse) 

% sse % over shoot Peak time 

(sec) 

0.000000001 0.000000266 0.0000266 -0.0000000998 4.22 

0.00001 0.0000136 0.00136 -0.000995 3.9 

0.0001 0.000107 0.0107 -0.0099 1.92 

0.001 0.0010 0.1 -0.0980 1.469 

0.01 0.0099 0.99 -0.94 1.02 

0.02 0.0196 1.96 -1.83 0.89 

0.03 0.0291 2.91 -2.69 0.81 

0.04 0.0385 3.8 -3.54 0.76 

0.05 0.0476 4.7 -4.35 0.72 

0.06 0.0566 5.6 -5.16 0.69 

0.07 0.0654 6.5 -5.94 0.66 

0.08 0.0741 7.4 -6.71 0.64 

0.125 0.1111 11.11 -10.0 0.57 

0.25 0.2000 20 -18.1 0.47 

0.375 0.2727 27 -25.1 0.42 

0.5 0.3333 33 -31.2 0.39 

0.625 0.3846 38 -36.7 0.38 

0.75 0.4286 42 -41.5 0.39 

0.875 0.4667 46 -45.7 0.41 

1 0.5 50 -49.3 0.44 

Table 4.2: Establishing a link between steady state error, over shoot and peak time with 

‘ a ’. 
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This table hints at the movement of steady state response upwards and the movement of 

peak overshoot down wards as the ‘ a ’ parameters is decreased. 

The data showing the effect of changing ‘ b ’ while keeping other parameters 

constant is tabulated in table 4.3. 

 

Output Membership 

function end point 

‘b’ 

Steady state 

Error 

% steady state 

error 

% over shoot Peak time 

0.1 0.5000 50 -50.00 5.00 

0.2 0.2000 20 -18.14 0.47 

0.3 0.1429 14.29 -8.50 0.30 

0.4 0.1111 11.11 -1.83 0.239 

0.5 0.0909 9.09 3.1868 0.204 

0.6 0.0769 7.69 7.1604 0.180 

0.7 0.0667 6.67 10.4233 0.163 

0.8 0.0588 5.88 13.1750 0.150 

0.9 0.0526 5.26 15.5355 0.140 

1.0 0.0476 4.76 17.5989 0.131 

Table 4.3: Establishing a link between steady state error, over shoot and peak time with 

‘ b ’. 

 

The table shows that the steady state response moves downwards as the parameter b  is 

decreased. 

Simulations were also run on different systems to figure out which portion of 

normalized error has more effect on steady state error, percentage over shoot and peak 

time. Based on the results obtained from these simulations a mathematical frame work for 

the scheme was developed which is discussed next. 
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4.4   Iterative Learning Fuzzy Tuner (ILFT) 

 

Fuzzy controller designers are required to make a number of choices; choice 

about the structure of the controller i.e. how many inputs and outputs the controller will 

have, choice about the shape of membership functions i.e. triangular, gaussian etc., 

choice about the fuzzifier, rule processing, inference mechanism and defuzzificztion 

method. But the most important choice is the choice of membership function end points 

which can handle all uncertainties associated with fuzzy design. 

Research results have shown that singleton fuzzifier, triangular input membership 

functions, centre average defuzzifier and product inference engine works best for the 

proposed controller. The block diagram of the complete controller is indicated in figure 

4.13. 
 

 

Figure 4.13: Block diagram of the proposed controller. 

 

Here ssed  is the desired steady state error, posd  is the desired percentage over shoot, 

r (k)j , e (k)j , u (k)j and y (k +1)j  are the reference input, error, input to the plant and next 

plant output at iteration j . Factors ge  and gu are the input and output scaling factors. 

Desired steady state error and percentage over shoot are supplied to Iterative Learning 

Tuner (ILT). The ILT adjusts ge , gu  and tunes the fuzzy logic controller (FLC) by 

adaptively adjusting the membership function end points. The aim is to remove 
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uncertainty associated with linguistic variables and to converge with respect to given 

steady state error and percentage overshoot. The learnt values of ge , gu  and membership 

function end points are stored in memory to be used in future iterations. 

Taking a Sugeno type rule processing the input member ship functions proposed 

are of the form given in figure 4.14 below. 
 

 

Figure 4.14: Proposed Input Membership functions. 

 

In figure 4.14 seven MFs are defined for error. End points of membership functions 

a (k)j , where k = 1...n , are to be adjusted by the ILT block. Here n  is the number of 

member ship functions. 

A Takagi-Sugeno-Kang (TSK) [54, 144] fuzzy system is constructed from the 

following rules 

IF x1 is lA1  and … and xn  is lAn , THEN l l l ly = c +c x +...+c xn n0 1 1  (4.2)

Where lAi are fuzzy sets in U Ri ⊂ , lci  are constants, 1, 2,...,l M= and i = 1,2,..., n . 

Number of rules in the fuzzy rule base is denoted by M  and n  is the number of 

membership functions. The IF parts of the rules are the same as in the ordinary fuzzy IF-

THEN rules, but the THEN parts are linear combinations of the input variables. Here 

T n= (x ,..., x ) U Rn1 ∈ ⊂x and y V∈  are input and output (linguistic) variables of the 

fuzzy system, respectively. Given an input x , the output f(x) V R∈ ⊂ of the TSK fuzzy 
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system, with product inference engine, singleton fuzzifier and centre average defuzzifier, 

is computed as the weighted average of the ly ’s  in (4.2), that is 

l lM y wl=1f(x)= lM wl=1

∑

∑
 

(4.3)

where the weights lw are computed as 
nlw = µ lA (x )i=1 i i
∏  (4.4)

Equation (4.3) and (4.4) gives 
nlM y ( µ )l=1 lA (x )i=1 i if(x)= nM ( µ )l=1 lA (x )i=1 i i

∑ ∏

∑ ∏
 

(4.5)

The output of the fuzzy controller is dependent on the input and output membership 

functions. To see the behaviour of this TSK fuzzy system the following derivation is 

made.  

Let us take 2 membership functions PS (positive small) and PM (positive 

medium) for the linguistic variable error (e) as shown in figure 4.15 below.  
 

 

Figure 4.15: PS and PM membership function from figure 4.14. 

 

The membership functions are triangular and their centres are marked as Em  and Em+1. 

The end points are adaptive (fuzzy) and two of the end points are labelled a (k)j  and 
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a (k +1)j . Here j  refers to current iteration. An error value at current iteration is given as 

e . 

Slope of line E a (k +1)m j = -1
a (k +1) - a (k)j j

 

Slope of line µ (e)a (k +1)E jm
= 

-µ (e)Em
a (k +1) - ej

 

Slope of line a (k)Em+1j = 1
a (k +1) - a (k)j j

 and 

Slope of line eE(m+1,j) = 
1-µEm+1
a (k +1) - ej

 

 

Using the fact that  

Slope of line E a (k +1)m j = Slope of line µ (e)a (k +1)E jm
 and  

Slope of line a (k)Em+1j = Slope of line eE(m+1,j) , it can be shown that 

a (k +1) - ejµ (e) =E a (k +1) - a (k)m j j
 

(4.6)

 

e - a (k)jµ (e) =E a (k +1) - a (k)m+1 j j
 

(4.7)

Taking the centre values of the output membership functions as b (k)j . As the approach 

in this paper does not modify output member ship functions, b (k)j  can be written as 

b(k) . Using this definition of output membership function and the weighted average 

defuzzifier, equation (4.5) can be written as  
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µ (e)b(k) + µ (e)b(k +1)E Em m+1f(x ) =j µ (e) + µ (e)E Em m+1

 
(4.8)

 

Here f(x )j  is the output of the fuzzy controller at iteration j  with error value e . Putting 

equation (4.6) and (4.7) in (4.8) gives 

a (k +1) - e e - a (k)j jb(k) + b(k +1)
a (k +1) - a (k) a (k +1) - a (k)j j j j

f(x ) =j a (k +1) - e e - a (k)j j+
a (k +1) - a (k) a (k +1) - a (k)j j j j

   
   
   
   

   
   
   
   

 

 

a (k +1)b(k) - eb(k) + eb(k +1) - a (k)b(k +1)j jf(x ) =j a (k +1) - e + e - a (k)j j
      

a (k +1)b(k) - a (k)b(k +1)b(k +1) - b(k) j jf(x ) = e +j a (k +1) - a (k) a (k +1) - a (k)j j j j
 

(4.9)

The end points a (k)j  will take on different values as different pair of MFs are 

considered. 

Equation (4.9) shows that the fuzzy controller output is dependent both on the end 

points of the input and output member ship functions. A decrease in width of the input 

member ship function (i.e. change in a (k +1) - a (k)j j ) will result in an increase in the 

fuzzy controller output and vice versa. This gives us the capability of increasing and 

decreasing the effective gain at different intervals of the control surface. Similar results 

could be achieved by changing the difference, b(k +1) - b(k) , as can be achieved by 

changing the difference, a (k +1) - a (k)j j .  
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For this scheme, proposal is made to keep a (1)j , a (4)j  and a (7)j  fixed at -1,0 

and 1 respectively. Only modifications in a (5)j  and a (6)j  are done. The values or ranges 

of the input MF end points are summarized in table 4.4. 

 

a (1) = -1j  a (2) = -a (6)j j  a (3) = -a (5)j j  a (4) = 0j  

a (5) = [a (4),a (6)]j j j  a (6) = [a (5),a (7)]j j j a (7) = 1j   

Table 4.4: Input membership end point values. 

 

This scheme proposes to keep the output membership function end points fixed. 

The reason is that similar responses can be achieved with either input or output 

membership function end point manipulations.  

Research has also shown that it is better to divide the region evenly so that there is 

equal space to move the end points in either direction. One group of suggested output 

membership function end points are shown in table 4.5. 

 

b(1) = -1 b(2) = -0.6  b(3) = -0.3 b(4) = 0  

b(5) = 0.3  b(6) = 0.6  b(7) = 1  

Table 4.5: Output membership end point values. 

 

An example is given to illustrate the effect of input MF end point values on control 

surface. 

 

Example 4.1: 

 

Taking a (5) = 0.4j and a (6) = 0.5j  for the MFs Z and PS. The MFs are shown in 

figure 4.16. 
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Figure 4.16: Z and PS membership functions from figure 4.14. 

 

For k = 4 , equation (4.9) ⇒  

a (5)b(4) - a (4)b(5)b(5) - b(4) j jf(x ) = e +j a (5) - a (4) a (5) - a (4)j j j j
 

0.3- 0 0.4(0) - 0(0.3)f(x ) = e +j 0.4 - 0 0.4 - 0
 

f(x ) = 0.75ej  (4.10)

This equation is effective for a range of error, e = [0,0.4] . Similarly for different values 

of k  different fuzzy controller output equations were obtained. Here k  represents, 

number of membership function end points. This gives different equations for different 

ranges of errors. The results for some of the values of k  are tabulated in table 4.6 below. 

 

 k = 4  

e = [0,0.4]  

k = 5  

e = [0.4,0.5]  

k = 6  

e = [0.5,1]  

f(x ) =j  0.75e  3e - 0.9  0.8e + 0.2  

Table 4.6: Effective control surface equations for different ranges of error. 

 

A plot of error vs. f(x )j  is described in figure 4.17. 
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Figure 4.17: Control surface plot for the data in table 4.6. 

 

Similar plots can be constructed for negative values of error. The above discussion shows 

that one can make three linear input-output regions for different ranges of error for 

positive error values. Similarly three input-output regions can be made for negative 

values of error. Hence the proposed control surface can be taken as a piece-wise-linear 

control surface.  

Following the results from the research we propose the following procedure for 

the up gradation of gu , a (5)j  and a (6)j . This procedure mixes iterative learning with 

fuzzy to achieve our design objectives. 

 

1- Find gu  such that the system is critically damped using the learning law 

gu (k) = gu (k) ± µ ( r (k) - y (k) )guj+1 j j j  (4.11)

Here µgu  is the step size parameter for finding gu  that will make the system critically 

damped. 

2- Change the value of a (5)j  such that sse ssed≤  using the learning law 

a (5) = a (5) ± µ ( r (k) - y (k) )ssej+1 j j j  (4.12)

Here µsse  is the step size parameter for correcting steady state error. 
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3- Change the value of a (6)j  such that pos posd≤  using the learning law 

a (6) = a (6) ± µ ( r (k) - y (k) )posj+1 j j j  (4.13)

Here µpos  is the step size parameter for correcting percentage over shoot. 

The procedure is summarized using a flow diagram in figure 4.18. 
 

 

Figure 4.18: Flow chart for fast design using ILT. 

 

The flow chart suggests to calculate gu , a (5)j  and a (6)j  in respective order. In some 

rare cases when the design requirements are not met, we need to increase MFs or 

introduce derivative or integral of error. This situation is discussed in more detail in later 

sections. 
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4.4.1   Simulations and results 

 

The scheme presented in this chapter was tested through simulations. One of the 

simulations involved a model of DC motor assuming rigid rotor and shaft. The motor was 

of the form given in Appendix A, but with the following parameters. The parameters 

were especially chosen to increase the difficulty in controller design. 

 

J=0.01  kg.m2/s2  ;       % moment of inertia of the motor   

b=0.1  Nms ;               % damping ratio of the mechanical system  

K=0.05  Nm/Amp ;    % electromotive force constant 

R=1  ohm ;                 % electric resistance 

L=0.5  H ;                   % electric inductance 

 

The transfer function of the motor is given as 

0.05G(s) = 20.005s + 0.06s + 0.1025
 

(4.14)

With a sampling time of Ts=0.01 the system of equation (4.14), in difference equation 

form is given by 

y(k +1) -1.885y(k) + 0.8869y(k -1) = 0.0004805u(k) + 0.0004617u(k -1)  (4.15)

The aim was to design a speed controller which should endure less than 5% 

steady state error (sse) and have less than 5% over shoot (pos). The required speed is 1 

radian/second. 

The open loop unit step response of the system is described in figure 4.19. 
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Figure 4.19: Open loop step response of the DC motor system. 

 

The figure shows damped response. The system gain needs to be improved in order to 

achieve the desired speed. 

 

4.4.1.1   Conventional Proportional Controller 

 

In order to gauge the performance of the proposed controller, conventional 

proportional controller was also designed for the system. A feed back control system is 

represented by a block diagram given in figure 4.20. 
 

 

Figure 4.20: Block diagram of a feed back control system. 

 

Here G(s)  represents the plant and H(s)  the feedback system. The over all transfer 

function of the feed back control system in figure (4.20) with unity feed back H(s) = 1, is 

given by 
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Y(s) G(s)=
R(s) 1+ G(s)

 
(4.16)

A block diagram of a conventional proportional controller with unity feedback is 

given in figure 4.21. 
 

 

Figure 4.21: A conventional proportional controller. 

 

Here Kp  is the proportional gain. The error, e (k)j  which is the difference between the 

actual output of the system, y (k +1)j  and the reference signal r (k)j . This error is 

multiplied with gain to produce the input, u (k)j  to the Motor.  

The aim is to design a conventional proportional controller with a steady state 

error ( ess ) of less than 5% and percentage overshoot (pos) of less than 5%. The steady 

state error to a unit step input is given by the following relationship. 

1e =ss 1+ K G(0)p
 

(4.17)

Where G(0)  is the DC gain of the plant. The motor transfer function in equation (4.14) 

can also be written as 

10G(s) = 2s +12s + 20.5
 or 

10G(s) =
(s + 9.9)(s + 2.0)

 
(4.18)

Applying final value theorem on (4.18) and multiplying with Kp ⇒  

10K epK G(0) = K lim G(s) = lim 0.5Kp p ps 0 s 0 (s + 9.9)(s + 2.0)
≅→ →  

K G(0) 0.5Kp p≅  (4.19)
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Putting this value in (4.17) for a required steady state error of 5% ⇒  

1e = < 0.05ss 1+ K G(0)p
 

(4.20)

⇒  

1+ 0.5K 20p ≥  (4.21)

To meet the steady state requirement, proportional gain should be, K 38p ≥ . 

Taking K = 39p  and using it in the standard feedback system equation with unity 

feed back, equation (4.14), becomes 

p

p

39(10)
2K G(s)Y(s) 390s +12s + 20.5= = = 239(10)R(s) 1+ K G(s) s +12s + 410.51+ 2s +12s + 20.5

 

2

2

Y(s) (20.26)= 0.95 2R(s) s + 2(0.296*20.26)s + (20.26)
 

(4.22)

Giving natural frequency and damping ratio values of 

w 20.26n ≅ and ζ 0.296≅   

The percentage overshoot at these values is  

Percentage overshoot is  

ζ-π( )
21-ζ= 100e 37.7%≅  

(4.23)

This is much higher then the required value. For higher values of Kp  the overshoot is 

even higher. For a percentage overshoot of less than 5%, Kp  has to be 5.5≤ . 

For this system, it is impossible to design a conventional Proportional controller 

which can meet both design requirements. The best result w.r.t. steady state error, is 

achieved with K = 39p . With that value the response to a step input is shown in figure 

4.22. 
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Figure 4.22: Step response using a conventional proportional controller with K = 39p . 

 

The response shows a high overshoot while the steady state error is near the required 

limit.  The input-output mapping of the proportional controller with K = 39p  is shown in 

figure 4.23 below. 

 

 

Figure 4.23: Input-output plot with K = 39p . 

 

As expected the proportional controller produced a linear response. 
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4.4.1.2   Iterative Learning Fuzzy Tuner 

 

Some simulation results are discussed in this section.  

 

4.4.1.2.1   DC Motor 
 

Using the same system as given in equation (4.14), a controller was designed to 

achieve same design requirements as in section 4.4.1.1. The universe of discourse for all 

linguistic variables was normalized between [-1,1]  i.e. U = [-1,1] . The membership 

function end points and their permissible ranges were taken from table 4.4 and 4.5. 

The proposed scheme adjusts a (5)j  and a (6)j  to tackle linguistic uncertainty and 

also helps in meeting the steady state and percentage overshoot requirements. The scaling 

factors gu  and ge  are also adjusted, if required. Though a (5)j and a (6)j  can take up any 

initial starting value within their permissible range, it is recommended, without any loss 

of generality to start with values that divide the Universe of discourse evenly. For this 

simulation, values of a (5) = 0.3j  and a (6) = 0.6j  were chosen which divides the range 

reasonably, though any other values could have also been chosen. The values of ge  and 

gu  are given a starting value of 1, suggesting that there is no initial input and output 

scaling.  In brief, the initial values chosen were 

a (5) = 0.3j , a (6) = 0.6j , g = 1.0e and g = 1.0u  

 

A set of  7 Membership functions for input variable (error) for FLC, of the form 

in figure 4.14, was used. The rule base of the fuzzy controller is shown in table 4.7. 
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NB 

 

NM 

 

NS 

 

Z 

 

PS 

 

PM 

 

PB 

e (k)j  -1 a (2)j  a (3)j  0 a (5)j  a (6)j  1 

u (k)j  -1 -0.6 -0.3 0 0.3 0.6 1 

Table 4.7: Rule base for proposed scheme. 

 

After learning gu  using equation (4.11) with a step size value of µ = 0.1gu , the 

behaviour of percentage over shoot (pos) is presented in figure 4.24. It took 19 iterations 

to learn gu . 

 

 

Figure 4.24: Percentage overshoot vs. number of iterations. 

 

Using a value of µ = 0.01sse  and µ = 0.01pos  in equation (4.12) and (4.13), the value of 

a (5)j  and a (6)j  were learnt after 10 and 13 iterations. The plot of the history of a (5)j  

and a (6)j  during this learning phase is given in figure 4.25.  
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Figure 4.25: Learning values of a (5)j and a (6)j as iterations increase. 

 

The output of the system, as steady state error was progressively reduced, is shown in 

figure 4.26. 
 

 

Figure 4.26: Plant output as iterations increase, while learning a (5)j . 
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After the values of gu, a (5)j , a (6)j  are learnt, the control surface, input membership 

functions and the step response of the overall scheme are shown in figure 4.27, 4.28 and 

4.29. 
 

 
Figure 4.27: Control surface learnt by the system. 

 

 

Figure 4.28: Learnt membership functions. 
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Figure 4.29: Step response after learning. 

 

Figure 4.27 shows that a piece-wise-linear control surface was learnt by the ILFC 

scheme. Figure 4.28 shows the end points of the input membership functions. The final 

response in figure 4.29 shows that both the design requirements have been met without 

the introduction of integral or derivative of error. The behaviour of error is shown in 

figure 4.30.  
 

 

Figure 4.30: Behaviour of error. 
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The system was able to learn from an initial values of g = 1.0u , a (5) = 0.3j  and 

a (6) = 0.6j  to a final values of g = 11.68u , a (5) = 0.0846j and a (6) = 0.7626j . Looking 

at figure 4.27, we can conclude that there are 3 regions of interest for positive values of 

error. Similar 3 regions exist for negative values of error. The effective gain which is the 

slope of the lines in these regions is  

 

41.4 if 0 e a (5)j
K = 4.67 if a (5) e a (6)p j j

19.6 if a (6) e 1j

 ≤ ≤ 
 ≤ ≤ 
 

≤ ≤ 
 

 

(4.24)

 

The combination of ILC and fuzzy has transformed the controller as if it were a 

combination of three controllers, for positive values of error. If we take both positive and 

negative values, it’s a six controller in one. Each controller is effective within its defined 

range of error only. This gives the capability to increase or decrease the gain in small 

intervals to meet our design requirements. 

 

4.4.1.2.2   A non-linear system 
 

Another set of simulations involved a second order coupled system used by [118]. 

The system equations are given as 

 

x (k +1) = x (k) + 0.01x (k) + 0.01u(k)1 1 2  (4.25)

 

x (k +1) = 0.1x (k) + 0.97x (k)2 1 2  (4.26)

 

y(k +1) = x (k +1)1  (4.27)
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The plant was required to follow a step reference signal. The initial values of 1x  and x2  

were set as x (0) = 11  and x (0) = 12 . 

Figure 4.31 shows the learning history of gu , while figure 4.32 shows the 

learning history of a (5)j  and a (6)j . 

 

 

Figure 4.31: Learning values of gu as iterations increase. 

 

 

Figure 4.32: Learning values of a (5)j and a (6)j as iterations increase. 
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It took 2, 20 and 1 iterations to learn gu , a (5)j  and a (6)j  respectively. 

After these parameters were learnt, the system produced the response as indicated 

in figure 4.33. 
 

 

Figure 4.33: Step response after learning. 

 

The response shows that both the design requirements are met. Furthermore, the 

uncertainty in membership function design is also catered for. The learnt control surface 

and the learnt membership functions are shown in figures 4.34 and 4.35. 
 

 

Figure 4.34: Control surface learnt by the system. 
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Figure 4.35: Learnt membership functions. 

 

Again, the control surface is nonlinear and the membership functions learnt are squeezed 

together in the middle and expand away at the ends. The behaviour of error as shown in 

figure 4.36 below indicates a sharp decrease in error with time. 
 

 

Figure 4.36: Trend of error vs. time. 
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Determining stability and convergence criteria for fuzzy based systems is a very 

challenging task. In the following section we present a novel approach to judge the 

stability of the Iterative Learning Fuzzy Tuner (ILFT). 

 

4.4.2   Stability and convergence 
 

The proposed approach (ILFT), with 7 input and output membership functions, 

behaves as if there are 6 proportional controllers, which operate one at a time, for 

different ranges of errors. As three of the controllers, for negative values of errors, have 

same gains as those for positive error values, we can assume that basically there are three 

switch able proportional controllers. The ranges for positive errors are [0,a (5)]j , 

[a (5),a (6)]j j  and [a (6),1]j . These ranges are named region1, region2 and region 3. A 

conceptual block diagram alternative for the approach in figure 4.13, with positive error 

values is described in figure 4.37. 
 

 

Figure 4.37: Conceptual view of the approach. 

 

Here Kp1 is the gain when error has values [0,a (5)]j , Kp2  is the gain when error has 

values [a (5),a (6)]j j  and Kp3 is the gain when error has values [a (6),1]j . 

Mathematically  
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K if 0 abs(e) a (5)p1 j
K = K if a (5) abs(e) a (6)p p2 j j

K if a (6) abs(e) 1p3 j

 ≤ ≤ 
 ≤ ≤ 
 

≤ ≤ 
 

 

(4.28)

For the motor speed control system, as seen from equation (4.24), the gains learnt 

are 41.4 in [0,a (5)]j  range, 4.67 in [a (5),a (6)]j j  range and 19.6 in [a (6),1]j  range. The 

gain is relatively high for very large error, to quickly reduce the error. As the error is 

reduced, the gain is lowered to avoid overshoot. Once the error is low enough, high gain 

is applied to reduce the steady state error. All this is automatically calculated by the ILT. 

This conceptual view gives us the ease to use the well known methods like Root 

locus, Nyquist stability criteria, Routh’s stability criteria, Phase Plane method etc. to 

determine the stability. Discrete Root locus of the DC motor model of equation (4.14) is 

described in figure 4.38. 
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Figure 4.38: Root locus of the system. 

 
The plot shows that there is no stability problem with K = [-278, 278]p  range. 

A universal reliable method to determine the stability of a fuzzy control system 

has not yet been developed though some methods have been proposed based on Liapunov 

second method. We now use the following assumptions:- 



164 

 

(a) The reference signal r (k)j  is repeatable over a finite interval [0,T], where T is a 

finite positive constant. 

(b) The system is stable under fuzzy control before the iterative learning algorithm is 

introduced. 

(c) The value of a (5)j  is bounded between [0,a (6)]j  and the value of a (6)j  is 

bounded between [a (5),1]j . 

 

Using the above assumptions, if the conventional controller of figure 4.21 is stable for 

K = Kp p1, K = Kp p2  and K = Kp p3  , our proposed approach will also be stable. 

It was noted that lower values of error had more impact on steady state error 

while higher values of error had more impact on percentage overshoot. The behaviour is 

shown in figure 4.39. 

 

Figure 4.39: Effect of moving end points a (5)j  and a (6)j . 

This effect is discussed w.r.t. regions below:- 

Region 1: From 0  to a (5)j  

If the value of a (5)j  is moved towards zero the slope of the control surface in this 

region increases. In this region we try to reduce steady state error. The end point a (5)j  is 
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selected to reduce this error. A decrease in a (5)j  moves the system response in the 

steady state region upwards, while an increase in a (5)j  moves the response downwards 

(figure 4.39). Hence the ILT is always selecting a (5)j  to reduce steady state error. 

Region 2: From a (5)j  to a (6)j  

Reducing a (5)j  reduces the slope of the control surface while reducing a (6)j  

increases the slope of the control surface in this region. This region has no or very 

negligible impact on steady state error. The gain should be low enough to avoid over 

shoot. 

Region 3: From a (6)j  to 1 

Increasing a (6)j  increases the slope of the control surface in this region. When 

this region is effective the error is large. The end point a (6)j  is selected according to 

equation (4.13) so as to give a speedy initial response. 

 

Similar arguments can be made for negative values of error. Hence, if the assumptions 

are fulfilled, the system will not be unstable because of ILT and will try to converge 

according to conventional control theory [135]. 

The effectiveness of ILFT in tracking different trajectories, in real time, is 

discussed in the next section. 

 

4.4.3   Tracking a desired trajectory in real time 
 

Tracking is an important practical problem. It becomes a difficult problem, 

especially when the target changes its position continuously. To demonstrate the 

effectiveness of this approach, different trajectories were tracked in real time; one of 

them was a sinusoidal signal. This tracking was done after the learning of the parameter 

had been achieved as discussed before. For this demonstration, system of equation (4.14) 

was used and was given a task to follow sinusoidal speed requirements. These speed 
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requirements meant that the motor had to move in one direction with a maximum of 1 

rad/sec speed and then in the opposite direction, to achieve the same speed. The plot in 

figure 4.40 below shows the results. 
 

 

Figure 4.40: Tracking a sinusoidal reference trajectory. 

 

Figure 4.40 shows that the system was quite effectively able to track the desired response. 

This should be noted that the scheme learnt the parameters for < 5%  steady state error. 

For a system with lesser steady state error requirements, even better performance was 

achieved. A plot of error vs. time is shown in figure 4.41. 
 

 

Figure 4.41: Plot of error with time. 
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The same system with the same learnt parameters was made to track other 

arbitrary trajectories also. One of the results from such tracking is shown in figure 4.42 

below. 

 

Figure 4.42: The output of the system and the reference trajectory. 

 

The behaviour of error with respect to time is plotted in figure 4.43. The plot shows that 

the system was able to track the reference trajectory successfully. 

 

Figure 4.43: Behaviour of error with time. 
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After an initial error the system was able to track the trajectory perfectly and the initial 

overshoot is also with in our desired limits. 

There can be situations where the design requirements can not be fully met by 

considering the error alone. The best solution in this case is to introduce more inputs, like 

derivative of error or integral of error. This scenario is discussed now. 

 

4.4.4   Effect of considering derivative of error 
 

We know from conventional PID control design that the derivative part can 

reduce percentage overshoot and the integral part can reduce steady state error. Similar 

behaviour was observed for this scheme. For systems whose performance specifications 

can not be met with only error as input membership function, it is proposed to introduce 

derivative of error, integral or sum of error also, as per requirement. Derivative of error 

should be considered if overshoot requirements are not met and integral of error should 

be considered if steady state error requirements are not met. Figure 4.44 below shows the 

block diagram of the approach, when rate of change of error is considered. 
 

 

Figure 4.44: Block diagram of the proposed controller considering rate of change of error 

also. 

 

The only change as compared to figure 4.13 is the introduction of another input i.e. 

change of error. This increases the type of the fuzzy controller. 

There can be five different combinations of e  and ∆e . 
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Case 1: e  is +ve and ∆e  is +ve 

 This implies that the present error is greater than old error i.e. e (k) > e (k -1)j j . 

The output is going in the wrong direction. The output is lower than the reference signal 

i.e. y (k) < r (k)j j  and moving away from it. Therefore, the output should be moved up in 

the positive direction hence PB,PM,PS should be dominant. 

Case 2: e  is +ve and ∆e  is -ve 

 This implies that the present error is less than the old error i.e. e (k) < e (k -1)j j . 

The output is going in the right direction. The output is lower than the reference signal 

i.e. y (k) < r (k)j j and moving towards it. 

Case 3: e  is -ve and ∆e  is +ve 

 This implies that the present error is less than the old error i.e. e (k) < e (k -1)j j . 

The output is going in the right direction. The output is greater than the reference signal 

i.e. y (k) > r (k)j j  and moving towards it. Therefore if negative input membership 

function is dominant output should be negative and if positive input membership function 

is dominant output should be positive. 

Case 4: e  is -ve and ∆e  is –ve 

 This implies that the present error is greater than old error i.e. e (k) > e (k -1)j j . 

The output is going in the wrong direction. The output is greater than the reference signal 

i.e. y (k) > r (k)j j and moving away from it. Therefore the output should be moved in the 

negative direction i.e. NB,NM,MS. 

Case 5: e  is 0 and  ∆e is 0 

 This implies that the present error is equal to old error i.e. e (k) = e (k -1)j j . The 

output is the desired output. No change in output is desired. Z membership function 

should be dominant. 

 

Using the discussion above the following rule base is proposed. 
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           e  
e∆  

NB NM NS Z PS PM PB 

NB NB NB NB NB NM NS Z 

NM NB NB NB NM NS Z PS 

NS NB NB NM NS Z PS PM 

Z NB NM NS Z PS PM PB 

PS NM NS Z PS PM PB PB 

PM NS Z PS PM PB PB PB 

PB Z PS PM PB PB PB PB 

Table 4.8: Proposed rule Base for the controller. 

 

The introduction of rate of change as the second input, suppresses the overshoot. 

This is obvious in the response of the system as a (5)j  is learnt. This response as a (5)j  

was learnt against different number of iterations is shown in figure 4.45. 

 

Figure 4.45: Plant output as iterations increase, while learning a (5)j . 

 

It took just 5 iterations to learn a (5)j  and no learning was required for a (6)j  as 

introduction of the derivative term reduced the overshoot within the required limit. After 

the learning process was finished the control surface learnt is shown in figure 4.46 below. 
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Figure 4.46: Control surface of the controller. 

A highly nonlinear control surface is learnt automatically by the proposed scheme. With 

this controller the behaviour of error for a desired response of 1 rad/sec is plotted in 

figure 4.47. 

 

Figure 4.47: Behaviour of error. 

 

A comparison of this plot with that in figure 4.30 shows that even the behaviour of error 

is non oscillatory due to introduction of rate of change of error. The parameters learnt 
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during the learning phase were g = 11.68u , a (5) = 0.0838j  and a (6) = 0.6j . No learning 

was required for parameter a (6)j . 

Number of simulations, also considering rate of change of error and integral of 

error on different systems led to the formation of a procedure for the design of ILFT. The 

procedure is described in figure 4.48.  
 

 

Figure 4.48: Flow chart showing the procedure for selecting rate and/or integral of error. 

 

If rise time is also an issue care must be taken in introducing ∆e  as it has an impact on 

rise time of the system also. 

 

4.4.5   Stability using linguistic trajectory 
 

Fuzzy systems are non-linear systems. From conventional non-linear control 

theory we know that the stability of a non-linear system not only depend on shape and 
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amplitude of input signal, but also on location of initial conditions. One method used for 

stability analysis of non-linear systems is the phase plane method. Control systems 

designers have been using phase plane analysis to generate motion trajectories of the 

system in the state space domain. The qualitative analysis of the trajectories gives 

information concerning stability, robustness and convergence. The main advantage of the 

phase plane analysis is its graphical nature which allows us to visualize what goes on in a 

non-linear system. These graphs are plotted for different initial conditions without having 

to solve any equation analytically. 

This method can also be used to study the stability of fuzzy based systems by 

observing the sequence in which the rules are fired. If we draw this as a trajectory on a 

rule table, the error and change of error should be decreasing during the rule firing 

process [101, 103]. This means that we have to move along this trajectory from the edges 

of the table to its centre. For an unstable system there is an inverse trajectory or at least 

this trend is not present.  

Let Tx = (x , x )1 2  be the state. We consider the following fuzzy control system 

.
x = f(x) + bu  (4.29)

 

u = φ(x)  (4.30)

Here f(x) represents plants dynamics and is a nonlinear vector function, b  is a two-

dimensional vector, u  is a scalar control variable and φ(x)  is a two input one output 

fuzzy system. We define N1 and N2 fuzzy sets to cover the domains of x1 and x2 . We 

also suppose that the fuzzy rule base of φ(x)  consists of N1 x N2 rules. Let the rue be of 

the form in equation (4.2). We say that the point (x , x )1 2 in the phase belongs to rule *l  

if it holds that 

µ (x )*µ (x ) µ (x )*µ (x )1 2 1 2
l* l* l l
A A A A1 2 1 2

≥  (4.31)

For all *l l≠ , where * represents t-norm. 

The tangent vector of the state trajectory equals the summation of vector field 

f(x) and vector field bφ(x) as shown in figure 4.49. 
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Figure 4.49: State trajectory moves along the direction of f(x) + bφ(x)  

 

The subspace φ(x) = 0  is a line called the switching line. When the open loop system 

.
x = f(x) is stable and the control u = φ(x)  tries to lead the system trajectory towards the 

switching line, the plant component f(x) has a greater influence which makes the 

trajectory converge to the equilibrium point. On the other hand if the open loop system is 

unstable and the control tries to stabilize the system. At this moment if the state trajectory 

moves near the switching line the unstable plant component f(x) has a greater influence 

which makes the state trajectory diverge away from the equilibrium point. This 

interaction between the control and the plant component makes the state oscillate around 

the equilibrium point and a limit cycle is formed.  

Considering b = 1 the equilibrium point of the fuzzy system described by 

equations (4.29) and (4.30) is determined by 
.
x = f(x) +φ(x) = 0  (4.32)

Since f(0) = φ(0) = 0 , the origin is an equilibrium point. For this condition to be stable a 

sufficient condition is [103]. 

' '
x=0

d [f(x) +φ(x)] | = f (0) +φ (0) < 0
dx

 
(4.33)

Consequently the closed loop system in equation (4.29) and (4.30) is globally stable if the 

following two conditions are satisfied [103]. 
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' 'f (0) +φ (0) < 0  (4.34)

 

φ(x) < f(x) , x 0∀ ≠  (4.35)

 

The linguistic trajectory for the rule base in table 4.8 and a desired speed of 1 rad/sec is 

shown in table 4.9 below. 
 

e  

e∆  

NB NM NS Z PS PM PB 

NB NB NB NB NB NM NS Z 

NM NB NB NB NM NS Z PS 

NS NB NB NM NS Z PS PM 

Z NB NM NS Z PS PM PB 

PS NM NS Z PS PM PB PB 

PM NS Z PS PM PB PB PB 

PB Z PS PM PB PB PB PB 

Table 4.9: Linguistic trajectory for simulation results in section 4.4.1.6. 

 

The trajectory shows smooth reduction of error. Also there are no stability issues as the 

trajectory is always moving toward the centre Z membership function. The rule base in 

table 4.8 can be modified if a different trajectory needs to be followed. The linguistic 

trajectory plot also makes this modification easier. 

 

4.5   A Real Time Tracker Using  ILT 

  
A classical controller can become highly complex when a system is non linear or 

has complex dynamics. On the other hand, humans tend to take care of such complex 

problems like tracking, fairly easily. Moreover, humans are unaware of the mathematical 

model of the system. Even while driving a car, humans do not have a model of the car, 

driver or distance in mind, but just an idea of the error or its range. This proposed ILT 
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based controller discussed earlier can be easily applied to systems where the 

mathematical model is unavailable. 

This research presents a real time tracker based on ILFT scheme discussed earlier 

and shows its effectiveness using simulations as well as practical demonstrations. 

The block diagram of the real time tracker is presented in figure 4.50. 
 

 

Figure 4.50: Block diagram of the real time tracker. 

 

Here dx (k)j  and dy (k)j  are the desired x and y positions of the Scanner for k = 1...N  

and j = 1...∞ . Variable j  represents the iteration number and k  represents the samples. 

During the tracking mode, the value of k  is 1 as each sample is taken as new iteration 

with its initial state as the final state of the previous iteration. The errors in the x and y 

plane are represented by ex (k)j  and ey (k)j . These error values are fed to two FLC 

blocks. FLC1 controls the movements of Scanner for x axis and FLC2 controls the 

movements for y axis. The output of these blocks is converted into appropriate signals for 

the Scanner, using the output scaling factors gu1j, gu2j  and the Motor Driver Interface 

card. The inputs to the Scanner are ux (k)j  and uy (k)j . Each input is used to control one 

axis of the XY plane. The Scanner has a camera mounted on it which takes pictures of the 

scene regularly. The Image processing module detects the target and locates its current x 
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and y positions marked yx (k)j  and yy (k)j . Using this target position the error signal is 

generated.  

The acceptable or desired steady state error ( ssed ) and the acceptable or desired 

percentage over shoot ( posd ) is fed to the ILT block. The ILT adjusts gu1j, gu2j  and 

tunes the fuzzy logic controllers (FLCs) by adaptively adjusting the membership function 

end points. The aim is to converge with respect to given desired steady state error and 

percentage overshoot. The learnt values of gu1j, gu2j  and membership function end 

point values are stored in memory to be used in future iterations. The ILT block uses the 

error signals and learning laws to adjust these parameters.  

The Scanner for simulation purposes is a 2 Degree of freedom tracking platform 

(2DOFTP), the details of which are given in section 2.9. The camera used had selectable 

pixel resolution of 640x480 or 320x240. The pixel coordinates for a 320x240 camera 

resolution are shown in figure 4.51 below  

 

Figure 4.51: Camera pixel coordinates. 

 

These camera pixel coordinates were converted to a virtual coordinate for mathematical 

convenience as in figure 4.52. 

 

Figure 4.52: Virtual coordinates and Centre of Camera (COC) i.e. point (0,0). 

 

The aim is to have the target at (0,0) i.e. 

(-160,120) 

(160,120)

(0,0) 
(160,120) 

(-160,-120) 
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dx (k) = 0j  and dy (k) = 0j  

The errors ex (k)j  and ey (k)j  are normalized before being supplied to the FLC 

blocks using the equations 

dx (k) - yx (k)j jex (k) =j 160
 

(4.36)

 

dy (k) - yy (k)j jey (k) =j 120
 

(4.37) 

The desired x, y positions y dx(k)j , y dy(k)j  the current x,y positions yx (k)j , yy (k)j and 

the errors in x,y directions ex (k)j , ey (k)j  all are in pixels. The 7 input MFs for error and 

7 output membership functions for voltage were of the form in figure 4.14 for both FLC 

blocks. The membership function end points were renamed as 

a (1) = ax (1)j j , a (2) = ax (2)j j , a (3) = ax (3)j j , a (4) = ax (4)j j , a (5) = ax (5)j j , 

a (6) = ax (6)j j  and a (7) = ax (7)j j  for FLC1 block and 

a (1) = ay (1)j j , a (2) = ay (2)j j , a (3) = ay (3)j j , a (4) = ay (4)j j , a (5) = ay (5)j j , 

a (6) = ay (6)j j  and a (7) = ay (7)j j  for FLC2 block. 

The ILT learning procedure, described in equations (4.11), (4.12) and (4.13) is 

modified for FLC1 block as:- 

 

if percentage over shoot < 0.0 

gu1 = gu1 + µ (r (k) - y (k))gu1j+1 j j j  (4.38)

else 

gu1 = gu1 -µ (r (k) - y (k))gu1j+1 j j j  (4.39)

 

if  ydx (k) - yx (k) > ssej j d  
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ax (5) = ax (5) -µ (r (k) - y (k))ssej+1 j j j  (4.40)

else  

ax (5) = ax (5) + µ (r (k) - y (k))ssej+1 j j j  (4.41)

ILT learning equation for percentage overshoot is modified as :- 

 

if pos > posj d  

ax (6) = ax (6) + µ (r (k) - y (k))posj+1 j j j  (4.42)

else 

ax (6) = ax (6) -µ (r (k) - y (k))posj+1 j j j  (4.43)

 

Here µpos  is the step size parameter for correcting percentage over shoot and posj  is the 

percentage overshoot value for the current iteration. Similar equations can be derived for 

FLC2 block tuning. 

 

4.5.1   Simulation results 

 

Using the motor of equation (4.14), simulations were run to test the real time 

tracker. The aim is to make the ILT based controller tune for less than 2% steady state 

error and less than 5% percentage over shoot. This amounts to a steady state error of 
± 3.2 pixels in x direction and ± 2.4 pixels in y direction. The permissible overshoot in x 

direction is ± 8 pixels and ± 6 pixels in y direction. The learnt values of the two output 

scaling factors and the membership function endpoints were gu1j=11.68, 

ax (5)j =0.0846, ax (6)j =0.7625, gu2j=11.68, ay (5)j =0.0846 and ay (6)j =0.7625.  

Figures 4.52 shows the Scanner tracking a static target at x=200 and y = 100. The 

target is tracked with in one second of operation.  
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Figure 4.52: Response of the Scanner against a static target. 

 

The behaviour of errors in the x and y plane are shown in figure 4.53 and 4.54. 
 

 

Figure 4.53: Behaviour of error in the x axis as the object is tracked. 
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Figure 4.54: Behaviour of error in the y axis as the object is tracked. 

 

Both figures show quick decrease in error. The Scanner output w.r.t. the desired target 

positions are shown in figure 4.55 and 4.56. 

 

 

Figure 4.55: Position of Scanner in x axis as the object is tracked. 
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Figure 4.56: Position of Scanner in y axis as the object is tracked. 

 

The trajectory followed by the Scanner as it tries to track the target is shown in figure 

4.57. The trajectory has a converging shape. 
 

 

Figure 4.57: Trajectory of the Scanner in the XY plane. 

 

Moving targets were also successfully tracked using this setup. One such tracking 

performance is exhibited in figure 4.58. 
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Figure 4.58: Response of the Scanner against a moving target. 

 

For this moving target the behaviour of errors in the x and y plane are shown in figure 

4.59  and 4.60. 
 

 

Figure 4.59: Behaviour of error in the x axis as the object is tracked. 
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Figure 4.60: Behaviour of error in the y axis as the object is tracked. 

 

The hump shows the time when the target moved i.e. after 1 sec. A plot of the output 

w.r.t. the desired target positions in the x axis is shown in figure 4.61. 
 

 

Figure 4.61: Position of Scanner in x axis as the object is tracked. 

 

The trajectory taken by the Scanner as the moving target is tracked is shown in figure 

4.62 below. The figure clearly shows the real time tracker converging at the target. 
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Figure 4.62: Trajectory of the Scanner in the XY plane. 

 

Moving targets were effectively tracked by the ILFT.  

Researchers over the years have developed some innovative 2DOF devices like 

[3,4] where they propose to put both actuators in the base. Camera on the other hand has 

also been used by some [87,88] to track objects like human head. The camera can also 

have zoom facility to increase range and reduce error. We now describe the construction 

of such a device. This device can, not only be used to test ILFT but also opens up many 

industrial and commercial applications. 

 

4.5.2   Experimental setup 

 
A practical setup was developed to test the performance of the controller in real 

word situation. The practical setup described here consists of 3 blocks, a target capturing 

and processing block, a controller and an electro mechanical mechanism to manipulate 

the position. The proposed tracking system consists of a camera and Image processing 

module for capturing and processing. It uses the ILT based controller discussed 

previously as a controller and uses a device called Scanner S-101 for mechanical 

movements. The S-101 was specially manufactured as a verifying tool for these 

experiments. 
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4.5.2.1   Real time tracking system 

 

The constructed real time tracking system consists of a device called Scanner S-

101, an interface card, a supply unit, a camera, simulated target board and control 

software. It is able to scan a predefined area for the presence of a target. It has a 

positioning accuracy of ±1  pixels. This means that for a fixed object position the device 

is able to move at least ±1  pixels in either direction of the target. A webcam is used to 

capture the image of the area and that image is processed to identify the target. 

The S-101 Scanner is a two degree of freedom (2 DOF) device. Travel ranges are 
± 90o in both the directions from its centre point. Movements in two degrees of freedom 

are accomplished using 2 DC mini motors, which are connected to the interface card 

through a connector. Limit switches are attached to the mechanical part to limit the 

movement of the Scanner. A reed switch and magnet mechanism is used to help the 

platform move to its initial position. The initial position is the centre position of the XY 

plane. The status signals from the limit switches and the reed switches are read through 

the same interface card. 

The Scanner is controlled by the ILT based controller discussed earlier. The 

interface card accepts commands via a parallel communication link from the host PC. On 

command, pulse width modulated signals are passed to the motors.   

 

4.5.2.2   The S-101 

 

The S-101 weighs about 655gms without the camera. It is shown in figure 4.63. 
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Figure 4.63: The Scanner S-101. 

 

Major construction of the S-101 was carried out with 8mm Plexiglas (Acrylic glass) 

sheet. The main structure is attached with a circular platform (Φ 123mm). Two round 

armed yoke brackets of Plexiglas were also fitted on this circular platform using self 

threading screws. These brackets are 100mm apart and parallel to each other. The yoke 

brackets hold the WEB-Cam plate (80x93x6mm). The WEB-Cam plate holds the camera. 

To assemble this structure a shaft (Φ 8mm x 153mm) was machined into the WEB-Cam 

plate. Four 3.5mm holes were drilled into the shaft and threaded with 3mm threading tap. 

The WEB-Cam plate was screwed in the holes with four 3mm countersunk screws. After 

proper fixing and marking, the plate was unscrewed from the shaft. The shaft was then 

cut in such a way that 80mm portion was removed from the middle. The WEB-Cam plate 

was fixed firmly on the shaft again. The shaft preparation sequence and WEB-Cam plate 

fixation is shown in figure 4.64. This procedure helps to achieve coaxial alignment of 

both halves of the shaft. 
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Figure 4.64: ( a= shaft, b= groove making, c= drilling and threading, d=fixing of the 

WEB-Cam plate, e=dismantling, f=cutting into two halves, g=reassembling, h=actual 

configuration ) 

 

One half of the WEB-Cam plate shaft was fitted with a brass spur gear while the other 

was fitted with lever for limit switches. 

Two spur gear modules (SGM) were fabricated with commonly available gears 

from used VCRs. The SGMs are derived from worm gear module (WGM). Worm gears 

are used as driver gears to increase power and reduce speed of the motors. A gear box 

designed with worm gears have a considerably smaller volume then that designed from 

spur gears alone. Worm gears also integrate the torque value and have self locking or self 

braking property which is essential to reduce skew and to give more control. The SGM 

and WGM are independently adjustable to help reduce the latch.  

The gear ratio between the SGM and brass spur gear is 15:1 giving a reduction in 

speed by a factor of 15 while increasing the torque by the same amount. 

The Scanner has a tripod stand for better balance. To keep the centre of mass 

lower, for balance, the tripod assembly is metallic. This helps the Scanner to keep its 

ground as it moves while tracking a target. Connected to the tripod centre is a shaft on 

which the whole assembly is mounted. The shaft was welded vertically to a tripod. The 

free end of the shaft was machined for 6M threads. A brass spur gear was fixed to the 

shaft at a desired height. A bearing block taken out from an old floppy drive was fixed in 
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the middle of the circular platform. The circular platform also holds a gear module 

similar to the one attached with the yoke bracket. When the WGM rotates the circular 

platform rotates. All the metallic gears used in the construction were machined to reduce 

weight by reducing the thickness of the gears and cutting holes in them.  

The two yoke blocks were fitted with a rib for rigidity. The two yolk blocks were 

provided with plain bush bearing for the 8mm shaft of the WEB-Cam plate. The plain 

bush bearing are light weight and give jerk free movement. A M.S. sheet mounting is 

fabricated to fix the camera on the WEB-Cam plate. 

The SGM consists of both metallic and plastic gears to compensate for spur gear 

back lash as well as to give better performance even with less lubrication. The metal 

gears are of Φ53 mm and Φ47 mm. Holes are cut through the metal gears to reduce 

weight. The two gear box assemblies are shown in figure 4.65. 
 

Figure 4.65: Gear boxes assemblies. 

 

Two limit switches are used, for each degree of freedom to limit the movement. 

The limit switches cut off the supply immediately to protect the mechanical system. The 

limit switches and the associated electrical circuit is shown in figure 4.66. 
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Figure 4.66: Limit switches to protect the assembly. 

The compact Scanner is capable of a wide range of rotational movements with great 

accuracy. Two MITSUMI M15E-2 DC mini motors are mounted at the platform. These 

DC mini motors have a voltage range of  1.6 to 8.5 V and a no load rotational speed of 

9100rpm. A 40mA current at no load produces a torque of 3.92 mNm. These motors have 

dimensions of only 26.5x 12mm keeping the total assembly weight and size small. 

The Scanner also has a mechanism to initialize itself. Two reed switches and bar 

magnet assemblies are positioned so as to generate signals just at the moment when base 

plate and the WEB-Cam plate are at the centre. The components are shown in figure 4.67. 
 

 

Figure 4.67: Reed switch and magnet assembly. 

 

The camera used is a normal webcam (Creative Live pro) which has a weight of 

300 gms. 

Reed 
switch 

Magnet 

Magnet 

Reed 
switch 
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4.5.2.3   Target Simulation Board (TSB) 

 

For target generation, a Light Emitting Diode (LED) based board was developed. 

Thirty six LEDs of red colour were placed on a wooden square board at regular intervals 

to simulate potential targets. The target board also has a green LED at the centre for 

quick Scanner initialization. This initialization support is in addition to the reed relay and 

magnet structure present in the S-101. The target board also has a switch board (remote 

console) to switch on the LEDs. The diagram of the target board is presented in figure 

4.68. 

 

 

Figure 4.68: Target Simulation Board. 

 

4.5.2.4   Interface card 

 

Communication between PC and S-101 was done through the Interface card. The 

card also supplied the power to the S-101. A picture of the card is described in figure 

4.69. 

 

 

Figure 4.69: Interface card. 

To Power 
Supply 

To S-101 

To PC 
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Adaptor 
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4.5.2.5   Scanner coordinate system 

 
The two degrees of freedom of the scanner are explained in figure 4.70 below. 

 

 
 

Figure 4.70: Geometrical coordinates of the S-101. 

 

The origin of the coordinate system XYZ, is located at the intersection of the centre of 

the base disc and the centre of the camera. This is the initial position of the S-101. The w  

rotation is called the yaw rotation and the v  rotation the pitch. 

 

4.5.2.6   Control software 

 

The control software was written using MATLAB. The camera took software 

trigger based pictures regularly. The status signals from the limit switches and also from 

the reed switches were read using the parallel (LPT) port. The same port was also used to 

give commands to the motors. A Graphical User Interface (GUI) was also developed. It is 

exhibited in figure 4.71.  
 

X 

Y
w

v

Z 
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Figure 4.71: GUI of the software. 

 

The GUI shows the camera pixels both in x and y directions. This snapshot was taken 

with a camera resolution set at 320x240 pixels. Any object detected by the image 

processing module will be displayed in this GUI. The small rectangular block marks the 

locking area. An object with in this area is considered locked. 
  

4.5.2.7   The complete setup 

 
The complete setup is shown in figure 4.72. 

 

 

Figure 4.72: Real time tracking system in operation. 
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The S-101 is facing the target simulation board. The board has its own remote console to 

simulate target movement. The S-101 is connected to the PC through an interface card. 

The camera is also connected to the PC. This camera closes the feedback loop of the 

system.  

 

4.5.2.8   Experiments using 3 input and 3 output MFs 

 

In this experiment, 3 MFs were used to define both errors ( ex (k)j , ey (k)j ). The 

membership functions are shown in figure 4.73 and 4.74. 

 

Figure 4.73: Input MFs for FLC 1. 

 

 

Figure 4.74: Input MFs for FLC 2. 
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The output membership functions for both the FLC blocks are defined in figure 4.75. 
 

 

Figure 4.75: Output Membership functions for both FLC 1 and FLC 2. 

 

The ILT is programmed to find values of a1 and a2  (see figures 4.73 and 4.74) 

such that the system can track the target within ±3pixel resolution at less than 1 sec. The 

ILT learns the values of a1 and a2  for ensuring the desired performance requirements. 

From starting values of a1 = 1.0  the system learns the values a1 = 0.52 . The learning 

history of parameter a1 is shown in figure 4.76. 
 

 

Figure 4.76: Learning behaviour of a1as iterations increase. 

 

After learning a1 the S-101 is made to track a target, the tracking performance is shown 

in figure 4.77.  
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Figure 4.77: Snap shot of the target being tracked by S-101. 

 

There is over shoot in the y axis. To reduce over shoot, a2  was learnt. The learnt value 

for acceptable overshoot was a2 = 1.57 . The learning history of a2  and the response with 

these values is presented in figure 4.78 and 4.79. 
 

 

Figure 4.78: Learning behaviour of a2 as iterations increase. 
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Figure 4.79: Snap shot of the target being tracked by S-101. 

 

The plot of errors in x and y positions of the scanner while tracking the target is shown in 

figure 4.80. 

 

Figure 4.80: Plot of the errors as target is being tracked. 

 

The plot shows that the error settles to with in ±3  pixels in both the x and y axis. For a 

frame rate of 20 frames per second (no. of frames is labelled no. of samples in the figure) 

the S-101 was able to track the object with in 0.5 sec. 

The control surfaces learnt for the two FLC blocks are shown in figure 4.81 

below. 
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Figure 4.81: Control surface of the two FLCs after learning. 

 

The input membership functions for FLC1 and FLC2 after learning are given in figure 

4.82 and 4.83. 
 

 

Figure 4.82: Input MFs for FLC 1 after learning. 
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Figure 4.83: Input MFs for FLC 2 after learning. 

 

The ILT based controller successfully tracked moving targets also. Figure 4.84 

shows the GUI as the target is moving and as it is being tracked. The trail is intentionally 

left visible so that we can see the performance. The target was initially at position 1, it 

then moved to position 2 , then to position 3 and ultimately to position 4. 

 

Figure 4.84: Moving target being tracked. 

 

The plot of errors in both dimensions as the target is tracked is shown in figure 4.85. Plot 

shows that the Controller is able to successfully track moving objects. 
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Figure 4.85: Plot of the error as target is being tracked. 

 

Using a frame rate of 20 frames per sec. the device showed good accuracy and 

speed while tracking a moving target. 
 

4.5.2.9   Experiments using 7 input and 7 output MFs 

 

Another set of experiments used the same physical setup, with 7 input and 7 

output member ship functions for both FLCs. The membership functions were of the 

form in figure 4.14. The design requirements were tightened with less than 2 pixel steady 

state error and with an overshoot of less than 7 pixels. The ILT learnt the values of  

ax (5)j , ax (6)j , ay (5)j  and ay (6)j as ax (5) = 0.1545j  ax (6) = 0.6823j , ay (5) = 0.3j  

and ay (6) = 0.83j  . It took 3 iterations to learn ax (5)j , ax (6)j and ay (6)j . The learning 

history plot of these parameters is shown in figure 4.86 and 4.87. 
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Figure 4.86: Learning behaviour of ax (5)j  and ax (6)j as iterations increased. 

 

 

Figure 4.87: Learning behaviour of ay (5)j  and ay (6)j  as iterations increased. 

 

Figure 4.88 shows a GUI snap shot of a target being tracked by S-101, using 7 

input 7 output MFs. 
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Figure 4.88: Snap shot of the target being tracked. 

  

The camera frame rate was set at 20 frames per second. A 3D plot of the behaviour of S-

101 as the target is being tracked is shown in figure 4.89. 
 

 

Figure 4.89: Response of S-101 against a static target. 

 

The two dimensional plot as tracking was achieved in both x and y directions against tine 

is presented in figures 4.90 and 4.91. The plots show in greater detail, the behaviour of S-

101. 
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Figure 4.90: Position of  S-101 y axis as the object is tracked. 

 

 

 

Figure 4.91: Position of S-101 along x axis as the object is tracked. 

 

For both degrees of freedom, the elimination of error is plotted in figure 4.92.  
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Figure 4.92: Plot of the errors as target is being tracked. 

 

Moving targets were also tracked successfully with this setup. The response of S-

101 while trying to track a moving target is shown in figure 4.93. Again the circular 

marks, showing the target, are intentionally left visible to show the tracking performance. 
 

 

Figure 4.93: Snap shot of the GUI while tracking a moving target. 

 

A 3-D plot, as S-101 tries to track this moving target is shown in figure 4.94 and its 

corresponding error plot is shown in figure 4.95. 
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Figure 4.94: Response of S-101 against a moving target. 

 

 

Figure 4.95: Plot of the errors as target is being tracked. 

 

For a closer look at the performance, figure 4.96 shows a 2-D view of the S-101 tracking 

the target. It shows S-101 movements in x-direction only. 
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Figure 4.96: Position of S-101 along x axis as the object is tracked. 

 

This result was taken at 10 frames per second. The tracking performance can be 

increased by increasing the frame rate. It was observed that 20 frames per second 

produced the best results. 

 

4.6   Summary 

 
Zadeh in his foreword remarks in [101] points out that the issue of key importance 

in the design of fuzzy controller is the tuning of controller parameters and the induction 

of rules, which are mostly done by trial and error. This tuning is more important because 

of the uncertainties associated with the linguistic variables, upon which the fuzzy 

controllers are based. Use of type-1 fuzzy set to model these linguistic variables is 

scientifically incorrect because a word is uncertain while a type-1 set is certain [72]. 

To tackle these uncertainties, type-2 FLCs are being developed [31] but type-2 

systems are very complex to perceive and very difficult to implement. Ideally, we have to 

use type-∞  fuzzy sets to represent uncertainty, in totality [73].  

This chapter proposes to tackle linguistic uncertainties through adaptability in 

membership functions, thereby still remaining in the framework of Fuzzy type-1. This 

adaptability is achieved using an Iterative Learning Fuzzy Tuner (ILFT). The Controller 



207 

contains an Iterative Learning Tuner (ILT), which iteratively tunes the Membership 

Functions (MFs). This results in an adaptive rule base. This ILFT has the capability to 

achieve desired steady state error and percentage overshoot design requirements. Results 

from different linear and non-linear systems are presented. 

A universal reliable method to determine the stability of a fuzzy system is still not 

available. By dividing the error into different ranges, a novel method for stability and 

convergence is discussed. Stability and convergence is also discussed using linguistic 

trajectories.  

The ILFT is made to track different practical trajectories with excellent results. 

The controller can take derivative and integral of errors as input as well. These inputs 

should only be used if the design requirements are not met using error alone. A step by 

step procedure for the selection of number of inputs, for the controller, is also presented 

in this chapter. 

For a practical setup, a Tracker called S-101 was developed. The device has two 

degrees of freedom and is a low cost alternative to the six degrees of freedom Hexapod, 

used earlier in chapter 2. It has a camera mounted on it for target recognition. Using this 

tracker the ILT based controller was able to track targets with in the desired accuracy 

level in real time. To achieve exact replication of target path, a Target Simulation Board 

(TSB) was also developed. 

The simulation and practical results show that because of inherent non-linearity in 

fuzzy systems, we were able to learn non-linear control surfaces even with a single input 

single output controller. If there is any change in plant parameter, desired steady state 

error or desired percentage over shoot, the ILFT has the ability to readjust. 

Though fuzzy logic has contributed in thousands of applications, the most used 

controllers are still Proportional Integral (PI) and Proportional Integral Derivative (PID). 

The problem with these conventional controllers is the requirement of a mathematical 

model and single point operation excellence. Fuzzy logic, with the learning capability, 

developed in this chapter, can be used to schedule the gains of the PI and PID controllers. 

This will make the controller performance independent of the model and will be able to 

operate at different operating points.  

The next chapter develops and tests such an approach. 
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5 ITERATIVE LEARNING FUZZY GAIN SCHEDULER 
 

A simple yet robust alternative to Proportional-Integral-Derivative (PID) 

controller is developed using fuzzy based gain scheduler. The fuzzy based system is 

further tuned using an iterative learning approach.  

Gains of a conventional PID controller are usually fixed. This results in a control 

surface which is some times unable to meet our design requirements. Designing fuzzy 

controllers with desired performance specifications is not a trivial task either. Even the 

specification of linguistic variables, key to the concept of fuzzy design, can be different 

from different experts. This chapter lays out an adaptive procedure for designing fuzzy 

controllers through iterative learning process to schedule gain values. 

 

5.1   Introduction 

 

The best known and most used controllers in industrial control processes are 

proportional-integral (PI) and proportional-integral-derivative (PID) controllers. 

Designing and implementing these controllers have difficulties associated with them [29], 

namely:- 

 

(a) It is usually based on accurate mathematical model of the system which is usually 

not known. 

(b) Variation of plant parameters can cause unexpected performance variations. 

(c) They usually show high performance, for one unique action point. 

 

Extensive efforts have been devoted to develop methods to reduce the time spent 

on optimizing the choice of controller parameters like proportional gain, integral gain and 

derivative gain of these controllers [7]. The PID controllers in the literature can be 

divided into two main categories. In the first category, the controller parameters are fixed 

after they have been tuned or chosen in a certain optimal way. The parameters of the 
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controllers of the second category are adapted, based on some parameters estimation 

technique, which requires certain knowledge of the process. In most practical cases, the 

model of the system is not known and hence conventional PID control schemes can not 

achieve high performance values. Also, the dynamics of a system even for a reduced 

mathematical model is usually non-linear, making tuning of these controllers even more 

difficult [16]. Fuzzy logic based control [92, 93, 94] has been shown in numerous studies 

to be a simpler alternative to conventional PID control [70, 102, 104, 136]. 

For conventional PID controller design, gain scheduling is often effectively used 

to give some adaptivity. In conventional gain scheduling (CGS), the controller 

parameters are scheduled according to some monitored conditions in an open-loop 

fashion. Its main advantage is that controller parameters can be changed quickly. One 

serious drawback of CGS is that the parameter change may be rather abrupt, which may 

result in unsatisfactory or even unstable performance across the transition region. 

Another problem is that accurate models at various operating points may be too difficult 

or even impossible to obtain. As a solution, fuzzy has been utilized for gain scheduling to 

overcome these problems [104, 132]. Other proposed techniques use fuzzy rule base 

formulation [103][52], neural networks [132] and membership function definitions for 

PID gains [154]. Still others have simplified existing fuzzy PID schemes with a gain 

scheduling differential equation [136].  

Even with fuzzy based scheduling, the choice of appropriate membership 

functions, minimum rule base and suitable fuzzifier and defuzzifiers is still a challenging 

task. Having made these choices, one still needs to tune the fuzzy controller to deliver the 

desired response. Multiple simultaneous adjustments (rules, membership functions and 

input/output fuzzy gains) make the optimum tuning even more difficult. Many techniques 

have been used to overcome this difficulty, including a phase plane technique for rule 

base design [62], rule modification [63], neural network techniques [29], genetic 

algorithms [2] and gain phase margin analysis technique [76]. 

Before any rules can be formulated, member ship functions need to be sorted out. 

But, as discussed in chapter 4, membership functions have uncertainties associated with 

them. With such uncertainty it is difficult to determine the exact Membership functions 

(MF) for a fuzzy system (FS) which can give desired performance.  
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Apart from determining the gains of the P, PI and PID controllers this scheme 

also tackles this uncertainty using a learning approach to adaptively adjust the 

membership functions. This iterative learning process is further linked with steady state 

error and overshoot, which are used to specify design requirements. This helps the 

controller to adjust automatically, when the plant parameters vary or performance 

requirements change. 

Iterative learning control (ILC) has been successfully used in tasks where the 

process is repetitive [5, 105]. In this proposed approach we make the controller gains 

adaptive by adjusting the membership functions using learning laws. These learning laws 

indirectly adjust the control input to the plant.  

The hallmark of our proposed approach is the Iterative Learning Fuzzy Gain 

Scheduler (ILFGS). It consists of a fuzzy system, iterative learning laws to adjust 

member ship functions and a mathematical formula to calculate controller gains. The 

approach is tested through simulation and a motor speed control experiment, using 

Quanser’s DC Motor Control Kit.  

 

5.2   Proposed Approach 

 

A typical block diagram of a conventional proportional-integral (PID) controller 

using 2-D representation is describe in figure 5.1. 

 

 

Figure 5.1: Block diagram of a PID controller. 
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Here r (k)j  represents the reference signal for k = 1...N  and j = 1...∞ . Variable j , 

represents the iteration number and variable k , represents the samples. The error is 

represented by e (k)j , the input to the plant is u (k)j  and the next plant output is y (k)j . 

Gains Kp (k)j , Ki (k)j  and Kd (k)j  are in most cases fixed but they can be adaptive also. 

These gains are chosen such as to meet our design requirements of steady state error (sse) 

and percentage over shoot (pos). Usually, in order to figure out Kp (k)j , Ki (k)j  and 

Kd (k)j  correctly, we have to have some knowledge of the plant. If there is any change in 

plant parameters or design requirements, recalculation of gains is required. 

To overcome these issues we propose an adaptive gain scheduler scheme, the 

block diagram of which is presented in figure 5.2. 

 

 

Figure 5.2: Block diagram of the proposed scheme. 

 

Here ssed  is the desired steady state error, posd  is the desired percentage over shoot, 

r (k)j , e (k)j , u (k)j  and y (k)j  are the reference input, error , input to the plant and next 

plant output at iteration j . Desired steady state error and percentage over shoot are 

supplied to Iterative Learning Fuzzy Gain Scheduler (ILFGS). The ILFGS adjusts 

Kp (k)j , Ki (k)j  and Kd (k)j . It also tunes itself by adaptively adjusting the membership 
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function end points. The aim is to converge, with respect to, given steady state error and 

percentage overshoot. The learnt values of membership function end points are stored in 

memory to be used in future iterations. 

Taking a Sugeno type rule processing, the input (error) and output ( 'Kp ) 

membership functions proposed are of the form given in figure 5.3 and 5.4. 

 

 

Figure 5.3: Input Membership functions. 

 

 

Figure 5.4: Output Membership functions for Sugeno rule processing. 

 

End points of membership functions a (k)j  and b (k)j  can be made adjustable to meet 

steady state error and percentage over shoot requirements.  

As discussed in chapter 4, TSK fuzzy system can be viewed as a piece-wise linear 

function, where the change from one segment to the other is smooth, rather than abrupt. 

This helps us to overcome the abrupt change in parameters in case of CGS. 
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The following examples show a method to adjust Kp (k)j . Most requirements 

were met by considering this proportional gain only. If steady state error requirements are 

not met by considering Kp (k)j  alone; Ki (k)j  can also be considered to reduce steady 

state error further. Similarly, if percentage overshoot requirements are not met by 

considering Kp (k)j , then Kd (k)j  can also be considered. Without any loss of generality, 

it is proposed that we start with Ki (k) = 0j  and Kd (k) = 0j  initially. 

Suppose that the range [Kp ,Kp ]maxmin  can be determined, where Kpmin  is the 

minimum and Kpmax  is the maximum value that the proportional gain can have. The 

values of input and output membership functions can be normalized for convenience. The 

input membership function end points permissible ranges are tabulated in table 5.1. 

 

End point Permissible Range 

a (1)j  [e ,a (2)]min j  

a (2)j  [a (1),a (3)]j j  

a (3)j  [a (2),a (4)]j j  

a (4)j  [a (3),a (5)]j j  

a (5)j  [a (4),a (6)]j j  

a (6)j  [a (5),a (7)]j j  

a (7)j  [a (6),e ]maxj  

Table 5.1: Permissible ranges of input membership function, end points. 

 

Here emin  and emax  are the minimum and maximum values that error can have. The 

output membership function end points were fixed, as given in table 5.2. 
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End point Value 

b (1)j  'Kpmin  

b (2)j  '0.6Kpmin  

b (3)j  '0.3Kpmin  

b (4)j  0  

b (5)j  '0.3Kpmax  

b (6)j  '0.6Kpmax  

b (7)j  'Kpmax  

Table 5.2: Fixed output membership function end point values. 

 

Here 'Kpmin  and 'Kpmax  are the minimum and maximum values of the output 

membership function. 

For the proposed scheme, we only move a (5)j  and a (6)j . Though, a (5)j  and 

a (6)j  can take up any initial starting value within their permissible range, it is 

recommended from research results to start with values that divide the Universe of 

discourse evenly. One such division is done by a (5) = 0.3emaxj  and a (6) = 0.6emaxj , 

which divides the range reasonably.  

The proposed rule base of the fuzzy controller is shown in table 5.3. 

  

NB 

 

NM 

 

NS 

 

Z 

 

PS 

 

PM 

 

PB 

e (k)j  emin  a (2)j  a (3)j  0 a (5)j  a (6)j  emax  

'Kp  b (1)j  b (2)j  b (3)j  b (4)j  b (5)j  b (6)j  b (7)j  

Table 5.3: Proposed rule base. 
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The following procedure for the up gradation of Kp (k)j , a (5)j  and a (6)j  is proposed.  

 

5.2.1   Procedure for the up gradation of parameters 

 

The values of Kp (k)j , a (5)j  and a (6)j  should be calculated using the following 

procedure and sequence:- 

 

1- The iterative learning mechanism first learns the value of Kp (k)j  until the system is 

critically damped i.e. 
pos ε≤  (5.1)

Where ε  is some small number and ‘pos’ stands for percentage over shoot. The learning 

procedure to learn this value of Kp (k)j  is:- 

if percentage over shoot < 0.0 

Kp (k) = Kp (k) + µ ( r (k) - y (k) )j+1 j kp j j  (5.2)

else 

Kp (k) = Kp (k) -µ ( r (k) - y (k) )j+1 j kp j j  (5.3)

Where, Kpj+1 is the value of gain for the next iteration and Kp (k)j  is the value of gain 

for the current iteration. This value of Kp (k)j  is stored in memory and is called 

Kpc (critically damped proportional gain). Step size parameter for finding Kp (k)j  is 

µkp .  

 

2- Change the value of a (5)j  such that sse ssed≤ using the learning law:- 

if  r (k) - y (k) > ssej j d  
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a (5) = a (5) -µ ( r (k) - y (k) )ssej+1 j j j  (5.4)

else 

a (5) = a (5) + µ ( r (k) - y (k) )ssej+1 j j j  (5.5)

Here µsse is the step size parameter for correcting steady state error. 

 

3- Change the value of a (6)j  such that pos posd≤ using the learning law:- 

if pos > posj d  

a (6) = a (6) + µ ( r (k) - y (k) )posj+1 j j j  (5.6)

else 

a (6) = a (6) -µ ( r (k) - y (k) )posj+1 j j j  (5.7)

 

Here, µpos  is the step size parameter for correcting percentage overshoot and posj  is the 

percentage overshoot value for the current iteration. To terminate the learning processes, 

some small tolerance value, ε , needs to be defined. 

Once the learning is complete, the value of Kp (k)j  is set by using equation  

'Kp (k) = (Kp *K )/e (k)pcj j  (5.8)

Here 'Kp  is the output of the defuzzifier against the current error. This procedure is 

summarized using a flow diagram in figure 5.5. 
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Figure 5.5: Flow chart of the procedure. 

 

The flow chart recommends to learn Kpc , a (5)j  and a (6)j  in order. The order of 

learning should be maintained even if a second iteration is required for the calculation of 

these values.  

We now present an observer based approach to guarantee the stability of ILFGS. 

 

5.2.2   Stability 

 

The parameters of PID controller are function of time and the fuzzy gain 

scheduler is a non-linear system. Fuzzy mathematics and conventional control 

mathematics don’t mix well. Hence, there is a need for other innovative techniques to 

guarantee stability and convergence. Recommendations are made for a hierarchical 

entity, like a supervisor to monitor the performance of the control system. Such 

multilevel controls structures turn out to be more useful in complex practical systems 

[103]. To detect instability, using these hierarchical structures, there are some methods 
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available. Anderson [82] suggests monitoring the magnitude of peaks, and the system is 

determined to be unstable when peaks are growing in magnitude, for three peaks in a 

row. A ratio of short term integral of error and the integrated absolute value of the error is 

used by [9] to get an indication of instability. An instability indicator is also proposed by 

[66] by observing the output, for the same purpose. We can also combine these and other 

instability detection proposals to achieve better instability detection [154]. Very fast rise 

time, high overshoot ratio and very long settling time can be good stability indicators 

also. Once instability has been detected the controller parameters are switched to a set of 

guaranteed stable parameters pre-stored in memory or the system is shut down by setting 

Kp (k)j , Ki (k)j  and Kd (k)j  to zero. This observer based stability implementation, is 

proposed as in figure 5.6. 

 

Figure 5.6: Proposed scheme with a stability observer. 

 

The stability observer monitors the error and the current output of the system 

continuously. For this scheme the stability observer takes action only when three peaks of 

output are found with increasing values. Other stability observation criteria can also be 

utilized. 
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5.2.3   Simulations and results 

 

The scheme presented in this chapter was tested through simulations. One of the 

simulations involved a model of DC motor. The aim is to design a speed controller which 

should endure less than 5% steady state error (sse) and less than 5% percentage over 

shoot (pos). For simulation purposes, all the ranges were normalized between -1 and 1. 

 

5.2.3.1   Motor Speed Control 

 

The motor transfer function used is given in (4.14). As discussed in section 4.4.1, 

using conventional design approach alone, it is impossible to configure a controller for 

this system which would ensure less than 5% steady state error and less then 5% over 

shoot. Using the proposed scheme, explained above, the first step is to find the value of 

Kpc . The value of Kpc  learnt was, K = 11.68pc . Its learning history is presented in 

figure 5.7. 

 

Figure 5.7: Learning value of Kpc . 
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Learnt value of a (5)j  for a steady state error of less than 5% was a (5) = 0.0846j . 

A plot of steady state error against number of iterations as a (5)j  was learnt is shown in 

figure 5.8 below. 

 

 

Figure 5.8: Decrease in steady state error as a (5)j  is learnt. 

 

After first iteration, value of a (5)j  was learnt to be 0.3. At second iteration it was 0.265. 

The value kept on decreasing until at 10th iteration it became 0.084. At this iteration the 

steady state error requirements were met. 

The learnt value of a (6)j  was a (6) = 0.7626j . After learning both endpoints, the 

fuzzy controller had a control surface, as exhibited in figure 5.9. The scheme was able to 

learn a non linear control surface, through piece-wise linear approximation. 
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Figure 5.9: Learnt control surface. 

 

The surface can be made smoother by considering more membership functions. The 

system’s response for a desired speed of 1 rad/sec is presented in figure 5.10.  

 

 

Figure 5.10: Motor speed against time. 

 

The response shows that the system reaches 0.96 rad /sec with in 1 second and the over 

shoot is under 5%. The behaviour of error is shown in figure 5.11. 
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Figure 5.11: Error between the desired speed and the actual speed. 

 

The ILFGS calculates the value of Kp (k)j  at each sample. This variation in 

Kp (k)j  help us achieve the desired steady state error and percentage overshoot. The 

values of Kp (k)j  calculated by the proposed scheme for a desired speed of 1 rad /sec 

with an over shoot of no more than 0.05 rad /sec, are given in figure 5.12. 

 

 

Figure 5.12: The values of Kp (k)j  calculated by the proposed system to achieve the 

desired performance. 
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The plot shows that quite a complicated variation of Kp (k)j  was calculated by the 

scheme to ensure design requirements. Once the required speed is achieved, there is no 

change in Kp (k)j . 

 

5.2.3.2   Zeigler-Nichols controller vs. proposed approach 

 

PID controllers are the most widely used controllers in the industry. PID 

controllers can be implemented to meet various design specifications such as steady state 

error, percentage overshoot and rise time. Despite their wide use, tuning a PID controller 

can be a very tedious job. Most of the conventional tuning methods require at least some 

knowledge of the system we want to control. One approach, the Zeigler-Nichols tuning 

method, which was developed in the 1950’s and has stood the test of time is still the most 

used tuning method. The procedure adapted in this chapter for tuning the controller using 

Zeigler-Nichols approach uses the table 5.4.  

 

Control Kp  iK  dK  
P 0.5 cK    
PI 0.45 cK  0.833 cT   
PID 0.6 cK  0.5 cT  0.125 cT  

Table 5.4: Zeigler-Nichols gain calculation table. 

 

Here Kc  is the critical gain and Tc is the time constant of the system. 

This section presents the results obtained by using Zeigler-Nichols method. These 

results are then compared with the results from our proposed approach. For this 

comparison three different systems were selected. Their transfer functions are presented 

below. 

 

1- A cruise control system given by the transfer function 
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1
1G (s) =

10s + 50
 

(5.9)

2- A road vehicle model given by the transfer function 

2 3 2

40G (s) =
2s +10s +82s +10

 
(5.10)

3- A motor speed control system given by the transfer function  

3 2

0.05G (s) =
0.005s + 0.06s + 0.1025

 
(5.11)

The parameters determined for the Zeigler-Nichols based P, PI and PID 

controllers, to control the selected three systems, are presented in table 5.5. 

 

System Zeigler-Nichols 
P controller 

Zeigler-Nichols 
PI controller 

Zeigler-Nichols 
PID controller 

G (s)1  Kp = 10000 Kp = 9000 

Ki = 0.1666 

Kp = 12000 

Ki = 0.1 

Kd = 0.025 

G (s)2  Kp = 4.2 Kp = 3.784 

Ki = 0.9163 

Kp = 5.076 

Ki = 0.55 

Kd = 0.1375 

G (s)3  Kp = 122.5 Kp = 110.25 

Ki = 0.1083 

Kp = 147 

Ki = 0.065 

Kd = 0.0163 

Table 5.5: Parameters calculated for Zeigler-Nichols based P, PI and PID controllers.  

 

The ILFGS was also made to learn the required parameters for the selected 

systems. The parameters learnt, are shown in table 5.6. 

 

System Kpc  a (5)j  a (6)j  

G (s)1  1.0015 0.00003 0.00006 

G (s)2  3.7836 0.2050 0.7023 

G (s)3  11.68 0.0846 0.7626 

Table 5.6: Parameters calculated by ILFGS.  
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Comparison of the response for a cruise control system, between the 3 Ziegler-

Nichols based controllers and the controller proposed in this chapter is shown in figure 

5.13. 

 

Figure 5.13: Comparison of step response for cruise control system. 

 

This was the easiest of the three systems to control. Figure 5.13 show that the P controller 

and the proposed ILFGS based system, give best performances. With respect to steady 

state error all the controllers performed well.  

For the road vehicle system the response with different controllers is exhibited in 

figure 5.14. 

Figure 5.14: Comparison of step response of road vehicle system. 
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Figure on the left show that ILFGS based system performed better then other controllers. 

The figure on the right shows a zoomed version of the response to get a better view of the 

behaviour of the controllers. For further insight, comparison of the error between the PID 

controller and the ILFGS based controller is presented in figure 5.15. 

 

 

Figure 5.15: Comparison of error between PID and proposed controller. 

 

The response given by the motor speed control system, using different controllers 

is shown in figure 5.16. 

 

 

Figure 5.16: Comparison of step response for a motor speed control system. 
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The comparison of error for the above system is exhibited in figure 5.17. 

 

 

Figure 5.17: Comparison of error for motor speed control system. 

 

For this system, as far as steady state error is concerned, PID and ILFGS based 

controllers performed equally well. For percentage overshoot requirements ILFGS based 

controller met the requirements better than any other controller. 

Simulation results, presented above show that a variety of systems can be 

satisfactorily controlled by the ILFGS based controller. It yielded better control 

performance than the Ziegler-Nichols based P, PI and PID controllers. This is true even 

when only proportional gain scheduling was done for the proposed scheme. The control 

surfaces generated by the ILFGS based controller are plotted below to have a feel of the 

learning done by the controller. For the cruise control system the control surface is shown 

in figure 5.18. 
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Figure 5.18: Learnt control surface for cruise control system. 

 

The control surface is linear and similar to the control surface generated by the P 

controller. For the road vehicle system the control surface generated is plotted in figure 

5.19. 

 

Figure 5.19: Learnt control surface for road vehicle system. 

 

The control surface is slightly non-linear. The motor speed control system led to the 

generation of control surface presented in figure 5.20. 
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Figure 5.20: Learnt control surface for motor speed control system. 

 

The control surface is non-linear. The abrupt change in slope, after regular intervals, can 

be smoothed by considering more membership functions. 

 

5.2.3.3   Tracking trajectories in real time 

 
 

Tracking is an important and difficult practical problem, especially when the 

target is changing its position. To demonstrate the effectiveness of this approach, 

different trajectories were tracked. One of them was a sinusoidal signal. This tracking 

was done after the learning of the parameters had been achieved, as discussed before. For 

this demonstration, road vehicle system and motor speed control system of equation 

(5.10) and (5.11) were used and was given a task to follow a sinusoidal amplitude and 

speed requirements. The speed requirements meant that the system had to move in one 

direction with a maximum speed of 1 rad/sec and then in the opposite direction achieving 

speeds of 1 rad/sec again. 

The plots in figure 5.21 and 5.22 show the performance of road vehicle system 

and motor speed control system, while tracking a sinusoidal trajectory, using ILFGS. 
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Figure 5.21: A road vehicle system tracking a sinusoidal signal. 

 

 

Figure 5.22: A motor speed control system tracking a sinusoidal signal. 

 

Figures show that the system was quite effectively able to track the desired response. The 

plots of error vs. time for these performances are shown in figure 5.23 and 5.24. 
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Figure 5.23:  Error generated by road vehicle system. 

 

 

Figure 5.24: Error generated by motor control system. 

 

The error looks larger than 5% but this is due to the fact that the response was delayed. 

These error plots are taken without taking the delay in consideration. 

Other waveforms were also tracked successfully by the ILFGS. One interesting 

plot showing a vehicle moving at constant speed and then gradually decreasing its speed 

to zero is shown in figure 5.25. 
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Figure 5.25: Road vehicle system following the desired speed curve. 

 

The vehicle system is successfully able to follow the required waveform. The 

corresponding error plot is presented in figure 5.26. 

 

Figure 5.26:  Behaviour of error. 

 

The error decreases very sharply and eventually goes to within the desire limit. The 

desired limit in this case was 1% of the desired amplitude. 
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5.3   Experimental Setup and Results 

 
A QET DC Motor Kit from Quanser was used to test the approach with a practical 

setup. The kit can be programmed to set proportional, integral and derivative gains. 

MATLAB was used to communicate with the kit through serial port. ILFGS was 

implemented in MATLAB. The micro controller on the kit was used to set proportional 

gain and return speed of the motor. The experimental setup is show in figure 5.27 below. 

The aim is to make the motor run at 100 rad/sec with a steady state error of less than 5% 

and an over shoot of less than 5%. 

 

 

Figure 5. 27: Experimental setup with the QET DC Motor Kit from Quanser. 

 

The different step size parameters, in equations (5.2), (5.4) and (5.6), were given 

values of µ = 0.01kp ,µ = 0.01sse andµ = 0.01pos . The error had a range of e (k)j =[-

200,200] and gain had a range of Kp =[-1,1]. During the learning phase, the values of 

Kpc , a (5)j  and a (6)j  learnt were K = 0.25pc , a (5) = 15.8j  and a (6) = 76.36j . A plot 

of learning history of parameters a (5)j  and a (6)j  vs. no. of iterations is indicated in 

figure 5.28 below. 
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Figure 5.28: Learning values of a (5)j  and a (6)j . 

 

The plot shows that a (5)j  was learnt in 6 iterations and a (6)j  was learnt in 4 iterations. 

A 3-D plot of speed vs. time vs. number of iterations, while learning a (6)j , during the 

process of eliminating percentage over shoot, is given in figure 5.29. 

 

 

Figure 5.29: History of system output while learning a (6)j . 

 
The plot shows reduction in percentage over (or under) shoot as a (6)j  is learnt 

iteratively. The membership functions learnt after the learning process was completed are 

given in figure 5.30. 
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Figure 5.30: Learnt membership functions. 

 

Once the learning was complete, the DC motor was made to run at a speed of 100 radians 

/sec. The motor’s response is presented in figure 5.31. 

 

 

Figure 5.31: Response using the proposed scheme. 

 

As can be seen from the figure the motor hits a speed of 96.1 rad /sec in 3 sec. The 

overshoot (or undershoot) is also within limits. To give a better perspective of the 

response, a plot of error is exhibited in figure 5.32. 



236 

 

 

Figure 5.32: Behaviour of error. 

 

The values of proportional gain calculated by ILFGS during this run are shown in figure 

5.33. 

 

 

Figure 5.33: Calculated proportional gains by the ILFGS to control the QET DC Motor. 

The figure shows that there are large variations in the values of gain initially, when the 

error is large. It then settles to a steady value of 0.481 as the required speed is achieved. 
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5.3.1   Stability using Linguistic Trajectory 

 

Stability is one of the most important subjects for a controlled system. For fuzzy 

based systems it is a very complex topic and to date no general stability analysis 

methodology has been presented. Because of the complexity, there are even different 

definitions of stability. On definition is that if bounded input is applied, then there should 

be bounded output. This is called BIBO stability. Fuzzy logic because of its structure 

defines input and output boundaries for membership function values. Another definition 

is that when all the input and interferences have disappeared, the system should come to 

rest to its original state.  

By probing into the relation between the relative influence of each rule within the 

rule base and the linguistic trajectory of the dynamic system, it can be determined 

whether the fuzzy system has reached stability. For this experimental setup we had one 

input and one output linguistic variable. It is proposed to plot all the rules fired in an 

extended rule base table to get the linguistic trajectory.  

There were seven rules defined for the rule base. The rule base is shown in table 

5.7. 

e (k)j  NB NM NS Z PS PM PB 

'Kp  NB NM NS Z PS PM PB 

Table 5.7: Rule base for the experimental setup. 

 

If the linguistic trajectory converges to the equilibrium point the system is stable. The 

linguistic trajectory is shown in table 5.8. 

e (k)j  NB NM NS Z PS PM PB 

'Kp  NB NM NS Z PS PM PB 

 NB NM NS Z PS PM PB 
 NB NM NS Z PS PM PB 
    #  #    
 NB NM NS Z PS PM PB 
 NB NM NS Z PS PM PB 

Table 5.8: Linguistic trajectory. 
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The trajectory in table 5.8 shows a graphical view of the rules fired during system 

operation. The first row of the table shows the input membership functions while the 

second row shows the output membership functions. The subsequent rows also represent 

the output membership functions to show the firing of rules. As can be seen, the firing of 

rules converges to the desired rule, i.e.:- 

If  e (k)j  is Z then 'Kp  is Z (5.12)

Hence the system is stable and the error is decreasing continuously. 

 

5.4   Summary 

 

Fuzzy controllers and for that matter any controller needs to be adaptive in order 

to compensate for uncertainties, noise, variation in parameters and changes in design 

requirements. Conventional P, PI, PID etc. controllers need to be adaptive in order to be 

more useful, especially when the plant parameters are not known. It is now realized that 

complex real world problems require intelligent systems that combine knowledge, 

techniques and methodologies from various sources. These intelligent systems are 

supposed to possess humanlike expertise within a specific domain, adapt themselves and 

learn to do better in changing environment [75]. The approach presented in this chapter 

combines conventional controls with fuzzy logic and iterative learning to tackle these real 

world problems. 

The scheme changes the proportional, integral and derivative gains adaptively 

through the Iterative Learning Fuzzy Gain Scheduler (ILFGS). The fuzzy controller in 

ILFGS itself has the capability to adapt because of iterative learning. The learning laws 

ensure that steady state error, percentage overshoot etc. requirements are met. The ILFGS 

adjusts the proportional gain in real time to meet design requirements.  

As seen from simulation results and results from a practical Quanser DC motor 

based setup, the proposed scheme was able to learn non-linear control surfaces even 

when only the proportional gain was scheduled. Integral and derivative gains can also be 

scheduled if the requirements are not met. Derivative gain should be introduced if the 
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percentage overshoot requirements are not met and integral gain should be used if steady 

state error requirements are not met. Stability of the ILFGS is discussed using a 

supervisory level based approach and linguistic trajectories.  

It is difficult to determine whether humans are fuzzy based learning machines or 

learning based fuzzy machines. Chapter 4 and 5 have been focusing on Learning based 

Fuzzy controllers.  

In the next chapter we develop a Fuzzy based Learning controller.  
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6 FUZZY ITERATIVE LEANING CONTROLLER (FILC) 
 

As fuzzy logic tries to mimic one aspect of human behaviour i.e. perception based 

thinking; iterative learning follows the other aspect i.e. learning through experience. So 

far, the research has mainly focused on iterative learning and iterative learning helping 

the fuzzy system. The research results presented in this chapter are aimed at developing a 

mechanism to use the power of fuzzy to adjust iterative learning controller parameters. In 

the previous two chapters, fuzzy controller was the main controller and Iterative Learning 

was used as a secondary controller. Here ILC is the main controller and fuzzy acts as a 

helping unit. The ILC can be any controller developed in chapter 2 and 3.  

 

6.1   Proposed Approach 

 

The block diagram of the proposed approach, named Fuzzy Iterative Learning 

Controller (FILC) is described in figure 6.1.  

 

 

Figure 6.1: Proposed Fuzzy Iterative Learning Controller. 

 

Input u (k)j  is applied to the plant which results in an output labelled, y (k)j . This output 

and the desired output yd (k)j , results in an error e (k)j .  The system output, desired 
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output and the error go into an Iterative Learning Fuzzy Tuner (ILFT) block. The output 

of the block is the value of gain, K , that is used by the ILC to calculate the next input to 

the plant, u (k)j+1 . Other gain parameter values, like 1K  from equation (2.4), can also be 

calculated by the ILFT block using similar procedure. Memory is used to store different 

parameters, to be used in subsequent iterations. The ILFT block is further explained in 

figure 6.2. 

 

Figure 6.2: ILFT block in more detail. 

 

Error is the input for the fuzzy system and a value of K  is the output. Three inputs, norm 

of error, norm of the output and norm of desired output, enter the Iterative Gain 

Calculation Engine. This engine adjusts the values of Kl , Km  and Kh  iteratively. 

Where Kl , Km  and Kh  are the Low, Medium and High values of gain for the output 

fuzzy sets. Their values are updated using the laws given below. 

 

Kl = Kl + µ abs(e)j+1 j l α  (6.1)

 

Km = Km + µ abs(e)2j+1 j α  (6.2)

 

Kh = Kh + µ abs(e)3j+1 j α  (6.3)

Here = sign( yd - y )α  and 
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1 if yd y
=

-1 if yd y
α

 ≥ 
 <  

 

 

This α  determines weither the next value of Kl , Km  and Kh  will decrease or increase. 

The value of gain, calculated by the Defuzzifier is used in ILC controller to find the next 

input to the plant, u (k)j+1 . This input should bring y (k)j  and yd (k)j  closer together. 

 

6.1.1   Simulation Results 

 

Simulation results from car suspension system, presented in Appendix A, are 

described in this section.  Input membership functions, defined for this system, are 

explained in figure 6.3. 

  

 

Figure 6.3: Input membership function for car suspension system. 

For ease of implementation, triangular membership functions were used. Here L stands 

for ‘Low’, M for ‘Medium’, H for ‘High’, NM for ‘Negative Medium’ and NH for 

‘Negative High’ values of error. The universe of discourse for error is [-10,10]. The 

proposed end point values of the membership functions are tabulated in table 6.1. 
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e (k)j  NH NM L M H 

End point values -10, -1.5 -3, 0 -1.5, 1.5 0, 3 1.5, 10 

Table 6.1: Input membership function end points. 

 

Two sets of results are presented. One, with no initial guess for the values of Kl , 

Km  and Kh  and the other with some initial guess of these values. The Iterative learning 

controller used for both cases was MSATILC, from chapter 2. 

 

6.1.1.1   Case 1: With no initial guess 

 

For this case the starting values of the parameters in equation (6.1), (6.2) and (6.3) 

were, Kl = 0.1, Km = 0.1, Kh = 0.1, µ = 0.1l , mµ = 0.1 and hµ = 0.1. The Universe of 

Discourse for the output membership functions was taken as [-30, 30]. The output 

membership functions Kl , Km  and Kh  are shown in figure 6.4. 

 

 

Figure 6.4: Output membership function before learning. 

 

The ILFT block will adjust these values iteratively. With these settings, the control 

surface is shown in figure 6.5. 
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Figure 6.5: Control surface before learning. 

 

The control surface reveals that the controller is not capable of doing any useful work, at 

this time. The proposed FILC should learn the appropriate control surface. 

The rule base consisted of five rules. These are shown in table 6.2. 

 

e (k)j  NH NM L M H 

u  Kh  Km  Kl  Km  Kh  

Table 6.2: Proposed rule base. 

 

During the process of learning, Kl , Km  and Kh , the behaviour of error obtained is 

plotted in figure 6.6.  

 

Figure 6.6: Improvement in performance as iterations increase. 
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There is a consistent decrease in error as the approach is used more. Two processes are 

working simultaneously to reduce number of iterations. One uses fuzzy logic to provide 

values of gain to the ILC controller. The other uses the iterative learning laws to find the 

appropriate input. Figure 6.6 shows that the system converges at first run but the 

convergence rate is slow. The number of iterations decreased with number of runs as 

exhibited in figure 6.7. 

 

Figure 6.7: Decrease in number of iterations as task is repeated. 

It is to be noted that after 30 runs the number of iterations is reduced to 3. The behaviour 

of error at 30th run is plotted in figure 6.8. 

 

Figure 6.8: Behaviour of error at 30th run, with zero initial input. 
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Figure 6.8 shows a sharp decrease in error. The learning of Kl , Km  and Kh  is presented 

in figure 6.9. 

 

Figure 6.9: Learning behaviour of Kl , Km and Kh . 

The learning settles at about 30th run. The control surface at this run is plotted in figure 

6.10. 

 

 

Figure 6.10: Control surface after 30 runs. 

 

The output membership functions learnt, during this simulation, are shown in figure 6.11. 
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Figure 6.11: Learnt output membership functions after 30 runs. 

 

At 30th  run, the behaviour of the system is shown in figure 6.12. The desired response is 

shown in dotted thick lines and the actual output is in thin solid lines. 

 

 

Figure 6.12: Desired output (dotted lines) being learnt at 30th run. 

 

The output follows the desired output.  
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6.1.1.2   Case 2: With initial guess 

 

If the range of output gain can be determined, an initial guess at the output 

member ship functions can be made. Suppose that the maximum value of gain that can be 

given is Kmax. Research results have shown that 20%, 30% and 70% of this value is a 

good start for initial values of Kl , Km  and Kh  respectively. Other values can also be 

chosen with the following restriction. 

 

Kl < Km < Kh < Kmax (6.4)

The proposed initial values of Kl , Km  and Kh are given as 

 

Kli =0.2*Kmax (6.5)

 

Kmi =0.3* Kmax (6.6)

 

Khi =0.7* Kmax (6.7)

Using these equations, for the car suspension system the values come out to be Kli = 6, 

Kmi =12 and Khi =21. Here Kli , Kmi  and Khi  are the guessed values for Kl , Km  and 

Kh . With these values the system performance is shown in figure 6.13. 

 
Figure 6.13: Behaviour of the system at first run. 
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The systems converged in 9 iterations. The system again learnt a piece-wise-linear control 

surface. The surface is plotted in figure 6.14. 

 

 
Figure 6.14: Learnt control surface. 

The surface gets smoother as number of membership functions is increased. The 

behaviour of error, during this run is shown in figure 6.15. 

 

 
Figure 6.15: Plot of error vs. number of iterations. 

 

The error is reduced in lesser number of iterations as compared to case 1. 
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6.2   Stability 

 

The easiest and so far the only reliable way to prove the stability of a fuzzy based 

system is the linguistic trajectory method. In this method the firing of rules are plotted to 

get a measure of which rules are dominant. To plot this trajectory each rule was assigned 

a number. The rules with their assigned numbers are tabulated in table 6.3. 

 

Rules Rule No. 

if error is NH then K is Kl  1 

if error is NM then K is Km  2 

if error is L then K is Kl  3 

if error is M then K is Km  4 

if error is H then K is Kh  5 

Table 6.3: Assignment of a number, to each rule, in the rule base. 

 

The firing of rules, for the car suspension system, with no initial guess, at 30th run 

is shown in table 6.4. 

 

Sample no. Rules 

1 1 2 3 4 5 

2 1 2 3 4 5 

3 1 2 3 4 5 

#  #  #  #  #  #  

70 1 2 3 4 5 

Table 6.4: Linguistic trajectory. 

 

The table shows all the rules in each row. Each row represents a sample. At each sample, 

the rules fired are shown with shaded blocks. In this case the firing trajectory has a 

converging behaviour. 
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6.3   Summary 

 

This chapter presents a fuzzy based Iterative Learning Controller (ILC) named 

Fuzzy Iterative Learning Controller (FILC). The gains of the ILC are calculated by the 

Iterative Learning Fuzzy Tuner (ILFT) module of the FILC. The ILFT adjusts its rule 

base iteratively to optimize ILC’s gains. The ILFT block was able to learn membership 

functions without any prior knowledge about the system dynamics. 

Results from a car suspension system are also presented. These results show 

excellent performance. To reduce learning time, a procedure is also presented for initial 

output membership function formulation. Stability of the controller is tested using 

linguistic trajectory analysis.  
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7 CONCLUSIONS AND RECOMMENDATIONS 
 

The best known and most used controllers in industrial control processes are 

proportional-integral (PI) and proportional-integral-derivative (PID) controllers. 

Designing and implementing these controllers have difficulties associated with them, 

namely:- 

 

(a) They require a detailed knowledge of the model of the plant or process to be 

controlled. Such a model rarely exists. 

(b) Plants, controllers, environments and their constraints may vary with time. These 

variations can cause unexpected changes in the performance indices. 

(c) They are designed to operate at a specific set point, and hence lack flexibility. 

(d) The real world devices, systems and processes are nonlinear. Finding the models 

of today’s complex devices, systems and processes is very difficult if not 

impossible. Therefore, researchers generally try to develop equivalent linearised 

model. This linear model is too restrictive and does not represent the actual 

dynamics of the system. 

(e) Multi loop and multi variable systems are interdependent and have very complex 

constraints and dependencies. Conventional controller performances are affected 

by these constraints and dependencies. 

(f) Even after theoretical design, extensive tuning is required for getting optimal 

performance. 

In view of the above highlighted constraints, it is imperative that new 

methodologies be researched and workable solutions be evolved. We need a control 

philosophy, which is:-  

 

(a) More general in its scope of operation. 

(b) Not dependent on detailed system knowledge. 

(c) Capable of handling real world imprecisions and imperfections inherent in any 

engineering application.   
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(d) Capable of mimicking the human expertise. 

(e) Capable of learning from experience. 

(f) Easy to design and easy to alter.  

(g) More robust and can cover a wider range of operating conditions. 

(h) Cost effective. 

Development of Iterative Learning philosophy and Fuzzy Logic has ushered in a 

new era of controller design. Iterative Learning Controllers mimic the human learning 

process and are cheap to develop. Fuzzy controllers mimic the human perception based 

approach and do not require system model. Also, Fuzzy controllers can handle 

imperfections and imprecisions. To give more robustness to ILC we need to incorporate 

adaptivity as well. To achieve all these capabilities, we need to develop a new hybrid 

approach for designing intelligent controllers. 

 

7.1   Conclusion 

 

In this thesis, new algorithms for Iterative Learning Control, adaptive Iterative 

Learning Control and hybrids of Iterative Learning and Fuzzy Logic Control have been 

derived and their convergence properties analysed. All the controllers are made to track 

different reference signals. Because of the repetitive nature of the algorithms, information 

learnt from previous executions of the tasks is used to improve the tracking performance. 

This results in learning algorithms which find the input that result in perfect tracking.  

The author started with research in Iterative Learning and consequently Iterative 

Learning Control (ILC). Iterative Learning Control was found to have short comings like 

slow convergence, non adaptivity, model dependency and complex mathematical 

structure. After the basic introduction of ILC and Fuzzy in chapter 1, chapter 2 starts with 

the development of a frame work for the controllers to be developed later. Using this 

frame work “One Sample At a Time Iterative Learning Controller (OSATILC)”, 

“Multiple Samples At a Time Iterative Learning Controller (MSATILC)” and “Modified 

Multiple Samples At a Time Iterative Learning Controller (MMSATILC)” were 

developed. Many simulations and an experimental setup using M-850 Hexapod from 
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Physik Instrumente (PI) were used to confirm their performances.  The hexapod tracks a 

laser in real time but the learning is done off line. The conditions for convergence were 

also formulated. The performance of the three controllers is tabulated in Table 7.1. 

 

   Approach 

 

System 

Classical ILC 

(iterations) 

OSAT ILC 

(iterations) 

MSAT ILC 

(iterations) 

MMSAT ILC 

(iterations) 

SS 146 2086 63 1 
CCS DNC 686007 11629 8 
CSS 1335 5083 886 2 
NLS DNC 877 2141 228 
INVPL DNC 1763 2316 402 
Table 7.1: Comparative performance of controllers presented in chapter 2. 

 

The table above shows the number of iterations to converge for five systems. These 

systems are described in Appendix A. The symbol DNC means “Did Not Converge”. 

More robust adaptive ILCs are developed in chapter 3. These adaptive ILCs have 

the capability to readjust and learn just as humans do. A comprehensive mathematical 

base is developed to prove the stability and convergence of these schemes. Using 

innovative cost functions and introduction of the concept of adaptive step size in ILC, 

provide a lot of freedom to fine tune the presented schemes. These algorithms were tested 

using simulations and a practical setup, made from DC motor kit by Quanser Consulting 

Inc. The schemes have the capability to learn and adapt in real time. The performance of 

4 adaptive ILCs, presented in chapter 3, is shown in table 7.2.  

 

                                               System 

Controller 

SS CCS CSS NLS 

Classical ILC (iterations) 146 DNC 1335 DNC 
Approach-3 (iterations) 6 2328 83 6 
Approach-3 at 10th run (iterations) 2 768 17 3 
Approach-4 (iterations) 44 426 238 30 
Approach-4 at 10th run (iterations) 17 73 25 8 
Approach-5 (iterations) 18 254 54 13 
Approach-5 at 10th run (iterations) 4 15 13 3 
Table 7.2: Comparative performance of 4 main ILCs presented in chapter 3. 
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Here, Approach-3 (section 3.4) uses system identification; Approach-4 (section 3.5.1) 

uses innovative cost functions with gradient descent, and Approach-5 (section 3.6) uses 

“Iterative Learning Gain”, to reduce iterations. The table shows the numbers of iterations 

decreasing as the Approaches are used repeatedly. 

To incorporate model independence, perception and linguistic based capabilities, 

Fuzzy Logic was added in the controllers. The remaining chapters present controllers 

with both Iterative Learning and Fuzzy Logic working together. Any fuzzy based design 

is not without difficulty. Fuzzy designers not only have to deal with uncertainties in 

linguistic terms and design of membership functions but also uncertainties about the 

input, control output, change in operating conditions and noisy data etc. The main 

uncertainty is in the selection of membership functions. Chapter 4, apart from presenting 

a methodology to combine ILC and Fuzzy Logic, also resolves this uncertainty. 

Moreover, this uncertainty is linked with steady state error and percentage overshoot. 

These performance requirement parameters are normally given to control system 

designers. The hybrid methodology in chapter 4 is called “Iterative Learning Fuzzy Tuner 

(ILFT)”. A number of simulation results are presented. A novel stability analysis 

methodology is also developed, using piece wise linear approach.  To see the 

effectiveness of this controller, a Two Degree Of Freedom Tracking Device (S-101) was 

constructed. This device has a camera mounted on it to recognize a moving target. The 

hybrid controller tracks the target in real time. The results of this experiment are 

presented in chapter 4. One such result where the S-101 is tracking a moving target is 

shown in figure 7.1. 

 
Figure 7.1: Tracking a moving target. 
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Chapter 5 discusses the use of combining Iterative Learning and Fuzzy Logic for 

scheduling the gains of the P, PI and PID controllers. The result is a controller named 

“Iterative Learning Fuzzy Gain Scheduler (ILFGS)”. This novel approach also produced 

excellent results and performed much better than the conventional controllers. The 

controller was also made to track desired-speed trajectories using the DC motor kit by 

Quanser Consulting Inc. The output of the motor trying to achieve a speed of 100 

rad./sec., with less than 2% steady state error and less than 5% over shoot, is presented in 

figure 7.2. 

 

 
Figure 7.2: Motor speed against a desired speed of 100 rad. /sec. 

 

Chapter 6 aims at making Fuzzy help ILC to perform its task. Fuzzy Logic, 

because of its non-linear behaviour, was able to adapt ILC gains. This adaptation was 

defined using ordinary language statements (rules). The hybrid controllers in chapter 4, 5 

and 6 indirectly learn the rule base because of adaptivity in membership functions. The 

controller presented in chapter 6 is named “Fuzzy Iterative Learning Controller (FILC)”. 

A three dimensional plot of the output of a car suspension system given is Appendix A, 

trying to track a desired trajectory, is shown in figure 7.3. In this figure the dotted lines 

show the desired response while the solid lines show the system output. 
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Figure 7. 3: Car Suspension System achieving the desired trajectory.  

 

Combination of Adaptive ILC and Fuzzy Logic produced robust, learning 

controllers that can adapt with changing conditions. They do not require detailed 

knowledge about the plant, and hence, can control complex systems. 

 

7.2   Recommendations 

 

The research accomplished and described in this thesis has mainly focused on 

merging Fuzzy Logic and Iterative Learning Control philosophies to realise an intelligent 

controller. This experience has brought to light a number of avenues still remaining to be 

investigated. In this context, the following recommendations are presented:- 

 

(a) The 2-D framework presented in section 2.2 can be further exploited by 

incorporating weighted values of past inputs. This will result in change in control 

law of equation 2.4. Furthermore, the effect of higher order terms of this control law 

should be further studied. We recommend making the gains of these higher order 

terms decrease with reducing error to avoid instability. The rate of decrease of these 

gains is another area open for research.  

(b) Knowledge learnt, to achieve a desired response, should be used to track other 

similar desired responses. For this, a link between desired responses should be 
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established. This link should have a “degree of similarity indicator”. This indicator 

should be used to decide how much learnt knowledge to use for the new desired 

response. Also, how to use this info needs to be worked out. 

(c) The hybrid controllers presented in chapter 4,5 and 6 are aimed to cater for 

percentage overshoot and steady state error performance indices. Peak time is 

another important design parameter that can be studied.  

(d) Methodologies need to be formulated for Multiple-Input and Multiple-Output 

(MIMO) systems. 

(e) Zooming camera on the devices shown in section 2.10 and 4.5.2 can reduce the 

steady state error further. The camera can zoom in on target as the error decreases. 

This will increase the accuracy of the system. 

(f) Target Simulation Board (TSB) presented in section 4.5.2.3 consists of 36 LEDs and 

a remote console to generate target trajectories. The density of the LEDs should be 

increased so that highly non-linear and smooth trajectories can also be generated. 

Moreover, this board should be linked with another Personal Computer (PC) to 

generate stored trajectories. 

(g) The research has mainly concentrated on triangular Membership Functions due to 

the ease of implementation for microcontroller based solutions. For more complex 

systems, the impact of Gaussian Membership Functions on the response should be 

studied. 

 

A very significant lesson gleaned from this research is, “Combining proven 

methodologies and functionalities holds the promise to create new knowledge for 

designing intelligent systems.” 
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Appendix A 
 

For simulation purposes different systems with different characteristics were 

considered. These are presented in this Appendix. 

 

A.1 A Simple System (SS) 

 

This system consists of a single pole at s = -2 . This is a stable system. The 

transfer function of the system is given by 

 

1
1G (s) =

s + 2
 

 

At a sampling rate of 10 samples per sec. i.e. sampling time of 0.1(Ts=0.1) the discrete 

transfer function of the Simple System is 

 

1
0.09063G (z) =

z - 0.8187
 

 

A.2 Cruise Control System (CCS) 

 

Assuming that there is no inertia in the wheels and that friction is the only thing 

opposing the motion of the car, the cruise control system can be reduced to a simple mass 

and damper system shown in figure A 1.  
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Figure A 1: A cruise control system diagram. 

 

In the figure u  is the input from the engine, v  is the velocity of the body, m  is the mass 

of the body and b  is the damping. The design values are 

 

m = 1000 Kg 

b = 50 N sec/m 

u =  500 N 

 

The system transfer function is given by 

 

2
1G (s) =

ms + b
 

 

Using the design values the transfer function becomes 

 

2
1G (s) =

1000s + 50
 

 

The discrete transfer function for a sampling frequency of 10 samples  per sec. is  

 

2
0.00009754G (z) =

z - 0.995
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A.3 Car Suspension System (CSS) 

 

A car suspension system can be modelled with a mass, spring and damper system 

of the form shown in figure A 2. 

 

 

Figure A 2: Block diagram of the car suspension system. 

 

The force produced by the spring is proportional to the translation of the spring. The 

spring produces a force kx  in the direction of the force as the mass ( m ) is displayed by 

an amount, x . As the mass is moved with a positive velocity ( dx
dt

),  the damper produces 

a force, dxb
dt

.  

 

The system equation can be written as 

2F(s) = ms X(s) + bsX(s) + kX(s)  

The transfer function is 

 

X(s) 1G (s) = =3 2F(s) ms + bs + k
 

 

Taking the following design values 

m = 1 Kg, b = 10 N.s / m, k = 20 N/m and F(s) = 1 
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The transfer function is given by the equation 

1G (s) =3 2s +10s + 20
 

 

The discrete transfer function for a sampling frequency of 10 samples  per sec. is  

3
0.003622z + 0.002596G (z) = 2 -1.244z + 0.3679z

 

 

A.4 Non-Linear System (NLS) 

 

A second order non-linear system is given by the following dynamic equation 
.. .
y+ 0.1y y + 0.375y = 0.375u  

 

A.5 Motor Speed Control System (MSCS) 

 

A DC motor directly provides rotary motion. The electrical circuit of the armature and 

the free body diagram of the rotor is shown in the figure A 3. 

 

 

Figure A 3: Free body diagram of the rotor. 

 

Assuming a rigid rotor shaft the following design parameters are assumed 

J (moment of inertia of the rotor) = 0.01 Kg.m2/s2 

b (damping ratio of the mechanical system) = 0.1 Nms 
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K (electromotive force constant) = 0.01 Nm/Amp 

R (electrical resistance) = 1 ohm 

L (electric inductance) = 0.5 H 

V (source voltage) 

θ , Theta (position of the shaft) 

 

The transfer function is given by the equation. 

4 2

KG (s) =
(Js + b)(Ls + R) + K

 

 

A.6 Inverted Pendulum (INVPL) 

 

The inverted pendulum is a nonlinear system. The open loop plant is highly unstable. The 

goal is to maintain the desired vertically oriented position at all times. The diagram of the 

whole system is shown below. 

 

Figure A 4: Inverted pendulum on a cart. 

Where 

M = Mass of cart, (kg) 
m = Mass of inverted pendulum, (kg) 
u = External x-directed force, (N) 
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g = Force of gravity, (m/sec2) 
x = Cart position, (m) 

θ = Tilt Angle, (radians) 

A = Lever arm length, (m) 

The final state space equations for the inverted pendulum implemented are  

2
2

1 1 1 1 1 2
2

12

3 4
2

4 1 2 1 1
2

1

z
z cos z ( ) sin z (cosz sinz )z

cos z ( )zd d d= = =
z x zdt dt dt
z x (sinz )z - mgcosz sinz

cos z

u M m g m
m M m

u m
M m m

θ
θ

 
   − + +        − +               +    

+ −  

z

A
� A A

� A

  (A 1) 

If both the pendulum angle (t)θ  and the cart position x(t)  are of interest, we have 

1 0 0 0
x 0 0 1 0 x

x

θ
θ θ

 
      =        
 
 

y = = Cz
�

�        (A 2) 

Equations (A 1) and (A 2) give a complete state space representation of the nonlinear 

inverted pendulum. This is the system that was used for simulations. 

 

A.7 Desired Trajectory 

 

The desired trajectory, used in the thesis is defined by a seventh order polynomial.  

 

 

t t t t7 6 5 4y (t) = -20( ) + 70( ) -84( ) + 35( )d 40 40 40 40
  0 < t 40≤  

y (t) = 1d        t 40>  
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Appendix B 
 

 
Z. Tsypkin [42] 

1971 An extraordinary Russian scientist who wrote a book on 

“Foundations of the theory of learning systems”. 

 
D. H. Owens [60] 

Late 

1970’s 

Along with E. Rogers gave the Idea of multi pass systems.  

Uchiyama  1978 Now believed by some to be the first researcher to give 

the concept of Learning. But because his contribution was 

in Japanese most English literature still does not recognise 

his work. 

 
S. Arimoto [58] 

 

1984 Generally believed to be the pioneer of Iterative Learning 

Control. The term learning control is contributed to him. 

In his words 

“The learning control concept stands for the repeatability 

of operating a given object system and the possibility of 

improving the control input on the basis of previous actual 

operating data”. 

S. Arimoto [58] 1984 S. Arimoto presented the first application of ILC in 

robotics [125]. 

J. X.Xu 1990 The concept of Direct learning control was introduced. 

Heinzinger 1992 “Learning control is a name attributed to a class of self-

tuning processes whereby the systems performance of a 

specified task improves, based on the previous 

performance of identical tasks” 

Luca 1992 “Learning control is a technique in which the input signal 

required to achieve a given behaviour as output of a 
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dynamical system is built iteratively from successive 

experiments” 

 
K. L. Moore [34]  

1993 “Learning control is an iterative approach to the problem 

of improving transient behaviour for processes that are 

repetitive in nature” 

Jang  1995 “The main strategy of the Iterative Learning Control is to 

improve the quality of control iteratively by using 

information obtained from previous trials, and finally to 

obtain the control input that causes the desired output” 

D. H. Owens [60] 1990’s 

 

Studied the two dimensional nature of ILC and gave H∞  

approach to ILC. 

 1990’s Lots of work done in ILC  

Velthuis  2000 Learning feed forward control was introduced. 

 
Y. Q. Chen [44] 

2001 With the collaboration of Seagate implemented ILC in its 

U6 hard drives. 

Goldsmith  2002 “The goal of Iterative Learning Control is to improve the 

accuracy of a system that repeatedly follows a reference 

trajectory” 

  

2004 ILC implemented in Antilock braking of Toyota Prius. 

Table B 1: Brief history of ILC. 
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Appendix C 
 

 
Buddha [36] 

(500)BC Buddhism was founded on the base that world was 

filled with contradictions, and every thing contained 

some of its opposite. This means that things can be 

A and not A at the same time.  

 
Plato 

(427-347)BC “No chair is perfect; it is only a chair to a certain 

degree.” 

 
Aristotle [35] 

(384-322)BC Developed binary logic. It means that thing has to 

be A or not A, it can’t be both. 

 
Georg Cantor [37] 

(1845-1918) Gave Set Theory at the end of 19th century which is 

now called the Crisp Set theory after the 

introduction of fuzzy sets. 

 
Sanders Peirce 

(1839-1970) “All that exists is continuous and such continuums 

govern knowledge.” 

 
Bertrand Russel 

(1872-1970) “Both vagueness and precision are features of 

language, not reality. Vagueness clearly is a matter 

of degree.” 

 
J. Lukasiewiez  

(1878-1955) Jan Lukasiewiez proposed a formal method of 

vagueness, where 1 stood for TRUE, 0 stood for 

FALSE and ½ stood for possible.  
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Albert Einstein  

(1879-1955) “So far as the laws of mathematics refer to reality, 

they are not certain. And so far as they are certain, 

they do not refer to reality” 

 

L. A. Zadeh [50] 

 

 

1965 

1973 

“The closer one looks at a real world problem, the 

fuzzier becomes its solution” 

Wrote a seminal paper on concept of fuzzy sets. 

Wrote a paper about fuzzy algorithms and showed 

how to apply fuzzy. 

M. Sugeno  1974 Gave the concept of fuzzy measure. 

 
E. Mamdani 

1974 Ebrahim Mamdani started applying fuzzy control to 

steam engine control [20]. 

L. A. Zadeh   Gave the concept of Type-2 fuzzy sets. 

Sweden 1980 Control of Cement Kiln plant through fuzzy control.

 
Japan 

1986 The Sendai Fuzzy logic subway [39] system first 

proposed in 1978, was developed by Hitachi Ltd. 

 
Yamaichi 

Securities 

1988 Yamaichi Securities (Japan) developed and 

implemented Fuzzy based stock trading expert 

system. 

 

1989 

1989 

First fuzzy logic air conditioner was developed.  

First fuzzy auto focus camera developed by Canon. 

 

1990 First fuzzy logic washing machine was developed 

by Matsushita [121]. 

 

1993-1994 

1994 

  Too many commercial applications. 

Japanese companies sold $34 billion worth of 
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consumer products based on fuzzy logic. 

 1992-2002   Research on neuro fuzzy techniques gained 

momentum. 

Mendel [45] and 

Karnik 

1999 Started developing tools for type-2 based fuzzy 

logic set theory. 

L. A. Zadeh 2000 Redirects researchers towards computing with 

words. 

 

2001 Implementation of automatic gear shift using fuzzy 

logic by Mitsubishi [38]. 

Table C 1: Brief history of fuzzy. 
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Appendix D 
 

 


