
INVESTIGATIONS INTO ITERATIVE
LEARNING IN FUZZY CONTROL SYSTEMS

Analysis, Design, Simulations and Experiments

Suhail Ashraf

This thesis is submitted in partial fulfilment of

the requirement for the degree of

PhD

Supervised by: Dr. Ejaz Muhamamd

College of Electrical and Mechanical Engineering

National University of Science and Technology

Rawalpindi, Pakistan

2008

ii

ABSTACT

The most important aspect of human behaviour is learning. One of the learning

methodologies applied by humans is learning through iteration. This human capability

has recently been used by control engineers to design Iterative Learning Controls (ILC).

The problem with ILC is that it is designed for a specific system and a specific desired

response. Moreover, the number of iterations is high, especially if the system dynamics

are not known. Our research work aims at reducing the number of iterations for

convergence and evolving a design mechanism that can adapt for changing systems and

varying desired responses, without the need to redesign the ILC. This thesis develops a

number of Iterative Learning Controllers to meet these requirements. Stability and

convergence criteria of these controllers are also established.

Fuzzy control is another emerging control methodology focusing on human

perception and fuzzy thinking. The problem with fuzzy design is the uncertainties

associated with the design of membership functions and rule base. Moreover, controlled

design requirements are generally given in the form of steady state error, percentage over

shoot etc. These requirements need to be translated into fuzzy design. The work also

establishes a number of fuzzy controllers combined with ILC to over come these short

comings in fuzzy design. The designs are tested through simulations and practical setups.

For the practical setups, a Six Degree of Freedom Hexapod, a DC motor kit by Quanser

and a custom built Two Degree of Freedom Tracker were used. Stability and convergence

of these Iterative Learning Fuzzy Controllers are also discussed.

The research concludes that in order to reduce uncertainties associated with fuzzy

logic based design we have to incorporate learning. This hybrid approach can open up a

new era of controller design.

iii

ACKNOWLEDGMENTS

I thank God for giving me the strength and knowledge to complete this research.

Thank you (my family) for the patience. And very special thanks to my supervisor, Dr.

Ejaz, who gave me endless hours from his very busy schedule. Without his guidance,

support and time to time encouragement, this would not have been possible.

Thanks to Dr. Mo. Jamshadi (University of Texas, USA), Dr. Yangquan Chen

(Utah State University, USA), Dr. D. H. Owens (University of Sheffield, UK) and Dr.

K.L Moore (Utah State University, USA) for knowledgeable e-discussions on concepts of

iterative learning control and fuzzy logic especially during the early days of my research.

Dr. Robert Parkin (Loughborough University, UK), Dr. Amin Al- Habaibeh (Nottingham

Trent University, UK) for their time to time advice.

Thanks to Dr. Tasleem for his support and special thanks to Farooq Rashid

(PAEC) for his tips and assistance, especially during the construction of S-101.

iv

TABLE OF CONTENTS

1. INTRODUCTION... 1
1.1 Iterative Learning Control... 2
1.2 Fuzzy Logic / Fuzzy Control .. 4
1.3 Scope and organisation of this thesis .. 8

1.3.1 Scope of research ... 9
1.3.2 Organisation of the thesis... 9

2. TWO DIMENSIONAL APPROACH TO ITERATIVE LEARNING
CONTROL .. 10

2.1 Two Dimensional Learning Process ... 10
2.2 Mathematical Foundation ... 11
2.3 How Humans Learn? .. 15
2.4 How many gains?.. 17
2.5 One Sample At A Time Iterative Learning Controller (OSATILC)..................... 19

2.5.1 Mathematical background.. 20
2.5.2 Two-Dimensional model of the proposed learning control system............... 21
2.5.3 Stability and convergence analysis using error equations 22

2.5.3.1 Case 1: When 1K = 0 ... 24
2.5.3.2 Case 2: When 1K 0≠ ... 26

2.5.4 Simulation results... 27
2.6 Multiple Samples at a Time Iterative Learning Controller (MSATILC).............. 31
2.7 Modified Multiple Samples At a Time Iterative Learning Controller
(MMSATILC)... 33
2.8 Comparative Results ... 36
2.9 Two Degree of Freedom Tracking Platform... 36

2.9.1 Simulation results for 2DOFTP ... 41
2.10 Experimental Setup... 43

2.10.1 Six Degree of Freedom Hexapod... 43
2.10.2 Proposed Approach.. 45
2.10.3 Results.. 48

2.11 Summary ... 50
3. INTELLIGENT CONTROLLERS USING ADAPTIVE ITERATIVE

LEARNING ... 51
3.1 Adaptive Learning Controllers ... 52
3.2 When System is Known (Approach-1) .. 54

3.2.1 Gradient descent for adaptive gain(s) .. 57
3.2.2 Simulation results... 60

3.3 When System is Partially Known (Approach-2) ... 65
3.3.1 Gradient descent for adaptive gain(s) .. 67
3.3.2 Simulation results... 69

3.4 When System is Completely Unknown (Approach-3) .. 73
3.4.1 Identification .. 75
3.4.2 Gradient descent for adaptive gain(s) ... 78
3.4.3 Convergence analysis... 81

v

3.4.3.1 Convergence of iterative learning control law.. 81
3.4.3.2 Convergence for adaptive gain ... 82

3.4.4 Simulation results... 84
3.4.4.1 A Simple System .. 84
3.4.4.2 Car Suspension System... 88
3.4.4.3 A Non-Linear System ... 91

3.4.5 Discussion and comparison.. 93
3.5 Cost Functions .. 95

3.5.1 Difference of input (Approach-4) ... 95
3.5.1.1 Simulation results.. 97

3.6 Iterative Learning Control with an Iterative Learning Gain (Approach-5) 100
3.6.1 Convergence analysis... 101
3.6.2 Simulation results... 102
3.6.3 Discussions and comparison.. 107
3.6.4 Experimental setup and results .. 108
3.6.5 Real time tracking using iterative learning control with an iterative learning
gain.. 110

3.6.5.1 Simulation results.. 111
3.6.5.2 Real time tracking using an experimental set up 114

3.7 Iterative Learning Control with an Iterative Learning Gain and Adaptive Step Size
... 117

3.7.1 Adaptive step size .. 119
3.7.2 Simulation results... 119
3.7.3 Discussion and comparison.. 123

3.8 Summary ... 123
4. SELF LEARNING FUZZY CONTROLLERS USING ITERATIVE

LEARNING TUNER .. 125
4.1 Problems in Fuzzy Logic Based Design ... 125
4.2 Basics of Fuzzy Control.. 129
4.3 Supporting Work... 131
4.4 Iterative Learning Fuzzy Tuner (ILFT) .. 139

4.4.1 Simulations and results .. 148
4.4.1.1 Conventional Proportional Controller... 149
4.4.1.2 Iterative Learning Fuzzy Tuner .. 153

4.4.1.2.1 DC Motor ... 153
4.4.1.2.2 A non-linear system ... 158

4.4.2 Stability and convergence .. 162
4.4.3 Tracking a desired trajectory in real time .. 165
4.4.4 Effect of considering derivative of error.. 168
4.4.5 Stability using linguistic trajectory .. 172

4.5 A Real Time Tracker Using ILT.. 175
4.5.1 Simulation results... 179
4.5.2 Experimental setup... 185

4.5.2.1 Real time tracking system... 186
4.5.2.2 The S-101.. 186
4.5.2.3 Target Simulation Board (TSB).. 191

vi

4.5.2.4 Interface card .. 191
4.5.2.5 Scanner coordinate system.. 192
4.5.2.6 Control software.. 192
4.5.2.7 The complete setup ... 193
4.5.2.8 Experiments using 3 input and 3 output MFs 194
4.5.2.9 Experiments using 7 input and 7 output MFs 200

4.6 Summary ... 206
5. ITERATIVE LEARNING FUZZY GAIN SCHEDULER.................................. 208

5.1 Introduction... 208
5.2 Proposed Approach... 210

5.2.1 Procedure for the up gradation of parameters.. 215
5.2.2 Stability .. 217
5.2.3 Simulations and results .. 219

5.2.3.1 Motor Speed Control... 219
5.2.3.2 Zeigler-Nichols controller vs. proposed approach................................ 223
5.2.3.3 Tracking trajectories in real time .. 229

5.3 Experimental Setup and Results ... 233
5.3.1 Stability using Linguistic Trajectory ... 237

5.4 Summary ... 238
6. FUZZY ITERATIVE LEANING CONTROLLER (FILC) 240

6.1 Proposed Approach... 240
6.1.1 Simulation Results ... 242

6.1.1.1 Case 1: With no initial guess .. 243
6.1.1.2 Case 2: With initial guess ... 248

6.2 Stability ... 250
6.3 Summary ... 251

7. CONCLUSION AND RECOMMENDATIONS .. 252
7.1 Conclusion .. 253
7.2 Recommendations... 257

REFERENCES.. 259
Appendix A .. 273

A.1 A Simple System (SS)... 273
A.2 Cruise Control System (CCS) ... 273
A.3 Car Suspension System (CSS) .. 275
A.4 Non-Linear System (NLS) .. 276
A.5 Motor Speed Control System (MSCS).. 276
A.6 Inverted Pendulum (INVPL) ... 277
A.7 Desired Trajectory... 278

Appendix B .. 279
Appendix C .. 281
Appendix D .. 2814

vii

1

1 INTRODUCTION

Humans have a remarkable capability to perform a wide variety of physical and

mental tasks without any apparent difficulty. Tasks like parking a car, driving in traffic,

playing cricket, understanding speech and summarizing a story. All these and other

variety of tasks are being performed by the same controller, the brain. Though modern

day technology has accomplished great feats like landing on the moon, sophisticated

flight control systems, robots that can paint cars, yet we are still unable to assemble and

control machines that can talk like humans, build robots that can drive in heavy traffic,

prepare programs that can summarize non trivial stories. Also, these controllers need to

be redesigned for every new task in hand. Current technologies have still not been able to

satisfactorily solve these problems, which seem quite easy for humans.

The key components of human capability lie in learning and forming perceptions.

Humans learn form experience, from trials and from repeatedly performing a task. If we

want to design controllers with human-like capabilities, we should be designing

controllers that are able to iteratively learn from previous attempts. Those controllers

should also be able to treat quantities like speed, distance, temperature etc. as perceptions

and should be able to function on their imprecise representations rather than their crisp

values, just as humans do. For example, actions should be taken on “high speed”, or “low

temperature” rather than “greater than 100m/h speed” or “less than 10 degree Celsius”

temperature.

With the ever increasing complexity of practical systems and the demand for

diverse functionalities, we need new technologies and intelligent systems that can

combine knowledge, techniques and methodologies from various sources. These

intelligent systems should possess human like capabilities, should be able to adapt

themselves and should do better in changing environment. Combining knowledge is the

way forward. As in the words of J.S.R. Jang, C.T. Sun and E. Mizutani:-

2

“It is frequently advantageous to use several computing techniques synergistically rather

than exclusively, resulting in construction of complementary hybrid intelligent systems.”

[75]

This research has focused on combining Iterative Learning and Fuzzy Logic to

achieve robust, adaptive and simple-to-design controllers. Before indulging in more

technical discussions, a short survey of developments in iterative learning control and

fuzzy logic is presented.

1.1 Iterative Learning Control

Iterative Learning Control (ILC) is an approach to improve the performance of a

system, operating repetitively, by suitably changing the input to the system. This change

in input is done through learning or training. Consider an example of a child throwing

stones at a log submerged in a stream. At first, the stone misses the target because the

refractive index of the water gives a misleading sense of its location in the water. The

child learns to compensate for this effect by throwing the stones slightly off from the

required mark. This is not done by changing any fundamental structure of the sensory

system, which still observes the log to be at the wrong place. Instead, the child changes

the command to the muscles of his arm, telling them to throw at a different mark. The

key is to find that change in command or input to the system. Iterative learning control

aims at finding such an input command.

The phrase “learning” often causes misunderstanding. This is especially true,

given the current interest in artificial neural networks. “Learning” is a broad concept

which means different things to different people. In a general sense, learning refers to the

action of a system to adapt and change its behaviour based on input/output observations.

Many systems have this ability, including adaptive control systems and neural network

based systems. In ILC, learning means to learn the next input based on the error signal

[83]. This is a fundamental change in control philosophy compared to conventional

3

thinking where change in input is not a primary goal. Main landmarks of ILC as

developed by leading researchers are presented in Appendix B.

For a general introduction on ILC, [83, 84, 120] are good references. Though in

the 1980’s researchers were primarily concerned with the question of finding

convergence conditions, it has come a long way since then. Some of the main areas

where ILC researchers have mainly focused are Direct Learning ILC [77, 79, 100, 129,

130], frequency domain analysis and development of ILC techniques [1, 33, 69, 98, 122],

multivariable systems [81, 109], non-minimal phase systems [112], feedback systems

[10], norm optimal ILC [114, 139], time delay systems [78, 97, 99], time invariant

systems [32, 125, 149], time variant systems [125, 140], two dimensional systems [15,

21, 65, 146], repetitive control [13, 124, 142], convergence [24, 85, 97, 150], robustness

[111, 138], higher order ILC [30, 149] and neural networks [14, 147, 153].

Iterative Learning Control has found practical applications in almost all the major

fields, like robotics [5, 6, 80, 129, 130, 131], automotive vehicles [12, 27, 86], chemical

processing [8], mechanical systems control [11, 67, 155], hard drives [61] and even in

nuclear reactor [141].

As regards the future scope of work in ILC, researchers have been pointing out in

different directions. Some of the directions are mentioned below:-

(a) We need to explore new ILC paradigm: variable structure iterative learning

control. Since there is no coupling between any two consecutive iterations, we can

let the ILC mechanism switch its structure from one to another during iterations.

The simplest way could be to change the learning gains, and the general one could

be to change ILC algorithm during iterations [148].

(b) Adaptive control has attracted extensive research efforts and has found successful

applications. The ILC scheme combined with the adaptive control will be attractive

in future [145].

(c) The actual way we should go is, in fact, in a framework of the 2-D system theory

[23].

(d) The iterative learning controllers plugged into the existing robust controllers

should give quite interesting results [64].

4

(e) Developing ILC algorithms with lower level of tracking error is theoretically

challenging [117].

(f) If we already have several learned desired inputs for the desired trajectories, how

to utilize them is an interesting problem [128].

(g) Currently, in ILC research, the learning gain is designed based on the ILC

convergence condition which may not lead to a good design in terms of knowledge

assumed. Therefore, systematic design method is in great desire [145].

(h) It is well known that output tracking is much more complicated than state tracking

and is still an open research area even for linear systems [148].

(i) From practical point of view, perfect resetting especially the initial state resetting

could hardly be achieved. Therefore, it is very important and interesting to

investigate the conditions under which resetting requirement can be removed

[148].

More recently, N. Amann, D. H. Owens, E. Rogers, M. Norrlof, Mo. Jamshadi,

Jian-Xin Xu, Yangquan Chen, L.X. Wang and K.L Moore have been actively pursuing

ILC research [15, 28, 34, 41, 44, 52, 53, 60, 77, 78, 79, 83, 84, 85, 103, 105, 106, 113,

115, 116, 127, 144, 145, 151, 152].

The conclusion is simple “Repetition improves skill, for either man or machine.”

[145]

1.2 Fuzzy Logic / Fuzzy Control

Fuzzy logic [43,46] was first introduced by Lotfi A. Zadeh [50], Professor of

Systems Theory at the University of California, Berkeley, USA, in a publication in 1965

[94]. However, during its early years, it was met with a lot of criticism, some of which

were from Prof. Zadeh's colleagues themselves.

Rudolph E. Kalman [55] had this to say in 1972:-

5

"I would like to comment briefly on Prof. Zadeh's presentation. His proposals could be

severely, ferociously, even brutally criticized from a technical point of view. This would

be out of place here. But a blunt question remains: Is Prof. Zadeh presenting important

ideas or is he indulging in wishful thinking? No doubt Prof. Zadeh's enthusiasm for

fuzziness has been reinforced by the prevailing climate in the US - one of unprecedented

permissiveness. 'Fuzzification' is a kind of scientific permissiveness; it tends to result in

socially appealing slogans unaccompanied by the discipline of hard scientific work and

patient observation."

Similarly, his esteemed and brilliant colleague Prof. William Kahan [47,51]

whose Evans Hall office is a few doors from Zadeh's, stated the following in 1975:

"Fuzzy theory is wrong, wrong, and pernicious. I cannot think of any problem that could

not be solved better by ordinary logic. What Zadeh is saying is the same sort of things:

Technology got us into this mess and now it can't get us out. Well, technology did not get

us into this mess. Greed and weakness and ambivalence got us into this mess. What we

need is more logical thinking, not less. The danger of fuzzy theory is that it will

encourage the sort of imprecise thinking that has brought us so much trouble."

Even in the 1990s when hundreds of successful applications of fuzzy logic were

being developed, some scientists still condemned the concept, like Jon Konieki who

stated in 1991:

"Fuzzy logic is based on fuzzy thinking. It fails to distinguish between the issues

specifically addressed by the traditional methods of logic, definition, and statistical

decision-making." [47]

Criticisms however did not stop the spread of fuzzy logic. Fuzzy logic, invented

in the US, was engineered to perfection in Europe, mass-marketed in Japan, and only

then recently returned to US. It can be argued that fuzzy logic has its roots from logic

science [101]. A brief historical overview of fuzzy logic is presented in Appendix C.

6

The full scale operation of fuzzy logic controlled Sendai subway [39] in 1986-87

by Hitachi performed better than any human operator. The subway train, in fact, had a

better on-time schedule history, used less energy, and ran smoother than the same train

operated by a human. After the success of Sendai subway project hundreds of fuzzy logic

based products were produced in Japan, like Mitsubishi’s fuzzy logic transmission,

Canon’s auto focusing mechanism, Minolta’s subject tracking system (Maxxum 7xi) and

Panasonic Electronic Image Stabilizer.

Theoretically fuzzy controllers should run slower than conventional controllers

because of additional computations involved in fuzzifiers, defuzzifiers and inference

engines. But the introductions of fuzzy micro chips by companies like Omron, which

perform thousands of fuzzy inferences per second, have made this difference irrelevant.

In U.S. software companies began offering tools to create fuzzy systems for families of

microprocessors. The first was by Togai Infralogic [56] in Irvine, California and the

second was by Aptronix Inc.[48] in San Jose, California. Fuzzy logic has not been

restricted to engineering disciplines, it has found its way into almost all the fields of

human interaction, like intelligent project management, project risk assessment, financial

statement analyser, forecasting, fleet container management, database retrieval system,

abuse detection system [17], to name a few.

Fuzzy control is the most widely used application of fuzzy logic [73]. Fuzzy logic

controller (FLC) provides a method to construct controller algorithms in a user friendly

way, mimicking human thinking and perception. FLC has successfully outperformed the

traditional control systems (like PID controllers) in many areas [18, 19]. But still there

are many sources of uncertainties facing the FLC in dynamic real world environment

[31]. Uncertainties are independent of the kind of Fuzzy System (FS) or methodology one

uses to handle them. Some sources of uncertainties facing the FLC design are as follows:

(a) Uncertainties in inputs to the FLC, which translate into uncertainties in the

antecedent’s memberships as the sensor measurements are effected by noises

from various sources.

(b) Uncertainties in control output, which translate into uncertainties in the

consequent’s membership functions of FLC. Such uncertainties can result from

7

change of actuator characteristics, which can be due to wear, tear, environment

changes etc.

(c) Linguistic uncertainties as words mean different things to different people [73]. A

survey of experts will usually lead to a number of possibilities for the antecedents

and consequent of rules. These variations represent uncertainty. J. M. Mendel

describes this uncertainty as,

“Uncertainty about the antecedent and consequent membership functions as

experts do not agree on one membership function end-points.” [73]

(d) Uncertainties associated with the change in operating conditions of the controller.

Such uncertainties can also be translated into uncertainties in the membership

functions.

(e) Uncertainties associated with the use of noisy training data that could be used to

learn, tune or optimise the FLC.

As regards the problem areas and future work in fuzzy, researchers have been

pointing out in different directions. Some of the directions being hinted are annotated

below:-

(a) Fuzzy has progressed a lot during the last decades and the research is going on in

the fields like, fuzzy mathematics, fuzzy systems, fuzzy control, image

processing, stability analysis, information retrieval, prediction etc. but the two

problem areas are the convergence analysis and handling uncertainties [103].

(b) Possible future work includes adaptation of membership functions so that higher

degree of flexibility in search of optima can be achieved [75].

(c) Conventional fuzzy logic (now called “type-1” fuzzy logic) has limited

capabilities to directly handle data uncertainties [71].

(d) For dynamic unstructured environments and many real world applications, there

is a need to cope with large amounts of uncertainties. The traditional fuzzy logic

control can not directly handle such uncertainties to produce a better performance

[31].

(e) Unfortunately it (type-1) has completely ignored the uncertainties associated with

8

the two end points of a membership function [71].

(f) It is anticipated that by using more general fuzzy logic formulation (now called

“type-2” fuzzy logic) [59], it will be possible to capture higher order uncertainties

about words. Much remains to be done [71].

(g) Employment of type-2 fuzzy sets usually increases the computational complexity

in comparison with type-1 fuzzy sets due to additional dimension of having to

compute secondary grades for each primary membership [22].

(h) Choosing rules, membership functions are in general still done by hand [119].

(i) L. A. Zadeh [89] presents a powerful argument for the use of fuzzy logic to

manipulate perceptions. His argument is that

“Perceptions reflect finite ability of sensory organs and the brain to resolve detail

and store information. We have partial knowledge, partial understanding, partial

certainty, partial belief and accept partial solutions, partial truth and partial

causality.” [89]

Perceptions (e.g. perceptions of size, speed, temperature etc.) cannot be modelled

by traditional mathematical techniques and that fuzzy logic is more useful in

these regards. He also mentions terms like “Computing with words” and

“Computing with perceptions” as future research areas.

Current number of researchers mushrooming around the world shows the

attractiveness of the fuzzy theory. “Computer world” in its August, 2004 issue reported

that there were over 10,000 active fuzzy researchers in China alone [49].

The conclusion is that fuzzy logic has given us a more natural way of looking at

the problems and a new way of designing our controllers.

1.3 Scope and organisation of this thesis

We now discuss the scope and organisation of this thesis.

9

1.3.1 Scope of research

The main aim of the research is to combine Iterative Learning Control and Fuzzy

Logic to evolve new methodologies for designing intelligent controllers. These

controllers should lower the number of iterations to learn, reduce dependency on

knowledge about system dynamics and eliminate uncertainty in the design process. To

accomplish this, various ILC techniques and Fuzzy Logic based schemes need to be

investigated. Also, their implication in terms of performance parameters like peak

overshoot and steady state error should be determined.

1.3.2 Organisation of the thesis

Chapter 2 starts with the development of the mathematical basis for ILC design.

Three ILCs are developed and their stability and convergence criteria are established.

Chapter 3 takes the research further and presents a number of adaptive ILCs. These ILCs

reduced the number of iterations and enhanced adaptability against changes in the system

and the desired response. Stability and convergence criteria are also derived. These ILCs

were tested using simulations and practical experimental setups. Chapter 4 deals with

“Learning Fuzzy” based approach with an emphasis on eliminating uncertainties

associated with fuzzy design. Here also, stability and convergence criteria are presented.

To test the performance of this controller, a two degree of freedom tracking device was

designed and constructed. The robustness of the proposed controller is demonstrated

using this tracking device. Chapter 5 combines ILC and Fuzzy Logic to schedule gain

values in conventional proportional (P), proportional-integral (PI) and proportional-

integral-derivative (PID) controllers. This unique combination of ILC and Fuzzy

performed much better than the conventional controllers. Chapter 6 presents a Fuzzy

based ILC controller, in which fuzzy logic was used to update the underlying learning

law as opposed to the method adopted in chapter 4, where learning was used to update

fuzzy controller parameters. Chapter 7 summarises the inferences of this research and

also proposes a number of recommendations for future work.

10

2 TWO DIMENSIONAL APPROACH TO ITERATIVE
LEARNING CONTROL

This chapter formulates a mathematical framework for developing Iterative

Learning Controllers (ILCs). Based on this framework, three controllers are presented.

Stability and convergence analysis is also discussed in detail. The controllers are

validated through a number of simulations and an experimental setup.

2.1 Two Dimensional Learning Process

Researchers have used different ways to mathematically represent iterative

learning controllers. Some have used continuous time domain [68, 107, 108], some,

discrete time domain [95], most have used one dimensional representation [153], while

there are some who have used two dimensional representation [146, 112]. Two

dimensional (2-D) approache seems a natural way to represent iterative learning

processes as we can learn from iteration to iteration and also from sample to sample

basis.

A 2-D learning process is one in which inputs, outputs and system states depend

on two independent variables i.e. its dynamics are propagated along two independent

directions. In fact these are two dynamic processes. One process, indicated by the

variable ’ k ’, reflects the dynamics of the system in terms of time history. The other

process, indicated by the variable ‘ j ’, reflects the learning iteration and resultant

performance improvement in terms of learning times [143, 21, 151]. For example, u (k)j

expresses the thk item of the input in the thj execution cycle (thj learning iteration).

Here k = 1...N and j = 1...M , where N and M are finite integers. A good introduction of

ILC is given in [83].

11

2.2 Mathematical Foundation

Following variables are defined:-

u (k)j = Input at current iteration or trial

u (k)j+1 = Input at next iteration or trial

u (k)j∆ = Change in input calculated at current iteration

(k)jy = Output at current iteration or trial

(k +1)jy = Next output at current iteration or trial

e (k)j = Error at current iteration

yd (k)j = Desired output at current iteration

Appendix B presents a brief history of ILC with a list of definitions as given by

different researchers. It can be concluded from these definition that, the main aim of ILC

is to change next input so as to reduce error. This means that after several learning cycles,

u (k)j is modified to approach a desired control input which can generate the desired

output. Mathematically the modification can be expressed as

u (k) = u (k) +∆u (k)j+1 j j (2.1)

The equation states that the next input to the system for sample k is equal to the current

input plus ∆u (k)j , where ∆u (k)j is in general a function of the error between the

system’s actual output y (k)j and the desired output yd (k)j . Here j+1 means that the

new control input is for the next execution or learning cycle.

The error is given by

e (k) = yd (k) - y (k)j j j (2.2)

A general structure adapted for the proposed iterative learning controls, similar to

the one given in [83], is shown in figure 2.1.

12

Figure 2.1: A general structure of an iterative learning control system.

Input at iteration 1, u (k)1 , for k = 1...N , is applied to the plant. This input produces an

output y (k)1 . According to the equation (2.1), u (k)1 needs to be modified. This

modification, u (k)1∆ , can be a function of u (k)1 , e (k)1 , y (k)1 , yd (k)1 etc. As

explained before, the purpose of learning process is to generate a new control input,

u (k)2 , in this case, that can reduce or eliminate the error e (k)2 . This change in input,

∆u (k)1 , and error at first iteration, e (k)1 , must be related. Values of u (k)1 , e (k)1 , y (k)1

and yd (k)1 are stored in memory, to be used in future iterations. The new input, u (k)2 is

applied to the plant again, resulting in y (k)2 . The process is repeated again and again

until the error comes down to acceptable limit.

To modify u (k)j into u (k)j+1 , error information e (k)j , e (k +1)j , e (k -1)j etc.

are used. The following equation for change in input is suggested.

13

0 1∆u (k) = K e (k) + K e (k +1)j j j (2.3)

Where 0K and 1K are gain values. There can be a separate value of 0K and 1K for each

sample or one gain value for all the samples. If a separate gain value is required for each

sample, 0K and 1K are of the form

0 0 0 0 0= (k) [K (1) K (2) K (N)]=K K … and

1 1 1 1 1= (k) [K (1) K (2) K (N)]=K K …

Where 0K (1) , 0K (2) ,… 0K (N) and 1K (1) , 1K (2) ,… 1K (N) are the gains associated with

samples 1,2,…N. For example, for sample 3, equation (2.3) becomes

0 1∆u (3) = K (3)e (3) + K (3)e (4)j j j

Here 0K (3) is the gain assigned to sample number 3. This structure has a problem

associated with its last sample. For example, for sample N, the value of 1K e (N +1)j can

not be resolved, as e (N +1)j is not available. Different methods, like using rate of change

of error, average of error were used. It was found that the best method, considering

execution time and final results, is to use the previous error value for e (N +1)j . That is,

e (N +1) = e (N)j j . Through out this thesis, e (N +1)j error value is taken as, e (N)j (error

value at sample N).

The general block diagram of the proposed schemes is given in figure 2.2.

Figure 2.2: Learning control configuration of the proposed schemes using 2-D theory.

14

The Learning controller calculates ∆u (k)j based on information on error and current

input.

Putting (2.3) in (2.1), the learning process proceeds as

0 1u (k) = u (k) + K e (k) + K e (k +1)j+1 j j j (2.4)

Many learning control algorithms proposed by different researchers are of the

form similar to (2.1). Several interesting facts concerning these algorithms were

observed. For example:-

(a) Most current methods adopt fixed learning laws. Only control input sequence is

modified. Although this type of learning laws can be easily implemented they are

unable to cope with changing requirements, uncertainties in model of the system and

change in model parameters. This type of control is most useful where the tasks

always have the same desired trajectory.

(b) In order to find the learning gains, 0K and 1K , some specific knowledge of

controlled system is needed. In case of model based learning, an explicit expression

of system inverse dynamic model should be available.

(c) The learning performance depends on the accuracy of the inverse model used in the

design.

The development of the ILCs has focused at following aims:-

(a) They should require minimum knowledge about the plant.

(b) They should converge even if there is uncertainty in plant model.

(c) They should converge even if the resetting is not perfect.

(d) They should be able to handle desired trajectory changes. The knowledge learnt

from one task should be utilized for other tasks as well.

(e) They should be able to adjust for small changes in the controlled system due to

wear, tear and aging.

(f) They should be usable for non-linear systems.

(g) The number of iterations should be reduced to an acceptable level.

15

In order to develop such an approach, the behaviour of 0K and 1K were first

studied. Throughout this thesis, simulation results from different linear and non-linear

systems are presented. The systems are named Simple System (SS), Cruise Control

System (CCS), Car Suspension System (CSS), Non-linear System (NLS), Motor Speed

Control System (MSCS) and Inverted Pendulum System (INVPL). The SS, CCS, CSS

and MSCS will also be refered by 1G (z) , 2G (z) , 3G (z) and 4G (z) in this thesis. These

systems are described in Appendix A.

2.3 How Humans Learn?

The iterative learning control tries to mimic the most important aspect of human

behaviour, i.e. learning from experience. To get a quantitative measure of how a human

will learn an input, that will make a motor run at a predefined speed, interactive software

was developed. The software gave the human operator control over the input. This input,

the corresponding output and the error were continuously displayed to help the human

operator select the next input. The software also varied the desired speed at run time, to

record human operator’s response to change in requirements. The responses were then

analysed. A snap shot of one such test performed by one human is given in figure 2.3.

Figure 2.3: Graphical Interface for human operators to control input for a motor.

16

The plot shows motor speed as input is applied by the human operator using the slide bar.

The required speed is 1 radians/second. Gain was also recorded for better data analysis.

Humans from varying age groups took the test. A plot of input applied by three

such humans, at their third iteration, to achieve a speed of 1 radians/second is shown in

figure 2.4.

0 1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

14

time (sec)

i n
 p

 u
 t

(v

 o
 l

t a
 g

 e
)

human 1
human 2
human 3

Figure 2.4: Different inputs applied by human operators to attain a speed of 1

radian/second.

The similarity of human response is quite evident. A few interesting points noted were:-

 (a) Human operator was, almost, never able to achieve desired response at first go.

They needed repetition.

(b) Initially, human operator tends to give higher gains, partially because of higher

error at the start and partially to get a feeling of the system response.

(c) The experience of the previous inputs helps in determining the next input.

(d) The next input applied is mainly a function of error.

(e) Human response is usually under damped.

(f) Human operator usually waits to see the output of the system before guessing the

next required input.

17

(g) When following a predefined shape, human operator tends to break the desired

shape in smaller pieces or intervals. The more the human operator concentrates, to

reduce error, the smaller the interval. The concept is that if error is reduced in those

small intervals, the overall error is also reduced.

The result of these simulations contributed in the formulation of learning control

laws, presented in this chapter.

2.4 How many gains?

The control law of equation (2.4) can be extended to

0 1 N-1u (k) = u (k) + K e (k) + K e (k +1) + + K e (k + N -1)j+1 j j j j…

This law requires N gains. As discussed in section 2.2, each gain can be a separate value

for each sample or one gain value for all the samples. All these gains are not only heavy

in terms of computation but also complicate the stability of the control law. There was a

need to investigate, “How many minimum numbers of gains are sufficient to achieve

convergence?” Simulation results from different kinds of systems, using control law of

equation (2.4), revealed following interesting facts:-

(a) The possible minimum numbers of iterations were different for different systems.

These possible minimum numbers of iterations are called optimal number of

iterations in this thesis.

(b) There was always a range of values of 0K and 1K , for each system, that produced

optimal number of iterations; meaning that, different combinations of 0K and 1K

can give same results.

(c) The term 1K e (k +1)j in equation (2.4), some times introduced oscillations and even

18

instability.

(d) Considering 0K alone can also achieve optimal number of iterations.

These observations are demonstrated in results from one such simulation on

1G (z) . Figure 2.5 gives a plot of number of iterations vs. values of 0K and 1K .

Figure 2.5: Surface and contour plot of 0K and 1K vs. number of iterations for 1G (z) .

As can been seen there is a range of values of 0K and 1K that give optimal iterations.

The minimum achievable iterations for this system were 4. For the same system, figure

2.6 gives a plot of number of iterations as 0K is varied, keeping 1K 0= .

19

Figure 2.6: Number of iterations against 0K for 1G (z)

Again the minimum number of iterations achieved was 4, though with higher values of

0K . Similar simulations on different systems concluded that:

(a) Tune the control algorithm initially, by using 0K alone.

(b) Consider 1K and higher gains only, if the requirements are not met.

This procedure of selection of gains is followed through out this thesis.

2.5 One Sample At A Time Iterative Learning Controller

(OSATILC)

A survey of ILC research already published revealed, that the corrective input was

updated for all the samples, for all iterations, until the desired response was achieved.

This means that even if most part of the desired response was achieved, the whole input

was changed. In other words all the samples were modified at all the iterations. One

20

Sample At a Time (OSAT) approach focuses on converging one sample at a time. In this

approach each sample is given a priority. The order of priority is from sample 1 to N.

This means that if samples 1 to k have converged i.e. their output match the desired

output, no correction in input is made for these samples. The rules for OSATILC are

stated below:-

(1) Samples should be given a priority from sample 1 to N, where sample 1 has the

highest priority and sample N has the least priority.

(2) There should be no gap between the samples, i.e. samples 1 to 10 should converge

before sample 11 is considered for convergence.

(3) The input changes for only that sample which is under consideration.

(4) Once a sample input has converged i.e. the input value of thk sample is calculated,

the value of that input should be applied as a starting value for thk +1 sample. i.e.

u (k +1) = u (k)j j (2.5)

(5) Once the input for a sample has been calculated, no change in that input will be

made in any subsequent iterations i.e.

c cu (1...k) = u (1...k)j+1 j (2.6)

 Where, ck represents the number of converged samples.

We now develop the mathematical frame work for OSATILC and other ILCs

presented in this chapter.

2.5.1 Mathematical background

This section develops the mathematical basis required to formulate Iterative

Learning Controllers. As our ILCs are discrete controllers, we take the discrete time

representation of a system, given by equation:-

y(k +1) = Ay(k) + Bu(k) (2.7)

21

Where current output, current input and next output are represented by y(k) , u(k) and

y(k +1) . The system coefficients are represented by A and B.

In 2-D format this representation can be written as

y (k +1) = Ay (k) + Bu (k)j j j (2.8)

Where y (k +1)j is the next output at jth iteration.

In discrete terms, the effect of input sample k is observed at sample k + n , at the

output. Where n is the delay of the system. Therefore, the number of samples for y is

from 1...(N+n). Putting it another way, this means that the input at sample (k + 5) will

have no effect at output sample (k + 5) and lower. Using the delay of the system the error

equation (2.2) is written, in a more generalized form as

e (k) = yd (k) - y (k + n)j j j (2.9)

Which means that the error at sample k is the difference between the desired output at

sample k , minus the actual output delayed by n samples.

2.5.2 Two-Dimensional model of the proposed learning control
system

A 2-D state space representation of the ILC scheme will be developed in this

section.

Error equation (2.9), for next sample, can be extended to

e (k +1) = yd (k +1) - y (k +1+ n)j j j (2.10)

Putting the values of e (k)j and e (k +1)j from (2.9) and (2.10) in (2.4) ⇒

0 1u (k) = u (k) + K (yd (k) - y (k + n)) + K (yd (k +1) - y (k +1+ n))j+1 j j j j j

0 0 1 1u (k) = u (k) + K yd (k) - K y (k + n) + K yd (k +1) - K y (k +1+ n)j+1 j j j j j (2.11)

Discrete representation of a 2-D system from (2.8) can be extended, for a system

with n sample delay, to

22

y (k +1+ n) = Ay (k + n) + Bu (k)j j j (2.12)

Using (2.12) in (2.11) gives

0 0 1 1u (k) = u (k) + K yd (k) - K y (k + n) + K yd (k +1) - K (Ay (k + n) + Bu (k))j+1 j j j j j j

0 0 1 1 1u (k) = u (k) + K yd (k) - K y (k + n) + K yd (k +1) - K Ay (k + n) - K Bu (k)j+1 j j j j j j

0 1 1 0 1u (k) = -K y (k + n) - K Ay (k + n) + u (k) - K Bu (k) + K yd (k) + K yd (k +1)j+1 j j j j j j

(2.13)

0 1 1 0 1u (k) = (-K - K A)y (k + n) + (I - K B)u (k) + K yd (k) + K yd (k +1)j+1 j j j j (2.14)

Equation (2.12) and (2.14) in compact matrix form give

0 1 1 0 1

y (k +1+ n) y (k + n) yd (k)A B 0 0j j j
= +

-K - K A I - K B K Ku (k) u (k) yd (k +1)j+1 j j

                             

(2.15)

This is the 2-D state space representation of the proposed ILC.

2.5.3 Stability and convergence analysis using error equations

Stability and convergence issues were studied using the Roesser model given by

R. P. Roesser [123]. Roesser presents a two-dimensional discrete state-space model in

which the state of the system is divided into “horizontal” and a “vertical” state. The

model is given by

A A Bh hx (i +1, j) x (i, j)1 2 1= + u(i, j)v vA A Bx (i, j+1) x (i, j)3 4 2

      
      
            

(2.16)

where i and j are non negative integers, named horizontal and vertical coordinates and

h n1 v n2x R , x R∈ ∈ are local states of the system which are propagated horizontally and

vertically by the first order difference equations respectively. Input vector is represented

by ru R∈ and output vector by my R∈ . Matrices A1, A2 , A3, A4 , B1 , B2 , C1 and C2

have appropriate dimensions. It is well known that Roesser’s model is the most general 2-

23

D state space model. For a special case of Roesser model where A = 02 and A = 03 , the

necessary conditions for a system, of form (2.16), to be stable are

(A) < 11ρ , (A) < 14ρ (2.17)

Here ρ is the 1-D spectral radii [133]. The spectral radius of a matrix or a bounded linear

operator is the supremum among the moduli of the elements in its spectrum [40]. That is,

if A1 is some complex or real element with eigenvalues λ1, …, λn . Then the spectral

radius (A)1ρ of A1 is

1
(A) max λ1 ii n

ρ
≤ ≤

=

Equation (2.17) means that for the model in (2.16) with A2 and A3 set to zero, if

spectral radii of A1and A4 is less than 1, the 2-D system is stable. Hence if any 2-D

approach can be represented in Roesser model format, the stability and convergence

criteria can be applied.

By letting iteration j increase to j+1, equation (2.10) and (2.12)⇒

e (k +1) = yd (k +1) - y (k +1+ n)j+1 j+1 j+1 (2.18)

y (k +1+ n) = Ay (k + n) + Bu (k)j+1 j+1 j+1 (2.19)

Putting (2.19) in (2.18) ⇒

e (k +1) = yd (k +1) - (Ay (k + n) + Bu (k))j+1 j+1 j+1 j+1 (2.20)

e (k +1) = yd (k +1) - Ay (k + n) - Bu (k)j+1 j+1 j+1 j+1

Adding Ayd (k)j+1 on both sides

Ayd (k) + e (k +1) = Ayd (k) + yd (k +1) - Ay (k + n) - Bu (k)j+1 j+1 j+1 j+1 j+1 j+1

e (k +1) = yd (k +1) - Ayd (k) + Ayd (k) - Ay (k + n) - Bu (k)j+1 j+1 j+1 j+1 j+1 j+1

e (k +1) = yd (k +1) - Ayd (k) + A(yd (k) - y (k + n)) - Bu (k)j+1 j+1 j+1 j+1 j+1 j+1

e (k +1) = yd (k +1) - Ayd (k) + Ae (k) - Bu (k)j+1 j+1 j+1 j+1 j+1 (2.21)

Putting (2.12) in (2.10) ⇒

24

e (k +1) = yd (k +1) - (Ay (k + n) + Bu (k))j j j j (2.22)

e (k +1) = yd (k +1) - Ay (k + n) - Bu (k)j j j j (2.23)

Adding Ayd (k)j on both sides of equation (2.23) ⇒

Ayd (k) + e (k +1) = Ayd (k) + yd (k +1) - Ay (k + n) - Bu (k)j j j j j j

e (k +1) = yd (k +1) - Ayd (k) + Ayd (k) - Ay (k + n) - Bu (k)j j j j j j

e (k +1) = yd (k +1) - Ayd (k) + A(yd (k) - y (k + n)) - Bu (k)j j j j j j

e (k +1) = yd (k +1) - Ayd (k) + Ae (k) - Bu (k)j j j j j (2.24)

Subtracting (2.24) from (2.21) ⇒

e (k +1) - e (k +1) = yd (k +1) - yd (k +1) - Ayd (k) + Ayd (k) +...j+1 j j+1 j j+1 j
Ae (k) - Ae (k) - Bu (k) + Bu (k)j+1 j j+1 j

(2.25)

Assuming that the desired output does not change, i.e.

yd (k +1) = yd (k +1)j+1 j and yd (k) = yd (k)j+1 j

Equation (2.25) becomes

e (k +1) - e (k +1) = Ae (k) - Ae (k) - Bu (k) + Bu (k)j+1 j j+1 j j+1 j (2.26)

We now discuss two cases one when 1K = 0 and the other when 1K 0≠ .

2.5.3.1 Case 1: When 1K = 0

Defining

(k) = e (k) - e (k)j j+1 j� (2.27)

and

(k +1) = e (k +1) - e (k +1)j j+1 j� (2.28)

Putting (2.28) in (2.26) ⇒

(k +1) = Ae (k) - Ae (k) - Bu (k) + Bu (k)j j+1 j j+1 j� (2.29)

25

As 1K = 0 , equation (2.4) can be rewritten as

0u (k) = u (k) + K e (k)j+1 j j (2.30)

Using (2.30) in (2.29) ⇒

0(k +1) = Ae (k) - Ae (k) - B(u (k) + K e (k)) + Bu (k)j j+1 j j j j�

0(k +1) = Ae (k) - Ae (k) - Bu (k) - K Be (k) + Bu (k)j j+1 j j j j� (2.31)

0(k +1) = Ae (k) - Ae (k) - K Be (k)j j+1 j j�

0(k +1) = A(e (k) - e (k)) - K Be (k)j j+1 j j�

Using definition in (2.27) ⇒

0(k +1) = A (k) - K Be (k)j j j� � (2.32)

Rearranging (2.27) ⇒

e (k) = (k) + e (k)j+1 j j� (2.33)

Writing (2.32) and (2.33) in Roesser model form

0
(k +1) (k)A -K Bj j

e (k) I I e (k)j+1 j

       =         

� �

(2.34)

Using the Roesser model convergence criteria in (2.17), following convergence

theorem is presented.

Theorem 1:

The Roesser model in (2.16), its convergence criteria in (2.17) and the Roesser

model of the proposed scheme in (2.34)⇒

(A) < 11ρ ⇒ (A) < 1ρ (2.35)

Inequality (2.35) requires that the original system should be stable i.e. its poles should be

with in the unit circle.

And

26

A = 02 ⇒ 0K B = 0 (2.36)

Equation (2.36) states that if the value of 0K is chosen such that, 0K B = 0 , the resulting

2-D error system is stable and the learning process will converge.

2.5.3.2 Case 2: When 1K 0≠

Defining

1(k) = e (k) - e (k) + K Be (k)j j+1 j j� (2.37)

and

1(k +1) = e (k +1) - e (k +1) + K Be (k +1)j j+1 j j� (2.38)

Putting (2.4) in (2.26) ⇒

0 1e (k +1) - e (k +1) = Ae (k) - Ae (k) - B(u (k) + K e (k) + K e (k +1)) + Bu (k)j+1 j j+1 j j j j j
0 1e (k +1) - e (k +1) = Ae (k) - Ae (k) - Bu (k) - K Be (k) - K Be (k +1) + Bu (k)j+1 j j+1 j j j j j

1 0e (k +1) - e (k +1) + K Be (k +1) = Ae (k) - Ae (k) - Bu (k) - K Be (k) + Bu (k)j+1 j j j+1 j j j j

1 0e (k +1) - e (k +1) + K Be (k +1) = Ae (k) - Ae (k) - K Be (k)j+1 j j j+1 j j

Adding 1K ABe (k)j on both sides and rearranging

1 1 1 0e (k +1) - e (k +1) + K Be (k +1) = Ae (k) - Ae (k) + K ABe (k) - K ABe (k) - K Be (k)j+1 j j j+1 j j j j

1 1 1 0e (k +1) - e (k +1) + K Be (k +1) = A(e (k) - e (k) + K Be (k)) - K ABe (k) - K Be (k)j+1 j j j+1 j j j j

1 1

1 0

e (k +1) - e (k +1) + K Be (k +1) = A(e (k) - e (k) + K Be (k))j+1 j j j+1 j j
- (K AB + K B)e (k)j

(2.39)

Using (2.37) and (2.38) in (2.39)

1 0(k +1) = A (k) - (K AB + K B)e (k)j j j� � (2.40)

Rearranging (2.37) ⇒

1e (k) = (k) + e (k) - K Be (k)j+1 j j j�

1e (k) = (k) + (I - K B)e (k)j+1 j j� (2.41)

27

Writing (2.40) and (2.41) in Roesser model form

1 0

1

(k +1) (k)A -(K AB + K B)j j
I I - K Be (k) e (k)j+1 j

       =         

� �

(2.42)

Using the Roesser model convergence criteria in (2.17), following convergence

theorem is presented

Theorem 2:

The Roesser model in (2.16) the convergence criteria in (2.17) and the Roesser

model of the proposed scheme ⇒

(A) < 11ρ ⇒ (A) < 1ρ (2.43)

This means that the original system should be stable i.e. its poles should be with in the

unit circle. Criteria

A = 02 ⇒ 1 0(K AB + K B) = 0 (2.44)

And criteria

(A) < 14ρ ⇒ 1I - K B < 1 (2.45)

Inequality (2.43) and equations (2.44) and (2.45) state that:

If the system is stable and the values of 0K and 1K are chosen such that

1 0(K AB + K B) = 0 and 1I - K B < 1, then the resulting 2-D error system is stable and the

learning process will converge.

To test the OSATILC, a numbers of simulations were carried out. Some of the

results are presented in the following section.

2.5.4 Simulation results

This section presents simulation results from 1G (z) , 2G (z) , 3G (z) and NLS

systems. The following results were taken with values of 0K = 0.1 , 1K = 0 and sampling

time (Ts) = 0.1. The system convergence criteria was

28

e (k) < 0.01j (2.46)

Figure 2.7 shows the learning behaviour for the non-linear system (NLS). The

dotted lines are the desired response and the solid lines represent the actual output of the

system. The system converged in 877 iterations.

Figure 2.7: A non linear system using OSATILC.

The same system when tested on classical ILC technique [125] showed mixed

results. The performance was very good in the beginning as error decreased sharply but it

started increasing later on and then became unstable. The response is shown in figure 2.8.

Figure 2.8: Performance of the approach using the classical ILC given by Arimoto.

29

For the classical ILC, the norm of error as iterations were increased is plotted in

figure 2.9.

Figure 2.9: Error vs. number of iterations.

The error decreases sharply but then at about 35th iteration starts to increase. The system

would not have diverged if the convergence criteria was relaxed to e (k) < 0.4j . In fact

most approaches have this problem of divergence if the convergence criterion is tightened

i.e. the permissible error is reduced beyond a certain limit. With the proposed scheme the

output reaches the desired output and does not alter as the numbers of iterations are

increased further or permissible error is reduced. The four systems, converged in 2086,

686007, 5083 and 877 iterations, respectively. The behaviour of OSATILC for the four

systems is presented in figure 2.10.

30

Figure 2.10: Behaviour of error for SS, CCS, CSS and NLS

A highly non-linear problem of an inverted pendulum on a cart (Appendix A) was also

used to test OSATILC. The pendulum was required to track a sigmoid trajectory and then

maintain an angle of -1 radians. Figure 2.11 shows the angle of the rod (pendulum) and

the input learnt to achieve the desired path.

Figure 2.11: The pendulum maintaining a desired angle with the learnt input.

31

OSATILC showed better performance than the classical ILC but the convergence

time needed to be improved.

2.6 Multiple Samples at a Time Iterative Learning Controller

(MSATILC)

To increase the convergence rate, more samples needed to be taken in to account.

This resulted in the modification of rule 3 given for OSATILC. The rules for MSATILC

are:-

(1) Samples are given a priority from sample 1 to N, where sample 1 has the highest

priority and sample N has the least priority.

(2) There should be no gap between the samples, i.e. samples 1 to 10 should converge

before sample 11 is considered for convergence.

(3) The input changes for all those samples that have not converged.

(4) Once a sample input has converged i.e. the input value of thk sample is calculated,

the value of that input should be applied as a starting value for thk +1 sample. i.e.

u (k +1) = u (k)j j

(5) Once the input for a sample has been calculated, no change in that input will be

made in any subsequent iterations i.e.

c cu (1...k) = u (1...k)j+1 j

 Where, ck represents the number of converged samples.

Rule (3) is the heart of MSATILC. Instead of, only changing the input of the sample

under consideration, all the sample inputs that have not converged are changed.

Results from same four systems, as were used for OSATILC, are presented for

comparison. The results in this section were taken with values of 0K = 0.1 , 1K = 0 and

Ts = 0.1. Figure 2.12 shows the learning behaviour for a simple system, 1G (z) . The

32

dotted lines are the desired response and the solid lines represent the actual output of the

system.

Figure 2.12: Desired output and actual output as iterations increase for 1G (z) .

The system converged in 63 iterations. MSATILC performed better than OSATILC as it

took more samples into account. The key in both schemes (OSATILC and MSATILC) is

that the input for samples that have converged is not changed, unlike other ILC schemes

presented in literature. This guarantees that once convergence is achieved, for a range of

samples (in priority order) it never diverges. Figure 2.13 shows the error plot

for 1G (z) , 2G (z) and 3G (z) as iterations increase.

Figure 2.13: Error curves for 1G (z) , 2G (z) and 3G (z) .

33

All the systems show continuous decrease in error as iterations increase. The error

behaviour for NLS is exhibited in figure 2.14.

Figure 2.14: Behaviour of error for NLS.

Changing inputs for more samples have an unwanted effect of temporarily

increased error, similar to the effect seen in conventional ILC. This increase is catered for

by the priority assigned and by not changing the inputs of samples which have

converged. Therefore the error is pulled back in subsequent iterations. It took 63, 11629,

886 and 2141 iterations to converge for the four systems.

Both OSATILC and MSATILC used a randomly chosen value of 0K and 1K . If

we can make an initial guess at these values, just as the human operator experiment

revealed, we can reduce the number of iteration further.

2.7 Modified Multiple Samples At a Time Iterative Learning

Controller (MMSATILC)

This modified approach makes an initial guess at the values of 0K and 1K . The

initial value of 0K is taken as the DC gain of the system while the initial value of 1K is

10% of the DC gain of the system.

34

For sampled systems the DC gain is given by

zG(z) = G(1)lim
z 1→

If the system is not known, a trial input can be given to the system to calculate its

DC gain. Results from the same four systems, as used in the previous section, are

presented to see the effect of this guess.

The performance of this modified approach as iterations increased for 2G (z) is

given in figure 2.15. The results in this section were taken with values of 0K = 0.1 ,

1K = 0 and Ts = 0.1.

Figure 2.15: Output trying to track the desired output for 2G (z) .

The error performance of the four systems under consideration is given in figure

2.16 and figure 2.17.

35

Figure 2.16: Behaviour of error 1G (z) , 2G (z) and 3G (z) .

Figure 2.17: Error performance with NLS.

The figures show marked improvement in performance over OSATILC. The rate of

convergence is much better. To see this improvement in performance, a comparison of

results from the three schemes is made.

36

2.8 Comparative Results

The results obtained by applying the classical ILC, OSATILC, MSATILC and

MMSATILC on the four selected systems are presented in this section for quick

comparison. Table 2.1 presents these results for convergence criteria of e (k) < 0.01j .

Here DNC stands for ‘Did Not Converge’.

 Approach

System

Classical ILC

(iterations)

OSAT ILC

(iterations)

MSAT ILC

(iterations)

MMSAT ILC

(iterations)

SS 146 2086 63 1

CCS DNC 686007 11629 8

CSS 1335 5083 886 2

NLS DNC 877 2141 228

Table 2.1: A quick comparison of results.

All the results were taken under similar conditions. Classical ILC was not able to

converge for CCS and NLS. Though OSATILC converged for all systems, numbers of

iterations were very high. These iterations were significantly reduced in MSATILC and

further reduced in MMSATILC. OSATILC gives us the power to apply ILC technique to

systems, in real time as each sample can be treated as one trial. MSATILC and

MMSATILC can divide an input into smaller regions for better control and convergence.

The other advantage of the proposed schemes is that the desired error can be made as

small as possible, though at the cost of more iterations.

2.9 Two Degree of Freedom Tracking Platform

To test OSATILC, MSATILC and MMSATILC for real time tasks, a simple

mathematical model of a two degree of freedom platform was developed. The platform

37

carries a camera mounted on it. The camera takes the pictures of a scene at regular

intervals and thus tracks an object of interest. The model was named Two Degree of

Freedom Tracking Platform (2DOFTP).

A few assumptions were made for developing a model of this 2DOFTP.

(a) The two DC motors have rigid rotor and shaft.

(b) There is no backlash and gear slip.

(c) The pixels of camera are continuously distributed i.e. no gap exists between two

consecutive pixels.

(d) The camera has a pixel resolution of 320x240.

(e) The two motors are uncoupled.

(f) The viewing area is at a fixed distance from the platform.

Both the motors, called the pitch motor and the yaw motor, were assumed to be of

the same specifications. The motors parameters are given below.

J (moment of inertia of motor) =3.2284E-6;

b (damping ratio of the mechanical system) =3.5077E-6;

K (electromotive force constant) =0.0274;

R (electric resistance) =4;

L (electric inductance) =2.75E-6;

The motor’s transfer function is as given below

0.0274H(s) = -12 2 -5 28.878×10 s +1.291×10 s + 0.0007648s

(2.47)

The entire setup, showing its degrees of freedom, is exhibited in figure 2.18.

38

Figure 2.18: Movement angles of the platform.

In figure 2.18, x,y,z are the axis of the Cartesian coordinate system. The two degrees of

freedom are the pitch (v) and yaw (w) angles.

The camera was assumed to have a viewing area of 2m x 2m. This means that

there are 240 pixels to view 2m in vertical direction and 320 pixels to view 2m in

horizontal direction. For this proposed viewing area, each pixel represents approx. =

1/120 = 0.0083m in vertical direction and approx. = 1/160 = 0.0063m in horizontal

direction.

Another assumption made was that the object can move in this defined viewing

area of 2x2 meter only. The pertinent geometry is explained in figure 2.19.

Figure 2.19: Mapping of the viewing area with the camera’s pixel area.

39

The camera pixels were divided into four regions with (0,0) at the centre of

camera as shown in figure 2.20.

Figure 2.20: Division of camera’s resolution into platform resolution.

The aim is to have the object at (0,0) of platform resolution or (160,120) of camera

resolution. A conceptual view of an object being viewed by a camera, 1m away from the

object, is described in figure 2.21.

Figure 2.21: An object as viewed by the camera.

An object in viewing area, represented by a star, occupies some pixels in the camera. The

position of the object is reckoned by the centre of the object, calculated by an image

processing module. Defining the current x and y positions of the object to be px (pixels)

and py (pixels), the error can be calculated as

ex (k) = 160 - pxj (2.48)

40

ey (k) = 120 - pyj (2.49)

The location (160,120) is the (0,0) of the platform resolution and is the centre of the

camera. Figure 2.22 shows the trigonometric representation of an object at upper left

corner of the viewing area.

Figure 2.22: Trigonometric representation of object projected on x,y axis (left) and

trigonometric representation of object projected on x axis (right).

The motor movements are labelled α rad/sec and θ rad/sec, for the pitch and yaw motors

respectively. From the figure, tangent of the angle θ can be written as

1tan(θ) =
1

giving
-1θ = tan (1) = 0.7854 radians = 45degrees

This means that the camera can view 45o± in the yaw directions. Using this trigonometric

representation and its equivalent mathematical formulation, objects can be moved in the

viewing area, and the required motor movements can be calculated. For example, for an

object at (140,120) camera coordinates, the error is computed as

ex (k) = 160 -140j = 20 pixels = 20x0.0063 = 0.126m

ey (k) = 120 -120j =0 pixels = 0 x 0.0083 = 0 m

Meaning that, the object is 0.126m away from the centre in x direction and 0 m away

from the centre in y direction.

41

Therefore, the yaw motor has to be moved -1θ = tan (0.125) = 0.1253 radians. Hence the

motor should move left to position the object at camera centre. The appropriate inputs to

the motors were calculated by the proposed ILCs.

Once the movements have taken place, the new platform origin is recalculated by

the following equations.

new_platform_origion_x =160- pixels moved because of yaw motor (2.50)

new_platform_origion_y =120- pixels moved because of pitch motor (2.51)

Using this 2DOFTP, the real time performance of any scheme can be tested. The

results recorded using OSATILC are presented in next section.

2.9.1 Simulation results for 2DOFTP

The results from one of the proposed controller OSATILC are presented in this

section. MSATILC and MMSATILC showed similar results. The behaviour of OSATILC

while tracking an object at (61,1) is demonstrated in figure 2.23. For this performance the

values of gains assumed were 0K 0.1= and 1K 0= . In this figure the object does not

move.

Figure 2.23: Tracking behaviour as an object at (61,0) is being tracked.

42

The frame rate of the camera was assumed to be 5 frames per second. The frame rate can

be increased or decreased (if hardware allows) as per requirement. A typical camera can

take 20 frames per second, easily now days. The result of another such simulation, with

gain, 0K 0.1= , and the object moving, is shown in figure 2.24.

Figure 2.24: A moving object being tracked using the Two degree of freedom model.

The object started its journey at (1,80) pixels i.e. (159,40) pixels away from the camera

centre. It then slowly moved upwards. The error performances, for this moving object, in

both x and y axis is demonstrated in figure 2.25.

Figure 2.25: Error behaviour as moving object is tracked.

43

As can be seen from plots (2.24) and (2.25), both static and moving objects were

successfully tracked using the OSATILC. The speed of tracking can be improved by

increasing the frame rate.

Once the scheme was tested through simulations and fine-tuned, it was ready to

be tested through a practical setup.

2.10 Experimental Setup

The practical setup was similar in functionality to the 2DOFTP model. The

platform also had a camera mounted on it and had the capability to move in different

degrees of freedom with great accuracy. The platform was $60,000 equipment with very

high accuracy. The platform was M-850 Hexapod.

2.10.1 Six Degree of Freedom Hexapod

The M-850 Hexapod is a 6-axis positioning system by Physik Instrumente (PI).

The M-850 hexapod provides motion in 3 translation axes and 3 rotational axes. A

picture of the hexapod is presented in figure 2.26.

Figure 2.26: Six degree of freedom Hexapod by PI.

44

Repeatability for a six-axis move is ± 1µm in Z direction and ± 2µm in X and Y

directions respectively. Repeatability for rotational axes are ± 10µrad . The three

translational movements X,Y and Z are performed on a straight path. The three rotational

movements produce three rotational angles u , v , w called rotation angle, pitch angle and

yaw angle respectively. All these movements are shown in figure 2.27.

Figure 2.27: Hexapod coordinates and movements.

M-850 can lift a load of 200Kg. The hexapod system consists of Hexapod

mechanism, a movable platform supported by six linear actuators, the control electronics

and the connecting cables. Movements in all six degrees of freedom can be accomplished

using the DC-motor-driven linear actuators, which extend and contract the struts of the

Hexapod platform. The actuators have a backlash-free spindle combined with a backlash-

free gear head. The Hexapod can be controlled by a PC based 6-axis DC motor-

controller. The micrometer accuracy of the platform makes it an ideal choice for testing

and implementing high performance tracking and control algorithms. The components

are mounted free of backlash which gives the mechanical system exceptional stiffness

and excellent positioning repeatability. The material and lubricants used also assure long

term operation in different conditions and temperature ranges.

To create a link between the Hexapod and the PC, control software was first

developed using the Borland C compiler. It was fine tuned and then developed in

MATLAB for ease of implementation of the proposed schemes. A Graphical user

interface (GUI) was also developed to monitor the performance in real time.

45

The complete setup with the GUI is shown in figure 2.28.

Figure 2.28: The complete Hexapod set up (left) and the GUI (right).

The figure on the left shows the camera mounted on the hexapod facing the target area.

The GUI on the right is a simple way of looking at the object, as seen by the camera and

gauging control algorithm performance. The centre rectangular box, on the right picture,

is the locking area. The object is considered locked if with in this area. The circle is the

object spotted by the camera and the image processing module.

Using OSATILC we now propose a scheme to control the Hexapod in real time

[126].

2.10.2 Proposed Approach

The proposed scheme is shown in figure 2.29.

46

Figure 2.29: Block diagram representation of the proposed scheme.

Here current input for the pitch angle (uv (k)j) and current input for the yaw angle

(uw (k)j), are supplied to the hexapod. The hexapod platform moves, moving the

mounted camera with it. The camera was taking snapshots of the scene regularly. Every

snapshot goes through an image processing module for recognition and positioning of the

target object. The desired x,y position in an x,y coordinate system are labelled ydx (k)j

and ydy (k)j . This desired position for tracking purposes is the centre of the camera. The

output of the hexapod in terms of the x,y coordinate system are measured as yx (k)j and

yy (k)j . Using the desired platform position and the current hexapod position the error is

calculated as ex (k)j and ey (k)j . These values are used by the proposed ILC to calculate

the next pitch and yaw inputs (uv (k)j+1 , uw (k)j+1). The input modification equation is

re written for the two degrees of freedom as

uv (k) = uv (k) +∆uv (k)j+1 j j (2.52)

uw (k) = uw (k) +∆uw (k)j+1 j j (2.53)

47

The difference between the desired and actual object positions are given by the

error equations

ex (k) = ydx (k) - yx (k)j j j (2.54)

ey (k) = ydy (k) - yy (k)j j j (2.55)

The errors, the desired output and the actual output are in pixels. The camera

could have different resolution as per accuracy requirements. For a 320x240 camera

resolution the target plane was divided into four regions, as in the development of

2DOFTP. Those regions are shown in figure 2.20. The aim was to have the target as close

to (0,0) as possible. Therefore, an object at coordinate (0,0) is perfectly tracked while an

object at (60,0) is 60 pixels away in x direction. For the presented experiment the system

operated in two modes; the learning mode and the tracking mode. The learning mode

learns the gains iteratively. The hexapod is made to go to its initial position at every

iteration i.e. yx (1) = yx (1)1j and yy (1) = yy (1)1j . Here (yx (1)1 , yy (1)1) is the initial

position of the hexapod at first iteration. The proposed gain modification scheme is given

below

Kv (k) = Kv (k) + µex (k)j+1 j j (2.56)

Kw (k) = Kw (k) + µey (k)j+1 j j (2.57)

Kv1 (k) = Kv1 (k) + µex (k +1)j+1 j j (2.58)

Kw1 (k) = Kw1 (k) + µ ey (k +1)j+1 j j∆ (2.59)

Where µ is the step size parameter. The Kv , Kv1 are the pitch gains and Kw , Kw1 are

the yaw gains. The next inputs to the hexapod were calculated using

uv (k) = uv (k) + Kvs (k)ex (k) + Kv1s (k)ex (k +1)j+1 j j j j j (2.60)

uw (k) = uw (k) + Kws (k)ey (k) + Kw1s (k)ey (k +1)j+1 j j j j j (2.61)

48

Here Kvs , Kv1s , Kws and Kw1s are the stored pitch and yaw gains during the previous

learning cycle. The tracking mode used the learnt input values, to track the laser. The

initial state of one learning cycle is the final state of the previous learning cycle i.e.

yx (1) = yx (N)j+1 j and yy (1) = yy (N)j+1 j .

2.10.3 Results

A CO2 laser beam spot was chosen as a potential target. In the learning mode the

values of Kv (k)j and Kw (k)j were learnt against different object positions from the

centre. One such learnt set of values for Kw (k)j are shown in figure 2.30.

Figure 2.30: Learnt values of Kw (k)j in the learning phase.

The small variations in the shape of the plot in figure 2.30 are due to flickering of laser

beam. This produced small variations in the illuminated spot and hence caused small

error in recognizing the centre of the spot by the image processing module. In almost all

cases the error is not more than ±1 pixel. These learnt values of the pitch and yaw gains

were stored in memory. Using these stored values, the Hexapod was made to track and

49

follow different moving targets. A xy plot of one such target being chased is indicated in

figure 2.31.

Figure 2.31: A xy plot of a target being chased.

The target was initially at (150,32) pixels. It was successfully tracked in 10 frames. The

error generated during this tracking is described in figure 2.32. Here number of iterations

can be thought of as number of times the input was adjusted.

Figure 2.32: Normalized error as the laser is tracked.

50

The plots show the laser being successfully tracked. For a 20 frames per second camera

the object was tracked with in 0.5 seconds.

2.11 Summary

Basic framework for Iterative Learning Control (ILC) is developed in this chapter.

Characteristics of human leaning, gathered from experimental results, helped in the

development of this frame work and consequently, three iterative learning controllers

were deigned and presented in this chapter. Stability and convergence criteria for these

ILCs are also established. The three controllers OSATILC, MSATILC and MMSATILC

are tested through simulations. These controllers can also be used in real time

applications. One such application in which a Six Degree of Freedom Hexapod tracks a

laser spot is also presented.

Most ILC controllers are still based on the classical ILC presented by Arimoto.

All the three controllers presented in this chapter performed better than the classical ILC.

Research shows that there are always some optimal values of gains that give us best

results. We need to have a procedure to find these optimal values. Also, in real world

applications there are usually changes in system dynamics, due to wear and tear. The

desired response requirements also vary from time to time. Both of these cases require a

change in the learning law for optimal performance. Hence the Iterative Learning scheme

needs to be adaptive.

The next chapter develops such schemes.

51

3 INTELLIGENT CONTROLLERS USING ADAPTIVE
ITERATIVE LEARNING

In recent years, a lot of research efforts have been directed towards self-learning

and adaptable systems. One of the very promising methodology for self-learning control

systems is Iterative Learning Control (ILC) which is an algorithm capable of tracking a

desired trajectory, within a specific period of time. Conventional ILC algorithms have the

problem of relatively slow convergence rate and lack of adaptability. Most of the current

ILC methods adopt fixed learning laws where only control input scheme is modified

during learning iterations. Since only control input is changed during learning for a

specified trajectory, it is difficult to generalize the knowledge learned from one desired

trajectory to another, even if they are similar. Therefore, this type of learning control is

restrictive to repetitive tasks which have same desired trajectory. A survey of current

literature indicates that ILC schemes in tandem with adaptive control are growing into a

very promising research area [145]. This chapter continues from the research work

described in chapter 2, to evolve adaptive ILCs.

We begin with an introduction of the theory and present a 2-D learning process

similar to the one given in [152]. This process considers time horizon and iteration axis

simultaneously, giving us more dimensions for control [148]. Based on this theory, a

specific mathematical framework is formulated upon which different ILC methodologies

are developed. The methodologies makes use of system identification technique, steepest

descent method, different conventional and custom built cost functions and a learning

gain method to introduce adaptivity. The problem of slow convergence is resolved by

adaptive control laws. The model dependency of the current ILC schemes is dealt by an

identification approach. Simulations of linear and non-linear systems are presented to

illustrate the design procedure and to confirm the effectiveness and robustness of the

algorithms. A Quanser’s DC motor kit is also used to demonstrate the usefulness of these

adaptive schemes for real time applications. The optimal gain values are calculated using

the steepest descent approach. Convergence and stability conditions are also derived.

52

Diminishing cost and increasing computational power of computers and embedded

systems make the implementation of such schemes highly feasible.

The main features of such a scheme are

(1) It does not require an inverse dynamic model of the controlled system for designing

the control scheme as many other ILC schemes do. Instead, it tries to estimate the

learning gains by using input and output data. Both learning law and the control

input sequence are modified to improve the tracking performance of the system.

(2) No prior knowledge of the system is required. Therefore, the same scheme can be

used for different systems as the control algorithm will adapt to the system and the

control gain(s) will be learned automatically.

(3) The approach can be used in learning tasks where the desired trajectory changes

during operation.

(4) The knowledge learnt from one particular task can be utilized in similar tasks

reducing the learning time.

We now develop basic framework for these adaptive controllers.

3.1 Adaptive Learning Controllers

A Single Input Single Output (SISO) discrete system is shown in figure 3.1.

Figure 3.1: A SISO system with disturbances.

53

The input u(k) , output y(k) and disturbance v(k) are taken as

(k) = [u(1) u(2) ... u(N)]u

(k) = [y(1) y(2) ... y(N)]y

(k) = [v(1) v(2) ... v(N)]v

Where N is the total number of samples.

Input and output are observed while disturbance in most cases is not observed.

The disturbance is considered as generated by filtered white noise. Taking z as a shift

operator and assuming disturbance to be generated by filtered white noise ε(z) a SISO

system can be represented as

Figure 3.2: A SISO system with disturbances.

This can be written in z transform form as

Y(z) = G(z)U(z) + H(z)ε(z) (3.1)

There are many models available to represent this SISO system. One of the models

using Autoregressive with exogenous variables (ARX) is

-1B(z)G(z) = -1A(z)

(3.2)

54

1H(z) = -1A(z)

(3.3)

Where

-1 -1 -naA(z) = 1+ a z +...+ a zna1 (3.4)

-1 -1 -2 -nbB(z) = b z + b z +...+ b z1 2 nb (3.5)

Putting (3.2) and (3.3) in (3.1) ⇒

-1B(z) 1Y(z) = U(z) + ε(z)-1 -1A(z) A(z)

(3.6)

Using values of -1A(z) and -1B(z) from (3.4) and (3.5) and considering no extra delay

and zero disturbances gives

-1 -2 -nbb z + b z +...+ b z1 2 nbY(z) = U(z)-1 -na1+ a z +...+ a zna1

(3.7)

This in difference equation format can be written as

y(k) = -a y(k -1) - a y(k - 2) - - a y(k - n) + b u(k -1) + b u(k - 2) + + b u(k - n)na a1 2 1 2 nb b… … (3.8)

Using this representation of the system we now develop different adaptive iterative

learning controllers.

3.2 When System is Known (Approach-1)

We now consider the case when complete knowledge about the system is

available. For this approach zero initial conditions are assumed i.e. u(k) = 0 for k < 0

and y(k) = 0 for k < 1, with at least a single sample system delay.

Observations [y(1) y(2) ... y(N)] generated by applying an input sequence

[u(0) u(1) ... u(N-1)] can be written as

y(1) = -a y(0) + b u(0)1 1

55

y(1) = b u(0)1 (3.9)

y(2) = -a y(1) - a y(0) + b u(1) + b u(0)1 2 1 2

y(2) = -a b u(0) + b u(0) + b u(1)1 1 2 1

y(2) = (-a b + b)u(0) + b u(1)1 1 2 1 (3.10)

y(3) = -a y(2) - a y(1) - a y(0) + b u(2) + b u(1) + b u(0)1 2 3 1 2 3

()y(3) = -a -a b u(0) + b u(0) + b u(1) - a b u(0) + b u(2) + b u(1) + b u(0)1 1 1 2 1 2 1 1 2 3

y(3) = a a b u(0) - a b u(0) - a b u(1) - a b u(0) + b u(2) + b u(1) + b u(0)1 1 1 1 2 1 1 2 1 1 2 3

y(3) = a a b u(0) - a b u(0) - a b u(0) + b u(0) - a b u(1) + b u(1) + b u(2)1 1 1 1 2 2 1 3 1 1 2 1

y(3) = (a a b - a b - a b + b)u(0) + (-a b + b)u(1) + b u(2)1 1 1 1 2 2 1 3 1 1 2 1 (3.11)

Or

b 0 0 0 …y(1) u(0)1
-a b + b b 0 0 …y(2) u(1)1 1 2 1
a a b - a b - a b + b -a b + b b 0 …y(3) u(2)1 1 1 1 2 2 1 3 1 1 2 1

y(4) u(3)a a b - a b - a b + b -a b + b b …1 1 1 1 2 2 1 3 1 1 2 1
…

=

                             

#
#

(3.12)

This can be written in compact form as

=Y GU (3.13)

Where

T = [y(1) y(2) … y(N)]Y (3.14)

56

T = [u(0) u(1) … u(N -1)]U (3.15)

And

b 0 0 01
-a b + b b 0 01 1 2 1

= a a b - a b - a b + b -a b + b b 01 1 1 1 2 2 1 3 1 1 2 1
a a b - a b - a b + b -a b + b b1 1 1 1 2 2 1 3 1 1 2 1

 
 
 
 
 
 
 
  

G

…

…

…

…

#

(3.16)

For the next iteration we can also write (3.13) as

=j+1 j+1Y GU (3.17)

Assuming that the desired output sequence, [yd(1) yd(2) ... yd(N)] , is given.

The input sequence applied and the output sequence generated because of it, give rise to a

sequence of residuals.

e(1) = yd(1) - y(1)

e(2) = yd(2) - y(2)

e(N) = yd(N) - y(N)

Or

= -dE Y Y (3.18)

Where

T = [e(1) e(2) … e(N)]E (3.19)

T = [yd(1) yd(2) … yd(N)]dY (3.20)

The two dimensional vector notation for input, output, error and desired output

are (k)jU , (k)jY , (k)jE and (k)jYd . For ease of mathematical representation these

vectors will also be written as U , Y , E and Yd .

In the next section an adaptive law is developed to find the optimal value of gain.

For this development a novel cost function is proposed.

57

3.2.1 Gradient descent for adaptive gain(s)

Gradient descent approach was used to find an adaptive mechanism for estimating

gains. For the approaches in this chapter, it is assumed, without any loss of generality,

that 0K K= and 1K 0= . An important modification in the cost function is made to assist

in the development of the ILC algorithms i.e. instead of eliminating error in the current

iteration, elimination of error in the next iteration is proposed. Taking K as an unknown

parameter the cost function J(K) for minimizing sum of error square for next iteration

can now be written as

2N TJ(K) = e (k) =j+1 j+1 j+1k=1
 ∑   

E E
(3.21)

Where j+1E is the error vector for the next iteration and is given by equation

= -j+1 j+1E Y Yd (3.22)

As the aim is to reduce error in the next iteration, we can write

0lim j+1j
→

→∞
E

Using (3.22) and (3.17) in (3.21), ⇒

TJ(K) = (-) (-)j+1 j+1Y GU Y GUd d (3.23)

Here j+1U is the input vector, calculated for next iteration. Using equation (2.4) and

neglecting 1K , this input vector can be written as :-

= + Kj+1U U E (3.24)

Expanding equation (3.23) ⇒

T T T T T TJ(K) = - - +j+1 j+1 j+1 j+1Y Y Y GU U G Y U G GUd d d d (3.25)

As T T T=j+1 j+1Y GU U G Yd d and every term here is a scalar.

T T T T TJ(K) = - 2 +j+1 j+1 j+1Y Y U G Y U G GUd d d (3.26)

58

Putting value of j+1U from equation (3.24), equation (3.26) ⇒

T T T T TJ(K) = - 2(+ K) + (+ K) (+ K)Y Y U E G Y U E G G U Ed d d (3.27)

T T T T T T T T T T TJ(K) = - 2 - 2K + + K +
T T T T TK + K K

Y Y U G Y E G Y U G GU E G GUd d d d
U G GE E G GE

(3.28)

As T T T T TK = KE G GU U G GE and every term is a scalar.

T T T T T T T T T T TJ(K) = - 2 - 2K + + 2K +
T T TK K

Y Y U G Y E G Y U G GU E G GUd d d d
E G GE

(3.29)

Plotting cost function J against different values of K gave the error performance

curves for each system. This error performance curve for 1G (z) is shown in figure 3.3.

Figure 3.3: Cost function against different values of K .

The figure shows that the cost function has a minimum for certain values of K . Similar

plots were obtained for other systems also.

Applying the ∇ operator to the cost function J(K)

T T T T T T Tg = J(K) = -2 + 2 + 2K∇ E G Y E G GU E G GEd (3.30)

59

T T TJ(K) = -2 (- - K)∇ E G Y GU GEd (3.31)

T T TJ(K) = -2 (- (+ K))∇ E G Y G U Ed (3.32)

T TJ(K) = -2 (-)j+1∇ E G Y GUd (3.33)

Using steepest decent to find K which results in minimum number of iterations.

1K = K - µ(J(K))j+1 j 2
∇

(3.34)

Or

1K = K - µgj+1 j 2

(3.35)

Where K j is the gain for current iteration, K j+1is the gain to be calculated for next

iteration and µ is the step size parameter. Putting value of g from equation (3.33) in

equation (3.35) we get

1 T TK = K - µ(-2 (-)j+1 j j+12
E G Y GUd

(3.36)

T TK = K + µ (-)j+1 j j+1E G Y GUd (3.37)

Using this learning law for gain, the proposed approach is presented in block diagram

format in figure 3.4.

60

Figure 3.4: Block diagram of the scheme for Approach-1.

Input u (k)j is applied to the plant. This input results in an output sequence (k)jy . Using

output and the desired output sequence yd (k)j , error e (k)j is calculated. This error, the

knowledge about previous values of K , the present input and the knowledge about the

plant G is used to calculate the next value of K i.e. j+1K . This value will be used during

the next iteration by the ILC. The ILC calculates the next input to the plant, u (k)j+1 ,

which is applied to reduce error. This process continues until the desired output is

achieved.

3.2.2 Simulation results

A number of simulations were performed to test this approach. The results of one

such simulation using 1G (z) are discussed. The results were obtained with starting values

of K = 0.1 and µ = 0.01 . As discussed in chapter 2, there is always a range of values of

K which converge with minimum number of iterations. They are called the optimal

values of K . For this system, a plot of values of K against number of iterations it took to

converge is given in figure 3.5 below.

61

Figure 3.5: Number of iterations taken to converge for different values of K .

The optimal values of K are approximately between 1.7 – 2.3. Hence if equation (3.37)

can find a value between this range, convergence in terms of finding value of K will be

achieved.

The system, 1G (z) , in difference equation form can be written as

y(k +1) = 0.8187y(k) + 0.09063u(k) (3.38)

Here 1a = 0.8187 and 1b = 0.09063

As this system has only 1a and 1b , equation (3.8) reduces to

1 1y(k +1) = a y(k) + b u(k) (3.39)

Output sequences generated for different values of k can be written as

1y(1) = b u(0) (3.40)

1 1 1y(2) = a b u(0) + b u(1) (3.41)

1 1 1 1 1 1y(3) = a a b u(0) + a b u(1) + b u(2) (3.42)

1 1 1 1 1 1 1 1 1 1y(4) = a a a b u(0) + a a b u(1) + a b u(2) + b u(3) (3.43)

62

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1y(5) = a a a a b u(0) + a a a b u(1) + a a b u(2) + a b u(3) + b u(4) (3.44)

or

1

1 1 1

1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

y(1) b 0 0 0 0 … u(0)
y(2) a b b 0 0 0 … u(1)
y(3) a a b a b b 0 0 … u(2)

=
y(4) a a a b a a b a b b 0 … u(3)
y(5) a a a a b a a a b a a b a b b … u(4)

     
     
     
     
     
     
     
     
     # # # # # # #

(3.45)

Putting the values of 1a and 1b in (3.45) gives

y(1) 0.09063 0 0 0 0 … u(0)
y(2) 0.07404 0.09063 0 0 0 … u(1)
y(3) 0.06049 0.07404 0.09063 0 0 … u(2)

=
y(4) 0.04942 0.06049 0.07404 0.09063 0 … u(3)
y(5) 0.04037 0.04942 0.06049 0.07404 0.09063 … u

   
   
   
   
   
   
   
   
   # # # # # #

(4)

 
 
 
 
 
 
 
 
 #

(3.46)

Where

0.09063 0 0 0 0 …
0.07404 0.09063 0 0 0 …
0.06049 0.07404 0.09063 0 0 …

=
0.04942 0.06049 0.07404 0.09063 0 …
0.04037 0.04942 0.06049 0.07404 0.09063 …

 
 
 
 
 
 
 
 
 

G

#

(3.47)

Using this proposed approach, the output of the system, as number of iterations

increase, is given in figure 3.6. The bold dotted lines show the desired response and the

thin continuous lines show the actual response of the system.

63

Figure 3.6: The proposed approach learning the desired output.

The norm of error as this learning was taking place is presented in figure 3.7.

Figure 3.7: Norm of error as iterations increase.

The figure shows a rapid decrease in error as K is learnt iteratively using equation

(3.37). The learning behaviour of K is shown in figure 3.8.

64

Figure 3.8: Learning behaviour of K .

This convergence behaviour was achieved even while the initial value of K was

changed. For a starting value of K = 5 the error response of the system as iterations

increased is presented in figure 3.9.

Figure 3.9: Error response with a starting value of, K = 5 .

Figure 3.10 exhibits a plot of learnt values of K for different starting values of K .

65

Figure 3.10: Learning behaviour of K for different initial values.

As can be seen in the figure, K always settles within the range 1.7 – 2.3, which is the

optimal range for 1G (z) . For an initial value of K = 0.1, K reaches 1.7528 at first run.

This value is stored in memory and used in subsequent runs. After a few runs, K settles

at 2.0193.

3.3 When System is Partially Known (Approach-2)

For this approach zero initial conditions are assumed i.e. u(k) = 0 for k < 0 and

y(k) = 0 for k < 1, with at least a single sample system delay.

Using equation (3.8), observations [y(1) y(2) ... y(N)] , generated by

applying an input sequence [u(0) u(1) ... u(N-1)] , for the system 1G (z) can be

written as

1 1y(1) = -a y(0) + b u(0) (3.48)

1 2 1 2y(2) = -a y(1) - a y(0) + b u(1) + b u(0)

66

2 1 2 1y(2) = -a y(0) - a y(1) + b u(0) + b u(1) (3.49)

1 2 3 1 2 3y(3) = -a y(2) - a y(1) - a y(0) + b u(2) + b u(1) + b u(0)

3 2 1 3 2 1y(3) = -a y(0) - a y(1) - a y(2) + b u(0) + b u(1) + b u(2) (3.50)

or

1 1

2 1 2 1

3 2 1 3 2 1

y(1) a 0 0 … -y(0) b 0 0 u(0)
y(2) a a 0 … -y(1) b b 0 u(1)

= +
y(3) a a a … -y(2) b b b … u(2)

         
         
         
         
         
         

…
…

#

(3.51)

Considering a single scalar gain in equation (2.4), equation (3.51) can be expanded to

1 1

2 1 2 1

3 2 1 3 2 1

y(1) a 0 0 … -y(0) b 0 0 u(-1) + Ke(-1)
y(2) a a 0 … -y(1) b b 0 u(0) + Ke(0)

= +
y(3) a a a … -y(2) b b b … u(1) + Ke(1)

         
         
         
         
         
         

…
…

#

(3.52)

1 1 1

2 1 2 1 2 1

3 2 1 3 2 1 3 2 1

y(1) a 0 0 … -y(0) b 0 0 u(-1) b 0 0 e(-1)
y(2) a a 0 … -y(1) b b 0 u(0) b b 0 e(0)

= + + K
y(3) a a a … -y(2) b b b … u(1) b b b … e(1)

            
            
            
           
           
            

… …
… …

#





 
 



(3.53)

This can be written in vector notation as

= + + K1 1 2 2 2 3Y G X G X G X (3.54)

Where

1

2 1

3 2 1

a 0 0 …
a a 0 …

=1 a a a …

 
 
 
 
 
 

G

#

(3.55)

67

1

2 1

3 2 1

b 0 0
b b 0

=2 b b b …

 
 
 
 
 
 

G

…
…

#

(3.56)

T = [- y(0) -y(1) … -y(N -1)]1X (3.57)

T = [u(-1) u(0) … u(N - 2)]2X (3.58)

T = [e(-1) e(0) … e(N - 2)]3X (3.59)

Putting (3.54) in (3.18) gives

= - - - K1 1 2 2 2 3E Y G X G X G Xd (3.60)

3.3.1 Gradient descent for adaptive gain(s)

Taking cost function, J(K) as sum of error squared for current iteration, it can be

written as
N 2 TJ(K) = e(k) =

k=1
∑ E E

(3.61)

Putting the value of E from equation (3.60) in (3.61) ⇒

TJ(K) = (- - - K) (- - - K)1 1 2 2 2 3 1 1 2 2 2 3Y G X G X G X Y G X G X G Xd d (3.62)

Expanding (3.62) ⇒

T T T T T T T TJ(K) = - - - K - + +1 1 2 2 2 3 1 1 1 1 1 1
T T T T T T T T T T+ K - + +1 1 2 2 1 1 2 3 2 2 2 2 1 1 2 2 2 2

T T T T T T T T T T T+ K - K + K + K2 2 2 3 3 2 3 2 1 1 3 2 2 2
T T T- K K3 2 2 3

Y Y Y G X Y G X Y G X X G Y X G G Xd d d d d d

X G G X X G G X X G Y X G G X X G G Xd

X G G X X G Y X G G X X G G Xd

X G G X

(3.63)

68

As T T T=1 1 1 1Y G X X G Yd d , T T T=2 2 2 2Y G X X G Yd d , T T T TK = K2 3 3 2Y G X X G Yd d and

every term here is a scalar.

T T T T T T T T T TJ(K) = - 2 - 2 - 2K +1 1 2 2 3 2 1 1 1 1
T T T T T T T T+ + K + +1 1 2 2 1 1 2 3 2 2 1 1 2 2 2 2
T T T T T T T T T T T+ K + K + K + K K2 2 2 3 3 2 1 1 3 2 2 2 3 2 2 3

Y Y X G Y X G Y X G Y X G G Xd d d d d

X G G X X G G X X G G X X G G X

X G G X X G G X X G G X X G G X

(3.64)

As T T T T TK = K1 1 2 3 3 2 1 1X G G X X G G X and every term here is a scalar.

T T T T T T T T T TJ(K) = - 2 - 2 - 2K +1 1 2 2 3 2 1 1 1 1
T T T T T T T T+ + 2 K + +1 1 2 2 1 1 2 3 2 2 1 1 2 2 2 2
T T T T T T T T+ K + K + K K2 2 2 3 3 2 2 2 3 2 2 3

Y Y X G Y X G Y X G Y X G G Xd d d d d

X G G X X G G X X G G X X G G X

X G G X X G G X X G G X

(3.65)

As T T T T TK = K2 2 2 3 3 2 2 2X G G X X G G X and every term here is a scalar.

T T T T T T T T T TJ(K) = - 2 - 2 - 2K +1 1 2 2 3 2 1 1 1 1
T T T T T T T T+ + 2 K + +1 1 2 2 1 1 2 3 2 2 1 1 2 2 2 2

T T T T T T+ 2K + K K3 2 2 2 3 2 2 3

Y Y X G Y X G Y X G Y X G G Xd d d d d

X G G X X G G X X G G X X G G X

X G G X X G G X

(3.66)

Applying the ∇ operator to the cost function J(K)

J T T T T T Tg = J = = -2 + 2 + 2 +3 2 1 1 2 3 3 2 2 2K
T T T2K 3 2 2 3

∂
∇

∂
X G Y X G G X X G G Xd

X G G X

(3.67)

T T T T T T T= - 2(- - - K)1 1 2 2 2 3 2 3Y X G G X G X G Xd

T= - 2 2 3E G X (3.68)

Putting this value of g in (3.34) to find K which results in minimum number of

iterations, gives

1 TK = K - µ(-2)2 3j+1 j 2
E G X

69

TK = K + µE 2 3j+1 j G X (3.69)

This adaptive mechanism requires only partial knowledge of the system. It

requires only the knowledge about b coefficients. The approach is exhibited in block

diagram in figure 3.11.

Figure 3.11: Block diagram for Approach-2.

Input u (k)j is applied to the plant. This input results in an output sequence (k)jy . Using

the desired output sequence yd (k)j , error e (k)j is calculated. This error, the knowledge

about previous values of K and the partial knowledge about the plant 2G is used to

calculate the next value of K i.e. K j+1. This value will be used during the next iteration

by the ILC. The ILC calculates the next input to the plant u (k)j+1 which is applied to

reduce error. This process continues until the desired out is achieved.

3.3.2 Simulation results

Many systems were simulated to test this approach. For comparison with previous

approach, simulation results from using system 1G (z) are presented in this section. Using

70

the difference equation representation given in (3.38), the output sequences generated for

different values of k can be written as

y(1) = 0.8187y(0) + 0.09063u(0) (3.70)

y(2) = 0.8187y(1) + 0.09063u(1) (3.71)

y(3) = 0.8187y(2) + 0.09063u(2) (3.72)

or

y(1) 0.8187 0 0 … y(0) 0.09063 0 0 u(0)
y(2) 0 0.8187 0 … y(1) 0 0.09063 0 u(1)

= +
y(3) 0 0 0.8187 … y(2) 0 0 0.09063 … u(2)

         
         
         
         
         
         

…
…

#

(3.73)

y(1) 0.8187 0 0 … y(0) 0.09063 0 0 u(-1)
y(2) 0 0.8187 0 … y(1) 0 0.09063 0 u(0)

= +
y(3) 0 0 0.8187 … y(2) 0 0 0.09063 … u(1)

M

0.09063 0 0
0 0.09063 0

+ K
0 0 0.09063 …

         
         
         
         
         
         

…
…

#
…
…

#

e(-1)
e(0)
e(1)

   
   
   
   
   
   #

(3.74)

Here

0.09063 0 0
0 0.09063 0

=2 0 0 0.09063 …

 
 
 
 
 
 

G

…
…

#

(3.75)

71

e(-1)
e(0)

=3 e(1)

 
 
 
 
 
 

X

#

(3.76)

e(1)
e(2)

=
e(3)

 
 
 
 
 
 

E

#

(3.77)

Figure 3.12 shows the output of the system using this approach against the desired

output as number of iterations increase. The bold dotted lines show the desired response

and the thin continuous lines show the actual response of the system.

Figure 3.12: The proposed approach learning the desired output.

The output reaches the desired output in 17 iterations. During those iterations the error is

reduced as exhibited in figure 3.13.

72

Figure 3.13: Norm of error as iterations increase.

During this run K is updated using (3.69). The learnt values of K for this run are

presented in figure 3.14.

Figure 3.14: Learning behaviour of K at first run.

This value is further updated in subsequent runs until it reaches the optimal range.

Though this approach takes more iterations than the previous approach, it requires only

partial knowledge about the plant.

73

3.4 When System is Completely Unknown (Approach-3)

Learning controllers are well known to converge slowly. Simulation results from

linear and non linear systems have shown that fixed values of gain matrices are one of the

reasons for the slow convergence rate. They clearly need to be adaptive. Also, in most

cases the complete knowledge of the system is not available. An approach that does not

depend on the knowledge of the system was one of the aims of our research.

This section suggests a novel scheme shown in Figure 3.15. It is assumed that the

plant (system) is completely unknown and hence its parameters are estimated to assist in

the ILC scheme. For a detailed description on System Identification techniques see

reference [96].

Figure 3.15: Block diagram representation of the proposed scheme.

74

Input u (k)j is applied to the plant. This input produces an output y (k)j . With the

knowledge about the desired output yd (k)j , the error e (k)j is calculated. This error is

used by the adaptive gain matrix calculation block to adjust gain matrices and by the ILC

block to calculate next input to the plant, u (k)j+1 . Predictor with adjustable θ block

produces the predicted output
^
y (k)j , which is used to generate system identification

error esi (k)j . This error is then used to iteratively identify the unknown plant parameters

θ . Adaptive gain matrix calculation block uses this information, about the plant, to

readjust K .

Equation (3.8), with disturbances, can be written in 2-D format as

y (k) = -a y (k -1) - a y (k - 2) -... - a y (k - n) + b u (k -1) +...na a1 2 1j j j j j
+ b u (k - n) + ε (k)nb j b j

(3.78)

Here ε (k)j is the white noise and ana and bnb are the orders of the respective

polynomials. Observations [y (1) y (2) ... y (N)]j j j generated by applying an input

sequence [u (0) u (1) ... u (N-1)]j j j , using (3.78) are as follows

y (1) = b u (0)1j j (3.79)

y (2) = (-a b + b)u (0) + b u (1)1 1 2 1j j j (3.80)

y (3) = (-a a b - a b - a b + b)u (0) + (-a b + b)u (1) + b u (2)1 1 1 1 2 2 1 3 1 1 2 1j j j j (3.81)

Two vectors called the input and output vectors and a matrix called the G matrix are

defined as

75

T = [y (1) y (2) … y (N)]j j jY (3.82)

T = [u (0) u (1) … u (N -1)]j j jU (3.83)

g(1) 0 ... 0
g(2) g(1) 0 0

=
0

g(N) g(N -1) g(1)

 
 
 
 
 
 

G
%

(3.84)

The G matrix, which is some times called the design matrix, is lower triangular and for

linear systems it is also Toeplitz [106]. The values g(1) , g(2) , …, g(N) are the impulse

response coefficients of G .

Using this 2-D representation, the system can be written in vector notation form

as

= j+Y GU ε (3.85)

or for next iteration as

= +j+1 j+1 j+1Y GU ε (3.86)

Here jε is the white noise vector and is defined as

T [(1), (2),... (N)]j j jj
ε ε ε=ε

3.4.1 Identification

Identification of a system [134] is computationally heavy. It is suggested to

identify the system once in the beginning and after words only if required. The system

equation (3.78) in 2-D representation can also be expressed in the following form.

j j j
T= (k) + (k)Y x θ ε (3.87)

76

Here j(k)x is a vector of past observations for k = [1, 2,...N] . For the first learning cycle

(3.87) is re written as

T= (k) + (k)1 1 1Y x θ ε (3.88)

Here (k)1x is a vector of past observations at first learning cycle and is given by

-y (1) ... -y (N)1 1
-y (2) ... -y (N+1)1 1

-y (na) ... -y (N+na-1)1 1T(k) =1 u (1) ... u (N)1 1
u (2) ... u (N+1)1 1

u (nb) ... u (N+nb-1)1 1

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

x

#

#

(3.89)

The dimensions of (k)1x depend on the number of parameters to be identified. For

example if only a1 and b1 are identified, equation (3.89) reduces to

-y (1) ... -y (N)1 1T(k) =1 u (1) ... u (N)1 1

 
 
  

x
(3.90)

Theta,θ in equation (3.88) is a vector of unknown system parameters and is defined as

T = a a … a b b … b1 2 na 1 2 nb  θ (3.91)

Using (3.88) for the first learning cycle and ignoring noise,{ }(k)jε , gives us the predicted

output as

^ T= (k)1 1Y x θ
(3.92)

Here
^

1Y is the predicted output for the first iteration. According to figure 3.15, this gives

rise to a residual, the system identification error, for first learning cycle, which is given

by

77

y
^

esi (k) = y (k) - (k)1 1 1

(3.93)

Here esi denotes residual error in the identification process. This in vector notation form

can be written as

(k) = - 11 1
^

Esi Y Y
(3.94)

Putting (3.92) in (3.94) ⇒

T(k) = - (k)1 1 1Esi Y x θ (3.95)

Where

T(k) = esi (1) esi (2) … esi (N)1 1 1 1
 
 Esi (3.96)

and

T = y (1) y (2) … y (N)1 1 1 1
 
 Y (3.97)

So, observations { }y (1), y (2),…, y (N)1 1 1 have been generated by applying an

input sequence { }u (1), u (2),…, u (N)1 1 1 which gives rise to a sequence of residuals

{ }esi (1),esi (2),…,esi (N)1 1 1 . For the first learning cycle, equation (3.95) for different

values of k , gives.

Tesi (1) = Y (1) - (1)1 1 1x θ (3.98)

Tesi (2) = Y (2) - (2)1 1 1x θ (3.99)

…
Tesi (N) = Y (N) - (N)1 1 1x θ (3.100)

To identify θ we define the cost function J()θ as the sum of error square.

N 2 TJ() = esi (k) = (k) (k)1 1 1k=1
∑θ Esi Esi

(3.101)

Using equation (3.97) in (3.101) and expanding ⇒

78

T T T T T TJ() = (k) (k) - (k) (k) - (k) (k) + (k) (k)1 1 1 1 1 1 1 1θ Y Y Y x θ θ x Y θ x x θ (3.102)

As T T T(k) (k) = (k) (k)1 1 1 1Y x θ θ x Y and every term here is a scalar

T T T T TJ() = (k) (k) - 2 (k) (k) + (k) (k)1 1 1 1 1 1θ Y Y θ x Y θ x x θ (3.103)

Differentiating with respect to θ , equation (3.103) gives

J T T= 2 (k) (k) - 2 (k) (k)1 1 1 1
∂    

   ∂
x x θ x Y

θ

(3.104)

For minimum value J = 0∂
∂θ

. Which gives

-1^ T T= (k) (k) (k) (k)1 1 1 1
 
 

θ x x x Y
(3.105)

Equation (3.105) gives us the power to estimate a , b1 1 using { }u (1), u (2),…, u (N)1 1 1 and

{ }y (1), y (2),…, y (N)1 1 1 sequences. If the input signal is not rich enough to excite all

modes of the system for identification purposes, this process can be done separately with

a sequence of pseudo random signal.

3.4.2 Gradient descent for adaptive gain(s)

Defining an error vector jE which is an Nx1 vector for current iteration as

T = e (1) e (2) … e (N)j j j j
 
  

E (3.106)

And an error vector for next iteration as

T = e (1) e (2) … e (N)j+1 j+1 j+1 j+1
 
  

E (3.107)

The aim is to eliminate or reduce error in the next iteration or next learning cycle.

T 0lim j+1j
→

→∞
E (3.108)

To achieve this reduction in error for next learning cycle, cost function J(K) as sum of

error square for next learning cycle is defined as

79

N 2 TJ(K) = e (k) =j+1 j+1 j+1k=1
∑ E E

(3.109)

Defining output vector j+1Y for the next iteration and desired output vector jYd as

T = y (1) y (2) … y (N)j+1 j+1 j+1 j+1
 
  

Y (3.110)

and

T = yd (1) yd (2) … yd (N)j j j j
 
  

Yd (3.111)

For the following derivation, (k) =jYd Yd , for simplicity in mathematical representation.

Using the definition of error in equation (3.22), the error for next iteration can be

written as:

= -j+1 j+1E Yd Y (3.112)

Substituting this value in equation (3.109) ⇒

() ()T
J(K) = - -j+1 j+1Yd Y Yd Y

(3.113)

Expanding (3.113) ⇒

T T T T T TJ(K) = - - +j+1 j+1 j+1 j+1Yd Yd Yd GU U G Yd U G GU (3.114)

As T T T=j+1 j+1Yd GU U G Yd , where every term is a scalar. Equation (3.114) reduces to

T T T T TJ(K) = - 2 +j+1 j+1 j+1Yd Yd U G Yd U G GU (3.115)

For the following discussion, K will be taken as scalar quantity i.e. one value of

gain for all the samples, as discussed in chapter 2. This K will also be written as Kj , in

some equations, to show change from iteration to iteration. Despite the duplicate usage in

nomenclature, for all practical purposes K = Kj.

Equation (2.4) can be written as:-

u (k) = u (k) + K (k)e (k)j+1 j j j (3.116)

This in vector notation form is

80

= + Kj+1 j j jU U E (3.117)

Where

T = u (1) u (2) … u (N)j+1 j+1 j+1 j+1
 
  

U (3.118)

and K j is a scalar value of gain at iteration j . Putting (3.117) in (3.115) ⇒

T T T T TJ(K) = - 2(+ K) + (+ K) (+ K)j j j j j j j j jYd Yd U E G Yd U E G G U E (3.119)

T T T T T T T T TJ(K) = - 2 - 2K + + Kj j j j j j j j
T T T T+ + K Kj j j j j j j

Yd Yd U G Yd E G Yd U G GU E G GU

U G GE K E G GE

(3.120)

As T T T TK = Kj j j j j jE G GU U G GE and every term is a scalar

T T T T T T T T TJ(K) = - 2 - 2K + + 2K +j j j j j j j j
T TK Kj j j j

Yd Yd U G Yd E G Yd U G GU E G GU

E G GE

(3.121)

Applying the ∇ operator to the cost function J(K)

T T T T T Tg = J(K) = -2 + 2 + 2Kj j j j j j∇ E G Yd E G GU E G GE (3.122)

Ignoring error square terms ⇒

T TJ(K) = -2 (-)j j+1∇ E G Yd GU (3.123)

To find the value of jK which will give us minimum number of iterations we use the

steepest descent given in (3.34). Putting (3.124) in (3.34) ⇒

T TK = K + µ (-)j+1 j j j+1E G Yd GU (3.124)

Here µ is the step size parameter. It should be noted here that equation (3.117) should be

calculated before equation (3.124) can be executed.

81

3.4.3 Convergence analysis

By convergence we mean that the system output y (k)j approaches desired output

yd (k)j as the learning process continues i.e.

y (k) yd (k)j j→ for k 0,N  ∈ as j→∞

or

e (k) 0j → for k 0,N  ∈ as j→∞

First the convergence criterion of the learning control law is established followed

by the convergence of the adaptive gain law.

3.4.3.1 Convergence of iterative learning control law

Using the control scheme in equation (3.117) the system description equation

(3.86) can be expanded to

= (+ K)j+1 j j jY G U E (3.125)

= + Kj+1 j j jY GU GE (3.126)

Multiplying both sides with -1 and adding Yd we get

- = - - Kj+1 j j jYd Y Yd GU GE (3.127)

Using 2-D system representation in (3.85) and ignoring noise

- = - - Kj+1 j j jYd Y Yd Y GE (3.128)

Using error equation in (3.22)

= - - Kj+1 j j jE Yd Y GE (3.129)

This can be written as

82

= - Kj+1 j j jE E GE (3.130)

= (I - K)j+1 j jE G E (3.131)

Based on equation (3.131) it can be shown that if the value K j is selected such that

I - K < 1jG then the error will decrease continuously and the system will converge at

some iteration.

3.4.3.2 Convergence for adaptive gain

Adaptive gain K j is calculated using the technique of steepest descent. Our

adaptive iterative learning controller and the steepest descent method combine well as

both are iterative techniques. In our case K = K (k)j j , as the gain is same for all values of

k for a particular j .

We consider a cost function J(K (k))j which is continuously differentiable

function of some unknown gain K (k)j . We want to find an optimal solution Kop (k)j that

satisfies the condition

J(Kop (k)) J(K (k))j j≤ for all values of K j (3.132)

This is a mathematical statement of unconstrained optimization. A class of unconstrained

optimization algorithms that is found to be well suited in ILC is based on the idea of local

iterative descent.

Starting with an initial guess Ki (k)j we have to generate subsequent gains such

that

J(K (k)) < J(K (k))j+1 j (3.133)

where J(K (k))j is the old value of the gain and J(K (k))j+1 is the updated value.

83

It is anticipated that the algorithm will eventually converge on to the optimal

value Kop (k)j . In the simple form of iterative descent known as the method of steepest

descent, the successive adjustments applied to the gain K (k)j are in the direction of

steepest descent that is in a direction opposite to the gradient vector of the cost function

J(K (k))j which is denoted by∆J(K (k))j . For convenience of presentation we write

g = ∆J(K (k))j (3.134)

According to the steepest descent, the suggested algorithm is formally described by

equation (3.34) and is re-written as

1K (k) = K (k) - µ(∆J(K (k)))j+1 j j2

(3.135)

Where j denotes the iterations, µ is a factor represents the step size parameter and 1
2

term is introduced for mathematical convenience.

In going from iteration j to j+1 the algorithm applies the gain adjustment

δK (k) = K (k) - K (k)j j+1 j (3.136)

Using (3.135) in (3.136)

1δK (k) = - µ(∆J(K (k)))j j2

(3.137)

To show that formulation of steepest descent algorithm satisfies the condition in

(3.132), Taylor series expansion around K (k)j can be used to obtain approximation

J(K (k)) J(K (k)) +∆J(K (k))δK (k)j+1 j j j≅ (3.138)

Substituting (3.137) in (3.138) we get

21J(K (k)) J(K (k)) - µ ∆J(K (k))jj+1 j 2≅
(3.139)

Which shows that J(K (k))j+1 is smaller than J(K (k))j provided that the step size

parameter µ is positive. Hence, it follows that with increasing j the cost function

J(K (k))j progressively decreases, approaching the minimum value Jmin in terms of

84

error at j→∞ . This shows that we are always moving towards Kop (k)j , after each

iteration.

3.4.4 Simulation results

The scheme presented in this section was also tested through simulations. Results

from three systems, described in Appendix A, are presented in this section. For this

section the system is identified using a1 and b1 only, as it was observed that these two

parameters had the maximum impact on the results. More parameters can be identified, if

required.

3.4.4.1 A Simple System

The system 1G (z) is written in difference equation form as

y(k +1) = 0.8187y(k) + 0.09063u(k) (3.140)

With a = 0.81871 , b = 0.090631 and

b n = 11g(n) =
a g(n -1) N n 21

  
 ≤ ≥  

(3.141)

As shown before, in figure (3.10), there is a range of values of optimal values of

K that give optimal results. For 1G (z) , this range is 1.84 to 2.19. By optimal value we

mean that value of K which takes the minimum number of ILC iterations to converge.

Using the conventional ILC scheme and starting with a value of K = 0.1 the system

converges at iteration 146.

Using the proposed approach, the values of a1 and b1 is identified after first

iteration with a 0.81871 = and b = 0.09061 . Starting with the same chosen starting value

of K = 0.1 and µ = 0.1 , the system converges at iteration 6 on first run. Here first run

means, system used for the first time. Other starting values of K could also have been

85

chosen with similar results, as K is learnt adaptively. The value of K is stored in

memory after each run. The number of iterations decrease at each run until K reaches its

optimal value.

Even if K starts from a much higher value, say 5, K re-adjusts and settles at

some optimal value between 1.84 to 2.19. A plot of K vs. number of runs is shown in

Figure 3.16.

Figure 3.16: Learnt values of K with an initial value of 0.1.

The plot clearly shows K being learnt towards the optimal value as number of runs

increase. A plot of norm of error vs. number of iterations is exhibited in figure 3.17.

Figure 3.17: Behaviour of norm of error as iterations increase.

86

If the system undergoes a change in parameter due to wear or any other reason the

approach has the capability to readjust its learnt parameters. As an example, suppose

another first order system

y(k +1) = 0.9046y(k) + 0.09516u(k) (3.142)

With a = 0.81871 and b = 0.090631 .

A plot of K vs. number of iterations for this system, using conventional ILC, is

given in figure 3.18.

Figure 3.18: Number of iterations taken to converge against different values of K .

The optimal range for K is approximately 0.96-1.1. We now suppose that the system in

equation (3.140) changes to (3.142) at sixth iteration, just when the system is about to

converge. A 3D plot of yd (k)j (thick dotted line) and y (k)j (thin solid line) vis-a-vis

number of iterations, is shown in figure 3.19.

87

Figure 3.19: The proposed approach tracking the desired output as the system is changed

in 6th iteration.

The behaviour of K during this shift in system is recorded in figure 3.20.

Figure 3.20: Readjustment done by the approach in the value of K as the system is

changed in 6th iteration.

The scheme was able to readjust the value of K , within the new optimal range,

for the modified system.

88

3.4.4.2 Car Suspension System

Simulation results from another system, 3G (z) , given in Appendix A, are

discussed below. The system can be written in difference equation form as

y(k + 2) = 0.2779y(k +1) - 0.006738y(k) + 0.03052u(k +1) + 0.005925u(k)

With b = 0.030521 , b = 0.0059252 , a = 0.27791 , a = -0.0067382 and

b , n = 11
g(n) = a b + b , n = 21 1 2

, N n 3a g(n -1) + a g(n - 2)1 2

 
  
 
 ≤ ≥  

(3.143)

A plot of K vs. number of iterations for this system using conventional ILC is

given in figure 3.21 below.

Figure 3.21: Number of iterations taken to converge against different values of K .

The gain, K here has optimal values from approximately 18 to 22. Using conventional

ILC scheme and starting with a value of K = 0.1 the system converges at iteration 1335.

Other starting values of K gave similar results.

Using the proposed approach the values of a1 and b1were identified after first

iteration. These are a = 0.27791 and b = -0.00671 . The parameters a2 and b2 were not

89

identified as it was observed that parameters a1 and b1 always had maximum effect on

the final results and in most cases there was no need to identify any more parameters.

Starting with K = 0.1 and µ = 0.1 the system converged at iteration 83 on first run. A

plot of norm of error vs. number of iterations is shown in figure 3.22 below.

Figure 3.22: Behaviour of Euclidean norm of error for 3G (z) .

Figure 3.23 shows the plot of yd (k)j (thick dotted line) and y (k)j (thin solid line)

against number of iterations.

Figure 3.23: The proposed approach tracking the desired output.

90

The approach has the capability to adapt for change in performance requirements

at run time. As an example, if the desired output is changed during run time the behaviour

of the approach is presented in figure 3.24.

Figure 3.24: The proposed approach tracking the changing desired output.

The error recorded during this learning process as desired output was changed

during run time is presented in figure 3.25.

Figure 3.25: Behavior of Euclidean norm of error for a changing desired response.

91

The learning performance of K during this run is shown in figure 3.26.

Figure 3.26: Learnt values of K as the desired response changes in real time.

The plot shows a readjustment in K as the desired response changes.

3.4.4.3 A Non-Linear System

The results from a second order non-linear system (NLS) are also presented to

show the effectiveness of the approach. A plot of K vs. no. of iterations using the

conventional ILC scheme is shown in figure 3.27.

Figure 3.27: Number of iterations taken to converge against different values of K .

92

This plot again emphasises the fact that there is a range of values of K that produce

minimum iterations. For the non-linear system this range is approximately between 0.8

and 1.05.

The values of a1 and b1 identified after first iteration were a = 0.41481 and

b = 0.59021 . Figure 3.28 describes the behaviour of the system as it converges at 6th

iteration.

Figure 3.28: The proposed approach learning the desired output.

During this process the response of norm of error is plotted in figure 3.29.

Figure 3.29: Behaviour of Euclidean norm of error for a non-linear system.

93

To get a measure of the effectiveness of this Identification based Adaptive

Iterative Learning Scheme, a comparison between this scheme and the conventional ILC

is given in the next section.

3.4.5 Discussion and comparison

Simulation results presented in previous section are tabulated in Table 3.1 and

Table 3.2 for comparison. All results were taken with K = 0.1 as the initial value. Other

values of K , gave similar results as K was learnt adaptively. For example, starting with

an initial value of K = 5 for 1G (z) , the approach converges at iteration 8 at first run and

iteration 5 on second run. Table 3.1, column 2, under the heading “Conventional ILC”

gives the number of iterations it took to converge with a conventional ILC. The number

of iterations will not decrease under the conventional scheme; no matter how many times

(runs) the scheme is used. Column 3 presents the number of iterations it takes to converge

using the proposed schemes. The numbers of iterations are significantly lower compared

to the conventional scheme even at first run. This is due to the adaptive nature of the

scheme. After every run the values of gain matrices are stored in memory and are used in

the next run as initial values. The last column in Table 3.1, show the number of iterations

it took to converge at second run.

System Conventional ILC

(Iterations)

Proposed Scheme
After 1st run

(Iterations)

Proposed Scheme
After 2nd run

(Iterations)

SS 146 6 2

CSS 1335 83 42

NLS 35 6 3

Table 3.1: Comparison between the conventional ILC and the proposed scheme.

94

In this table, for SS and CSS the convergence criteria is e (k) < 0.01j , while for NLS

with conventional ILC, it is e (k) < 0.4j .

Table 3.2 shows the values of K learnt as the approach is repeatedly used. For a

conventional system, 2nd column, under the heading “Conventional ILC”, the value of

K used is noted for the three systems presented in previous section. This value of K

does not change, no matter how many times the system is used. This is because

conventional scheme is not adaptive. For the proposed scheme as K is adaptive, its value

changes from iteration to iteration. This can be seen from the last two columns of Table

3.2. As the number of runs increase, the proposed approach learns the value of K that

will give the minimum iterations.

System Conventional ILC

(value of K)

Proposed Scheme
After 1st run

(value of K)

Proposed Scheme
After 2nd run

(value of K)

SS 0.1 1.98 1.99

CSS 0.1 2.32 3.01

NLS 0.1 0.781 0.788

Table 3.2: Values of K learnt for different systems, using conventional ILC and the

proposed algorithm with a starting initial value of 0.1.

As opposed to conventional ILC which uses fixed gain, the suggested approach adjusts

the gain adaptively and consequently the numbers of iterations are significantly reduced.

For the Simple System, number of iterations came down from 146 to 6, for Car

Suspension System, from 1335 to 83 and for non-linear system, from 35 to 5 at first run,

as shown in Table 3.1. It is pointed out that ‘Memory’ helps to reduce the number of

iterations further in subsequent runs. Though this comparison is not exhaustive, it clearly

95

shows that the number of iterations decreases continuously as optimal value of K is

being learnt.

3.5 Cost Function

Usually the cost function applied is to minimize square of error or sum of square

of error. As explained in section 3.2.1 and 3.4.2, we proposed a novel cost function, sum

of square of error for next iteration. This cost function, helped in the derivation of

proposed adaptive schemes. The proposed schemes are not only focusing on reducing

error but also are looking at finding the next input to the plant. This opens the opportunity

to develop other cost functions. The research on these innovative, unconventional cost

functions, gave interesting results. One of the more useful results are presented in this

section.

3.5.1 Difference of Input (Approach-4)

Let the cost function be the difference in current input and next input, squared.

()2J = u (k) - u (k)j j+1∑
(3.144)

Using (3.116)

()
2

J = u (k) - u (k) + Ke (k)j j j
 ∑ 
 

(3.145)

()2J = u (k) - u (k) - Ke (k)j j j∑
(3.146)

()2J = -Ke (k)j∑
(3.147)

Equation (3.147) can be written in vector notation form as

96

T TJ = K (-)(-)KE E (3.148)

Applying the ∇ operator to the cost function

Tg = J = 2 K∇ E E (3.149)

To find the value of jK which will give us minimum number of iterations we use

the steepest descent formula given in (3.34). As E is negative in the gradient function the

direction of the steepest descent will be opposite to what it would have been with positive

E , i.e. (3.34) ⇒

1K = K + µgj+1 j 2

(3.150)

()1 TK = K + µ 2 Kj+1 j 2
E E

(3.151)

()TK = K + µ Kj+1 j E E (3.152)

()TK = K + µ Kj+1 j E E (3.153)

Rearranging equation (3.117) ⇒

K j+1= −E U U (3.154)

Putting (3.154) in (3.153) ⇒

TK = K + µ (-)j+1 j j+1E U U (3.155)

The difference in inputs and the error are used for the calculation of next gain value.

These values are already available. We now present some simulation results to show the

effectiveness of this adaptive gain law.

97

3.5.1.1 Simulation results

Results from three systems 1G (z) , 3G (z) and NLS are presented in this section.

For 1G (z) , a plot of error norm as number of iterations increase, for a starting value of

K = 0.1, is given in figure 3.30 below.

Figure 3.30: Behaviour of error as iterations increase.

It took 44 iterations to converge at first run. The learnt value of K is stored in memory

and used again in the next run. The number of iterations decreased after every run, until

K reached the optimal range, 1.84 to 2.19. The learnt values of K for a starting value of

0.1 are shown in figure 3.31.

Figure 3.31: Learnt values of K as task is repeated.

98

Though a bit slow, the scheme was able to learn the optimal value of K . The

number of iterations it took to converge as the system is used again and again is plotted in

figure 3.32.

Figure 3.32: Number of iterations for convergence as the task is repeated.

The iterations are decreasing continuously. Similar behaviour was observed for different

systems and with different starting values of K .

For 3G (z) it took 238 iterations to converge at first run. The error produced

during that run is exhibited in figure 3.33.

Figure 3.33: Behaviour of error as iterations increase.

99

The output of the system with the desired output, using this scheme is exhibited in a 3-D

plot in figure 3.34.

Figure 3.34: The proposed approach trying to follow the desired output.

Using NLS, it took 30 iterations on first run which steadily came down to 16

iterations at the 5th run. At 5th run the behaviour of error is plotted in figure 3.35.

Figure 3.35: The performance of error as iterations increase.

The plot shows an exponential decrease in error.

 The next section uses the ideas that if Iterative Learning Control (ILC) can

benefit from previous trails, why not use a similar law to update gain values.

100

3.6 Iterative Learning Control with an Iterative Learning Gain

(Approach-5)

This section describes the design of an adaptive iterative learning controller with

an iterative learning gain (ILCILG). This proposed scheme extends the idea of ILC

further and suggests that the information obtained from one trial should also be used to

improve control algorithm parameter, the gain matrix.

The proposed approach is explained in block diagram form in figure 3.36.

Figure 3.36: Block diagram of the proposed scheme.

Input u (k)j is applied to the plant which produces an output y (k)j . Error e (k)j is the

difference between the desired output yd (k)j and the actual output of the system y (k)j .

This error and the value of the previous gain are used in the block “Iterative Learning

Gain (ILG)” to adjust gain. The “ILC” block also uses the same error to calculate next

input to the plant, u (k)j+1 . After every iteration the value of K is stored in memory and

retrieved before each iteration.

101

It is suggested to calculate K using the equation below.

K (k) = K (k) + µ(yd (k) - y (k))j+1 j j j (3.156)

Here K j+1is the value of K to be calculated for next iteration, K j is the current value of

K , yd (k) - y (k)j j is the difference between the norm of desired output and norm of

current output and µ is the step size parameter.

3.6.1 Convergence analysis

For equation (3.156), we define convergence as finding a value of K j that will

produce jy - y (k) εd ≤ , in minimum number of iterations. Here ε is the tolerance in

error.

There can be three possible cases.

Case 1: jy y (k)d =

In this case desired output and system output are same. Therefore, there is no

change in K j . According to equation (3.166) K = Kj+1 j and convergence is governed

by (3.116) alone.

Case 2: jy y (k)d >

In this case the desired output is larger than the actual output so the term

jy - y (k)d will give a positive number. Under this condition, K > Kj+1 j , which in

turn will raise the input to the system according to equation (3.116), resulting in an

increase in output. This in turn will bring yd and jy (k) closer to each other.

Case 3: jy y (k)d <

In this case the desired output is smaller than the actual output, so the term

jy - y (k)d will give a negative number. Under this condition, K < Kj+1 j , which in

102

turn will reduce the input to the system according to equation (3.116), resulting in a

decrease in output. This will in turn bring yd and jy (k) closer to each other.

For both cases 2 and case 3, the system will behave as to reduce jy - y (k)d . For

smooth convergence whenever there is a change in sign in jy - y (k)d or when ever

there is a shift from case 2 to case 3 or case 3 to case 2 we can reduce µ . For this, µ can

be tied up with rate of change of jy - y (k)d . However, in this section µ is kept

constant.

The number of iterations has always been an issue with ILC. This scheme because

of its simple mathematical structure can easily be implemented with lower memory

requirements and simpler hardware as opposed to other such adaptive schemes which are

computationally expensive.

We now present some simulation results obtained from three selected systems

from Appendix A.

3.6.2 Simulation results

Simulation results from three systems 1G (z) , NLS and 4G (z) are discussed in this

section. First, results from 1G (z) are presented. As shown previously in figure 3.10, this

system has a range of values of K , which results in minimum number of iterations. The

range for 1G (z) is 1.84 to 2.19.

Using the ILCILG technique, with starting values of K = 0.1 and µ = 0.01 , the

system converged at iteration 18, with a final value of K = 0.86718 , on first run. As

shown in figure 3.36, the value of K j is stored in memory after each run. The value

stored in memory is used as the initial value for the next run. After a few runs this value

settles with in the optimal range. Even if, initially a much higher value of K j say 5 is

103

taken, K j readjusts and settles at some value between 1.84 to 2.19. The rate of learning

is governed by µ . A plot of norm of error against number of iterations for first run is

shown in figure 3.37.

Figure 3.37: Behavior of Euclidean norm of error for the first order system.

The conventional ILC took 146 iterations to converge for this system, with similar

settings.

The motor speed control system (MSCS) was also tested using the same initial

gain, K = 0.1. Using the conventional ILC it took 661 iterations to converge. As the

conventional ILC scheme is not adaptive it will always take 661 iterations to converge

with K = 0.1. Using the proposed approach and starting with K = 0.1 and µ = 0.01 the

system converged at iteration 63 with a final value of gain K = 1.23j , at first run.

A plot of norm of error against number of iterations for first run is shown in figure

3.38 below.

104

Figure 3.38: Behaviour of Euclidean norm of error for a motor speed control system.

Subsequent runs decreased the number of iterations further. A 3-dimensional plot of the

desired output (shown in bold dotted lines) vs. actual output (shown in thin solid lines)

against number of iterations is presented in figure 3.39 below. The plot clearly shows the

output reaching the desired output as iterations increase.

Figure 3.39: Output converging towards desired output.

Subsequent runs showed a decrease in number of iterations as K j was updated.

105

If there is a change in system dynamics e.g. the damping ratio is doubled during

operation, the approach can readjust at run time. Figure 3.40 shows the behaviour of error

in case the system changes during run time. For this simulation the system was changed

at iteration 20.

Figure 3.40: Behaviour of Euclidean norm of error as the system changes.

With this change in system dynamics, it took 95 iterations to converge. The behaviour of

K j is shown in figure 3.41. It can be clearly seen that gain makes a small readjustment at

iteration 21.

Figure 3.41: Behaviour of K against number of runs.

106

This readjustment is further clarified by a 3-D plot of the output in figure 3.42. The

desired output (in dotted bold lines), is also presented for better comparison.

Figure 3.42: The proposed approach tracking the changing desired output.

The desired output was changed during iteration 20. It took 65 iterations to converge this

time at first run.

For the non-linear system, the behaviour of K j for different initial values of K is

shown in figure 3.43. This figure shows that even starting with different initial values of

K j the scheme eventually settles to an optimal range, which for this non-linear system is

between 0.8 and 1.05.

Figure 3.43: Behaviour of K against number of runs with different initial values of K .

107

The system converged at 11th iteration on first run. The behaviour of the norm of error

for first run is shown in figure 3.44.

Figure 3.44: Behaviour of Euclidean norm of error for a non-linear system.

Subsequent runs reduced the number of iterations further. The results show that

ILCILG performed better then the two cost function based schemes. A comparison with

the conventional scheme will give us a measure of improvement made by ILCILG.

3.6.3 Discussions and comparison

Simulation results are tabulated in Table 3.3 for comparison. All results were

obtained with K = 0.1and µ = 0.01 as initial starting values. A desired output, given in

Appendix A, was defined for all these systems. Column 2 under the heading

“Conventional ILC” shows the number of iterations it took to converge for a first order

(1G (z)), motor speed control (4G (z)) and a non linear system. They are 146, 661 and 35

respectively. Column 3 shows the number of iterations taken to converge at first run

using ILCILG. The numbers of iterations are significantly lower as compared to the

conventional ILC scheme even at first run. At fifth run, as shown in the last column, the

108

numbers of iterations are reduced further as K j is updated. Though this comparison is

not extensive but the trend is obvious.

System Conventional ILC

(Iterations)

ILCILG

At 1st run

(Iterations)

ILCILG

At 5th run

(Iterations)

First order 146 18 4

Motor speed control 661 63 24

Non linear 35 11 4

Table 3.3: Some comparative results showing reduction in number of iterations for

ILCILG controller.

Excellent results shown by the ILCILG controller made it a good choice to test it on a

practical setup. The setup with results is presented in the next section.

3.6.4 Experimental setup and results

Experiments were made using QET DC motor kit by Quanser Consulting Inc

[57]. The complete set up is shown in figure 3.45 below.

Figure 3.45: Quanser’s DC motor kit used to test the approach.

109

The aim was to follow the desired signal which is to make the motor run at a

speed of 100 rad/sec. The control software was developed in MATLAB. A 3-dimensional

plot of the desired output (shown in dotted lines) vs. actual output (shown in solid lines)

against number of iterations for the first five iterations are shown below. The plot clearly

shows the system output reaching the desired output as iterations increase.

Figure 3.46: Output converging towards desired output.

A plot of norm of error for different iterations is shown in figure 3.47. The plot shows

continuous decrease in error.

Figure 3.47: Behaviour of Euclidean norm of error.

110

As per equation (3.156), the ILCILG controller learns the values of gain K j ,

increasing speed of convergence. The value of K j learnt at first iteration was 0.278. This

value as per figure 3.36 is stored in memory, to be used in later iterations. The behaviour

of K j is presented in figure 3.48.

Figure 3.48: Learnt values of gain as iterations increase.

This adaptive behaviour of K j helped to reduce the number of iterations. The ILC

used in this approach was OSATILC. Using this setting, the ILCILG was made to track

real time trajectories also.

3.6.5 Real time tracking using iterative learning control with an
iterative learning gain

The scheme has the capability to track objects and paths in real time, unlike ILC

schemes given in the literature. For µ = 0.001 , equation (3.156) can be written as

K (k) = K (k) + 0.001(yd (k) - y (k))j+1 j j j (3.157)

For real time implementation this equation is readjusted to

111

K(k) = K(k -1) + 0.001e(k) (3.158)

Where K(k) is the value of K for current sample. K(k -1) is the value of K for

previous sample and e(k) is the difference between the desired output and actual output.

3.6.5.1 Simulation results

For simulation purposes 4G (z) system was used. A desired motor speed

trajectory was fed into the scheme. The scheme tried to follow the trajectory in real time.

The performance is shown in figure 3.49.

Figure 3.49: Tracking behaviour.

The behaviour of error as the trajectory is being followed is shown in figure 3.50.

112

Figure 3.50: Error as desired trajectory is being tracked.

During this tracking performance the values of K learnt are indicated in figure 3.51.

Figure 3.51: Learnt values of K as desired trajectory is tracked.

The same system was also made to track other waveforms, like sigmoid, different

sinusoidals, parabolic etc. The tracking performance while following a sinusoidal track is

exhibited in figure 3.52.

113

Figure 3.52: Tracking a sine wave.

The plot shows very good tracking performance by the ILCILG controller. The error

during this tracking performance is plotted in figure 3.53.

Figure 3.53: Behaviour of error as sine wave is tracked.

During this sinusoidal speed chase the values of K ’s used are shown in figure 3.54.

114

Figure 3.54: Learnt values of K as desired trajectory is tracked.

The tracking performance was tested using the same QET DC motor kit by

Quanser Consulting Inc. The results from one such experiment are discussed in the next

section.

3.6.5.2 Real time tracking using an experimental set up

The QET DC motor kit with the ILCILG controller was also made to track a

speed of 100 rad /sec in real time. The control software was developed in MATLAB. A

3-dimensional plot of the desired output (shown in dotted lines) vs. actual output (shown

in solid lines) against number of iterations for the first five iterations are shown in figure

3.55 below. The plot clearly shows the output reaching the desired output as iterations

increase.

115

Figure 3.55: Output converging towards desired output.

For the first 13 samples this tracking is shown in figure 3.56.

Figure 3.56: Quanser’s DC motor tracking a desired step response with adaptive gain.

For a sampling rate of 10 samples per second the motor achieved the required speed in 1

sec. The performance of error as the desired speed is met is shown in figure 3.57.

116

Figure 3.57: Error as trajectory is tracked.

To achieve this performance the input calculated by the proposed scheme is presented in

figure 3.58.

Figure 3.58: Input voltages learnt and supplied to the motor with adaptive gain.

The values of K learnt during this tracking is shown in figure 3.59.

117

Figure 3.59: Learnt values of gain.

After initial learning, the value of K settles to approximately 0.47.

In all adaptive schemes presented so far, the step size parameter has been kept

constant. This step size parameter can be varied also to increase or decrease the rate of

convergence of K . The following section looks at one such possibility.

3.7 Iterative Learning Control with an Iterative Learning Gain

and Adaptive Step Size

The proposed scheme is presented in figure 3.60 below.

118

Figure 3.60: Block diagram representation of the proposed scheme.

Input u (k)j is applied to the plant. This input produces an output y (k)j . Error e (k)j is

the difference between the desired output yd (k)j and the actual output of the system

y (k)j . This error is used by the adaptive gain matrix block to adjust gain matrices. The

iteration horizon is made use of by calculating the difference in magnitude of this error

during different iterations to adjust the step size. The ILC block also uses the same error

to calculate next input to the plant. The adjusted values of K and µ are stored in

memory.

Using steepest decent to find K which results in minimum number of iterations.

j
1K = K - µ (k)gj+1 j 2

(3.159)

Equation (3.124) can be rewritten for adaptive µ .

j
T TK = K + µ (k)E (k)G (Yd - GU (k))j+1 j j j+1 (3.160)

Here µ (k)j is the step size parameter and G matrix is an NxM matrix. The G matrix is

lower triangular and for linear systems it is also Toeplitz.

119

3.7.1 Adaptive step size

The second dimension of a 2-D learning process called the learning horizon is

used to make the step size adaptive.

j
j

j

2.0×µ (k)
µ (k) =

0.5×µ (k)
 
 
 

,

,
j-1 j

j-1 j

e (k) - e (k) > 0

e (k) - e (k) 0≤

(3.161)

Here e (k)j-1 is the Euclidean norm of error vector in the previous iteration and e (k)j

is the Euclidean norm of the error vector in the current iteration.

3.7.2 Simulation results

The scheme presented in this paper was tested through simulations using 1G (z) ,

3G (z) and NLS. For 1G (z) , using the proposed approach and starting with a K of 0.1

and µ of 0.1, the system converges when the gain reaches 1.715 and µ reaches 0.32 at

iteration 6, on first run. The behaviour of K for the first run is shown in figure 3.61

below.

Figure 3.61: Variation of K for first run.

120

The value of K was stored in memory after each run. The number of iterations decreased

after each run, until K settled in the optimal range. Figure 3.62 shows how the norm of

error behaved during the first run.

Figure 3.62: Behaviour of Euclidean norm of error.

For 3G (z) , again starting with K = 0.1 and µ = 0.1 , K reaches 12.61 and µ

reaches 163.8 after first run. The system converges at iteration 17 on first run as opposed

to iteration 1335, if only the conventional ILC scheme is used. A plot of norm of error vs.

number of iterations is shown in figure 3.63.

Figure 3.63: Behaviour of Euclidean norm of error for a mass, spring and damper system.

121

A 3-dimensional plot of the desired output (shown in dotted lines) vs. actual output

(shown in solid lines) against number of iterations is shown in figure 3.64 below. The

plot clearly shows the output reaching the desired value at the 17th iteration.

Figure 3.64: Output converging towards desired output.

Subsequent runs resulted in even fewer numbers of iterations, as value of K reacheed

optimal range.

Similar data was recorded for the non-linear system. The figure below shows the

system converging at 4th iteration. The adaptiveness of µ is shown in figure 3.65 below.

122

Figure 3.65: Variation of µ for first run.

The system converged at 4rd iteration on first run. The behaviour of the norm of error is

shown in figure 3.66.

Figure 3.66: Behaviour of Euclidean norm of error for a non-linear system.

The error quickly reduced to within acceptable limit. The performance can be best

compared through a table given in the next section.

123

3.7.3 Discussion and comparison

Simulation results are tabulated in Table 3.4 for comparison. All results were

taken with K and µ having an initial starting value of 0.1. A desired output was defined

for all these systems. Number of iterations taken to learn an input which produced the

desired output is given. The table shows a significant decrease in number of iterations,

even at first run, using the proposed scheme as compared with conventional ILC scheme.

 Normal ILC

(Iterations)

ILCILG
With adaptive gain only

(Iterations)

ILCILG
With adaptive gain
and adaptive step size

(Iterations)

First order system

(SS)

146 7 6

Second order system

(CSS)

1335 61 17

Non linear system

(NLS)

35 5 4

Table 3.4: Some comparative results.

The learning is further enhanced with adaptive step size parameter.

3.8 Summary

Following the research work presented in chapter 2, this chapter describes a

number of adaptive iterative learning controllers. For these controllers a specific

mathematical frame work was developed. The different schemes made use of

combination of novel cost functions, gradient descent approach and innovative control

laws. Stability and convergence criteria are also established. The performances are

confirmed using a number of simulations on different models of practical systems.

124

A practical setup, using DC motor kit by Quanser Consulting was also used to test

the effectiveness of the controllers in real world applications. All the controllers were

able to readjust for changes in plant as well as desired response. The chapter ends with a

proposal to control rate of adaptation using the step size parameter of the control laws.

The main focus of this research aimed at capturing the two main aspects of human

behaviour, namely

(a) Learning from experience.

(b) Perception based approach.

We propose to tackle “Learning from experience” aspect through adaptive iterative

learning. To tackle “perceptions”, we need to incorporate fuzzy logic.

The next chapter develops this philosophy.

125

4 SELF LEARNING FUZZY CONTROLLERS USING
ITERATIVE LEARNING TUNER

This chapter describes the design of an adaptive fuzzy controller using iterative

learning to tune input membership functions and scaling factor(s). The control scheme

consists of a fuzzy controller and learning control laws. People’s perception about the

meaning of a linguistic variable differs from person to person or even from expert to

expert. This difference in perception usually leads to different fuzzy control designs.

Somewhere within these designs lies the required design which meets specific

performance criteria. The result of this research proposes an approach to tackle this

uncertainty in perception, i.e., to find the required design by adjusting membership

functions. This uncertainty was rarely tackled as a concept before Type-2 Fuzzy (T2-F)

was invented. The membership functions are adaptively adjusted using iterative learning

technique. The results show that the scheme is robust, cost effective and very simple to

implement. It makes use of the non-linearity inherent in the fuzzy systems. Designing

fuzzy controllers with desired performance specifications is not a trivial task. Even the

specification of linguistic variables, a key concept in fuzzy system design, can be

different from different experts, creating uncertainty in the design. This scheme tries to

fill this gap by using a unique adaptive procedure for designing fuzzy controllers through

iterative learning process.

4.1 Problems in Fuzzy Logic Based Design

It all started with the seminal concept of using fuzzy sets [94] to tackle

imprecision in the definition of classes of objects. This concept gave a continuum of

grades of membership to classes of objects like “the class of tall men” or “the class of

real numbers greater than ten”. Zadeh [93] went on to present the concept of linguistic

variables and laid down the basic framework that underlie most of the practical

applications of the fuzzy set theory. He also introduced the concept of “if-then rules” to

126

characterize the working of a fuzzy system [92]. The overall concept is now referred to as

the “linguistic approach to describe and solve problems”. One of the recent offshoots of

this approach is the “Computational Theory of Perception” or CTP in short [90,91]. This

methodology aims at “Computing with Words”.

Although Procyk and Mamdani [20, 137] were the first ones to demonstrate the

construction of fuzzy controller, it became the main focus of research in Japan where

hundreds of applications were developed, from washing machines to fuzzy subway

control system, in the 1990’s.

Humans have capability to perform a very wide variety of physical and mental

tasks without any computations. Familiar examples of such tasks are parking a car,

driving in heavy traffic, playing cricket and summarizing a story. Underlying this

remarkable capability is the brain’s crucial ability to manipulate perceptions. Perceptions

can be of distance, size, weight, colour, speed, time, direction, force, number, truth,

likelihood and other characteristics of physical objects. Manipulation of perception plays

a key role in human decision making. Zadeh argues that we need ways to deal with

perception, in addition to the tools that we have for dealing with measurement, to

advance in the frontiers of technology beyond where we are today. Especially, in the

fields of machine intelligence and automation of decision making processes.

Differences in perceptions give rise to uncertainties [89]. Uncertainty is defined as

partial truth by some [89] and lack of complete information by others [25]. When dealing

with real world problems one can rarely avoid uncertainty. It is an inseparable part of any

measurement. It can even be due to reading errors or imprecision in measuring

instruments. With regard to fuzzy systems, it is due to vagueness and ambiguity inherent

in natural languages. Even at social level, people create and maintain uncertainty to

exercise secrecy or privacy [26]. In engineering terms uncertainty comes from lack of

complete information and reflects incompleteness, imprecision, missing information or

randomness in data and process. Two important kinds of uncertainties are linguistic and

random. The former is associated with words, and the fact that word mean different

things to different people, and the later is associated with unpredictability. Probability

theory is used to handle random uncertainty and Fuzzy Systems (FSs) are used to handle

127

linguistic uncertainties. Some times FSs are used to handle both kinds of uncertainties

[71].

To handle linguistic uncertainties, Type-2 Fuzzy sets (T2 FS) and their related

logic was developed [73]. In such uncertainties it is difficult to determine the exact

Membership functions (MF) for a fuzzy system (FS). As an example, suppose the

variable of interest is motor speed, denoted by x where x [0,100]∈ and this gives a

speed of 0 to 100 rev/sec. One of the terms that might characterize the amount of

perceived speed is ‘slow’. Now if one asks 10 experts to locate the ends of an interval for

slow speed on the scale of 0 -100 , different experts will give different ranges for a

particular application in mind. To demonstrate whether uncertainty is associated with

words or not, different surveys were made. The results of one such survey conducted by

the author, quantizing the range of slowness of motor car speed is tabulated below.

Serial No. Range for slowness

(km/h)

1 10 – 40

2 0 – 40

3 10 – 50

4 10 – 30

5 15 – 40

6 20 – 40

7 10 – 40

8 10 – 30

9 15 – 40

10 20– 40

Table 4.1: Survey results.

The survey clearly reflects the difference in perception of the concept / linguistic variable

“slowness of speed” and the uncertainly associated with it. This uncertainty will not only

make the membership function creation difficult but will also hamper the controller

performance.

128

According to the data above, the left and right end points of the MF slow (S) are blurred

as shown in figure 4.1.

Figure 4.1: Triangular MFs when base end points have uncertainty associated with them.

This region is described as the footprint of uncertainty (FOU) in T-2 FS theory.

Somewhere in this FOU are located the lower and upper extremities of our desired MF.

There can be N membership functions in this region of uncertainty. The goal is to find

MF = MF (x) OR MF (x)... OR MF (x)N1 2desired

 In T-2 FS, each potential MF is assigned a weight, extending the concept into third

dimension. This makes representation and computation extremely difficult.

The challenging tasks associated with fuzzy control design has always been to

choose appropriate membership functions, minimum rule base and the most suitable

fuzzifier and defuzzifier. Having made these choices, the fuzzy controller has to be tuned

to deliver the desired response. Multiple simultaneous adjustments (rules, membership

functions and gains) make the optimum tuning even more difficult. Many techniques

have been used to overcome this difficulty including a phase plane technique for rule

base design [62], neural network techniques [29, 74] and gain phase margin analysis

technique [76].

Before any rules can be made we need to find the membership functions. Now

membership functions, as discussed above, have uncertainties associated with them

129

which have a trickle down effect on other processes of a fuzzy control system. The

research in this chapter proposes to tackle this root cause of uncertainty using a learning

approach. The learning approach adjusts these MFs and is also linked with steady state

error and overshoot, which are used to specify design requirements.

Almost all fuzzy controllers to date have been made using type-1 fuzzy systems

(T-1 FS). However, such fuzzy systems (FSs) have limited capabilities to directly handle

data uncertainties [71]. Our approach remains in type-1 but still achieves the purpose for

which type-2 was created.

Controllers, be they fuzzy or conventional, are robust when they have some

adaptability in them. Most adaptive fuzzy systems use neural networks to incorporate

adaptability and are called Adaptive Neuro Fuzzy Inference System (ANFIS) [75]. Such

adaptive techniques generally make use of some model of the system or signal that one is

trying to predict or control.

We will first discuss basics of fuzzy, very briefly and then present some results

gathered form our research on membership function design. These results will form the

basics of the adaptive fuzzy controller, named iterative learning fuzzy tuner (ILFT), in

this chapter.

4.2 Basics of Fuzzy Control

Although the founding father of fuzzy logic [94] initially expected its main

applications in economics, medicines, psychology, biology and linguistics, most of the

real applications have been developed in engineering system control. A typical block

diagram of a fuzzy control system is explained in figure 4.2.

Figure 4.2: Block diagram of a fuzzy control system.

130

Here r (k)j represents the reference signal for k = 1...N and j = 1...∞ . Variable j

represents the iteration number and k represents the samples. The error is represented by

e (k)j , the input to the plant is u (k)j and the next plant output is y (k +1)j . Using the

error the FLC produces the desired input to the plant.

It is recommended to normalize the universe of discourse of input and output

variables. Universe of discourse basically determines the applicable range for a

characteristic variable in the context of the system designed. Because of this

normalization, it is also recommend using the input and output scaling factors so as to

adjust input from sensors and output to actuators. The modified block diagram of the

fuzzy logic controller is described in figure 4.3 below.

Figure 4.3: Modified block diagram of a fuzzy control system.

Factors ge and gu are the input and output scaling factors. The Fuzzy Logic Controller

(FLC) adjusts the input to the plant. This input is multiplied by the output scaling factor

before being applied to the plant. The output of the FLC is dependent on the choice of all

four blocks of a fuzzy controller. These four blocks are shown in figure 4.4 below

Figure 4.4: A typical structure of a fuzzy controller.

131

Here U and V are the universes of discourse for input and output membership functions.

Universe of discourse is the n-dimensional Euclidean space nR . Fuzzifier is defined as a

mapping from a real valued point *x U∈ to fuzzy set 'A in U [103]. The input to the

fuzzifier is crisp. Typically a fuzzifier could be a Singleton fuzzifier, a Gaussian fuzzifier

or a Triangular fuzzifier. Singleton fuzzifier is represented as

*1 if x = xµ (x) =A' 0 otherwise

  
 
  

In a fuzzy inference engine, fuzzy logic principles are used to combine the fuzzy

IF-THEN rules in the fuzzy rule base into a mapping from a fuzzy set 'A in U to a fuzzy

set B' in V . There are many choices of inference engines. Some of the most popular

ones are product, minimum, Lukasiewicz, Zadeh and Dienes-Rescher inference engines.

Fuzzy rule base is the heart and soul of the fuzzy system. It contains rules of the

form

IF x1 is A1 and…and xn is An THEN y is B

Where x1,… xn are linguistic variables, A1… An and B are fuzzy sets.

Defuzzifier is defined as mapping from fuzzy set B' in V R⊂ (which is the

output of the fuzzy inference engine) to crisp point *y V∈ . The defuzzifier output is a

crisp value. Three of the most popular defuzzifiers are centre of gravity, centre average

and maximum defuzzifier.

4.3 Supporting Work

In order to find out the effect of linguistic uncertainties on Fuzzy controller and

because of it on membership functions, scaling factors, rule base, fuzzifier, defuzzifier

and on inference engine performances, a lot of research was done. This research

comprised simulations. These simulations were run for different systems and with

different combinations of the above mentioned factors. The data was analyzed and links

between required performance criteria like steady state error and percentage overshoot

132

were established. Some of the results achieved using a second order cruise control system

with input as force in Newtons (N) and output as velocity in m/sec are discussed below.

The system transfer function was given by

Y(s) 75= 2U(s) s + 20s + 75

(4.1)

Simulations were performed with different number of input and output

membership functions using both Mamdani and Sugeno type rule processing. In

Mamdani type rule processing both input and output of the fuzzy system are fuzzy sets

(i.e., words in natural languages). This creates problem while designing engineering

systems. In Sugeno type rule processing the consequent part of the rule is a mathematical

function of the input variables. This helps designers represent real-valued variables. The

results of some of the simulations, performed on system of equation (4.1) are discussed

below. One such simulation involved the use of 3 input MFs for error and 3 output MFs

for velocity as shown in figure 4.5.

Figure 4.5: Input Membership functions.

Here NB stands for Negative Big, Z stands for Zero and PB for Positive Big. Degree of

the input (force) membership function, is represented by µ(x) . The left and right end

points of the membership function are represented by ‘–a’ and ‘a’. The output

membership function is presented in figure 4.6.

133

Figure 4.6: Output Membership functions for Mamdani rule processing.

Here –b and b are the left and right end points of the output (velocity) membership

function. This output serves as an input to the plant. Research has shown that Sugeno

type rule processing works better for the proposed scheme. The output membership

functions for the Sugeno type rule processing is exhibited in figure 4.7.

Figure 4.7: Output Membership functions for Sugeno rule processing.

For all these membership functions, the end points are to be adaptively adjusted.

Response of the second order cruise control system (2G (z)) against a step input

with different values of ‘ a ’ are given in figure 4.8.

134

Figure 4.8: Response with different values of ‘ a ’.

Clearly the response is different for different membership function widths and it increases

with decreasing ‘a’. The control surfaces (input-output plot) with these membership

functions are shown in figure 4.9.

Figure 4.9: Control surfaces with different values of ‘ a ’.

135

The slope of the control surface is increasing with decrease in value of ‘a ’. These control

surfaces highlight the fact that Fuzzy Controller (FC) response can be varied with varying

membership function widths.

Response of the second order cruise control system for different output

membership function widths and the corresponding control surface plots are shown in

figure 4.10 and 4.11.

Figure 4.10: Response with different values of ‘ b ’.

Figure 4.11: Control surfaces with different values of ‘ b ’.

136

Response shows that a decrease in output membership function width or reducing the

value of end point ‘ b ’, decreases the output of the system. Also, reducing the value of

‘ b ’ reduces the slope of the control surface.

Simulations were also run to find the effect of ge and gu on the response. This

effect was recorded keeping the input and output membership functions fixed. The effect

of gu on system response is shown in figure 4.12. The input and output membership

function end point values for this result were, a = 1.0 and b = 1.0 .

Figure 4.12: Systems response with different values of gu .

The response shows gu ’s effect on damping and hence over-shoot in the system’s

response.

In a fuzzy controller there are different parameters to play with, like ge , gu , a ,

b , number of input and output membership functions and the number of rules. The

research aimed at finding a link or links between these parameters and the steady state

error, percentage overshoot and the peak time of the response. Lots of simulations and

tabulated results were analyzed and some conclusions were derived. Some of the results

are discussed below.

137

Table 4.2 presents the data showing values of steady state error, percentage

overshoot and peak time against a changing value of ‘ a ’, while keeping all other

parameters constant.

Input Membership

function end point

‘a’

Steady state Error

(sse)

% sse % over shoot Peak time

(sec)

0.000000001 0.000000266 0.0000266 -0.0000000998 4.22

0.00001 0.0000136 0.00136 -0.000995 3.9

0.0001 0.000107 0.0107 -0.0099 1.92

0.001 0.0010 0.1 -0.0980 1.469

0.01 0.0099 0.99 -0.94 1.02

0.02 0.0196 1.96 -1.83 0.89

0.03 0.0291 2.91 -2.69 0.81

0.04 0.0385 3.8 -3.54 0.76

0.05 0.0476 4.7 -4.35 0.72

0.06 0.0566 5.6 -5.16 0.69

0.07 0.0654 6.5 -5.94 0.66

0.08 0.0741 7.4 -6.71 0.64

0.125 0.1111 11.11 -10.0 0.57

0.25 0.2000 20 -18.1 0.47

0.375 0.2727 27 -25.1 0.42

0.5 0.3333 33 -31.2 0.39

0.625 0.3846 38 -36.7 0.38

0.75 0.4286 42 -41.5 0.39

0.875 0.4667 46 -45.7 0.41

1 0.5 50 -49.3 0.44

Table 4.2: Establishing a link between steady state error, over shoot and peak time with

‘ a ’.

138

This table hints at the movement of steady state response upwards and the movement of

peak overshoot down wards as the ‘ a ’ parameters is decreased.

The data showing the effect of changing ‘ b ’ while keeping other parameters

constant is tabulated in table 4.3.

Output Membership

function end point

‘b’

Steady state

Error

% steady state

error

% over shoot Peak time

0.1 0.5000 50 -50.00 5.00

0.2 0.2000 20 -18.14 0.47

0.3 0.1429 14.29 -8.50 0.30

0.4 0.1111 11.11 -1.83 0.239

0.5 0.0909 9.09 3.1868 0.204

0.6 0.0769 7.69 7.1604 0.180

0.7 0.0667 6.67 10.4233 0.163

0.8 0.0588 5.88 13.1750 0.150

0.9 0.0526 5.26 15.5355 0.140

1.0 0.0476 4.76 17.5989 0.131

Table 4.3: Establishing a link between steady state error, over shoot and peak time with

‘ b ’.

The table shows that the steady state response moves downwards as the parameter b is

decreased.

Simulations were also run on different systems to figure out which portion of

normalized error has more effect on steady state error, percentage over shoot and peak

time. Based on the results obtained from these simulations a mathematical frame work for

the scheme was developed which is discussed next.

139

4.4 Iterative Learning Fuzzy Tuner (ILFT)

Fuzzy controller designers are required to make a number of choices; choice

about the structure of the controller i.e. how many inputs and outputs the controller will

have, choice about the shape of membership functions i.e. triangular, gaussian etc.,

choice about the fuzzifier, rule processing, inference mechanism and defuzzificztion

method. But the most important choice is the choice of membership function end points

which can handle all uncertainties associated with fuzzy design.

Research results have shown that singleton fuzzifier, triangular input membership

functions, centre average defuzzifier and product inference engine works best for the

proposed controller. The block diagram of the complete controller is indicated in figure

4.13.

Figure 4.13: Block diagram of the proposed controller.

Here ssed is the desired steady state error, posd is the desired percentage over shoot,

r (k)j , e (k)j , u (k)j and y (k +1)j are the reference input, error, input to the plant and next

plant output at iteration j . Factors ge and gu are the input and output scaling factors.

Desired steady state error and percentage over shoot are supplied to Iterative Learning

Tuner (ILT). The ILT adjusts ge , gu and tunes the fuzzy logic controller (FLC) by

adaptively adjusting the membership function end points. The aim is to remove

140

uncertainty associated with linguistic variables and to converge with respect to given

steady state error and percentage overshoot. The learnt values of ge , gu and membership

function end points are stored in memory to be used in future iterations.

Taking a Sugeno type rule processing the input member ship functions proposed

are of the form given in figure 4.14 below.

Figure 4.14: Proposed Input Membership functions.

In figure 4.14 seven MFs are defined for error. End points of membership functions

a (k)j , where k = 1...n , are to be adjusted by the ILT block. Here n is the number of

member ship functions.

A Takagi-Sugeno-Kang (TSK) [54, 144] fuzzy system is constructed from the

following rules

IF x1 is lA1 and … and xn is lAn , THEN l l l ly = c +c x +...+c xn n0 1 1 (4.2)

Where lAi are fuzzy sets in U Ri ⊂ , lci are constants, 1, 2,...,l M= and i = 1,2,..., n .

Number of rules in the fuzzy rule base is denoted by M and n is the number of

membership functions. The IF parts of the rules are the same as in the ordinary fuzzy IF-

THEN rules, but the THEN parts are linear combinations of the input variables. Here

T n= (x ,..., x) U Rn1 ∈ ⊂x and y V∈ are input and output (linguistic) variables of the

fuzzy system, respectively. Given an input x , the output f(x) V R∈ ⊂ of the TSK fuzzy

141

system, with product inference engine, singleton fuzzifier and centre average defuzzifier,

is computed as the weighted average of the ly ’s in (4.2), that is

l lM y wl=1f(x)= lM wl=1

∑

∑

(4.3)

where the weights lw are computed as
nlw = µ lA (x)i=1 i i
∏ (4.4)

Equation (4.3) and (4.4) gives
nlM y (µ)l=1 lA (x)i=1 i if(x)= nM (µ)l=1 lA (x)i=1 i i

∑ ∏

∑ ∏

(4.5)

The output of the fuzzy controller is dependent on the input and output membership

functions. To see the behaviour of this TSK fuzzy system the following derivation is

made.

Let us take 2 membership functions PS (positive small) and PM (positive

medium) for the linguistic variable error (e) as shown in figure 4.15 below.

Figure 4.15: PS and PM membership function from figure 4.14.

The membership functions are triangular and their centres are marked as Em and Em+1.

The end points are adaptive (fuzzy) and two of the end points are labelled a (k)j and

142

a (k +1)j . Here j refers to current iteration. An error value at current iteration is given as

e .

Slope of line E a (k +1)m j = -1
a (k +1) - a (k)j j

Slope of line µ (e)a (k +1)E jm
=

-µ (e)Em
a (k +1) - ej

Slope of line a (k)Em+1j = 1
a (k +1) - a (k)j j

 and

Slope of line eE(m+1,j) =
1-µEm+1
a (k +1) - ej

Using the fact that

Slope of line E a (k +1)m j = Slope of line µ (e)a (k +1)E jm
 and

Slope of line a (k)Em+1j = Slope of line eE(m+1,j) , it can be shown that

a (k +1) - ejµ (e) =E a (k +1) - a (k)m j j

(4.6)

e - a (k)jµ (e) =E a (k +1) - a (k)m+1 j j

(4.7)

Taking the centre values of the output membership functions as b (k)j . As the approach

in this paper does not modify output member ship functions, b (k)j can be written as

b(k) . Using this definition of output membership function and the weighted average

defuzzifier, equation (4.5) can be written as

143

µ (e)b(k) + µ (e)b(k +1)E Em m+1f(x) =j µ (e) + µ (e)E Em m+1

(4.8)

Here f(x)j is the output of the fuzzy controller at iteration j with error value e . Putting

equation (4.6) and (4.7) in (4.8) gives

a (k +1) - e e - a (k)j jb(k) + b(k +1)
a (k +1) - a (k) a (k +1) - a (k)j j j j

f(x) =j a (k +1) - e e - a (k)j j+
a (k +1) - a (k) a (k +1) - a (k)j j j j

   
   
   
   

   
   
   
   

a (k +1)b(k) - eb(k) + eb(k +1) - a (k)b(k +1)j jf(x) =j a (k +1) - e + e - a (k)j j

a (k +1)b(k) - a (k)b(k +1)b(k +1) - b(k) j jf(x) = e +j a (k +1) - a (k) a (k +1) - a (k)j j j j

(4.9)

The end points a (k)j will take on different values as different pair of MFs are

considered.

Equation (4.9) shows that the fuzzy controller output is dependent both on the end

points of the input and output member ship functions. A decrease in width of the input

member ship function (i.e. change in a (k +1) - a (k)j j) will result in an increase in the

fuzzy controller output and vice versa. This gives us the capability of increasing and

decreasing the effective gain at different intervals of the control surface. Similar results

could be achieved by changing the difference, b(k +1) - b(k) , as can be achieved by

changing the difference, a (k +1) - a (k)j j .

144

For this scheme, proposal is made to keep a (1)j , a (4)j and a (7)j fixed at -1,0

and 1 respectively. Only modifications in a (5)j and a (6)j are done. The values or ranges

of the input MF end points are summarized in table 4.4.

a (1) = -1j a (2) = -a (6)j j a (3) = -a (5)j j a (4) = 0j

a (5) = [a (4),a (6)]j j j a (6) = [a (5),a (7)]j j j a (7) = 1j

Table 4.4: Input membership end point values.

This scheme proposes to keep the output membership function end points fixed.

The reason is that similar responses can be achieved with either input or output

membership function end point manipulations.

Research has also shown that it is better to divide the region evenly so that there is

equal space to move the end points in either direction. One group of suggested output

membership function end points are shown in table 4.5.

b(1) = -1 b(2) = -0.6 b(3) = -0.3 b(4) = 0

b(5) = 0.3 b(6) = 0.6 b(7) = 1

Table 4.5: Output membership end point values.

An example is given to illustrate the effect of input MF end point values on control

surface.

Example 4.1:

Taking a (5) = 0.4j and a (6) = 0.5j for the MFs Z and PS. The MFs are shown in

figure 4.16.

145

Figure 4.16: Z and PS membership functions from figure 4.14.

For k = 4 , equation (4.9) ⇒

a (5)b(4) - a (4)b(5)b(5) - b(4) j jf(x) = e +j a (5) - a (4) a (5) - a (4)j j j j

0.3- 0 0.4(0) - 0(0.3)f(x) = e +j 0.4 - 0 0.4 - 0

f(x) = 0.75ej (4.10)

This equation is effective for a range of error, e = [0,0.4] . Similarly for different values

of k different fuzzy controller output equations were obtained. Here k represents,

number of membership function end points. This gives different equations for different

ranges of errors. The results for some of the values of k are tabulated in table 4.6 below.

 k = 4

e = [0,0.4]

k = 5

e = [0.4,0.5]

k = 6

e = [0.5,1]

f(x) =j 0.75e 3e - 0.9 0.8e + 0.2

Table 4.6: Effective control surface equations for different ranges of error.

A plot of error vs. f(x)j is described in figure 4.17.

146

Figure 4.17: Control surface plot for the data in table 4.6.

Similar plots can be constructed for negative values of error. The above discussion shows

that one can make three linear input-output regions for different ranges of error for

positive error values. Similarly three input-output regions can be made for negative

values of error. Hence the proposed control surface can be taken as a piece-wise-linear

control surface.

Following the results from the research we propose the following procedure for

the up gradation of gu , a (5)j and a (6)j . This procedure mixes iterative learning with

fuzzy to achieve our design objectives.

1- Find gu such that the system is critically damped using the learning law

gu (k) = gu (k) ± µ (r (k) - y (k))guj+1 j j j (4.11)

Here µgu is the step size parameter for finding gu that will make the system critically

damped.

2- Change the value of a (5)j such that sse ssed≤ using the learning law

a (5) = a (5) ± µ (r (k) - y (k))ssej+1 j j j (4.12)

Here µsse is the step size parameter for correcting steady state error.

147

3- Change the value of a (6)j such that pos posd≤ using the learning law

a (6) = a (6) ± µ (r (k) - y (k))posj+1 j j j (4.13)

Here µpos is the step size parameter for correcting percentage over shoot.

The procedure is summarized using a flow diagram in figure 4.18.

Figure 4.18: Flow chart for fast design using ILT.

The flow chart suggests to calculate gu , a (5)j and a (6)j in respective order. In some

rare cases when the design requirements are not met, we need to increase MFs or

introduce derivative or integral of error. This situation is discussed in more detail in later

sections.

148

4.4.1 Simulations and results

The scheme presented in this chapter was tested through simulations. One of the

simulations involved a model of DC motor assuming rigid rotor and shaft. The motor was

of the form given in Appendix A, but with the following parameters. The parameters

were especially chosen to increase the difficulty in controller design.

J=0.01 kg.m2/s2 ; % moment of inertia of the motor

b=0.1 Nms ; % damping ratio of the mechanical system

K=0.05 Nm/Amp ; % electromotive force constant

R=1 ohm ; % electric resistance

L=0.5 H ; % electric inductance

The transfer function of the motor is given as

0.05G(s) = 20.005s + 0.06s + 0.1025

(4.14)

With a sampling time of Ts=0.01 the system of equation (4.14), in difference equation

form is given by

y(k +1) -1.885y(k) + 0.8869y(k -1) = 0.0004805u(k) + 0.0004617u(k -1) (4.15)

The aim was to design a speed controller which should endure less than 5%

steady state error (sse) and have less than 5% over shoot (pos). The required speed is 1

radian/second.

The open loop unit step response of the system is described in figure 4.19.

149

Figure 4.19: Open loop step response of the DC motor system.

The figure shows damped response. The system gain needs to be improved in order to

achieve the desired speed.

4.4.1.1 Conventional Proportional Controller

In order to gauge the performance of the proposed controller, conventional

proportional controller was also designed for the system. A feed back control system is

represented by a block diagram given in figure 4.20.

Figure 4.20: Block diagram of a feed back control system.

Here G(s) represents the plant and H(s) the feedback system. The over all transfer

function of the feed back control system in figure (4.20) with unity feed back H(s) = 1, is

given by

150

Y(s) G(s)=
R(s) 1+ G(s)

(4.16)

A block diagram of a conventional proportional controller with unity feedback is

given in figure 4.21.

Figure 4.21: A conventional proportional controller.

Here Kp is the proportional gain. The error, e (k)j which is the difference between the

actual output of the system, y (k +1)j and the reference signal r (k)j . This error is

multiplied with gain to produce the input, u (k)j to the Motor.

The aim is to design a conventional proportional controller with a steady state

error (ess) of less than 5% and percentage overshoot (pos) of less than 5%. The steady

state error to a unit step input is given by the following relationship.

1e =ss 1+ K G(0)p

(4.17)

Where G(0) is the DC gain of the plant. The motor transfer function in equation (4.14)

can also be written as

10G(s) = 2s +12s + 20.5
 or

10G(s) =
(s + 9.9)(s + 2.0)

(4.18)

Applying final value theorem on (4.18) and multiplying with Kp ⇒

10K epK G(0) = K lim G(s) = lim 0.5Kp p ps 0 s 0 (s + 9.9)(s + 2.0)
≅→ →

K G(0) 0.5Kp p≅ (4.19)

151

Putting this value in (4.17) for a required steady state error of 5% ⇒

1e = < 0.05ss 1+ K G(0)p

(4.20)

⇒

1+ 0.5K 20p ≥ (4.21)

To meet the steady state requirement, proportional gain should be, K 38p ≥ .

Taking K = 39p and using it in the standard feedback system equation with unity

feed back, equation (4.14), becomes

p

p

39(10)
2K G(s)Y(s) 390s +12s + 20.5= = = 239(10)R(s) 1+ K G(s) s +12s + 410.51+ 2s +12s + 20.5

2

2

Y(s) (20.26)= 0.95 2R(s) s + 2(0.296*20.26)s + (20.26)

(4.22)

Giving natural frequency and damping ratio values of

w 20.26n ≅ and ζ 0.296≅

The percentage overshoot at these values is

Percentage overshoot is

ζ-π()
21-ζ= 100e 37.7%≅

(4.23)

This is much higher then the required value. For higher values of Kp the overshoot is

even higher. For a percentage overshoot of less than 5%, Kp has to be 5.5≤ .

For this system, it is impossible to design a conventional Proportional controller

which can meet both design requirements. The best result w.r.t. steady state error, is

achieved with K = 39p . With that value the response to a step input is shown in figure

4.22.

152

Figure 4.22: Step response using a conventional proportional controller with K = 39p .

The response shows a high overshoot while the steady state error is near the required

limit. The input-output mapping of the proportional controller with K = 39p is shown in

figure 4.23 below.

Figure 4.23: Input-output plot with K = 39p .

As expected the proportional controller produced a linear response.

153

4.4.1.2 Iterative Learning Fuzzy Tuner

Some simulation results are discussed in this section.

4.4.1.2.1 DC Motor

Using the same system as given in equation (4.14), a controller was designed to

achieve same design requirements as in section 4.4.1.1. The universe of discourse for all

linguistic variables was normalized between [-1,1] i.e. U = [-1,1] . The membership

function end points and their permissible ranges were taken from table 4.4 and 4.5.

The proposed scheme adjusts a (5)j and a (6)j to tackle linguistic uncertainty and

also helps in meeting the steady state and percentage overshoot requirements. The scaling

factors gu and ge are also adjusted, if required. Though a (5)j and a (6)j can take up any

initial starting value within their permissible range, it is recommended, without any loss

of generality to start with values that divide the Universe of discourse evenly. For this

simulation, values of a (5) = 0.3j and a (6) = 0.6j were chosen which divides the range

reasonably, though any other values could have also been chosen. The values of ge and

gu are given a starting value of 1, suggesting that there is no initial input and output

scaling. In brief, the initial values chosen were

a (5) = 0.3j , a (6) = 0.6j , g = 1.0e and g = 1.0u

A set of 7 Membership functions for input variable (error) for FLC, of the form

in figure 4.14, was used. The rule base of the fuzzy controller is shown in table 4.7.

154

NB

NM

NS

Z

PS

PM

PB

e (k)j -1 a (2)j a (3)j 0 a (5)j a (6)j 1

u (k)j -1 -0.6 -0.3 0 0.3 0.6 1

Table 4.7: Rule base for proposed scheme.

After learning gu using equation (4.11) with a step size value of µ = 0.1gu , the

behaviour of percentage over shoot (pos) is presented in figure 4.24. It took 19 iterations

to learn gu .

Figure 4.24: Percentage overshoot vs. number of iterations.

Using a value of µ = 0.01sse and µ = 0.01pos in equation (4.12) and (4.13), the value of

a (5)j and a (6)j were learnt after 10 and 13 iterations. The plot of the history of a (5)j

and a (6)j during this learning phase is given in figure 4.25.

155

Figure 4.25: Learning values of a (5)j and a (6)j as iterations increase.

The output of the system, as steady state error was progressively reduced, is shown in

figure 4.26.

Figure 4.26: Plant output as iterations increase, while learning a (5)j .

156

After the values of gu, a (5)j , a (6)j are learnt, the control surface, input membership

functions and the step response of the overall scheme are shown in figure 4.27, 4.28 and

4.29.

Figure 4.27: Control surface learnt by the system.

Figure 4.28: Learnt membership functions.

157

Figure 4.29: Step response after learning.

Figure 4.27 shows that a piece-wise-linear control surface was learnt by the ILFC

scheme. Figure 4.28 shows the end points of the input membership functions. The final

response in figure 4.29 shows that both the design requirements have been met without

the introduction of integral or derivative of error. The behaviour of error is shown in

figure 4.30.

Figure 4.30: Behaviour of error.

158

The system was able to learn from an initial values of g = 1.0u , a (5) = 0.3j and

a (6) = 0.6j to a final values of g = 11.68u , a (5) = 0.0846j and a (6) = 0.7626j . Looking

at figure 4.27, we can conclude that there are 3 regions of interest for positive values of

error. Similar 3 regions exist for negative values of error. The effective gain which is the

slope of the lines in these regions is

41.4 if 0 e a (5)j
K = 4.67 if a (5) e a (6)p j j

19.6 if a (6) e 1j

 ≤ ≤ 
 ≤ ≤ 
 

≤ ≤ 
 

(4.24)

The combination of ILC and fuzzy has transformed the controller as if it were a

combination of three controllers, for positive values of error. If we take both positive and

negative values, it’s a six controller in one. Each controller is effective within its defined

range of error only. This gives the capability to increase or decrease the gain in small

intervals to meet our design requirements.

4.4.1.2.2 A non-linear system

Another set of simulations involved a second order coupled system used by [118].

The system equations are given as

x (k +1) = x (k) + 0.01x (k) + 0.01u(k)1 1 2 (4.25)

x (k +1) = 0.1x (k) + 0.97x (k)2 1 2 (4.26)

y(k +1) = x (k +1)1 (4.27)

159

The plant was required to follow a step reference signal. The initial values of 1x and x2

were set as x (0) = 11 and x (0) = 12 .

Figure 4.31 shows the learning history of gu , while figure 4.32 shows the

learning history of a (5)j and a (6)j .

Figure 4.31: Learning values of gu as iterations increase.

Figure 4.32: Learning values of a (5)j and a (6)j as iterations increase.

160

It took 2, 20 and 1 iterations to learn gu , a (5)j and a (6)j respectively.

After these parameters were learnt, the system produced the response as indicated

in figure 4.33.

Figure 4.33: Step response after learning.

The response shows that both the design requirements are met. Furthermore, the

uncertainty in membership function design is also catered for. The learnt control surface

and the learnt membership functions are shown in figures 4.34 and 4.35.

Figure 4.34: Control surface learnt by the system.

161

Figure 4.35: Learnt membership functions.

Again, the control surface is nonlinear and the membership functions learnt are squeezed

together in the middle and expand away at the ends. The behaviour of error as shown in

figure 4.36 below indicates a sharp decrease in error with time.

Figure 4.36: Trend of error vs. time.

162

Determining stability and convergence criteria for fuzzy based systems is a very

challenging task. In the following section we present a novel approach to judge the

stability of the Iterative Learning Fuzzy Tuner (ILFT).

4.4.2 Stability and convergence

The proposed approach (ILFT), with 7 input and output membership functions,

behaves as if there are 6 proportional controllers, which operate one at a time, for

different ranges of errors. As three of the controllers, for negative values of errors, have

same gains as those for positive error values, we can assume that basically there are three

switch able proportional controllers. The ranges for positive errors are [0,a (5)]j ,

[a (5),a (6)]j j and [a (6),1]j . These ranges are named region1, region2 and region 3. A

conceptual block diagram alternative for the approach in figure 4.13, with positive error

values is described in figure 4.37.

Figure 4.37: Conceptual view of the approach.

Here Kp1 is the gain when error has values [0,a (5)]j , Kp2 is the gain when error has

values [a (5),a (6)]j j and Kp3 is the gain when error has values [a (6),1]j .

Mathematically

163

K if 0 abs(e) a (5)p1 j
K = K if a (5) abs(e) a (6)p p2 j j

K if a (6) abs(e) 1p3 j

 ≤ ≤ 
 ≤ ≤ 
 

≤ ≤ 
 

(4.28)

For the motor speed control system, as seen from equation (4.24), the gains learnt

are 41.4 in [0,a (5)]j range, 4.67 in [a (5),a (6)]j j range and 19.6 in [a (6),1]j range. The

gain is relatively high for very large error, to quickly reduce the error. As the error is

reduced, the gain is lowered to avoid overshoot. Once the error is low enough, high gain

is applied to reduce the steady state error. All this is automatically calculated by the ILT.

This conceptual view gives us the ease to use the well known methods like Root

locus, Nyquist stability criteria, Routh’s stability criteria, Phase Plane method etc. to

determine the stability. Discrete Root locus of the DC motor model of equation (4.14) is

described in figure 4.38.

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

System: motorscd_P
Gain: 278

Pole: 0.87 + 0.497i
Damping: -0.00332

Overshoot (%): 101
Frequency (rad/sec): 51.9

Root Locus

Real Axis

Im
ag

in
ar

y
Ax

is

Figure 4.38: Root locus of the system.

The plot shows that there is no stability problem with K = [-278, 278]p range.

A universal reliable method to determine the stability of a fuzzy control system

has not yet been developed though some methods have been proposed based on Liapunov

second method. We now use the following assumptions:-

164

(a) The reference signal r (k)j is repeatable over a finite interval [0,T], where T is a

finite positive constant.

(b) The system is stable under fuzzy control before the iterative learning algorithm is

introduced.

(c) The value of a (5)j is bounded between [0,a (6)]j and the value of a (6)j is

bounded between [a (5),1]j .

Using the above assumptions, if the conventional controller of figure 4.21 is stable for

K = Kp p1, K = Kp p2 and K = Kp p3 , our proposed approach will also be stable.

It was noted that lower values of error had more impact on steady state error

while higher values of error had more impact on percentage overshoot. The behaviour is

shown in figure 4.39.

Figure 4.39: Effect of moving end points a (5)j and a (6)j .

This effect is discussed w.r.t. regions below:-

Region 1: From 0 to a (5)j

If the value of a (5)j is moved towards zero the slope of the control surface in this

region increases. In this region we try to reduce steady state error. The end point a (5)j is

165

selected to reduce this error. A decrease in a (5)j moves the system response in the

steady state region upwards, while an increase in a (5)j moves the response downwards

(figure 4.39). Hence the ILT is always selecting a (5)j to reduce steady state error.

Region 2: From a (5)j to a (6)j

Reducing a (5)j reduces the slope of the control surface while reducing a (6)j

increases the slope of the control surface in this region. This region has no or very

negligible impact on steady state error. The gain should be low enough to avoid over

shoot.

Region 3: From a (6)j to 1

Increasing a (6)j increases the slope of the control surface in this region. When

this region is effective the error is large. The end point a (6)j is selected according to

equation (4.13) so as to give a speedy initial response.

Similar arguments can be made for negative values of error. Hence, if the assumptions

are fulfilled, the system will not be unstable because of ILT and will try to converge

according to conventional control theory [135].

The effectiveness of ILFT in tracking different trajectories, in real time, is

discussed in the next section.

4.4.3 Tracking a desired trajectory in real time

Tracking is an important practical problem. It becomes a difficult problem,

especially when the target changes its position continuously. To demonstrate the

effectiveness of this approach, different trajectories were tracked in real time; one of

them was a sinusoidal signal. This tracking was done after the learning of the parameter

had been achieved as discussed before. For this demonstration, system of equation (4.14)

was used and was given a task to follow sinusoidal speed requirements. These speed

166

requirements meant that the motor had to move in one direction with a maximum of 1

rad/sec speed and then in the opposite direction, to achieve the same speed. The plot in

figure 4.40 below shows the results.

Figure 4.40: Tracking a sinusoidal reference trajectory.

Figure 4.40 shows that the system was quite effectively able to track the desired response.

This should be noted that the scheme learnt the parameters for < 5% steady state error.

For a system with lesser steady state error requirements, even better performance was

achieved. A plot of error vs. time is shown in figure 4.41.

Figure 4.41: Plot of error with time.

167

The same system with the same learnt parameters was made to track other

arbitrary trajectories also. One of the results from such tracking is shown in figure 4.42

below.

Figure 4.42: The output of the system and the reference trajectory.

The behaviour of error with respect to time is plotted in figure 4.43. The plot shows that

the system was able to track the reference trajectory successfully.

Figure 4.43: Behaviour of error with time.

168

After an initial error the system was able to track the trajectory perfectly and the initial

overshoot is also with in our desired limits.

There can be situations where the design requirements can not be fully met by

considering the error alone. The best solution in this case is to introduce more inputs, like

derivative of error or integral of error. This scenario is discussed now.

4.4.4 Effect of considering derivative of error

We know from conventional PID control design that the derivative part can

reduce percentage overshoot and the integral part can reduce steady state error. Similar

behaviour was observed for this scheme. For systems whose performance specifications

can not be met with only error as input membership function, it is proposed to introduce

derivative of error, integral or sum of error also, as per requirement. Derivative of error

should be considered if overshoot requirements are not met and integral of error should

be considered if steady state error requirements are not met. Figure 4.44 below shows the

block diagram of the approach, when rate of change of error is considered.

Figure 4.44: Block diagram of the proposed controller considering rate of change of error

also.

The only change as compared to figure 4.13 is the introduction of another input i.e.

change of error. This increases the type of the fuzzy controller.

There can be five different combinations of e and ∆e .

169

Case 1: e is +ve and ∆e is +ve

 This implies that the present error is greater than old error i.e. e (k) > e (k -1)j j .

The output is going in the wrong direction. The output is lower than the reference signal

i.e. y (k) < r (k)j j and moving away from it. Therefore, the output should be moved up in

the positive direction hence PB,PM,PS should be dominant.

Case 2: e is +ve and ∆e is -ve

 This implies that the present error is less than the old error i.e. e (k) < e (k -1)j j .

The output is going in the right direction. The output is lower than the reference signal

i.e. y (k) < r (k)j j and moving towards it.

Case 3: e is -ve and ∆e is +ve

 This implies that the present error is less than the old error i.e. e (k) < e (k -1)j j .

The output is going in the right direction. The output is greater than the reference signal

i.e. y (k) > r (k)j j and moving towards it. Therefore if negative input membership

function is dominant output should be negative and if positive input membership function

is dominant output should be positive.

Case 4: e is -ve and ∆e is –ve

 This implies that the present error is greater than old error i.e. e (k) > e (k -1)j j .

The output is going in the wrong direction. The output is greater than the reference signal

i.e. y (k) > r (k)j j and moving away from it. Therefore the output should be moved in the

negative direction i.e. NB,NM,MS.

Case 5: e is 0 and ∆e is 0

 This implies that the present error is equal to old error i.e. e (k) = e (k -1)j j . The

output is the desired output. No change in output is desired. Z membership function

should be dominant.

Using the discussion above the following rule base is proposed.

170

 e
e∆

NB NM NS Z PS PM PB

NB NB NB NB NB NM NS Z

NM NB NB NB NM NS Z PS

NS NB NB NM NS Z PS PM

Z NB NM NS Z PS PM PB

PS NM NS Z PS PM PB PB

PM NS Z PS PM PB PB PB

PB Z PS PM PB PB PB PB

Table 4.8: Proposed rule Base for the controller.

The introduction of rate of change as the second input, suppresses the overshoot.

This is obvious in the response of the system as a (5)j is learnt. This response as a (5)j

was learnt against different number of iterations is shown in figure 4.45.

Figure 4.45: Plant output as iterations increase, while learning a (5)j .

It took just 5 iterations to learn a (5)j and no learning was required for a (6)j as

introduction of the derivative term reduced the overshoot within the required limit. After

the learning process was finished the control surface learnt is shown in figure 4.46 below.

171

Figure 4.46: Control surface of the controller.

A highly nonlinear control surface is learnt automatically by the proposed scheme. With

this controller the behaviour of error for a desired response of 1 rad/sec is plotted in

figure 4.47.

Figure 4.47: Behaviour of error.

A comparison of this plot with that in figure 4.30 shows that even the behaviour of error

is non oscillatory due to introduction of rate of change of error. The parameters learnt

172

during the learning phase were g = 11.68u , a (5) = 0.0838j and a (6) = 0.6j . No learning

was required for parameter a (6)j .

Number of simulations, also considering rate of change of error and integral of

error on different systems led to the formation of a procedure for the design of ILFT. The

procedure is described in figure 4.48.

Figure 4.48: Flow chart showing the procedure for selecting rate and/or integral of error.

If rise time is also an issue care must be taken in introducing ∆e as it has an impact on

rise time of the system also.

4.4.5 Stability using linguistic trajectory

Fuzzy systems are non-linear systems. From conventional non-linear control

theory we know that the stability of a non-linear system not only depend on shape and

173

amplitude of input signal, but also on location of initial conditions. One method used for

stability analysis of non-linear systems is the phase plane method. Control systems

designers have been using phase plane analysis to generate motion trajectories of the

system in the state space domain. The qualitative analysis of the trajectories gives

information concerning stability, robustness and convergence. The main advantage of the

phase plane analysis is its graphical nature which allows us to visualize what goes on in a

non-linear system. These graphs are plotted for different initial conditions without having

to solve any equation analytically.

This method can also be used to study the stability of fuzzy based systems by

observing the sequence in which the rules are fired. If we draw this as a trajectory on a

rule table, the error and change of error should be decreasing during the rule firing

process [101, 103]. This means that we have to move along this trajectory from the edges

of the table to its centre. For an unstable system there is an inverse trajectory or at least

this trend is not present.

Let Tx = (x , x)1 2 be the state. We consider the following fuzzy control system

.
x = f(x) + bu (4.29)

u = φ(x) (4.30)

Here f(x) represents plants dynamics and is a nonlinear vector function, b is a two-

dimensional vector, u is a scalar control variable and φ(x) is a two input one output

fuzzy system. We define N1 and N2 fuzzy sets to cover the domains of x1 and x2 . We

also suppose that the fuzzy rule base of φ(x) consists of N1 x N2 rules. Let the rue be of

the form in equation (4.2). We say that the point (x , x)1 2 in the phase belongs to rule *l

if it holds that

µ (x)*µ (x) µ (x)*µ (x)1 2 1 2
l* l* l l
A A A A1 2 1 2

≥ (4.31)

For all *l l≠ , where * represents t-norm.

The tangent vector of the state trajectory equals the summation of vector field

f(x) and vector field bφ(x) as shown in figure 4.49.

174

Figure 4.49: State trajectory moves along the direction of f(x) + bφ(x)

The subspace φ(x) = 0 is a line called the switching line. When the open loop system

.
x = f(x) is stable and the control u = φ(x) tries to lead the system trajectory towards the

switching line, the plant component f(x) has a greater influence which makes the

trajectory converge to the equilibrium point. On the other hand if the open loop system is

unstable and the control tries to stabilize the system. At this moment if the state trajectory

moves near the switching line the unstable plant component f(x) has a greater influence

which makes the state trajectory diverge away from the equilibrium point. This

interaction between the control and the plant component makes the state oscillate around

the equilibrium point and a limit cycle is formed.

Considering b = 1 the equilibrium point of the fuzzy system described by

equations (4.29) and (4.30) is determined by
.
x = f(x) +φ(x) = 0 (4.32)

Since f(0) = φ(0) = 0 , the origin is an equilibrium point. For this condition to be stable a

sufficient condition is [103].

' '
x=0

d [f(x) +φ(x)] | = f (0) +φ (0) < 0
dx

(4.33)

Consequently the closed loop system in equation (4.29) and (4.30) is globally stable if the

following two conditions are satisfied [103].

175

' 'f (0) +φ (0) < 0 (4.34)

φ(x) < f(x) , x 0∀ ≠ (4.35)

The linguistic trajectory for the rule base in table 4.8 and a desired speed of 1 rad/sec is

shown in table 4.9 below.

e

e∆

NB NM NS Z PS PM PB

NB NB NB NB NB NM NS Z

NM NB NB NB NM NS Z PS

NS NB NB NM NS Z PS PM

Z NB NM NS Z PS PM PB

PS NM NS Z PS PM PB PB

PM NS Z PS PM PB PB PB

PB Z PS PM PB PB PB PB

Table 4.9: Linguistic trajectory for simulation results in section 4.4.1.6.

The trajectory shows smooth reduction of error. Also there are no stability issues as the

trajectory is always moving toward the centre Z membership function. The rule base in

table 4.8 can be modified if a different trajectory needs to be followed. The linguistic

trajectory plot also makes this modification easier.

4.5 A Real Time Tracker Using ILT

A classical controller can become highly complex when a system is non linear or

has complex dynamics. On the other hand, humans tend to take care of such complex

problems like tracking, fairly easily. Moreover, humans are unaware of the mathematical

model of the system. Even while driving a car, humans do not have a model of the car,

driver or distance in mind, but just an idea of the error or its range. This proposed ILT

176

based controller discussed earlier can be easily applied to systems where the

mathematical model is unavailable.

This research presents a real time tracker based on ILFT scheme discussed earlier

and shows its effectiveness using simulations as well as practical demonstrations.

The block diagram of the real time tracker is presented in figure 4.50.

Figure 4.50: Block diagram of the real time tracker.

Here dx (k)j and dy (k)j are the desired x and y positions of the Scanner for k = 1...N

and j = 1...∞ . Variable j represents the iteration number and k represents the samples.

During the tracking mode, the value of k is 1 as each sample is taken as new iteration

with its initial state as the final state of the previous iteration. The errors in the x and y

plane are represented by ex (k)j and ey (k)j . These error values are fed to two FLC

blocks. FLC1 controls the movements of Scanner for x axis and FLC2 controls the

movements for y axis. The output of these blocks is converted into appropriate signals for

the Scanner, using the output scaling factors gu1j, gu2j and the Motor Driver Interface

card. The inputs to the Scanner are ux (k)j and uy (k)j . Each input is used to control one

axis of the XY plane. The Scanner has a camera mounted on it which takes pictures of the

scene regularly. The Image processing module detects the target and locates its current x

177

and y positions marked yx (k)j and yy (k)j . Using this target position the error signal is

generated.

The acceptable or desired steady state error (ssed) and the acceptable or desired

percentage over shoot (posd) is fed to the ILT block. The ILT adjusts gu1j, gu2j and

tunes the fuzzy logic controllers (FLCs) by adaptively adjusting the membership function

end points. The aim is to converge with respect to given desired steady state error and

percentage overshoot. The learnt values of gu1j, gu2j and membership function end

point values are stored in memory to be used in future iterations. The ILT block uses the

error signals and learning laws to adjust these parameters.

The Scanner for simulation purposes is a 2 Degree of freedom tracking platform

(2DOFTP), the details of which are given in section 2.9. The camera used had selectable

pixel resolution of 640x480 or 320x240. The pixel coordinates for a 320x240 camera

resolution are shown in figure 4.51 below

Figure 4.51: Camera pixel coordinates.

These camera pixel coordinates were converted to a virtual coordinate for mathematical

convenience as in figure 4.52.

Figure 4.52: Virtual coordinates and Centre of Camera (COC) i.e. point (0,0).

The aim is to have the target at (0,0) i.e.

(-160,120)

(160,120)

(0,0)
(160,120)

(-160,-120)

178

dx (k) = 0j and dy (k) = 0j

The errors ex (k)j and ey (k)j are normalized before being supplied to the FLC

blocks using the equations

dx (k) - yx (k)j jex (k) =j 160

(4.36)

dy (k) - yy (k)j jey (k) =j 120

(4.37)

The desired x, y positions y dx(k)j , y dy(k)j the current x,y positions yx (k)j , yy (k)j and

the errors in x,y directions ex (k)j , ey (k)j all are in pixels. The 7 input MFs for error and

7 output membership functions for voltage were of the form in figure 4.14 for both FLC

blocks. The membership function end points were renamed as

a (1) = ax (1)j j , a (2) = ax (2)j j , a (3) = ax (3)j j , a (4) = ax (4)j j , a (5) = ax (5)j j ,

a (6) = ax (6)j j and a (7) = ax (7)j j for FLC1 block and

a (1) = ay (1)j j , a (2) = ay (2)j j , a (3) = ay (3)j j , a (4) = ay (4)j j , a (5) = ay (5)j j ,

a (6) = ay (6)j j and a (7) = ay (7)j j for FLC2 block.

The ILT learning procedure, described in equations (4.11), (4.12) and (4.13) is

modified for FLC1 block as:-

if percentage over shoot < 0.0

gu1 = gu1 + µ (r (k) - y (k))gu1j+1 j j j (4.38)

else

gu1 = gu1 -µ (r (k) - y (k))gu1j+1 j j j (4.39)

if ydx (k) - yx (k) > ssej j d

179

ax (5) = ax (5) -µ (r (k) - y (k))ssej+1 j j j (4.40)

else

ax (5) = ax (5) + µ (r (k) - y (k))ssej+1 j j j (4.41)

ILT learning equation for percentage overshoot is modified as :-

if pos > posj d

ax (6) = ax (6) + µ (r (k) - y (k))posj+1 j j j (4.42)

else

ax (6) = ax (6) -µ (r (k) - y (k))posj+1 j j j (4.43)

Here µpos is the step size parameter for correcting percentage over shoot and posj is the

percentage overshoot value for the current iteration. Similar equations can be derived for

FLC2 block tuning.

4.5.1 Simulation results

Using the motor of equation (4.14), simulations were run to test the real time

tracker. The aim is to make the ILT based controller tune for less than 2% steady state

error and less than 5% percentage over shoot. This amounts to a steady state error of
± 3.2 pixels in x direction and ± 2.4 pixels in y direction. The permissible overshoot in x

direction is ± 8 pixels and ± 6 pixels in y direction. The learnt values of the two output

scaling factors and the membership function endpoints were gu1j=11.68,

ax (5)j =0.0846, ax (6)j =0.7625, gu2j=11.68, ay (5)j =0.0846 and ay (6)j =0.7625.

Figures 4.52 shows the Scanner tracking a static target at x=200 and y = 100. The

target is tracked with in one second of operation.

180

Figure 4.52: Response of the Scanner against a static target.

The behaviour of errors in the x and y plane are shown in figure 4.53 and 4.54.

Figure 4.53: Behaviour of error in the x axis as the object is tracked.

181

Figure 4.54: Behaviour of error in the y axis as the object is tracked.

Both figures show quick decrease in error. The Scanner output w.r.t. the desired target

positions are shown in figure 4.55 and 4.56.

Figure 4.55: Position of Scanner in x axis as the object is tracked.

182

Figure 4.56: Position of Scanner in y axis as the object is tracked.

The trajectory followed by the Scanner as it tries to track the target is shown in figure

4.57. The trajectory has a converging shape.

Figure 4.57: Trajectory of the Scanner in the XY plane.

Moving targets were also successfully tracked using this setup. One such tracking

performance is exhibited in figure 4.58.

183

Figure 4.58: Response of the Scanner against a moving target.

For this moving target the behaviour of errors in the x and y plane are shown in figure

4.59 and 4.60.

Figure 4.59: Behaviour of error in the x axis as the object is tracked.

184

Figure 4.60: Behaviour of error in the y axis as the object is tracked.

The hump shows the time when the target moved i.e. after 1 sec. A plot of the output

w.r.t. the desired target positions in the x axis is shown in figure 4.61.

Figure 4.61: Position of Scanner in x axis as the object is tracked.

The trajectory taken by the Scanner as the moving target is tracked is shown in figure

4.62 below. The figure clearly shows the real time tracker converging at the target.

185

Figure 4.62: Trajectory of the Scanner in the XY plane.

Moving targets were effectively tracked by the ILFT.

Researchers over the years have developed some innovative 2DOF devices like

[3,4] where they propose to put both actuators in the base. Camera on the other hand has

also been used by some [87,88] to track objects like human head. The camera can also

have zoom facility to increase range and reduce error. We now describe the construction

of such a device. This device can, not only be used to test ILFT but also opens up many

industrial and commercial applications.

4.5.2 Experimental setup

A practical setup was developed to test the performance of the controller in real

word situation. The practical setup described here consists of 3 blocks, a target capturing

and processing block, a controller and an electro mechanical mechanism to manipulate

the position. The proposed tracking system consists of a camera and Image processing

module for capturing and processing. It uses the ILT based controller discussed

previously as a controller and uses a device called Scanner S-101 for mechanical

movements. The S-101 was specially manufactured as a verifying tool for these

experiments.

186

4.5.2.1 Real time tracking system

The constructed real time tracking system consists of a device called Scanner S-

101, an interface card, a supply unit, a camera, simulated target board and control

software. It is able to scan a predefined area for the presence of a target. It has a

positioning accuracy of ±1 pixels. This means that for a fixed object position the device

is able to move at least ±1 pixels in either direction of the target. A webcam is used to

capture the image of the area and that image is processed to identify the target.

The S-101 Scanner is a two degree of freedom (2 DOF) device. Travel ranges are
± 90o in both the directions from its centre point. Movements in two degrees of freedom

are accomplished using 2 DC mini motors, which are connected to the interface card

through a connector. Limit switches are attached to the mechanical part to limit the

movement of the Scanner. A reed switch and magnet mechanism is used to help the

platform move to its initial position. The initial position is the centre position of the XY

plane. The status signals from the limit switches and the reed switches are read through

the same interface card.

The Scanner is controlled by the ILT based controller discussed earlier. The

interface card accepts commands via a parallel communication link from the host PC. On

command, pulse width modulated signals are passed to the motors.

4.5.2.2 The S-101

The S-101 weighs about 655gms without the camera. It is shown in figure 4.63.

187

Figure 4.63: The Scanner S-101.

Major construction of the S-101 was carried out with 8mm Plexiglas (Acrylic glass)

sheet. The main structure is attached with a circular platform (Φ 123mm). Two round

armed yoke brackets of Plexiglas were also fitted on this circular platform using self

threading screws. These brackets are 100mm apart and parallel to each other. The yoke

brackets hold the WEB-Cam plate (80x93x6mm). The WEB-Cam plate holds the camera.

To assemble this structure a shaft (Φ 8mm x 153mm) was machined into the WEB-Cam

plate. Four 3.5mm holes were drilled into the shaft and threaded with 3mm threading tap.

The WEB-Cam plate was screwed in the holes with four 3mm countersunk screws. After

proper fixing and marking, the plate was unscrewed from the shaft. The shaft was then

cut in such a way that 80mm portion was removed from the middle. The WEB-Cam plate

was fixed firmly on the shaft again. The shaft preparation sequence and WEB-Cam plate

fixation is shown in figure 4.64. This procedure helps to achieve coaxial alignment of

both halves of the shaft.

188

Figure 4.64: (a= shaft, b= groove making, c= drilling and threading, d=fixing of the

WEB-Cam plate, e=dismantling, f=cutting into two halves, g=reassembling, h=actual

configuration)

One half of the WEB-Cam plate shaft was fitted with a brass spur gear while the other

was fitted with lever for limit switches.

Two spur gear modules (SGM) were fabricated with commonly available gears

from used VCRs. The SGMs are derived from worm gear module (WGM). Worm gears

are used as driver gears to increase power and reduce speed of the motors. A gear box

designed with worm gears have a considerably smaller volume then that designed from

spur gears alone. Worm gears also integrate the torque value and have self locking or self

braking property which is essential to reduce skew and to give more control. The SGM

and WGM are independently adjustable to help reduce the latch.

The gear ratio between the SGM and brass spur gear is 15:1 giving a reduction in

speed by a factor of 15 while increasing the torque by the same amount.

The Scanner has a tripod stand for better balance. To keep the centre of mass

lower, for balance, the tripod assembly is metallic. This helps the Scanner to keep its

ground as it moves while tracking a target. Connected to the tripod centre is a shaft on

which the whole assembly is mounted. The shaft was welded vertically to a tripod. The

free end of the shaft was machined for 6M threads. A brass spur gear was fixed to the

shaft at a desired height. A bearing block taken out from an old floppy drive was fixed in

189

the middle of the circular platform. The circular platform also holds a gear module

similar to the one attached with the yoke bracket. When the WGM rotates the circular

platform rotates. All the metallic gears used in the construction were machined to reduce

weight by reducing the thickness of the gears and cutting holes in them.

The two yoke blocks were fitted with a rib for rigidity. The two yolk blocks were

provided with plain bush bearing for the 8mm shaft of the WEB-Cam plate. The plain

bush bearing are light weight and give jerk free movement. A M.S. sheet mounting is

fabricated to fix the camera on the WEB-Cam plate.

The SGM consists of both metallic and plastic gears to compensate for spur gear

back lash as well as to give better performance even with less lubrication. The metal

gears are of Φ53 mm and Φ47 mm. Holes are cut through the metal gears to reduce

weight. The two gear box assemblies are shown in figure 4.65.

Figure 4.65: Gear boxes assemblies.

Two limit switches are used, for each degree of freedom to limit the movement.

The limit switches cut off the supply immediately to protect the mechanical system. The

limit switches and the associated electrical circuit is shown in figure 4.66.

190

Figure 4.66: Limit switches to protect the assembly.

The compact Scanner is capable of a wide range of rotational movements with great

accuracy. Two MITSUMI M15E-2 DC mini motors are mounted at the platform. These

DC mini motors have a voltage range of 1.6 to 8.5 V and a no load rotational speed of

9100rpm. A 40mA current at no load produces a torque of 3.92 mNm. These motors have

dimensions of only 26.5x 12mm keeping the total assembly weight and size small.

The Scanner also has a mechanism to initialize itself. Two reed switches and bar

magnet assemblies are positioned so as to generate signals just at the moment when base

plate and the WEB-Cam plate are at the centre. The components are shown in figure 4.67.

Figure 4.67: Reed switch and magnet assembly.

The camera used is a normal webcam (Creative Live pro) which has a weight of

300 gms.

Reed
switch

Magnet

Magnet

Reed
switch

191

4.5.2.3 Target Simulation Board (TSB)

For target generation, a Light Emitting Diode (LED) based board was developed.

Thirty six LEDs of red colour were placed on a wooden square board at regular intervals

to simulate potential targets. The target board also has a green LED at the centre for

quick Scanner initialization. This initialization support is in addition to the reed relay and

magnet structure present in the S-101. The target board also has a switch board (remote

console) to switch on the LEDs. The diagram of the target board is presented in figure

4.68.

Figure 4.68: Target Simulation Board.

4.5.2.4 Interface card

Communication between PC and S-101 was done through the Interface card. The

card also supplied the power to the S-101. A picture of the card is described in figure

4.69.

Figure 4.69: Interface card.

To Power
Supply

To S-101

To PC

Switch box

Adaptor

Center
green LED
for
positioning

192

4.5.2.5 Scanner coordinate system

The two degrees of freedom of the scanner are explained in figure 4.70 below.

Figure 4.70: Geometrical coordinates of the S-101.

The origin of the coordinate system XYZ, is located at the intersection of the centre of

the base disc and the centre of the camera. This is the initial position of the S-101. The w

rotation is called the yaw rotation and the v rotation the pitch.

4.5.2.6 Control software

The control software was written using MATLAB. The camera took software

trigger based pictures regularly. The status signals from the limit switches and also from

the reed switches were read using the parallel (LPT) port. The same port was also used to

give commands to the motors. A Graphical User Interface (GUI) was also developed. It is

exhibited in figure 4.71.

X

Y
w

v

Z

193

Figure 4.71: GUI of the software.

The GUI shows the camera pixels both in x and y directions. This snapshot was taken

with a camera resolution set at 320x240 pixels. Any object detected by the image

processing module will be displayed in this GUI. The small rectangular block marks the

locking area. An object with in this area is considered locked.

4.5.2.7 The complete setup

The complete setup is shown in figure 4.72.

Figure 4.72: Real time tracking system in operation.

194

The S-101 is facing the target simulation board. The board has its own remote console to

simulate target movement. The S-101 is connected to the PC through an interface card.

The camera is also connected to the PC. This camera closes the feedback loop of the

system.

4.5.2.8 Experiments using 3 input and 3 output MFs

In this experiment, 3 MFs were used to define both errors (ex (k)j , ey (k)j). The

membership functions are shown in figure 4.73 and 4.74.

Figure 4.73: Input MFs for FLC 1.

Figure 4.74: Input MFs for FLC 2.

195

The output membership functions for both the FLC blocks are defined in figure 4.75.

Figure 4.75: Output Membership functions for both FLC 1 and FLC 2.

The ILT is programmed to find values of a1 and a2 (see figures 4.73 and 4.74)

such that the system can track the target within ±3pixel resolution at less than 1 sec. The

ILT learns the values of a1 and a2 for ensuring the desired performance requirements.

From starting values of a1 = 1.0 the system learns the values a1 = 0.52 . The learning

history of parameter a1 is shown in figure 4.76.

Figure 4.76: Learning behaviour of a1as iterations increase.

After learning a1 the S-101 is made to track a target, the tracking performance is shown

in figure 4.77.

196

Figure 4.77: Snap shot of the target being tracked by S-101.

There is over shoot in the y axis. To reduce over shoot, a2 was learnt. The learnt value

for acceptable overshoot was a2 = 1.57 . The learning history of a2 and the response with

these values is presented in figure 4.78 and 4.79.

Figure 4.78: Learning behaviour of a2 as iterations increase.

197

Figure 4.79: Snap shot of the target being tracked by S-101.

The plot of errors in x and y positions of the scanner while tracking the target is shown in

figure 4.80.

Figure 4.80: Plot of the errors as target is being tracked.

The plot shows that the error settles to with in ±3 pixels in both the x and y axis. For a

frame rate of 20 frames per second (no. of frames is labelled no. of samples in the figure)

the S-101 was able to track the object with in 0.5 sec.

The control surfaces learnt for the two FLC blocks are shown in figure 4.81

below.

198

Figure 4.81: Control surface of the two FLCs after learning.

The input membership functions for FLC1 and FLC2 after learning are given in figure

4.82 and 4.83.

Figure 4.82: Input MFs for FLC 1 after learning.

199

Figure 4.83: Input MFs for FLC 2 after learning.

The ILT based controller successfully tracked moving targets also. Figure 4.84

shows the GUI as the target is moving and as it is being tracked. The trail is intentionally

left visible so that we can see the performance. The target was initially at position 1, it

then moved to position 2 , then to position 3 and ultimately to position 4.

Figure 4.84: Moving target being tracked.

The plot of errors in both dimensions as the target is tracked is shown in figure 4.85. Plot

shows that the Controller is able to successfully track moving objects.

200

Figure 4.85: Plot of the error as target is being tracked.

Using a frame rate of 20 frames per sec. the device showed good accuracy and

speed while tracking a moving target.

4.5.2.9 Experiments using 7 input and 7 output MFs

Another set of experiments used the same physical setup, with 7 input and 7

output member ship functions for both FLCs. The membership functions were of the

form in figure 4.14. The design requirements were tightened with less than 2 pixel steady

state error and with an overshoot of less than 7 pixels. The ILT learnt the values of

ax (5)j , ax (6)j , ay (5)j and ay (6)j as ax (5) = 0.1545j ax (6) = 0.6823j , ay (5) = 0.3j

and ay (6) = 0.83j . It took 3 iterations to learn ax (5)j , ax (6)j and ay (6)j . The learning

history plot of these parameters is shown in figure 4.86 and 4.87.

201

Figure 4.86: Learning behaviour of ax (5)j and ax (6)j as iterations increased.

Figure 4.87: Learning behaviour of ay (5)j and ay (6)j as iterations increased.

Figure 4.88 shows a GUI snap shot of a target being tracked by S-101, using 7

input 7 output MFs.

202

Figure 4.88: Snap shot of the target being tracked.

The camera frame rate was set at 20 frames per second. A 3D plot of the behaviour of S-

101 as the target is being tracked is shown in figure 4.89.

Figure 4.89: Response of S-101 against a static target.

The two dimensional plot as tracking was achieved in both x and y directions against tine

is presented in figures 4.90 and 4.91. The plots show in greater detail, the behaviour of S-

101.

203

Figure 4.90: Position of S-101 y axis as the object is tracked.

Figure 4.91: Position of S-101 along x axis as the object is tracked.

For both degrees of freedom, the elimination of error is plotted in figure 4.92.

204

Figure 4.92: Plot of the errors as target is being tracked.

Moving targets were also tracked successfully with this setup. The response of S-

101 while trying to track a moving target is shown in figure 4.93. Again the circular

marks, showing the target, are intentionally left visible to show the tracking performance.

Figure 4.93: Snap shot of the GUI while tracking a moving target.

A 3-D plot, as S-101 tries to track this moving target is shown in figure 4.94 and its

corresponding error plot is shown in figure 4.95.

205

Figure 4.94: Response of S-101 against a moving target.

Figure 4.95: Plot of the errors as target is being tracked.

For a closer look at the performance, figure 4.96 shows a 2-D view of the S-101 tracking

the target. It shows S-101 movements in x-direction only.

206

Figure 4.96: Position of S-101 along x axis as the object is tracked.

This result was taken at 10 frames per second. The tracking performance can be

increased by increasing the frame rate. It was observed that 20 frames per second

produced the best results.

4.6 Summary

Zadeh in his foreword remarks in [101] points out that the issue of key importance

in the design of fuzzy controller is the tuning of controller parameters and the induction

of rules, which are mostly done by trial and error. This tuning is more important because

of the uncertainties associated with the linguistic variables, upon which the fuzzy

controllers are based. Use of type-1 fuzzy set to model these linguistic variables is

scientifically incorrect because a word is uncertain while a type-1 set is certain [72].

To tackle these uncertainties, type-2 FLCs are being developed [31] but type-2

systems are very complex to perceive and very difficult to implement. Ideally, we have to

use type-∞ fuzzy sets to represent uncertainty, in totality [73].

This chapter proposes to tackle linguistic uncertainties through adaptability in

membership functions, thereby still remaining in the framework of Fuzzy type-1. This

adaptability is achieved using an Iterative Learning Fuzzy Tuner (ILFT). The Controller

207

contains an Iterative Learning Tuner (ILT), which iteratively tunes the Membership

Functions (MFs). This results in an adaptive rule base. This ILFT has the capability to

achieve desired steady state error and percentage overshoot design requirements. Results

from different linear and non-linear systems are presented.

A universal reliable method to determine the stability of a fuzzy system is still not

available. By dividing the error into different ranges, a novel method for stability and

convergence is discussed. Stability and convergence is also discussed using linguistic

trajectories.

The ILFT is made to track different practical trajectories with excellent results.

The controller can take derivative and integral of errors as input as well. These inputs

should only be used if the design requirements are not met using error alone. A step by

step procedure for the selection of number of inputs, for the controller, is also presented

in this chapter.

For a practical setup, a Tracker called S-101 was developed. The device has two

degrees of freedom and is a low cost alternative to the six degrees of freedom Hexapod,

used earlier in chapter 2. It has a camera mounted on it for target recognition. Using this

tracker the ILT based controller was able to track targets with in the desired accuracy

level in real time. To achieve exact replication of target path, a Target Simulation Board

(TSB) was also developed.

The simulation and practical results show that because of inherent non-linearity in

fuzzy systems, we were able to learn non-linear control surfaces even with a single input

single output controller. If there is any change in plant parameter, desired steady state

error or desired percentage over shoot, the ILFT has the ability to readjust.

Though fuzzy logic has contributed in thousands of applications, the most used

controllers are still Proportional Integral (PI) and Proportional Integral Derivative (PID).

The problem with these conventional controllers is the requirement of a mathematical

model and single point operation excellence. Fuzzy logic, with the learning capability,

developed in this chapter, can be used to schedule the gains of the PI and PID controllers.

This will make the controller performance independent of the model and will be able to

operate at different operating points.

The next chapter develops and tests such an approach.

208

5 ITERATIVE LEARNING FUZZY GAIN SCHEDULER

A simple yet robust alternative to Proportional-Integral-Derivative (PID)

controller is developed using fuzzy based gain scheduler. The fuzzy based system is

further tuned using an iterative learning approach.

Gains of a conventional PID controller are usually fixed. This results in a control

surface which is some times unable to meet our design requirements. Designing fuzzy

controllers with desired performance specifications is not a trivial task either. Even the

specification of linguistic variables, key to the concept of fuzzy design, can be different

from different experts. This chapter lays out an adaptive procedure for designing fuzzy

controllers through iterative learning process to schedule gain values.

5.1 Introduction

The best known and most used controllers in industrial control processes are

proportional-integral (PI) and proportional-integral-derivative (PID) controllers.

Designing and implementing these controllers have difficulties associated with them [29],

namely:-

(a) It is usually based on accurate mathematical model of the system which is usually

not known.

(b) Variation of plant parameters can cause unexpected performance variations.

(c) They usually show high performance, for one unique action point.

Extensive efforts have been devoted to develop methods to reduce the time spent

on optimizing the choice of controller parameters like proportional gain, integral gain and

derivative gain of these controllers [7]. The PID controllers in the literature can be

divided into two main categories. In the first category, the controller parameters are fixed

after they have been tuned or chosen in a certain optimal way. The parameters of the

209

controllers of the second category are adapted, based on some parameters estimation

technique, which requires certain knowledge of the process. In most practical cases, the

model of the system is not known and hence conventional PID control schemes can not

achieve high performance values. Also, the dynamics of a system even for a reduced

mathematical model is usually non-linear, making tuning of these controllers even more

difficult [16]. Fuzzy logic based control [92, 93, 94] has been shown in numerous studies

to be a simpler alternative to conventional PID control [70, 102, 104, 136].

For conventional PID controller design, gain scheduling is often effectively used

to give some adaptivity. In conventional gain scheduling (CGS), the controller

parameters are scheduled according to some monitored conditions in an open-loop

fashion. Its main advantage is that controller parameters can be changed quickly. One

serious drawback of CGS is that the parameter change may be rather abrupt, which may

result in unsatisfactory or even unstable performance across the transition region.

Another problem is that accurate models at various operating points may be too difficult

or even impossible to obtain. As a solution, fuzzy has been utilized for gain scheduling to

overcome these problems [104, 132]. Other proposed techniques use fuzzy rule base

formulation [103][52], neural networks [132] and membership function definitions for

PID gains [154]. Still others have simplified existing fuzzy PID schemes with a gain

scheduling differential equation [136].

Even with fuzzy based scheduling, the choice of appropriate membership

functions, minimum rule base and suitable fuzzifier and defuzzifiers is still a challenging

task. Having made these choices, one still needs to tune the fuzzy controller to deliver the

desired response. Multiple simultaneous adjustments (rules, membership functions and

input/output fuzzy gains) make the optimum tuning even more difficult. Many techniques

have been used to overcome this difficulty, including a phase plane technique for rule

base design [62], rule modification [63], neural network techniques [29], genetic

algorithms [2] and gain phase margin analysis technique [76].

Before any rules can be formulated, member ship functions need to be sorted out.

But, as discussed in chapter 4, membership functions have uncertainties associated with

them. With such uncertainty it is difficult to determine the exact Membership functions

(MF) for a fuzzy system (FS) which can give desired performance.

210

Apart from determining the gains of the P, PI and PID controllers this scheme

also tackles this uncertainty using a learning approach to adaptively adjust the

membership functions. This iterative learning process is further linked with steady state

error and overshoot, which are used to specify design requirements. This helps the

controller to adjust automatically, when the plant parameters vary or performance

requirements change.

Iterative learning control (ILC) has been successfully used in tasks where the

process is repetitive [5, 105]. In this proposed approach we make the controller gains

adaptive by adjusting the membership functions using learning laws. These learning laws

indirectly adjust the control input to the plant.

The hallmark of our proposed approach is the Iterative Learning Fuzzy Gain

Scheduler (ILFGS). It consists of a fuzzy system, iterative learning laws to adjust

member ship functions and a mathematical formula to calculate controller gains. The

approach is tested through simulation and a motor speed control experiment, using

Quanser’s DC Motor Control Kit.

5.2 Proposed Approach

A typical block diagram of a conventional proportional-integral (PID) controller

using 2-D representation is describe in figure 5.1.

Figure 5.1: Block diagram of a PID controller.

211

Here r (k)j represents the reference signal for k = 1...N and j = 1...∞ . Variable j ,

represents the iteration number and variable k , represents the samples. The error is

represented by e (k)j , the input to the plant is u (k)j and the next plant output is y (k)j .

Gains Kp (k)j , Ki (k)j and Kd (k)j are in most cases fixed but they can be adaptive also.

These gains are chosen such as to meet our design requirements of steady state error (sse)

and percentage over shoot (pos). Usually, in order to figure out Kp (k)j , Ki (k)j and

Kd (k)j correctly, we have to have some knowledge of the plant. If there is any change in

plant parameters or design requirements, recalculation of gains is required.

To overcome these issues we propose an adaptive gain scheduler scheme, the

block diagram of which is presented in figure 5.2.

Figure 5.2: Block diagram of the proposed scheme.

Here ssed is the desired steady state error, posd is the desired percentage over shoot,

r (k)j , e (k)j , u (k)j and y (k)j are the reference input, error , input to the plant and next

plant output at iteration j . Desired steady state error and percentage over shoot are

supplied to Iterative Learning Fuzzy Gain Scheduler (ILFGS). The ILFGS adjusts

Kp (k)j , Ki (k)j and Kd (k)j . It also tunes itself by adaptively adjusting the membership

212

function end points. The aim is to converge, with respect to, given steady state error and

percentage overshoot. The learnt values of membership function end points are stored in

memory to be used in future iterations.

Taking a Sugeno type rule processing, the input (error) and output ('Kp)

membership functions proposed are of the form given in figure 5.3 and 5.4.

Figure 5.3: Input Membership functions.

Figure 5.4: Output Membership functions for Sugeno rule processing.

End points of membership functions a (k)j and b (k)j can be made adjustable to meet

steady state error and percentage over shoot requirements.

As discussed in chapter 4, TSK fuzzy system can be viewed as a piece-wise linear

function, where the change from one segment to the other is smooth, rather than abrupt.

This helps us to overcome the abrupt change in parameters in case of CGS.

213

The following examples show a method to adjust Kp (k)j . Most requirements

were met by considering this proportional gain only. If steady state error requirements are

not met by considering Kp (k)j alone; Ki (k)j can also be considered to reduce steady

state error further. Similarly, if percentage overshoot requirements are not met by

considering Kp (k)j , then Kd (k)j can also be considered. Without any loss of generality,

it is proposed that we start with Ki (k) = 0j and Kd (k) = 0j initially.

Suppose that the range [Kp ,Kp]maxmin can be determined, where Kpmin is the

minimum and Kpmax is the maximum value that the proportional gain can have. The

values of input and output membership functions can be normalized for convenience. The

input membership function end points permissible ranges are tabulated in table 5.1.

End point Permissible Range

a (1)j [e ,a (2)]min j

a (2)j [a (1),a (3)]j j

a (3)j [a (2),a (4)]j j

a (4)j [a (3),a (5)]j j

a (5)j [a (4),a (6)]j j

a (6)j [a (5),a (7)]j j

a (7)j [a (6),e]maxj

Table 5.1: Permissible ranges of input membership function, end points.

Here emin and emax are the minimum and maximum values that error can have. The

output membership function end points were fixed, as given in table 5.2.

214

End point Value

b (1)j 'Kpmin

b (2)j '0.6Kpmin

b (3)j '0.3Kpmin

b (4)j 0

b (5)j '0.3Kpmax

b (6)j '0.6Kpmax

b (7)j 'Kpmax

Table 5.2: Fixed output membership function end point values.

Here 'Kpmin and 'Kpmax are the minimum and maximum values of the output

membership function.

For the proposed scheme, we only move a (5)j and a (6)j . Though, a (5)j and

a (6)j can take up any initial starting value within their permissible range, it is

recommended from research results to start with values that divide the Universe of

discourse evenly. One such division is done by a (5) = 0.3emaxj and a (6) = 0.6emaxj ,

which divides the range reasonably.

The proposed rule base of the fuzzy controller is shown in table 5.3.

NB

NM

NS

Z

PS

PM

PB

e (k)j emin a (2)j a (3)j 0 a (5)j a (6)j emax

'Kp b (1)j b (2)j b (3)j b (4)j b (5)j b (6)j b (7)j

Table 5.3: Proposed rule base.

215

The following procedure for the up gradation of Kp (k)j , a (5)j and a (6)j is proposed.

5.2.1 Procedure for the up gradation of parameters

The values of Kp (k)j , a (5)j and a (6)j should be calculated using the following

procedure and sequence:-

1- The iterative learning mechanism first learns the value of Kp (k)j until the system is

critically damped i.e.
pos ε≤ (5.1)

Where ε is some small number and ‘pos’ stands for percentage over shoot. The learning

procedure to learn this value of Kp (k)j is:-

if percentage over shoot < 0.0

Kp (k) = Kp (k) + µ (r (k) - y (k))j+1 j kp j j (5.2)

else

Kp (k) = Kp (k) -µ (r (k) - y (k))j+1 j kp j j (5.3)

Where, Kpj+1 is the value of gain for the next iteration and Kp (k)j is the value of gain

for the current iteration. This value of Kp (k)j is stored in memory and is called

Kpc (critically damped proportional gain). Step size parameter for finding Kp (k)j is

µkp .

2- Change the value of a (5)j such that sse ssed≤ using the learning law:-

if r (k) - y (k) > ssej j d

216

a (5) = a (5) -µ (r (k) - y (k))ssej+1 j j j (5.4)

else

a (5) = a (5) + µ (r (k) - y (k))ssej+1 j j j (5.5)

Here µsse is the step size parameter for correcting steady state error.

3- Change the value of a (6)j such that pos posd≤ using the learning law:-

if pos > posj d

a (6) = a (6) + µ (r (k) - y (k))posj+1 j j j (5.6)

else

a (6) = a (6) -µ (r (k) - y (k))posj+1 j j j (5.7)

Here, µpos is the step size parameter for correcting percentage overshoot and posj is the

percentage overshoot value for the current iteration. To terminate the learning processes,

some small tolerance value, ε , needs to be defined.

Once the learning is complete, the value of Kp (k)j is set by using equation

'Kp (k) = (Kp *K)/e (k)pcj j (5.8)

Here 'Kp is the output of the defuzzifier against the current error. This procedure is

summarized using a flow diagram in figure 5.5.

217

Figure 5.5: Flow chart of the procedure.

The flow chart recommends to learn Kpc , a (5)j and a (6)j in order. The order of

learning should be maintained even if a second iteration is required for the calculation of

these values.

We now present an observer based approach to guarantee the stability of ILFGS.

5.2.2 Stability

The parameters of PID controller are function of time and the fuzzy gain

scheduler is a non-linear system. Fuzzy mathematics and conventional control

mathematics don’t mix well. Hence, there is a need for other innovative techniques to

guarantee stability and convergence. Recommendations are made for a hierarchical

entity, like a supervisor to monitor the performance of the control system. Such

multilevel controls structures turn out to be more useful in complex practical systems

[103]. To detect instability, using these hierarchical structures, there are some methods

218

available. Anderson [82] suggests monitoring the magnitude of peaks, and the system is

determined to be unstable when peaks are growing in magnitude, for three peaks in a

row. A ratio of short term integral of error and the integrated absolute value of the error is

used by [9] to get an indication of instability. An instability indicator is also proposed by

[66] by observing the output, for the same purpose. We can also combine these and other

instability detection proposals to achieve better instability detection [154]. Very fast rise

time, high overshoot ratio and very long settling time can be good stability indicators

also. Once instability has been detected the controller parameters are switched to a set of

guaranteed stable parameters pre-stored in memory or the system is shut down by setting

Kp (k)j , Ki (k)j and Kd (k)j to zero. This observer based stability implementation, is

proposed as in figure 5.6.

Figure 5.6: Proposed scheme with a stability observer.

The stability observer monitors the error and the current output of the system

continuously. For this scheme the stability observer takes action only when three peaks of

output are found with increasing values. Other stability observation criteria can also be

utilized.

e (k)j

PLANT

y (k)j
Kp (k)j

Ki (k)j∫

u (k)j

Iterative Learning Fuzzy Gain Scheduler

Memory

−

(ILFGS)

+

+
e (k)j

d Kd (k)jdt

r (k)j

+

posd ssed

Stability Observer

Set parameter
values

219

5.2.3 Simulations and results

The scheme presented in this chapter was tested through simulations. One of the

simulations involved a model of DC motor. The aim is to design a speed controller which

should endure less than 5% steady state error (sse) and less than 5% percentage over

shoot (pos). For simulation purposes, all the ranges were normalized between -1 and 1.

5.2.3.1 Motor Speed Control

The motor transfer function used is given in (4.14). As discussed in section 4.4.1,

using conventional design approach alone, it is impossible to configure a controller for

this system which would ensure less than 5% steady state error and less then 5% over

shoot. Using the proposed scheme, explained above, the first step is to find the value of

Kpc . The value of Kpc learnt was, K = 11.68pc . Its learning history is presented in

figure 5.7.

Figure 5.7: Learning value of Kpc .

220

Learnt value of a (5)j for a steady state error of less than 5% was a (5) = 0.0846j .

A plot of steady state error against number of iterations as a (5)j was learnt is shown in

figure 5.8 below.

Figure 5.8: Decrease in steady state error as a (5)j is learnt.

After first iteration, value of a (5)j was learnt to be 0.3. At second iteration it was 0.265.

The value kept on decreasing until at 10th iteration it became 0.084. At this iteration the

steady state error requirements were met.

The learnt value of a (6)j was a (6) = 0.7626j . After learning both endpoints, the

fuzzy controller had a control surface, as exhibited in figure 5.9. The scheme was able to

learn a non linear control surface, through piece-wise linear approximation.

221

Figure 5.9: Learnt control surface.

The surface can be made smoother by considering more membership functions. The

system’s response for a desired speed of 1 rad/sec is presented in figure 5.10.

Figure 5.10: Motor speed against time.

The response shows that the system reaches 0.96 rad /sec with in 1 second and the over

shoot is under 5%. The behaviour of error is shown in figure 5.11.

222

Figure 5.11: Error between the desired speed and the actual speed.

The ILFGS calculates the value of Kp (k)j at each sample. This variation in

Kp (k)j help us achieve the desired steady state error and percentage overshoot. The

values of Kp (k)j calculated by the proposed scheme for a desired speed of 1 rad /sec

with an over shoot of no more than 0.05 rad /sec, are given in figure 5.12.

Figure 5.12: The values of Kp (k)j calculated by the proposed system to achieve the

desired performance.

223

The plot shows that quite a complicated variation of Kp (k)j was calculated by the

scheme to ensure design requirements. Once the required speed is achieved, there is no

change in Kp (k)j .

5.2.3.2 Zeigler-Nichols controller vs. proposed approach

PID controllers are the most widely used controllers in the industry. PID

controllers can be implemented to meet various design specifications such as steady state

error, percentage overshoot and rise time. Despite their wide use, tuning a PID controller

can be a very tedious job. Most of the conventional tuning methods require at least some

knowledge of the system we want to control. One approach, the Zeigler-Nichols tuning

method, which was developed in the 1950’s and has stood the test of time is still the most

used tuning method. The procedure adapted in this chapter for tuning the controller using

Zeigler-Nichols approach uses the table 5.4.

Control Kp iK dK
P 0.5 cK
PI 0.45 cK 0.833 cT
PID 0.6 cK 0.5 cT 0.125 cT

Table 5.4: Zeigler-Nichols gain calculation table.

Here Kc is the critical gain and Tc is the time constant of the system.

This section presents the results obtained by using Zeigler-Nichols method. These

results are then compared with the results from our proposed approach. For this

comparison three different systems were selected. Their transfer functions are presented

below.

1- A cruise control system given by the transfer function

224

1
1G (s) =

10s + 50

(5.9)

2- A road vehicle model given by the transfer function

2 3 2

40G (s) =
2s +10s +82s +10

(5.10)

3- A motor speed control system given by the transfer function

3 2

0.05G (s) =
0.005s + 0.06s + 0.1025

(5.11)

The parameters determined for the Zeigler-Nichols based P, PI and PID

controllers, to control the selected three systems, are presented in table 5.5.

System Zeigler-Nichols
P controller

Zeigler-Nichols
PI controller

Zeigler-Nichols
PID controller

G (s)1 Kp = 10000 Kp = 9000

Ki = 0.1666

Kp = 12000

Ki = 0.1

Kd = 0.025

G (s)2 Kp = 4.2 Kp = 3.784

Ki = 0.9163

Kp = 5.076

Ki = 0.55

Kd = 0.1375

G (s)3 Kp = 122.5 Kp = 110.25

Ki = 0.1083

Kp = 147

Ki = 0.065

Kd = 0.0163

Table 5.5: Parameters calculated for Zeigler-Nichols based P, PI and PID controllers.

The ILFGS was also made to learn the required parameters for the selected

systems. The parameters learnt, are shown in table 5.6.

System Kpc a (5)j a (6)j

G (s)1 1.0015 0.00003 0.00006

G (s)2 3.7836 0.2050 0.7023

G (s)3 11.68 0.0846 0.7626

Table 5.6: Parameters calculated by ILFGS.

225

Comparison of the response for a cruise control system, between the 3 Ziegler-

Nichols based controllers and the controller proposed in this chapter is shown in figure

5.13.

Figure 5.13: Comparison of step response for cruise control system.

This was the easiest of the three systems to control. Figure 5.13 show that the P controller

and the proposed ILFGS based system, give best performances. With respect to steady

state error all the controllers performed well.

For the road vehicle system the response with different controllers is exhibited in

figure 5.14.

Figure 5.14: Comparison of step response of road vehicle system.

226

Figure on the left show that ILFGS based system performed better then other controllers.

The figure on the right shows a zoomed version of the response to get a better view of the

behaviour of the controllers. For further insight, comparison of the error between the PID

controller and the ILFGS based controller is presented in figure 5.15.

Figure 5.15: Comparison of error between PID and proposed controller.

The response given by the motor speed control system, using different controllers

is shown in figure 5.16.

Figure 5.16: Comparison of step response for a motor speed control system.

227

The comparison of error for the above system is exhibited in figure 5.17.

Figure 5.17: Comparison of error for motor speed control system.

For this system, as far as steady state error is concerned, PID and ILFGS based

controllers performed equally well. For percentage overshoot requirements ILFGS based

controller met the requirements better than any other controller.

Simulation results, presented above show that a variety of systems can be

satisfactorily controlled by the ILFGS based controller. It yielded better control

performance than the Ziegler-Nichols based P, PI and PID controllers. This is true even

when only proportional gain scheduling was done for the proposed scheme. The control

surfaces generated by the ILFGS based controller are plotted below to have a feel of the

learning done by the controller. For the cruise control system the control surface is shown

in figure 5.18.

228

Figure 5.18: Learnt control surface for cruise control system.

The control surface is linear and similar to the control surface generated by the P

controller. For the road vehicle system the control surface generated is plotted in figure

5.19.

Figure 5.19: Learnt control surface for road vehicle system.

The control surface is slightly non-linear. The motor speed control system led to the

generation of control surface presented in figure 5.20.

229

Figure 5.20: Learnt control surface for motor speed control system.

The control surface is non-linear. The abrupt change in slope, after regular intervals, can

be smoothed by considering more membership functions.

5.2.3.3 Tracking trajectories in real time

Tracking is an important and difficult practical problem, especially when the

target is changing its position. To demonstrate the effectiveness of this approach,

different trajectories were tracked. One of them was a sinusoidal signal. This tracking

was done after the learning of the parameters had been achieved, as discussed before. For

this demonstration, road vehicle system and motor speed control system of equation

(5.10) and (5.11) were used and was given a task to follow a sinusoidal amplitude and

speed requirements. The speed requirements meant that the system had to move in one

direction with a maximum speed of 1 rad/sec and then in the opposite direction achieving

speeds of 1 rad/sec again.

The plots in figure 5.21 and 5.22 show the performance of road vehicle system

and motor speed control system, while tracking a sinusoidal trajectory, using ILFGS.

230

Figure 5.21: A road vehicle system tracking a sinusoidal signal.

Figure 5.22: A motor speed control system tracking a sinusoidal signal.

Figures show that the system was quite effectively able to track the desired response. The

plots of error vs. time for these performances are shown in figure 5.23 and 5.24.

231

Figure 5.23: Error generated by road vehicle system.

Figure 5.24: Error generated by motor control system.

The error looks larger than 5% but this is due to the fact that the response was delayed.

These error plots are taken without taking the delay in consideration.

Other waveforms were also tracked successfully by the ILFGS. One interesting

plot showing a vehicle moving at constant speed and then gradually decreasing its speed

to zero is shown in figure 5.25.

232

Figure 5.25: Road vehicle system following the desired speed curve.

The vehicle system is successfully able to follow the required waveform. The

corresponding error plot is presented in figure 5.26.

Figure 5.26: Behaviour of error.

The error decreases very sharply and eventually goes to within the desire limit. The

desired limit in this case was 1% of the desired amplitude.

233

5.3 Experimental Setup and Results

A QET DC Motor Kit from Quanser was used to test the approach with a practical

setup. The kit can be programmed to set proportional, integral and derivative gains.

MATLAB was used to communicate with the kit through serial port. ILFGS was

implemented in MATLAB. The micro controller on the kit was used to set proportional

gain and return speed of the motor. The experimental setup is show in figure 5.27 below.

The aim is to make the motor run at 100 rad/sec with a steady state error of less than 5%

and an over shoot of less than 5%.

Figure 5. 27: Experimental setup with the QET DC Motor Kit from Quanser.

The different step size parameters, in equations (5.2), (5.4) and (5.6), were given

values of µ = 0.01kp ,µ = 0.01sse andµ = 0.01pos . The error had a range of e (k)j =[-

200,200] and gain had a range of Kp =[-1,1]. During the learning phase, the values of

Kpc , a (5)j and a (6)j learnt were K = 0.25pc , a (5) = 15.8j and a (6) = 76.36j . A plot

of learning history of parameters a (5)j and a (6)j vs. no. of iterations is indicated in

figure 5.28 below.

234

Figure 5.28: Learning values of a (5)j and a (6)j .

The plot shows that a (5)j was learnt in 6 iterations and a (6)j was learnt in 4 iterations.

A 3-D plot of speed vs. time vs. number of iterations, while learning a (6)j , during the

process of eliminating percentage over shoot, is given in figure 5.29.

Figure 5.29: History of system output while learning a (6)j .

The plot shows reduction in percentage over (or under) shoot as a (6)j is learnt

iteratively. The membership functions learnt after the learning process was completed are

given in figure 5.30.

235

Figure 5.30: Learnt membership functions.

Once the learning was complete, the DC motor was made to run at a speed of 100 radians

/sec. The motor’s response is presented in figure 5.31.

Figure 5.31: Response using the proposed scheme.

As can be seen from the figure the motor hits a speed of 96.1 rad /sec in 3 sec. The

overshoot (or undershoot) is also within limits. To give a better perspective of the

response, a plot of error is exhibited in figure 5.32.

236

Figure 5.32: Behaviour of error.

The values of proportional gain calculated by ILFGS during this run are shown in figure

5.33.

Figure 5.33: Calculated proportional gains by the ILFGS to control the QET DC Motor.

The figure shows that there are large variations in the values of gain initially, when the

error is large. It then settles to a steady value of 0.481 as the required speed is achieved.

237

5.3.1 Stability using Linguistic Trajectory

Stability is one of the most important subjects for a controlled system. For fuzzy

based systems it is a very complex topic and to date no general stability analysis

methodology has been presented. Because of the complexity, there are even different

definitions of stability. On definition is that if bounded input is applied, then there should

be bounded output. This is called BIBO stability. Fuzzy logic because of its structure

defines input and output boundaries for membership function values. Another definition

is that when all the input and interferences have disappeared, the system should come to

rest to its original state.

By probing into the relation between the relative influence of each rule within the

rule base and the linguistic trajectory of the dynamic system, it can be determined

whether the fuzzy system has reached stability. For this experimental setup we had one

input and one output linguistic variable. It is proposed to plot all the rules fired in an

extended rule base table to get the linguistic trajectory.

There were seven rules defined for the rule base. The rule base is shown in table

5.7.

e (k)j NB NM NS Z PS PM PB

'Kp NB NM NS Z PS PM PB

Table 5.7: Rule base for the experimental setup.

If the linguistic trajectory converges to the equilibrium point the system is stable. The

linguistic trajectory is shown in table 5.8.

e (k)j NB NM NS Z PS PM PB

'Kp NB NM NS Z PS PM PB

 NB NM NS Z PS PM PB
 NB NM NS Z PS PM PB
 # #
 NB NM NS Z PS PM PB
 NB NM NS Z PS PM PB

Table 5.8: Linguistic trajectory.

238

The trajectory in table 5.8 shows a graphical view of the rules fired during system

operation. The first row of the table shows the input membership functions while the

second row shows the output membership functions. The subsequent rows also represent

the output membership functions to show the firing of rules. As can be seen, the firing of

rules converges to the desired rule, i.e.:-

If e (k)j is Z then 'Kp is Z (5.12)

Hence the system is stable and the error is decreasing continuously.

5.4 Summary

Fuzzy controllers and for that matter any controller needs to be adaptive in order

to compensate for uncertainties, noise, variation in parameters and changes in design

requirements. Conventional P, PI, PID etc. controllers need to be adaptive in order to be

more useful, especially when the plant parameters are not known. It is now realized that

complex real world problems require intelligent systems that combine knowledge,

techniques and methodologies from various sources. These intelligent systems are

supposed to possess humanlike expertise within a specific domain, adapt themselves and

learn to do better in changing environment [75]. The approach presented in this chapter

combines conventional controls with fuzzy logic and iterative learning to tackle these real

world problems.

The scheme changes the proportional, integral and derivative gains adaptively

through the Iterative Learning Fuzzy Gain Scheduler (ILFGS). The fuzzy controller in

ILFGS itself has the capability to adapt because of iterative learning. The learning laws

ensure that steady state error, percentage overshoot etc. requirements are met. The ILFGS

adjusts the proportional gain in real time to meet design requirements.

As seen from simulation results and results from a practical Quanser DC motor

based setup, the proposed scheme was able to learn non-linear control surfaces even

when only the proportional gain was scheduled. Integral and derivative gains can also be

scheduled if the requirements are not met. Derivative gain should be introduced if the

239

percentage overshoot requirements are not met and integral gain should be used if steady

state error requirements are not met. Stability of the ILFGS is discussed using a

supervisory level based approach and linguistic trajectories.

It is difficult to determine whether humans are fuzzy based learning machines or

learning based fuzzy machines. Chapter 4 and 5 have been focusing on Learning based

Fuzzy controllers.

In the next chapter we develop a Fuzzy based Learning controller.

240

6 FUZZY ITERATIVE LEANING CONTROLLER (FILC)

As fuzzy logic tries to mimic one aspect of human behaviour i.e. perception based

thinking; iterative learning follows the other aspect i.e. learning through experience. So

far, the research has mainly focused on iterative learning and iterative learning helping

the fuzzy system. The research results presented in this chapter are aimed at developing a

mechanism to use the power of fuzzy to adjust iterative learning controller parameters. In

the previous two chapters, fuzzy controller was the main controller and Iterative Learning

was used as a secondary controller. Here ILC is the main controller and fuzzy acts as a

helping unit. The ILC can be any controller developed in chapter 2 and 3.

6.1 Proposed Approach

The block diagram of the proposed approach, named Fuzzy Iterative Learning

Controller (FILC) is described in figure 6.1.

Figure 6.1: Proposed Fuzzy Iterative Learning Controller.

Input u (k)j is applied to the plant which results in an output labelled, y (k)j . This output

and the desired output yd (k)j , results in an error e (k)j . The system output, desired

241

output and the error go into an Iterative Learning Fuzzy Tuner (ILFT) block. The output

of the block is the value of gain, K , that is used by the ILC to calculate the next input to

the plant, u (k)j+1 . Other gain parameter values, like 1K from equation (2.4), can also be

calculated by the ILFT block using similar procedure. Memory is used to store different

parameters, to be used in subsequent iterations. The ILFT block is further explained in

figure 6.2.

Figure 6.2: ILFT block in more detail.

Error is the input for the fuzzy system and a value of K is the output. Three inputs, norm

of error, norm of the output and norm of desired output, enter the Iterative Gain

Calculation Engine. This engine adjusts the values of Kl , Km and Kh iteratively.

Where Kl , Km and Kh are the Low, Medium and High values of gain for the output

fuzzy sets. Their values are updated using the laws given below.

Kl = Kl + µ abs(e)j+1 j l α (6.1)

Km = Km + µ abs(e)2j+1 j α (6.2)

Kh = Kh + µ abs(e)3j+1 j α (6.3)

Here = sign(yd - y)α and

242

1 if yd y
=

-1 if yd y
α

 ≥ 
 <  

This α determines weither the next value of Kl , Km and Kh will decrease or increase.

The value of gain, calculated by the Defuzzifier is used in ILC controller to find the next

input to the plant, u (k)j+1 . This input should bring y (k)j and yd (k)j closer together.

6.1.1 Simulation Results

Simulation results from car suspension system, presented in Appendix A, are

described in this section. Input membership functions, defined for this system, are

explained in figure 6.3.

Figure 6.3: Input membership function for car suspension system.

For ease of implementation, triangular membership functions were used. Here L stands

for ‘Low’, M for ‘Medium’, H for ‘High’, NM for ‘Negative Medium’ and NH for

‘Negative High’ values of error. The universe of discourse for error is [-10,10]. The

proposed end point values of the membership functions are tabulated in table 6.1.

243

e (k)j NH NM L M H

End point values -10, -1.5 -3, 0 -1.5, 1.5 0, 3 1.5, 10

Table 6.1: Input membership function end points.

Two sets of results are presented. One, with no initial guess for the values of Kl ,

Km and Kh and the other with some initial guess of these values. The Iterative learning

controller used for both cases was MSATILC, from chapter 2.

6.1.1.1 Case 1: With no initial guess

For this case the starting values of the parameters in equation (6.1), (6.2) and (6.3)

were, Kl = 0.1, Km = 0.1, Kh = 0.1, µ = 0.1l , mµ = 0.1 and hµ = 0.1. The Universe of

Discourse for the output membership functions was taken as [-30, 30]. The output

membership functions Kl , Km and Kh are shown in figure 6.4.

Figure 6.4: Output membership function before learning.

The ILFT block will adjust these values iteratively. With these settings, the control

surface is shown in figure 6.5.

244

Figure 6.5: Control surface before learning.

The control surface reveals that the controller is not capable of doing any useful work, at

this time. The proposed FILC should learn the appropriate control surface.

The rule base consisted of five rules. These are shown in table 6.2.

e (k)j NH NM L M H

u Kh Km Kl Km Kh

Table 6.2: Proposed rule base.

During the process of learning, Kl , Km and Kh , the behaviour of error obtained is

plotted in figure 6.6.

Figure 6.6: Improvement in performance as iterations increase.

245

There is a consistent decrease in error as the approach is used more. Two processes are

working simultaneously to reduce number of iterations. One uses fuzzy logic to provide

values of gain to the ILC controller. The other uses the iterative learning laws to find the

appropriate input. Figure 6.6 shows that the system converges at first run but the

convergence rate is slow. The number of iterations decreased with number of runs as

exhibited in figure 6.7.

Figure 6.7: Decrease in number of iterations as task is repeated.

It is to be noted that after 30 runs the number of iterations is reduced to 3. The behaviour

of error at 30th run is plotted in figure 6.8.

Figure 6.8: Behaviour of error at 30th run, with zero initial input.

246

Figure 6.8 shows a sharp decrease in error. The learning of Kl , Km and Kh is presented

in figure 6.9.

Figure 6.9: Learning behaviour of Kl , Km and Kh .

The learning settles at about 30th run. The control surface at this run is plotted in figure

6.10.

Figure 6.10: Control surface after 30 runs.

The output membership functions learnt, during this simulation, are shown in figure 6.11.

247

Figure 6.11: Learnt output membership functions after 30 runs.

At 30th run, the behaviour of the system is shown in figure 6.12. The desired response is

shown in dotted thick lines and the actual output is in thin solid lines.

Figure 6.12: Desired output (dotted lines) being learnt at 30th run.

The output follows the desired output.

248

6.1.1.2 Case 2: With initial guess

If the range of output gain can be determined, an initial guess at the output

member ship functions can be made. Suppose that the maximum value of gain that can be

given is Kmax. Research results have shown that 20%, 30% and 70% of this value is a

good start for initial values of Kl , Km and Kh respectively. Other values can also be

chosen with the following restriction.

Kl < Km < Kh < Kmax (6.4)

The proposed initial values of Kl , Km and Kh are given as

Kli =0.2*Kmax (6.5)

Kmi =0.3* Kmax (6.6)

Khi =0.7* Kmax (6.7)

Using these equations, for the car suspension system the values come out to be Kli = 6,

Kmi =12 and Khi =21. Here Kli , Kmi and Khi are the guessed values for Kl , Km and

Kh . With these values the system performance is shown in figure 6.13.

Figure 6.13: Behaviour of the system at first run.

249

The systems converged in 9 iterations. The system again learnt a piece-wise-linear control

surface. The surface is plotted in figure 6.14.

Figure 6.14: Learnt control surface.

The surface gets smoother as number of membership functions is increased. The

behaviour of error, during this run is shown in figure 6.15.

Figure 6.15: Plot of error vs. number of iterations.

The error is reduced in lesser number of iterations as compared to case 1.

250

6.2 Stability

The easiest and so far the only reliable way to prove the stability of a fuzzy based

system is the linguistic trajectory method. In this method the firing of rules are plotted to

get a measure of which rules are dominant. To plot this trajectory each rule was assigned

a number. The rules with their assigned numbers are tabulated in table 6.3.

Rules Rule No.

if error is NH then K is Kl 1

if error is NM then K is Km 2

if error is L then K is Kl 3

if error is M then K is Km 4

if error is H then K is Kh 5

Table 6.3: Assignment of a number, to each rule, in the rule base.

The firing of rules, for the car suspension system, with no initial guess, at 30th run

is shown in table 6.4.

Sample no. Rules

1 1 2 3 4 5

2 1 2 3 4 5

3 1 2 3 4 5

70 1 2 3 4 5

Table 6.4: Linguistic trajectory.

The table shows all the rules in each row. Each row represents a sample. At each sample,

the rules fired are shown with shaded blocks. In this case the firing trajectory has a

converging behaviour.

251

6.3 Summary

This chapter presents a fuzzy based Iterative Learning Controller (ILC) named

Fuzzy Iterative Learning Controller (FILC). The gains of the ILC are calculated by the

Iterative Learning Fuzzy Tuner (ILFT) module of the FILC. The ILFT adjusts its rule

base iteratively to optimize ILC’s gains. The ILFT block was able to learn membership

functions without any prior knowledge about the system dynamics.

Results from a car suspension system are also presented. These results show

excellent performance. To reduce learning time, a procedure is also presented for initial

output membership function formulation. Stability of the controller is tested using

linguistic trajectory analysis.

252

7 CONCLUSIONS AND RECOMMENDATIONS

The best known and most used controllers in industrial control processes are

proportional-integral (PI) and proportional-integral-derivative (PID) controllers.

Designing and implementing these controllers have difficulties associated with them,

namely:-

(a) They require a detailed knowledge of the model of the plant or process to be

controlled. Such a model rarely exists.

(b) Plants, controllers, environments and their constraints may vary with time. These

variations can cause unexpected changes in the performance indices.

(c) They are designed to operate at a specific set point, and hence lack flexibility.

(d) The real world devices, systems and processes are nonlinear. Finding the models

of today’s complex devices, systems and processes is very difficult if not

impossible. Therefore, researchers generally try to develop equivalent linearised

model. This linear model is too restrictive and does not represent the actual

dynamics of the system.

(e) Multi loop and multi variable systems are interdependent and have very complex

constraints and dependencies. Conventional controller performances are affected

by these constraints and dependencies.

(f) Even after theoretical design, extensive tuning is required for getting optimal

performance.

In view of the above highlighted constraints, it is imperative that new

methodologies be researched and workable solutions be evolved. We need a control

philosophy, which is:-

(a) More general in its scope of operation.

(b) Not dependent on detailed system knowledge.

(c) Capable of handling real world imprecisions and imperfections inherent in any

engineering application.

253

(d) Capable of mimicking the human expertise.

(e) Capable of learning from experience.

(f) Easy to design and easy to alter.

(g) More robust and can cover a wider range of operating conditions.

(h) Cost effective.

Development of Iterative Learning philosophy and Fuzzy Logic has ushered in a

new era of controller design. Iterative Learning Controllers mimic the human learning

process and are cheap to develop. Fuzzy controllers mimic the human perception based

approach and do not require system model. Also, Fuzzy controllers can handle

imperfections and imprecisions. To give more robustness to ILC we need to incorporate

adaptivity as well. To achieve all these capabilities, we need to develop a new hybrid

approach for designing intelligent controllers.

7.1 Conclusion

In this thesis, new algorithms for Iterative Learning Control, adaptive Iterative

Learning Control and hybrids of Iterative Learning and Fuzzy Logic Control have been

derived and their convergence properties analysed. All the controllers are made to track

different reference signals. Because of the repetitive nature of the algorithms, information

learnt from previous executions of the tasks is used to improve the tracking performance.

This results in learning algorithms which find the input that result in perfect tracking.

The author started with research in Iterative Learning and consequently Iterative

Learning Control (ILC). Iterative Learning Control was found to have short comings like

slow convergence, non adaptivity, model dependency and complex mathematical

structure. After the basic introduction of ILC and Fuzzy in chapter 1, chapter 2 starts with

the development of a frame work for the controllers to be developed later. Using this

frame work “One Sample At a Time Iterative Learning Controller (OSATILC)”,

“Multiple Samples At a Time Iterative Learning Controller (MSATILC)” and “Modified

Multiple Samples At a Time Iterative Learning Controller (MMSATILC)” were

developed. Many simulations and an experimental setup using M-850 Hexapod from

254

Physik Instrumente (PI) were used to confirm their performances. The hexapod tracks a

laser in real time but the learning is done off line. The conditions for convergence were

also formulated. The performance of the three controllers is tabulated in Table 7.1.

 Approach

System

Classical ILC

(iterations)

OSAT ILC

(iterations)

MSAT ILC

(iterations)

MMSAT ILC

(iterations)

SS 146 2086 63 1
CCS DNC 686007 11629 8
CSS 1335 5083 886 2
NLS DNC 877 2141 228
INVPL DNC 1763 2316 402
Table 7.1: Comparative performance of controllers presented in chapter 2.

The table above shows the number of iterations to converge for five systems. These

systems are described in Appendix A. The symbol DNC means “Did Not Converge”.

More robust adaptive ILCs are developed in chapter 3. These adaptive ILCs have

the capability to readjust and learn just as humans do. A comprehensive mathematical

base is developed to prove the stability and convergence of these schemes. Using

innovative cost functions and introduction of the concept of adaptive step size in ILC,

provide a lot of freedom to fine tune the presented schemes. These algorithms were tested

using simulations and a practical setup, made from DC motor kit by Quanser Consulting

Inc. The schemes have the capability to learn and adapt in real time. The performance of

4 adaptive ILCs, presented in chapter 3, is shown in table 7.2.

 System

Controller

SS CCS CSS NLS

Classical ILC (iterations) 146 DNC 1335 DNC
Approach-3 (iterations) 6 2328 83 6
Approach-3 at 10th run (iterations) 2 768 17 3
Approach-4 (iterations) 44 426 238 30
Approach-4 at 10th run (iterations) 17 73 25 8
Approach-5 (iterations) 18 254 54 13
Approach-5 at 10th run (iterations) 4 15 13 3
Table 7.2: Comparative performance of 4 main ILCs presented in chapter 3.

255

Here, Approach-3 (section 3.4) uses system identification; Approach-4 (section 3.5.1)

uses innovative cost functions with gradient descent, and Approach-5 (section 3.6) uses

“Iterative Learning Gain”, to reduce iterations. The table shows the numbers of iterations

decreasing as the Approaches are used repeatedly.

To incorporate model independence, perception and linguistic based capabilities,

Fuzzy Logic was added in the controllers. The remaining chapters present controllers

with both Iterative Learning and Fuzzy Logic working together. Any fuzzy based design

is not without difficulty. Fuzzy designers not only have to deal with uncertainties in

linguistic terms and design of membership functions but also uncertainties about the

input, control output, change in operating conditions and noisy data etc. The main

uncertainty is in the selection of membership functions. Chapter 4, apart from presenting

a methodology to combine ILC and Fuzzy Logic, also resolves this uncertainty.

Moreover, this uncertainty is linked with steady state error and percentage overshoot.

These performance requirement parameters are normally given to control system

designers. The hybrid methodology in chapter 4 is called “Iterative Learning Fuzzy Tuner

(ILFT)”. A number of simulation results are presented. A novel stability analysis

methodology is also developed, using piece wise linear approach. To see the

effectiveness of this controller, a Two Degree Of Freedom Tracking Device (S-101) was

constructed. This device has a camera mounted on it to recognize a moving target. The

hybrid controller tracks the target in real time. The results of this experiment are

presented in chapter 4. One such result where the S-101 is tracking a moving target is

shown in figure 7.1.

Figure 7.1: Tracking a moving target.

256

Chapter 5 discusses the use of combining Iterative Learning and Fuzzy Logic for

scheduling the gains of the P, PI and PID controllers. The result is a controller named

“Iterative Learning Fuzzy Gain Scheduler (ILFGS)”. This novel approach also produced

excellent results and performed much better than the conventional controllers. The

controller was also made to track desired-speed trajectories using the DC motor kit by

Quanser Consulting Inc. The output of the motor trying to achieve a speed of 100

rad./sec., with less than 2% steady state error and less than 5% over shoot, is presented in

figure 7.2.

Figure 7.2: Motor speed against a desired speed of 100 rad. /sec.

Chapter 6 aims at making Fuzzy help ILC to perform its task. Fuzzy Logic,

because of its non-linear behaviour, was able to adapt ILC gains. This adaptation was

defined using ordinary language statements (rules). The hybrid controllers in chapter 4, 5

and 6 indirectly learn the rule base because of adaptivity in membership functions. The

controller presented in chapter 6 is named “Fuzzy Iterative Learning Controller (FILC)”.

A three dimensional plot of the output of a car suspension system given is Appendix A,

trying to track a desired trajectory, is shown in figure 7.3. In this figure the dotted lines

show the desired response while the solid lines show the system output.

257

Figure 7. 3: Car Suspension System achieving the desired trajectory.

Combination of Adaptive ILC and Fuzzy Logic produced robust, learning

controllers that can adapt with changing conditions. They do not require detailed

knowledge about the plant, and hence, can control complex systems.

7.2 Recommendations

The research accomplished and described in this thesis has mainly focused on

merging Fuzzy Logic and Iterative Learning Control philosophies to realise an intelligent

controller. This experience has brought to light a number of avenues still remaining to be

investigated. In this context, the following recommendations are presented:-

(a) The 2-D framework presented in section 2.2 can be further exploited by

incorporating weighted values of past inputs. This will result in change in control

law of equation 2.4. Furthermore, the effect of higher order terms of this control law

should be further studied. We recommend making the gains of these higher order

terms decrease with reducing error to avoid instability. The rate of decrease of these

gains is another area open for research.

(b) Knowledge learnt, to achieve a desired response, should be used to track other

similar desired responses. For this, a link between desired responses should be

258

established. This link should have a “degree of similarity indicator”. This indicator

should be used to decide how much learnt knowledge to use for the new desired

response. Also, how to use this info needs to be worked out.

(c) The hybrid controllers presented in chapter 4,5 and 6 are aimed to cater for

percentage overshoot and steady state error performance indices. Peak time is

another important design parameter that can be studied.

(d) Methodologies need to be formulated for Multiple-Input and Multiple-Output

(MIMO) systems.

(e) Zooming camera on the devices shown in section 2.10 and 4.5.2 can reduce the

steady state error further. The camera can zoom in on target as the error decreases.

This will increase the accuracy of the system.

(f) Target Simulation Board (TSB) presented in section 4.5.2.3 consists of 36 LEDs and

a remote console to generate target trajectories. The density of the LEDs should be

increased so that highly non-linear and smooth trajectories can also be generated.

Moreover, this board should be linked with another Personal Computer (PC) to

generate stored trajectories.

(g) The research has mainly concentrated on triangular Membership Functions due to

the ease of implementation for microcontroller based solutions. For more complex

systems, the impact of Gaussian Membership Functions on the response should be

studied.

A very significant lesson gleaned from this research is, “Combining proven

methodologies and functionalities holds the promise to create new knowledge for

designing intelligent systems.”

259

REFERENCES

[1] A. D. Luca, G. Paesano and G. Ulivi, “A frequency domain approach to

learning control: implementation for a robot manipulator”, IEEE

transactions on industrial electronics, vol. 39, no. 1, pp. 1-10, 1992.

[2] A. Rafael, C. Jorge, C. Oscar, G. Antonio and H. Francisco , “A genetic

rule weighting and selection process for fuzzy control of heating,

ventilating and air conditioning system”, Elsevier Engineering

Applications of Artificial Intelligence, vol. 18, pp. 279-296, 2005.

[3] A. Irtaza, H. Ali, F. Salman, M. Khalid, M. Bilal and Tanveer,

“Development of a 2 Degree of Freedom Tracking System Part II:

Controller Design and Implementation”, IEEE International Conference on

Emerging Technologies, Islamabad, Pakistan, 2005.

[4] A. Tanweer, Y. K. Muhammad, B. Masood-ul-Haq and M. Khalid,

“Development of a 2 Degree of freedom tracking system: Design and

fabrication of platform”, IEEE International Conference on Emerging

Technologies, Islamabad, Pakistan, 2005.

[5] A. Tayebi, “Adaptive Iterative Learning Control for Robot Manipulators”,

Automatica 40, pp. 1195-1203, 2004.

[6] A. Zilouchian, “An iterative learning control technique for a dual arm

robotic system”, Proceedings of the IEEE international conference on

robotics and automation”, San Diego, CA, vol. 4, pp. 1528-1533, 1994.

[7] B.C. Kuo and F. Golnarahgi, “Automatic control system”, 8th edition, NY,

USA, John Wiley & Sons, Inc., 2002.

[8] B. S. Zhang and J. R. Leigh, “Predictive time sequence iterative learning

control with application to a fermentation process”, Proceedings of IEEE

international Conference on control and applications, Vancouver, Canada,

vol. 2, 1993.

[9] C. G. Nesler, “Adaptive control of thermal processes in buildings”, IEEE

Control System Magazine, vol. 6, no. 4, pp. 9-13, 1986.

260

[10] C.H. Choi and T.J. Jang, “Iterative learning control in feedback systems

based on an objective function”, Asian Journal of control, vol. 2, no. 2, pp.

101-110, June 2000.

[11] C. J. Li, H. S. M. Beigi and S. Li, “Nonlinear piezo-actuator control by self

tuning regulator”, Journal of dynamic systems, measurement and control,

vol. 115, pp. 720-723, 1993.

[12] C. Mi, H. Lin and Y. Zhang, “Iterative Learning control of antilock

braking of electric and hybrid vehicles”, IEEE transactions on vehicular

technology, vol.54, no.2,pp. 486-494, 2005.

[13] C. Smith and M, Tomizuka, “Shock rejection for repetitive control using

disturbance observer”, Proceedings of the 35th IEEE conference on

decision and control, Kobe, Japan, 1996.

[14] D. A. Linkens and J. Nie, “Fuzzified RBF network-based learning control:

structure and self-construction”, IEEE international conference on Neural

Networks, vol. 2, pp. 1016-1021, 1993.

[15] D. H. Owens, N. Amann and E. Rogers, “Systems structure in iterative

learning control”, Proceedings of the international conference on System

structure and control, Nantes, France, pp. 500-505, 1995.

[16] E. Cam and I. Kocaarslan, “A fuzzy gain scheduling PI controller

application for an interconnected electrical power system”, Electrical

power systems research, Elsevier, vol. 73, pp. 267-274, 2005.

[17] E. Cox, “The fuzzy systems handbook: A practical guide to building, using

and maintaining fuzzy systems”, Academic Press, second edition, 1999.

[18] E. H. Mamdani, “Fuzzy control - a misconception of theory and

application”, IEEE Expert, vol. 9, no. 4, pp. 27-28, Aug, 1994.

[19] E. H. Mamdani, “Twenty years of fuzzy control: Experiences gained and

lessons learnt”, Proceedings of second international IEEE international

conference on fuzzy systems (FUZZ-IEEE), pp. 339-344, 1993.

[20] E. H. Mamdani and S. Assilian, “An experiment in linguistic synthesis

with a fuzzy logic controller”, Int. J. Man Mach. Studies, vol. 7, no. 1, pp.

1-13, 1975.

261

[21] E. K. Jerzy, and B. Z. Marek, “Iterative learning control synthesis based on

2-D system theory”, IEEE Transactions on Automatic control, vol.38, no.1,

pp. 121-124, 1993.

[22] F. C. H. Rhee, “Uncertain fuzzy clustering: Insights and

recommendations”, IEEE Computational Intelligence Magazine, vol.2,

no.1,pp. 44-56, 2007.

[23] F. M. Boland and D. H. Owens, “Linear multi-pass processes-a two

dimensional interpretation”, Proceedings of the IEE, vol. 127, no. 5, pp.

189-193, 1980.

[24] F. Yong, Y. C. Soh and G. G. Feng, “Convergence analysis of iterative

learning control with uncertain initial conditions”, Proceedings of the 4th

world congress on intelligent control and automation, Shanghai, China, pp.

960-963, 2002.

[25] G. J. Klir and M. J. Wierman, Uncertainty-based information, Physica-

Verlag, Heidelberg, Germany, 1998.

[26] G. J. Klir and T. A. Folger, “Fuzzy sets, uncertainty and information”,

Prentice Hall, Englewood Cliffs, NJ, 1988.

[27] G. Li, H. Li and J. X. Xu, “The study and design of the longitudinal

learning control system of the automobile”, Proceedings of the 2nd Asian

control conference, Seoul, Korea, 1997.

[28] G. Zeng and M. Jamshidi, “Learning control system analysis and design

based on 2-D theory”, Journal of Intelligent and Robotic Systems 3,

Kluwer Academic Publishers, Netherland, pp. 17-26, 1990.

[29] H. B. B. Abad, A. Y. Varjani and T. Asghar, “Using fuzzy controller in

induction motor speed control with constant flux”, Enformatika-

Transactions on engineering, computing and technology, vol. 5, pp. 307-

310, 2005.

[30] H. Dou, Z. Zhou, M. Sun and Y. Chen, “Robust high order P-type iterative

learning control for a class of uncertain nonlinear systems”, Proceedings of

the IEEE international conference on systems, man and cybernatics,

Beijing, China, vol. 2, 1996.

262

[31] H. Hagras, “Type-2 FLCs: A new generation of fuzzy controllers”, IEEE

Computational Intelligence Magazine, vol.2, no.1,pp. 30-43, 2007.

[32] H. Osaka, C. J. Lin, T. Shimogawa and H. Qiu, “Control of mechatronic

systems by learning actuator reference trajectories described by B-spline

curves”, Proceedings of the IEEE international conference on systems,

Man and Cybernatics, Vancouver, BC, Canada, vol. 5, pp. 4679-4684,

1995.

[33] H. S. Ahn, S. H. Lee and D. H. Kim, “Frequency domain design of

iterative learning controllers for feedback systems”, IEEE international

symposium on industrial electronics, Athens, Greece, vol. 1, pp. 352-357,

1995.

[34] http://egweb.mines.edu/faculty/kmoore/

[35] http://en.wikipedia.org/wiki/Aristotle

[36] http://en.wikipedia.org/wiki/Buddha

[37] http://en.wikipedia.org/wiki/Georg_Cantor

[38] http://en.wikipedia.org/wiki/Mitsubishi_Lancer_Evolution

[39] http://en.wikipedia.org/wiki/Sendai_City_Subway_Line

http://osamuabe.id.infoseek.co.jp/subway/maincity/sendai/sendai.htm

http://www.youtube.com/watch?v=N4V3vGXMONA&mode=related&sea

rch=

[40] http://en.wikipedia.org/wiki/Spectral_radius

[41] http://engineering.utsa.edu/EE/faculty_staff/jamshidi.html

[42] http://factaee.elfak.ni.ac.yu/facta9801/inmemoriam.html

Yakov Zalmanovich Tsypkin

[43] http://mathematica.ludibunda.ch/fuzzy-logic7.html

[44] http://mechatronics.ece.usu.edu/yqchen/

http://www.ece.usu.edu/csois/people/yqchen/picture/index.html

Dr. YangQuan Chen

[45] http://sipi.usc.edu/~mendel/

Dr. J. M. Mendel

[46] http://web.abo.fi/~rfuller/fuzs.html

263

[47] http://wing.comp.nus.edu.sg/pris/FuzzyLogic/HistoricalPerspectiveDetaile

dl.html

[48] http://www.aptronix.com/

[49] http://www.computerworld.com/

http://www.computerworld.com/news/2004/story/0,11280,95282,00.html

[50] http://www.cs.berke;ey.edu/~zadeh/

http://www.eecs.berkeley.edu/Faculty/Homepages/zadeh.html

[51] http://www.cs.berkeley.edu/~wkahan/

http://jurist.law.pitt.edu/views/blogs/tillers/2005_07_10_archive.htm

[52] http://www.ece.ust.hk/~eewang/

Dr Li-Xin Wang

[53] http://www.ecs/soton.ac.uk/people/etar

[54] http://www.hi.cs.meiji.ac.jp/~takagi/index.en.html

Professor Dr. Tomohiro Takagi

[55] http://www.ieee.org/web/aboutus/history_center/biography/kalman.html

http://jurist.law.pitt.edu/views/blogs/tillers/2005_07_10_archive.htm

[56] http://www.ortech-engr.com/fuzzy/togai.html

[57] http://www.quanser.com/english/html/products/template_switch.asp?lang_

code=english&pcat_code=exp-mec&prod_code=S24-QET&tmpl=

[58] http://www.ritsumei.ac.jp/~arimoto/bio_e.html

Professor Dr. Suguru Arimoto

[59] http://www.type2fuzzylogic.org/

[60] http://www.shef.ac.uk/acse/staff/dho

[61] http://www.xbitlabs.com/articles/storage/display/seagate-u6.html

[62] H. X. Li and H. B. Gatland, “Conventional fuzzy control and its

enhancement”, IEEE Transactions on systems, man and cybernetics-Part

B: Cybernetics, vol.26, no.5,pp. 791-797, 1996.

[63] H. Ying, Y. Yongquan and Z. Tao, “A new real- time self-adaptive rule

modification algorithm based on error convergence in fuzzy control”, IEEE

international conference on Industrial Technology, ICIT, pp. 789-794,

2005.

264

[64] J. E. Kurek, “Stability of nonlinear parameter varying digital 2-D systems”,

IEEE transactions of automatic control, vol. 40, no. 8, pp. 1428-1432,

1986.

[65] J. E. Kurek and M. B. Zaremba, “Iterative learning control synthesis based

on 2-D system theory”, IEEE transactions on automatic control, vol. 38,

no. 1, pp. 121-125,1993.

[66] J. Gertler and H.S. Chang, “An instability indicator for expert control”,

IEEE Control System Magazine, vol. 6, no. 4, pp. 14-17, 1986.

[67] J. H. Moon, M. N. Lee, M. J. Chung, S. Y. Jung and D. H. Shin, “Track

following control for optical disk drives using an iterative learning

scheme”, IEEE Transactions on Consumer Electronics, vol. 42, no. 2, pp.

192-198, 1996.

[68] J. H. Moon, T. Y. Doh and M. J. Chung, “An iterative learning control

scheme for manipulators”, Proceedings of the IEEERSJ international

conference on intelligent robots and systems, Grenoble, France, vol. 2, pp.

759-765, 1997.

[69] J. Hu and M. Tomizuka, “Adaptive asymptotic tracking of repetitive

signals – a frequency domain approach”, IEEE transactions on Automatic

Control, vol. 38, no. 19, pp. 1572-1579,1993.

[70] J. Lee, “On methods for improving performance of PI type fuzzy logic

controllers”, IEEE transactions on fuzzy systems, vol. 1, no. 4, pp. 298-

301, 1993.

[71] J. M. Mendel, “Type-2 fuzzy sets and systems: an overview”, IEEE

Computational Intelligence Magazine, vol.2, no.1,pp. 20-29, 2007.

[72] J. M. Mendel, “Fuzzy sets for words: a new beginning”, Proceedings of the

IEEE international conference on fuzzy systems”, St. Louis, MO., pp. 37-

42, 2003.

[73] J. M. Mendel, “UNCERTAIN rule-based fuzzy logic systems: Introduction

and new directions”, NJ, Prentice Hall, 2001.

[74] J. Nie and D. Linkens, “Fuzzy-neural control : Principles, algorithms and

applications”, Prentice Hall, India, 1995.

265

[75] J. S. R. Jang, C.T. Sun and E. Mizutani, “Neuro fuzzy and soft

computing”, Prentice Hall, USA, 1997.

[76] J. W. Perng, B.F. Wu, H. I. Chin and T. T. Lee, “Gain phase margin

analysis of dynamic fuzzy control systems”, IEEE transactions on systems,

man and cybernetics-part B, vol. 34, no.5, pp. 2133-2139, 2004.

[77] J. X. Xu., “Direct learning of control input profiles with different time

scales”, Proceedings of the 35th IEEE conference on decision and control,

Kobe, Japan, 1996.

[78] J. X. Xu, Y. Dote, X. Wang and C. Shun, “On the instability of iterative

learning control due to sampling delay”, Proceedings of the 1995 IEEE

IECON 31st international conference on industrial electronics, control and

instrumentation, Orlando, FL, vol. 1, pp. 150-155, 1995.

[79] J. X. Xu and Y. Song, “Direct learning control scheme with an application

to a robotic manipulator”, Proceedings of the 2nd Asian Control

Conference, Seoul, Korea, 1997.

[80] J.Y. Choi and J. S. Lee, “Adaptive Iterative Learning Control of Uncertain

Robotic Systems”, IEE Proc.-Control Theory Appl., vol. 147, no. 2, pp.

217-223, 2004.

[81] K. Furuta and M. Yamakita, “The design of a learning control system for

multivariable systems”, Proceedings of IEEE international symposium on

intelligent control, Philadelphia, Pennsylvania, pp. 371-376, 1987.

[82] K. L. Anderson, G.L. Blankenship and L.G. Lebow, “A rule based

adaptive PID controller”, Proceedings of the 27th IEEE conference on

Decision and Control, Austin, USA, vol. 1, pp. 564-569, 1988.

[83] K. L. Moore, “Iterative learning control for deterministic systems”,

Springer-Verlag, London, 1993.

[84] K. L. Moore, M. Dahleh and S. P. Bhattacharyya, “Iterative learning

control: A survey and new results”, Journal of Robotic Systems vol. 9, no.

5, pp. 563-594, 1992.

[85] K. L. Moore and Y. Q. Chen, “A separative high order framework for

monotonic convergent iterative learning controller design”, Proceedings of

266

the American control conference, Denver, Colorado, pp. 3644-3649, 2003.

[86] K. P. Venugopal, R. Sudhakar and A. S. Pandya, “On line learning control

of autonomous underwater vehicles using feedforward neural networks”,

IEEE Journal of Oceanic Engineering, vol. 17, pp. 308-319, 1992.

[87] K. Teng-Kai, F. Li-Che, J. Jong-Hann, C. Peri-Ying and C. Yu-Ming,

“Zoom-Based head tracker in complex environment”, Proceedings of the

2002 IEEE International Conference on Control Applications, Glasgow,

Scotland, UK, 2002.

[88] K. Teng-Kai, H. Chen-Ming, F. Li-Chen and C. Pei-Ying, “A robust visual

servo based headtracker with auto-zooming in cluttered environment”,

Proceedings of the American Control Conference, Denver, Colorado, 2003.

[89] L. A. Zadeh, “From computing with numbers to computing with words-

From manipulation of measurements to manipulation of perceptions”, Int.

J. Appl. Math. Comput. Sci., vol. 12, no. 3, pp.307-324, 2002.

[90] L. A. Zadeh, “From computing with numbers to computing with words-

From manipulation of measurements to manipulation of perceptions”, IEE

transactions on circuits and systems 1: Fundamental Theory and

application”, vol. 4, pp.105-119, 1999.

[91] L.A. Zadeh, “Toward a theory of fuzzy information granulation and its

centrality in human reasoning and fuzzy logic”, Fuzzy Sets and Systems

vol. 90, no. 2, pp. 111-127, 1997.

[92] L. A. Zadeh, “A fuzzy algorithmic approach to the definition of complex

or imprecise concepts”, Int. J. man-machine studies, vol. 8, pp.249-291,

1976.

[93] L. A. Zadeh, “Outline of a new approach to the analysis of complex

systems and decision processes”, IEEE transactions on systems, man and

cybernatics”, vol. 3, no. 1, pp.28-44, 1973.

[94] L. A. Zadeh, “Fuzzy Sets”, Information and Control, vol. 8, pp.338-353,

1965.

[95] L. G. Sison and E. K. P. Chong, “No-reset iterative learning control”,

Proceedings of the 35th conference on decision and control, Kobe, Japan,

267

pp. 3062-3063, 1996.

[96] L. Ljung, “System Identification: Theory for the user”, 2nd Edition, PTR

Prentice Hall, Upper Saddle River, N.J., 1999.

[97] L. M. Hideg, “Stability and convergence issues in iterative learning control

– II”, Proceedings of the 1996 IEEE international symposium on intelligent

control, Dearborn, MI, pp. 480-485, 1996.

[98] L. Hideg and R. Judd, “Frequency domain analysis of learning systems”,

Proceedings of the 27th conference on decision and control, Austin, Texas,

pp. 586-591, 1988.

[99] L. M. Hideg, “Time delays in iterative learning control schemes”,

Proceedings of the 1995 IEEE international symposium on intelligent

control, Monterey, CA, pp. 5-20, 1995.

[100] L. P. Zhang and F. Yang, “Fuzzy iterative learning control design for

output tracking of discrete time fuzzy systems”, Proceedings of the third

international conference on machine learning and cybernetics, Shanghai,

2(2004), pp.678-682, 2004.

[101] L. Reznik, “Fuzzy Controllers”, Newnes, A division of reed educational

and professional publishing ltd., Oxford, 1997.

[102] L. Stotts, B. H. Kleiner, “New developments in fuzzy logic computers”,

Industrial Management & Data Systems, vol.95, no.5,pp. 13-17, 1995.

[103] L. X. Wang, “A course in fuzzy systems and control”, Prentice Hall PTR,

Upper Saddle River, NJ, 1997.

[104] M.A. Rodrigo, A. Seco, J. Ferrer and J.L. Penya-roja, “Non-linear control

of an activated sludge aeration process: use of fuzzy techniques for tuning

PID controllers”, ISA transactions, vol. 38, no. 3, pp. 231-241, 1999.

[105] M. Norrlof, “An Adaptive Iterative Learning Control Algorithm With

Experiments on an Industrial Robot”, IEEE Transactions On Robotics and

Automation ,vol. 18, no.2, pp. 245-251, 2002.

[106] M. Norrlof and S. Gunnarsson, “Experimental Comparison of some

classical iterative learning control algorithms”, IEEE Transactions On

Robotics and Automation ,vol. 18, no.4, pp. 636-641, 2002.

268

[107] M. Pandit anf K. H. Buchheit, “Optimizing iterative learning control of

cyclic production processes with application to extruders”, IEEE

transactions on control systems technology, vol. 7, no. 3, pp. 382-390,

1999.

[108] M. Pandit and S. Baque, “Learning control of cyclic production processes”,

Proceedings of the 1997 6th ETFA international conference on emergin

technologies and factory automation, Los Angeles, CA, USA, pp. 64-70,

1997.

[109] M. Phan and R. W. Longman, “A mathematical theory of learning control

for linear discrete multivariable systems”, Proceedings of the AIAA/AAS

Astrodynamics Conference, Minneapolis, Minnesota, pp. 740-746, 1988.

[110] M. Yamakita, M. Ueno and T. Sadahiro, “Trajectory tracking control by an

adaptive iterative learning control with artificial neural network”,

Proceedings of the American Control Conference, Arlington, VA, pp.

1253-1255, 2001.

[111] M. Sun, B. Huang, X. Zhang and Y. Chen, “Robust convergence of D-type

learning controller”, Proceedings of the 2nd Chinese world congress on

intelligent control and intelligent automation, Xian, China, 1997.

[112] N. Amann and D. H. Owens, “Non-minimal phase plants in iterative

learning control”, Second international conference on intelligent systems

engineering, Hamburg, Germany, pp. 107-112, 1994.

[113] N. Amann, D. H. Owens and E. Rogers, “Iterative learning control using

optimal feedback and feed forward actions”, International journal of

control, vol. 65, no. 2, pp. 277-293, 1996.

[114] N. Amann, D. H. Owens and E. Rogers, “Robustness of norm-optimal

iterative learning control”, Proceedings of international conference on

control, Exeter, UK, vol. 2, pp. 1119-1124, 1996.

[115] N. Amann, D. H. Owens and E. Rogers, “Iterative learning control for

discrete time systems with exponential rate of convergence”, IEE

proceedings on Control Theory and Applications, vol. 143, vol. 2, pp. 217-

224, 1996.

269

[116] N. Amann, D. H. Owens and E. Rogers, “New results interactive learning

control”, International conference on control, Coventry, UK, vol. 1, pp.

640-645, 1994.

[117] P. Lucibello, “On the role of high gain feedback in P-type learning control

of robots”, Proceedings of the 32nd IEEE conference on decision and

control, San Antonio, Texas, USA, pp. 2149-2152, 1993.

[118] P. Y. Tsai, H. C. Huang, Y. J. Chen and R. C. Hwang, “The model

reference control by auto-tuning PID like fuzzy controller”, Proceedings of

the 2004 IEEE international conference on control applications, Taipei,

Taiwan, pp. 406-411, September 2-4, 2004.

[119] R. John and S. Coupland, “Type 2 fuzzy logic: A historical view”, IEEE

Computational Intelligence Magazine, vol.2, no.1, pp. 57-62, 2007.

[120] R. Longman, M. Q. Plan and J. Juang, “An overview of a sequence of

research developments in learning and repetitive control”, Proceedings of

the first international conference on motion and vibration control,

Yokohama, Japan, September 1992.

[121] R. M. Milasi, M. R. Jamali and C. Lucas, “Intelligent Washing Machine: A

Bio inspired and Multi-objective Approach”, International Journal of

Control, Automation and Systems, vol.5, no.4, pp. 436-443, 2007.

[122] R. P. Judd, R. P. Van Til and L. Hideg, “Equivalent Lyapunov and

frequency domain stability conditions for iterative learning control

systems”, Proceedings of the 8th IEEE international symposium on

intelligent control, pp. 487-493, 1993.

[123] R. P. Roesser, “A discrete state space model for linear image processing”,

IEEE transactions on automatic control, vol.20, no.1,pp. 1-10, 1975.

[124] R. W. Longman, “Design methodologies in learning and repetitive

control”, Proceedings of the 2nd Asian control conference, Seoul, Korea,

1997.

[125] S. Arimoto, S. Kawamura and F. Miyazaki, “Bettering operation of robots

by learning”, Journal of robotic systems, vol. 1, no. 2, pp. 123-140, 1984.

[126] S. Ashraf, R.M.Parkin and E. Muhammad, “Iterative learning-based laser

270

beam tracker”, Industrial Robot: An international journal, vol. 34, no.4,

326-331, 2007.

[127] S. Gunnarsson and M. Norrlof, “On the design of ILC algorithms using

optimization”, Automatica, vol. 37, no. 12, pp. 2011-2016, 2001.

[128] S. Kawamura and N. Fukao, “A time scale interpolation for input torque

patterns obtained through learning control on constrained robot motions”,

Proceedings of the 1995 IEEE international conference on robotics and

automation, pp. 2156-2161, 1995.

[129] S. Kawamura, F. Miyazaki and S. Arimoto, “Realization of robot motion

based on a learning method”, IEEE transactions on Systems, Man and

Cybernatics, vol. 18, no. 1 , pp. 126-134, 1988.

[130] S. Kawamura, F. Miyazaki and S. Arimoto, “Intelligent control of robot

motion based on learning method”, Proceedings of IEEE international

symposium on intelligent control, Philadelphia, Pennsylvania, pp. 365-370,

January 1987.

[131] S. K. Tso and Y. X. Ma, “Cartesian based learning control for robots in

discrete time formulation”, IEEE transactions on Systems, Man and

Cybernatics, 1992.

[132] S. Tang, C.C. Hang and J.S. Chai, “Gain scheduling from conventional to

newro-fuzzy”, Automatica, vol. 33, no. 3, pp. 411-419, 1997.

[133] S. Xu, J. Lam, Z. Lin, K. Galkowski, W. Paszke, B. Sulikowski, E. Rogers

and H. Owens, “Positive real control of two-dimensional systems: Roesser

models and linear repetitive processes”, International journal of control,

vol. 37, no.11, 1047-1058, 2003.

[134] T. C. Hsia, “System Identification”, Lexington Books, D.C. health and

Company, Lexington, Massachusetts, Toronto, 1997.

[135] T. R. Stefani, C.J. Savant, B. Shahian and G.H. Hostetter, “Design of

feedback control systems”, Saunders College publishing, USA, 1994.

[136] T. P. Blanchett, G.C. Kember and R. Dubay, “PID gain scheduling using

fuzzy logic”, ISA Transaction, Elsevier, vol. 39, pp. 317-325, 2000.

[137] T. J. Procyk and E.H. Mamdani, “A linguistic self organizing process

271

controller”, Automatica, vol. 15, no. 1, pp. 15-30, 1979.

[138] T. Sogo and N. Adachi, “Convergence rates and robustness of iterative

learning control”, Proceedings of the 35th IEEE conference on decision and

control, vol. 3, Kobe, Japan, pp. 3050-3055, 1996.

[139] V. Hatzikos, J. Hatonen and D.H. Owens, “Genetic algorithms in norm-

optimal linear and non-linear iterative learning control”, International

Journal of Control, vol. 77, no. 2, pp. 188-197, 2004.

[140] W. C. Kim and K. S. Lee, “Design of quadric criterion based iterative

learning control by principal component analysis”, Proceedings of the 2nd

Asian control conference, Seoul, Korea, 1997.

[141] W. Jouse and J. Williams, “PWR heat up control by means of a self

teaching neural network”, Proceedings of international conference on

control and instrumentation in nuclear installations, Glasgow, 1990.

[142] W. S. Chang and I. H. Suh, “Analysis and design of dual-repetitive

controllers”, Proceedings of the 35th IEEE conference on decision and

control, Kobe, Japan, 1996.

[143] W. S. Tommy and F. Yong, “An iterative learning control method for

continuous time systems based on 2-D theory”, IEEE transactions on

circuits and systems I: Fundamental theory and applications, vol. 45, no. 4,

pp. 683-689, 1998.

[144] Y. Chen and C.C. Wong, “Implementation of the Takagi Sugeno model

based fuzzy control using an adaptive gain controller”, IEE Proceedings on

Control Theory Applications, vol. 147, no. 5, pp. 509-514, 2000.

[145] Y. Chen and C. Wen, “Lecture notes in control and information sciences

248”, Springer-Verlag, 1999.

[146] Y. J. Liang and D. P. Looze, “Performance and robustness issues in

iterative learning control”, Proceedings of 32nd IEEE conference on

decision and control, San Antonio, TX, vol. 3, pp. 1990-1995, 1993.

[147] Y. Yongquan, H. Ying and Z. Bi, “The Dynamic Fuzzy Method to Tune

the Weight Factors of Neural Fuzzy PID Controller”, IEEE Proceedings of

The International Joint Conference on Neural Network(IJCNN), Budapest,

272

Hungary, vol.3, pp.2379-2402, 2004.

[148] Z. Bien and J. X. Xu, “Iterative learning control analysis, design,

integration and applications”, Kluwer academic publishers, USA, 1998.

[149] Z. Bien and K. M. Huh, “Higher order iterative control algorithm”, IEE

proceedings part D, control theory and applications, vol. 136, pp. 105-112,

1989.

[150] Z. Feng, Z. Zhang and D. Pi, “Open-closed-loop PD-type iterative learning

controller for nonlinear systems and its convergence”, Proceedings of the

5th world congress on intelligent control and automation, Hangzhou, China,

pp. 1241-1245, 2004.

[151] Z. Geng and M. Jamshidi, “Learning control system analysis and design

based on 2-D system theory”, Journal of Intelligent and Robotic Systems

3:17-26, 1990.

[152] Z. Geng, M. Jamshidi, R. Carroll and R. Kisner, “A learning control

scheme with gain estimator”, Proceedings of the 1991 IEEE international

symposium on intelligent control, 13-15 August 1991.

[153] Z. Xinggun, Z. Keding, W. Shenglin, W. Mao and H. Hengzhang,

“Iterative learning control for nonlinear systems based on neural

networks”, IEEE international conference on intelligent processing

systems, ICIPS, vol. 1, pp. 517-520, 1997.

[154] Z.Y. Zhao, M. Tomizuka ans S.I. Isaka, “Fuzzy gain scheduling of PID

controllers”, IEEE transactions on systems, man and cybernatics, vol. 23,

no. 5, pp. 1392-1398, 1993.

[155] Z. Zhong, “An application of H-infinity control and iterative learning

control to a scanner driving system”, Proceedings of the 3rd international

conference on computer integrated manufacturing, Singapore, vol. 2, pp.

981-988, 1995.

273

Appendix A

For simulation purposes different systems with different characteristics were

considered. These are presented in this Appendix.

A.1 A Simple System (SS)

This system consists of a single pole at s = -2 . This is a stable system. The

transfer function of the system is given by

1
1G (s) =

s + 2

At a sampling rate of 10 samples per sec. i.e. sampling time of 0.1(Ts=0.1) the discrete

transfer function of the Simple System is

1
0.09063G (z) =

z - 0.8187

A.2 Cruise Control System (CCS)

Assuming that there is no inertia in the wheels and that friction is the only thing

opposing the motion of the car, the cruise control system can be reduced to a simple mass

and damper system shown in figure A 1.

274

Figure A 1: A cruise control system diagram.

In the figure u is the input from the engine, v is the velocity of the body, m is the mass

of the body and b is the damping. The design values are

m = 1000 Kg

b = 50 N sec/m

u = 500 N

The system transfer function is given by

2
1G (s) =

ms + b

Using the design values the transfer function becomes

2
1G (s) =

1000s + 50

The discrete transfer function for a sampling frequency of 10 samples per sec. is

2
0.00009754G (z) =

z - 0.995

275

A.3 Car Suspension System (CSS)

A car suspension system can be modelled with a mass, spring and damper system

of the form shown in figure A 2.

Figure A 2: Block diagram of the car suspension system.

The force produced by the spring is proportional to the translation of the spring. The

spring produces a force kx in the direction of the force as the mass (m) is displayed by

an amount, x . As the mass is moved with a positive velocity (dx
dt

), the damper produces

a force, dxb
dt

.

The system equation can be written as

2F(s) = ms X(s) + bsX(s) + kX(s)

The transfer function is

X(s) 1G (s) = =3 2F(s) ms + bs + k

Taking the following design values

m = 1 Kg, b = 10 N.s / m, k = 20 N/m and F(s) = 1

276

The transfer function is given by the equation

1G (s) =3 2s +10s + 20

The discrete transfer function for a sampling frequency of 10 samples per sec. is

3
0.003622z + 0.002596G (z) = 2 -1.244z + 0.3679z

A.4 Non-Linear System (NLS)

A second order non-linear system is given by the following dynamic equation
.. .
y+ 0.1y y + 0.375y = 0.375u

A.5 Motor Speed Control System (MSCS)

A DC motor directly provides rotary motion. The electrical circuit of the armature and

the free body diagram of the rotor is shown in the figure A 3.

Figure A 3: Free body diagram of the rotor.

Assuming a rigid rotor shaft the following design parameters are assumed

J (moment of inertia of the rotor) = 0.01 Kg.m2/s2

b (damping ratio of the mechanical system) = 0.1 Nms

277

K (electromotive force constant) = 0.01 Nm/Amp

R (electrical resistance) = 1 ohm

L (electric inductance) = 0.5 H

V (source voltage)

θ , Theta (position of the shaft)

The transfer function is given by the equation.

4 2

KG (s) =
(Js + b)(Ls + R) + K

A.6 Inverted Pendulum (INVPL)

The inverted pendulum is a nonlinear system. The open loop plant is highly unstable. The

goal is to maintain the desired vertically oriented position at all times. The diagram of the

whole system is shown below.

Figure A 4: Inverted pendulum on a cart.

Where

M = Mass of cart, (kg)
m = Mass of inverted pendulum, (kg)
u = External x-directed force, (N)

278

g = Force of gravity, (m/sec2)
x = Cart position, (m)

θ = Tilt Angle, (radians)

A = Lever arm length, (m)

The final state space equations for the inverted pendulum implemented are

2
2

1 1 1 1 1 2
2

12

3 4
2

4 1 2 1 1
2

1

z
z cos z () sin z (cosz sinz)z

cos z ()zd d d= = =
z x zdt dt dt
z x (sinz)z - mgcosz sinz

cos z

u M m g m
m M m

u m
M m m

θ
θ

 
   − + +        − +               +    

+ −  

z

A
� A A

� A

 (A 1)

If both the pendulum angle (t)θ and the cart position x(t) are of interest, we have

1 0 0 0
x 0 0 1 0 x

x

θ
θ θ

 
      =        
 
 

y = = Cz
�

� (A 2)

Equations (A 1) and (A 2) give a complete state space representation of the nonlinear

inverted pendulum. This is the system that was used for simulations.

A.7 Desired Trajectory

The desired trajectory, used in the thesis is defined by a seventh order polynomial.

t t t t7 6 5 4y (t) = -20() + 70() -84() + 35()d 40 40 40 40
 0 < t 40≤

y (t) = 1d t 40>

279

Appendix B

Z. Tsypkin [42]

1971 An extraordinary Russian scientist who wrote a book on

“Foundations of the theory of learning systems”.

D. H. Owens [60]

Late

1970’s

Along with E. Rogers gave the Idea of multi pass systems.

Uchiyama 1978 Now believed by some to be the first researcher to give

the concept of Learning. But because his contribution was

in Japanese most English literature still does not recognise

his work.

S. Arimoto [58]

1984 Generally believed to be the pioneer of Iterative Learning

Control. The term learning control is contributed to him.

In his words

“The learning control concept stands for the repeatability

of operating a given object system and the possibility of

improving the control input on the basis of previous actual

operating data”.

S. Arimoto [58] 1984 S. Arimoto presented the first application of ILC in

robotics [125].

J. X.Xu 1990 The concept of Direct learning control was introduced.

Heinzinger 1992 “Learning control is a name attributed to a class of self-

tuning processes whereby the systems performance of a

specified task improves, based on the previous

performance of identical tasks”

Luca 1992 “Learning control is a technique in which the input signal

required to achieve a given behaviour as output of a

280

dynamical system is built iteratively from successive

experiments”

K. L. Moore [34]

1993 “Learning control is an iterative approach to the problem

of improving transient behaviour for processes that are

repetitive in nature”

Jang 1995 “The main strategy of the Iterative Learning Control is to

improve the quality of control iteratively by using

information obtained from previous trials, and finally to

obtain the control input that causes the desired output”

D. H. Owens [60] 1990’s

Studied the two dimensional nature of ILC and gave H∞

approach to ILC.

 1990’s Lots of work done in ILC

Velthuis 2000 Learning feed forward control was introduced.

Y. Q. Chen [44]

2001 With the collaboration of Seagate implemented ILC in its

U6 hard drives.

Goldsmith 2002 “The goal of Iterative Learning Control is to improve the

accuracy of a system that repeatedly follows a reference

trajectory”

2004 ILC implemented in Antilock braking of Toyota Prius.

Table B 1: Brief history of ILC.

281

Appendix C

Buddha [36]

(500)BC Buddhism was founded on the base that world was

filled with contradictions, and every thing contained

some of its opposite. This means that things can be

A and not A at the same time.

Plato

(427-347)BC “No chair is perfect; it is only a chair to a certain

degree.”

Aristotle [35]

(384-322)BC Developed binary logic. It means that thing has to

be A or not A, it can’t be both.

Georg Cantor [37]

(1845-1918) Gave Set Theory at the end of 19th century which is

now called the Crisp Set theory after the

introduction of fuzzy sets.

Sanders Peirce

(1839-1970) “All that exists is continuous and such continuums

govern knowledge.”

Bertrand Russel

(1872-1970) “Both vagueness and precision are features of

language, not reality. Vagueness clearly is a matter

of degree.”

J. Lukasiewiez

(1878-1955) Jan Lukasiewiez proposed a formal method of

vagueness, where 1 stood for TRUE, 0 stood for

FALSE and ½ stood for possible.

282

Albert Einstein

(1879-1955) “So far as the laws of mathematics refer to reality,

they are not certain. And so far as they are certain,

they do not refer to reality”

L. A. Zadeh [50]

1965

1973

“The closer one looks at a real world problem, the

fuzzier becomes its solution”

Wrote a seminal paper on concept of fuzzy sets.

Wrote a paper about fuzzy algorithms and showed

how to apply fuzzy.

M. Sugeno 1974 Gave the concept of fuzzy measure.

E. Mamdani

1974 Ebrahim Mamdani started applying fuzzy control to

steam engine control [20].

L. A. Zadeh Gave the concept of Type-2 fuzzy sets.

Sweden 1980 Control of Cement Kiln plant through fuzzy control.

Japan

1986 The Sendai Fuzzy logic subway [39] system first

proposed in 1978, was developed by Hitachi Ltd.

Yamaichi

Securities

1988 Yamaichi Securities (Japan) developed and

implemented Fuzzy based stock trading expert

system.

1989

1989

First fuzzy logic air conditioner was developed.

First fuzzy auto focus camera developed by Canon.

1990 First fuzzy logic washing machine was developed

by Matsushita [121].

1993-1994

1994

 Too many commercial applications.

Japanese companies sold $34 billion worth of

283

consumer products based on fuzzy logic.

 1992-2002 Research on neuro fuzzy techniques gained

momentum.

Mendel [45] and

Karnik

1999 Started developing tools for type-2 based fuzzy

logic set theory.

L. A. Zadeh 2000 Redirects researchers towards computing with

words.

2001 Implementation of automatic gear shift using fuzzy

logic by Mitsubishi [38].

Table C 1: Brief history of fuzzy.

284

Appendix D

