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Preface

In science and engineering, many problems engage convoluted phenomena. Most of these

complicated phenomena result in nonlinear ordinary differential equations (ODEs) along

with some initial and/or boundary conditions [41]. Moreover, many of these nonlinear

ODEs are singular. Singularity of these nonlinear ODEs is distinguished into two types—

singularity in independent and singularity in dependent variable. Singular boundary value

problems (SBVPs) arise in various fields of Mathematics, Engineering and Physics such

as boundary layer theory, gas dynamics, nuclear physics, nonlinear optics, etc, [7, 40, 70,

113, 117, 119, 133]. In the 1990’s some new results in analysis and fixed point theory

were used to provide a general existence theory for SBVPs. This thesis is devoted to

systems of SBVPs for ODEs. It presents existence theory for a variety of problems having

unbounded nonlinearities in regions where their solutions are searched for. The main

attention is concentrated on the positive solutions. The results are based on regularization

and sequential procedure. The impact of our results is verified by descriptive examples.

Essentially, the thesis is divided into six chapters. A brief description of each chapter is

as follows.

In Chapter 1, first we describe the motivation of the study of SBVPs and present several

examples of SBVPs which model real world phenomena. Then in Section 1.1, we present

some terminologies and previously studied results. These definitions and results are very

useful for our work. In Section 1.2, we define degree for finite and infinite dimensional

spaces and present some of its properties. Then, we give properties of fixed point index

and some known fixed point results. A relation between fixed point index and degree is

also given. We also include Scahuder’s fixed point theorem and the Guo–Krasnosel’skii

fixed point theorem.

In Chapter 2, we establish some results for the existence of positive solutions to the

system of second–order singular ODEs

−x′′(t) = f(t, y(t)), t ∈ (0, 1),

−y′′(t) = g(t, x(t)), t ∈ (0, 1),
(0.0.1)

iii
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and

−x′′(t) = f(t, x(t), y(t)), t ∈ (0, 1),

−y′′(t) = g(t, x(t), y(t)), t ∈ (0, 1),
(0.0.2)

subject to the following three–point boundary conditions (BCs)

x(0) = 0, x(1) = αx(η),

y(0) = 0, y(1) = αy(η),
(0.0.3)

where η ∈ (0, 1), 0 < α < 1/η, f, g ∈ C((0, 1) × (0,∞), (0,∞)). Moreover, f and g are

allowed to be singular at t = 0, t = 1, x = 0 and y = 0. We provide various results by

employing new assumptions on the nonlinear functions f and g, [14,15]. For this purpose,

we consider a sequence of modified nonsingular problems on compact subset of (0, 1), we

construct a cone of positive functions and then make use of the Guo–Krasnosel’skii fixed

point theorem to show the existence of solution for each modified problem. Furthermore,

we show that these solutions of the modified problems converges to solution of SBVPs.

Our results are more general than the previous existence results where the nonlinear terms

are singular with respect to t = 0 and t = 1 only [95,129].

In Chapter 3, we establish existence and multiplicity results to systems of SBVPs with

nonlinear functions dependent on first derivative [16–18,24]. In this chapter, we study the

following coupled systems of ODEs

−x′′(t) = p(t)f(t, y(t), x′(t)), t ∈ (0, 1),

−y′′(t) = q(t)g(t, x(t), y′(t)), t ∈ (0, 1),
(0.0.4)

subject to the following set of two–point BCs

x(0) = y(0) = x′(1) = y′(1) = 0, (0.0.5)

and

a1x(0)− b1x
′(0) = x′(1) = 0,

a2y(0)− b2y
′(0) = y′(1) = 0,

(0.0.6)

where the nonlinearities f, g : [0, 1] × [0,∞) × (0,∞) → [0,∞) are continuous and are

allowed to be singular at x′ = 0, y′ = 0. Moreover, p, q ∈ C(0, 1) and positive on (0, 1),

and the real constants ai (i = 1, 2) > 0, bi (i = 1, 2) > 0. In Section 3.1, we prove the

existence of at least one C1-positive solution for the system of SBVPs (0.0.4), (0.0.5). In

Section 3.2, we formulate conditions which guarantee the existence of at least two positive

solutions for the system of SBVPs (0.0.4), (0.0.5) by using the theory of fixed point index.

For this purpose we construct a cone in a special Banach space. Further in Section 3.3,

we provide sufficient conditions for the existence of at least one positive solution for the
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system of SBVPs (0.0.4), (0.0.6). Moreover in Section 3.4, we provide sufficient conditions

for the existence of at least two positive solutions for the system of SBVPs (0.0.4), (0.0.6)

by employing fixed point index theory.

In Chapter 4, we develop an existence theory for systems of ODEs with coupled BCs

[19, 20]. In Section 4.1, we discuss the existence of positive solution for the following

coupled singular system of ODEs subject to four–point coupled BCs

−x′′(t) = f(t, x(t), y(t)), t ∈ (0, 1),

−y′′(t) = g(t, x(t), y(t)), t ∈ (0, 1),

x(0) = 0, x(1) = αy(ξ),

y(0) = 0, y(1) = βx(η),

(0.0.7)

where the parameters α, β, ξ, η satisfy ξ, η ∈ (0, 1), 0 < αβξη < 1. We assume that

f, g : (0, 1)× [0,∞)× [0,∞) → [0,∞) are continuous and allowed to be singular at t = 0

and t = 1. We introduce notion of the Green’s functions for the linear system corresponding

to system of boundary value problems (BVPs) (0.0.7). We construct a positive cone and

then define a completely continuous map via Green’s functions. By employing the Guo–

Krasnosel’skii fixed point theorem, we show that the completely continuous map has a fixed

point in the positive cone. Moreover in Section 4.2, we study the existence of C1-positive

solutions to the following system subject to two–point coupled BCs

−x′′(t) = p(t)f(t, x(t), y(t), x′(t)), t ∈ (0, 1),

−y′′(t) = q(t)g(t, x(t), y(t), y′(t)), t ∈ (0, 1),

a1y(0)− b1x
′(0) = 0, y′(1) = 0,

a2x(0)− b2y
′(0) = 0, x′(1) = 0,

(0.0.8)

where f, g : [0, 1] × [0,∞) × [0,∞) × (0,∞) → [0,∞) are continuous and are allowed to

be singular at x′ = 0, y′ = 0; p, q ∈ C(0, 1), p > 0 and q > 0 on (0, 1); ai, bi (i = 1, 2) are

positive real constants.

In Chapter 5, we study systems of SBVPs with sign–changing nonlinear functions

[21–23]. In Section 5.1, we develop the notion of upper and lower solutions and prove the

existence of C1-positive solutions for the following system of SBVPs

−x′′(t) = p1(t)f1(t, x(t), y(t), x
′(t)), t ∈ (0, 1),

−y′′(t) = p2(t)f2(t, x(t), y(t), y
′(t)), t ∈ (0, 1),

x(0) = x(1) = y(0) = y(1) = 0,

(0.0.9)

where the functions f1, f2 : [0, 1] × (0,∞) × (0,∞) × R → R are continuous and allowed

to be singular at x = 0 and y = 0. Moreover, p1, p2 ∈ C(0, 1) are positive on (0, 1).

Sections 5.2 and 5.3 presents an existence theory for the systems of SBVPs on an infinite
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domain. BVPs over infinite intervals arises in the study of plasma physics; in determining

the electrical potential in an isolated neutral atom; in the theory of shallow membrane

caps; in the theory of colloids; in the flow and heat transfer over a stretching sheet; in the

unsteady flow of a gas through a semi–infinite porous medium; in the theory of draining

flows, etc. In Sections 5.2 and 5.3, we establish the existence of C1-positive solutions to

the following coupled system of ODEs

−x′′(t) = p1(t)f1(t, x(t), y(t), x
′(t)), t ∈ R+

0 ,

−y′′(t) = p2(t)f2(t, x(t), y(t), y
′(t)), t ∈ R+

0 ,
(0.0.10)

subject to the following set of BCs

x(0) = y(0) = lim
t→∞

y′(t) = lim
t→∞

x′(t) = 0, (0.0.11)

and

a1x(0)− b1x
′(0) = lim

t→∞
x′(t) = 0,

a2y(0)− b2y
′(0) = lim

t→∞
y′(t) = 0,

(0.0.12)

where f1, f2 : R+×R2×R0 → R are continuous and allowed to change sign. We allow the

nonlinear functions fi (i = 1, 2) to be singular at x′ = 0 and y′ = 0. Also, pi ∈ C(R+
0 ),

pi > 0 on R+
0 and the constants ai, bi > 0, i = 1, 2; here R0 = R \ {0}, R+ = [0,∞),

R+
0 = R+ \ {0}. To establish the existence theory for a system on an infinite domain, first

we consider the system on a finite domain and prove its existence. Then, we employ a

diagnalization argument to establish the existence of positive solution for the system on

an infinite domain.

Finally Chapter 6, is devoted to remarks about hypothesis that we established in

Chapters 2–5.
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Chapter 1

Introduction and Preliminaries

Many problems in applied sciences can be modeled by SBVPs. For example, many prob-

lems in the study of rotating flow [65]; in the theory of viscous fluids [31]; in the study

of pseudoplastic fluids [33, 110]; in boundary layer theory [32, 115, 124, 125]; the theory of

shallow membrane caps [25, 44, 75]; in pre–breakdown of gas discharge [46]; the turbulent

flow of a gas in a porous medium [53]; can be represented by SBVPs. In view of the above

mentioned areas, the study of SBVPs becomes a fundamental. In order to demonstrate the

importance and applications of SBVPs, we include below few models of SBVPs emerging

from different applications.

A shallow membrane cap which is rotationally symmetric in its undeformed state and

whose undeformed profile is given in cylindrical coordinates by z(r) = C(1 − rγ), γ > 1.

When radial stress is applied on the boundary and a small uniform vertical pressure P

is applied to the membrane, the shape of the cap is described by a nonlinear model. If

the deformed membrane is rotationally symmetric, then, under the assumptions of small

strain, the radial stress S on the membrane is given by the following singular ODE

−S′′(r) =
1

8(S(r))2
− αν

S(r)
+

3

r
S′(r)− β2

2
r2(γ−2), 0 < r ≤ 1, (1.0.1)

where α, β are positive constants depending on the pressure P , the thickness of the

membrane and Young’s modulus or the Poisson ratio ν satisfies 0 ≤ ν < 0.5. In case

of stress problem, the BC for r = 1 is specified by S(1) = A, with A > 0. However, in

case of the displacement problem, the radial displacement at the boundary is given by

(1 − ν)S(1) + S′(1) = B, where B is any real number. Further, one may require a BC

at the singular end r = 0 as well and therefore, one may assume that S(r) is bounded as

r → 0+. For more detailed study of the model (1.0.1) and other problems related to the

circular membrane cap, we refer the readers to [25,43,44,75,118].

SBVPs also occur in the study of BVPs on infinite domain. In 1927, L.H. Thomas [121]

and E. Fermi [55] independently studied the electrical potential in an isolated neutral atom

1



CHAPTER 1. INTRODUCTION AND PRELIMINARIES 2

and derived the following singular BVP

χ′′(r) = r−1/2(χ(r))3/2, 0 < r <∞,

χ(0) = 1, lim
r→∞

χ(r) = 0,
(1.0.2)

where χ is a semiclassical description of the charge density in atoms of high atomic number.

In study of mass transfer on a rotating disk in non–Newtonian fluid [60], the concentration

C of the diffusing species is given by the infinite domain SBVP as follows

−C ′′(t) =
1

9
(
5α+ 7

2α+ 2
+

6

t
)C ′(t), 0 < t <∞,

C(0) = 0, lim
t→∞

C(t) = C∞,

where α and C∞ are some constants.

Most of the mathematical models of various applications from nuclear physics, plasma

physics, nonlinear optics, fluid mechanics and chemical reactor theory are systems of time

dependent partial differential equations (PDEs) subject to initial and/or boundary con-

ditions. In the investigation of stationary solutions, many of these models of systems of

PDEs can be reduced to systems of BVPs for singular ODEs. The following are some

singular models from numerous applications.

The system of second–order PDEs also arises in chemical reactor theory. Let Ω be a

bounded reactor in Rn, where n = 1, 2, 3. The autocatalytic chemical reaction of reactant

A and autocatalyst B is described by the following system of PDEs [139],

∂a

∂t
= DA∆a− abp, t ≥ 0, x ∈ Ω,

∂b

∂t
= DB∆b+ abp, t ≥ 0, x ∈ Ω,

(1.0.3)

where DA and DB are the diffusion coefficients of A and B, respectively, a and b are the

concentrations of A and B, and p ≥ 1 is the order of the reaction with respect to the

autocatalytic species. In applications, the chemicals A and B can diffuse from a reservoir

of constant composition across the boundary ∂Ω into Ω, therefore the BCs of chemicals A

and B may be of the type

a(x, t) = a0 > 0, b(x, t) = b0 ≥ 0, t ≥ 0, x ∈ ∂Ω. (1.0.4)

The steady state solution of the system of BVPs (1.0.3) and (1.0.4) satisfy

DA∆a− abp = 0, x ∈ Ω,

DB∆b+ abp = 0, x ∈ Ω,

a(x) = a0, b(x) = b0, x ∈ ∂Ω.

(1.0.5)

The addition of the two equations in (1.0.5), leads to ∆(DAa + DBb)(x) = 0 for x ∈ Ω,

which implies that DAa(x)+DBb(x) = 0 for x ∈ Ω and DAa(x)+DBb(x) = DAa0+DBb0
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for x ∈ ∂Ω. By the uniqueness of the solution of Laplace equation, one have DAa(x) +

DBb(x) = DAa0 + DBb0 for x ∈ Ω. Hence, the system of BVPs (1.0.5) reduced to the

following scalar BVP

−DADB∆b = (DAa0 +DBb0 −DBb)b
p, x ∈ Ω,

b(x) = b0, x ∈ ∂Ω.
(1.0.6)

Let v(x) = b(x)/(DAD
−1
B a0 + b0), then using (1.0.6), v(x) satisfies

−∆v = λ(1− v)vp, x ∈ Ω,

v(x) = k, x ∈ ∂Ω,
(1.0.7)

where λ = D−1
A (DAD

−1
B a0 + b0)

p and k = DBb0/(DAa0 + DBb0). Since v ≥ 0, by the

maximum principle, k ≤ v(x) ≤ 1. Now set u(x) = v(x)− k, then (1.0.7) takes the form

−∆u = λ((u+ k)p − (u+ k)p+1), x ∈ Ω,

u(x) = 0, x ∈ ∂Ω.
(1.0.8)

In case the reactor Ω is a unit ball and the reaction is of high order, that is, p > 1, the

positive solution of (1.0.8) is radially symmetric and decreasing along the radial direction.

Therefore, the following SBVP arises

−u′′(r) = n− 1

r
u′(r) + λ((u(r) + k)p − (u(r) + k)p+1), r ∈ (0, 1),

u′(0) = u(1) = 0,

(1.0.9)

where u(r) > 0 and u′(r) < 0 for r ∈ (0, 1).

The problem of Hagen–Poiseuille flow in hydrodynamics arises the study of linear sta-

bility of incompressible flow in a circular pipe subject to non–axisymmetric disturbances.

The problem is singular system of ODEs of the form

Tr(r2(k(r))2Tr)Φ(r) + iαR(u(r)− c)TrΦ(r) + iαR
1

r

(
u′(r)

r(k(r))2

)′
Φ(r) + 2αnTrΩ(r) = 0,

2αnTrΦ(r)− inR
u′(r)

r
Φ(r) + SrΩ(r) + iαRr2(k(r))2(u(r)− c)Ω(r) = 0,

(1.0.10)

on the interval (0, 1] subject to the BCs of the type

lim
r→0

Φ(r) = lim
r→0

Φ′(r) = Φ(1) = Φ′(1) = Ω(1) = 0, if n = 0,

lim
r→0

Φ(r) = lim
r→0

Ω(r) = Φ(1) = Φ′(1) = Ω(1) = 0, lim
r→0

Φ′(r) is finite, if n = ±1,

lim
r→0

Φ(r) = lim
r→0

Φ′(r) = lim
r→0

Ω(r) = Φ(1) = Φ′(1) = Ω(1) = 0, if |n| ≥ 2,

(1.0.11)

where

Tr =
1

r2
− 1

r

d

dr

(
1

r(k(r))2
d

dr

)
, Sr = r2(k(r))4 − 1

r

d

dr

(
r3(k(r))2

d

dr

)
, k(r) = α2 +

n2

r2
,
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R ≥ 0 is the Reynolds number and α ∈ R \ {0} is the stream–wise wave number, c is

a complex wave speed resulted from ei(αx+nϕ−αct), where (x, ϕ, t) are axial–angular–time

coordinates. The axial mean flow u : [0, 1] → R is a twice differentiable function. For more

detail about (1.0.10), (1.0.11), see [103,116] and references therein.

Let Ω be a bounded open subset of Rn. The interaction of two substances, activator u

and inhibitor v, is represented by a singular system of reaction–diffusion equations

∂u

∂t
= Du

∂2u

∂x2
− ruu+

ϱu2

v
+ ϱbu, t ≥ 0, x ∈ Ω,

∂v

∂t
= Dv

∂2v

∂x2
− rvv + ϱu2 + ϱbv, t ≥ 0, x ∈ Ω,

u(t, x) = 0, v(t, x) = 0, t ≥ 0, x ∈ ∂Ω,

(1.0.12)

where bu, bv, ru, rv, Du, Dv are the respective basic production rates, decay rates, diffusion

coefficients and ϱ represents the ability of the cells to perform autocatalysis. The terms

ϱu2 describe the autocatalysis and crosscatalysis of the activator, 1/v covers the action of

the inhibitor, the remaining terms are degradation and source terms. The singular system

(1.0.12) is an example of a large class of models which generate patterns by a combination

of short–range activation due to the catalytic nonlinearity and a long–range inhibition.

Also, many of the activator–inhibitor models for the formation of tropical shell patterns

are variations of the singular system (1.0.12). Further details about activator–inhibitor

models is available in [29,54].

Gierer–Meinhardt equations [38,58,85] are mathematical models for pattern formations

of spatial tissue structures of morphogenesis. These are system of elliptic PDEs based on

an interaction between activators and inhibitors. Specifically, under the assumption that

the activators, u(t, x), and the inhibitors, v(t, x), are acting proportionally on some powers

of u and v in the source term and are having source distributions ρ1 and ρ2, respectively.

The generalized Gierer–Meinhardt model is presented in the form of following singular

system of BVPs

∂u

∂t
= d1∆u− α1u+ c1ρ1

up

vq
+ γρ1, t ≥ 0, x ∈ Ω,

∂v

∂t
= d2∆v − α2v + c2ρ2

ur

vs
, t ≥ 0, x ∈ Ω,

u(t, x) = 0, v(t, x) = 0, t ≥ 0, x ∈ ∂Ω,

(1.0.13)

with d1 and d2 are diffusion constants, α1, α2 and γ are positive parameters, p, q, r, s are

positive constants. For q ̸= s, the activator and inhibitor sources are said to be different.

Similar equations also occur in certain models of predator–prey interactions [123].

In the scenario of the above mentioned models of various phenomenon, the theory of

SBVPs has become much more important. In this dissertation, we present existence results

for positive solutions to various systems of BVPs for nonlinear ODEs. We provide sufficient
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conditions for the existence and multiplicity results corresponding to singular systems of

nonlinear ODEs subject to various type of BCs both on finite and infinite domains. We

use the classical tools of functional analysis including fixed point theory and the theory

of the fixed point index. The rest of this chapter is devoted to the basic study of these

notions. In Section 1.1, we present some definitions from functional analysis and known

results. In Section 1.2, the concept of topological degree and fixed point index theory is

described in detail. Moreover, some famous fixed point results such as Schauder’s fixed

point theorem and the Guo–Krasnosel’skii fixed point theorem are also included in this

section.

1.1 Some basic definitions and known results

In this section, we present some basic definitions and known results from functional anal-

ysis. For details, we refer the reader to [45,48,71].

Definition 1.1.1. (Compact): A subset Ω of a Banach space B is said to be compact

if every open covering of Ω can be reduced to a finite open covering of Ω, that is, if

Ω ⊂ ∪λ∈ΛΩλ, where Ωλ is an open subset of B for every λ belongs to the indexed set

Λ, then there exist a finite subset {Ωλi
: i = 1, 2, · · · ,m} of {Ωλ : λ ∈ Λ} such that

Ω ⊂ ∪m
i=1Ωλi

. Equivalently, Ω is compact if and only if every sequence {xn} ⊂ Ω has a

convergent subsequence with limit in Ω. Moreover, Ω is relatively compact if its closure Ω

is compact.

Definition 1.1.2. (Compact map): Let Ω be a subset of a Banach space B. A map

T : Ω → B is compact if T maps every bounded subset of Ω into a relatively compact

subset of B. T is said to be completely continuous if T is continuous and compact.

Definition 1.1.3. (Retract): A nonempty subset K of a Banach space B is a retract of

B if there exist a continuous map r : B → K, a retraction, such that r|K = IK , where IK

is identity map on K. Every closed and convex subset of B is a retract. However, every

retract of B is closed but not necessarily convex.

Definition 1.1.4. (Cone): Let B be a real Banach space. A nonempty, closed and convex

set P ⊂ B is said to be a cone if the following are satisfied:

(P1) αx ∈ P for all x ∈ P and α ≥ 0,

(P2) x,−x ∈ P implies x = 0.

A cone P in a real Banach space B induces an ordering ≼ in B which is defined by

x ≼ y if and only if y − x ∈ P . Clearly, P = {x ∈ B : x ≽ 0}. The elements in the set

P \ {0} = {x ∈ B : x ≻ 0} are positive and P is said to be positive cone of ordering.
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Consequently, for every Banach space B there is a one–to–one correspondence between the

family of linear orderings and the family of cones in B.

Example 1.1.5. Let Ω be a Lebesgue measurable subset of Rn of positive measure. For

each p with 1 ≤ p < ∞, we denote by Lp(Ω) the space of all real–valued measurable

functions defined on Ω whose p–th powers are integrable. For each x ∈ Lp(Ω) the norm

is ∥x∥
Lp(Ω)

= (
∫
Ω |x(t)|pdt)1/p. Let L∞(Ω) denote the space of all real–valued, essentially

bounded and measurable functions defined on Ω with the norm ∥x∥
L∞(Ω)

= ess sup{|x(t)| :
t ∈ Ω}. Clearly, for each 0 ≤ p ≤ ∞, (Lp(Ω), ∥ · ∥

Lp(Ω)
) is a Banach space. Further, the

Banach space Lp(Ω), 1 ≤ p ≤ ∞, has a positive cone

Kp
Ω = {x ∈ Lp(Ω) : x ≥ 0 almost everywhere on Ω}.

Theorem 1.1.6. (Arzelà–Ascoli theorem): Let Ω be a compact subset of Rn. A set

M of continuous functions on Ω is relatively compact in C(Ω) if and only if M is a family

of uniformly bounded and equicontinuous functions.

Theorem 1.1.7. (Dugundji’s theorem): Every nonempty closed and convex subset of

a Banach space B is a retract of B.

Now, we present a special Banach space and some other known results, details are

available in [6, 131, 132]. For each x ∈ C[0, 1] ∩ C1(0, 1], we write ∥x∥ = maxt∈[0,1] |x(t)|
and ∥x∥1 = supt∈(0,1] t|x′(t)|. Moreover, for each x ∈ E := {x ∈ C[0, 1] ∩ C1(0, 1] :

∥x∥1 < +∞}, we write ∥x∥2 = max{∥x∥, ∥x∥1}. Further, for each x ∈ C1[0, 1], we write

∥x∥3 = max{∥x∥, ∥x′∥}.

Lemma 1.1.8. (E , ∥ · ∥2) is a Banach space.

Proof. Clearly, E is a linear space and θ(t) ≡ 0 for t ∈ [0, 1] is a zero element of E . Further,
∥ · ∥2 is a norm on E . Now, we show that (E , ∥ · ∥2) is a complete space. Let {xn}∞n=1 be a

Cauchy sequence in E . Then, for any ϵ > 0, there exists an n∗ > 0 such that

∥xn − xm∥2 < ϵ for all n > n∗, m > n∗.

Since ∥xn−xm∥ ≤ ∥xn−xm∥2, therefore {xn}∞n=1 is a Cauchy sequence in C[0, 1]. Moreover,

(C[0, 1], ∥ · ∥) is a complete space. So, there exist x0 ∈ C[0, 1] such that

lim
n→+∞

∥xn − x0∥ = 0. (1.1.1)

Now, we show that x0 is continuously differentiable on (0, 1]. For any δ ∈ (0, 1), consider

δ max
t∈[δ,1]

|x′n(t)− x′m(t)| ≤ max
t∈[δ,1]

t|x′n(t)− x′m(t)| ≤ sup
t∈(0,1]

t|x′n(t)− x′m(t)|

= ∥x′n − x′m∥1 ≤ ∥x′n − x′m∥2,
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which implies that

max
t∈[δ,1]

|x′n(t)− x′m(t)| ≤ 1

δ
∥x′n − x′m∥2.

Consequently, x0 is continuously differentiable on [δ, 1] and x′n converges uniformly to x′0

on [δ, 1]. Since δ is arbitrary, x0 is continuously differentiable on (0, 1].

From supt∈(0,1] t|x′n(t)− x′m(t)| ≤ ∥xn − xm∥2 and taking limm→+∞, we have

sup
t∈(0,1]

t|x′n(t)− x′0(t)| ≤ ϵ, (1.1.2)

which implies that x0 ∈ E . Also, from (1.1.1) and (1.1.2), we obtain

lim
n→+∞

∥xn − x0∥2 = 0,

which shows that xn converges to x0. Hence, (E , ∥ · ∥2) is a Banach space.

Lemma 1.1.9. If x ∈ E, then |x′(t)| ≤ ∥x∥2
t for all t ∈ (0, 1].

Proof. For t ∈ (0, 1], consider

t|x′(t)| ≤ sup
t∈(0,1]

t|x′(t)| = ∥x∥1 ≤ ∥x∥2,

which implies that

|x′(t)| ≤ ∥x∥2
t
, t ∈ (0, 1].

Lemma 1.1.10. If x ∈ P := {x ∈ E : x(t) ≥ t∥x∥ ∀ t ∈ [0, 1], x(1) ≥ ∥x∥1}, then

∥x∥2 = ∥x∥.

Proof. For x ∈ P , we have

∥x∥ = max
t∈[0,1]

|x(t)| ≥ x(1) ≥ ∥x∥1.

Then,

∥x∥2 = max{∥x∥, ∥x∥1} = ∥x∥.

Lemma 1.1.11. Let σ ∈ C(0, 1) and σ > 0 on (0, 1) with
∫ 1
0 σ(t)dt < +∞. Then,

t max
τ∈[0,1]

∫ 1

0
G(τ, s)σ(s)ds ≤

∫ 1

0
G(t, s)σ(s)ds for t ∈ [0, 1],

sup
τ∈(0,1]

τ

∫ 1

τ
σ(s)ds ≤ max

t∈[0,1]

∫ 1

0
G(t, s)σ(s)ds,
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where

G(t, s) =

s, 0 ≤ s ≤ t ≤ 1,

t, 0 ≤ t ≤ s ≤ 1.

Proof. Let maxτ∈[0,1]G(τ, s) = G(κ, s), s ∈ [0, 1]. For t, s ∈ [0, 1], we have

G(t, s)

G(κ, s)
=



t
s ≥ t, t ≤ s ≤ κ,

s
κ ≥ 1, κ ≤ s ≤ t,

t
κ ≥ t, t, κ ≤ s,

s
s = 1, t, κ ≥ s,

≥ t,

which implies that G(t, s) ≥ tG(κ, s). Hence, for t ∈ [0, 1], we have∫ 1

0
G(t, s)σ(s)ds ≥ t

∫ 1

0
G(κ, s)σ(s)ds = t max

τ∈[0,1]

∫ 1

0
G(τ, s)σ(s)ds.

Moreover, for τ ∈ [0, 1], we have

τ

∫ 1

τ
σ(s)ds ≤

∫ τ

0
sσ(s)ds+

∫ 1

τ
τσ(s)ds =

∫ 1

0
G(τ, s)σ(s)ds ≤ max

t∈[0,1]

∫ 1

0
G(t, s)σ(s)ds,

which implies that

sup
τ∈(0,1]

τ

∫ 1

τ
σ(s)ds ≤ max

t∈[0,1]

∫ 1

0
G(t, s)σ(s)ds.

Lemma 1.1.12. If x ∈ P := {x ∈ C1[0, 1] : x(t) ≥ γ∥x∥, ∀ t ∈ [0, 1], x(0) ≥ b
a∥x

′∥}, then
x(t) ≥ γρ∥x∥3 for all t ∈ [0, 1], where γ = b

a+b , ϱ = 1
max{1,a

b
} , a, b > 0.

Proof. For x ∈ P , we have

x(t) ≥ γ∥x∥, t ∈ [0, 1]. (1.1.3)

Then,

∥x∥3 = max{∥x∥, ∥x′∥} ≤ max{∥x∥, a
b
x(0)}

≤ max{∥x∥, a
b
∥x∥} = max{1, a

b
}∥x∥ = ϱ−1∥x∥.

This together with (1.1.3) implies that

x(t) ≥ γ∥x∥ ≥ γϱ∥x∥3.
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Lemma 1.1.13. Let σ ∈ C(0, 1) and σ > 0 on (0, 1) with
∫ 1
0 σ(t)dt < +∞. Then,

γ max
τ∈[0,1]

∫ 1

0
G(τ, s)σ(s)ds ≤

∫ 1

0
G(t, s)σ(s)ds for t ∈ [0, 1], γ =

b

a+ b
, a, b > 0,

b

a
max
τ∈[0,1]

∫ 1

τ
σ(s)ds =

∫ 1

0
G(0, s)σ(s)ds,

where

G(t, s) =
1

a

b+ as, 0 ≤ s ≤ t ≤ 1,

b+ at, 0 ≤ t ≤ s ≤ 1.

Proof. Let maxτ∈[0,1]G(τ, s) = G(κ, s), s ∈ [0, 1]. For t, s ∈ [0, 1], we have

G(t, s)

G(κ, s)
=



1
a
(b+at)

1
a
(b+as)

≥
1
a
(b+at)

1
a
(b+a)

, t ≤ s ≤ κ,

1
a
(b+as)

1
a
(b+aκ)

≥ 1, κ ≤ s ≤ t,

1
a
(b+at)

1
a
(b+aκ)

≥
1
a
(b+at)

1
a
(b+a)

, t, κ ≤ s,

1
a
(b+as)

1
a
(b+as)

= 1, t, κ ≥ s,

≥ b

a+ b
,

which shows that G(t, s) ≥ b
a+bG(κ, s). Now, for t ∈ [0, 1], we have∫ 1

0
G(t, s)σ(s)ds ≥ b

a+ b

∫ 1

0
G(κ, s)σ(s)ds = γ max

τ∈[0,1]

∫ 1

0
G(τ, s)σ(s)ds.

Moreover,

max
τ∈[0,1]

∫ 1

τ
σ(s)ds =

∫ 1

0
σ(s)ds =

a

b

∫ 1

0
G(0, s)σ(s)ds,

which implies that

b

a
max
τ∈[0,1]

∫ 1

τ
σ(s)ds =

∫ 1

0
G(0, s)σ(s)ds.

Lemma 1.1.14. Let x ∈ C1[0, 1] ∩ C2(0, 1) satisfies x′′ < 0 on (0, 1), x(0) = 0, x′(1) =

a ≥ 0. Then, x(t) ≥ tx(1) for t ∈ [0, 1].

Proof. Let y(t) = x(t) − tx(1). Then, y(0) = y(1) = 0 and y′′(t) < 0 on (0, 1). Conse-

quently, y(t) ≥ 0 for t ∈ [0, 1]. Hence, x(t) ≥ tx(1) for t ∈ [0, 1].
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1.2 Topological degree and fixed point index

Let Ω be a bounded and open subset of a topological space X and f : Ω → X be a

continuous map. The degree of f in Ω at point y, deg(f,Ω, y), is a device that describes

the number of solutions to the equation f(x) = y in Ω, where y /∈ f(∂Ω).

1.2.1 The Brouwer degree

Now, we recall the notion of Brouwer degree for continuous maps in finite dimensional

spaces. Let Ω be a bounded and open subset of Rn and f : Ω → Rn be a continuous

map. A point x0 ∈ Ω is a critical point of f if Jf (x0) = 0, where Jf (x) := det f ′(x) is

the Jacobean of f at x. If x0 is a critical point of f , then f(x0) is called a critical value.

Otherwise, f(x0) is called a regular value. An integer deg(f,Ω, y) which, roughly speaking,

corresponds to the number of solutions x ∈ Ω of the equation f(x) = y is called degree of

f in Ω at point y, where y /∈ f(∂Ω). If y is not a critical value for f , the Brouwer degree

is defined as follows:

Let Ω ⊂ Rn be bounded and open, f ∈ C1(Ω) ∩ C(Ω) and y /∈ f(∂Ω ∪ Sf ), where

Sf = {x ∈ Ω : Jf (x) = 0}. Then,

degB(f,Ω, y) =
∑

x∈f−1(y)

sgn Jf (x).

However, if y is a critical value, f ∈ C2(Ω) ∩ C(Ω) and y /∈ f(∂Ω). Then,

degB(f,Ω, y) = degB(f,Ω, z) =
∑

x∈f−1(z)

sgn Jf (x),

where z is any regular value of f such that |z − y| < dist(y, f(∂Ω)). Further, if f ∈ C(Ω),

degB(f,Ω, y) = degB(g,Ω, y),

where g ∈ C2(Ω) ∩ C(Ω) is any map such that supx∈Ω |f(x)− g(x)| < dist(y, f(∂Ω)). For

further detail see [45,56].

The Brouwer degree satisfies the following basic properties which are listed in the

following theorem.

Theorem 1.2.1. Let M = {(f,Ω, y) : Ω ⊂ Rn bounded and open, f ∈ C(Ω), y /∈ f(∂Ω)}.
Then, the Brouwer degree degB :M → Z satisfies the following properties.

(D1) Normalization: degB(id,Ω, y) = 1 for y ∈ Ω, where id denotes the identity map-

ping of Rn.

(D2) Additivity: degB(f,Ω, y) = degB(f,Ω1, y)+degB(f,Ω2, y), whenever Ω1 and Ω2 are

disjoint open subsets of Ω such that y /∈ f(Ω \ (Ω1 ∪ Ω2)).
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(D3) Homotopy invariance: degB(h(t, ·),Ω, y(t)) is independent of t ∈ [0, 1], whenever

h : [0, 1] × Ω → Rn and y : [0, 1] → Rn are continuous and y(t) /∈ h(t, ∂Ω) for all

t ∈ [0, 1].

(D4) Solution property: degB(f,Ω, y) ̸= 0 implies f−1(y) ̸= ∅.

(D5) Boundary dependence: degB(f,Ω, y) = degB(g,Ω, y) whenever f |∂Ω = g|∂Ω.

(D6) Excision: degB(f,Ω, y) = degB(f,Ω1, y) for every open subset Ω1 of Ω such that

y /∈ f(Ω \ Ω1).

1.2.2 The Leray–Schauder degree

In 1934, an important extension of the Brouwer degree to infinite dimensional spaces was

revealed by J. Leray and J. Schauder [87]. This requires continuity and some kind of

compactness. They proved that there is a complete analog of finite–dimensional degree

theory for the class of “compact perturbation of the identity”, that is for map of the form

I − T , where I is the identity map and T is a completely continuous map.

We define the Leray–Schauder degree by means of the following theorem on the ap-

proximation of a compact mapping with finite–dimensional mappings.

Theorem 1.2.2. Let (B, ∥ · ∥) be a real Banach space. Assume that Ω is a bounded, open

subset of B and T : Ω → B is a completely continuous map. Then, for every ε > 0,

there exist a finite–dimensional space B and a continuous map Tε : Ω → B such that

∥T (x)− Tε(x)∥ < ε for every x ∈ Ω.

In view of Theorem 1.2.2, we have ∥T (x) − Tε(x)∥ < ε := ρ(y, (I − T )(∂Ω)), where ρ

is the metric associated with the norm ∥ · ∥. Thus, we define the Leray–Schauder degree

for the map I − T as follows:

Let Ω be a bounded and open subset of a Banach space B. Let T : Ω → B be a

completely continuous mapping and y /∈ (I−T )(∂Ω). The Leray–Schauder degree of I−T
over Ω at point y is defined by

degLS(I − T,Ω, y) = degB(I − Tε,Ω, y),

where Tε is given in Theorem 1.2.2. Essentially, all the properties of Brouwer degree

(D1) − (D6) are also satisfied by the Leray–Schauder degree for the map f = I − T , for

details see [45,56].

1.2.3 Fixed point index theory

Let K be a retract of a real Banach space B and Ω is an open subset of K. Let T : Ω → K

be a completely continuous map such that 0 /∈ (I−T )(∂Ω). For a retraction r : B → K, the
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degree degLS(I−T ◦r, r−1(Ω), 0) is defined and it follows from the homotopy invariance and

excision properties of Leray–Schauder degree that this integer is same for all retractions

from B onto K. We call this number the fixed point index of the map T over Ω with

respect to K and is denoted by indFP(T,Ω,K).

If the positive cone does not have the interior point, the Leray–Schauder degree is not

immediately applicable. However, since positive cone is a retract of the Banach space,

fixed point index is defined in the positive cone for completely continuous maps. In this

section, we present the basic properties of fixed point index for completely continuous

map. Further, we show that the fixed point index is equivalent to the Leray–Schauder

degree, for detail see [9,45]. The most significant properties of the fixed point index for a

completely continuous map are presented in the following theorem.

Theorem 1.2.3. Let K be a retract of a Banach apace B. For every open subset Ω of

K and every completely continuous map T : Ω → K which has no fixed point on ∂Ω,

there exist an integer indFP(T,Ω,K), the fixed point index of T over Ω with respect to K,

satisfying the following properties:

(I1) Normalization: For every constant map T mapping Ω into Ω, indFP(T,Ω,K) = 1.

(I2) Additivity: For every pair of disjoint open subsets Ω1 and Ω2 of Ω such that T has

no fixed point on Ω \ (Ω1 ∪ Ω2),

indFP(T,Ω,K) = indFP(T,Ω1,K) + indFP(T,Ω2,K),

where indFP(T,Ωi,K) := indFP(T |Ωi
,Ωi,K), i = 1, 2.

(I3) Homotopy invariance: For every compact interval Λ ⊂ R and every compact map

h : Λ× Ω → K such that h(λ, x) ̸= x for (λ, x) ∈ Λ× ∂Ω,

indFP(h(λ, ·),Ω,K)

is well defined and is independent of λ ∈ Λ.

(I4) Solution property: If indFP(T,Ω,K) ̸= 0, then T has at least one fixed point in Ω.

(I5) Permanence: If K1 is a retract of K and T (Ω) ⊂ K1, then

indFP(T,Ω,K) = indFP(T,Ω ∩K1,K1),

where indFP(T,Ω ∩K1,K1) := indFP(T |Ω∩K1
,Ω ∩K1,K1).

(I6) Excision: For every open set Ω1 ⊂ Ω such that T has no fixed point in Ω \ Ω1,

indFP(T,Ω,K) = indFP(T,Ω1,K).
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Now, we prove that the fixed point index indFP(T,Ω,K) is equivalent to the Leray–

Schauder degree and is uniquely determined by the properties (I1)− (I3), (I5).

If K = B, the conditions (I1)− (I3) are specifically the properties which illustrate the

Leray–Schauder degree. Hence,

indFP(I − T,Ω,B) = degLS(I − T,Ω, 0),

where degLS(I − T,Ω, 0) denotes the Leray–Schauder degree with respect to zero of the

closure of the compact vector field I−T , which is defined on the closure of the open subset

Ω of B.

Now, let K be any retract of B and r0 : B → K be a retraction. Then, in view of

permeance property (I5), we have

indFP(T,Ω,K) = indFP(T ◦ r0, r−1
0 (Ω), B) = degLS(I − T ◦ r0, r−1

0 (Ω), 0),

which shows that every fixed point index of T over Ω with respect to K is equal to

degLS(I−T ◦ r0, r−1
0 (Ω), 0) and therefore is unique. Thus, by the above uniqueness proof,

we define

indFP(T,Ω,K) = degLS(I − T ◦ r0, r−1
0 (Ω), 0). (1.2.1)

Now, we show that the fixed point index defined by (1.2.1) is well–defined, that is, definition

(1.2.1) is independent of choice of retraction r0 : B → K. Let r1 : B → K be another

retraction. Then, by the excision property of the Leray–Schauder degree, we have

degLS(I − T ◦ ri, r−1
i (Ω), 0) = degLS(I − T ◦ ri, r−1

0 (Ω) ∩ r−1
1 (Ω), 0), i = 0, 1.

Let h : [0, 1]× Ω → K be a compact map defined by

h(λ, x) = r0((1− λ)T (r0(x)) + λT (r1(x))).

Then, by the homotopy invariance property of the Leray–Schauder degree, we have

degLS(I − T ◦ r0, r−1
0 (Ω) ∩ r−1

1 (Ω), 0) = degLS(I − T ◦ r1, r−1
0 (Ω) ∩ r−1

1 (Ω), 0).

Consequently, indFP(T,Ω,K) is independent of the choice of retraction and, therefore,

(1.2.1) is well–defined.

We need the following results for our work. These results are useful and have significant

role in proving the existence of solutions of operator equations and, in particular, in

establishing the existence of multiple solutions of operator equations. For further details

and many other useful results we refer the reader to [9, 62].

Theorem 1.2.4. (Schauder’s fixed point theorem): Let C be a nonempty, closed,

bounded and convex subset of a Banach space B and T : C → C be a completely continuous

map. Then, T has a fixed point in C.
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Proof. By Theorem 1.1.7, C is a retract of B. Hence, indFP(T,C,C) is well–defined. Let

x0 ∈ C and h : [0, 1]× C → C be a compact map defined by

h(λ, x) = (1− λ)x0 + λTx.

Then, the homotopy invariance property (I3) together with the normalization property

(I1) implies that

indFP(T,C,C) = indFP(x0, C, C) = 1,

and by the solution property (I4), T has a fixed point in C.

Lemma 1.2.5. Let Ω be a bounded and open set in a real Banach space B, P be a cone

of B, 0 ∈ Ω and T : Ω ∩ P → P be a completely continuous map. Suppose x ̸= λTx, for

any x ∈ ∂Ω ∩ P , λ ∈ (0, 1]. Then, the fixed point index indFP(T,Ω ∩ P, P ) = 1.

Proof. Define a compact map h : [0, 1] × (Ω ∩ P ) → P by h(τ, x) = τTx. Then, the

homotopy invariance property (I3) together with normalization property (I1), implies

that

indFP(T,Ω ∩ P, P ) = indFP(0,Ω ∩ P, P ) = 1.

Lemma 1.2.6. Let Ω be a bounded and open set in a real Banach space (B, ∥ · ∥), P be a

cone of B, 0 ∈ Ω and T : Ω∩P → P be a completely continuous map. Suppose there exist

a v ∈ P \ {0} with x ̸= Tx + δv for every δ > 0 and x ∈ ∂Ω ∩ P . Then, the fixed point

index indFP(T,Ω ∩ P, P ) = 0.

Proof. Let µ = sup{∥Tx∥ : x ∈ Ω∩P} and ρ = sup{∥x∥ : x ∈ Ω}. Choose δ1 > (µ+ρ)/∥v∥
and define a compact map h : [0, 1]× (Ω ∩ P ) → P by

h(τ, x) = T (x) + τδ1v.

Then, by the homotopy invariance property (I3), we obtain

indFP(T,Ω ∩ P, P ) = indFP(T + δ1v,Ω ∩ P, P ).

Now, if indFP(T,Ω∩P, P ) ̸= 0, then there exist an element x ∈ Ω∩P such that x = Tx+δ1v.

Consequently,

∥x∥ = ∥Tx+ δ1v∥ ≥ δ1∥v∥ − ∥Tx∥ ≥ δ1∥v∥ − µ > ρ,

a contradiction. Hence, indFP(T,Ω ∩ P, P ) = 0.
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Lemma 1.2.7. Let Ω be a bounded and open set in a real Banach space (B, ∥ · ∥), P be a

cone of B, 0 ∈ Ω and T : Ω ∩ P → P be a completely continuous map. Suppose Tx � x,

for any x ∈ ∂Ω ∩ P . Then, the fixed point index indFP(T,Ω ∩ P, P ) = 0.

Proof. Geometrically, by Tx � x for any x ∈ ∂Ω ∩ P means that no x ∈ ∂Ω ∩ P can

be mapped radially toward the origin under the map T . We claim that for v ∈ P \ {0},
x ̸= Tx + δv for every δ > 0 and x ∈ ∂Ω ∩ P . Suppose there exist some δ0 > 0 and

x0 ∈ ∂Ω∩ P such that x0 = Tx0 + δ0v. Then, ∥x0∥ = ∥Tx0 + δ0v∥ > ∥Tx0∥, that is, x0 is

mapped toward origin, a contradiction. Hence, by Lemma 1.2.6, indFP(T,Ω∩P, P ) = 0.

Theorem 1.2.8. (Guo–Krasnosel’skii fixed point theorem): Let P be a cone of a

real Banach space B. Let Ω1, Ω2 be open and bounded neighborhoods of 0 ∈ B such that

Ω1 ⊂ Ω2. Suppose that T : (Ω2 \ Ω1) ∩ P → P is completely continuous such that one of

the following conditions holds:

(i) ∥Tx∥ ≤ ∥x∥ for x ∈ ∂Ω1 ∩ P , ∥Tx∥ ≥ ∥x∥ for x ∈ ∂Ω2 ∩ P ;

(ii) ∥Tx∥ ≤ ∥x∥ for x ∈ ∂Ω2 ∩ P , ∥Tx∥ ≥ ∥x∥ for x ∈ ∂Ω1 ∩ P .

Then, T has a fixed point in (Ω2 \ Ω1) ∩ P .

Proof. Assume that (i) holds. First we show that x ̸= Tx for all x ∈ ∂Ω1 ∩ P . Suppose,

x1 = Tx1 for some x1 ∈ ∂Ω1∩P . Then, ∥x1∥ = ∥Tx1∥, a contradiction whenever ∥Tx1∥ <
∥x1∥. Now, we show that x ̸= λTx for λ ∈ (0, 1) and x ∈ ∂Ω1 ∩ P . Suppose, x1 = λ1Tx1

for some λ1 ∈ (0, 1) and x1 ∈ ∂Ω1 ∩ P . Then, ∥x1∥ = λ1∥Tx1∥ < ∥Tx1∥ ≤ ∥x1∥, again a

contradiction. Consequently, x ̸= λTx for λ ∈ (0, 1] and x ∈ ∂Ω1 ∩ P . Hence, by Lemma

1.2.5, the fixed point index indFP(T,Ω1 ∩ P, P ) = 1.

We claim that there exist a v ∈ P \ {0} with x ̸= Tx+ δv for δ > 0 and x ∈ ∂Ω2 ∩ P .
Suppose, x2 = Tx2 + δ2v for some δ2 > 0 and x2 ∈ ∂Ω2 ∩ P . Then, ∥x2∥ = ∥Tx2 +

δ2v∥ > ∥Tx2∥ ≥ ∥x2∥, a contradiction. Therefore, by Lemma 1.2.6, the fixed point index

indFP(T,Ω2 ∩ P, P ) = 0.

Thus, by the additivity property of fixed point index (I2), we obtain

indFP(T, (Ω2 \ Ω1) ∩ P, P ) = indFP(T,Ω2 ∩ P, P )− indFP(T,Ω1 ∩ P, P ) = 0− 1 = −1,

which shows that T has a fixed point in (Ω2 \ Ω1) ∩ P . The proof for (ii) is similar.



Chapter 2

Singular Systems with Nonlocal

Boundary Conditions

Nonlocal BVPs arise in different areas of applied mathematics and physics. For example,

the vibration of a guy wire composed of N parts with a uniform cross section and different

densities in different parts can be modeled as a nonlocal BVP [108]; problems in the theory

of elastic stability can also be modeled as nonlocal BVPs [122].

The study of nonlocal BVPs for linear second–order ODEs was initiated by Il’in and

Moiseev in [72,73] and extended to nonlocal linear elliptic BVPs by Bitsadze and Samarskǐı,

[26–28]. Existence theory for nonlinear three–point BVPs was initiated by Gupta [63].

Since then the study of nonlinear regular multi–point BVPs has attracted the attention of

many researchers; see for example, [30,79,92,94,96,101,108,126,138] for scalar equations,

and for systems of ODEs, see [37,42,77].

Recently, the study of SBVPs has also attracted some attention. An excellent resource

with an extensive bibliography was produced by Agarwal and O’Regan [3]. More recently,

S. Xie and J. Zhu [129] applied topological degree theory in a cone to study the following

two–point BVPs for a coupled system of nonlinear fourth–order ODEs

−x(4)(t) = f1(t, y(t)), t ∈ (0, 1),

−y′′(t) = f2(t, x(t)), t ∈ (0, 1),

x(0) = x(1) = x′′(0) = x′′(1) = 0,

y(0) = y(1) = 0,

where the nonlinear functions fi ∈ C((0, 1) × [0,∞), [0,∞)) satisfy fi(t, 0) ≡ 0 (i = 1, 2)

and are allowed to be singular at t = 0 or t = 1.

Y. Zhou and Y. Xu [140] studied the following nonlocal BVPs for a system of second–

16
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order regular ODEs

−x′′(t) = f(t, y(t)), t ∈ (0, 1),

−y′′(t) = g(t, x(t)), t ∈ (0, 1),

x(0) = 0, x(1) = αx(η),

y(0) = 0, y(1) = αy(η),

(2.0.1)

where η ∈ (0, 1), 0 < α < 1/η, f, g ∈ C([0, 1]× [0,∞), [0,∞)) and f(t, 0) ≡ 0, g(t, 0) ≡ 0.

The system of BVPs (2.0.1) was extended to the singular case by B. Liu, L. Liu and Y.

Wu [95], where the functions f , g were assumed to be singular at t = 0 or t = 1 together

with the assumption that f(t, 0) ≡ 0, g(t, 0) ≡ 0, t ∈ (0, 1).

In this chapter, we study the following singular systems of ODEs

−x′′(t) = f(t, y(t)), t ∈ (0, 1),

−y′′(t) = g(t, x(t)), t ∈ (0, 1),
(2.0.2)

and

−x′′(t) = f(t, x(t), y(t)), t ∈ (0, 1),

−y′′(t) = g(t, x(t), y(t)), t ∈ (0, 1),
(2.0.3)

subject to nonlocal BCs

x(0) = y(0) = 0, x(1) = αx(η), y(1) = αy(η), (2.0.4)

where η ∈ (0, 1), 0 < α < 1/η. For the system of ODEs (2.0.2), we assume that f, g :

(0, 1)× (0,∞) → (0,∞) are continuous and f(t, 0), g(t, 0) are not identically 0. Similarly,

for the system of ODEs (2.0.3), we assume that f, g : (0, 1) × (0,∞) × (0,∞) → (0,∞)

are continuous and f(t, 0, 0), g(t, 0, 0) are not identically 0. Moreover, f and g are allowed

to be singular at t = 0, t = 1, x = 0 and y = 0. By singularity we mean that the

nonlinear functions f and g are allowed to be unbounded at t = 0, t = 1, x = 0 or y = 0.

By applying Theorem 1.2.8, we obtain sufficient conditions for the existence of positive

solutions to the systems of ODEs (2.0.2) and (2.0.3) subject to BCs (2.0.4), [14, 15]. In

general, the assumption that there exist singularities with respect to the dependent variable

is not new; see [3, 37, 93], for example. However, in the case of nonlocal BCs and coupled

systems of ODEs, we believe this assumption is new.

Let n0 > max{ 1
η ,

1
1−η ,

2−α
1−αη} be a fixed positive integer. For each u ∈ En := C[ 1n , 1−

1
n ],

we write ∥u∥En = max{|u(t)| : t ∈ [ 1n , 1−
1
n ]}, where n ∈ {n0, n0 + 1, n0 + 2, · · · }. Clearly,

En with the norm ∥ · ∥En is a Banach space. Define a cone Kn of En as

Kn = {u ∈ En : u ≥ 0 and concave on [
1

n
, 1− 1

n
]}.
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For any real constant r > 0, define an open neighborhood of 0 ∈ En of radius r by

Ωr = {u ∈ En : ∥u∥En < r}.

For each (x, y) ∈ En × En, we write ∥(x, y)∥En×En = ∥x∥En + ∥y∥En . Clearly, (En × En, ∥ ·
∥En×En ) is a Banach space and Kn×Kn is a cone of En×En. Further, for any real constant

r > 0, we define an open neighborhood of (0, 0) ∈ En × En as

Or = {(x, y) ∈ En × En : ∥(x, y)∥En×En < r}.

2.1 Green’s function for the associated linear problem

Lemma 2.1.1. For z ∈ En, the linear BVP

−u′′(t) = z(t), t ∈ [
1

n
, 1− 1

n
],

u(
1

n
) = 0, u(1− 1

n
) = αu(η),

(2.1.1)

has a unique solution

u(t) =

∫ 1−1/n

1/n
Hn(t, s)z(s)ds, (2.1.2)

where Hn : [ 1n , 1−
1
n ]× [ 1n , 1−

1
n ] → [0,∞) is an associated Green’s function and is defined

by

Hn(t, s) =



(t− 1
n
)((1− 1

n
−s)−α(η−s))

1− 2
n
+α

n
−αη

− (t− s), 1
n ≤ s ≤ t ≤ 1− 1

n , s ≤ η,

(t− 1
n
)((1− 1

n
−s)−α(η−s))

1− 2
n
+α

n
−αη

, 1
n ≤ t ≤ s ≤ 1− 1

n , s ≤ η,

(t− 1
n
)(1− 1

n
−s)

1− 2
n
+α

n
−αη

, 1
n ≤ t ≤ s ≤ 1− 1

n , s ≥ η,

(t− 1
n
)(1− 1

n
−s)

1− 2
n
+α

n
−αη

− (t− s), 1
n ≤ s ≤ t ≤ 1− 1

n , s ≥ η.

(2.1.3)

Proof. Integrating (2.1.1) from 1/n to t, we have

u′(t) = u′(
1

n
)−

∫ t

1/n
z(s)ds,

again integrating from 1/n to t and using the BCs (2.1.1), leads to

u(t) = u′(
1

n
)(t− 1

n
)−

∫ t

1/n
(t− s)z(s)ds. (2.1.4)

Using the BCs (2.1.1), we obtain

u′(
1

n
) =

1

1− 2
n + α

n − αη

∫ 1−1/n

1/n
(1− 1

n
− s)z(s)ds− α

1− 2
n + α

n − αη

∫ η

1/n
(η − s)z(s)ds.

(2.1.5)
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Now using (2.1.5) in (2.1.4), we get

u(t) =
t− 1

n

1− 2
n + α

n − αη

∫ 1−1/n

1/n
(1− 1

n
− s)z(s)ds−

α(t− 1
n)

1− 2
n + α

n − αη

∫ η

1/n
(η − s)z(s)ds

−
∫ t

1/n
(t− s)z(s)ds,

which can also be written as (2.1.2).

We note that Hn(t, s) → H(t, s) as n→ ∞, where

H(t, s) =



t(1−s)
1−αη − αt(η−s)

1−αη − (t− s), 0 ≤ s ≤ t ≤ 1, s ≤ η,

t(1−s)
1−αη − αt(η−s)

1−αη , 0 ≤ t ≤ s ≤ 1, s ≤ η,

t(1−s)
1−αη , 0 ≤ t ≤ s ≤ 1, s ≥ η,

t(1−s)
1−αη − (t− s), 0 ≤ s ≤ t ≤ 1, s ≥ η,

is the Green’s function corresponding to the BVP

−u′′(t) = 0, t ∈ [0, 1],

u(0) = 0, u(1) = αu(η).

Lemma 2.1.2. The function Hn satisfies

(i) Hn(t, s) ≤ µn(s− 1
n)(1−

1
n − s), (t, s) ∈ [ 1n , 1−

1
n ]× [ 1n , 1−

1
n ],

(ii) Hn(t, s) ≥ νn(s− 1
n)(1−

1
n − s), (t, s) ∈ [η, 1− 1

n ]× [ 1n , 1−
1
n ],

where

µn :=
max{1, α}

1− 2
n + α

n − αη
> 0, νn :=

min{1, α}min{η − 1
n , 1−

1
n − η}

1− 2
n + α

n − αη
> 0.

Proof. First we prove (i). For (t, s) ∈ [ 1n , 1−
1
n ]× [ 1n , 1−

1
n ], we discuss various cases.

Case 1: s ≤ η, t ≥ s; using (2.1.3), we obtain

Hn(t, s) =
(t− 1

n)((1−
1
n − s)− α(η − s))

1− 2
n + α

n − αη
− (t− s) = s− 1

n
+ (α− 1)

(t− 1
n)(s−

1
n)

1− 2
n + α

n − αη
.

If α > 1, the maximum of Hn(t, s) occurs at t = 1− 1
n , hence

Hn(t, s) ≤ Hn(1−
1

n
, s) = α

(s− 1
n)(1−

1
n − η)

1− 2
n + α

n − αη
≤ α

(s− 1
n)(1−

1
n − s)

1− 2
n + α

n − αη

≤ µn(s−
1

n
)(1− 1

n
− s),

and if α ≤ 1, the maximum of Hn(t, s) occurs at t = s, hence

Hn(t, s) ≤ Hn(s, s) =
(s− 1

n)(1−
1
n − s+ α(s− η))

1− 2
n + α

n − αη
≤

(s− 1
n)(1−

1
n − s)

1− 2
n + α

n − αη

≤ µn(s−
1

n
)(1− 1

n
− s).
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Case 2: s ≤ η, t ≤ s; using (2.1.3), we have

Hn(t, s) =
(t− 1

n)(1−
1
n − s)

1− 2
n + α

n − αη
− α

(t− 1
n)(η − s)

1− 2
n + α

n − αη
≤

(t− 1
n)(1−

1
n − s)

1− 2
n + α

n − αη

≤
(s− 1

n)(1−
1
n − s)

1− 2
n + α

n − αη
≤ µn(s−

1

n
)(1− 1

n
− s).

Case 3: s ≥ η, t ≤ s; using (2.1.3), we get

Hn(t, s) =
(t− 1

n)(1−
1
n − s)

1− 2
n + α

n − αη
≤

(s− 1
n)(1−

1
n − s)

1− 2
n + α

n − αη
≤ µn(s−

1

n
)(1− 1

n
− s).

Case 4: s ≥ η, t ≥ s; using (2.1.3), we get

Hn(t, s) =
(t− 1

n)(1−
1
n − s)

1− 2
n + α

n − αη
− (t− s) = s− 1

n
+ (t− 1

n
)
α(η − 1

n)− (s− 1
n)

1− 2
n + α

n − αη
.

If α(η − 1
n) > s− 1

n , the maximum of Hn(t, s) occurs at t = 1− 1
n , hence

Hn(t, s) ≤ Hn(1−
1

n
, s) = α

(η − 1
n)(1−

1
n − s)

1− 2
n + α

n − αη
≤ α

(s− 1
n)(1−

1
n − s)

1− 2
n + α

n − αη

≤ µn(s−
1

n
)(1− 1

n
− s),

and if α(η − 1
n) ≤ s− 1

n , the maximum of Hn(t, s) occurs at t = s, so

Hn(t, s) ≤ Hn(s, s) =
(s− 1

n)(1−
1
n − s)

1− 2
n + α

n − αη
≤ µn(s−

1

n
)(1− 1

n
− s).

Now, we prove (ii). Here, for (t, s) ∈ [η, 1− 1
n ]× [ 1n , 1−

1
n ], we discuss different cases.

Case 1: s ≤ η, t ≥ s; using (2.1.3), we obtain

Hn(t, s) =
(t− 1

n)((1−
1
n − s)− α(η − s))

1− 2
n + α

n − αη
− (t− s) = s− 1

n
+ (α− 1)

(t− 1
n)(s−

1
n)

1− 2
n + α

n − αη
.

If α < 1, the minimum of Hn(t, s) occurs at t = 1− 1
n , hence

Hn(t, s) ≥ Hn(1−
1

n
, s) = s− 1

n
+ (α− 1)

(1− 2
n)(s−

1
n)

1− 2
n + α

n − αη
= α

(s− 1
n)(1−

1
n − η)

1− 2
n + α

n − αη

≥ νn(s−
1

n
)(1− 1

n
− s),

and if α ≥ 1, the minimum of Hn(t, s) occurs at t = η, hence

Hn(t, s) ≥ Hn(η, s) = s− 1

n
+ (α− 1)

(η − 1
n)(s−

1
n)

1− 2
n + α

n − αη
=

(s− 1
n)(1−

1
n − η)

1− 2
n + α

n − αη

≥ νn(s−
1

n
)(1− 1

n
− s).

Case 2: s ≥ η, t ≤ s; using (2.1.3), we have

Hn(t, s) =
(t− 1

n)(1−
1
n − s)

1− 2
n + α

n − αη
≥

(η − 1
n)(1−

1
n − s)

1− 2
n + α

n − αη
≥ νn(s−

1

n
)(1− 1

n
− s).
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Case 3: s ≥ η, t ≥ s; using (2.1.3), we have

Hn(t, s) =
(t− 1

n)(1−
1
n − s)

1− 2
n + α

n − αη
− (t− s) = s− 1

n
− (t− 1

n
)
(s− 1

n)− α(η − 1
n)

1− 2
n + α

n − αη
.

If s− 1
n > α(η − 1

n), the minimum of Hn(t, s) occurs at t = 1− 1
n , hence

Hn(t, s) ≥ Hn(1−
1

n
, s) = α

(η − 1
n)(1−

1
n − s)

1− 2
n + α

n − αη
≥ νn(s−

1

n
)(1− 1

n
− s),

and if s− 1
n ≤ α(η − 1

n), the minimum of Hn(t, s) occurs at t = s, therefore

Hn(t, s) ≥ Hn(s, s) =
(s− 1

n)(1−
1
n − s)

1− 2
n + α

n − αη
≥

(η − 1
n)(1−

1
n − s)

1− 2
n + α

n − αη
≥ νn(s−

1

n
)(1− 1

n
− s).

2.2 Sufficient conditions for the existence of at least one

solution

In this section, we establish existence of positive solution to the system of BVPs (2.0.2),

(2.0.4). We say (x, y) is a positive solution to system of BVPs (2.0.2), (2.0.4) if (x, y) ∈
(C[0, 1] ∩ C2(0, 1))× (C[0, 1] ∩ C2(0, 1)), x > 0 and y > 0 on (0, 1], (x, y) satisfies (2.0.2)

and (2.0.4). For this purpose, we consider the system of nonlinear non–singular BVPs

−x′′(t) = f(t,max{y(t) + 1

n
,
1

n
}), t ∈ [

1

n
, 1− 1

n
],

−y′′(t) = g(t,max{x(t) + 1

n
,
1

n
}), t ∈ [

1

n
, 1− 1

n
],

x(
1

n
) = 0, x(1− 1

n
) = αx(η),

y(
1

n
) = 0, y(1− 1

n
) = αy(η).

(2.2.1)

We write (2.2.1) as an equivalent system of integral equations

x(t) =

∫ 1−1/n

1/n
Hn(t, s)f(s,max{y(s) + 1

n
,
1

n
})ds, t ∈ [

1

n
, 1− 1

n
],

y(t) =

∫ 1−1/n

1/n
Hn(t, s)g(s,max{x(s) + 1

n
,
1

n
})ds, t ∈ [

1

n
, 1− 1

n
].

(2.2.2)

Thus, (xn, yn) is a solution of (2.2.1) if and only if (xn, yn) ∈ En × En and (xn, yn) is a

solution of (2.2.2).

Define operators An, Bn, Tn : En → Kn by

(Any)(t) =

∫ 1−1/n

1/n
Hn(t, s)f(s,max{y(s) + 1

n
,
1

n
})ds, t ∈ [

1

n
, 1− 1

n
],

(Bnx)(t) =

∫ 1−1/n

1/n
Hn(t, s)g(s,max{x(s) + 1

n
,
1

n
})ds, t ∈ [

1

n
, 1− 1

n
],

(Tnx)(t) = (An(Bnx))(t), t ∈ [
1

n
, 1− 1

n
].

(2.2.3)
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If un ∈ Kn is a fixed point of Tn; then the system of BVPs (2.2.1) has a solution (xn, yn)

given by xn(t) = un(t), t ∈ [ 1n , 1−
1
n ],

yn(t) = (Bnun)(t), t ∈ [ 1n , 1−
1
n ].

Assume that the following holds:

(H1) there exist K,L ∈ C((0, 1), (0,∞)) and F,G ∈ C((0,∞), (0,∞)) such that

f(t, u) ≤ K(t)F (u), g(t, u) ≤ L(t)G(u), t ∈ (0, 1), u ∈ (0,∞),

where

a :=

∫ 1

0
t(1− t)K(t)dt < +∞, b :=

∫ 1

0
t(1− t)L(t)dt < +∞.

Lemma 2.2.1. Under the hypothesis (H1), the operator Tn : Ωr ∩Kn → Kn is completely

continuous.

Proof. Firstly, we show that the operator Tn(Kn) ⊆ Kn. Clearly, for any u ∈ Kn, we have

(Tnu)(t) ≥ 0 and (Tnu)
′′(t) ≤ 0 for t ∈ [ 1n , 1−

1
n ]. Consequently, Tnu ∈ Kn for all u ∈ Kn.

Now, we show that Tn : Ωr ∩ Kn → Kn is uniformly bounded and equicontinuous. We

introduce

dn = b µn max
u∈[0,r]

G(u+
1

n
),

ωn =

∫ 1−1/n

1/n
f(t,

1

n
+

∫ 1−1/n

1/n
Hn(t, s)g(s, u(s) +

1

n
)ds)dt.

(2.2.4)

For any u ∈ Ωr ∩Kn, using (2.2.3), (H1) and (i) of Lemma 2.1.2, we have

(Tnu)(t) =

∫ 1−1/n

1/n
Hn(t, s)f(s,

1

n
+

∫ 1−1/n

1/n
Hn(s, τ)g(τ, u(τ) +

1

n
)dτ)ds

≤
∫ 1−1/n

1/n
Hn(t, s)K(s)F (

1

n
+

∫ 1−1/n

1/n
Hn(s, τ)g(τ, u(τ) +

1

n
)dτ)ds

≤ µn

∫ 1−1/n

1/n
(s− 1

n
)(1− 1

n
− s)K(s)F (

1

n
+

∫ 1−1/n

1/n
Hn(s, τ)g(τ, u(τ) +

1

n
)dτ)ds.

But, using (H1), (i) of Lemma 2.1.2 and (2.2.4),

0 ≤
∫ 1−1/n

1/n
Hn(t, s)g(s, u(s) +

1

n
)ds ≤

∫ 1−1/n

1/n
Hn(t, s)L(s)G(u(s) +

1

n
)ds

≤ µn

∫ 1−1/n

1/n
(s− 1

n
)(1− 1

n
− s)L(s)G(u(s) +

1

n
)ds ≤ µn max

u∈[0,r]
G(u+

1

n
)∫ 1−1/n

1/n
(s− 1

n
)(1− 1

n
− s)L(s)ds ≤ bµn max

u∈[0,r]
G(u+

1

n
) = dn.
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Therefore,

(Tnu)(t) ≤ µn max
u∈[0,dn]

F (u+
1

n
)

∫ 1−1/n

1/n
(s− 1

n
)(1− 1

n
− s)K(s)ds ≤ aµn max

u∈[0,dn]
F (u+

1

n
),

which implies that

∥Tnu∥En ≤ aµn max
u∈[0,dn]

F (u+
1

n
),

that is, Tn(Ωr ∩Kn) is uniformly bounded. To show Tn(Ωr ∩Kn) is equicontinuous, let

t1, t2 ∈ [ 1n , 1 − 1
n ]. Since Hn is uniformly continuous on [ 1n , 1 − 1

n ] × [ 1n , 1 − 1
n ], for any

ε > 0, there exist δ = δ(ε) > 0 such that |t1 − t2| < δ implies

|Hn(t1, s)−Hn(t2, s)| <
ε

ωn
for s ∈ [

1

n
, 1− 1

n
]. (2.2.5)

For any u ∈ Ωr ∩Kn, using (2.2.3), (2.2.5) and (2.2.4), we obtain

|(Tnu)(t1)− (Tnu)(t2)| ≤
∫ 1−1/n

1/n
|Hn(t1, s)−Hn(t2, s)|f(s,

1

n
+

∫ 1−1/n

1/n
Hn(s, τ)

g(τ, u(τ) +
1

n
)dτ)ds <

ε

ωn

∫ 1−1/n

1/n
f(s,

1

n
+

∫ 1−1/n

1/n
Hn(s, τ)g(τ, u(τ) +

1

n
)dτ)ds = ε.

Hence,

|(Tnu)(t1)− (Tnu)(t2)| < ε for all u ∈ Ωr ∩Kn, |t1 − t2| < δ,

which implies that Tn(Ωr ∩ Kn) is equicontinuous. By Theorem 1.1.6, Tn(Ωr ∩ Kn) is

relatively compact. Hence, Tn is a compact operator.

Now, we show that Tn is continuous. Let um, u ∈ Ωr ∩Kn such that

∥um − u∥En → 0 as m→ +∞.

Using (2.2.3) and (i) of Lemma 2.1.2, we have

|(Tnum)(t)− (Tnu)(t)| =

∣∣∣∣∣
∫ 1−1/n

1/n

Hn(t, s)
(
f(s,

1

n
+

∫ 1−1/n

1/n

Hn(s, τ)g(τ, um(τ) +
1

n
)dτ)

−f(s, 1
n
+

∫ 1−1/n

1/n

Hn(s, τ)g(τ, u(τ) +
1

n
)dτ)

)
ds

∣∣∣∣∣ ≤ µn

∫ 1−1/n

1/n

(s− 1

n
)(1− 1

n
− s)∣∣∣∣∣f(s, 1n +

∫ 1−1/n

1/n

Hn(s, τ)g(τ, um(τ) +
1

n
)dτ)− f(s,

1

n
+

∫ 1−1/n

1/n

Hn(s, τ)g(τ, u(τ) +
1

n
)dτ)

∣∣∣∣∣ ds.
Consequently,

∥Tnum − Tnu∥En ≤ µn

∫ 1−1/n

1/n
(s− 1

n
)(1− 1

n
− s)

∣∣∣∣∣f(s, 1n +

∫ 1−1/n

1/n
Hn(s, τ)

g(τ, um(τ) +
1

n
)dτ)− f(s,

1

n
+

∫ 1−1/n

1/n
Hn(s, τ)g(τ, u(τ) +

1

n
)dτ)

∣∣∣∣∣ ds.
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By the Lebesgue dominated convergent theorem, it follows that

∥Tnum − Tnu∥En → 0 as m→ +∞,

that is, Tn : Ωr ∩ Kn → Kn is a continuous. Hence, Tn : Ωr ∩ Kn → Kn is completely

continuous.

Assume that

(H2) there exist α1, α2 ∈ (0,∞) with α1α2 ≤ 1 such that

lim
u→∞

F (u)

uα1
→ 0, lim

u→∞

G(u)

uα2
→ 0;

(H3) there exist β1, β2 ∈ (0,∞) with β1β2 ≥ 1 such that

lim inf
u→0+

min
t∈[η,1]

f(t, u)

uβ1
> 0, lim inf

u→0+
min
t∈[η,1]

g(t, u)

uβ2
> 0.

Theorem 2.2.2. Under the hypothesis (H1)− (H3), the system of BVPs (2.0.2), (2.0.4)

has at least one positive solution.

Proof. By (H2), there exist real constants c1, c2, c3, c4 > 0 such that

22α1+α1α2abα1µα1+1
n c1c

α1
3 < 1, (2.2.6)

and

F (u+
1

n
) ≤ c1(u+

1

n
)α1 + c2, G(u+

1

n
) ≤ c3(u+

1

n
)α2 + c4 for u ≥ 0. (2.2.7)

In view of (2.2.6), we choose a real constant R > 0 such that

R ≥ aµnc2 + 22α1abα1µα1+1
n c1c

α1
4 + 2α1aµnn

−α1c1 + 22α1+α1α2abα1µα1+1
n n−α1α2c1c

α1
3

1− 22α1+α1α2abα1µα1+1
n c1c

α1
3

. (2.2.8)

For any u ∈ ∂ΩR ∩Kn, using (2.2.3), (H1) and (2.2.7), it follows that

(Tnu)(t) =

∫ 1−1/n

1/n
Hn(t, s)f(s,

1

n
+

∫ 1−1/n

1/n
Hn(s, τ)g(τ, u(τ) +

1

n
)dτ)ds

≤
∫ 1−1/n

1/n
Hn(t, s)K(s)F (

1

n
+

∫ 1−1/n

1/n
Hn(s, τ)g(τ, u(τ) +

1

n
)dτ)ds

≤
∫ 1−1/n

1/n
Hn(t, s)K(s)(c1(

1

n
+

∫ 1−1/n

1/n
Hn(s, τ)g(τ, u(τ) +

1

n
)dτ)α1 + c2)ds

= c1

∫ 1−1/n

1/n
Hn(t, s)K(s)(

1

n
+

∫ 1−1/n

1/n
Hn(s, τ)g(τ, u(τ) +

1

n
)dτ)α1ds

+ c2

∫ 1−1/n

1/n
Hn(t, s)K(s)ds.
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Again using (H1) and (2.2.7), we obtain

(Tnu)(t) ≤ c1

∫ 1−1/n

1/n
Hn(t, s)K(s)(

1

n
+

∫ 1−1/n

1/n
Hn(s, τ)L(τ)G(u(τ) +

1

n
)dτ)α1ds

+ c2

∫ 1−1/n

1/n
Hn(t, s)K(s)ds ≤ c1

∫ 1−1/n

1/n
Hn(t, s)K(s)(

1

n
+

∫ 1−1/n

1/n
Hn(s, τ)L(τ)

(c3(u(τ) +
1

n
)α2 + c4)dτ)

α1ds+ c2

∫ 1−1/n

1/n
Hn(t, s)K(s)ds ≤ c1

∫ 1−1/n

1/n
Hn(t, s)K(s)ds

(
1

n
+

∫ 1−1/n

1/n
Hn(s, τ)L(τ)dτ(c3(R+

1

n
)α2 + c4))

α1 + c2

∫ 1−1/n

1/n
Hn(t, s)K(s)ds.

Employing (i) of Lemma 2.1.2 and (H1), leads to

(Tnu)(t) ≤ c1µn

∫ 1−1/n

1/n
(s− 1

n
)(1− 1

n
− s)K(s)ds(

1

n
+ µn

∫ 1−1/n

1/n
(τ − 1

n
)(1− 1

n
− τ)

L(τ)dτ(c3(R+
1

n
)α2 + c4))

α1 + c2µn

∫ 1−1/n

1/n
(s− 1

n
)(1− 1

n
− s)K(s)ds

≤ aµnc1(
1

n
+ b µn(c3(R+

1

n
)α2 + c4))

α1 + aµnc2.

But,

(
1

n
+ b µn(c3(R+

1

n
)α2 + c4))

α1 ≤ 2α1(
1

nα1
+ bα1 µα1

n (c3(R+
1

n
)α2 + c4)

α1).

Therefore,

(Tnu)(t) ≤ 2α1aµnc1(
1

nα1
+ bα1 µα1

n (c3(R+
1

n
)α2 + c4)

α1) + aµnc2.

Also,

(c3(R+
1

n
)α2 + c4)

α1 ≤ 2α1(cα1
3 (R+

1

n
)α1α2 + cα1

4 )

≤ 2α1(2α1α2cα1
3 (Rα1α2 +

1

nα1α2
) + cα1

4 ).

Consequently,

(Tnu)(t) ≤ 2α1aµnc1(
1

nα1
+ 2α1bα1 µα1

n (2α1α2cα1
3 (Rα1α2 +

1

nα1α2
) + cα1

4 )) + aµnc2

= 2α1aµnn
−α1c1 + 22α1abα1µα1+1

n c1(2
α1α2cα1

3 (Rα1α2 +
1

nα1α2
) + cα1

4 ) + aµnc2

= 2α1aµnn
−α1c1 + 22α1+α1α2abα1µα1+1

n c1c
α1
3 (Rα1α2 +

1

nα1α2
) + 22α1abα1µα1+1

n c1c
α1
4

+ aµnc2 = 2α1aµnn
−α1c1 + 22α1+α1α2abα1µα1+1

n c1c
α1
3 Rα1α2

+ 22α1+α1α2abα1µα1+1
n n−α1α2c1c

α1
3 + 22α1abα1µα1+1

n c1c
α1
4 + aµnc2.

Using (2.2.8), we obtain

∥Tnu∥En ≤ ∥u∥En for all u ∈ ∂ΩR ∩Kn. (2.2.9)
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Now, by (H3), there exist constants c5, c6 > 0 and ρ ∈ (0, R) such that

f(t, x) ≥ c5x
β1 , g(t, x) ≥ c6x

β2 for x ∈ [0, ρ], t ∈ [η, 1]. (2.2.10)

Choose

rn = min
{
ρ, νβ1+1

n n−β1β2c5c
β1
6 (

∫ 1−1/n

η
(s− 1

n
)(1− 1

n
− s)ds)β1+1

}
. (2.2.11)

For any u ∈ ∂Ωrn ∩Kn and t ∈ [η, 1− 1
n ], using (2.2.3) and (2.2.10), we have

(Tnu)(t) =

∫ 1−1/n

1/n
Hn(t, s)f(s,

1

n
+

∫ 1−1/n

1/n
Hn(s, τ)g(τ, u(τ) +

1

n
)dτ)ds

≥ c5

∫ 1−1/n

1/n
Hn(t, s)(

1

n
+

∫ 1−1/n

1/n
Hn(s, τ)g(τ, u(τ) +

1

n
)dτ)β1ds

≥ c5

∫ 1−1/n

1/n
Hn(t, s)(

∫ 1−1/n

1/n
Hn(s, τ)g(τ, u(τ) +

1

n
)dτ)β1ds

≥ c5c
β1
6

∫ 1−1/n

1/n
Hn(t, s)(

∫ 1−1/n

1/n
Hn(s, τ)(u(τ) +

1

n
)β2dτ)β1ds

≥ n−β1β2c5c
β1
6

∫ 1−1/n

1/n
Hn(t, s)(

∫ 1−1/n

1/n
Hn(s, τ)dτ)

β1ds

≥ n−β1β2c5c
β1
6

∫ 1−1/n

η
Hn(t, s)(

∫ 1−1/n

η
Hn(s, τ)dτ)

β1ds.

Employing (ii) of Lemma 2.1.2, we get

(Tnu)(t) ≥ νβ1+1
n n−β1β2c5c

β1
6

∫ 1−1/n

η
(s− 1

n
)(1− 1

n
− s)ds(

∫ 1−1/n

η
(τ − 1

n
)

(1− 1

n
− τ)dτ)β1 = νβ1+1

n n−β1β2c5c
β1
6 (

∫ 1−1/n

η
(s− 1

n
)(1− 1

n
− s)ds)β1+1.

Using (2.2.11), we obtain

∥Tnu∥En ≥ ∥u∥En for all u ∈ ∂Ωrn ∩Kn. (2.2.12)

In view of (2.2.9), (2.2.12) and by Theorem 1.2.8, Tn has a fixed point un ∈ (ΩR\Ωrn)∩Kn.

Note that

rn ≤ ∥un∥En ≤ R (2.2.13)

and rn → 0 as n → ∞. Thus, we have exhibited a uniform bound for each un ∈ En, and
{um}m≥n is uniformly bounded on [ 1n , 1−

1
n ].

Now, we show that {um}m≥n, is equicontinuous on [ 1n , 1 − 1
n ]. For t ∈ [ 1n , 1 − 1

n ],

consider the integral equation

um(t) = um(
1

n
) +

um(1− 1
n)− αum(η)− (1− α)um( 1n)

1− 2
n + α

n − αη
(t− 1

n
) +

∫ 1−1/n

1/n
Hn(t, s)f̃(s)ds,
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where f̃(t) = f(t, 1n +
∫ 1−1/n
1/n Hn(t, s)g(s,

1
n + um(s))ds).

Which can also be written as

um(t) = um(
1

n
) +

um(1− 1
n)− αum(η)− (1− α)um( 1n)

1− 2
n + α

n − αη
(t− 1

n
) +

t− 1
n

1− 2
n + α

n − αη∫ 1−1/n

1/n
(1− 1

n
− s)f̃(s)ds−

α(t− 1
n)

1− 2
n + α

n − αη

∫ η

1/n
(η − s)f̃(s)ds−

∫ t

1/n
(t− s)f̃(s)ds.

Differentiating with respect to t, we get

u′m(t) =
um(1− 1

n)− αum(η)− (1− α)um( 1n)

1− 2
n + α

n − αη
+

1

1− 2
n + α

n − αη

∫ 1−1/n

1/n
(1− 1

n
− s)

f̃(s)ds− α

1− 2
n + α

n − αη

∫ η

1/n
(η − s)f̃(s)ds−

∫ t

1/n
f̃(s)ds,

which implies that

∥u′m∥En ≤ 2(1 + α)R

1− 2
n + α

n − αη
+

1

1− 2
n + α

n − αη

∫ 1−1/n

1/n
(1− 1

n
− s)f̃(s)ds

+
α

1− 2
n + α

n − αη

∫ η

1/n
(η − s)f̃(s)ds+

∫ 1−1/n

1/n
f̃(s)ds.

Hence, {um}m≥n is equicontinuous on [ 1n , 1−
1
n ].

For m ≥ n, we define

vm(t) =


um( 1n), 0 ≤ t ≤ 1

n ,

um(t), 1
n ≤ t ≤ 1− 1

n ,

αum(η), 1− 1
n ≤ t ≤ 1.

Since vm is a constant extension of um to [0, 1], the sequence {vm} is uniformly bounded

and equicontinuous on [0, 1]. Thus, there exists a subsequence {vmk
} of {vm} converging

uniformly to v ∈ C[0, 1].

We introduce the notation

xmk
(t) = vmk

(t), ymk
(t) =

∫ 1−1/mk

1/mk

Hmk
(t, s)g(s, vmk

(s) +
1

mk
)ds,

x(t) = lim
mk→∞

xmk
(t), y(t) = lim

mk→∞
ymk

(t).

For t ∈ [0, 1] consider the integral equations

xmk
(t) =

∫ 1−1/mk

1/mk

Hmk
(t, s)f(t, ymk

(s) +
1

mk
)ds,

ymk
(t) =

∫ 1−1/mk

1/mk

Hmk
(t, s)g(t, xmk

(s) +
1

mk
)ds.
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Letting mk → ∞, we have

x(t) =

∫ 1

0
H(t, s)f(t, y(s))ds, t ∈ [0, 1],

y(t) =

∫ 1

0
H(t, s)g(s, x(s))ds, t ∈ [0, 1].

Moreover,

x(0) = 0, x(1) = αx(η), y(0) = 0, y(1) = αy(η).

Hence, (x, y) is a solution of the system of BVPs (2.0.2), (2.0.4). Since

f, g : (0, 1)× (0,∞) → (0,∞),

f(t, 0), g(t, 0) are not identically 0 and H is of fixed sign on (0, 1)× (0, 1), it follows that

x > 0 and y > 0 on (0, 1].

Example 2.2.3. Let

f(t, y) =
1

t(1− t)

(
1

y
+ 3y1/3

)
, g(t, x) =

1

t(1− t)

(
1

x
+ 4x

)
and α = 2, η = 1

3 . Choose

K(t) = L(t) =
1

t(1− t)
, F (y) =

1

y
+ 3y1/3, G(x) =

1

x
+ 4x,

and α1 = 1
2 , α2 = 2, β1 = β2 = 1. Clearly, (H1)− (H3) are satisfied. Hence, by Theorem

2.2.2, the system of BVPs (2.0.2), (2.0.4) has a positive solution.

Assume that

(H4) f(t, u), G(u) are non–increasing with respect to u and for each fixed n ∈ {n0, n0 +
1, n0 + 2, · · · }, there exists a constant ρn > 0 such that

f(t,
1

n
+ b µnG(

1

n
)) ≥ ρn(νn

∫ 1−1/n

η
(s− 1

n
)(1− 1

n
− s)ds)−1, t ∈ [

1

n
, 1− 1

n
].

Theorem 2.2.4. Under the hypothesis (H1), (H2) and (H4), the system of BVPs (2.0.2),

(2.0.4) has at least one positive solution.
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Proof. For any u ∈ ∂Ωρn ∩Kn, using (2.2.3), (i) of Lemma 2.1.2 and (H1), we have

(Tnu)(t) =

∫ 1−1/n

1/n
Hn(t, s)f(s,

1

n
+

∫ 1−1/n

1/n
Hn(s, τ)g(τ, u(τ) +

1

n
)dτ)ds

≥
∫ 1−1/n

1/n
Hn(t, s)f(s,

1

n
+ µn

∫ 1−1/n

1/n
(τ − 1

n
)(1− 1

n
− τ)g(τ, u(τ) +

1

n
)dτ)ds

≥
∫ 1−1/n

1/n
Hn(t, s)f(s,

1

n
+ µn

∫ 1−1/n

1/n
(τ − 1

n
)(1− 1

n
− τ)L(τ)G(u(τ) +

1

n
)dτ)ds

≥
∫ 1−1/n

1/n
Hn(t, s)f(s,

1

n
+ µnG(

1

n
)

∫ 1−1/n

1/n
(τ − 1

n
)(1− 1

n
− τ)L(τ)dτ)ds

≥
∫ 1−1/n

1/n
Hn(t, s)f(s,

1

n
+ b µnG(

1

n
))ds.

Now in view of (H4), we have

(Tnu)(t) ≥ ρn

∫ 1−1/n

1/n
Hn(t, s)ds(νn

∫ 1−1/n

η
(τ − 1

n
)(1− 1

n
− τ)dτ)−1

≥ ρnνn

∫ 1−1/n

η
(s− 1

n
)(1− 1

n
− s)ds(νn

∫ 1−1/n

η
(τ − 1

n
)(1− 1

n
− τ)dτ)−1 = ρn,

which implies that

∥Tnu∥En ≥ ∥u∥En for all u ∈ ∂Ωρn ∩Kn. (2.2.14)

In view of (H2), we can choose R > ρn such that (2.2.9) holds. Hence, in view of (2.2.9),

(2.2.14) and by Theorem 1.2.8, Tn has a fixed point un ∈ (ΩR \ Ωρn) ∩Kn. Now, by the

same process as done in Theorem 2.2.2, the system of BVPs (2.0.2), (2.0.4) has a positive

solution.

Example 2.2.5. Let

f(t, y) =
e

1
y

t(1− t)
, g(t, x) =

e
1
x

t(1− t)

and α = 2, η = 1
3 . Choose

K(t) = L(t) =
1

t(1− t)
, F (y) = e

1
y , G(x) = e

1
x .

Choose ρn ≤ 4(n−3)
n e

n
1+6nen

∫ 1−1/n
1/3 (s − 1/n)(1 − 1/n − s)ds. Then (H1), (H2) and (H4)

are satisfied. Hence, by Theorem 2.2.4, the system of BVPs (2.0.2), (2.0.4) has a positive

solution.

Assume that

(H5) F (u), g(t, u) are non–increasing with respect to u and for each fixed n ∈ {n0, n0 +
1, n0 + 2, · · · }, there exists a constant M > 0 such that

aµnF (νn

∫ 1−1/n

η
(s− 1

n
)(1− 1

n
− s)g(s,M +

1

n
)ds) ≤M.
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Theorem 2.2.6. Under the hypothesis (H1), (H3) and (H5), the system of BVPs (2.0.2),

(2.0.4) has at least one positive solution.

Proof. For any u ∈ ∂ΩM ∩Kn, using (2.2.3), (H1) and (H5), we obtain

(Tnu)(t) =

∫ 1−1/n

1/n
Hn(t, s)f(s,

1

n
+

∫ 1−1/n

1/n
Hn(s, τ)g(τ, u(τ) +

1

n
)dτ)ds

≤
∫ 1−1/n

1/n
Hn(t, s)K(s)F (

1

n
+

∫ 1−1/n

1/n
Hn(s, τ)g(τ, u(τ) +

1

n
)dτ)ds

≤
∫ 1−1/n

1/n
Hn(t, s)K(s)F (

∫ 1−1/n

1/n
Hn(s, τ)g(τ, u(τ) +

1

n
)dτ)ds

≤
∫ 1−1/n

1/n
Hn(t, s)K(s)F (

∫ 1−1/n

1/n
Hn(s, τ)g(τ,M +

1

n
)dτ)ds

≤
∫ 1−1/n

1/n
Hn(t, s)K(s)F (

∫ 1−1/n

η
Hn(s, τ)g(τ,M +

1

n
)dτ)ds.

Employing (ii) of Lemma 2.1.2 and (H5), leads to

(Tnu)(t) ≤ F (νn

∫ 1−1/n

η
(τ − 1

n
)(1− 1

n
− τ)g(τ,M +

1

n
)dτ)

∫ 1−1/n

1/n
Hn(t, s)K(s)ds.

Now, using (i) of Lemma 2.1.2, (H1) and (H5), we obtain

(Tnu)(t) ≤ µnF (νn

∫ 1−1/n

η
(τ − 1

n
)(1− 1

n
− τ)g(τ,M +

1

n
)dτ)

∫ 1−1/n

1/n
(s− 1

n
)

(1− 1

n
− s)K(s)ds ≤ aµnF (νn

∫ 1−1/n

η
(τ − 1

n
)(1− 1

n
− τ)g(τ,M +

1

n
)dτ) ≤M,

which implies that

∥Tnu∥En ≤ ∥u∥En for all u ∈ ∂ΩM ∩Kn. (2.2.15)

By (H3), we can choose rn ∈ (0,M) such that (2.2.12) holds. Hence, in view of (2.2.15),

(2.2.12) and by Theorem 1.2.8, Tn has a fixed point un ∈ (ΩM \ Ωrn) ∩ Kn. By the

same process as done in Theorem 2.2.2, the system of BVPs (2.0.2), (2.0.4) has a positive

solution.

Example 2.2.7. Let

f(t, y) =


ye

1
y

t(1−t) , y ≤ 1,

e
t(1−t) , y > 1,

g(t, x) =


xe

1
x

t(1−t) , x ≤ 1,

e
t(1−t) , x > 1,

and α = 2, η = 1
3 . Choose

K(t) = L(t) =
1

t(1− t)
, F (y) =

ye
1
y , y ≤ 1,

e, y > 1,
G(x) =

xe
1
x , x ≤ 1,

e, x > 1,
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and β1 = β2 = 1. Choose a constant M > 0 such that

M ≥ max{1, 6 F (e(1− 3

n
)

∫ 1−1/n

1/3

(t− 1
n)(1−

1
n − t)

t(1− t)
ds)}.

Then (H1), (H3) and (H5) are satisfied. Hence, by Theorem 2.2.6, the system of BVPs

(2.0.2), (2.0.4) has a positive solution.

Theorem 2.2.8. Under the hypothesis (H1), (H4) and (H5), the system of BVPs (2.0.2),

(2.0.4) has at least one positive solution.

Proof. By (H1) and (H4), we obtain (2.2.14). By (H5) we can choose a constant M > ρn

such that (2.2.15) holds. Then by Theorem 1.2.8, Tn has a fixed point un ∈ (ΩM\Ωρn)∩Kn.

By the same process as done in Theorem 2.2.2, the system of BVPs (2.0.2), (2.0.4) has a

positive solution.

Example 2.2.9. Let

f(t, y) =
1

t(1− t)

1
√
y
, g(t, x) =

1

t(1− t)

1

x2

and α = 2, η = 1
3 . Choose

K(t) = L(t) =
1

t(1− t)
, F (y) =

1
√
y
, G(x) =

1

x2
.

Choose constants ρn and M such that

ρn ≤ 4(n− 3)√
n(6n3 + 1)

∫ 1−1/n

1/3
(t− 1

n
)(1− 1

n
− t)dt,

M ≥ 1

n

(1
6

(
(1− 3

n
)

∫ 1−1/n

1/3

(t− 1
n)(1−

1
n − t)

t(1− t)
dt
)1/2 − 1

)−1
.

Then (H1), (H4) and (H5) are satisfied. Hence, by Theorem 2.2.8, the system of BVPs

(2.0.2), (2.0.4) has a positive solution.

2.3 Sufficient conditions for the existence of at least one

solution of more general systems

In this section, we establish the existence of positive solution to the system of BVPs

(2.0.3), (2.0.4). We say (x, y) is a positive solution to the system of BVPs (2.0.3), (2.0.4)

if (x, y) ∈ (C[0, 1]∩C2(0, 1))× (C[0, 1]∩C2(0, 1)), x > 0 and y > 0 on (0, 1], (x, y) satisfies

(2.0.3) and (2.0.4). Therefore, we consider the nonlinear non–singular system of BVPs

−x′′(t) = f(t,max{x(t) + 1

n
,
1

n
},max{y(t) + 1

n
,
1

n
}), t ∈ [

1

n
, 1− 1

n
],

−y′′(t) = g(t,max{x(t) + 1

n
,
1

n
},max{y(t) + 1

n
,
1

n
}), t ∈ [

1

n
, 1− 1

n
],

x(
1

n
) = y(

1

n
) = 0, x(1− 1

n
) = αx(η), y(1− 1

n
) = αy(η).

(2.3.1)
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We write (2.3.1) as an equivalent system of integral equations

x(t) =

∫ 1−1/n

1/n
Hn(t, s)f(s,max{x(s) + 1

n
,
1

n
},max{y(s) + 1

n
,
1

n
})ds,

y(t) =

∫ 1−1/n

1/n
Hn(t, s)g(s,max{x(s) + 1

n
,
1

n
},max{y(s) + 1

n
,
1

n
})ds.

(2.3.2)

By a solution of the system of BVPs (2.3.1), we mean a solution of the corresponding

system of integral equations (2.3.2). Define an operator Tn : En × En → Kn ×Kn by

Tn(x, y) = (An(x, y), Bn(x, y)), (2.3.3)

where the operators An, Bn : En × En → Kn are defined by

An(x, y)(t) =

∫ 1−1/n

1/n
Hn(t, s)f(s,max{x(s) + 1

n
,
1

n
},max{y(s) + 1

n
,
1

n
})ds,

Bn(x, y)(t) =

∫ 1−1/n

1/n
Hn(t, s)g(s,max{x(s) + 1

n
,
1

n
},max{y(s) + 1

n
,
1

n
})ds.

(2.3.4)

Clearly, if (xn, yn) ∈ En × En is a fixed point of Tn; then (xn, yn) also satisfies the system

of BVPs (2.3.1).

Assume that the following holds:

(H6) there exist K,L ∈ C((0, 1), (0,∞)) and F,G ∈ C((0,∞)× (0,∞), (0,∞)) such that

f(t, x, y) ≤ K(t)F (x, y), g(t, x, y) ≤ L(t)G(x, y), t ∈ (0, 1), x, y ∈ (0,∞),

where

a :=

∫ 1

0
t(1− t)K(t)dt < +∞, b :=

∫ 1

0
t(1− t)L(t)dt < +∞.

Lemma 2.3.1. Under the hypothesis (H6), the operator Tn : Or ∩ (Kn ×Kn) → Kn ×Kn

is completely continuous.

Proof. First we show that Tn(Kn ×Kn) ⊆ Kn ×Kn. Clearly, for any (u, v) ∈ Kn ×Kn,

An(u, v)(t) ≥ 0, Bn(u, v)(t) ≥ 0, An(u, v)
′′(t) ≤ 0 and Bn(u, v)

′′(t) ≤ 0 for t ∈ [ 1n , 1 −
1
n ].

Consequently, Tn(u, v) ∈ Kn×Kn for all (u, v) ∈ Kn×Kn. Now, we show that the operator

An : Or ∩ (Kn ×Kn) → Kn is uniformly bounded and equicontinuous. We introduce

ωn = max{ max
(u,v)∈Or∩(Kn×Kn)

F (u+
1

n
, v +

1

n
), max

(u,v)∈Or∩(Kn×Kn)
G(u+

1

n
, v +

1

n
)}. (2.3.5)

For (u, v) ∈ Or ∩ (Kn ×Kn), using (2.3.4), (H6) and (2.3.5), we have

An(u, v)(t) =

∫ 1−1/n

1/n
Hn(t, s)f(s, u(s) +

1

n
, v(s) +

1

n
)ds ≤

∫ 1−1/n

1/n
Hn(t, s)K(s)

F (u(s) +
1

n
, v(s) +

1

n
)ds ≤ µnωn

∫ 1−1/n

1/n
(s− 1

n
)(1− 1

n
− s)K(s)ds

≤ µnωn

∫ 1−1/n

1/n
s(1− s)K(s)ds ≤ aµnωn
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which implies that

∥An(u, v)∥En ≤ aµnωn < +∞,

that is, An(Or∩(Kn×Kn)) is uniformly bounded. Similarly, using (2.3.4), (H6) and (2.3.5),

we can show that Bn(Or∩(Kn×Kn)) is also uniformly bounded. Thus, Tn(Or∩(Kn×Kn))

is uniformly bounded. To show An(Or∩(Kn×Kn)) is equicontinuous, let t1, t2 ∈ [ 1n , 1−
1
n ]

with t1 ≤ t2. Since Hn is uniformly continuous on [ 1n , 1 −
1
n ] × [ 1n , 1 −

1
n ], for any ε > 0,

there exist δ = δ(ε) > 0 such that |t1 − t2| < δ implies

|Hn(t1, s)−Hn(t2, s)| < min{1
a
,
1

b
} ε

ωn
for s ∈ [

1

n
, 1− 1

n
]. (2.3.6)

For (u, v) ∈ Or ∩ (Kn ×Kn), using (2.3.4), (H6), (2.3.5) and (2.3.6), we have

|An(u, v)(t1)−An(u, v)(t2)| =

∣∣∣∣∣
∫ 1−1/n

1/n
(Hn(t1, s)−Hn(t2, s))f(s, u(s) +

1

n
, v(s) +

1

n
))ds

∣∣∣∣∣
≤

∫ 1−1/n

1/n
|Hn(t1, s)−Hn(t2, s)|f(s, u(s) +

1

n
, v(s) +

1

n
))ds

≤
∫ 1−1/n

1/n
|Hn(t1, s)−Hn(t2, s)|K(s)F (u(s) +

1

n
, v(s) +

1

n
))ds

≤ ωn

∫ 1−1/n

1/n
|Hn(t1, s)−Hn(t2, s)|K(s)ds < ωn

ε

aωn

∫ 1−1/n

1/n
K(s)ds ≤ ε

a

∫ 1

0
K(s)ds = ε.

Hence,

|An(u, v)(t1)−An(u, v)(t2)| < ε for all (x, y) ∈ Ωr ∩ (Kn ×Kn), |t1 − t2| < δ,

which implies that An(Or ∩ (Kn × Kn)) is equicontinuous. Similarly, using (2.3.4), we

can show that Bn(Or ∩ (Kn ×Kn)) is also equicontinuous. Thus, Tn(Or ∩ (Kn ×Kn)) is

equicontinuous. This together with uniform boundedness of Tn(Or ∩ (Kn ×Kn)) and by

Theorem 1.1.6, it follows that Tn(Or ∩ (Kn ×Kn)) is relatively compact. Hence, Tn is a

compact operator.

Now, we show that Tn is continuous. Let (um, vm), (u, v) ∈ Kn ×Kn such that

∥(um, vm)− (x, y)∥En×En → 0 as m→ +∞.

Using (2.3.4) and (i) of Lemma 2.1.2, we have

|An(um, vm)(t)−An(u, v)(t)| =

∣∣∣∣∣
∫ 1−1/n

1/n
Hn(t, s)(f(s, um(s) +

1

n
, vm(s) +

1

n
)

−f(s, u(s) + 1

n
, v(s) +

1

n
))ds

∣∣∣∣ ≤ ∫ 1−1/n

1/n
Hn(t, s)

∣∣∣∣f(s, um(s) +
1

n
, vm(s) +

1

n
)

−f(s, u(s) + 1

n
, v(s) +

1

n
)

∣∣∣∣ ds ≤ µn

∫ 1−1/n

1/n
(s− 1

n
)(1− 1

n
− s)

∣∣∣∣f(s, um(s) +
1

n
, vm(s) +

1

n
)

−f(s, u(s) + 1

n
, v(s) +

1

n
)

∣∣∣∣ ds.
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Consequently,

∥An(um, vm)−An(u, v)∥En ≤µn
∫ 1−1/n

1/n
(s− 1

n
)(1− 1

n
− s)

∣∣∣∣f(s, um(s) +
1

n
, vm(s) +

1

n
)

−f(s, u(s) + 1

n
, v(s) +

1

n
)

∣∣∣∣ ds.
By Lebesgue dominated convergence theorem, it follows that

∥An(um, vm)−An(u, v)∥En → 0 as m→ +∞. (2.3.7)

Similarly, by using (2.3.4) and (i) of Lemma 2.1.2, we have

∥Bn(um, vm)−Bn(u, v)∥En → 0 as m→ +∞. (2.3.8)

From (2.3.7), (2.3.8) and (2.3.3), it follows that

∥Tn(um, vm)− Tn(u, v)∥En×En → 0 as m→ +∞,

that is, Tn : Or ∩ (Kn ×Kn) → Kn ×Kn is continuous. Hence, Tn : Or ∩ (Kn ×Kn) →
Kn ×Kn is completely continuous.

For (x, y) ∈ R2, we write |(x, y)| = |x|+ |y|. Assume that

(H7) There exist real constants β̃, ρ̃ with 0 < β̃, ρ̃ ≤ 1 such that

lim
|(x,y)|→∞

F (x, y)

|(x, y)|β̃
→ 0, lim

|(x,y)|→∞

G(x, y)

|(x, y)|ρ̃
→ 0;

(H8) There exist real constants αi, βi with αi ≤ 0 ≤ βi < 1, i = 1, 2; such that for all

t ∈ (0, 1), x, y ∈ (0,∞),

cβ1f(t, x, y) ≤ f(t, c x, y) ≤ cα1f(t, x, y), if 0 < c ≤ 1,

cα1f(t, x, y) ≤ f(t, c x, y) ≤ cβ1f(t, x, y), if c ≥ 1,

cβ2f(t, x, y) ≤ f(t, x, c y) ≤ cα2f(t, x, y), if 0 < c ≤ 1,

cα2f(t, x, y) ≤ f(t, x, c y) ≤ cβ2f(t, x, y), if c ≥ 1;

(H9) There exist real constants γi, ρi with γi ≤ 0 ≤ ρi < 1, i = 1, 2; such that for all

t ∈ (0, 1), x, y ∈ (0,∞),

c ρ1g(t, x, y) ≤ g(t, c x, y) ≤ cγ1g(t, x, y), if 0 < c ≤ 1,

cγ1g(t, x, y) ≤ g(t, c x, y) ≤ c ρ1g(t, x, y), if c ≥ 1,

c ρ2g(t, x, y) ≤ g(t, x, c y) ≤ cγ2g(t, x, y), if 0 < c ≤ 1,

cγ2g(t, x, y) ≤ g(t, x, c y) ≤ c ρ2g(t, x, y), if c ≥ 1.
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Theorem 2.3.2. Under the hypothesis (H6)− (H9), the system of BVPs (2.0.3), (2.0.4)

has at least one positive solution.

Proof. By (H7), there exist real constants c7, c8, c9, c10 > 0 such that

aµn2
1+β̃c7 < 1, bµn2

1+ρ̃c9 < 1 (2.3.9)

and

F (x+
1

n
, y+

1

n
) ≤ c7(x+y+

2

n
)β̃+c8, G(x+

1

n
, y+

1

n
) ≤ c9(x+y+

2

n
)ρ̃+c10 for |(x, y)| ≥ 0.

(2.3.10)

In view of (2.3.9), we choose a real constant R > 0 such that

R ≥ max

{
aµn2

1+2β̃n−β̃c7 + aµnc8

1− aµn21+β̃c7
,
bµn2

1+2ρ̃n−ρ̃c9 + bµnc10
1− bµn21+ρ̃c9

}
. (2.3.11)

For any (u, v) ∈ ∂OR ∩ (Kn ×Kn), using (2.3.4), (H6), (2.3.10) and (i) of Lemma 2.1.2,

we have

An(u, v)(t) =

∫ 1−1/n

1/n
Hn(t, s)f(s, u(s) +

1

n
, v(s) +

1

n
)ds ≤

∫ 1−1/n

1/n
Hn(t, s)K(s)

F (u(s) +
1

n
, v(s) +

1

n
)ds ≤

∫ 1−1/n

1/n
Hn(t, s)K(s)(c7(u(s) + v(s) +

2

n
)β̃ + c8)ds

≤
∫ 1−1/n

1/n
Hn(t, s)K(s)(c7(R+

2

n
)β̃ + c8)ds ≤ µn(c7(R+

2

n
)β̃ + c8)

∫ 1−1/n

1/n
(s− 1

n
)

(1− 1

n
− s)K(s)ds ≤ µn(c7(R+

2

n
)β̃ + c8)

∫ 1−1/n

1/n
s(1− s)K(s)ds

≤ µn(c7(R+
2

n
)β̃ + c8)

∫ 1

0
s(1− s)K(s)ds = aµn(c7(R+

2

n
)β̃ + c8).

But,

(R+
2

n
)β̃ ≤ 2β̃(Rβ̃ +

2β̃

nβ̃
).

Therefore, in view of (2.3.11), we have

An(u, v)(t) ≤ aµn(2
β̃c7(R

β̃ +
2β̃

nβ̃
) + c8) = aµn2

β̃Rβ̃c7 + aµn2
2β̃n−β̃c7 + aµnc8 ≤

R

2
.

Thus,

∥An(u, v)∥En ≤
∥(u, v)∥En×En

2
for all (u, v) ∈ ∂OR ∩ (Kn ×Kn). (2.3.12)

Similarly, using (2.3.4), (H6), (2.3.10), (i) of Lemma 2.1.2, (2.3.11), we obtain

∥Bn(u, v)∥En ≤
∥(u, v)∥En×En

2
for all (u, v) ∈ ∂OR ∩ (Kn ×Kn). (2.3.13)
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From (2.3.12), (2.3.13) and (2.3.3), it follows that

∥Tn(u, v)∥En×En ≤ ∥(u, v)∥En×En for all (u, v) ∈ ∂OR ∩ (Kn ×Kn). (2.3.14)

Choose a real constant rn ∈ (0, R) such that

rn +
1

n
≤ min

{
1,

1

n
+

2νn

nα
2
1+α2

2−α1β1−α2β2+β1+β2

∫ 1−1/n

η
(s− 1

n
)(1− 1

n
− s)f(s, 1, 1)ds,

1

n
+

2νn

nγ
2
1+γ2

2−γ1ρ1−γ2ρ2+γ1+ρ2

∫ 1−1/n

η
(s− 1

n
)(1− 1

n
− s)g(s, 1, 1)ds

}
.

(2.3.15)

Choose constants c11 = (rn+
1
n)

−α1 and c12 = (rn+
1
n)

−α2 . For any (u, v) ∈ ∂Orn ∩ (Kn×
Kn), using (2.3.4), (H8) and (H9), we have

An(u, v)(t) =

∫ 1−1/n

1/n
Hn(t, s)f(s, u(s) +

1

n
, v(s) +

1

n
)ds

=

∫ 1−1/n

1/n
Hn(t, s)f(s, c11

u(s) + 1
n

c11
, c12

v(s) + 1
n

c12
)ds

≥ (
1

c11
)α1

∫ 1−1/n

1/n
Hn(t, s)f(s, c11(u(s) +

1

n
), c12

v(s) + 1
n

c12
)ds

≥ (
1

c11
)α1(

1

c12
)α2

∫ 1−1/n

1/n
Hn(t, s)f(s, c11(u(s) +

1

n
), c12(v(s) +

1

n
))ds

≥ cβ1−α1
11 c−α2

12

∫ 1−1/n

1/n
Hn(t, s)(u(s) +

1

n
)β1f(s, 1, c(v(s) +

1

n
))ds

≥ cβ1−α1
11 cβ2−α2

12

∫ 1−1/n

1/n
Hn(t, s)(u(s) +

1

n
)β1(v(s) +

1

n
)β2f(s, 1, 1)ds

≥ cβ1−α1
11 cβ2−α2

12

1

nβ1+β2

∫ 1−1/n

1/n
Hn(t, s)f(s, 1, 1)ds

≥ cβ1−α1
11 cβ2−α2

12

1

nβ1+β2

∫ 1−1/n

η
Hn(t, s)f(s, 1, 1)ds.

For t ∈ [η, 1− 1
n ], using (ii) of Lemma 2.1.2, we obtain

An(u, v)(t) ≥ cβ1−α1
11 cβ2−α2

12

νn
nβ1+β2

∫ 1−1/n

η
(s− 1

n
)(1− 1

n
− s)f(s, 1, 1)ds

= (rn +
1

n
)−α1(β1−α1)(rn +

1

n
)−α2(β2−α2)

νn
nβ1+β2

∫ 1−1/n

η
(s− 1

n
)(1− 1

n
− s)f(s, 1, 1)ds

= (rn +
1

n
)α

2
1+α2

2−α1β1−α2β2
νn

nβ1+β2

∫ 1−1/n

η
(s− 1

n
)(1− 1

n
− s)f(s, 1, 1)ds

≥ νn

nα
2
1+α2

2−α1β1−α2β2+β1+β2

∫ 1−1/n

η
(s− 1

n
)(1− 1

n
− s)f(s, 1, 1)ds,

which implies that

∥An(u, v)∥En ≥ νn

nα
2
1+α2

2−α1β1−α2β2+β1+β2

∫ 1−1/n

η
(s− 1

n
)(1− 1

n
− s)f(s, 1, 1)ds,
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Thus, in view of (2.3.15), it follows that

∥An(u, v)∥En ≥
∥(u, v)∥En×En

2
for all (u, v) ∈ ∂Orn ∩ (Kn ×Kn). (2.3.16)

Similarly, using (2.3.4), (H8), (H9), (ii) of Lemma 2.1.2 and (2.3.15), we get

∥Bn(u, v)∥En ≥
∥(u, v)∥En×En

2
for all (u, v) ∈ ∂Orn ∩ (Kn ×Kn). (2.3.17)

From (2.3.16), (2.3.17) and (2.3.3), we obtain

∥Tn(u, v)∥En×En ≥ ∥(u, v)∥En×En for all (u, v) ∈ ∂Orn ∩ (Kn ×Kn). (2.3.18)

In view of (2.3.14), (2.3.18) and by Theorem 1.2.8, Tn has a fixed point (un, vn) ∈ (OR \
Orn) ∩ (Kn ×Kn). Note that

rn ≤ ∥(un, vn)∥En×En ≤ R, (2.3.19)

where rn → 0 as n → ∞. Thus, we have exhibited a uniform bound for each (un, vn) ∈
En × En, and {(um, vm)}m≥n is uniformly bounded on [ 1n , 1−

1
n ].

Now, we show that {(um, vm)}m≥n, is equicontinuous on [ 1n , 1−
1
n ]. For t ∈ [ 1n , 1−

1
n ],

consider the integral equations

um(t) = um(
1

n
) +

um(1− 1
n)− αum(η)− (1− α)um( 1n)

1− 2
n + α

n − αη
(t− 1

n
) +

∫ 1−1/n

1/n
Hn(t, s)f̃(s)ds,

vm(t) = vm(
1

n
) +

vm(1− 1
n)− αvm(η)− (1− α)vm( 1n)

1− 2
n + α

n − αη
(t− 1

n
) +

∫ 1−1/n

1/n
Hn(t, s)g̃(s)ds,

where f̃(s) = f(s, um(s) + 1
n , vm(s) + 1

n) and g̃(s) = g(s, um(s) + 1
n , vm(s) + 1

n).

Which can also be written as

um(t) = um(
1

n
) +

um(1− 1
n)− αum(η)− (1− α)um( 1n)

1− 2
n + α

n − αη
(t− 1

n
) +

t− 1
n

1− 2
n + α

n − αη∫ 1−1/n

1/n
(1− 1

n
− s)f̃(s)ds−

α(t− 1
n)

1− 2
n + α

n − αη

∫ η

1/n
(η − s)f̃(s)ds−

∫ t

1/n
(t− s)f̃(s)ds,

vm(t) = vm(
1

n
) +

vm(1− 1
n)− αvm(η)− (1− α)vm( 1n)

1− 2
n + α

n − αη
(t− 1

n
) +

t− 1
n

1− 2
n + α

n − αη∫ 1−1/n

1/n
(1− 1

n
− s)g̃(s)ds−

α(t− 1
n)

1− 2
n + α

n − αη

∫ η

1/n
(η − s)g̃(s)ds−

∫ t

1/n
(t− s)g̃(s)ds.

Differentiating with respect to t, we have

u′m(t) =
um(1− 1

n)− αum(η)− (1− α)um( 1n)

1− 2
n + α

n − αη
+

1

1− 2
n + α

n − αη

∫ 1−1/n

1/n
(1− 1

n
− s)

f̃(s)ds− α

1− 2
n + α

n − αη

∫ η

1/n
(η − s)f̃(s)ds−

∫ t

1/n
f̃(s)ds,

v′m(t) =
vm(1− 1

n)− αvm(η)− (1− α)vm( 1n)

1− 2
n + α

n − αη
+

1

1− 2
n + α

n − αη

∫ 1−1/n

1/n
(1− 1

n
− s)

g̃(s)ds− α

1− 2
n + α

n − αη

∫ η

1/n
(η − s)g̃(s)ds−

∫ t

1/n
g̃(s)ds,
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which implies that

∥u′m∥En ≤ 2(1 + α)R

1− 2
n + α

n − αη
+

1

1− 2
n + α

n − αη

∫ 1−1/n

1/n
(1− 1

n
− s)f̃(s)ds

+
α

1− 2
n + α

n − αη

∫ η

1/n
(η − s)f̃(s)ds+

∫ 1−1/n

1/n
f̃(s)ds,

∥v′m∥En ≤ 2(1 + α)R

1− 2
n + α

n − αη
+

1

1− 2
n + α

n − αη

∫ 1−1/n

1/n
(1− 1

n
− s)g̃(s)ds

+
α

1− 2
n + α

n − αη

∫ η

1/n
(η − s)g̃(s)ds+

∫ 1−1/n

1/n
g̃(s)ds.

Hence, {(um, vm)}m≥n is equicontinuous on [ 1n , 1−
1
n ].

For m ≥ n, we define

xm(t) =


um( 1n), 0 ≤ t ≤ 1

n ,

um(t), 1
n ≤ t ≤ 1− 1

n ,

αum(η), 1− 1
n ≤ t ≤ 1,

ym(t) =


vm( 1n), 0 ≤ t ≤ 1

n ,

vm(t), 1
n ≤ t ≤ 1− 1

n ,

αvm(η), 1− 1
n ≤ t ≤ 1.

Since xm and ym is a constant extension of um and vm, respectively, over the interval

[0, 1]. Therefore, the sequence {(xm, ym)} is uniformly bounded and equicontinuous on

[0, 1]. Thus, there exists a subsequence {(xmk
, ymk

)} of {(xm, ym)} converging uniformly

to (x, y) ∈ C[0, 1]× C[0, 1].

For t ∈ [0, 1], consider the integral equations

xmk
(t) =

∫ 1−1/mk

1/mk

Hmk
(t, s)f(t, xmk

(s) +
1

mk
, ymk

(s) +
1

mk
)ds,

ymk
(t) =

∫ 1−1/mk

1/mk

Hmk
(t, s)g(t, xmk

(s) +
1

mk
, ymk

(s) +
1

mk
)ds.

Letting mk → ∞, we have

x(t) =

∫ 1

0
H(t, s)f(t, x(s), y(s))ds, t ∈ [0, 1],

y(t) =

∫ 1

0
H(t, s)g(s, x(s), y(s))ds, t ∈ [0, 1].

Moreover,

x(0) = 0, x(1) = αx(η), y(0) = 0, y(1) = αy(η).

Hence, (x, y) is a solution of the system of BVPs (2.0.3), (2.0.4). Since

f, g : (0, 1)× (0,∞)× (0,∞) → (0,∞),

f(t, 0, 0), g(t, 0, 0) are not identically 0 and H is of fixed sign on (0, 1) × (0, 1), it follows

that x > 0 and y > 0 on (0, 1].
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Example 2.3.3. Let

f(t, x, y) =
1

t1/2(1− t)3/2
(xα1 + xβ1)(yα2 + yβ2),

g(t, x, y) =
1

t3/2(1− t)1/2
(xγ1 + xρ1)(yγ2 + yρ2),

where αi ≤ 0 ≤ βi < 1, γi ≤ 0 ≤ ρi < 1, i = 1, 2. Choose real constants β̃ = ρ̃ = 1.

Clearly, f and g satisfy assumptions (H6) − (H9). Hence, by Theorem 2.3.2, the system

of BVPs (2.0.3), (2.0.4) has a positive solution.



Chapter 3

Singular Systems of Two–Point

Boundary Value Problems

The existence of positive solutions for second–order nonlinear two–point BVPs has received

much attention; see for example the case of regular nonlinear terms, [51,52,69,80,90], and

the case of singular nonlinear terms, see [1, 4, 39]. However, these results are for the case

when nonlinear functions are independent of the first derivative. The BVPs involving

the first derivative with regular nonlinear functions can be seen in [61, 68, 136]. Though,

the SBVPs with nonlinear functions dependent on first derivative not have many results,

see [81,120].

In [3, Section 2.4], Agarwal and O’Regan studied the existence of at least one positive

solution for the following BVP with α = 1 and β = 0,

−y′′(t) = q(t)f(t, y(t), y′(t)), t ∈ (0, 1),

αy(0)− βy′(0) = y′(1) = 0,
(3.0.1)

where f : [0, 1] × [0,∞) × (0,∞) → [0,∞) is continuous and is allowed to be singular at

y′ = 0; q ∈ C(0, 1) and q > 0 on (0, 1).

The existence of multiple positive solutions for second–order BVPs has also invited

many authors, [68, 74, 82, 83, 89, 96, 99, 104, 137, 138]. B. Yan et al. [131] have studied the

existence of multiple positive solutions of the BVP (3.0.1) with α = 1 and β = 0. The

method they used is based on the theory of fixed point index on a cone of an ordered

Banach space. Further, they generalized these results and established the existence of at

least two positive solutions for BVP (3.0.1) with α, β > 0, [132].

In this chapter, we study the existence and multiplicity of positive solutions to the

following coupled system of ODEs

−x′′(t) = p(t)f(t, y(t), x′(t)), t ∈ (0, 1),

−y′′(t) = q(t)g(t, x(t), y′(t)), t ∈ (0, 1),
(3.0.2)

40
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subject to the following set of two–point BCs

x(0) = y(0) = x′(1) = y′(1) = 0, (3.0.3)

and

a1x(0)− b1x
′(0) = a2y(0)− b2y

′(0) = x′(1) = y′(1) = 0, (3.0.4)

where the functions f, g : [0, 1]× [0,∞)× (0,∞) → [0,∞) are continuous and are allowed

to be singular at x′ = 0, y′ = 0. Moreover, p, q ∈ C(0, 1) and positive on (0, 1), and the

real constants ai (i = 1, 2) > 0, bi (i = 1, 2) > 0. By singularity of f and g, we mean that

the functions f(t, x, y) and g(t, x, y) are allowed to be unbounded at y = 0. In literature,

there are several results on existence of positive solutions for system of BVPs; see for

example, [36, 66, 67, 95, 111, 127, 134]. Further, there are some results on multiplicity of

positive solutions for system of BVPs, [36, 77, 98, 100, 105, 128]. However, there are only

a few results for systems with nonlinear functions dependent on the first derivative. In

general, the assumption that there exist singularities with respect to the first derivative

is not new; see [3, 35, 120]. However, in the case of systems of ODEs, we believe this

assumption is new. Some of the results of this chapter has been published in international

journals [17,24] and some are submitted [16,18].

System of differential equations with BCs of the type (3.0.4) appear naturally when we

study an n–th order reaction in an adiabatic tabular reactor with Arrhenius temperature

dependence. Assume that a reactant is flowing through the tube of unit length and is

reacting some product. Moreover, the flow is ideal and the concentration c, temperature

T of the reactant depend only on the time t and the distance z from the inlet plane at

z = 0. Then, the model of adiabatic tabular reactor for an n–th order reaction with

Arrhenius temperature dependence [12] is represented by the system of BVPs

∂u

∂t
= β1

∂2u

∂z2
− ∂u

∂z
+ µ(1− u)neγ

v
v+1 , t ≥ 0, 0 ≤ z ≤ 1,

∂v

∂t
= β2

∂2v

∂z2
− ∂v

∂z
+ ν(1− u)neγ

v
v+1 , t ≥ 0, 0 ≤ z ≤ 1,

u(t, 0)− β1
∂u

∂z
(t, 0) = 0,

∂u

∂z
(t, 1) = 0,

v(t, 0)− β2
∂v

∂z
(t, 0) = 0,

∂v

∂z
(t, 1) = 0,

(3.0.5)

where the constants µ, γ, β1 and β2 are positive, while ν > 0 if heat is generated (exother-

mal reaction) and ν < 0 if heat is consumed (endothermal reaction). Clearly, steady state

solution of (3.0.5) admits BCs of the type (3.0.4).

For each x ∈ C[0, 1]∩C1(0, 1], we write ∥x∥ = maxt∈[0,1] |x(t)| and ∥x∥1 = supt∈(0,1] t|x′(t)|.
Moreover, for each x ∈ E := {x ∈ C[0, 1] ∩ C1(0, 1] : ∥x∥1 < +∞}, we write ∥x∥2 =

max{∥x∥, ∥x∥1}. By Lemma 1.1.8, (E , ∥ · ∥2) is a Banach space. Moreover, for each

x ∈ C1[0, 1], we write ∥x∥3 = max{∥x∥, ∥x′∥}. Clearly, (C1[0, 1], ∥ · ∥3) is a Banach space.
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3.1 Existence of C1-positive solutions

In this section, we establish sufficient conditions for the existence of C1-positive solutions

to the system of BVPs (3.0.2), (3.0.3). By a C1-positive solution to the system of BVPs

(3.0.2), (3.0.3), we mean that (x, y) ∈ (C1[0, 1]∩C2(0, 1))× (C1[0, 1]∩C2(0, 1)) satisfying

(3.0.2) and (3.0.3), x > 0 and y > 0 on (0, 1], x′ > 0 and y′ > 0 on [0, 1).

Assume that the following holds:

(H10) p, q ∈ C(0, 1), p, q > 0 on (0, 1),
∫ 1
0 p(t)dt < +∞ and

∫ 1
0 q(t)dt < +∞;

(H11) f, g : [0, 1] × [0,∞) × (0,∞) → [0,∞) are continuous with f(t, x, y) > 0 and

g(t, x, y) > 0 on [0, 1]× (0,∞)× (0,∞);

(H12) f(t, x, y) ≤ k1(x)(u1(y) + v1(y)) and g(t, x, y) ≤ k2(x)(u2(y) + v2(y)), where ui(i =

1, 2) > 0 are continuous and nonincreasing on (0,∞), ki(i = 1, 2) ≥ 0, vi(i = 1, 2) ≥ 0

are continuous and nondecreasing on [0,∞);

(H13)

sup
c∈(0,∞)

c

I−1(k1(J−1(k2(c)
∫ 1
0 q(s)ds))

∫ 1
0 p(s)ds)

> 1,

sup
c∈(0,∞)

c

J−1(k2(I−1(k1(c)
∫ 1
0 p(s)ds))

∫ 1
0 q(s)ds)

> 1,

where I(µ) =
∫ µ
0

dτ
u1(τ)+v1(τ)

, J(µ) =
∫ µ
0

dτ
u2(τ)+v2(τ)

, for µ ∈ (0,∞);

(H14) I(∞) = ∞ and J(∞) = ∞;

(H15) for real constants E > 0 and F > 0, there exist continuous functions φEF and ψEF

defined on [0, 1] and positive on (0, 1), and constants 0 ≤ δ1, δ2 < 1 such that

f(t, x, y) ≥ φEF (t)x
δ1 , g(t, x, y) ≥ ψEF (t)x

δ2 on [0, 1]× [0, E]× [0, F ];

(H16)
∫ 1
0 p(t)u1(C

∫ 1
t s

δ1p(s)φEF (s)ds)dt < +∞ and
∫ 1
0 q(t)u2(C

∫ 1
t s

δ2q(s)ψEF (s)ds)dt <

+∞ for any real constant C > 0.

Remark 3.1.1. Since I, J are continuous, I(0) = 0, I(∞) = ∞, J(0) = 0, J(∞) = ∞,

and they are monotone increasing. Hence, I and J are invertible. Moreover, I−1 and J−1

are also monotone increasing.

Theorem 3.1.2. Under the hypothesis (H10)− (H16), the system of BVPs (3.0.2), (3.0.3)

has at least one C1-positive solution.

Proof. In view of (H13), we can choose real constants M1 > 0 and M2 > 0 such that

M1

I−1(k1(J−1(k2(M1)
∫ 1
0 q(s)ds))

∫ 1
0 p(s)ds)

> 1,
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M2

J−1(k2(I−1(k1(M2)
∫ 1
0 p(s)ds))

∫ 1
0 q(s)ds)

> 1.

From the continuity of k1, k2, I and J , choose ε > 0 small enough such that

M1

I−1(k1(J−1(k2(M1)
∫ 1
0 q(s)ds+ J(ε)))

∫ 1
0 p(s)ds+ I(ε))

> 1, (3.1.1)

M2

J−1(k2(I−1(k1(M2)
∫ 1
0 p(s)ds+ I(ε)))

∫ 1
0 q(s)ds+ J(ε))

> 1. (3.1.2)

Choose real constants L1 > 0 and L2 > 0 such that

I(L1) > k1(M2)

∫ 1

0
p(s)ds+ I(ε), (3.1.3)

J(L2) > k2(M1)

∫ 1

0
q(s)ds+ J(ε). (3.1.4)

Choose n0 ∈ {1, 2, · · · } such that 1
n0
< ε. For each fixed n ∈ {n0, n0 + 1, · · · }, define

retractions θi : R → [0,Mi] and ρi : R → [ 1n , Li] by

θi(x) = max{0,min{x,Mi}} and ρi(x) = max{ 1
n
,min{x, Li}}, i = 1, 2.

Consider the modified system of BVPs

−x′′(t) = p(t)f(t, θ2(y(t)), ρ1(x
′(t))), t ∈ (0, 1),

−y′′(t) = q(t)g(t, θ1(x(t)), ρ2(y
′(t))), t ∈ (0, 1),

x(0) = y(0) = 0, x′(1) = y′(1) =
1

n
.

(3.1.5)

Since f(t, θ2(y(t)), ρ1(x
′(t))), g(t, θ1(x(t)), ρ2(y

′(t))) are continuous and bounded on [0, 1]×
R2, by Theorem 1.2.4, it follows that the modified system of BVPs (3.1.5) has a solution

(xn, yn) ∈ (C1[0, 1] ∩ C2(0, 1))× (C1[0, 1] ∩ C2(0, 1)).

Using (3.1.5) and (H11), we obtain

x′′n(t) ≤ 0 and y′′n(t) ≤ 0 for t ∈ (0, 1),

which on integration from t to 1, using the BCs (3.1.5), implies that

x′n(t) ≥
1

n
and y′n(t) ≥

1

n
for t ∈ [0, 1]. (3.1.6)

Integrating (3.1.6) from 0 to t, using the BCs (3.1.5), we have

xn(t) ≥
t

n
and yn(t) ≥

t

n
for t ∈ [0, 1]. (3.1.7)

From (3.1.6) and (3.1.7), it follows that

∥xn∥ = xn(1) and ∥yn∥ = yn(1).
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Now, we show that

x′n(t) < L1, y
′
n(t) < L2, t ∈ [0, 1]. (3.1.8)

First, we prove x′n(t) < L1 for t ∈ [0, 1]. Suppose x′n(t1) ≥ L1 for some t1 ∈ [0, 1]. Using

(3.1.5) and (H12), we have

−x′′n(t) ≤ p(t)k1(θ2(yn(t)))(u1(ρ1(x
′
n(t))) + v1(ρ1(x

′
n(t)))), t ∈ (0, 1),

which implies that

−x′′n(t)
u1(ρ1(x′n(t))) + v1(ρ1(x′n(t)))

≤ k1(M2)p(t), t ∈ (0, 1).

Integrating from t1 to 1, using the BCs (3.1.5), we obtain∫ x′
n(t1)

1
n

dz

u1(ρ1(z)) + v1(ρ1(z))
≤ k1(M2)

∫ 1

t1

p(t)dt,

which can also be written as∫ L1

1
n

dz

u1(z) + v1(z)
+

∫ x′
n(t1)

L1

dz

u1(L1) + v1(L1)
≤ k1(M2)

∫ 1

0
p(t)dt.

Using the increasing property of I, we obtain

I(L1) +
x′n(t1)− L1

u1(L1) + v1(L1)
≤ k1(M2)

∫ 1

0
p(t)dt+ I(ε),

a contradiction to (3.1.3). Hence, x′n(t) < L1 for t ∈ [0, 1].

Similarly, we can show that y′n(t) < L2 for t ∈ [0, 1].

Now, we show that

xn(t) < M1, yn(t) < M2, t ∈ [0, 1]. (3.1.9)

Suppose xn(t2) ≥M1 for some t2 ∈ [0, 1]. From (3.1.5), (3.1.8) and (H12), it follows that

−x′′n(t) ≤ p(t)k1(θ2(yn(t)))(u1(x
′
n(t)) + v1(x

′
n(t))), t ∈ (0, 1),

−y′′n(t) ≤ q(t)k2(θ1(xn(t)))(u2(y
′
n(t)) + v2(y

′
n(t))), t ∈ (0, 1),

which implies that

−x′′n(t)
u1(x′n(t)) + v1(x′n(t))

≤ k1(θ2(∥yn∥))p(t), t ∈ (0, 1),

−y′′n(t)
u2(y′n(t)) + v2(y′n(t))

≤ k2(M1)q(t), t ∈ (0, 1).
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Integrating from t to 1, using the BCs (3.1.5), we obtain∫ x′
n(t)

1
n

dz

u1(z) + v1(z)
≤ k1(θ2(∥yn∥))

∫ 1

t
p(s)ds, t ∈ [0, 1],∫ y′n(t)

1
n

dz

u2(z) + v2(z)
≤ k2(M1)

∫ 1

t
q(s)ds, t ∈ [0, 1],

which implies that

I(x′n(t))− I(
1

n
) ≤ k1(θ2(∥yn∥))

∫ 1

0
p(s)ds, t ∈ [0, 1],

J(y′n(t))− J(
1

n
) ≤ k2(M1)

∫ 1

0
q(s)ds, t ∈ [0, 1].

The increasing property of I and J leads to

x′n(t) ≤ I−1(k1(θ2(∥yn∥))
∫ 1

0
p(s)ds+ I(ε)), t ∈ [0, 1], (3.1.10)

y′n(t) ≤ J−1(k2(M1)

∫ 1

0
q(s)ds+ J(ε)), t ∈ [0, 1]. (3.1.11)

Integrating (3.1.10) from 0 to t2 and (3.1.11) from 0 to 1, using the BCs (3.1.5), we obtain

M1 ≤ xn(t2) ≤ I−1(k1(θ2(∥yn∥))
∫ 1

0
p(s)ds+ I(ε)), (3.1.12)

∥yn∥ ≤ J−1(k2(M1)

∫ 1

0
q(s)ds+ J(ε)). (3.1.13)

Either we have ∥yn∥ < M2 or ∥yn∥ ≥M2. If ∥yn∥ < M2, then from (3.1.12), we have

M1 ≤ I−1(k1(∥yn∥)
∫ 1

0
p(s)ds+ I(ε)). (3.1.14)

Now, by using (3.1.13) in (3.1.14) and the increasing property of k1 and I−1, we obtain

M1 ≤ I−1(k1(J
−1(k2(M1)

∫ 1

0
q(s)ds+ J(ε)))

∫ 1

0
p(s)ds+ I(ε)),

which implies that

M1

I−1(k1(J−1(k2(M1)
∫ 1
0 q(s)ds+ J(ε)))

∫ 1
0 p(s)ds+ I(ε))

≤ 1,

a contradiction to (3.1.1).

On the other hand, if ∥yn∥ ≥M2, then from (3.1.12) and (3.1.13), we have

M1 ≤ xn(t2) ≤ I−1(k1(M2)

∫ 1

0
p(s)ds+ I(ε)), (3.1.15)

M2 ≤ J−1(k2(M1)

∫ 1

0
q(s)ds+ J(ε)). (3.1.16)
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Using (3.1.16) in (3.1.15) and the increasing property of k1 and I−1, leads to

M1 ≤ I−1(k1(J
−1(k2(M1)

∫ 1

0
q(s)ds+ J(ε)))

∫ 1

0
p(s)ds+ I(ε)),

which implies that

M1

I−1(k1(J−1(k2(M1)
∫ 1
0 q(s)ds+ J(ε)))

∫ 1
0 p(s)ds+ I(ε))

≤ 1,

a contradiction to (3.1.1). Hence, xn(t) < M1 for t ∈ [0, 1].

Similarly, we can show that yn(t) < M2 for t ∈ [0, 1].

Thus, in view of (3.1.5)–(3.1.9), (xn, yn) is a solution of the following coupled system

of BVPs

−x′′(t) = p(t)f(t, y(t), x′(t)), t ∈ (0, 1),

−y′′(t) = q(t)g(t, x(t), y′(t)), t ∈ (0, 1),

x(0) = y(0) = 0, x′(1) = y′(1) =
1

n
,

(3.1.17)

satisfying

t

n
≤ xn(t) < M1,

1

n
≤ x′n(t) < L1, t ∈ [0, 1],

t

n
≤ yn(t) < M2,

1

n
≤ y′n(t) < L2, t ∈ [0, 1].

(3.1.18)

Now, in view of (H15), there exist continuous functions φM2L1 and ψM1L2 defined on [0, 1]

and positive on (0, 1), and real constants 0 ≤ δ1, δ2 < 1 such that

f(t, yn(t), x
′
n(t)) ≥ φM2L1(t)(yn(t))

δ1 , (t, yn(t), x
′
n(t)) ∈ [0, 1]× [0,M2]× [0, L1],

g(t, xn(t), y
′
n(t)) ≥ ψM1L2(t)(xn(t))

δ2 , (t, xn(t), y
′
n(t)) ∈ [0, 1]× [0,M1]× [0, L2].

(3.1.19)

We claim that

x′n(t) ≥ Cδ1
2

∫ 1

t
sδ1p(s)φM2L1(s)ds, (3.1.20)

y′n(t) ≥ Cδ2
1

∫ 1

t
sδ2q(s)ψM1L2(s)ds, (3.1.21)

where

C1 =

(∫ 1

0
sδ2+1q(s)ψM1L2(s)ds

) δ1
1−δ1δ2

(∫ 1

0
sδ1+1p(s)φM2L1(s)ds

) 1
1−δ1δ2

,

C2 =

(∫ 1

0
sδ1+1p(s)φM2L1(s)ds

) δ2
1−δ1δ2

(∫ 1

0
sδ2+1q(s)ψM1L2(s)ds

) 1
1−δ1δ2

.

To prove (3.1.20), consider the following relation

xn(t) =
t

n
+

∫ t

0
sp(s)f(s, yn(s), x

′
n(s))ds+

∫ 1

t
tp(s)f(s, yn(s), x

′
n(s))ds, (3.1.22)
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which implies that

xn(1) ≥
∫ 1

0
sp(s)f(s, yn(s), x

′
n(s))ds.

Using (3.1.19) and Lemma 1.1.14, we obtain

xn(1) ≥ (yn(1))
δ1

∫ 1

0
sδ1+1p(s)φM2L1(s)ds. (3.1.23)

Similarly, using (3.1.19) and Lemma 1.1.14, we obtain

yn(1) ≥ (xn(1))
δ2

∫ 1

0
sδ2+1q(s)ψM1L2(s)ds,

which in view of (3.1.23) implies that

yn(1) ≥ (yn(1))
δ1δ2

(∫ 1

0
sδ1+1p(s)φM2L1(s)ds

)δ2 ∫ 1

0
sδ2+1q(s)ψM1L2(s)ds.

Hence,

yn(1) ≥ C2. (3.1.24)

Now, from (3.1.22), it follows that

x′n(t) ≥
∫ 1

t
p(s)f(s, yn(s), x

′
n(s))ds.

Using (3.1.19), Lemma 1.1.14 and (3.1.24), we obtain (3.1.20).

Similarly, we can prove (3.1.21).

Now, using (3.1.17), (H12), (3.1.18), (3.1.20) and (3.1.21), we have

0 ≤ −x′′n(t) ≤ k1(M2)p(t)(u1(C
δ1
2

∫ 1

t
sδ1p(s)φM2L1(s)ds) + v1(L1)), t ∈ (0, 1),

0 ≤ −y′′n(t) ≤ k2(M1)q(t)(u2(C
δ2
1

∫ 1

t
sδ2q(s)ψM1L2(s)ds) + v2(L2)), t ∈ (0, 1).

(3.1.25)

In view of (3.1.18), (3.1.25), (H10) and (H16), it follows that the sequences {(x(j)n , y
(j)
n )}

(j = 0, 1) are uniformly bounded and equicontinuous on [0, 1]. Hence, by Theorem 1.1.6,

there exist subsequences {(x(j)nk , y
(j)
nk )} (j = 0, 1) of {(x(j)n , y

(j)
n )} (j = 0, 1) and (x, y) ∈

C1[0, 1]×C1[0, 1] such that (x
(j)
nk , y

(j)
nk ) converges uniformly to (x(j), y(j)) on [0, 1] (j = 0, 1).

Also, x(0) = y(0) = x′(1) = y′(1) = 0. Moreover, from (3.1.20) and (3.1.21), with nk in

place of n and taking limnk→+∞, we have

x′(t) ≥ Cδ1
2

∫ 1

t
sδ1p(s)φM2L1(s)ds,

y′(t) ≥ Cδ2
1

∫ 1

t
sδ2q(s)ψM1L2(s)ds,
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which shows that x′ > 0 and y′ > 0 on [0, 1), x > 0 and y > 0 on (0, 1]. Further, (xnk
, ynk

)

satisfy

x′nk
(t) = x′nk

(0)−
∫ t

0
p(s)f(s, ynk

(s), x′nk
(s))ds, t ∈ [0, 1],

y′nk
(t) = y′nk

(0)−
∫ t

0
q(s)g(s, xnk

(s), y′nk
(s))ds, t ∈ [0, 1].

Passing to the limit as nk → ∞, we obtain

x′(t) = x′(0)−
∫ t

0
p(s)f(s, y(s), x′(s))ds, t ∈ [0, 1],

y′(t) = y′(0)−
∫ t

0
q(s)g(s, x(s), y′(s))ds, t ∈ [0, 1],

which implies that

−x′′(t) = p(t)f(t, y(t), x′(t)), t ∈ (0, 1),

−y′′(t) = q(t)g(t, x(t), y′(t)), t ∈ (0, 1).

Hence, (x, y) is a C1-positive solution of the system of BVPs (3.0.2), (3.0.3).

Example 3.1.3. Consider the following coupled system of SBVPs

−x′′(t) = t−
1
3 (1− t)−

2
3 (y(t))

1
3 (x′(t))−β1 , t ∈ (0, 1),

−y′′(t) = t−
2
3 (1− t)−

1
3 (x(t))

2
3 (y′(t))−β2 , t ∈ (0, 1),

x(0) = y(0) = x′(1) = y′(1) = 0,

(3.1.26)

where 0 < β1 < 1 and 0 < β2 <
1
2 .

Taking p(t) = t−
1
3 (1−t)−

2
3 , q(t) = t−

2
3 (1−t)−

1
3 , k1(x) = x

1
3 , k2(x) = x

2
3 , u1(x) = x−β1 ,

u2(x) = x−β2 and v1(x) = v2(x) = 0. Then, I(z) = zβ1+1

β1+1 , J(z) = zβ2+1

β2+1 , I
−1(z) =

(β1 + 1)
1

β1+1 z
1

β1+1 and J−1(z) = (β2 + 1)
1

β2+1 z
1

β2+1 .

Then,
∫ 1
0 p(t)dt =

∫ 1
0 q(t)dt =

2π√
3
. Also,

sup
c∈(0,∞)

c

I−1(k1(J−1(k2(c)
∫ 1
0 q(s)ds))

∫ 1
0 p(s)ds)

=

sup
c∈(0,∞)

c

( 2π√
3
)

3β2+4
3(β1+1)(β2+1) (β1 + 1)

1
β1+1 (β2 + 1)

1
3(β1+1)(β2+1) c

2
9(β1+1)(β2+1)

= ∞ and

sup
c∈(0,∞)

c

J−1(k2(I−1(k1(c)
∫ 1
0 p(s)ds))

∫ 1
0 q(s)ds)

=

sup
c∈(0,∞)

c

( 2π√
3
)

3β1+5
3(β1+1)(β2+1) (β2 + 1)

1
β2+1 (β1 + 1)

2
3(β1+1)(β2+1) c

2
9(β1+1)(β2+1)

= ∞.
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Clearly, (H10)− (H14) are satisfied. Choose δ1 =
1
3 , δ2 =

2
3 , φEF (t) = F−β1 and ψEF (t) =

F−β2 , then (H15) holds. Moreover,∫ 1

0
p(t)u1(C

∫ 1

t
sδ1p(s)φEF (s)ds)dt = 3−β1C−β1F β2

1

∫ 1

0
t−

1
3 (1− t)−

β1+2
3 dt

= 3−β1C−β1F β2
1
Γ(23)Γ(

1−β1

3 )

Γ(1− β1

3 )
,∫ 1

0
q(t)u2(C

∫ 1

t
sδ2q(s)ψEF (s)ds)dt = (

3

2
)−β2C−β2F β2

2

∫ 1

0
t−

2
3 (1− t)−

2β2+1
3 dt

= (
3

2
)−β2C−β2F β2

2
Γ(23)Γ(

1−2β2

3 )

Γ(1− 2β2

3 )
,

shows that (H16) also holds.

Since, (H10) − (H16) are satisfied. Therefore, by Theorem 3.1.2, the system of BVPs

(3.1.26) has at least one C1-positive solution.

3.2 Existence of at least two positive solutions

In this section, we establish sufficient conditions for the existence of at least two positive

solutions of the system of BVPs (3.0.2), (3.0.3). By a positive solution (x, y) of the system

of BVPs (3.0.2), (3.0.3), we mean that (x, y) ∈ E × E satisfies (3.0.2) and (3.0.3), x > 0

and y > 0 on (0, 1], x′ > 0 and y′ > 0 on [0, 1). Define a cone P of E by

P = {x ∈ E : x(t) ≥ t∥x∥ for all t ∈ [0, 1], x(1) ≥ ∥x∥1}.

For each (x, y) ∈ E ×E we write ∥(x, y)∥4 = ∥x∥2+∥y∥2. Clearly, (E ×E , ∥ ·∥4) is a Banach

space and P ×P is a cone of E ×E . We define a partial ordering in E , by x ≤ y if and only

if x(t) ≤ y(t), t ∈ [0, 1]. We define a partial ordering in E × E , by (x1, y1) ≼ (x2, y2) if and

only if x1 ≤ x2 and y1 ≤ y2. For any real constant r > 0, we define an open neighborhood

of (0, 0) ∈ E × E as

Or = {(x, y) ∈ E × E : ∥(x, y)∥4 < r}.

In view of (H13), there exist real constants R1 > 0 and R2 > 0 such that

R1

I−1(k1(J−1(k2(R1)
∫ 1
0 q(s)ds))

∫ 1
0 p(s)ds)

> 1, (3.2.1)

R2

J−1(k2(I−1(k1(R2)
∫ 1
0 p(s)ds))

∫ 1
0 q(s)ds)

> 1. (3.2.2)

From the continuity of k1, k2, I and J , we choose ε > 0 small enough such that

R1

I−1(k1(J−1(k2(R1 + ε)
∫ 1
0 q(s)ds+ J(ε)) + ε)

∫ 1
0 p(s)ds+ I(ε))

> 1, (3.2.3)
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R2

J−1(k2(I−1(k1(R2 + ε)
∫ 1
0 p(s)ds+ I(ε)) + ε)

∫ 1
0 q(s)ds+ J(ε))

> 1. (3.2.4)

Choose n0 ∈ {1, 2, · · · } such that 1
n0
< ε and for each fixed n ∈ {n0, n0 + 1, · · · }, consider

the system of non–singular BVPs

−x′′(t) = p(t)f(t, y(t) +
t

n
, |x′(t)|+ 1

n
), t ∈ (0, 1),

−y′′(t) = q(t)g(t, x(t) +
t

n
, |y′(t)|+ 1

n
), t ∈ (0, 1),

x(0) = x′(1) = y(0) = y′(1) = 0.

(3.2.5)

We write (3.2.5) as an equivalent system of integral equations

x(t) =

∫ 1

0
G(t, s)p(s)f(s, y(s) +

s

n
, |x′(s)|+ 1

n
)ds, t ∈ [0, 1],

y(t) =

∫ 1

0
G(t, s)q(s)f(s, x(s) +

s

n
, |y′(s)|+ 1

n
)ds, t ∈ [0, 1],

(3.2.6)

where the Green’s function G is defined as

G(t, s) =

s, 0 ≤ s ≤ t ≤ 1,

t, 0 ≤ t ≤ s ≤ 1.

By a solution of the system of BVPs (3.2.5), we mean a solution of the corresponding

system of integral equations (3.2.6).

Define an operator Tn : E × E → E × E by

Tn(x, y) = (An(x, y), Bn(x, y)), (3.2.7)

where the operators An, Bn : E × E → E are defined by

An(x, y)(t) =

∫ 1

0
G(t, s)p(s)f(s, y(s) +

s

n
, |x′(s)|+ 1

n
)ds, t ∈ [0, 1],

Bn(x, y)(t) =

∫ 1

0
G(t, s)q(s)f(s, x(s) +

s

n
, |y′(s)|+ 1

n
)ds, t ∈ [0, 1].

(3.2.8)

Clearly, if (xn, yn) ∈ E × E is a fixed point of Tn; then (xn, yn) is a solution of the system

of BVPs (3.2.5).

Assume that

(H17) for any real constant E > 0, there exist continuous functions φE and ψE defined on

[0, 1] and positive on (0, 1), and constants 0 ≤ δ1, δ2 < 1 such that

f(t, x, y) ≥ φE(t)x
δ1 , g(t, x, y) ≥ ψE(t)x

δ2 on [0, 1]× [0, E]× [0,∞);

(H18) for any real constant C > 0,
∫ 1
0 p(t)v1(

C
t )dt < +∞,

∫ 1
0 q(t)v2(

C
t )dt < +∞,∫ 1

0 p(t)u1(C
∫ 1
t s

δ1p(s)φE(s)ds)dt < +∞ and
∫ 1
0 q(t)u2(C

∫ 1
t s

δ2q(s)ψE(s)ds)dt < +∞.
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Lemma 3.2.1. Under the hypothesis (H10) − (H12) and (H18), the operator Tn : Or ∩
(P × P ) → P × P is completely continuous.

Proof. Firstly, we show that Tn(P × P ) ⊆ P × P . For (x, y) ∈ P × P , t ∈ [0, 1], using

(3.2.8) and Lemma 1.1.11, we obtain

An(x, y)(t) =

∫ 1

0
G(t, s)p(s)f(s, y(s) +

s

n
, |x′(s)|+ 1

n
)ds

≥ t max
τ∈[0,1]

∫ 1

0
G(τ, s)p(s)f(s, y(s) +

s

n
, |x′(s)|+ 1

n
)ds = t∥An(x, y)∥

(3.2.9)

and

∥An(x, y)∥1 = sup
τ∈(0,1]

τ |An(x, y)
′(τ)| = sup

τ∈(0,1]
τ

∫ 1

τ
p(s)f(s, y(s) +

s

n
, |x′(s)|+ 1

n
)ds

≤ max
t∈[0,1]

∫ 1

0
G(t, s)p(s)f(s, y(s) +

s

n
, |x′(s)|+ 1

n
)ds ≤ An(x, y)(1).

(3.2.10)

From (3.2.9) and (3.2.10), An(x, y) ∈ P for every (x, y) ∈ P ×P , that is, An(P ×P ) ⊆ P .

Similarly, by using (3.2.8) and Lemma 1.1.11, we can show that Bn(P × P ) ⊆ P . Hence,

Tn(P × P ) ⊆ P × P .

Now, we show that Tn : Or ∩ (P × P ) → P × P is uniformly bounded. For any

(x, y) ∈ Or ∩ (P × P ), using (3.2.8), (H12), Lemma 1.1.9, (H10) and (H18), we have

∥An(x, y)∥ = max
t∈[0,1]

∣∣∣∣∫ 1

0
G(t, s)p(s)f(s, y(s) +

s

n
, |x′(s)|+ 1

n
)ds

∣∣∣∣
≤

∫ 1

0
p(s)k1(y(s) +

s

n
)(u1(|x′(s)|+

1

n
) + v1(|x′(s)|+

1

n
))ds

≤
∫ 1

0
p(s)k1(y(s) +

s

n
)(u1(|x′(s)|+

1

n
) + v1(

∥x∥2
s

+
1

n
))ds

≤
∫ 1

0
p(s)k1(y(s) +

s

n
)(u1(

1

n
) + v1(

r

s
+

1

n
))ds

≤ k1(r +
1

n
)

∫ 1

0
p(s)(u1(

1

n
) + v1((r +

1

n
)
1

s
))ds < +∞.

(3.2.11)

Also, for (x, y) ∈ Or ∩ (P × P ), using (3.2.8), Lemma 1.1.11 and (H12), we have

∥An(x, y)∥1 = sup
τ∈(0,1]

τ |An(x, y)
′(τ)| = sup

τ∈(0,1]
τ

∫ 1

τ
p(s)f(s, y(s) +

s

n
, |x′(s)|+ 1

n
)ds

≤ max
t∈[0,1]

∫ 1

t
G(t, s)p(s)f(s, y(s) +

s

n
, |x′(s)|+ 1

n
)ds ≤

∫ 1

0
p(s)f(s, y(s) +

s

n
, |x′(s)|+ 1

n
)ds

≤
∫ 1

0
p(s)k1(y(s) +

s

n
)(u1(|x′(s)|+

1

n
) + v1(|x′(s)|+

1

n
))ds.
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Now, using Lemma 1.1.9, (H10) and (H18), we obtain

∥An(x, y)∥1 ≤
∫ 1

0
p(s)k1(y(s) +

s

n
)(u1(

1

n
) + v1(

∥x∥2
s

+
1

n
))ds

≤
∫ 1

0
p(s)k1(y(s) +

s

n
)(u1(

1

n
) + v1(

r

s
+

1

n
))ds

≤ k1(r +
1

n
)

∫ 1

0
p(s)(u1(

1

n
) + v1((r +

1

n
)
1

s
))ds < +∞.

(3.2.12)

From (3.2.11) and (3.2.12), it follows that An(Or ∩ (P × P )) is uniformly bounded under

the norm ∥ · ∥2. Similarly, by using (3.2.8), Lemma 1.1.9, Lemma 1.1.11, (H10), (H12) and

(H18), we can show that Bn(Or ∩ (P × P )) is uniformly bounded under the norm ∥ · ∥2.
Hence, Tn(Or ∩ (P × P )) is uniformly bounded.

Now, we show that Tn(Or ∩ (P × P )) is equicontinuous. For (x, y) ∈ Or ∩ (P × P ),

t1, t2 ∈ [0, 1], using (3.2.8), (H12) and Lemma 1.1.9, we have

|An(x, y)(t1)−An(x, y)(t2)| =
∣∣∣∣∫ 1

0
(G(t1, s)−G(t2, s))p(s)f(s, y(s) +

s

n
, |x′(s)|+ 1

n
)ds

∣∣∣∣
≤

∫ 1

0
|G(t1, s)−G(t2, s)|p(s)f(s, y(s) +

s

n
, |x′(s)|+ 1

n
)ds

≤
∫ 1

0
|G(t1, s)−G(t2, s)|p(s)k1(y(s) +

s

n
)(u1(|x′(s)|+

1

n
) + v1(|x′(s)|+

1

n
))ds

≤ k1(r +
1

n
)

∫ 1

0
|G(t1, s)−G(t2, s)|p(s)(u1(

1

n
) + v1(

∥x∥2
s

+
1

n
))ds

≤ k1(r +
1

n
)

∫ 1

0
|G(t1, s)−G(t2, s)|p(s)(u1(

1

n
) + v1(r +

1

n
)
1

s
)ds,

(3.2.13)

and

|An(x, y)
′(t1)−An(x, y)

′(t2)| =
∣∣∣∣∫ t2

t1

p(s)f(s, y(s) +
s

n
, |x′(s)|+ 1

n
)ds

∣∣∣∣
≤

∫ t2

t1

p(s)k1(y(s) +
s

n
)(u1(|x′(s)|+

1

n
) + v1(|x′(s)|+

1

n
))ds

≤ k1(r +
1

n
)

∫ t2

t1

p(s)(u1(
1

n
) + v1(

∥x∥2
s

+
1

n
))ds ≤ k1(r +

1

n
)

∫ t2

t1

p(s)

(u1(
1

n
) + v1(

r

s
+

1

n
))ds ≤ k1(r +

1

n
)

∫ t2

t1

p(s)(u1(
1

n
) + v1((r +

1

n
)
1

s
))ds.

(3.2.14)

From (3.2.13), (3.2.14), (H10) and (H18), it follows that An(Or∩(P×P )) is equicontinuous
under the norm ∥ · ∥3. But, the norm ∥ · ∥3 is equivalent to the norm ∥ · ∥2. Hence,

An(Or ∩ (P × P )) is equicontinuous under ∥ · ∥2.

Similarly, using (3.2.8), (H12) and Lemma 1.1.9, we can show that Bn(Or∩ (P ×P )) is
equicontinuous under the norm ∥ · ∥2. Consequently, Tn(Or ∩ (P × P )) is equicontinuous.
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Hence, by Theorem 1.1.6, Tn(Or ∩ (P ×P )) is relatively compact which implies that Tn is

a compact operator.

Now, we show that Tn is continuous. Let (xm, ym), (x, y) ∈ Or ∩ (P × P ) such that

∥(xm, ym)− (x, y)∥4 → 0 as m→ +∞. Using (H12) and Lemma 1.1.9, we have∣∣∣∣f(t, ym(t) +
t

n
, |x′m(t)|+ 1

n
)

∣∣∣∣ ≤ k1(ym(t) +
t

n
)(u1(|x′m(t)|+ 1

n
) + v1(|x′m(t)|+ 1

n
))

≤ k1(r +
1

n
)(u1(

1

n
) + v1(

∥xm∥2
t

+
1

n
)) ≤ k1(r +

1

n
)(u1(

1

n
) + v1(

r

t
+

1

n
))

≤ k1(r +
1

n
)(u1(

1

n
) + v1((r +

1

n
)
1

t
)).

Using (3.2.8) and Lemma 1.1.11, we have

∥An(xm, ym)−An(x, y)∥ = max
t∈[0,1]

∣∣∣∣∫ 1

0

G(t, s)p(s)(f(s, ym(s) +
s

n
, |x′m(s)|+ 1

n
)− f(s, y(s) +

s

n
,

|x′(s)|+ 1

n
))ds

∣∣∣∣ ≤ ∫ 1

0

p(s)

∣∣∣∣f(s, ym(s) +
s

n
, |x′m(s)|+ 1

n
)− f(s, y(s) +

s

n
, |x′(s)|+ 1

n
)

∣∣∣∣ ds
(3.2.15)

and

∥An(xm, ym)′ −An(x, y)
′∥1 = sup

τ∈(0,1]

τ

∣∣∣∣∫ 1

τ

p(s)(f(s, ym(s) +
s

n
, |x′m(s)|+ 1

n
)− f(s, y(s) +

s

n
, |x′(s)|

+
1

n
))ds

∣∣∣∣ ≤ max
t∈[0,1]

∫ 1

0

G(t, s)p(s)

∣∣∣∣f(s, ym(s) +
s

n
, |x′m(s)|+ 1

n
)− f(s, y(s) +

s

n
, |x′(s)|+ 1

n
)

∣∣∣∣ ds
≤

∫ 1

0

p(s)

∣∣∣∣f(s, ym(s) +
s

n
, |x′m(s)|+ 1

n
)− f(s, y(s) +

s

n
, |x′(s)|+ 1

n
)

∣∣∣∣ ds.
(3.2.16)

From (3.2.15) and (3.2.16), using the Lebesgue dominated convergence theorem, it follows

that

∥An(xm, ym)−An(x, y)∥ → 0, ∥An(xm, ym)′ −An(x, y)
′∥1 → 0 as m→ +∞.

Hence, ∥An(xm, ym)−An(x, y)∥2 → 0 as m→ ∞.

Similarly, we can show that ∥Bn(xm, ym)−Bn(x, y)∥2 → 0 as m→ ∞. Consequently,

∥Tn(xm, ym) − Tn(x, y)∥4 → 0 as m → +∞, that is, Tn : Or ∩ (P × P ) → P × P is

continuous. Hence, Tn : Or ∩ (P × P ) → P × P is completely continuous.

Assume that

(H19) there exist h1, h2 ∈ C([0,∞)×(0,∞), [0,∞)) with f(t, x, y) ≥ h1(x, y) and g(t, x, y) ≥
h2(x, y) on [0, 1]× [0,∞)× (0,∞) such that

lim
x→+∞

hi(x, y)

x
= +∞, uniformly for y ∈ (0,∞), i = 1, 2.

Theorem 3.2.2. Under the hypothesis (H10) − (H14) and (H17) − (H19), the system of

BVPs (3.0.2), (3.0.3) has at least two positive solutions.
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Proof. Let R0 = R1 +R2 and define OR0 = ΩR1 × ΩR2 where

ΩR1 = {x ∈ E : ∥x∥2 < R1}, ΩR2 = {x ∈ E : ∥x∥2 < R2}.

We claim that

(x, y) ̸= λTn(x, y), for λ ∈ (0, 1], (x, y) ∈ ∂OR0 ∩ (P × P ). (3.2.17)

Suppose there exist (x0, y0) ∈ ∂OR ∩ (P × P ) and λ0 ∈ (0, 1] such that (x0, y0) =

λ0Tn(x0, y0). Then,

−x′′0(t) = λ0p(t)f(t, y0(t) +
t

n
, |x′0(t)|+

1

n
), t ∈ (0, 1),

−y′′0(t) = λ0q(t)g(t, x0(t) +
t

n
, |y′0(t)|+

1

n
), t ∈ (0, 1),

x0(0) = x′0(1) = y0(0) = y′0(1) = 0.

(3.2.18)

From (3.2.18) and (H11), we have x′′0 ≤ 0 and y′′0 ≤ 0 on (0, 1), integrating from t to 1,

using the BCs (3.2.18), we obtain x′0(t) ≥ 0 and y′0(t) ≥ 0 for t ∈ [0, 1]. From (3.2.18) and

(H12), we have

−x′′0(t) ≤ p(t)k1(y0(t) +
t

n
)(u1(x

′
0(t) +

1

n
) + v1(x

′
0(t) +

1

n
)), t ∈ (0, 1),

−y′′0(t) ≤ q(t)k2(x0(t) +
t

n
)(u2(y

′
0(t) +

1

n
) + v2(y

′
0(t) +

1

n
)), t ∈ (0, 1),

which implies that

−x′′0(t)
u1(x′0(t) +

1
n) + v1(x′0(t) +

1
n)

≤ p(t)k1(y0(t) +
t

n
) ≤ k1(R2 + ε)p(t), t ∈ (0, 1),

−y′′0(t)
u2(y′0(t) +

1
n) + v2(y′0(t) +

1
n)

≤ q(t)k2(x0(t) +
t

n
) ≤ k2(R1 + ε)q(t), t ∈ (0, 1).

Integrating from t to 1, using the BCs (3.2.18), we obtain

I(x′0(t) +
1

n
)− I(

1

n
) ≤ k1(R2 + ε)

∫ 1

t
p(s)ds, t ∈ [0, 1],

J(y′0(t) +
1

n
)− J(

1

n
) ≤ k2(R1 + ε)

∫ 1

t
q(s)ds, t ∈ [0, 1],

which implies that

x′0(t) ≤ I−1(k1(R2 + ε)

∫ 1

0
p(s)ds+ I(ε)), t ∈ [0, 1],

y′0(t) ≤ J−1(k2(R1 + ε)

∫ 1

0
q(s)ds+ J(ε)), t ∈ [0, 1],

which on integration from 0 to 1, using the BCs (3.2.18) and Lemma 1.1.10, leads to

R1 ≤ I−1(k1(R2 + ε)

∫ 1

0
p(s)ds+ I(ε)), (3.2.19)
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R2 ≤ J−1(k2(R1 + ε)

∫ 1

0
q(s)ds+ J(ε)). (3.2.20)

Now, using (3.2.20) in (3.2.19) together with increasing property of k1 and I−1, we have

R1

I−1(k1(J−1(k2(R1 + ε)
∫ 1
0 q(s)ds+ J(ε)) + ε)

∫ 1
0 p(s)ds+ I(ε))

≤ 1,

a contradiction to (3.2.3). Similarly, using (3.2.19) in (3.2.20) together with increasing

property of k2 and J−1, we have

R2

J−1(k2(I−1(k1(R2 + ε)
∫ 1
0 p(s)ds+ I(ε)) + ε)

∫ 1
0 q(s)ds+ J(ε))

≤ 1,

a contradiction to (3.2.4). Hence, (3.2.17) is true and by Lemma 1.2.5, the fixed point

index

indFP(Tn,OR0 ∩ (P × P ), P × P ) = 1. (3.2.21)

Now, choose a t0 ∈ (0, 1) and define

N1 =

(
t0 min

t∈[t0,1]

∫ 1

t0

G(t, s)p(s)ds

)−1

+ 1 and N2 =

(
t0 min

t∈[t0,1]

∫ 1

t0

G(t, s)q(s)ds

)−1

+ 1.

(3.2.22)

By (H19), there exist real constants with R∗
1 > R1 and R∗

2 > R2 such that

h1(x, y) ≥ N1x, for x ≥ R∗
1, y ∈ (0,∞),

h2(x, y) ≥ N2x, for x ≥ R∗
2, y ∈ (0,∞).

(3.2.23)

Let R∗ =
R∗

1+R∗
2

t0
and define OR∗ = ΩR∗

1
× ΩR∗

2
, where

ΩR∗
1
= {x ∈ E : ∥x∥2 <

R∗
1

t0
}, ΩR∗

2
= {x ∈ E : ∥x∥2 <

R∗
2

t0
}.

We show that

Tn(x, y) � (x, y), for (x, y) ∈ ∂OR∗ ∩ (P × P ). (3.2.24)

Suppose Tn(x0, y0) ≼ (x0, y0) for some (x0, y0) ∈ ∂OR∗ ∩ (P × P ). Then,

x0(t) ≥ An(x0, y0)(t) and y0(t) ≥ Bn(x0, y0)(t) for t ∈ [0, 1]. (3.2.25)

Note that, by Lemma 1.1.10, we have

x0(t) ≥ t∥x0∥ ≥ t0∥x0∥2 = t0
R∗

1

t0
= R∗

1 for t ∈ [t0, 1].

Similarly, y0(t) ≥ R∗
2 for t ∈ [t0, 1]. Hence,

|x0(t)|+
t

n
≥ R∗

1 and |y0(t)|+
t

n
≥ R∗

2 for t ∈ [t0, 1].
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Now, using (3.2.25), (3.2.23) and (H19), we have

x0(t) ≥ An(x0, y0)(t) =

∫ 1

0
G(t, s)p(s)f(s, y0(s) +

s

n
, |x′0(s)|+

1

n
)ds

≥
∫ 1

t0

G(t, s)p(s)h1(y0(s) +
s

n
, |x′0(s)|+

1

n
)ds ≥

∫ 1

t0

G(t, s)p(s)N1(y0(s) +
s

n
)ds

≥
∫ 1

t0

G(t, s)p(s)dsN1R
∗
2 ≥ min

t∈[t0,1]

∫ 1

t0

G(t, s)p(s)dsN1R
∗
2 >

R∗
2

t0
,

which implies that ∥x0∥2 = ∥x0∥ >
R∗

2
t0
. Similarly, using (3.2.23), (3.2.25) and (H19), we

have ∥y0∥2 >
R∗

1
t0
. Consequently, it follows that, ∥(x0, y0)∥4 = ∥x0∥2 + ∥y0∥2 > R∗, a

contradiction. Hence, (3.2.24) is true and by Lemma 1.2.7, the fixed point index

indFP(Tn,OR∗ ∩ (P × P ), P × P ) = 0. (3.2.26)

From (3.2.21) and (3.2.26), it follows that

indFP(Tn, (OR∗ \ OR) ∩ (P × P ), P × P ) = −1. (3.2.27)

Thus, in view of (3.2.21) and (3.2.27), there exist (xn,1, yn,1) ∈ OR ∩ (P × P ) and

(xn,2, yn,2) ∈ (OR∗ \ OR) ∩ (P × P ) such that (xn,j , yn,j) = Tn(xn,j , yn,j), (j = 1, 2) which

implies that

xn,j(t) =

∫ 1

0
G(t, s)p(s)f(t, yn,j(s) +

s

n
, |x′n,j(s)|+

1

n
)ds, t ∈ [0, 1],

yn,j(t) =

∫ 1

0
G(t, s)q(s)g(s, xn,j(s) +

s

n
, |y′n,j(s)|+

1

n
)ds, t ∈ [0, 1], j = 1, 2.

(3.2.28)

Using (H17) there exist continuous functions φR2+ε and ψR1+ε defined on [0, 1] and positive

on (0, 1) and real constants 0 ≤ δ1, δ2 < 1 such that

f(t, x, y) ≥ φR2+ε(t)x
δ1 , (t, x, y) ∈ [0, 1]× [0, R2 + ε]× [0,∞),

g(t, x, y) ≥ ψR1+ε(t)x
δ2 , (t, x, y) ∈ [0, 1]× [0, R1 + ε]× [0,∞).

(3.2.29)

By the definition of P , we have xn,1(t) ≥ t∥xn,1∥ and yn,1(t) ≥ t∥yn,1∥ for t ∈ [0, 1]. We

show that

x′n,1(t) ≥ Cδ1
4

∫ 1

t
sδ1p(s)φR2+ε(s)ds, t ∈ [0, 1], (3.2.30)

y′n,1(t) ≥ Cδ2
3

∫ 1

t
sδ2q(s)ψR1+ε(s)ds, t ∈ [0, 1], (3.2.31)

where

C3 =

(∫ 1

0
sδ2+1q(s)ψR1+ε(s)ds

) δ1
1−δ1δ2

(∫ 1

0
sδ1+1p(s)φR2+ε(s)ds

) 1
1−δ1δ2

,

C4 =

(∫ 1

0
sδ1+1p(s)φR2+ε(s)ds

) δ2
1−δ1δ2

(∫ 1

0
sδ2+1q(s)ψR1+ε(s)ds

) 1
1−δ1δ2

.
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In order to prove (3.2.30), using (3.2.28) and (3.2.29), we consider

xn,1(t) =

∫ 1

0
G(t, s)p(s)f(s, yn,1(s) +

s

n
, |x′n,1(s)|+

1

n
)ds

≥
∫ 1

0
G(t, s)p(s)φR2+ε(s)(yn,1(s) +

s

n
)δ1ds ≥ ∥yn,1∥δ1

∫ 1

0
G(t, s)sδ1p(s)φR2+ε(s)ds,

which shows that

∥xn,1∥ ≥ ∥yn,1∥δ1
∫ 1

0
sδ1+1p(s)φR2+ε(s)ds. (3.2.32)

Similarly, from (3.2.28) and (3.2.29), we have

∥yn,1∥ ≥ ∥xn,1∥δ2
∫ 1

0
sδ2+1q(s)ψR1+ε(s)ds. (3.2.33)

Using (3.2.33) in (3.2.32), we have

∥yn,1∥ ≥
(
∥yn,1∥δ1

∫ 1

0
sδ1+1p(s)φR2+ε(s)ds

)δ2 ∫ 1

0
sδ2+1q(s)ψR1+ε(s)ds,

which implies that

∥yn,1∥ ≥
(∫ 1

0
sδ1+1p(s)φR2+ε(s)ds

) δ2
1−δ1δ2

(∫ 1

0
sδ2+1q(s)ψR1+ε(s)ds

) 1
1−δ1δ2

= C4.

(3.2.34)

Using (3.2.29) and (3.2.34) in the following relation

x′n,1(t) =

∫ 1

t
p(s)f(s, yn,1(s) +

s

n
, |x′n,1(s)|+

1

n
)ds,

we obtain (3.2.30). Similarly, we can prove (3.2.31).

Now, differentiating (3.2.28), using (H12), (3.2.30), (3.2.31) and Lemma 1.1.9, we have

0 ≤ −x′′n,1(t) ≤ p(t)k1(R2 + ε)(u1(C
δ1
4

∫ 1

t
sδ1p(s)φR2+ε(s)ds) + v1(

R1 + 1

t
)), t ∈ (0, 1),

0 ≤ −y′′n,1(t) ≤ q(t)k2(R1 + ε)(u2(C
δ2
3

∫ 1

t
sδ2q(s)ψR1+ε(s)ds) + v2(

R2 + 1

t
)), t ∈ (0, 1).

(3.2.35)

Integration from t to 1, using the BCs (3.2.5), leads to

x′n,1(t) ≤ k1(R2 + ε)

∫ 1

t
p(s)(u1(C

δ1
4

∫ 1

s
τ δ1p(τ)φR2+ε(τ)dτ) + v1(

R1 + 1

s
))ds, t ∈ [0, 1],

y′n,1(t) ≤ k2(R1 + ε)

∫ 1

t
q(s)(u2(C

δ2
3

∫ 1

s
τ δ2q(τ)ψR1+ε(τ)dτ) + v2(

R2 + 1

s
))ds, t ∈ [0, 1],

which implies that

x′n,1(t) ≤ k1(R2 + ε)

∫ 1

0
p(s)(u1(C

δ1
4

∫ 1

s
τ δ1p(τ)φR2+ε(τ)dτ) + v1(

R1 + 1

s
))ds, t ∈ [0, 1],

y′n,1(t) ≤ k2(R1 + ε)

∫ 1

0
q(s)(u2(C

δ2
3

∫ 1

s
τ δ2q(τ)ψR1+ε(τ)dτ) + v2(

R2 + 1

s
))ds, t ∈ [0, 1].

(3.2.36)
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In view of (3.2.30), (3.2.31), (3.2.36), (3.2.35), (H10) and (H18), the sequences {(x(j)n,1, y
(j)
n,1)}

(j = 0, 1) are uniformly bounded and equicontinuous on [0, 1]. Thus, by Theorem 1.1.6,

there exist subsequences {(x(j)nk,1
, y

(j)
nk,1

)} (j = 0, 1) of {(x(j)n,1, y
(j)
n,1)} and functions (x0,1, y0,1) ∈

E × E such that (x
(j)
nk,1

, y
(j)
nk,1

) converges uniformly to (x
(j)
0,1, y

(j)
0,1) on [0, 1]. Also, x0,1(0) =

y0,1(0) = x′0,1(1) = y′0,1(1) = 0. Moreover, from (3.2.30) and (3.2.31), with nk in place of

n and taking limnk→+∞, we have

x′0,1(t) ≥ Cδ1
4

∫ 1

t
sδ1p(s)φR2+ε(s)ds,

y′0,1(t) ≥ Cδ2
3

∫ 1

t
sδ2q(s)ψR1+ε(s)ds,

which implies that x′0,1 > 0 and y′0,1 > 0 on [0, 1), x0,1 > 0 and y0,1 > 0 on (0, 1]. Further,∣∣∣∣f(t, ynk,1(t) +
t

n
, x′nk,1

(t) +
1

nk
)

∣∣∣∣ ≤ k1(R2 + ε)(u1(C
δ1
4

∫ 1

t

sδ1p(s)φR2+ε(s)ds) + v1(
R1 + 1

t
)),∣∣∣∣g(t, xnk,1(t) +

t

n
, y′nk,1

(t) +
1

nk
)

∣∣∣∣ ≤ k2(R1 + ε)(u2(C
δ2
3

∫ 1

t

sδ2q(s)ψR1+ε(s)ds) + v2(
R2 + 1

t
)),

(3.2.37)

lim
nk→∞

f(t, ynk,1(t) +
t

nk
, x′nk,1

(t) +
1

nk
) = f(t, y0,1(t), x

′
0,1(t)), t ∈ (0, 1],

lim
nk→∞

g(t, xnk,1(t) +
t

nk
, y′nk,1

(t) +
1

nk
) = g(t, x0,1(t), y

′
0,1(t)), t ∈ (0, 1].

(3.2.38)

Moreover, (xnk,1, ynk,1) satisfies

xnk,1(t) =

∫ 1

0
G(t, s)p(s)f(s, ynk,1(s) +

s

nk
, x′nk,1

(s) +
1

nk
)ds, t ∈ [0, 1],

ynk,1(t) =

∫ 1

0
G(t, s)q(s)g(s, xnk,1(s) +

s

nk
, y′nk,1

(s) +
1

nk
)ds, t ∈ [0, 1],

in view of (3.2.37), (H18), (3.2.38), the Lebesgue dominated convergence theorem and

taking limnk→+∞, we have

x0,1(t) =

∫ 1

0
G(t, s)p(s)f(s, y0,1(s), x

′
0,1(s))ds, t ∈ [0, 1],

y0,1(t) =

∫ 1

0
G(t, s)q(s)g(s, x0,1(s), y

′
0,1(s))ds, t ∈ [0, 1],

which implies that (x0,1, y0,1) ∈ C2(0, 1)× C2(0, 1) and

−x′′0,1(t) = p(t)f(t, y0,1(t), x
′
0,1(t)), t ∈ (0, 1),

−y′′0,1(t) = q(t)g(t, x0,1(t), y
′
0,1(t)), t ∈ (0, 1).

Moreover, by (3.2.1) and (3.2.2), we have ∥x0,1∥2 < R1 and ∥y0,1∥2 < R2, that is,

∥(x0,1, y0,1)∥3 < R0. By a similar proof the sequence {(xn,2, yn,2)} has a convergent sub-

sequence {(xnk,2, ynk,2)} converging uniformly to (x0,2, y0,2) ∈ E × E on [0, 1]. Moreover,

(x0,2, y0,2) is a solution to the system (3.0.2), (3.0.3) with x0,2 > 0 and y0,2 > 0 on (0, 1],

x′0,2 > 0 and y′0,2 > 0 on [0, 1), R0 < ∥(x0,2, y0,2)∥4 < R∗.
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Example 3.2.3. Consider the following coupled system of SBVPs

−x′′(t) = µ1(1 + (y(t))δ1 + (y(t))η1)(1 + (x′(t))α1 + (x′(t))−β1), t ∈ (0, 1),

−y′′(t) = µ2(1 + (x(t))δ2 + (x(t))η2)(1 + (y′(t))α2 + (y′(t))−β2), t ∈ (0, 1),

x(0) = y(0) = x′(1) = y′(1) = 0,

(3.2.39)

where 0 ≤ δi < 1, ηi > 1, 0 < αi < 1, 0 < βi < 1, and µi > 0, i = 1, 2.

Taking p(t) = µ1, q(t) = µ2, ki(x) = 1 + xδi + xηi , ui(x) = x−βi and vi(x) = 1 + xαi ,

i = 1, 2. We choose φE(t) = µ1, ψE(t) = µ2 and hi(x, y) = µi(1 + xηi), i = 1, 2.

Assume that µ1 is arbitrary and

µ2 < min{ inf
c∈(0,∞)

J(c)

k2(I−1(µ1k1(c)))
, inf
c∈(0,∞)

J((µ−1
1 I(c))δ

−1
1 )

k2(c)
, inf
c∈(0,∞)

J((µ−1
1 I(c))η

−1
1 )

k2(c)
}.

Then,

sup
c∈(0,∞)

c

I−1(k1(J−1(k2(c)
∫ 1
0 q(s)ds))

∫ 1
0 p(s)ds)

= sup
c∈(0,∞)

c

I−1(µ1k1(J−1(µ2k2(c))))

≥ c

I−1(µ1k1(J−1(µ2k2(c))))
, c ∈ (0,∞)

=
c

I−1(µ1(1 + (J−1(µ2k2(c)))δ1 + (J−1(µ2k2(c)))η1))
, c ∈ (0,∞)

> 1,

and

sup
c∈(0,∞)

c

J−1(k2(I−1(k1(c)
∫ 1
0 p(s)ds))

∫ 1
0 q(s)ds)

= sup
c∈(0,∞)

c

J−1(µ2k2(I−1(µ1k1(c))))

=
c

J−1(µ2k2(I−1(µ1k1(c))))
, c ∈ (0,∞)

> 1.

Moreover,∫ 1

0
p(t)v1(

C

t
)dt = µ1(1 +

Cα1

1− α1
) < +∞,∫ 1

0
p(t)u1(C

∫ 1

t
sδ1p(s)φE(s)ds)dt ≤ µ1−2β1

1 C−β1(δ1 + 1)β1

∫ 1

0
(1− t)−β1dt

= µ1−2β1
1 C−β1(δ1 + 1)β1(1− β1)

−1 < +∞, etc.

Also,

lim
x→+∞

hi(x, y)

x
= lim

x→+∞

µi(1 + xηi)

x
= +∞, i = 1, 2.

Clearly, (H10) − (H14) and (H17) − (H19) are satisfied. Hence, by Theorem 3.2.2, the

system of BVPs (3.2.39) has at least two positive solutions.
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3.3 Existence of C1-positive solutions with more general BCs

In this section, we study the system of BVPs (3.0.2), (3.0.4) and establish sufficient con-

ditions for the existence of C1-positive solutions, [24]. By a C1-positive solution to the

system of BVPs (3.0.2), (3.0.4), we mean (x, y) ∈ (C1[0, 1]∩C2(0, 1))×(C1[0, 1]∩C2(0, 1))

satisfying (3.0.2) and (3.0.4), x > 0 and y > 0 on [0, 1], x′ > 0 and y′ > 0 on [0, 1).

Assume that

(H20)

sup
c∈(0,∞)

c

(1 + b1
a1
)I−1(k1((1 +

b2
a2
)J−1(k2(c)

∫ 1
0 q(t)dt))

∫ 1
0 p(t)dt)

> 1,

sup
c∈(0,∞)

c

(1 + b2
a2
)J−1(k2((1 +

b1
a1
)I−1(k1(c)

∫ 1
0 p(t)dt))

∫ 1
0 q(t)dt)

> 1,

where I(µ) =
∫ µ
0

dτ
u1(τ)+v1(τ)

, J(µ) =
∫ µ
0

dτ
u2(τ)+v2(τ)

, for µ ∈ (0,∞);

(H21)
∫ 1
0 p(t)u1(C

∫ 1
t p(s)φEF (s)ds)dt < +∞ and

∫ 1
0 q(t)u2(C

∫ 1
t q(s)ψEF (s)ds)dt < +∞

for any real constant C > 0.

Theorem 3.3.1. Under the hypothesis (H10)− (H12), (H14), (H15), (H20) and (H21), the

system of BVPs (3.0.2), (3.0.4) has at least one C1-positive solution.

Proof. In view of (H20), we can choose real constants M3 > 0 and M4 > 0 such that

M3

(1 + b1
a1
)I−1(k1((1 +

b2
a2
)J−1(k2(M3)

∫ 1
0 q(t)dt))

∫ 1
0 p(t)dt)

> 1,

M4

(1 + b2
a2
)J−1(k2((1 +

b1
a1
)I−1(k1(M4)

∫ 1
0 p(t)dt))

∫ 1
0 q(t)dt)

> 1.

From the continuity of k1, k2, I and J , we choose ε > 0 small enough such that

M3

(1 + b1
a1
)I−1(k1((1 +

b2
a2
)J−1(k2(M3)

∫ 1
0 q(t)dt+ J(ε)))

∫ 1
0 p(t)dt+ I(ε))

> 1, (3.3.1)

M4

(1 + b2
a2
)J−1(k2((1 +

b1
a1
)I−1(k1(M4)

∫ 1
0 p(t)dt+ I(ε)))

∫ 1
0 q(t)dt+ J(ε))

> 1. (3.3.2)

Choose real constants L3 > 0 and L4 > 0 such that

I(L3) > k1(M4)

∫ 1

0
p(t)dt+ I(ε), (3.3.3)

J(L4) > k2(M3)

∫ 1

0
q(t)dt+ J(ε). (3.3.4)

Choose n0 ∈ {1, 2, · · · } such that 1
n0
< ε. For each fixed n ∈ {n0, n0 + 1, · · · }, define

retractions θi : R → [0,Mi] and ρi : R → [ 1n , Li] by

θi(x) = max{0,min{x,Mi}} and ρi(x) = max{ 1
n
,min{x, Li}}, i = 3, 4.



CHAPTER 3. SINGULAR SYSTEMS OF TWO–POINT BVPS 61

Consider the modified system of BVPs

−x′′(t) = p(t)f(t, θ4(y(t)), ρ3(x
′(t))), t ∈ (0, 1),

−y′′(t) = q(t)g(t, θ3(x(t)), ρ4(y
′(t))), t ∈ (0, 1),

a1x(0)− b1x
′(0) = 0, x′(1) =

1

n
,

a2y(0)− b2y
′(0) = 0, y′(1) =

1

n
.

(3.3.5)

Since f(t, θ4(y(t)), ρ3(x
′(t))), g(t, θ3(x(t)), ρ4(y

′(t))) are continuous and bounded on [0, 1]×
R2, by Theorem 1.2.4, it follows that the modified system of BVPs (3.3.5) has a solution

(xn, yn) ∈ (C1[0, 1] ∩ C2(0, 1))× (C1[0, 1] ∩ C2(0, 1)).

Using (3.3.5) and (H11), we obtain

x′′n(t) ≤ 0 and y′′n(t) ≤ 0 for t ∈ (0, 1),

which on integration from t to 1, and using the BCs (3.3.5), yields

x′n(t) ≥
1

n
and y′n(t) ≥

1

n
for t ∈ [0, 1]. (3.3.6)

Integrating (3.3.6) from 0 to t, using the BCs (3.3.5) and (3.3.6), we have

xn(t) ≥ (t+
b1
a1

)
1

n
and yn(t) ≥ (t+

b2
a2

)
1

n
for t ∈ [0, 1]. (3.3.7)

From (3.3.6) and (3.3.7), it follows that

∥xn∥ = xn(1) and ∥yn∥ = yn(1).

Now, we show that

x′n(t) < L3, y
′
n(t) < L4, t ∈ [0, 1]. (3.3.8)

First, we prove x′n(t) < L3 for t ∈ [0, 1]. Suppose x′n(t1) ≥ L3 for some t1 ∈ [0, 1]. Using

(3.3.5) and (H12), we have

−x′′n(t) ≤ p(t)k1(θ4(yn(t)))(u1(ρ3(x
′
n(t))) + v1(ρ3(x

′
n(t)))), t ∈ (0, 1),

which implies that

−x′′n(t)
u1(ρ3(x′n(t))) + v1(ρ3(x′n(t)))

≤ k1(M4)p(t), t ∈ (0, 1).

Integrating from t1 to 1, using the BCs (3.3.5), we obtain∫ x′
n(t1)

1
n

dz

u1(ρ3(z)) + v1(ρ3(z))
≤ k1(M4)

∫ 1

t1

p(t)dt,

which can also be written as∫ L3

1
n

dz

u1(ρ3(z)) + v1(ρ3(z))
+

∫ x′
n(t1)

L3

dz

u1(ρ3(z)) + v1(ρ3(z))
≤ k1(M4)

∫ 1

0
p(t)dt.
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Using the increasing property of I, we obtain

I(L3) +
x′n(t1)− L3

u1(L3) + v1(L3)
≤ k1(M4)

∫ 1

0
p(t)dt+ I(ε),

a contradiction to (3.3.3). Hence, x′n(t) < L3 for t ∈ [0, 1].

Similarly, we can show that y′n(t) < L4 for t ∈ [0, 1].

Now, we show that

xn(t) < M3, yn(t) < M4, t ∈ [0, 1]. (3.3.9)

Suppose xn(t2) ≥M3 for some t2 ∈ [0, 1]. From (3.3.5), (3.3.8) and (H12), it follows that

−x′′n(t) ≤ p(t)k1(θ4(yn(t)))(u1(x
′
n(t)) + v1(x

′
n(t))), t ∈ (0, 1),

−y′′n(t) ≤ q(t)k2(θ3(xn(t)))(u2(y
′
n(t)) + v2(y

′
n(t))), t ∈ (0, 1),

which implies that

−x′′n(t)
u1(x′n(t)) + v1(x′n(t))

≤ k1(θ4(∥yn∥))p(t), t ∈ (0, 1),

−y′′n(t)
u2(y′n(t)) + v2(y′n(t))

≤ k2(M3)q(t), t ∈ (0, 1).

Integrating from t to 1, using the BCs (3.3.5), we obtain∫ x′
n(t)

1
n

dz

u1(z) + v1(z)
≤ k1(θ4(∥yn∥))

∫ 1

t
p(s)ds, t ∈ [0, 1],∫ y′n(t)

1
n

dz

u2(z) + v2(z)
≤ k2(M3)

∫ 1

t
q(s)ds, t ∈ [0, 1],

which implies that

I(x′n(t))− I(
1

n
) ≤ k1(θ4(∥yn∥))

∫ 1

0
p(s)ds, t ∈ [0, 1],

J(y′n(t))− J(
1

n
) ≤ k2(M3)

∫ 1

0
q(s)ds, t ∈ [0, 1].

The increasing property of I and J leads to

x′n(t) ≤ I−1(k1(θ4(∥yn∥))
∫ 1

0
p(s)ds+ I(ε)), t ∈ [0, 1], (3.3.10)

y′n(t) ≤ J−1(k2(M3)

∫ 1

0
q(s)ds+ J(ε)), t ∈ [0, 1]. (3.3.11)

Integrating (3.3.10) from 0 to t2 and (3.3.11) from 0 to 1, using the BCs (3.3.5), (3.3.10)

and (3.3.11), we obtain

M3 ≤ xn(t2) ≤ (1 +
b1
a1

)I−1(k1(θ4(∥yn∥))
∫ 1

0
p(s)ds+ I(ε)), (3.3.12)
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∥yn∥ ≤ (1 +
b2
a2

)J−1(k2(M3)

∫ 1

0
q(s)ds+ J(ε)). (3.3.13)

Either we have ∥yn∥ < M4 or ∥yn∥ ≥M4. If ∥yn∥ < M4, then from (3.3.12), we have

M3 ≤ (1 +
b1
a1

)I−1(k1(∥yn∥)
∫ 1

0
p(s)ds+ I(ε)), (3.3.14)

Now, by using (3.3.13) in (3.3.14) and the increasing property of k1 and I−1, we obtain

M3 ≤ (1 +
b1
a1

)I−1(k1((1 +
b2
a2

)J−1(k2(M3)

∫ 1

0
q(s)ds+ J(ε)))

∫ 1

0
p(s)ds+ I(ε)),

which implies that

M3

(1 + b1
a1
)I−1(k1((1 +

b2
a2
)J−1(k2(M3)

∫ 1
0 q(s)ds+ J(ε)))

∫ 1
0 p(s)ds+ I(ε))

≤ 1,

a contradiction to (3.3.1).

On the other hand, if ∥yn∥ ≥M4, then from (3.3.12) and (3.3.13), we have

M3 ≤ (1 +
b1
a1

)I−1(k1(M4)

∫ 1

0
p(s)ds+ I(ε)), (3.3.15)

M4 ≤ (1 +
b2
a2

)J−1(k2(M3)

∫ 1

0
q(s)ds+ J(ε)). (3.3.16)

Using (3.3.16) in (3.3.15) and the increasing property of k1 and I−1, we obtain

M3 ≤ (1 +
b1
a1

)I−1(k1((1 +
b2
a2

)J−1(k2(M3)

∫ 1

0
q(s)ds+ J(ε)))

∫ 1

0
p(s)ds+ I(ε)),

which implies that

M3

(1 + b1
a1
)I−1(k1((1 +

b2
a2
)J−1(k2(M3)

∫ 1
0 q(s)ds+ J(ε)))

∫ 1
0 p(s)ds+ I(ε))

≤ 1,

a contradiction to (3.3.1). Hence, xn(t) < M3 for t ∈ [0, 1].

Similarly, we can show that yn(t) < M4 for t ∈ [0, 1].

Thus, in view of (3.3.5)–(3.3.9), (xn, yn) is a solution of the following coupled system

of BVPs

−x′′(t) = p(t)f(t, y(t), x′(t)), t ∈ (0, 1),

−y′′(t) = q(t)g(t, x(t), y′(t)), t ∈ (0, 1),

a1x(0)− b1x
′(0) = 0, x′(1) =

1

n
,

a2y(0)− b2y
′(0) = 0, y′(1) =

1

n
,

(3.3.17)

satisfying

(t+
b1
a1

)
1

n
≤ xn(t) < M3,

1

n
≤ x′n(t) < L3, t ∈ [0, 1],

(t+
b2
a2

)
1

n
≤ yn(t) < M4,

1

n
≤ y′n(t) < L4, t ∈ [0, 1].

(3.3.18)



CHAPTER 3. SINGULAR SYSTEMS OF TWO–POINT BVPS 64

Now, in view of (H15), there exist continuous functions φM4L3 and ψM3L4 defined on [0, 1]

and positive on (0, 1), and real constants 0 ≤ δ1, δ2 < 1 such that

f(t, yn(t), x
′
n(t)) ≥ φM4L3(t)(yn(t))

δ1 , (t, yn(t), x
′
n(t)) ∈ [0, 1]× [0,M4]× [0, L3],

g(t, xn(t), y
′
n(t)) ≥ ψM3L4(t)(xn(t))

δ2 , (t, xn(t), y
′
n(t)) ∈ [0, 1]× [0,M3]× [0, L4].

(3.3.19)

We claim that

x′n(t) ≥ Cδ1
6

∫ 1

t
p(s)φM4L3(s)ds, (3.3.20)

y′n(t) ≥ Cδ2
5

∫ 1

t
q(s)ψM3L4(s)ds, (3.3.21)

where

C5 =

(
b1
a1

) 1
1−δ1δ2

(
b2
a2

) δ1
1−δ1δ2

(∫ 1

0
p(t)φM4L3(t)dt

) 1
1−δ1δ2

(∫ 1

0
q(t)ψM3L4(t)dt

) δ1
1−δ1δ2

,

C6 =

(
b1
a1

) δ2
1−δ1δ2

(
b2
a2

) 1
1−δ1δ2

(∫ 1

0
p(t)φM4L3(t)dt

) δ2
1−δ1δ2

(∫ 1

0
q(t)ψM3L4(t)dt

) 1
1−δ1δ2

.

To prove (3.3.20), consider the following relation

xn(t) =(t+
b1
a1

)
1

n
+

1

a1

∫ t

0
(a1s+ b1)p(s)f(s, yn(s), x

′
n(s))ds

+
1

a1

∫ 1

t
(a1t+ b1)p(s)f(s, yn(s), x

′
n(s))ds, t ∈ [0, 1],

(3.3.22)

which implies that

xn(0) =
b1
a1

1

n
+
b1
a1

∫ 1

0
p(s)f(s, yn(s), x

′
n(s))ds.

Using (3.3.19) and (3.3.18), we obtain

xn(0) ≥
b1
a1

∫ 1

0
p(s)φM4L3(s)(yn(s))

δ1ds ≥ (yn(0))
δ1 b1
a1

∫ 1

0
p(s)φM4L3(s)ds. (3.3.23)

Similarly, using (3.3.19) and (3.3.18), we obtain

yn(0) ≥ (xn(0))
δ2 b2
a2

∫ 1

0
q(s)ψM3L4(s)ds,

which in view of (3.3.23) implies that

yn(0) ≥ (yn(0))
δ1δ2

(
b1
a1

∫ 1

0
p(s)φM4L3(s)ds

)δ2 b2
a2

∫ 1

0
q(s)ψM3L4(s)ds.

Hence,

yn(0) ≥ C6. (3.3.24)
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Now, from (3.3.22), it follows that

x′n(t) ≥
∫ 1

t
p(s)f(s, yn(s), x

′
n(s))ds,

and using (3.3.19) and (3.3.24), we obtain (3.3.20).

Similarly, we can prove (3.3.21).

Now, using (3.3.17), (H12), (3.3.18), (3.3.20) and (3.3.21), we have

0 ≤ −x′′n(t) ≤ k1(M4)p(t)(u1(C
δ1
6

∫ 1

t
p(s)φM4L3(s)ds) + v1(L3)), t ∈ (0, 1),

0 ≤ −y′′n(t) ≤ k2(M3)q(t)(u2(C
δ2
5

∫ 1

t
q(s)ψM3(s)ds) + v2(L4)), t ∈ (0, 1).

(3.3.25)

In view of (3.3.18), (3.3.25), (H10) and (H21), it follows that the sequences {(x(j)n , y
(j)
n )}

(j = 0, 1) are uniformly bounded and equicontinuous on [0, 1]. Hence, by Theorem (1.1.6),

there exist subsequences {(x(j)nk , y
(j)
nk )} (j = 0, 1) of {(x(j)n , y

(j)
n )} (j = 0, 1) and (x, y) ∈

C1[0, 1]×C1[0, 1] such that (x
(j)
nk , y

(j)
nk ) converges uniformly to (x(j), y(j)) on [0, 1] (j = 0, 1).

Also, a1x(0)− b1x′(0) = a2y(0)− b2y′(0) = x′(1) = y′(1) = 0. Moreover, from (3.3.20) and

(3.3.21), with nk in place of n and taking limnk→+∞, we have

x′(t) ≥Cδ1
6

∫ 1

t
p(s)φM4L3(s)ds,

y′(t) ≥Cδ2
5

∫ 1

t
q(s)ψM3L4(s)ds,

which shows that x′ > 0 and y′ > 0 on [0, 1), x > 0 and y > 0 on [0, 1]. Further, (xnk
, ynk

)

satisfy

x′nk
(t) =x′nk

(0)−
∫ t

0
p(s)f(s, ynk

(s), x′nk
(s))ds, t ∈ [0, 1],

y′nk
(t) =y′nk

(0)−
∫ t

0
q(s)f(s, xnk

(s), y′nk
(s))ds, t ∈ [0, 1].

Passing to the limit as nk → ∞, we obtain

x′(t) =x′(0)−
∫ t

0
p(s)f(s, y(s), x′(s))ds, t ∈ [0, 1],

y′(t) =y′(0)−
∫ t

0
q(s)f(s, x(s), y′(s))ds, t ∈ [0, 1],

which implies that

−x′′(t) =p(t)f(t, y(t), x′(t)), t ∈ (0, 1),

−y′′(t) =q(t)f(t, x(t), y′(t)), t ∈ (0, 1).

Hence, (x, y) is a C1-positive solution of the system of BVPs (3.0.2), (3.0.4).
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Example 3.3.2. Consider the following coupled system of singular BVPs

−x′′(t) = (1− t)−
3
4 (y(t))

1
4 (x′(t))−β1 , t ∈ (0, 1),

−y′′(t) = (1− t)−
1
4 (x(t))

3
4 (y′(t))−β2 , t ∈ (0, 1),

x(0)− x′(0) = y(0)− y′(0) = x′(1) = y′(1) = 0,

(3.3.26)

where 0 < β1 < 1 and 0 < β2 < 1.

Taking p(t) = (1 − t)−
3
4 , q(t) = (1 − t)−

1
4 , k1(x) = x

1
4 , k2(x) = x

3
4 , u1(x) = x−β1 ,

u2(x) = x−β2 and v1(x) = v2(x) = 0. Then, I(z) = zβ1+1

β1+1 , J(z) = zβ2+1

β2+1 , I
−1(z) =

(β1 + 1)
1

β1+1 z
1

β1+1 and J−1(z) = (β2 + 1)
1

β2+1 z
1

β2+1 .

Then,
∫ 1
0 p(t)dt = 4 and

∫ 1
0 q(t)dt =

4
3 . Choose δ1 = 1

4 , δ2 = 3
4 , φEF (t) = F−β1 and

ψEF (t) = F−β2 . Clearly, (H10)− (H12), (H14) and (H15) are satisfied. Moreover,

sup
c∈(0,∞)

c

(1 + b1
a1
)I−1(k1((1 +

b2
a2
)J−1(k2(c)

∫ 1
0 q(t)dt))

∫ 1
0 p(t)dt)

=

sup
c∈(0,∞)

c

2
1+ 9

4(β1+1) (43)
1

4(β1+1)(β2+1) (β1 + 1)
1

β1+1 (β2 + 1)
1

4(β1+1)(β2+1) c
3

16(β1+1)(β2+1)

= ∞,

sup
c∈(0,∞)

c

(1 + b2
a2
)J−1(k2((1 +

b1
a1
)I−1(k1(c)

∫ 1
0 p(t)dt))

∫ 1
0 q(t)dt)

=

sup
c∈(0,∞)

c

2
1+ 3

4(β2+1)
(1+ 2

β1+1
)
(43)

1
β2+1 (β2 + 1)

1
β2+1 (β1 + 1)

3
4(β1+1)(β2+1) c

3
16(β1+1)(β2+1)

= ∞,

∫ 1

0
p(t)u1(C

∫ 1

t
p(s)φEF (s)ds)dt = 41−β1C−β1F β2

1

∫ 1

0
(1− t)−

β1+3
4 dt =

41−β1C−β1F β2
1

1− β1
,∫ 1

0
q(t)u2(C

∫ 1

t
q(s)ψEF (s)ds)dt = (

4

3
)−β2C−β2F β2

2

∫ 1

0
(1− t)−

3β2+1
4 dt

=
(4/3)1−β2C−β2F β2

2

1− β2
,

which shows that (H20) and (H21) also holds.

Since, (H10)− (H12), (H14), (H15), (H20) and (H21) are satisfied. Therefore, by The-

orem 3.3.1, the system of BVPs (3.3.26) has at least one C1-positive solution.

3.4 Existence of at least two positive solutions with more

general BCs

In this section, we establish at lest two C1-positive solutions to the system of BVPs (3.0.2),

(3.0.4). For each (x, y) ∈ C1[0, 1] × C1[0, 1], we write ∥(x, y)∥5 = ∥x∥3 + ∥y∥3. Clearly,

(C1[0, 1] × C1[0, 1], ∥ · ∥5) is a Banach space. We define a partial ordering in C1[0, 1], by

x ≤ y if and only if x(t) ≤ y(t), t ∈ [0, 1]. We define a partial ordering in C1[0, 1]×C1[0, 1],

by (x1, y1) ≼ (x2, y2) if and only if x1 ≤ x2 and y1 ≤ y2. Let

Pi = {x ∈ C1[0, 1] : x(t) ≥ γi∥x∥ for all t ∈ [0, 1], x(0) ≥ bi
ai
∥x′∥},
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where γi =
bi

ai+bi
, i = 1, 2. Clearly, Pi (i = 1, 2) are cones of C1[0, 1] and P1 × P2 is a

cone of C1[0, 1] × C1[0, 1]. For any real constant r > 0, we define an open neighborhood

of (0, 0) ∈ C1[0, 1]× C1[0, 1] as

Or = {(x, y) ∈ C1[0, 1]× C1[0, 1] : ∥(x, y)∥5 < r}.

In view of (H20), there exist real constants R3 > 0 and R4 > 0 such that

R3

(1 + b1
a1
)I−1(k1((1 +

b2
a2
)J−1(k2(R3)

∫ 1
0 q(t)dt))

∫ 1
0 p(t)dt)

> 1, (3.4.1)

R4

(1 + b2
a2
)J−1(k2((1 +

b1
a1
)I−1(k1(R4)

∫ 1
0 p(t)dt))

∫ 1
0 q(t)dt)

> 1. (3.4.2)

From the continuity of k1, k2, I and J , we choose ε > 0 small enough such that

R3

(1 + b1
a1
)I−1(k1((1 +

b2
a2
)J−1(k2(R3 + ε)

∫ 1
0 q(t)dt+ J(ε)) + ε)

∫ 1
0 p(t)dt+ I(ε))

> 1,

(3.4.3)
R4

(1 + b2
a2
)J−1(k2((1 +

b1
a1
)I−1(k1(R4 + ε)

∫ 1
0 p(t)dt+ I(ε)) + ε)

∫ 1
0 q(t)dt+ J(ε))

> 1.

(3.4.4)

Choose n0 ∈ {1, 2, · · · } such that max{ 1
n0
(1 + b1

a1
), 1

n0
(1 + b2

a2
)} < ε and for each fixed

n ∈ {n0, n0 + 1, · · · }, consider the system of non–singular BVPs

−x′′(t) = p(t)f(t, y(t) +
1

n
(t+

b2
a2

), |x′(t)|+ 1

n
), t ∈ (0, 1),

−y′′(t) = q(t)g(t, x(t) +
1

n
(t+

b1
a1

), |y′(t)|+ 1

n
), t ∈ (0, 1),

a1x(0)− b1x
′(0) = a2y(0)− b2y

′(0) = x′(1) = y′(1) = 0.

(3.4.5)

We write (3.4.5) as an equivalent system of integral equations

x(t) =

∫ 1

0
G1(t, s)p(s)f(s, y(s) +

1

n
(s+

b2
a2

), |x′(s)|+ 1

n
)ds, t ∈ [0, 1],

y(t) =

∫ 1

0
G2(t, s)q(s)f(s, x(s) +

1

n
(s+

b1
a1

), |y′(s)|+ 1

n
)ds, t ∈ [0, 1],

(3.4.6)

where

Gi(t, s) =
1

ai

bi + ais, 0 ≤ s ≤ t ≤ 1,

bi + ait, 0 ≤ t ≤ s ≤ 1, i = 1, 2.

By a solution of the system of BVPs (3.4.5), we mean a solution of the corresponding

system of integral equations (3.4.6).

Define an operator Tn : C1[0, 1]× C1[0, 1] → C1[0, 1]× C1[0, 1] by

Tn(x, y) = (An(x, y), Bn(x, y)), (3.4.7)
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where the operators An, Bn : C1[0, 1]× C1[0, 1] → C1[0, 1] are defined by

An(x, y)(t) =

∫ 1

0
G1(t, s)p(s)f(s, y(s) +

1

n
(s+

b2
a2

), |x′(s)|+ 1

n
)ds, t ∈ [0, 1],

Bn(x, y)(t) =

∫ 1

0
G2(t, s)q(s)f(s, x(s) +

1

n
(s+

b1
a1

), |y′(s)|+ 1

n
)ds, t ∈ [0, 1].

(3.4.8)

Clearly, if (xn, yn) ∈ C1[0, 1]×C1[0, 1] is a fixed point of Tn; then (xn, yn) is a solution of

the system of BVPs (3.4.5).

Lemma 3.4.1. Under the hypothesis (H10)− (H12), the operator Tn : Or ∩ (P1 × P2) →
P1 × P2 is completely continuous.

Proof. Firstly, we show that Tn(P1 × P2) ⊆ P1 × P2. For (x, y) ∈ P1 × P2, t ∈ [0, 1], using

(3.4.8) and Lemma 1.1.13, we obtain

An(x, y)(t) =

∫ 1

0
G1(t, s)p(s)f(s, y(s) +

1

n
(s+

b2
a2

), |x′(s)|+ 1

n
)ds

≥ γ1 max
τ∈[0,1]

∫ 1

0
G1(τ, s)p(s)f(s, y(s) +

1

n
(s+

b2
a2

), |x′(s)|+ 1

n
)ds = γ1∥An(x, y)∥

(3.4.9)

and

An(x, y)(0) =

∫ 1

0
G1(0, s)p(s)f(s, y(s) +

1

n
(s+

b2
a2

), |x′(s)|+ 1

n
)ds

=
b1
a1

max
τ∈[0,1]

∫ 1

τ
p(s)f(s, y(s) +

1

n
(s+

b2
a2

), |x′(s)|+ 1

n
)ds

=
b1
a1

max
τ∈[0,1]

|An(x, y)
′(τ)| = b1

a1
∥An(x, y)

′∥.

(3.4.10)

From (3.4.9) and (3.4.10), An(x, y) ∈ P1 for every (x, y) ∈ P1×P2, that is, An(P1×P2) ⊆
P1. Similarly, by using (3.4.8) and Lemma 1.1.13, we can show that Bn(P1 × P2) ⊆ P2.

Hence, Tn(P1 × P2) ⊆ P1 × P2.

Now, we show that Tn : Or ∩ (P1 × P2) → P1 × P2 is uniformly bounded. For any

(x, y) ∈ Or ∩ (P1 × P2), using (3.4.8), Lemma 1.1.13, (H10) and (H12), we have

∥An(x, y)∥ = max
t∈[0,1]

∣∣∣∣∫ 1

0
G1(t, s)p(s)f(s, y(s) +

1

n
(s+

b2
a2

), |x′(s)|+ 1

n
)ds

∣∣∣∣
≤ 1

a1

∫ 1

0
(a1s+ b1)p(s)k1(y(s) +

1

n
(s+

b2
a2

))(u1(|x′(s)|+
1

n
) + v1(|x′(s)|+

1

n
))ds

≤ 1

a1
k1(r +

1

n
(1 +

b2
a2

))(u1(
1

n
) + v1(r +

1

n
))

∫ 1

0
(a1s+ b1)p(s)ds < +∞,

(3.4.11)
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∥An(x, y)
′∥ = max

τ∈[0,1]
|An(x, y)

′(τ)| = max
τ∈[0,1]

∫ 1

τ
p(s)f(s, y(s) +

1

n
(s+

b2
a2

), |x′(s)|+ 1

n
)ds

=

∫ 1

0
p(s)f(s, y(s) +

1

n
(s+

b2
a2

), |x′(s)|+ 1

n
)ds ≤

∫ 1

0
p(s)k1(y(s) +

1

n
(s+

b2
a2

))

(u1(|x′(s)|+
1

n
) + v1(|x′(s)|+

1

n
))ds ≤ k1(r +

1

n
(1 +

b2
a2

))(u1(
1

n
) + v1(r +

1

n
))

∫ 1

0
p(s)ds

< +∞.

(3.4.12)

From (3.4.11) and (3.4.12), it follows that An(Or ∩ (P1×P2)) is uniformly bounded under

∥ · ∥3. Similarly, by using (3.4.8), Lemma 1.1.13, (H10) and (H12), we can show that

Bn(Or ∩ (P1 × P2)) is uniformly bounded under ∥ · ∥3. Hence, Tn(Or ∩ (P1 × P2)) is

uniformly bounded.

Now, we show that Tn(Or∩(P1×P2)) is equicontinuous. For any (x, y) ∈ Or∩(P1×P2)

and t1, t2 ∈ [0, 1], using (3.4.8) and (H12), we have

|An(x, y)(t1)−An(x, y)(t2)| =
∣∣∣∣∫ 1

0
(G1(t1, s)−G1(t2, s))p(s)f(s, y(s) +

1

n
(s+

b2
a2

),

|x′(s)|+ 1

n
)ds

∣∣∣∣ ≤ ∫ 1

0
|G1(t1, s)−G1(t2, s)|p(s)f(s, y(s) +

1

n
(s+

b2
a2

), |x′(s)|+ 1

n
)ds

≤
∫ 1

0
|G1(t1, s)−G1(t2, s)|p(s)k1(y(s) +

1

n
(s+

b2
a2

))(u1(|x′(s)|+
1

n
) + v1(|x′(s)|+

1

n
))ds

≤ k1(r +
1

n
(1 +

b2
a2

))(u1(
1

n
) + v1(r +

1

n
))

∫ 1

0
|G(t1, s)−G(t2, s)|p(s)ds,

(3.4.13)

|An(x, y)
′(t1)−An(x, y)

′(t2)| =
∣∣∣∣∫ t2

t1

p(s)f(s, y(s) +
1

n
(s+

b2
a2

), |x′(s)|+ 1

n
)ds

∣∣∣∣
≤

∫ t2

t1

p(s)k1(y(s) +
1

n
(s+

b2
a2

))(u1(|x′(s)|+
1

n
) + v1(|x′(s)|+

1

n
))ds

≤ k1(r +
1

n
(1 +

b2
a2

))(u1(
1

n
) + v1(r +

1

n
))

∫ t2

t1

p(s)ds.

(3.4.14)

From (3.4.13), (3.4.14) and (H10), it follows that An(Or∩(P1×P2)) is equicontinuous under

the norm ∥ · ∥3. Similarly, using (3.4.8) and (H12), we can show that Bn(Or ∩ (P1×P2)) is

equicontinuous under ∥ · ∥3. Consequently, Tn(Or ∩ (P1 × P2)) is equicontinuous. Hence,

by Theorem 1.1.6, Tn(Or ∩ (P1 × P2)) is relatively compact which implies that Tn is a

compact operator.

Further, we show that Tn is continuous. Let (xm, ym), (x, y) ∈ Or∩ (P1×P2) such that

∥(xm, ym)− (x, y)∥5 → 0 as m→ +∞.
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Using (H12), we have∣∣∣∣f(t, ym(t) +
1

n
(t+

b2
a2

), |x′m(t)|+ 1

n
)

∣∣∣∣ ≤ k1(ym(t) +
1

n
(t+

b2
a2

))

(u1(|x′m(t)|+ 1

n
) + v1(|x′m(t)|+ 1

n
)) ≤ k1(r +

1

n
(1 +

b2
a2

))(u1(
1

n
) + v1(r +

1

n
)).

Using (3.4.8) and Lemma 1.1.13, we have

∥An(xm, ym)−An(x, y)∥ = max
t∈[0,1]

∣∣∣∣∫ 1

0
G1(t, s)p(s)(f(s, ym(s) +

1

n
(s+

b2
a2

),

|x′m(s)|+ 1

n
)− f(s, y(s) +

1

n
(s+

b2
a2

), |x′(s)|+ 1

n
))ds

∣∣∣∣ ≤ 1

a1

∫ 1

0
(a1s+ b1)p(s)∣∣∣∣f(s, ym(s) +

1

n
(s+

b2
a2

), |x′m(s)|+ 1

n
)− f(s, y(s) +

1

n
(s+

b2
a2

), |x′(s)|+ 1

n
)

∣∣∣∣ ds
(3.4.15)

and

∥An(xm, ym)′ −An(x, y)
′∥ = max

τ∈[0,1]

∣∣∣∣∫ 1

τ
p(s)(f(s, ym(s) +

1

n
(s+

b2
a2

), |x′m(s)|+ 1

n
)

−f(s, y(s) + 1

n
(s+

b2
a2

), |x′(s)|+ 1

n
))ds

∣∣∣∣
≤

∫ 1

0
p(s)

∣∣∣∣f(s, ym(s) +
1

n
(s+

b2
a2

), |x′m(s)|+ 1

n
)− f(s, y(s) +

1

n
(s+

b2
a2

), |x′(s)|+ 1

n
)

∣∣∣∣ ds.
(3.4.16)

From (3.4.15) and (3.4.16), using Lebesgue dominated convergence theorem, it follows that

∥An(xm, ym)−An(x, y)∥ → 0, ∥An(xm, ym)′ −An(x, y)
′∥ → 0, as m→ +∞.

Hence, ∥An(xm, ym)−An(x, y)∥3 → 0 as m→ ∞.

Similarly, we can show that ∥Bn(xm, ym)−Bn(x, y)∥3 → 0 as m→ ∞. Consequently,

∥Tn(xm, ym) − Tn(x, y)∥5 → 0 as m → +∞, that is, Tn : Or ∩ (P1 × P2) → P1 × P2 is

continuous. Hence, Tn : Or ∩ (P1 × P2) → P1 × P2 is completely continuous.

Assume that

(H22) for any real constant C > 0,
∫ 1
0 p(t)u1(C

∫ 1
t p(s)φE(s)ds)dt < +∞ and∫ 1

0 q(t)u2(C
∫ 1
t q(s)ψE(s)ds)dt < +∞.

Theorem 3.4.2. Under the hypothesis (H10) − (H12), (H14), (H17), (H19), (H20) and

(H22), the system of BVPs (3.0.2), (3.0.4) has at least two C1-positive solutions.

Proof. Let R5 = R3 +R4 and define OR5 = ΩR3 × ΩR4 where

ΩR3 = {x ∈ C1[0, 1] : ∥x∥3 < R3}, ΩR4 = {x ∈ C1[0, 1] : ∥x∥3 < R4}.



CHAPTER 3. SINGULAR SYSTEMS OF TWO–POINT BVPS 71

We claim that

(x, y) ̸= λTn(x, y), for λ ∈ (0, 1], (x, y) ∈ ∂OR5 ∩ (P1 × P2). (3.4.17)

Suppose there exist (x0, y0) ∈ ∂OR5 ∩ (P1 × P2) and λ0 ∈ (0, 1] such that

(x0, y0) = λ0Tn(x0, y0).

Then,

−x′′0(t) = λ0p(t)f(t, y0(t) +
1

n
(t+

b2
a2

), |x′0(t)|+
1

n
), t ∈ (0, 1),

−y′′0(t) = λ0q(t)g(t, x0(t) +
1

n
(t+

b1
a1

), |y′0(t)|+
1

n
), t ∈ (0, 1),

a1x(0)− b1x
′(0) = a2y(0)− b2y

′(0) = x′(1) = y′(1) = 0.

(3.4.18)

From (3.4.18) and (H11), we have x′′0 ≤ 0 and y′′0 ≤ 0 on (0, 1), integrating from t to 1,

using the BCs (3.4.18), we obtain x′0(t) ≥ 0 and y′0(t) ≥ 0 for t ∈ [0, 1]. From (3.4.18) and

(H12), we have

−x′′0(t) ≤ p(t)k1(y0(t) +
1

n
(t+

b2
a2

))(u1(x
′
0(t) +

1

n
) + v1(x

′
0(t) +

1

n
)), t ∈ (0, 1),

−y′′0(t) ≤ q(t)k2(x0(t) +
1

n
(t+

b1
a1

))(u2(y
′
0(t) +

1

n
) + v2(y

′
0(t) +

1

n
)), t ∈ (0, 1),

which implies that

−x′′0(t)
u1(x′0(t) +

1
n) + v1(x′0(t) +

1
n)

≤ p(t)k1(y0(t) +
1

n
(t+

b2
a2

)) ≤ k1(R4 + ε)p(t), t ∈ (0, 1),

−y′′0(t)
u2(y′0(t) +

1
n) + v2(y′0(t) +

1
n)

≤ q(t)k2(x0(t) +
1

n
(t+

b1
a1

)) ≤ k2(R3 + ε)q(t), t ∈ (0, 1).

Integrating from t to 1, using the BCs (3.4.18), we obtain

I(x′0(t) +
1

n
)− I(

1

n
) ≤ k1(R4 + ε)

∫ 1

t
p(s)ds, t ∈ [0, 1],

J(y′0(t) +
1

n
)− J(

1

n
) ≤ k2(R3 + ε)

∫ 1

t
q(s)ds, t ∈ [0, 1],

which implies that

x′0(t) ≤ I−1(k1(R4 + ε)

∫ 1

0
p(s)ds+ I(ε)), t ∈ [0, 1], (3.4.19)

y′0(t) ≤ J−1(k2(R3 + ε)

∫ 1

0
q(s)ds+ J(ε)), t ∈ [0, 1]. (3.4.20)

Integrating from 0 to t, using the BCs (3.4.18), leads to

x0(t) ≤
b1
a1
x′0(0)+I

−1(k1(R4 + ε)

∫ 1

0
p(s)ds+ I(ε)), t ∈ [0, 1],

y0(t) ≤
b2
a2
y′0(0)+J

−1(k2(R3 + ε)

∫ 1

0
q(s)ds+ J(ε)), t ∈ [0, 1].
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Using (3.4.19) and (3.4.20), we have

x0(t) ≤ (1 +
b1
a1

)I−1(k1(R4 + ε)

∫ 1

0
p(s)ds+ I(ε)), t ∈ [0, 1], (3.4.21)

y0(t) ≤ (1 +
b2
a2

)J−1(k2(R3 + ε)

∫ 1

0
q(s)ds+ J(ε)), t ∈ [0, 1]. (3.4.22)

From (3.4.19)–(3.4.22), it follows that

R3 ≤ (1 +
b1
a1

)I−1(k1(R4 + ε)

∫ 1

0
p(s)ds+ I(ε)), (3.4.23)

R4 ≤ (1 +
b2
a2

)J−1(k2(R3 + ε)

∫ 1

0
q(s)ds+ J(ε)). (3.4.24)

Now, using (3.4.24) in (3.4.23) together with increasing property of k1 and I−1, we have

R3

(1 + b1
a1
)I−1(k1((1 +

b2
a2
)J−1(k2(R3 + ε)

∫ 1
0 q(s)ds+ J(ε)) + ε)

∫ 1
0 p(s)ds+ I(ε))

≤ 1,

a contradiction to (3.4.3). Similarly, using (3.4.23) in (3.4.24) together with increasing

property of k2 and J−1, we have

R4

(1 + b2
a2
)J−1(k2((1 +

b1
a1
)I−1(k1(R4 + ε)

∫ 1
0 p(s)ds+ I(ε)) + ε)

∫ 1
0 q(s)ds+ J(ε))

≤ 1,

a contradiction to (3.4.4). Hence, (3.4.17) is true and by Lemma 1.2.5, the fixed point

index

indFP(Tn,OR5 ∩ (P1 × P2), P1 × P2) = 1. (3.4.25)

Now, choose

N3 =
1 + γ−1

2 ϱ−1
2

maxt∈[0,1]
∫ 1
0 G1(t, s)p(s)ds

and N4 =
1 + γ−1

1 ϱ−1
1

maxt∈[0,1]
∫ 1
0 G2(t, s)q(s)ds

. (3.4.26)

By (H19), there exist real constants with R∗
3 > R3 and R∗

4 > R4 such that

h1(x, y) ≥ N3x, for x ≥ R∗
3, y ∈ (0,∞),

h2(x, y) ≥ N4x, for x ≥ R∗
4, y ∈ (0,∞).

(3.4.27)

Let R∗∗ =
R∗

3
γ1ϱ1

+
R∗

4
γ2ϱ2

and define OR∗∗ = ΩR∗
3
× ΩR∗

4
, where

ΩR∗
3
= {x ∈ C1[0, 1] : ∥x∥3 <

R∗
3

γ1ϱ1
}, ΩR∗

4
= {x ∈ C1[0, 1] : ∥x∥3 <

R∗
4

γ2ϱ2
}.

We show that

Tn(x, y) � (x, y), for (x, y) ∈ ∂OR∗∗ ∩ (P1 × P2). (3.4.28)

Suppose Tn(x0, y0) ≼ (x0, y0) for some (x0, y0) ∈ ∂OR∗∗ ∩ (P1 × P2). Then,

x0(t) ≥ An(x0, y0)(t) and y0(t) ≥ Bn(x0, y0)(t) for t ∈ [0, 1]. (3.4.29)
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Note that, by Lemma 1.1.12, we have

x0(t) ≥ γ1ϱ1∥x0∥3 = R∗
3, t ∈ [0, 1].

Similarly, y0(t) ≥ R∗
4 for t ∈ [0, 1]. Hence,

|x0(t)|+
1

n
(t+

b1
a1

) ≥ R∗
3 and |y0(t)|+

1

n
(t+

b2
a2

) ≥ R∗
4 for t ∈ [0, 1].

Now, using (3.4.29), (H19) and (3.4.27), we have

∥x0∥ ≥ x0(t) ≥ An(x0, y0)(t) =

∫ 1

0
G1(t, s)p(s)f(s, y0(s) +

1

n
(s+

b2
a2

), |x′0(s)|+
1

n
)ds

≥
∫ 1

0
G1(t, s)p(s)h1(y0(s) +

1

n
(s+

b2
a2

), |x′0(s)|+
1

n
)ds

≥ N3

∫ 1

0
G1(t, s)p(s)(y0(s) +

1

n
(s+

b2
a2

))ds ≥ N3R
∗
4

∫ 1

0
G1(t, s)p(s)ds, t ∈ [0, 1],

in view of (3.4.27) we have

∥x0∥ ≥ N3R
∗
4 max
t∈[0,1]

∫ 1

0
G1(t, s)p(s)ds >

R∗
4

γ2ϱ2
.

Thus ∥x0∥3 ≥ ∥x0∥ >
R∗

4
γ2ϱ2

. Similarly, using (3.4.29), (H19), (3.4.27) and (3.4.26), we

have ∥y0∥3 >
R∗

3
γ1ϱ1

. Consequently, it follows that, ∥(x0, y0)∥5 = ∥x0∥3 + ∥y0∥3 > R∗∗, a

contradiction. Hence, (3.4.28) is true and by Lemma 1.2.7, the fixed point index

indFP(Tn,OR∗∗ ∩ (P1 × P2), P1 × P2) = 0. (3.4.30)

From (3.4.25) and (3.4.30), it follows that

indFP(Tn, (OR∗∗ \ OR) ∩ (P1 × P2), P1 × P2) = −1. (3.4.31)

Thus, in view of (3.4.25) and (3.4.31), there exist (xn,1, yn,1) ∈ OR ∩ (P1 × P2) and

(xn,2, yn,2) ∈ (OR∗∗ \ OR) ∩ (P1 × P2) such that (xn,j , yn,j) = Tn(xn,j , yn,j), (j = 1, 2)

which implies that

xn,j(t) =

∫ 1

0
G1(t, s)p(s)f(t, yn,j(s) +

1

n
(s+

b2
a2

), |x′n,j(s)|+
1

n
)ds, t ∈ [0, 1],

yn,j(t) =

∫ 1

0
G2(t, s)q(s)g(s, xn,j(s) +

1

n
(s+

b1
a1

), |y′n,j(s)|+
1

n
)ds, t ∈ [0, 1], j = 1, 2.

(3.4.32)

Using (H17) there exist continuous functions φR4+ε and ψR3+ε defined on [0, 1] and positive

on (0, 1) and real constants 0 ≤ δ1, δ2 < 1 such that

f(t, x, y) ≥ φR4+ε(t)x
δ1 , (t, x, y) ∈ [0, 1]× [0, R4 + ε]× [0, R4 + ε],

g(t, x, y) ≥ ψR3+ε(t)x
δ2 , (t, x, y) ∈ [0, 1]× [0, R3 + ε]× [0, R3 + ε].

(3.4.33)
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By construction of the cones P1 and P2, we have xn,1(t) ≥ γ1∥xn,1∥ and yn,1(t) ≥ γ2∥yn,1∥
for t ∈ [0, 1]. We show that

x′n,1(t) ≥ Cδ1
8 γ

δ1
2

∫ 1

t
p(s)φR4+ε(s)ds, t ∈ [0, 1], (3.4.34)

y′n,1(t) ≥ Cδ2
7 γ

δ2
1

∫ 1

t
q(s)ψR3+ε(s)ds, t ∈ [0, 1], (3.4.35)

where

C7 = γ
1+δ1δ2
1−δ1δ2
1 γ

2δ1
1−δ1δ2
2

(
max
τ∈[0,1]

∫ 1

0
G1(τ, s)p(s)φR4+ε(s)ds

) 1
1−δ1δ2

(
max
τ∈[0,1]

∫ 1

0
G2(τ, s)q(s)ψR3+ε(s)ds

) δ1
1−δ1δ2

,

C8 = γ
2δ2

1−δ1δ2
1 γ

1+δ1δ2
1−δ1δ2
2

(
max
τ∈[0,1]

∫ 1

0
G1(τ, s)p(s)φR4+ε(s)ds

) δ2
1−δ1δ2

(
max
τ∈[0,1]

∫ 1

0
G2(τ, s)q(s)ψR3+ε(s)ds

) 1
1−δ1δ2

.

To prove (3.4.34), using (3.4.32) and (3.4.33), we have

xn,1(t) =

∫ 1

0
G1(t, s)p(s)f(s, yn,1(s) +

1

n
(s+

b2
a2

), |x′n,1(s)|+
1

n
)ds

≥
∫ 1

0
G1(t, s)p(s)φR4+ε(s)(yn,1(s) +

1

n
(s+

b2
a2

))δ1ds

≥ γδ12 ∥yn,1∥δ1
∫ 1

0
G1(t, s)p(s)φR4+ε(s)ds, t ∈ [0, 1],

which implies that

xn,1(t) ≥ γ1γ
δ1
2 ∥yn,1∥δ1 max

τ∈[0,1]

∫ 1

0
G1(τ, s)p(s)φR4+ε(s)ds, t ∈ [0, 1].

Hence,

∥xn,1∥ ≥ γ1γ
δ1
2 ∥yn,1∥δ1 max

τ∈[0,1]

∫ 1

0
G1(τ, s)p(s)φR4+ε(s)ds. (3.4.36)

Similarly, from (3.4.32) and (3.4.33), we have

∥yn,1∥ ≥ γδ21 γ2∥xn,1∥
δ2 max

τ∈[0,1]

∫ 1

0
G2(τ, s)q(s)ψR3+ε(s)ds. (3.4.37)

Using (3.4.36) in (3.4.37), we have

∥yn,1∥ ≥ γ2δ21 γ1+δ1δ2
2 ∥yn,1∥δ1δ2

(
max
τ∈[0,1]

∫ 1

0
G1(τ, s)p(s)φR4+ε(s)ds

)δ2

max
τ∈[0,1]

∫ 1

0
G2(τ, s)q(s)ψR3+ε(s)ds,
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which implies that

∥yn,1∥ ≥ γ
2δ2

1−δ1δ2
1 γ

1+δ1δ2
1−δ1δ2
2

(
max
τ∈[0,1]

∫ 1

0
G1(τ, s)p(s)φR4+ε(s)ds

) δ2
1−δ1δ2

(
max
τ∈[0,1]

∫ 1

0
G2(τ, s)q(s)ψR3+ε(s)ds

) 1
1−δ1δ2

= C8.

(3.4.38)

Using (3.4.33) and (3.4.38) in the following relation

x′n,1(t) =

∫ 1

t
p(s)f(s, yn,1(s) +

1

n
(s+

b2
a2

), |x′n,1(s)|+
1

n
)ds

we obtain (3.4.34). Similarly, we can prove (3.4.35).

Now, differentiating (3.4.32), using (H12), (3.4.34) and (3.4.35), we have

0 ≤ −x′′n,1(t) ≤ p(t)k1(R4 + ε)(u1(C
δ1
8 γ

δ1
2

∫ 1

t
p(s)φR4+ε(s)ds) + v1(R3 + ε)), t ∈ (0, 1),

0 ≤ −y′′n,1(t) ≤ q(t)k2(R3 + ε)(u2(C
δ2
7 γ

δ2
1

∫ 1

t
q(s)ψR3+ε(s)ds) + v2(R4 + ε)), t ∈ (0, 1),

(3.4.39)

which on integration from t to 1, using the BCs (3.4.5), leads to

x′n,1(t) ≤ k1(R4 + ε)

∫ 1

t
p(s)(u1(C

δ1
8 γ

δ1
2

∫ 1

s
p(τ)φR4+ε(τ)dτ) + v1(R3 + ε))ds, t ∈ [0, 1],

y′n,1(t) ≤ k2(R3 + ε)

∫ 1

t
q(s)(u2(C

δ2
7 γ

δ2
1

∫ 1

s
q(τ)ψR3+ε(τ)dτ) + v2(R4 + ε))ds, t ∈ [0, 1],

which implies that

x′n,1(t) ≤ k1(R4 + ε)

∫ 1

0
p(s)(u1(C

δ1
8 γ

δ1
2

∫ 1

s
p(τ)φR4+ε(τ)dτ) + v1(R3 + ε))ds, t ∈ [0, 1],

y′n,1(t) ≤ k2(R3 + ε)

∫ 1

0
q(s)(u2(C

δ2
7 γ

δ2
1

∫ 1

s
q(τ)ψR3+ε(τ)dτ) + v2(R4 + ε))ds, t ∈ [0, 1].

(3.4.40)

In view of (3.4.34), (3.4.35), (3.4.40), (3.4.39), (H10) and (H22), the sequences {(x(j)n,1, y
(j)
n,1)}

(j = 0, 1) are uniformly bounded and equicontinuous on [0, 1]. Thus, by Theorem 1.1.6,

there exist subsequences {(x(j)nk,1
, y

(j)
nk,1

)} (j = 0, 1) of {(x(j)n,1, y
(j)
n,1)} and functions (x0,1, y0,1)

∈ C1[0, 1] × C1[0, 1] such that (x
(j)
nk,1

, y
(j)
nk,1

) converges uniformly to (x
(j)
0,1, y

(j)
0,1) on [0, 1].

Also, a1x0,1(0)− b1x
′
0,1(0) = a2y0,1(0)− b2y

′
0,1(0) = x′0,1(1) = y′0,1(1) = 0. Moreover, from

(3.4.34) and (3.4.35), with nk in place of n and taking limnk→+∞, we have

x′0,1(t) ≥ Cδ1
8 γ

δ1
2

∫ 1

t
p(s)φR4+ε(s)ds,

y′0,1(t) ≥ Cδ2
7 γ

δ2
1

∫ 1

t
q(s)ψR3+ε(s)ds,
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which implies that x′0,1 > 0 and y′0,1 > 0 on [0, 1), x0,1 > 0 and y0,1 > 0 on [0, 1]. Further,∣∣∣∣f(t, ynk,1(t) +
1

nk
(t+

b2
a2

), x′nk,1
(t) +

1

nk
)

∣∣∣∣ ≤ p(t)k1(R4 + ε)(u1(C
δ1
8 γ

δ1
2

∫ 1

t
p(s)φR4+ε(s)ds)

+ v1(R3 + ε)),∣∣∣∣g(t, xnk,1(t) +
1

nk
(t+

b1
a1

), y′nk,1
(t) +

1

nk
)

∣∣∣∣ ≤ q(t)k2(R3 + ε)(u2(C
δ2
7 γ

δ2
1

∫ 1

t
q(s)ψR3+ε(s)ds)

+ v2(R4 + ε)),

(3.4.41)

lim
nk→∞

f(t, ynk,1(t) +
1

nk
(t+

b2
a2

), x′nk,1
(t) +

1

nk
) = f(t, y0,1(t), x

′
0,1(t)), t ∈ (0, 1),

lim
nk→∞

g(t, xnk,1(t) +
1

nk
(t+

b1
a1

), y′nk,1
(t) +

1

nk
) = g(t, x0,1(t), y

′
0,1(t)), t ∈ (0, 1).

(3.4.42)

Moreover, (xnk,1, ynk,1) satisfies

xnk,1(t) =

∫ 1

0
G1(t, s)p(s)f(s, ynk,1(s) +

1

nk
(s+

b2
a2

), x′nk,1
(s) +

1

nk
)ds, t ∈ [0, 1],

ynk,1(t) =

∫ 1

0
G2(t, s)q(s)g(s, xnk,1(s) +

1

nk
(s+

b1
a1

), y′nk,1
(s) +

1

nk
)ds, t ∈ [0, 1],

in view of (3.4.41), (H22), (3.4.42), the Lebesgue dominated convergence theorem and

taking limnk→+∞, we have

x0,1(t) =

∫ 1

0
G1(t, s)p(s)f(s, y0,1(s), x

′
0,1(s))ds, t ∈ [0, 1],

y0,1(t) =

∫ 1

0
G2(t, s)q(s)g(s, x0,1(s), y

′
0,1(s))ds, t ∈ [0, 1],

which implies that (x0,1, y0,1) ∈ C2(0, 1)× C2(0, 1) and

−x′′0,1(t) = p(t)f(t, y0,1(t), x
′
0,1(t)), t ∈ (0, 1),

−y′′0,1(t) = q(t)g(t, x0,1(t), y
′
0,1(t)), t ∈ (0, 1).

Moreover, by (3.4.1) and (3.4.2), we have ∥x0,1∥3 < R3 and ∥y0,1∥3 < R4, that is,

∥(x0,1, y0,1)∥5 < R5. By a similar proof the sequence {(xn,2, yn,2)} has a convergent sub-

sequence {(xnk,2, ynk,2)} converging uniformly to (x0,2, y0,2) ∈ C1[0, 1]× C1[0, 1] on [0, 1].

Moreover, (x0,2, y0,2) is a solution to the system (3.0.2), (3.0.4) with x0,2 > 0 and y0,2 > 0

on [0, 1], x′0,2 > 0 and y′0,2 > 0 on [0, 1), R5 < ∥(x0,2, y0,2)∥5 < R∗∗.

Example 3.4.3. Consider the following coupled system of SBVPs

−x′′(t) = µ1(1 + (y(t))δ1 + (y(t))η1)(1 + (x′(t))α1 + (x′(t))−β1), t ∈ (0, 1),

−y′′(t) = µ2(1 + (x(t))δ2 + (x(t))η2)(1 + (y′(t))α2 + (y′(t))−β2), t ∈ (0, 1),

x(0)− x′(0) = y(0)− y′(0) = x′(1) = y′(1) = 0,

(3.4.43)
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where 0 ≤ δi < 1, ηi > 1, 0 < αi < 1, 0 < βi < 1, and µi > 0, i = 1, 2.

Let p(t) = µ1, q(t) = µ2, ki(x) = 1 + xδi + xηi , ui(x) = x−βi and vi(x) = 1 + xαi ,

i = 1, 2. Assume that µ1 is arbitrary and

µ2 < min{ inf
c∈(0,∞)

J(2−1(µ−1
1 I( c2 ))

δ−1
1 )

k2(c)
, inf
c∈(0,∞)

J(2−1(µ−1
1 I( c2 ))

η−1
1 )

k2(c)
, inf
c∈(0,∞)

J( c2 )

k2(2I−1(µ1k1(c)))
}.

We choose φE(t) = µ1, ψE(t) = µ2 and hi(x, y) = µi(1 + xηi), i = 1, 2. Then,

lim
x→+∞

hi(x, y)

x
= lim

x→+∞

µi(1 + xηi)

x
= +∞, i = 1, 2.

Moreover,

sup
c∈(0,∞)

c

(1 + b1
a1
)I−1(k1((1 +

b2
a2
)J−1(k2(c)

∫ 1
0 q(t)dt))

∫ 1
0 p(t)dt)

= sup
c∈(0,∞)

c

2I−1(µ1k1(2J−1(µ2k2(c))))

≥ c

2I−1(µ1k1(2J−1(µ2k2(c))))
, c ∈ (0,∞)

=
c

2I−1(µ1(1 + (2J−1(µ2k2(c)))δ1 + (2J−1(µ2k2(c)))η1))
, c ∈ (0,∞)

> 1,

and

sup
c∈(0,∞)

c

(1 + b2
a2
)J−1(k2((1 +

b1
a1
)I−1(k1(c)

∫ 1
0 p(t)dt))

∫ 1
0 q(t)dt)

= sup
c∈(0,∞)

c

2J−1(µ2k2(2I−1(µ1k1(c))))

=
c

2J−1(µ2k2(2I−1(µ1k1(c))))
, c ∈ (0,∞)

> 1.

Further,∫ 1

0
p(t)u1(C

∫ 1

t
p(s)φE(s)ds)dt = µ1−2β1

1 C−β1

∫ 1

0
(1− t)−β1dt =

µ1−2β1
1 C−β1

1− β1
,∫ 1

0
q(t)u2(C

∫ 1

t
q(s)ψE(s)ds)dt = µ1−2β2

2 C−β2

∫ 1

0
(1− t)−β2dt =

µ1−2β2
1 C−β2

1− β2
.

Clearly, (H10) − (H12), (H14), (H17), (H19), (H20) and (H22) are satisfied. Hence, by

Theorem 3.4.2, the system of BVPs (3.4.43) has at least two C1-positive solutions.



Chapter 4

Singular Systems with Coupled

Boundary Conditions

Coupled BCs arises in the study of reaction–diffusion equations and Sturm–Liouvillie prob-

lems, see [10, 11, 88] and [135, Chapter 13]. The study of elliptic systems with coupled

BCs was initiated by Agmon and coauthors [8]. In [8], the authors studied elliptic systems

with the following type of coupled BCs

D1f |∂Ω +D2
∂f

∂ν
= 0,

where D1 and D2 are differential operators from L2(Ω;W ) to L2(∂Ω;W ), Ω ⊂ Rn and W

is a separable Hilbert space. Mehmeti [106], Mehmeti, Nicaise [107] and Nicaise [112] have

been studied coupled BCs in the study of interaction problems and elliptic operators on

polygonal domains.

Coupled BCs have also some applications in mathematical biology. For example, Leung

[88] studied the following reaction–diffusion system for prey–predator interaction:

∂u

∂t
(t, x) = σ1∆u+ u(a+ f(u, v)), t ≥ 0, x ∈ Ω ⊂ Rn,

∂v

∂t
(t, x) = σ2∆v + v(−r + g(u, v)), t ≥ 0, x ∈ Ω ⊂ Rn,

subject to the coupled BCs

∂u

∂η
= 0,

∂v

∂η
− p(u)− q(v) = 0 on ∂Ω,

where ∆ =
∑n

i=1
∂2

∂x2
i
, a, r, σ1, σ2 are positive constants, f, g : R2 → R have Hölder

continuous partial derivatives up to second–order in compact sets, η is a unit outward

normal at ∂Ω, p and q have Hölder continuous first derivatives in compact subsets of [0,∞).

The functions u(t, x), v(t, x) respectively represent the density of prey and predator at time

t ≥ 0 and at position x = (x1, · · · , xn). Similar coupled BCs are also studied in [13] for

biochemical system.

78
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Krstic et al. [86, Section 8.3] presented the Timoshenko beam model with free–end

BCs

ε
∂2u

∂t2
= (1 + d

∂

∂t
)(
∂2u

∂z2
− ∂θ

∂z
), t ≥ 0, 0 ≤ z ≤ 1,

µε
∂2θ

∂t2
= (1 + d

∂

∂t
)(ε

∂2θ

∂z2
+ a(

∂u

∂z
− θ)), t ≥ 0, 0 ≤ z ≤ 1,

∂u

∂z
(t, 0) = θ(t, 0),

∂θ

∂z
(t, 0) = 0,

where u(t, z) denotes the displacement and θ(t, z) denotes the angle of rotation due to the

bending. The positive constants a and µ are proportional to the nondimensional cross–

sectional area, and the nondimensional moment of inertia of the beam, respectively. The

parameter ε is inversely proportional to the nondimensional shear modulus of the beam.

The coefficient d denotes the possible presence of Kelvin–Voigt damping. The meaning

of the first BC is that zero force is being applied at the tip, whereas the meaning of the

second BC is that zero moment is being applied at the tip. A backstepping boundary

control design applied to the most complex beam model. The model is controlled at z = 1

through the conditions on u(t, 1) and θ(t, 1).

In Section 4.1, we present existence result for the following coupled singular system of

ODEs subject to four–point coupled BCs

−x′′(t) = f(t, x(t), y(t)), t ∈ (0, 1),

−y′′(t) = g(t, x(t), y(t)), t ∈ (0, 1),

x(0) = 0, x(1) = αy(ξ),

y(0) = 0, y(1) = βx(η),

(4.0.1)

where the parameters α, β, ξ, η satisfy ξ, η ∈ (0, 1), 0 < αβξη < 1. We assume that

the nonlinearities f, g : (0, 1)× [0,∞)× [0,∞) → [0,∞) are continuous and allowed to be

singular at t = 0 or t = 1.

Further in Section 4.2, we study more general coupled system of ODEs than the system

(3.0.2) and prove the existence of C1-positive solution to the following system of ODEs

subject to two–point coupled BCs

−x′′(t) = p(t)f(t, x(t), y(t), x′(t)), t ∈ (0, 1),

−y′′(t) = q(t)g(t, x(t), y(t), y′(t)), t ∈ (0, 1),

a1y(0)− b1x
′(0) = 0, y′(1) = 0,

a2x(0)− b2y
′(0) = 0, x′(1) = 0,

(4.0.2)

where the nonlinearities f, g : [0, 1]× [0,∞)× [0,∞)× (0,∞) → [0,∞) are continuous and

are allowed to be singular at x′ = 0, y′ = 0. Moreover, p, q ∈ C(0, 1), p > 0 and q > 0 on

(0, 1).
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To the best of our knowledge, we believe that coupled system of nonlinear ODEs

subject to coupled BCs have never been studied previously. Results of this chapter are

submitted [19,20].

4.1 Singular systems of ODEs with four–point coupled BCs

In this section, we establish the existence of positive solutions for the system of BVPs

(4.0.1). By a positive solution to the system of BVPs (4.0.1), we mean that (x, y) ∈
(C[0, 1] ∩ C2(0, 1))× (C[0, 1] ∩ C2(0, 1)), (x, y) satisfies (4.0.1), x > 0 and y > 0 on (0, 1].

For each u ∈ C[0, 1] we write ∥u∥ = maxt∈[0,1] |u(t)|. Let

P =
{
u ∈ C[0, 1] : min

t∈[max{ξ,η},1]
u(t) ≥ γ∥u∥

}
,

where

0 < γ :=
min{1, αξ, αβξ, βη, αβη}min{ξ, η, 1− ξ, 1− η}

max{1, α, β, αβξ, αβη}
< 1.

Clearly, (C[0, 1], ∥ · ∥) is a Banach space and P is a cone of C[0, 1]. Similarly, for each

(x, y) ∈ C[0, 1] × C[0, 1] we write ∥(x, y)∥6 = ∥x∥ + ∥y∥. Clearly, (C[0, 1] × C[0, 1], ∥ · ∥6)
is a Banach space and P × P is a cone of C[0, 1] × C[0, 1]. For any real constant r > 0,

define Or = {(x, y) ∈ C[0, 1]× C[0, 1] : ∥(x, y)∥6 < r}.

Lemma 4.1.1. Let u, v ∈ C[0, 1], then the system of BVPs

−x′′(t) = u(t), t ∈ [0, 1],

−y′′(t) = v(t), t ∈ [0, 1],

x(0) = 0, x(1) = αy(ξ),

y(0) = 0, y(1) = βx(η),

(4.1.1)

has integral representation

x(t) =

∫ 1

0
Fξη(t, s)u(s)ds+

∫ 1

0
Gαβξη(t, s)v(s)ds,

y(t) =

∫ 1

0
Fηξ(t, s)v(s)ds+

∫ 1

0
Gβαηξ(t, s)u(s)ds,

(4.1.2)

where

Fξη(t, s) =



t(1−s)
1−αβξη − αβξt(η−s)

1−αβξη − (t− s), 0 ≤ s ≤ t ≤ 1, s ≤ η,

t(1−s)
1−αβξη − αβξt(η−s)

1−αβξη , 0 ≤ t ≤ s ≤ 1, s ≤ η,

t(1−s)
1−αβξη − (t− s), 0 ≤ s ≤ t ≤ 1, s ≥ η,

t(1−s)
1−αβξη , 0 ≤ t ≤ s ≤ 1, s ≥ η,

(4.1.3)

Gαβξη(t, s) =


αξt(1−s)
1−αβξη − αt(ξ−s)

1−αβξη , 0 ≤ s, t ≤ 1, s ≤ ξ,

αξt(1−s)
1−αβξη , 0 ≤ s, t ≤ 1, s ≥ ξ.

(4.1.4)
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Proof. Integrating the system of BVPs (4.1.1), we have

x(t) = c1 + c3t−
∫ t

0
(t− s)u(s)ds,

y(t) = c2 + c4t−
∫ t

0
(t− s)v(s)ds,

(4.1.5)

where ci, i = 1, · · · , 4, are constants. Now, employing the BCs (4.1.1), we obtain

c1 = 0, c2 = 0,

c3 − c4αξ =

∫ 1

0
(1− s)u(s)ds− α

∫ ξ

0
(ξ − s)v(s)ds,

c3βη − c4 = β

∫ η

0
(η − s)u(s)ds−

∫ 1

0
(1− s)v(s)ds.

Solving for c3 and c4, we get

c3 =
1

1− αβξη

∫ 1

0
(1− s)u(s)ds− αβξ

1− αβξη

∫ η

0
(η − s)u(s)ds

+
αξ

1− αβξη

∫ 1

0
(1− s)v(s)ds− α

1− αβξη

∫ ξ

0
(ξ − s)v(s)ds,

c4 =
βη

1− αβξη

∫ 1

0
(1− s)u(s)ds− β

1− αβξη

∫ η

0
(η − s)u(s)ds

+
1

1− αβξη

∫ 1

0
(1− s)v(s)ds− αβη

1− αβξη

∫ ξ

0
(ξ − s)v(s)ds.

Thus, the system (4.1.5) becomes

x(t) =
1

1− αβξη

∫ 1

0
t(1− s)u(s)ds− αβξ

1− αβξη

∫ η

0
t(η − s)u(s)ds−

∫ t

0
(t− s)u(s)ds

+
αξ

1− αβξη

∫ 1

0
t(1− s)v(s)ds− α

1− αβξη

∫ ξ

0
t(ξ − s)v(s)ds,

y(t) =
1

1− αβξη

∫ 1

0
t(1− s)v(s)ds− αβη

1− αβξη

∫ ξ

0
t(ξ − s)v(s)ds−

∫ t

0
(t− s)v(s)ds

+
βη

1− αβξη

∫ 1

0
t(1− s)u(s)ds− β

1− αβξη

∫ η

0
t(η − s)u(s)ds,

which is equivalent to the integral representation (4.1.2).

Lemma 4.1.2. The functions Fξη and Gαβξη satisfies

(i) Fξη(t, s) ≤ max{1,αβξ}
1−αβξη s(1− s), t, s ∈ [0, 1],

(ii) Gαβξη(t, s) ≤ α
1−αβξηs(1− s), t, s ∈ [0, 1].

Proof. For (t, s) ∈ [0, 1]× [0, 1], we discuss various cases.

Case 1: s ≤ η, t ≥ s; using (4.1.3), we obtain

Fξη(t, s) =
t(1− s)

1− αβξη
− αβξt(η − s)

1− αβξη
− (t− s) = s+ (αβξ − 1)

ts

1− αβξη
.



CHAPTER 4. SINGULAR SYSTEMS WITH COUPLED BCS 82

If αβξ > 1, the maximum occurs at t = 1, hence

Fξη(t, s) ≤ Fξη(1, s) = αβξ
s(1− η)

1− αβξη
≤ αβξ

s(1− s)

1− αβξη
≤ max{1, αβξ}

1− αβξη
s(1− s),

and if α ≤ 1, the maximum occurs at t = s, hence

Fξη(t, s) ≤ Fξη(s, s) =
s(1− s+ αβξ(s− η))

1− αβξη
≤ s(1− s)

1− αβξη
≤ max{1, αβξ}

1− αβξη
s(1− s).

Case 2: s ≤ η, t ≤ s; using (4.1.3), we have

Fξη(t, s) =
t(1− s)

1− αβξη
− αβξt(η − s)

1− αβξη
≤ t(1− s)

1− αβξη
≤ s(1− s)

1− αβξη
≤ max{1, αβξ}

1− αβξη
s(1− s).

Case 3: s ≥ η, t ≥ s; using (4.1.3), we get

Fξη(t, s) =
t(1− s)

1− αβξη
− (t− s) = s+

t(αβξη − s)

1− αβξη
.

If αβξη > s, the maximum occurs at t = 1, hence

Fξη(t, s) ≤ Fξη(1, s) = αβξ
η(1− s)

1− αβξη
≤ αβξ

s(1− s)

1− αβξη
≤ max{1, αβξ}

1− αβξη
s(1− s),

and if αβξη ≤ s, the maximum occurs at t = s, so

Fξη(t, s) ≤ Fξη(s, s) =
s(1− s)

1− αβξη
≤ max{1, αβξ}

1− αβξη
s(1− s).

Case 4: s ≥ η, t ≤ s; using (4.1.3), we get

Fξη(t, s) =
t(1− s)

1− αβξη
≤ s(1− s)

1− αβξη
≤ max{1, αβξ}

1− αβξη
s(1− s).

Now we prove (ii). For (t, s) ∈ [0, 1]× [0, 1], we discuss two cases.

Case 1: s ≤ ξ; using (4.1.4), we obtain

Gαβξη(t, s) =
αξt(1− s)

1− αβξη
− αt(ξ − s)

1− αβξη
=
αts(1− ξ)

1− αβξη
≤ α

1− αβξη
s(1− s).

Case 2: s ≥ ξ; using (4.1.4), we have

Gαβξη(t, s) =
αξt(1− s)

1− αβξη
≤ α

1− αβξη
s(1− s).

Remark 4.1.3. In view of Lemma 4.1.2, we have

Fηξ(t, s) ≤
max{1, αβη}
1− αβξη

s(1− s), t, s ∈ [0, 1],

Gβαηξ(t, s) ≤
β

1− αβξη
s(1− s), t, s ∈ [0, 1].
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Lemma 4.1.4. The functions Fξη and Gαβξη satisfies

(i) Fξη(t, s) ≥ min{1,αβξ}min{η,1−η}
1−αβξη s(1− s), (t, s) ∈ [η, 1]× [0, 1],

(ii) Gαβξη(t, s) ≥ αξ min{ξ,1−ξ}
1−αβξη s(1− s), (t, s) ∈ [ξ, 1]× [0, 1].

Proof. Here for (t, s) ∈ [η, 1]× [0, 1], we discuss different cases.

Case 1: s ≤ η, t ≥ s; using (4.1.3), we obtain

Fξη(t, s) =
t(1− s)

1− αβξη
− αβξt(η − s)

1− αβξη
− (t− s) = s+ (αβξ − 1)

ts

1− αβξη
.

If αβξ < 1, the minimum occurs at t = 1, hence

Fξη(t, s) ≥ Fξη(1, s) = αβξ
s(1− η)

1− αβξη
=
αβξs(1− η)

1− αβξη
≥ min{1, αβξ}min{η, 1− η}

1− αβξη
s(1− s),

and if αβξ ≥ 1, the minimum occurs at t = η, then

Fξη(t, s) ≥ Fξη(η, s) =
s(1− η)

1− αβξη
≥ min{1, αβξ}min{η, 1− η}

1− αβξη
s(1− s).

Case 2: s ≥ η, t ≥ s; using (4.1.3), we have

Fξη(t, s) =
t(1− s)

1− αβξη
− (t− s) = s− t(s− αβξη)

1− αβξη
.

If s > αβξη, the minimum occurs at t = 1, hence

Fξη(t, s) ≥ Fξη(1, s) =
αβξη(1− s)

1− αβξη
≥ min{1, αβξ}min{η, 1− η}

1− αβξη
s(1− s),

and if s ≤ αβξη, the minimum occurs at t = s, therefore

Fξη(t, s) ≥ Fξη(s, s) =
s(1− s)

1− αβξη
≥ η(1− s)

1− αβξη
≥ min{1, αβξ}min{η, 1− η}

1− αβξη
s(1− s).

Case 3: s ≥ η, t ≤ s; using (4.1.3), we have

Hn(t, s) =
t(1− s)

1− αβξη
≥ η(1− s)

1− αβξη
≥ min{1, αβξ}min{η, 1− η}

1− αβξη
s(1− s).

Now we prove (ii). For (t, s) ∈ [ξ, 1]× [0, 1], we discuss two cases.

Case 1: s ≤ ξ; using (4.1.4), we have

Gαβξη(t, s) =
αξt(1− s)

1− αβξη
− αt(ξ − s)

1− αβξη
=
αts(1− ξ)

1− αβξη
≥ αξs(1− ξ)

1− αβξη

≥ αξ min{ξ, 1− ξ}
1− αβξη

s(1− s).

Case 2: s ≥ ξ; using (4.1.4), we get

Gαβξη(t, s) =
αξt(1− s)

1− αβξη
≥ αξξ(1− s)

1− αβξη
≥ αξ min{ξ, 1− ξ}

1− αβξη
s(1− s).
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Remark 4.1.5. In view of Lemma 4.1.4, we have

Fηξ(t, s) ≥
min{1, αβη}min{ξ, 1− ξ}

1− αβξη
s(1− s), (t, s) ∈ [ξ, 1]× [0, 1],

Gβαηξ(t, s) ≥
βη min{η, 1− η}

1− αβξη
s(1− s), (t, s) ∈ [η, 1]× [0, 1].

Remark 4.1.6. From Lemma 4.1.2 and Remark 4.1.3, for t, s ∈ [0, 1], we have

Fξη(t, s) ≤ µs(1− s), Fηξ(t, s) ≤ µs(1− s),

Gαβξη(t, s) ≤ µs(1− s), Gβαηξ(t, s) ≤ µs(1− s),

where µ = max{1,α,β,αβξ,αβη}
1−αβξη . Similarly, from Lemma 4.1.4 and Remark 4.1.5, for (t, s) ∈

[max{ξ, η}, 1]× [0, 1], we have

Fξη(t, s) ≥ νs(1− s), Fηξ(t, s) ≥ νs(1− s),

Gαβξη(t, s) ≥ νs(1− s), Gβαηξ(t, s) ≥ νs(1− s),

where ν = min{1,αξ,αβξ,βη,αβη}min{ξ,η,1−ξ,1−η}
1−αβξη .

Lemma 4.1.7. The Green’s functions Fξη and Gαβξη can be expressed as

Fξη(t, s) = H(t, s) +
αβξt

1− αβξη
H(η, s),

Gαβξη(t, s) =
αt

1− αβξη
H(ξ, s),

(4.1.6)

where

H(t, s) =

s(1− t), 0 ≤ s ≤ t ≤ 1,

t(1− s), 0 ≤ t ≤ s ≤ 1.

Proof. From (4.1.2), consider the integral equation

x(t) =

∫ 1

0
Fξη(t, s)u(s)ds+

∫ 1

0
Gαβξη(t, s)v(s)ds

=
t

1− αβξη

∫ 1

0
(1− s)u(s)ds− αβξt

1− αβξη

∫ η

0
(η − s)u(s)ds−

∫ t

0
(t− s)u(s)ds

+
αξt

1− αβξη

∫ 1

0
(1− s)v(s)ds− αt

1− αβξη

∫ ξ

0
(ξ − s)v(s)ds

=

∫ 1

0
H(t, s)u(s)ds−

∫ t

0
s(1− t)u(s)ds−

∫ 1

t
t(1− s)u(s)ds

+
1

1− αβξη

∫ 1

0
t(1− s)u(s)ds− αβξt

1− αβξη

∫ η

0
(η − s)u(s)ds−

∫ t

0
(t− s)u(s)ds

+
αt

1− αβξη

∫ 1

0
ξ(1− s)v(s)ds− αt

1− αβξη

∫ ξ

0
(ξ − s)v(s)ds
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=

∫ 1

0
H(t, s)u(s)ds−

∫ t

0
s(1− t)u(s)ds−

∫ 1

t
t(1− s)u(s)ds

+
1

1− αβξη

∫ t

0
t(1− s)u(s)ds+

1

1− αβξη

∫ 1

t
t(1− s)u(s)ds− αβξt

1− αβξη

∫ η

0
(η − s)u(s)ds

−
∫ t

0
(t− s)u(s)ds+

αt

1− αβξη

∫ 1

0
ξ(1− s)v(s)ds− αt

1− αβξη

∫ ξ

0
(ξ − s)v(s)ds

=

∫ 1

0
H(t, s)u(s)ds+

αβξt

1− αβξη

∫ t

0
η(1− s)u(s)ds+

αβξt

1− αβξη

∫ 1

t
η(1− s)u(s)ds

− αβξt

1− αβξη

∫ η

0
(η − s)u(s)ds+

αt

1− αβξη

∫ 1

0
ξ(1− s)v(s)ds− αt

1− αβξη

∫ ξ

0
(ξ − s)v(s)ds

=

∫ 1

0
H(t, s)u(s)ds+

αβξt

1− αβξη

∫ 1

0
η(1− s)u(s)ds− αβξt

1− αβξη

∫ η

0
(η − s)u(s)ds

+
αt

1− αβξη

∫ 1

0
ξ(1− s)v(s)ds− αt

1− αβξη

∫ ξ

0
(ξ − s)v(s)ds

=

∫ 1

0
H(t, s)u(s)ds+

αβξt

1− αβξη

∫ η

0
s(1− η)u(s)ds+

αβξt

1− αβξη

∫ 1

η
η(1− s)u(s)ds

+
αt

1− αβξη

∫ 1

0
ξ(1− s)v(s)ds− αt

1− αβξη

∫ ξ

0
(ξ − s)v(s)ds

=

∫ 1

0
H(t, s)u(s)ds+

αβξt

1− αβξη

∫ 1

0
H(η, s)u(s)ds+

αt

1− αβξη

∫ 1

0
ξ(1− s)v(s)ds

− αt

1− αβξη

∫ ξ

0
(ξ − s)v(s)ds

=

∫ 1

0
H(t, s)u(s)ds+

αβξt

1− αβξη

∫ η

0
H(η, s)u(s)ds+

αt

1− αβξη

∫ ξ

0
ξ(1− s)v(s)ds

+
αt

1− αβξη

∫ 1

ξ
ξ(1− s)v(s)ds− αt

1− αβξη

∫ ξ

0
(ξ − s)v(s)ds

=

∫ 1

0
H(t, s)u(s)ds+

αβξt

1− αβξη

∫ η

0
H(η, s)u(s)ds+

αt

1− αβξη

∫ ξ

0
s(1− ξ)v(s)ds

+
αt

1− αβξη

∫ 1

ξ
ξ(1− s)v(s)ds

=

∫ 1

0
H(t, s)u(s)ds+

αβξt

1− αβξη

∫ η

0
H(η, s)u(s)ds+

αt

1− αβξη

∫ ξ

0
H(ξ, s)v(s)ds

=

∫ 1

0

(
H(t, s) +

αβξt

1− αβξη
H(η, s)

)
u(s)ds+

∫ 1

0

αt

1− αβξη
H(ξ, s)v(s)ds.

This proves (4.1.6).

Employing Lemma 4.1.1, the system of BVPs (4.0.1) can be expressed as

x(t) =

∫ 1

0
Fξη(t, s)f(s, x(s), y(s))ds+

∫ 1

0
Gαβξη(t, s)g(s, x(s), y(s))ds, t ∈ [0, 1],

y(t) =

∫ 1

0
Fηξ(t, s)g(s, x(s), y(s))ds+

∫ 1

0
Gβαηξ(t, s)f(s, x(s), y(s))ds, t ∈ [0, 1].

(4.1.7)
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By a solution of the system of BVPs (4.0.1), we mean a solution of the corresponding

system of integral equations (4.1.7). Define an operator T : P × P → P × P by

T (x, y) = (A(x, y), B(x, y)), (4.1.8)

where the operators A,B : P × P → P are defined by

A(x, y)(t) =

∫ 1

0
Fξη(t, s)f(s, x(s), y(s))ds+

∫ 1

0
Gαβξη(t, s)g(s, x(s), y(s))ds, t ∈ [0, 1],

B(x, y)(t) =

∫ 1

0
Fηξ(t, s)g(s, x(s), y(s))ds+

∫ 1

0
Gβαηξ(t, s)f(s, x(s), y(s))ds, t ∈ [0, 1].

(4.1.9)

Clearly, if (x, y) ∈ P × P is a fixed point of T , then (x, y) is a solution of the system of

BVPs (4.0.1).

Assume that the following holds:

(H23) f(·, 1, 1), g(·, 1, 1) ∈ C((0, 1), (0,∞)) and satisfy

a :=

∫ 1

0
t(1− t)f(t, 1, 1)dt < +∞, b :=

∫ 1

0
t(1− t)g(t, 1, 1)dt < +∞.

(H24) There exist real constants αi, βi with 0 ≤ αi ≤ βi < 1, i = 1, 2; β1 + β2 < 1, such

that for all t ∈ (0, 1), x, y ∈ [0,∞),

cβ1f(t, x, y) ≤ f(t, c x, y) ≤ cα1f(t, x, y), 0 < c ≤ 1,

cα1f(t, x, y) ≤ f(t, c x, y) ≤ cβ1f(t, x, y), c ≥ 1,

cβ2f(t, x, y) ≤ f(t, x, c y) ≤ cα2f(t, x, y), 0 < c ≤ 1,

cα2f(t, x, y) ≤ f(t, x, c y) ≤ cβ2f(t, x, y), c ≥ 1.

(H25) There exist real constants γi, ρi with 0 ≤ γi ≤ ρi < 1, i = 1, 2; ρ1+ρ2 < 1, such that

for all t ∈ (0, 1), x, y ∈ [0,∞),

c ρ1g(t, x, y) ≤ g(t, c x, y) ≤ cγ1g(t, x, y), 0 < c ≤ 1,

cγ1g(t, x, y) ≤ g(t, c x, y) ≤ c ρ1g(t, x, y), c ≥ 1,

c ρ2g(t, x, y) ≤ g(t, x, c y) ≤ cγ2g(t, x, y), 0 < c ≤ 1,

cγ2g(t, x, y) ≤ g(t, x, c y) ≤ c ρ2g(t, x, y), c ≥ 1.

Lemma 4.1.8. Under the hypothesis (H23)−(H25), the operator T : Or∩(P×P ) → P×P
is completely continuous.

Proof. First we show that T (P × P ) ⊆ P × P . For any (x, y) ∈ P × P , t ∈ [0, 1], using

(4.1.9) and Remark 4.1.6, we have

A(x, y)(t) =

∫ 1

0
Fξη(t, s)f(s, x(s), y(s))ds+

∫ 1

0
Gαβξη(t, s)g(s, x(s), y(s))ds

≤ µ

∫ 1

0
s(1− s)f(s, x(s), y(s))ds+ µ

∫ 1

0
s(1− s)g(s, x(s), y(s))ds,
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which implies that

∥A(x, y)∥ ≤ µ

∫ 1

0
s(1− s)f(s, x(s), y(s))ds+ µ

∫ 1

0
s(1− s)g(s, x(s), y(s))ds. (4.1.10)

Also, for (x, y) ∈ P × P and t ∈ [max{ξ, η}, 1], using (4.1.9), Remark 4.1.6 and (4.1.10),

we obtain

A(x, y)(t) =

∫ 1

0
Fξη(t, s)f(s, x(s), y(s))ds+

∫ 1

0
Gαβξη(t, s)g(s, x(s), y(s))ds

≥ ν

∫ 1

0
s(1− s)f(s, x(s), y(s))ds+ ν

∫ 1

0
s(1− s)g(s, x(s), y(s))ds

= γµ

∫ 1

0
s(1− s)f(s, x(s), y(s))ds+ γµ

∫ 1

0
s(1− s)g(s, x(s), y(s))ds ≥ γ∥A(x, y)∥.

Consequently, A(x, y) ∈ P for all (x, y) ∈ P × P . Thus, A(P × P ) ⊆ P . Similarly, we can

show that B(P × P ) ⊆ P . Hence, T (P × P ) ⊆ (P × P ). Now, we show that the operator

T : Or ∩ (P × P ) → P × P is uniformly bounded. Choose a real constant c ∈ (0, 1]

such that cr ≤ 1. For (x, y) ∈ Or ∩ (P × P ), t ∈ [0, 1], using (4.1.9), Remark 4.1.6 and

(H23)− (H25), we have

A(x, y)(t) =

∫ 1

0
Fξη(t, s)f(s, x(s), y(s))ds+

∫ 1

0
Gαβξη(t, s)g(s, x(s), y(s))ds

≤ µ

∫ 1

0
s(1− s)f(s, x(s), y(s))ds+ µ

∫ 1

0
s(1− s)g(s, x(s), y(s))ds

= µ

∫ 1

0
s(1− s)f(s,

c x(s)

c
,
c y(s)

c
)ds+ µ

∫ 1

0
s(1− s)g(s,

c x(s)

c
,
c y(s)

c
)ds

≤ µc−β1

∫ 1

0
s(1− s)f(s, c x(s),

c y(s)

c
)ds+ µc−ρ1

∫ 1

0
s(1− s)g(s, c x(s),

c y(s)

c
)ds

≤ µc−β1−β2

∫ 1

0
s(1− s)f(s, c x(s), c y(s))ds+ µc−ρ1−ρ2

∫ 1

0
s(1− s)g(s, c x(s), c y(s))ds

≤ µcα1−β1−β2

∫ 1

0
s(1− s)(x(s))α1f(s, 1, c y(s))ds+ µcγ1−ρ1−ρ2

∫ 1

0
s(1− s)(x(s))γ1

g(s, 1, c y(s))ds ≤ µcα1+α2−β1−β2

∫ 1

0
s(1− s)(x(s))α1(y(s))α2f(s, 1, 1)ds+ µcγ1+γ2−ρ1−ρ2∫ 1

0
s(1− s)(x(s))γ1(y(s))γ2g(s, 1, 1)ds ≤ µa cα1+α2−β1−β2rα1+α2 + µ b cγ1+γ2−ρ1−ρ2rγ1+γ2 ,

which implies that A(Or∩(P×P )) is uniformly bounded. Similarly, using (4.1.9), Remark

4.1.6 and (H23) − (H25), we can show that B(Or ∩ (P × P )) is also uniformly bounded.

Thus, T (Or ∩ (P × P )) is uniformly bounded.

Now, we show that A(Or ∩ (P ×P )) is equicontinuous. For any (x, y) ∈ Or ∩ (P ×P ),

t ∈ [0, 1], using (4.1.9) and Lemma 4.1.7, we have

A(x, y)(t) =

∫ 1

0
Fξη(t, s)f(s, x(s), y(s))ds+

∫ 1

0
Gαβξη(t, s)g(s, x(s), y(s))ds
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=

∫ 1

0
H(t, s)f(s, x(s), y(s))ds+

αβξt

1− αβξη

∫ 1

0
H(η, s)f(s, x(s), y(s))ds

+
αt

1− αβξη

∫ 1

0
H(ξ, s)g(s, x(s), y(s))ds

=

∫ t

0
s(1− t)f(s, x(s), y(s))ds+

∫ 1

t
t(1− s)f(s, x(s), y(s))ds

+
αβξt

1− αβξη

∫ 1

0
H(η, s)f(s, x(s), y(s))ds+

αt

1− αβξη

∫ 1

0
H(ξ, s)g(s, x(s), y(s))ds.

Differentiating with respect to t, we obtain

A(x, y)′(t) = −
∫ t

0
sf(s, x(s), y(s))ds+

∫ 1

t
(1− s)f(s, x(s), y(s))ds

+
αβξ

1− αβξη

∫ 1

0
H(η, s)f(s, x(s), y(s))ds+

α

1− αβξη

∫ 1

0
H(ξ, s)g(s, x(s), y(s))ds,

which implies that

|A(x, y)′(t)| ≤
∫ t

0
sf(s, x(s), y(s))ds+

∫ 1

t
(1− s)f(s, x(s), y(s))ds

+
αβξ

1− αβξη

∫ 1

0
s(1− s)f(s, x(s), y(s))ds+

α

1− αβξη

∫ 1

0
s(1− s)g(s, x(s), y(s))ds.

Now, using (H23)− (H25), we have

|A(x, y)′(t)| =
∫ t

0
sf(s,

c x(s)

c
,
c y(s)

c
)ds+

∫ 1

t
(1− s)f(s,

c x(s)

c
,
c y(s)

c
)ds

+
αβξ

1− αβξη

∫ 1

0
s(1− s)f(s,

c x(s)

c
,
c y(s)

c
)ds+

α

1− αβξη

∫ 1

0
s(1− s)g(s,

c x(s)

c
,
c y(s)

c
)ds

≤ cα1+α2−β1−β2rα1+α2(

∫ t

0
sf(s, 1, 1)ds+

∫ 1

t
(1− s)f(s, 1, 1)ds)

+
α

1− αβξη
(βξa cα1+α2−β1−β2rα1+α2 + b cγ1+γ2−ρ1−ρ2rγ1+γ2).

Let

h(t) = cα1+α2−β1−β2rα1+α2

(∫ t

0
sf(s, 1, 1)ds+

∫ 1

t
(1− s)f(s, 1, 1)ds

)
+

α

1− αβξη
(βξa cα1+α2−β1−β2rα1+α2 + b cγ1+γ2−ρ1−ρ2rγ1+γ2).

Integrating from 0 to 1 and using (H23), we have∫ 1

0
h(t)dt = cα1+α2−β1−β2rα1+α2(

∫ 1

0

∫ t

0
sf(s, 1, 1)dsdt+

∫ 1

0

∫ 1

t
(1− s)

f(s, 1, 1)dsdt) +
α

1− αβξη
(βξa cα1+α2−β1−β2rα1+α2 + b cγ1+γ2−ρ1−ρ2rγ1+γ2)

= cα1+α2−β1−β2rα1+α2(

∫ 1

0
s(1− s)f(s, 1, 1)ds+

∫ 1

0
s(1− s)f(s, 1, 1)ds)

+
α

1− αβξη
(βξa cα1+α2−β1−β2rα1+α2 + b cγ1+γ2−ρ1−ρ2rγ1+γ2)

=
(2 + αβξ − 2αβξη)acα1+α2−β1−β2rα1+α2 + αbcγ1+γ2−ρ1−ρ2rγ1+γ2

1− αβξη
.

(4.1.11)
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Thus, for any given t1, t2 ∈ [0, 1] with t1 ≤ t2 and (x, y) ∈ Or ∩ (P × P ), we have

|A(x, y)(t1)−A(x, y)(t2)| =
∣∣∣∣∫ t2

t1

A(x, y)′(t)dt

∣∣∣∣ ≤ ∫ t2

t1

h(t)dt,

this together with (4.1.11), it follows that A(Or ∩ (P × P )) is equicontinuous on [0, 1].

Similarly, we can show that B(Or∩(P×P )) is also equicontinuous. Thus, T (Or∩(P×P ))
is equicontinuous. Thus, by Theorem 1.1.6, it follows that T (Or ∩ (P × P )) is relatively

compact. Hence, T is a compact operator.

Now, we show that T is continuous. Let (xm, ym), (x, y) ∈ Or ∩ (P × P ) such that

∥(xm, ym)− (x, y)∥6 → 0 as m→ +∞. Then by using (4.1.9) and Remark 4.1.6, we have

|A(xm, ym)(t)−A(x, y)(t)| =
∣∣∣∣∫ 1

0
Fξη(t, s)(f(s, xm(s), ym(s))− f(s, x(s), y(s)))ds

+

∫ 1

0
Gαβξη(t, s)(g(s, xm(s), ym(s))− g(s, x(s), y(s)))ds

∣∣∣∣ ≤ ∫ 1

0
Fξη(t, s)|f(s, xm(s), ym(s))

− f(s, x(s), y(s))|ds+
∫ 1

0
Gαβξη(t, s)|g(s, xm(s), ym(s))− g(s, x(s), y(s))|ds

≤ µ

∫ 1

0
s(1− s)|f(s, xm(s), ym(s))− f(s, x(s), y(s))|ds

+ µ

∫ 1

0
s(1− s)|g(s, xm(s), ym(s))− g(s, x(s), y(s))|ds.

Consequently,

∥A(xm, ym)−A(x, y)∥ ≤ µ

∫ 1

0
s(1− s)|f(s, xm(s), ym(s))− f(s, x(s), y(s))|ds

+ µ

∫ 1

0
s(1− s)|g(s, xm(s), ym(s))− g(s, x(s), y(s))|ds.

By Lebesgue dominated convergence theorem, it follows that

∥A(xm, ym)−A(x, y)∥ → 0 as m→ +∞. (4.1.12)

Similarly, by using (4.1.9) and Remark 4.1.6, we have

∥B(xm, ym)−B(x, y)∥ → 0 as m→ +∞. (4.1.13)

From (4.1.8), (4.1.12) and (4.1.13), it follows that

∥T (xm, ym)− T (x, y)∥6 → 0 as m→ +∞,

that is, T : P × P → P × P is continuous. Hence, T : P × P → P × P is completely

continuous.

Theorem 4.1.9. Under the hypothesis (H23)− (H25), the system of BVPs (4.0.1) has at

least one positive solution.
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Proof. Choose a constant R > 0 such that

R ≥ max{1, (4aµ)
1

1−β1−β2 , (4bµ)
1

1−ρ1−ρ2 }. (4.1.14)

Let cR = 1, for some real constants c. Then, for any (x, y) ∈ ∂OR ∩ (P × P ), t ∈ [0, 1],

using (4.1.9), Remark 4.1.6, (H23)− (H25), we have

A(x, y)(t) =

∫ 1

0
Fξη(t, s)f(s, x(s), y(s))ds+

∫ 1

0
Gαβξη(t, s)g(s, x(s), y(s))ds

≤ µ

∫ 1

0
s(1− s)f(s, x(s), y(s))ds+ µ

∫ 1

0
s(1− s)g(s, x(s), y(s))ds

= µ

∫ 1

0
s(1− s)f(s,

cx(s)

c
,
cy(s)

c
)ds+ µ

∫ 1

0
s(1− s)g(s,

cx(s)

c
,
cy(s)

c
)ds

≤ µcα1−β1Rα1

∫ 1

0
s(1− s)f(s, 1,

cy(s)

c
)ds+ µc γ1−ρ1Rγ1

∫ 1

0
s(1− s)g(s, 1,

cy(s)

c
)ds

≤ µcα1−β1+α2−β2Rα1+α2

∫ 1

0
s(1− s)f(s, 1, 1)ds+ µc γ1−ρ1+γ2−ρ2Rγ1+γ2∫ 1

0
s(1− s)g(s, 1, 1)ds = aµRβ1+β2 + bµRρ1+ρ2 .

Thus, in view of (4.1.14), we have

∥A(x, y)∥ ≤ ∥(x, y)∥6
2

for all (x, y) ∈ ∂OR ∩ (P × P ). (4.1.15)

Similarly, using (4.1.9), Remark 4.1.6, (H23)− (H25), we have

∥B(x, y)∥ ≤ ∥(x, y)∥6
2

for all (x, y) ∈ ∂OR ∩ (P × P ). (4.1.16)

From (4.1.8), (4.1.15) and (4.1.16), it follows that

∥T (x, y)∥6 ≤ ∥(x, y)∥6 for all (x, y) ∈ ∂OR ∩ (P × P ). (4.1.17)

Choose a real constant r ∈ (0, R) such that

r ≤ min
{
1, (4νγβ1+β2

∫ 1

max{ξ,η}
s(1− s)f(s, 1, 1)ds)

1
1−β1−β2 ,

(4νγ ρ1+ρ2

∫ 1

max{ξ,η}
s(1− s)g(s, 1, 1)ds)

1
1−ρ1−ρ2

}
.

(4.1.18)

Then, for any (x, y) ∈ ∂Or ∩ (P × P ), t ∈ [max{ξ, η}, 1], using (4.1.9), Remark 4.1.6,

(H24)− (H25), we have

A(x, y)(t) =

∫ 1

0
Fξη(t, s)f(s, x(s), y(s))ds+

∫ 1

0
Gαβξη(t, s)g(s, x(s), y(s))ds

≥ ν

∫ 1

0
s(1− s)f(s, x(s), y(s))ds+ ν

∫ 1

0
s(1− s)g(s, x(s), y(s))ds

≥ ν

∫ 1

0
s(1− s)(x(s))β1f(s, 1, y(s))ds+ ν

∫ 1

0
s(1− s)g(s, x(s), y(s))ds
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≥ ν

∫ 1

0
s(1− s)(x(s))β1(y(s))β2f(s, 1, 1)ds+ ν

∫ 1

0
s(1− s)g(s, x(s), y(s))ds

≥ ν

∫ 1

0
s(1− s)(x(s))β1(y(s))β2f(s, 1, 1)ds+ ν

∫ 1

0
s(1− s)(x(s))ρ1g(s, 1, y(s))ds

≥ ν

∫ 1

0
s(1− s)(x(s))β1(y(s))β2f(s, 1, 1)ds+ ν

∫ 1

0
s(1− s)(x(s))ρ1(y(s))ρ2g(s, 1, 1)ds

= ν

∫ 1

0
s(1− s)((x(s))β1(y(s))β2f(s, 1, 1) + (x(s))ρ1(y(s))ρ2g(s, 1, 1))ds

≥ ν

∫ 1

max{ξ,η}
s(1− s)((x(s))β1(y(s))β2f(s, 1, 1) + (x(s))ρ1(y(s))ρ2g(s, 1, 1))ds

≥ νγβ1+β2rβ1+β2

∫ 1

max{ξ,η}
s(1− s)f(s, 1, 1)ds

+ νγ ρ1+ρ2r ρ1+ρ2

∫ 1

max{ξ,η}
s(1− s)g(s, 1, 1)ds.

Thus in view of (4.1.18), we have

∥A(x, y)∥ ≥ ∥(x, y)∥6
2

for all (x, y) ∈ ∂Or ∩ (P × P ). (4.1.19)

Similarly, using (4.1.9), Remark 4.1.6, (H24)− (H25), in view of (4.1.18), we have

∥B(x, y)∥ ≥ ∥(x, y)∥6
2

for all (x, y) ∈ ∂Or ∩ (P × P ). (4.1.20)

From (4.1.8), (4.1.19) and (4.1.20), it follows that

∥T (x, y)∥6 ≥ ∥(x, y)∥6 for all (x, y) ∈ ∂Or ∩ (P × P ). (4.1.21)

Hence, in view of (4.1.17), (4.1.21) and by Theorem 1.2.8, T has a fixed point (x, y) ∈
(OR \ Or) ∩ (P × P ). That is, x = A(x, y) and y = B(x, y). Moreover, (x, y) is positive.

In fact, by concavity of x and by construction of the cone P , we have

x(1) ≥ min
t∈[max{ξ,η},1]

x(t) ≥ γ∥x∥ > 0,

which implies that x(t) > 0 for all t ∈ (0, 1]. Similarly, y(t) > 0 for all t ∈ (0, 1]. Hence,

(x, y) is a positive solution of the system of BVPs (4.0.1).

Example 4.1.10.

f(t, x, y) =

m∑
i=1

n∑
j=1

tpi(1− t)qjxriysj ,

g(t, x, y) =
m′∑
k=1

n′∑
l=1

tp
′
k(1− t)q

′
lxr

′
kys

′
l ,

where the real constants pi, qj , ri, sj satisfy pi, qj > −2, 0 ≤ ri, sj < 1, i = 1, 2, · · · ,m; j =

1, 2, · · · , n, with max1≤i≤m ri + max1≤j≤n sj < 1, and the real constants p′k, q
′
l, r

′
k, s

′
l sat-

isfy p′k, q
′
l > −2, 0 ≤ r′k, s

′
l < 1, k = 1, 2, · · · ,m′; l = 1, 2, · · · , n′, with max1≤k≤m′ r′k +

max1≤l≤n′ s′l < 1. Clearly, f and g satisfy assumptions (H23)− (H25). Hence, by Theorem

4.1.9, the system of BVPs (4.0.1) has a positive solution.
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4.2 Singular systems of ODEs with two–point coupled BCs

In this section, we establish existence of at least one C1-positive solution for the system

of BVPs (4.0.2). By a C1-positive solution to the system of BVPs (4.0.2), we mean that

(x, y) ∈ (C1[0, 1]∩C2(0, 1))× (C1[0, 1]∩C2(0, 1)), (x, y) satisfies (4.0.2), x > 0 and y > 0

on [0, 1], x′ > 0 and y′ > 0 on [0, 1).

Assume that the following holds:

(H26) hypothesis (H10) of Chapter 3, page 42;

(H27) hypothesis (H11) of Chapter 3, page 42;

(H28) hypothesis (H12) of Chapter 3, page 42;

(H29)

sup
c∈(0,∞)

c

(1 + b1
a1
)I−1(h1(c)k1(c)

∫ 1
0 p(t)dt) + (1 + b2

a2
)J−1(h2(c)k2(c)

∫ 1
0 q(t)dt)

> 1,

where I(µ) =
∫ µ
0

dτ
u1(τ)+v1(τ)

, J(µ) =
∫ µ
0

dτ
u2(τ)+v2(τ)

, for µ > 0;

(H30) hypothesis (H14) of Chapter 3, page 42;

(H31) for real constants M > 0 and L > 0 there exist continuous functions φML and ψML

defined on [0, 1] and positive on (0, 1), and constants 0 ≤ γ1, δ1, γ2, δ2 < 1 satisfying

(1 − γ1)(1 − γ2) ̸= δ1δ2, such that f(t, x, y, z) ≥ φML(t)x
γ1yδ1 and g(t, x, y, z) ≥

ψML(t)x
γ2yδ2 on [0, 1]× [0,M ]× [0,M ]× [0, L];

(H32) hypothesis (H21) of Chapter 3, page 60, with E =M and F = L.

Theorem 4.2.1. Under the hypothesis (H26)− (H32), the system of BVPs (4.0.2) has at

least one C1-positive solution.

Proof. In view of (H29), we can choose real constant M5 > 0 such that

M5

(1 + b1
a1
)I−1(h1(M5)k1(M5)

∫ 1
0 p(s)ds) + (1 + b2

a2
)J−1(h2(M5)k2(M5)

∫ 1
0 q(s)ds)

> 1.

From the continuity of I and J , we choose ε > 0 small enough such that

M5

(1 + b1
a1
)I−1(h1(M5)k1(M5)

∫ 1

0
p(s)ds+ I(ε)) + (1 + b2

a2
)J−1(h2(M5)k2(M5)

∫ 1

0
q(s)ds+ J(ε))

> 1.

(4.2.1)

Choose a real constant L5 > 0 such that

L5 > max{I−1(h1(M5)k1(M5)

∫ 1

0
p(t)dt+ I(ε)), J−1(h2(M5)k2(M5)

∫ 1

0
q(t)dt+ J(ε))}

(4.2.2)
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Choose n0 ∈ {1, 2, · · · } such that 1
n0

< ε. For each n ∈ {n0, n0 + 1, · · · }, define

retractions θ5 : R → [0,M5] and ρ5 : R → [ 1n , L5] by

θ5(x) = max{0,min{x,M5}} and ρ5(x) = max{ 1
n
,min{x, L5}}.

Consider the modified system of BVPs

−x′′(t) = p(t)f(t, θ5(x(t)), θ5(y(t)), ρ5(x
′(t))), t ∈ (0, 1),

−y′′(t) = q(t)g(t, θ5(x(t)), θ5(y(t)), ρ5(y
′(t))), t ∈ (0, 1),

a1y(0)− b1x
′(0) = 0, y′(1) =

1

n

a2x(0)− b2y
′(0) = 0, x′(1) =

1

n
.

(4.2.3)

Since f(t, θ5(x(t)), θ5(y(t)), ρ5(x
′(t))), g(t, θ5(x(t)), θ5(y(t)), ρ5(y

′(t))) are continuous and

bounded on [0, 1] × R3, by Theorem 1.2.4, it follows that the modified system of BVPs

(4.2.3) has a solution (xn, yn) ∈ (C1[0, 1] ∩ C2(0, 1))× (C1[0, 1] ∩ C2(0, 1)).

Using (4.2.3) and (H27), we obtain

x′′n(t) ≤ 0 and y′′n(t) ≤ 0 for t ∈ (0, 1),

which on integration from t to 1, using the BCs (4.2.3), implies that

x′n(t) ≥
1

n
and y′n(t) ≥

1

n
for t ∈ [0, 1]. (4.2.4)

Integrating (4.2.4) from 0 to t, using the BCs (4.2.3) and (4.2.4), we have

xn(t) ≥ (t+
b2
a2

)
1

n
and yn(t) ≥ (t+

b1
a1

)
1

n
for t ∈ [0, 1]. (4.2.5)

From (4.2.4) and (4.2.5), it follows that

∥xn∥ = xn(1) and ∥yn∥ = yn(1). (4.2.6)

Now, we show that

x′n(t) < L5, y
′
n(t) < L5, t ∈ [0, 1]. (4.2.7)

First, we prove x′n(t) < L5 for t ∈ [0, 1]. Suppose x′n(t1) ≥ L5 for some t1 ∈ [0, 1]. Using

(4.2.3) and (H28), we have

−x′′n(t) ≤ p(t)h1(θ5(xn(t)))k1(θ5(yn(t)))(u1(ρ5(x
′
n(t))) + v1(ρ5(x

′
n(t)))), t ∈ (0, 1),

which implies that

−x′′n(t)
u1(ρ5(x′n(t))) + v1(ρ5(x′n(t)))

≤ h1(M5)k1(M5)p(t), t ∈ (0, 1).
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Integrating from t1 to 1, using the BCs (4.2.3), we obtain∫ x′
n(t1)

1
n

dz

u1(ρ5(z)) + v1(ρ5(z))
≤ h1(M5)k1(M5)

∫ 1

t1

p(t)dt,

which can also be written as∫ L5

1
n

dz

u1(z) + v1(z)
+

∫ x′
n(t1)

L5

dz

u1(L5) + v1(L5)
≤ h1(M5)k1(M5)

∫ 1

0
p(t)dt.

Using the increasing property of I, we obtain

I(L5) +
x′n(t1)− L5

u1(L5) + v1(L5)
≤ h1(M5)k1(M5)

∫ 1

0
p(t)dt+ I(ε),

and using the increasing property of I−1, leads to

L5 ≤ I−1(h1(M5)k1(M5)

∫ 1

0
p(t)dt+ I(ε)).

Which is a contradiction to (4.2.2). Hence, x′n(t) < L5 for t ∈ [0, 1].

Similarly, we can show that y′n(t) < L5 for t ∈ [0, 1].

Now, we show that

∥xn∥+ ∥yn∥ < M5. (4.2.8)

Suppose ∥xn∥+ ∥yn∥ ≥M5. From (4.2.3), (4.2.4), (4.2.7) and (H28), it follows that

−x′′n(t) ≤ p(t)h1(θ5(xn(t)))k1(θ5(yn(t)))(u1(x
′
n(t)) + v1(x

′
n(t))), t ∈ (0, 1),

−y′′n(t) ≤ q(t)h2(θ5(xn(t)))k2(θ5(yn(t)))(u2(y
′
n(t)) + v2(y

′
n(t))), t ∈ (0, 1),

which implies that

−x′′n(t)
u1(x′n(t)) + v1(x′n(t))

≤ h1(M5)k1(M5)p(t), t ∈ (0, 1),

−y′′n(t)
u2(y′n(t)) + v2(y′n(t))

≤ h2(M5)k2(M5)q(t), t ∈ (0, 1).

Integrating from t to 1, using the BCs (4.2.3), we obtain∫ x′
n(t)

1
n

dz

u1(z) + v1(z)
≤ h1(M5)k1(M5)

∫ 1

t
p(s)ds, t ∈ [0, 1],∫ y′n(t)

1
n

dz

u2(z) + v2(z)
≤ h2(M5)k2(M5)

∫ 1

t
q(s)ds, t ∈ [0, 1],

which can also be written as

I(x′n(t))− I(
1

n
) ≤ h1(M5)k1(M5)

∫ 1

0
p(s)ds, t ∈ [0, 1],

J(y′n(t))− J(
1

n
) ≤ h2(M5)k2(M5)

∫ 1

0
q(s)ds, t ∈ [0, 1].
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The increasing property of I and J leads to

x′n(t) ≤ I−1(h1(M5)k1(M5)

∫ 1

0
p(s)ds+ I(ε)), t ∈ [0, 1],

y′n(t) ≤ J−1(h2(M5)k2(M5)

∫ 1

0
q(s)ds+ J(ε)), t ∈ [0, 1].

(4.2.9)

Integrating from 0 to t, using the BCs (4.2.3) and (4.2.9), we obtain

xn(t) ≤ I−1(h1(M5)k1(M5)

∫ 1

0
p(s)ds+ I(ε))

+
b2
a2
J−1(h2(M5)k2(M5)

∫ 1

0
q(s)ds+ J(ε)), t ∈ [0, 1],

yn(t) ≤
b1
a1
I−1(h1(M5)k1(M5)

∫ 1

0
p(s)ds+ I(ε))

+ J−1(h2(M5)k2(M5)

∫ 1

0
q(s)ds+ J(ε)), t ∈ [0, 1].

(4.2.10)

From (4.2.10) and (4.2.6), it follows that

M5 ≤ ∥xn∥+ ∥yn∥ ≤ (1 +
b1
a1

)I−1(h1(M5)k1(M5)

∫ 1

0
p(s)ds+ I(ε))

+ (1 +
b2
a2

)J−1(h2(M5)k2(M5)

∫ 1

0
q(s)ds+ J(ε)),

which implies that

M5

(1 + b1
a1
)I−1(h1(M5)k1(M5)

∫ 1

0
p(s)ds+ I(ε)) + (1 + b2

a2
)J−1(h2(M5)k2(M5)

∫ 1

0
q(s)ds+ J(ε))

≤ 1,

a contradiction to (4.2.1). Hence, ∥xn∥+ ∥yn∥ < M5.

Thus, in view of (4.2.3)–(4.2.8), (xn, yn) is a solution of the following coupled system

of BVPs

−x′′(t) = p(t)f(t, x(t), y(t), x′(t)), t ∈ (0, 1),

−y′′(t) = q(t)g(t, x(t), y(t), y′(t)), t ∈ (0, 1),

a1y(0)− b1x
′(0) = 0, x′(1) =

1

n
,

a2x(0)− b2y
′(0) = 0, x′(1) =

1

n
,

(4.2.11)

satisfying

(t+
b2
a2

)
1

n
≤ xn(t) < M5,

1

n
≤ x′n(t) < L5, t ∈ [0, 1],

(t+
b1
a1

)
1

n
≤ yn(t) < M5,

1

n
≤ y′n(t) < L5, t ∈ [0, 1].

(4.2.12)

We claim that

x′n(t) ≥ Cγ1
9 C

δ1
10

∫ 1

t
p(s)φM5L5(s)ds, (4.2.13)
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y′n(t) ≥ Cγ2
9 C

δ2
10

∫ 1

t
q(s)ψM5L5(s)ds, (4.2.14)

where

C9 =

(
b1
a1

∫ 1

0
p(s)φM5L5(s)ds

) δ1
(1−γ1)(1−γ2)−δ1δ2

(
b2
a2

∫ 1

0
q(s)ψM5L5(s)ds

) 1−γ2
(1−γ1)(1−γ2)−δ1δ2

,

C10 =

(
b1
a1

∫ 1

0
p(s)φM5L5(s)ds

) 1−γ1
(1−γ1)(1−γ2)−δ1δ2

(
b2
a2

∫ 1

0
q(s)ψM5L5(s)ds

) δ2
(1−γ1)(1−γ2)−δ1δ2

.

To prove (4.2.13), consider the following relation

xn(t) = (t+
b2
a2

)
1

n
+

∫ t

0
sp(s)f(s, xn(s), yn(s), x

′
n(s))ds

+

∫ 1

t
tp(s)f(s, xn(s), yn(s), x

′
n(s))ds+

b2
a2

∫ 1

t
q(s)g(s, xn(s), yn(s), y

′
n(s))ds,

(4.2.15)

which implies that

xn(0) =
b2
a2

1

n
+
b2
a2

∫ 1

0
q(s)g(s, xn(s), y

′
n(s))ds.

Using (H31) and (4.2.12), we obtain

xn(0) ≥
b2
a2

∫ 1

0

q(s)ψM5L5(s)(xn(s))
γ1(yn(s))

δ1ds ≥ (xn(0))
γ1(yn(0))

δ1
b2
a2

∫ 1

0

q(s)ψM5L5(s)ds,

which implies that

xn(0) ≥ (yn(0))
δ1

1−γ1

(
b2
a2

∫ 1

0
q(s)ψM5L5(s)ds

) 1
1−γ1

. (4.2.16)

Similarly, using (H31) and (4.2.12), we obtain

yn(0) ≥ (xn(0))
δ2

1−γ2

(
b1
a1

∫ 1

0
p(s)φM5L5(s)ds

) 1
1−γ2

. (4.2.17)

Now, using (4.2.17) in (4.2.16), we have

xn(0) ≥(xn(0))
δ1δ2

(1−γ1)(1−γ2)

(
b1
a1

∫ 1

0
p(s)φM5L5(s)ds

) δ1
(1−γ1)(1−γ2)

(
b2
a2

∫ 1

0
q(s)ψM5L5(s)ds

) 1
1−γ1

.

Hence,

xn(0) ≥ C9. (4.2.18)

Similarly, using (4.2.16) in (4.2.17), we obtain

yn(0) ≥ C10. (4.2.19)

Now, from (4.2.15), it follows that

x′n(t) ≥
∫ 1

t
p(s)f(s, xn(s), yn(s), x

′
n(s))ds.
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and using (H31), (4.2.12), (4.2.18) and (4.2.19), we obtain (4.2.13).

Similarly, we can prove (4.2.14).

Now, using (4.2.11), (H28), (4.2.12), (4.2.13) and (4.2.14), we have

0 ≤ −x′′n(t) ≤ h1(M5)k1(M5)p(t)(u1(C
γ1
9 C

δ1
10

∫ 1

t
p(s)φM5L5(s)ds) + v1(L5)), t ∈ (0, 1),

0 ≤ −y′′n(t) ≤ h2(M5)k2(M5)q(t)(u2(C
γ2
9 C

δ2
10

∫ 1

t
q(s)ψM5L5(s)ds) + v2(L5)), t ∈ (0, 1).

(4.2.20)

In view of (4.2.12), (4.2.20), (H26) and (H32), it follows that the sequences {(x(j)n , y
(j)
n )}

(j = 0, 1) are uniformly bounded and equicontinuous on [0, 1]. Hence, by Theorem (1.1.6),

there exist subsequences {(x(j)nk , y
(j)
nk )} (j = 0, 1) of {(x(j)n , y

(j)
n )} (j = 0, 1) and (x, y) ∈

C1[0, 1]×C1[0, 1] such that (x
(j)
nk , y

(j)
nk ) converges uniformly to (x(j), y(j)) on [0, 1] (j = 0, 1).

Also, a2x(0)− b2y′(0) = a1y(0)− b1x′(0) = x′(1) = y′(1) = 0. Moreover, from (4.2.13) and

(4.2.14), with nk in place of n and taking limnk→+∞, we have

x′(t) ≥ Cγ1
9 C

δ1
10

∫ 1

t
p(s)φM5L5(s)ds,

y′(t) ≥ Cγ2
9 C

δ2
10

∫ 1

t
q(s)ψM5L5(s)ds,

which shows that x′ > 0 and y′ > 0 on [0, 1), x > 0 and y > 0 on [0, 1]. Further, (xnk
, ynk

)

satisfy

x′nk
(t) = x′nk

(0)−
∫ t

0
p(s)f(s, xnk

(s), ynk
(s), x′nk

(s))ds, t ∈ [0, 1],

y′nk
(t) = y′nk

(0)−
∫ t

0
q(s)g(s, xnk

(s), ynk
(s), y′nk

(s))ds, t ∈ [0, 1].

Passing to the limit as nk → ∞, we obtain

x′(t) = x′(0)−
∫ t

0
p(s)f(s, x(s), y(s), x′(s))ds, t ∈ [0, 1],

y′(t) = y′(0)−
∫ t

0
q(s)g(s, x(s), y(s), y′(s))ds, t ∈ [0, 1],

which implies that

−x′′(t) = p(t)f(t, x(t), y(t), x′(t)), t ∈ (0, 1),

−y′′(t) = q(t)g(t, x(t), y(t), y′(t)), t ∈ (0, 1).

Hence, (x, y) is a C1-positive solution of the system of BVPs (4.0.2).

Example 4.2.2. Consider the following coupled system of SBVPs

−x′′(t) = νβ1+1(x(t))γ1(y(t))δ1(x′(t))−β1 , t ∈ (0, 1),

−y′′(t) = νβ2+1(x(t))γ2(y(t))δ2(y′(t))−β2 , t ∈ (0, 1),

x(0)− y′(0) = y(0)− x′(0) = x′(1) = y′(1) = 0,

(4.2.21)
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where 0 ≤ γ1, γ2, δ1, δ2 < 1 satisfying (1− γ1)(1− γ2) ̸= δ1δ2, 0 < β1 < 1, 0 < β2 < 1 and

ν > 0 such that

ν < sup
c∈(0,∞)

c

2
∑2

i=1(βi + 1)
1

βi+1 c
γi+δi
βi+1

.

Take p(t) = q(t) = 1, h1(x) = νβ1+1xγ1 , h2(x) = νβ2+1xγ2 , k1(x) = xδ1 , k2(x) = xδ2 ,

u1(x) = x−β1 , u2(x) = x−β2 and v1(x) = v2(x) = 0. Then, I(ν) = νβ1+1

β1+1 , J(ν) =
νβ2+1

β2+1 ,

I−1(ν) = (β1 + 1)
1

β1+1 ν
1

β1+1 and J−1(ν) = (β2 + 1)
1

β2+1 z
1

β2+1 .

Choose φML(t) = L−β1 , ψML(t) = L−β2 . Then,

sup
c∈(0,∞)

c

(1 + b1
a1
)I−1(h1(c)k1(c)

∫ 1
0 p(t)dt) + (1 + b2

a2
)J−1(h2(c)k2(c)

∫ 1
0 q(t)dt)

=

sup
c∈(0,∞)

c

2ν
∑2

i=1(βi + 1)
1

βi+1 c
γi+δi
βi+1

> 1.

Clearly, (H26)−(H32) are satisfied. Hence, by Theorem 4.2.1, the system of BVPs (4.2.21)

has at least one C1-positive solution.



Chapter 5

Singular Systems with

Sign–Changing Nonlinear

Functions on Finite and Infinite

Intervals

BVPs defined on a half–line frequently occur in the study of radially symmetric solutions of

nonlinear elliptic PDEs [49,57,64,78]. Moreover, second–order BVPs on infinite intervals

model many physical phenomenon such as unsteady flow of gasses through semi–infinite

porous media [84]; mass transfer on a rotating disc in non–Newtonian fluids [109]; heat

transfer in radial flow between parallel circular discs [109]; phase change of solids with

temperature dependent thermal conductivity [109]; plasma physics [2, 59]; electrical po-

tential in an isolated neutral atom [2, 34] and so on. In all these applications, positive

solutions are meaningful only. Recently, the theory on existence of solutions to nonlinear

BVPs on unbounded domain has attracted the attention of many authors, see for exam-

ple [5,47,50,76,91,97,102,130] and the references therein. For BVPs defined on half–line,

an excellent resource is produced by Agarwal and O’Regan [5] that have been received

considerable attentions.

Agarwal and O’Regan [3, Section 2.10] have developed the method of upper and lower

solutions for the following two–point BVP

−y′′(t) = q(t)f(t, y(t), y′(t)), t ∈ (0, 1),

y(0) = y(1) = 0,
(5.0.1)

where f : [0, 1] × (0,∞) × R → R is continuous and singular at y = 0 and the function

q ∈ C(0, 1) is positive on (0, 1). Further, they have presented the method of upper and

lower solutions for more general problems in [114]. The main idea in both is to approximate

99
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(5.0.1) as a sequence of non–singular problems such that each element of the sequence has

a lower solution αn or ρn and an upper solution βn.

In [3, Section 2.15], they studied the existence of positive solutions to the following

BVP

−x′′(t) = ϕ(t)f(t, x(t)), t ∈ (0,∞),

x(0) = 0, lim
t→∞

x′(t) = 0,
(5.0.2)

where f(t, x) is singular at x = 0. Further, in [5, Section 1.11] they establish the existence

results for (5.0.2) when f includes first derivative also. In [102], Ma studied existence of

C1[0,∞) positive solutions to the BVP

−y′′(t) = g(t, y(t), y′(t)), for a.e. t ∈ (0,∞),

y(0) = 0, y is bounded on [0,∞),
(5.0.3)

under certain growth on the nonlinear function g. However in [36, 127], it was assumed

that the nonlinear functions are positive which lead to a concave solution.

In Section 5.1, we study the existence of C1-positive solutions for the following system

of SBVPs [23],

−x′′(t) = p1(t)f1(t, x(t), y(t), x
′(t)), t ∈ (0, 1),

−y′′(t) = p2(t)f2(t, x(t), y(t), y
′(t)), t ∈ (0, 1),

x(0) = x(1) = y(0) = y(1) = 0,

(5.0.4)

where f1, f2 : [0, 1]× (0,∞)× (0,∞)×R → R are continuous. Moreover, f1, f2 are allowed

to change sign and may be singular at x = 0, y = 0. Also, p1, p2 ∈ C(0, 1) are positive on

(0, 1).

Further in Sections 5.2 and 5.3, we study the existence of C1-positive solutions to the

following coupled systems of ODEs

−x′′(t) = p1(t)f1(t, x(t), y(t), x
′(t)), t ∈ R+

0 ,

−y′′(t) = p2(t)f2(t, x(t), y(t), y
′(t)), t ∈ R+

0 ,
(5.0.5)

subject to the following set of BCs

x(0) = y(0) = lim
t→∞

y′(t) = lim
t→∞

x′(t) = 0 (5.0.6)

and

a1x(0)− b1x
′(0) = lim

t→∞
x′(t) = 0,

a2y(0)− b2y
′(0) = lim

t→∞
y′(t) = 0,

(5.0.7)

where the functions fi : R+ × R2 × R0 → R are continuous and allowed to change sign.

Further, the nonlinear functions fi (i = 1, 2) are allowed to be singular at x′ = 0 and



CHAPTER 5. SBVPS WITH SIGN–CHANGING NONLINEAR FUNCTIONS 101

y′ = 0. Also, pi ∈ C(R+
0 ), pi(i = 1, 2) > 0 on R+

0 and the constants ai, bi(i = 1, 2) > 0;

here R = (−∞,∞), R0 = R \ {0}, R+ = [0,∞), R+
0 = R+ \ {0}.

To the best of our knowledge, the existence of positive solutions to the systems of BVPs

defined on infinite intervals with nonlinear functions explicitly dependent on first derivative

have never been studied previously. Since an infinite interval is noncompact, the study of

BVPs on infinite intervals is much more complicated. Therefore to prove existence results

for a system on an infinite interval, first, we establish the existence of positive solution to

systems of BVPs posed on finite intervals. Then, we apply diagonalization argument and

establish existence result for the system on an infinite domain. The results of Sections 5.2

and 5.3 are submitted [21,22].

5.1 Existence of at least one C1-positive solutions

In this section, we establish existence of at least one C1-positive solution of the system

of BVPs (5.0.4). By a C1-positive solution to the system of BVPs (5.0.4), we means

(x, y) ∈ (C1[0, 1] ∩ C2(0, 1)) × (C1[0, 1] ∩ C2(0, 1)) satisfying (5.0.4), x > 0 and y > 0 on

(0, 1).

Let {ρn}∞n=1 be a nonincreasing sequence of real constants such that limn→∞ ρn = 0.

Assume that the following holds:

(H33) hypothesis (H10) of Chapter 3, page 42, with p = p1 and q = p2;

(H34) fi : [0, 1]× (0,∞)× (0,∞)× R → R are continuous, i = 1, 2;

(H35) there exist (β1, β2) ∈ (C1[0, 1] ∩ C2(0, 1))× (C1[0, 1] ∩ C2(0, 1)) and n0 ∈ {1, 2, · · · }
such that β1(t) ≥ ρn0 , β2(t) ≥ ρn0 for t ∈ [0, 1] and

−β′′1 (t) ≥ p1(t)f1(t, β1(t), β2(t), β
′
1(t)), t ∈ (0, 1),

−β′′2 (t) ≥ p2(t)f2(t, β1(t), β2(t), β
′
2(t)), t ∈ (0, 1);

(H36) there exist (α1, α2) ∈ (C1[0, 1]∩C2(0, 1))×(C1[0, 1]∩C2(0, 1)) with α1(0) = α1(1) =

α2(0) = α2(1) = 0, α1 > 0 and α2 > 0 on (0, 1) such that for (t, x, y) ∈ (0, 1)× {x ∈
(0,∞) : x < α1(t)} × {y ∈ (0,∞) : y ≤ β2(t)},

−α′′
1(t) < p1(t)f1(t, x, y, α

′
1(t)),

for (t, x, y) ∈ (0, 1)× {x ∈ (0,∞) : x ≤ β1(t)} × {y ∈ (0,∞) : y < α2(t)},

−α′′
2(t) < p2(t)f2(t, x, y, α

′
2(t));

(H37) for each n ∈ {n0, n0 + 1, · · · }, 0 ≤ t ≤ 1, ρn ≤ x ≤ β1(t), ρn ≤ y ≤ β2(t), we have

f1(t, ρn, y, 0) ≥ 0 and f2(t, x, ρn, 0) ≥ 0;
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(H38) |fi(t, x, y, z)| ≤ (hi(x) + ki(x))(ui(y) + vi(y))ψi(|z|), where hi, ui > 0 are continuous

and nonincreasing on (0,∞), ki, vi ≥ 0, ψi > 0 are continuous on [0,∞) with ki
hi
, viui

nondecreasing on (0,∞), i = 1, 2;

(H39)
∫ 1
0 pi(t)hi(α1(t))ui(α2(t))dt < +∞, i = 1, 2;

(H40) ∫ ∞

0

du

ψi(u)
>

[
1 +

ki(b1)

hi(b1)

] [
1 +

vi(b2)

ui(b2)

] ∫ 1

0
pi(t)hi(α1(t))ui(α2(t))dt,

where bi = max{βi(t) : t ∈ [0, 1]}, i = 1, 2.

Theorem 5.1.1. Under the hypothesis (H33)− (H40), the system of BVPs (5.0.4) has at

least one C1-positive solution.

Proof. In view of (H40), we choose a real constant M > 0 such that

M > max
{
max
t∈[0,1]

|α′
1(t)|, max

t∈[0,1]
|α′

2(t)|, max
t∈[0,1]

|β′1(t)|, max
t∈[0,1]

|β′2(t)|
}
, (5.1.1)

and∫ M

0

du

ψi(u)
>

[
1 +

ki(b1)

hi(b1)

] [
1 +

vi(b2)

ui(b2)

] ∫ 1

0
p1(t)hi(α1(t))ui(α2(t))dt, i = 1, 2. (5.1.2)

Define a retraction z∗ : R → [−M,M ] by z∗(z) = max{−M,min{z,M}}. Define a radial

retraction r : R → [−1, 1] by

r(x) =

x, |x| ≤ 1,

x
|x| , |x| > 1.

For each fixed n ∈ {n0, n0+1, · · · }, we construct the modification of fi (i = 1, 2) as follows:

f∗1 (t, x, y, z) =



f1(t, β1(t), β2(t), z
∗(z)) + r(β1(t)− x), x ≥ β1(t), y ≥ β2(t),

f1(t, x, β2(t), z
∗(z)), ρn ≤ x ≤ β1(t), y ≥ β2(t),

f1(t, β1(t), y, z
∗(z)) + r(β1(t)− x), x ≥ β1(t), ρn ≤ y ≤ β2(t),

f1(t, x, y, z
∗(z)), ρn ≤ x ≤ β1(t), ρn ≤ y ≤ β2(t),

f1(t, ρn, y, z
∗(z)) + r(ρn − x), x < ρn, ρn ≤ y ≤ β2(t),

f1(t, x, ρn, z
∗(z)), ρn ≤ x ≤ β1(t), y < ρn,

f1(t, ρn, ρn, z
∗(z)) + r(ρn − x), x < ρn, y < ρn,

(5.1.3)
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f∗2 (t, x, y, z) =



f2(t, β1(t), β2(t), z
∗(z)) + r(β2(t)− y), x ≥ β1(t), y ≥ β2(t),

f2(t, x, β2(t), z
∗(z)) + r(β2(t)− y), ρn ≤ x ≤ β1(t), y ≥ β2(t),

f2(t, β1(t), y, z
∗(z)), x ≥ β1(t), ρn ≤ y ≤ β2(t),

f2(t, x, y, z
∗(z)), ρn ≤ x ≤ β1(t), ρn ≤ y ≤ β2(t),

f2(t, ρn, y, z
∗(z)), x < ρn, ρn ≤ y ≤ β2(t),

f2(t, x, ρn, z
∗(z)) + r(ρn − y), ρn ≤ x ≤ β1(t), y < ρn,

f2(t, ρn, ρn, z
∗(z)) + r(ρn − y), x < ρn, y < ρn.

(5.1.4)

We note that f∗1 and f∗2 are continuous and bounded on [0, 1]×R3. Consider the modified

system of BVPs

−x′′(t) = p1(t)f
∗
1 (t, x(t), y(t), x

′(t)), t ∈ (0, 1),

−y′′(t) = p2(t)f
∗
2 (t, x(t), y(t), y

′(t)), t ∈ (0, 1),

x(0) = x(1) = y(0) = y(1) = ρn.

(5.1.5)

By Theorem 1.2.4, it follows that the system of BVPs (5.1.5) has a solution (xn, yn) ∈
(C1[0, 1] ∩ C2(0, 1))× (C1[0, 1] ∩ C2(0, 1)). Now, we show that

xn(t) ≥ ρn, yn(t) ≥ ρn, t ∈ [0, 1]. (5.1.6)

First, we prove xn(t) ≥ ρn for t ∈ [0, 1]. Suppose xn−ρn has a negative absolute minimum

at some t0 ∈ (0, 1). Then, x′n(t0) = 0 and x′′n(t0) ≥ 0. However, in view of (5.1.5) and

(5.1.3), we have

−x′′n(t0) =p1(t0)f∗1 (t0, xn(t0), yn(t0), 0)

=

p1(t0)(f1(t0, ρn, yn(t0), 0) + r(ρn − xn(t0))), ρn ≤ yn(t0) ≤ β2(t0),

p1(t0)(f1(t0, ρn, ρn, 0) + r(ρn − xn(t0))), yn(t0) < ρn,

which shows that x′′n(t0) < 0, a contradiction. Hence, xn(t) ≥ ρn for t ∈ [0, 1].

Similarly, we can show that yn(t) ≥ ρn for t ∈ [0, 1].

Now, we show that

xn(t) ≤ β1(t), yn(t) ≤ β2(t), t ∈ [0, 1]. (5.1.7)

First, we prove xn(t) ≤ β1(t) for t ∈ [0, 1]. Suppose, xn − β1 has a positive absolute

maximum at some t1 ∈ (0, 1). Then, x′n(t1) = β′1(t1) and x
′′
n(t1) ≤ β′′1 (t1). But, in view of

(5.1.5) and (5.1.3), we obtain

−x′′n(t1) =p1(t1)f∗1 (t1, xn(t1), yn(t1), x′n(t1))

=

p1(t1)(f1(t1, β1(t1), β2(t1), β′
1(t1)) + r(β1(t1)− xn(t1))), yn(t1) ≥ β2(t1)

p1(t1)(f1(t1, β1(t1), yn(t1), β
′
1(t1)) + r(β1(t1)− xn(t1))), ρn ≤ yn(t1) ≤ β2(t1),
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which shows that x′′n(t1) > β′′1 (t1), a contradiction. Thus, xn(t) ≤ β1(t) for t ∈ [0, 1].

Similarly, we can show that yn(t) ≤ β2(t) for t ∈ [0, 1].

From (5.1.6) and (5.1.7), we have

ρn ≤ xn(t) ≤ β1(t), ρn ≤ yn(t) ≤ β2(t), t ∈ [0, 1]. (5.1.8)

Now, we show that

xn(t) ≥ α1(t), yn(t) ≥ α2(t), t ∈ [0, 1]. (5.1.9)

First, we show that xn(t) ≥ α1(t) for t ∈ [0, 1]. Suppose, xn − α1 has a negative absolute

minimum at some t2 ∈ (0, 1). Then, x′n(t2) = α′
1(t2) and x′′n(t2) ≥ α′′

1(t2). From (5.1.5),

(5.1.8), (5.1.1) and (H36), it follows that

−x′′n(t2) =p1(t2)f∗1 (t2, xn(t2), yn(t2), x′n(t2))

=p1(t2)f1(t2, xn(t2), yn(t2), α
′
1(t2)) > −α′′

1(t2),

a contradiction. Thus, xn(t) ≥ α1(t) for t ∈ [0, 1].

Similarly, we can show that yn(t) ≥ α2(t) for t ∈ [0, 1].

From (5.1.7) and (5.1.9), it follows that

α1(t) ≤ xn(t) ≤ β1(t), α2(t) ≤ yn(t) ≤ β2(t), t ∈ [0, 1]. (5.1.10)

Next, we show that

|x′n(t)| ≤M, |y′n(t)| ≤M, t ∈ [0, 1]. (5.1.11)

First, we prove |x′n(t)| ≤ M for t ∈ [0, 1]. Since xn(0) = ρn and xn(1) = ρn. So, there

exist t3 ∈ (0, 1) such that x′n(t3) = 0. Suppose there exist t∗ ∈ [0, 1] such that x′n(t∗) > M .

Either we have t∗ ∈ [0, t3] or t∗ ∈ [t3, 1]. If t∗ ∈ [0, t3], then there exist a maximal

interval [t4, t5] in [0, t3], containing t∗ such that x′n(t) ≥ 0 on [t4, t5] and x
′
n(t5) = 0. Let

M1 = max{x′n(t) : t ∈ [t4, t5]} = x′n(t6) > M . Then, x′′n(t) ≤ 0 for t ∈ [t6, t5]. For

t ∈ [t6, t5], using (5.1.5), (5.1.8), (5.1.10) and (H38), we obtain

−x′′n(t) = p1(t)|f∗1 (t, xn(t), yn(t), x′n(t))|

= p1(t)|f1(t, xn(t), yn(t), z∗(x′n(t)))|

≤
[
1 +

k1(xn(t))

h1(xn(t))

] [
1 +

v1(yn(t))

u1(yn(t))

]
p1(t)h1(xn(t))u1(yn(t))ψ1(|z∗(x′n(t))|)

≤
[
1 +

k1(b1)

h1(b1)

] [
1 +

v1(b2)

u1(b2)

]
p1(t)h1(α1(t))u1(α2(t))ψ1(|z∗(x′n(t))|),

which implies that

−x′′n(t)
ψ1(|z∗(x′n(t))|)

≤
[
1 +

k1(b1)

h1(b1)

] [
1 +

v1(b2)

u1(b2)

]
p1(t)h1(α1(t))u1(α2(t)).
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Integrating from t6 to t5, we obtain∫ t5

t6

−x′′n(t)dt
ψ1(|z∗(x′n(t))|)

≤
[
1 +

k1(b1)

h1(b1)

] [
1 +

v1(b2)

u1(b2)

] ∫ t5

t6

p1(t)h1(α1(t))u1(α2(t))dt,

which implies that∫ M1

0

du

ψ1(z∗(u))
≤

[
1 +

k1(b1)

h1(b1)

] [
1 +

v1(b2)

u1(b2)

] ∫ 1

0
p1(t)h1(α1(t))u1(α2(t))dt,

which can also be written as∫ M

0

du

ψ1(u)
+
M1 −M

ψ1(M)
≤

[
1 +

k1(b1)

h1(b1)

] [
1 +

v1(b2)

u1(b2)

] ∫ 1

0
p1(t)h1(α1(t))u1(α2(t))dt,

a contradiction to (5.1.2). Similarly, for t∗ ∈ [t3, 1] we can show a similar contradiction.

Thus, x′n(t) ≤ M for t ∈ [0, 1]. Similarly, we can prove that x′n(t) ≥ −M for t ∈ [0, 1].

Hence, |x′n(t)| ≤M for t ∈ [0, 1].

In a similar way, we can show that |y′n(t)| ≤M for t ∈ [0, 1].

Thus, in view of (5.1.5), (5.1.8), (5.1.11), (5.1.3) and (5.1.4), (xn, yn) is a solution of

the following coupled system of BVPs

−x′′(t) = p1(t)f1(t, x(t), y(t), x
′(t)), t ∈ (0, 1),

−y′′(t) = p2(t)f2(t, x(t), y(t), y
′(t)), t ∈ (0, 1),

x(0) = x(1) = y(0) = y(1) = ρn.

(5.1.12)

Using (5.1.12), (H38), (5.1.10) and (5.1.11), we obtain

|x′′n(t)| ≤
[
1 +

k1(b1)

h1(b1)

] [
1 +

v1(b2)

u1(b2)

] [
max

z∈[0,M ]
ψ1(z)

]
p1(t)h1(α1(t))u1(α2(t)), t ∈ (0, 1),

|y′′n(t)| ≤
[
1 +

k2(b1)

h2(b1)

] [
1 +

v2(b2)

u2(b2)

] [
max

z∈[0,M ]
ψ2(z)

]
p2(t)h2(α1(t))u2(α2(t)), t ∈ (0, 1).

(5.1.13)

In view of (5.1.10), (5.1.11), (5.1.13) and (H39), it follows that the sequences {(x(j)n , y
(j)
n )}

(j = 0, 1) are uniformly bounded and equicontinuous on [0, 1]. Hence, by Theorem 1.1.6,

there exist subsequences {(x(j)nk , y
(j)
nk )} (j = 0, 1) of {(x(j)n , y

(j)
n )} (j = 0, 1) and (x, y) ∈

C1[0, 1]×C1[0, 1] such that (x
(j)
nk , y

(j)
nk ) converges uniformly to (x(j), y(j)) on [0, 1] (j = 0, 1).

Also, x(0) = x(1) = y(0) = y(1) = 0, α1(t) ≤ x(t) ≤ β1(t), α2(t) ≤ y(t) ≤ β2(t),

|x′(t)| ≤M and |y′(t)| ≤M for t ∈ [0, 1]. Further, (xnk
, ynk

) satisfy

x′nk
(t) =x′nk

(1/2) +

∫ 1/2

t
p1(s)f1(s, xnk

(s), ynk
(s), x′nk

(s))ds, t ∈ [0, 1],

y′nk
(t) =y′nk

(1/2) +

∫ 1/2

t
p2(s)f2(s, xnk

(s), ynk
(s), y′nk

(s))ds, t ∈ [0, 1].
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Passing to the limit as nk → ∞, we obtain

x′(t) = x′(1/2) +

∫ 1/2

t
p1(s)f1(s, x(s), y(s), x

′(s))ds, t ∈ [0, 1],

y′(t) = y′(1/2) +

∫ 1/2

t
p2(s)f2(t, x(s), y(s), y

′(s))ds, t ∈ [0, 1],

which implies that

−x′′(t) = p1(t)f1(t, x(t), y(t), x
′(t)), t ∈ (0, 1),

−y′′(t) = p2(t)f2(t, x(t), y(t), y
′(t)), t ∈ (0, 1).

Hence, (x, y) is a C1-positive solution of the system of BVPs (5.0.4).

Example 5.1.2. Let

pi(t) =
1

t1/4(1− t)1/4
, i = 1, 2,

f1(t, x, y, z) = (x−1/3 − C){y−1/3 −
(
C−3 +

1

2n0

)−1/3
+ 1}(1− z),

f2(t, x, y, z) = {x−1/3 −
(
C−3 +

1

2n0

)−1/3
+ 1}(y−1/3 − C)(1− z),

where C is a positive real constant. Choose a fixed n0 ∈ {1, 2, · · · } such that n0 ≥ C3.

Let ρn = 1
n+n0

and β1(t) = β2(t) = C−3 + 1
2n0

. Clearly β1(t) ≥ ρn0 and β2(t) ≥ ρn0 for

t ∈ [0, 1]. Now,

p1(t)f1(t, β1(t), β2(t), β
′
1(t)) + β′′1 (t) =

1

t1/4(1− t)1/4
((C−3 +

1

2n0
)−1/3 − C)

≤ 1

t1/4(1− t)1/4
(C − C) = 0,

Similarly, p2(t)f2(t, β1(t), β2(t), β
′
2(t)) + β′′2 (t) ≤ 0. Consequently, (H35) is satisfied.

Let α1(t) = α2(t) = νt(1−t), where ν > 0 satisfying (22/3ν−1/3−C)(1−ν)+21/2ν ≥ 0.

Then, for (t, x, y) ∈ (0, 1)× {x ∈ (0,∞) : x < α1(t)} × {y ∈ (0,∞) : y ≤ β2(t)}, we have

p1(t)f1(t, x, y, α
′
1(t)) + α′′

1(t) =
1

t1/4(1− t)1/4
(x−1/3 − C){y−1/3 −

(
C−3 +

1

2n0

)−1/3
+ 1}

(1− ν + 2νt) + 2ν

≥21/2(x−1/3 − C)(1− ν + 2νt) + 2ν

>21/2(22/3ν−1/3 − C)(1− ν) + 2ν ≥ 0.

Similarly, for (t, x, y) ∈ (0, 1) × {x ∈ (0,∞) : x ≤ β1(t)} × {y ∈ (0,∞) : y < α2(t)}, we
have

p2(t)f2(t, x, y, α
′
2(t)) + α′′

2(t) < 0,

which shows that (H36) is satisfied.
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For each n ∈ {n0, n0 + 1, · · · }, 0 ≤ t ≤ 1 and ρn ≤ y ≤ β2(t), we have

f1(t, ρn, y, 0) =(ρ−1/3
n0

− C)(y−1/3 −
(
C−3 +

1

2n0

)−1/3
+ 1)

≥((n+ n0)
1/3 − C) ≥ (n

1/3
0 − C) ≥ 0.

Similarly, for each n ∈ {n0, n0 + 1, · · · }, 0 ≤ t ≤ 1, and ρn ≤ x ≤ β1(t), we have

f2(t, x, ρn, 0) ≥ 0, that is, (H37) is satisfied. Choose, h1(x) = h2(x) = u1(x) = u2(x) =

x−1/3, k1(x) = v2(x) = C, k2(x) = v1(x) = (C−3+ 1
2n0

)−1/3+1 and ψ1(z) = ψ2(z) = 1+z.

Also, ∫ 1

0
pi(t)hi(α1(t))ui(α2(t))dt =

[Γ(1/12)]2

ν2/3Γ(1/6)
, i = 1, 2,

which shows that (H39) also holds. Clearly, (H33)−(H40) are satisfied. Hence, by Theorem

5.1.1, the system of BVPs (5.0.4) has at least one C1-positive solution.

5.2 Singular systems of BVPs on infinite intervals

In this section, we establish the existence of C1-positive solutions for the system of BVPs

(5.0.5), (5.0.6). We say, (x, y) ∈ (C1(R+)∩C2(R+
0 ))× (C1(R+)∩C2(R+

0 )) is a C
1-positive

solution of the system of BVPs (5.0.5), (5.0.6), if (x, y) satisfies (5.0.5) and (5.0.6), x > 0

and y > 0 on R+
0 , x

′ > 0 and y′ > 0 on R+. Here, we study existence of positive solutions

under weaker hypothesis as compared to the results studied in Chapters 3 and 4.

Assume that the following holds:

(H41) pi ∈ C(R+
0 ), pi > 0 on R+

0 ,
∫∞
0 pi(t)dt < +∞, i = 1, 2;

(H42) fi : R+ × R2 × R0 → R is continuous, i = 1, 2;

(H43) |fi(t, x, y, z)| ≤ hi(|x|)ki(|y|)(ui(|z|) + vi(|z|)), where ui > 0 is continuous and non-

increasing on R+
0 , hi, ki, vi ≥ 0 are continuous and nondecreasing on R+, i = 1, 2;

(H44) there exist a constant M > 0 such that M
ω(M) > 1, where ω(M) = limε→0 ωε(M),

ωε(M) =
2∑

i=1

∫ ∞

0
[J−1

i

(
hi(M)ki(M)

∫ ∞

t
pi(s)ds+ Ji(ε)

)
]dt

+

2∑
i=1

J−1
i

(
hi(M)ki(M)

∫ ∞

0
pi(s)ds+ Ji(ε)

)
,

Ji(µ) =

∫ µ

0

dτ

ui(τ) + vi(τ)
, for µ > 0, i = 1, 2;

(H45) hypothesis (H14) of Chapter 3, page 42, with I = J1 and J = J2;

(H46) fi is positive on R+ × (0,M ]3, i = 1, 2;
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(H47) there exist continuous functions φM and ψM defined on R+ and positive on R+
0 ,

and constants 0 ≤ γ1, γ2, δ1, δ2 < 1 satisfying (1 − γ1)(1 − γ2) ̸= δ1δ2, such that

f1(t, x, y, z) ≥ φM (t)xγ1yδ1 and f2(t, x, y, z) ≥ ψM (t)xγ2yδ2 on R+ × [0,M ]3.

5.2.1 Existence of positive solutions on finite intervals

Choose m ∈ N0 \ {0}, where N0 := {0, 1, · · · }, and consider the following system of BVPs

on finite interval

−x′′(t) = p1(t)f1(t, x(t), y(t), x
′(t)), t ∈ (0,m),

−y′′(t) = p2(t)f2(t, x(t), y(t), y
′(t)), t ∈ (0,m),

x(0) = y(0) = x′(m) = y′(m) = 0.

(5.2.1)

First, we show that system of BVPs (5.2.1) has a C1-positive solution. We say, (x, y) ∈
(C1[0,m]∩C2(0,m))×(C1[0,m]∩C2(0,m)), a C1-positive solution of the system of BVPs

(5.2.1), if (x, y) satisfies (5.2.1), x > 0 and y > 0 on (0,m], x′ > 0 and y′ > 0 on [0,m).

Theorem 5.2.1. Under the hypothesis (H41)− (H47), the system of BVPs (5.2.1) has at

least one C1-positive solution.

Proof. In view of (H44), we choose ε > 0 small enough such that

M

ωε(M)
> 1. (5.2.2)

Choose n0 ∈ {1, 2, · · · } such that 1
n0

< ε. For each n ∈ N := {n0, n0 + 1, · · · }, define
retractions θ : R → [0,M ] and ρ : R → [ 1n ,M ] as

θ(x) = max{0,min{x,M}} and ρ(x) = max{ 1
n
,min{x,M}}.

Consider the modified system of BVPs

−x′′(t) = p1(t)f
∗
1 (t, x(t), y(t), x

′(t)), t ∈ (0,m),

−y′′(t) = p2(t)f
∗
2 (t, x(t), y(t), x

′(t)), t ∈ (0,m),

x(0) = y(0) = 0, x′(m) = y′(m) =
1

n
,

(5.2.3)

where f∗1 (t, x, y, x
′) = f1(t, θ(x), θ(y), ρ(x

′)) and f∗2 (t, x, y, y
′) = f2(t, θ(x), θ(y), ρ(y

′)).

Clearly, f∗i (i = 1, 2) are continuous and bounded on [0,m]×R3. Hence, by Theorem 1.2.4,

the modified system of BVPs (5.2.3) has a solution (xm,n, ym,n) ∈ (C1[0,m]∩C2(0,m))×
(C1[0,m] ∩ C2(0,m)).

Using (5.2.3), (H41) and (H46), we obtain

x′′m,n ≤ 0 and y′′m,n ≤ 0 on ∈ (0,m).
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Integrating from t to m and using the BCs (5.2.3), we obtain

x′m,n(t) ≥
1

n
and y′m,n(t) ≥

1

n
for t ∈ [0,m]. (5.2.4)

Integrating (5.2.4) from 0 to t, using the BCs (5.2.3), we have

xm,n(t) ≥
t

n
and ym,n(t) ≥

t

n
for t ∈ [0,m]. (5.2.5)

From (5.2.4) and (5.2.5), it follows that

∥xm,n∥7,m = xm,n(m) and ∥ym,n∥7,m = ym,n(m), where ∥u∥7,m = max
t∈[0,m]

|u(t)|.

Now, we show that the following hold

∥x′m,n∥7,m < M and ∥y′m,n∥7,m < M. (5.2.6)

Suppose x′m,n(t1) ≥M for some t1 ∈ [0,m]. Using (5.2.3) and (H43), we have

−x′′m,n(t) ≤ p1(t)h1(θ(xm,n(t)))k1(θ(ym,n(t)))(u1(ρ(x
′
m,n(t))) + v1(ρ(x

′
m,n(t)))), t ∈ (0,m),

which implies that

−x′′m,n(t)

u1(ρ(x′m,n(t))) + v1(ρ(x′m,n(t)))
≤ h1(M)k1(M)p1(t), t ∈ (0,m).

Integrating from t1 to m, using the BCs (5.2.3), we obtain∫ x′
m,n(t1)

1
n

dz

u1(ρ(z)) + v1(ρ(z))
≤ h1(M)k1(M)

∫ m

t1

p1(t)dt,

which can also be written as∫ M

1
n

dz

u1(z) + v1(z)
+

∫ x′
m,n(t1)

M

dz

u1(M) + v1(M)
≤ h1(M)k1(M)

∫ ∞

0
p1(t)dt.

Using the increasing property of J1, we obtain

J1(M) +
x′m,n(t1)−M

u1(M) + v1(M)
≤ h1(M)k1(M)

∫ ∞

0
p1(t)dt+ J1(ε),

and the increasing property of J−1
1 yields

M ≤ J−1
1 (h1(M)k1(M)

∫ ∞

0
p1(t)dt+ J1(ε)) ≤ ωε(M),

a contradiction to (5.2.2). Hence, ∥x′m,n∥7,m < M .

Similarly, we can show that ∥y′m,n∥7,m < M .

Now, we show that

∥xm,n∥7,m < M and ∥ym,n∥7,m < M. (5.2.7)
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Suppose ∥xm,n∥7,m ≥M . From (5.2.3), (5.2.4), (5.2.6) and (H43), it follows that

−x′′m,n(t) ≤ p1(t)h1(θ(xm,n(t)))k1(θ(ym,n(t)))(u1(x
′
m,n(t)) + v1(x

′
m,n(t))),

which implies that

−x′′m,n(t)

u1(x′m,n(t)) + v1(x′m,n(t))
≤ h1(M)k1(M)p1(t), t ∈ (0,m).

Integrating from t to m, using the BCs (5.2.3), we obtain∫ x′
m,n(t)

1
n

dz

u1(z) + v1(z)
≤ h1(M)k1(M)

∫ m

t
p1(s)ds, t ∈ [0,m],

which can also be written as

J1(x
′
m,n(t))− J1(

1

n
) ≤ h1(M)k1(M)

∫ ∞

t
p1(s)ds, t ∈ [0,m].

The increasing property of J1 and J−1
1 , leads to

x′m,n(t) ≤ J−1
1 (h1(M)k1(M)

∫ ∞

t
p1(s)ds+ J1(ε)), t ∈ [0,m].

Now, integrating from 0 to m, using the BCs (5.2.3), we obtain

M ≤ ∥xm,n∥7,m ≤
∫ m

0
[J−1

1 (h1(M)k1(M)

∫ ∞

t
p1(s)ds+ J1(ε))]dt,

which implies that

M ≤
∫ ∞

0
[J−1

1 (h1(M)k1(M)

∫ ∞

t
p1(s)ds+ J1(ε))]dt ≤ ωε(M),

a contradiction to (5.2.2). Therefore, ∥xm,n∥7,m < M .

Similarly, we can show that ∥ym,n∥7,m < M .

Hence, in view of (5.2.3)–(5.2.7), (xm,n, ym,n) is a solution of the following coupled

system of BVPs

−x′′(t) = p1(t)f1(t, x(t), y(t), x
′(t)), t ∈ (0,m),

−y′′(t) = p2(t)f2(t, x(t), y(t), y
′(t)), t ∈ (0,m),

x(0) = y(0) = 0, x′(m) = y′(m) =
1

n
,

(5.2.8)

satisfying

t

n
≤ xm,n(t) < M,

1

n
≤ x′m,n(t) < M, t ∈ [0,m],

t

n
≤ ym,n(t) < M,

1

n
≤ y′m,n(t) < M, t ∈ [0,m].

(5.2.9)

Now, we show that

{x′m,n}n∈N and {y′m,n}n∈N are equicontinuous on [0,m]. (5.2.10)
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From (5.2.8), (5.2.9) and (H43), it follows that

−x′′m,n(t) ≤p1(t)h1(M)k1(M)(u1(x
′
m,n(t)) + v1(x

′
m,n(t))), t ∈ (0,m),

−y′′m,n(t) ≤p2(t)h2(M)k2(M)(u2(y
′
m,n(t)) + v2(y

′
m,n(t))), t ∈ (0,m),

which implies that

−x′′m,n(t)

u1(x′m,n(t)) + v1(x′m,n(t))
≤ h1(M)k1(M)p1(t), t ∈ (0,m),

−y′′m,n(t)

u2(y′m,n(t)) + v2(y′m,n(t))
≤ h2(M)k2(M)p2(t), t ∈ (0,m).

Thus for t1, t2 ∈ [0,m], we have

|J1(x′m,n(t1))− J1(x
′
m,n(t2))| ≤ h1(M)k1(M)

∣∣∣∣∫ t2

t1

p1(t)dt

∣∣∣∣ ,
|J2(y′m,n(t1))− J2(y

′
m,n(t2))| ≤ h2(M)k2(M)

∣∣∣∣∫ t2

t1

p2(t)dt

∣∣∣∣ . (5.2.11)

In view of (5.2.11), (H41), uniform continuity of J−1
i over [0, Ji(M)] (i = 1, 2) and

|x′m,n(t1)− x′m,n(t2)| = |J−1
1 (J1(x

′
m,n(t1)))− J−1

1 (J1(x
′
m,n(t2)))|,

|y′m,n(t1)− y′m,n(t2)| = |J−1
2 (J2(y

′
m,n(t1)))− J−1

2 (J2(y
′
m,n(t2)))|,

we obtain (5.2.10).

From (5.2.9) and (5.2.10), it follows that the sequences {(x(j)m,n, y
(j)
m,n)}n∈N (j = 0, 1)

are uniformly bounded and equicontinuous on [0,m]. Hence, by Theorem (1.1.6), there

exist subsequence N∗ of N and (xm, ym) ∈ C1[0,m]×C1[0,m] such that for each j = 0, 1,

the sequences (x
(j)
m,n, y

(j)
m,n) converges uniformly to (x

(j)
m , y

(j)
m ) on [0,m] as n → ∞ through

N∗. From the BCs (5.2.8), we have xm(0) = ym(0) = x′m(m) = y′m(m) = 0. Next, we

show that xm > 0 and ym > 0 on (0,m], x′m > 0 and y′m > 0 on [0,m).

We claim that

xm,n(t) ≥ Cγ1
11C

δ1
12

∫ min{t,1}

0
τ1+γ1+δ1p1(τ)φM (τ)dτ ≡ ΦM (t), t ∈ [0,m], (5.2.12)

ym,n(t) ≥ Cγ2
11C

δ2
12

∫ min{t,1}

0
τ1+γ2+δ2p2(τ)ψM (τ)dτ ≡ ΨM (t), t ∈ [0,m], (5.2.13)

x′m,n(t) ≥
∫ m

t
p1(s)φM (s)(ΦM (s))γ1(ΨM (s))δ1ds, t ∈ [0,m], (5.2.14)

y′m,n(t) ≥
∫ m

t
p2(s)ψM (s)(ΦM (s))γ2(ΨM (s))δ2ds, t ∈ [0,m], (5.2.15)

where

C11 =

(∫ 1

0

τ1+γ1+δ1p1(τ)φM (τ)dτ

) 1−γ2
(1−γ1)(1−γ2)−δ1δ2

(∫ 1

0

τ1+γ2+δ2p2(τ)ψM (τ)dτ

) δ1
(1−γ1)(1−γ2)−δ1δ2

,

C12 =

(∫ 1

0

τ1+γ1+δ1p1(τ)φM (τ)dτ

) δ2
(1−γ1)(1−γ2)−δ1δ2

(∫ 1

0

τ1+γ2+δ2p2(τ)ψM (τ)dτ

) 1−γ1
(1−γ1)(1−γ2)−δ1δ2

.
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First we prove (5.2.12). Let z(t) = xm,n(t)− txm,n(1) for t ∈ [0, 1]. Then, z(0) = z(1) = 0,

z′′(t) ≤ 0 for t ∈ [0, 1]. So, z(t) ≥ 0 for t ∈ [0, 1], that is

xm,n(t) ≥ txm,n(1), t ∈ [0, 1]. (5.2.16)

Similarly,

ym,n(t) ≥ tym,n(1), t ∈ [0, 1]. (5.2.17)

Now, consider the following relation

xm,n(t) =
t

n
+

∫ t

0
sp1(s)f1(s, xm,n(s), ym,n(s), x

′
m,n(s))ds

+

∫ m

t
tp1(s)f1(s, xm,n(s), ym,n(s), x

′
m,n(s))ds, t ∈ [0,m].

(5.2.18)

In view of (H47), using (5.2.16) and (5.2.17), for t ∈ [0,m], we have

xm,n(t) ≥
∫ t

0
sp1(s)f1(s, xm,n(s), ym,n(s), x

′
m,n(s))ds

≥
∫ min{t,1}

0
sp1(s)f1(s, xm,n(s), ym,n(s), x

′
m,n(s))ds

≥
∫ min{t,1}

0
sp1(s)(xm,n(s))

γ1(ym,n(s))
δ1φM (s)ds

≥ (xm,n(1))
γ1(ym,n(1))

δ1

∫ min{t,1}

0
s1+γ1+δ1p1(s)φM (s)ds,

(5.2.19)

which implies that

xm,n(1) ≥ (ym,n(1))
δ1

1−γ1

(∫ 1

0
s1+γ1+δ1p1(s)φM (s)ds

) 1
1−γ1

. (5.2.20)

Similarly,

ym,n(1) ≥ (xm,n(1))
δ2

1−γ2

(∫ 1

0
s1+γ2+δ2p2(s)ψM (s)ds

) 1
1−γ2

. (5.2.21)

Now, using (5.2.21) in (5.2.20), we have

(xm,n(1))
1− δ1δ2

(1−γ1)(1−γ2) ≥
(∫ 1

0
s1+γ1+δ1p1(s)φM (s)ds

) 1
1−γ1

(∫ 1

0
s1+γ2+δ2p2(s)ψM (s)ds

) δ1
(1−γ1)(1−γ2)

.

Hence,

xm,n(1) ≥ C11. (5.2.22)

Similarly, using (5.2.20) in (5.2.21), we obtain

ym,n(1) ≥ C12. (5.2.23)

Thus, from (5.2.19), using (5.2.22) and (5.2.23), we get (5.2.12).
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Similarly, we can prove (5.2.13).

Now, we prove (5.2.14). From (5.2.18), it follows that

x′m,n(t) ≥
∫ m

t
p1(s)f1(s, xm,n(s), ym,n(s), x

′
m,n(s))ds.

Using (H47), (5.2.12) and (5.2.13), we obtain (5.2.14).

Similarly, we can prove (5.2.15).

From (5.2.12)–(5.2.15), passing to the limit n→ ∞ through N∗, we obtain

xm(t) ≥ ΦM (t), ym(t) ≥ ΨM (t), t ∈ [0,m],

x′m(t) ≥
∫ m

t
p1(s)φM (s)(ΦM (s))γ1(ΨM (s))δ1ds, t ∈ [0,m],

y′m(t) ≥
∫ m

t
p2(s)ψM (s)(ΦM (s))γ2(ΨM (s))δ2ds, t ∈ [0,m].

(5.2.24)

Consequently, xm > 0 and ym > 0 on (0,m], x′m > 0 and y′m > 0 on [0,m).

Moreover, (xm,n, ym,n) satisfy

x′m,n(t) = x′m,n(0)−
∫ t

0
p1(s)f1(s, xm,n(s), ym,n(s), x

′
m,n(s))ds, t ∈ [0,m],

y′m,n(t) = y′m,n(0)−
∫ t

0
p2(s)f2(s, xm,n(s), ym,n(s), y

′
m,n(s))ds, t ∈ [0,m].

Letting n→ ∞ through N∗, we obtain

x′m(t) = x′m(0)−
∫ t

0
p1(s)f1(s, xm(s), ym(s), x′m(s))ds, t ∈ [0,m],

y′m(t) = y′m(0)−
∫ t

0
p2(s)f2(s, xm(s), ym(s), y′m(s))ds, t ∈ [0,m],

which imply that

−x′′m(t) = p1(t)f1(t, xm(t), ym(t), x′m(t)), t ∈ (0,m),

−y′′m(t) = p2(t)f2(t, xm(t), ym(t), y′m(t)), t ∈ (0,m).
(5.2.25)

Hence, (xm, ym) is a C1-positive solution of the system of BVPs (5.2.1).

5.2.2 Existence of positive solutions on an infinite interval

Theorem 5.2.2. Under the hypothesis (H41)− (H47), the system of BVPs (5.0.5), (5.0.6)

has at least one C1-positive solution.

Proof. By Theorem 5.2.1, for each m ∈ N0 \ {0}, the system of BVPs (5.2.1) has a C1-

positive solution (xm, ym) defined on [0,m]. By applying diagonalization argument we will
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show that the system of BVPs (5.0.5), (5.0.6) has a C1-positive solution. For this purpose

we define a continuous extension (xm, ym) of (xm, ym) by

xm(t) =

xm(t), t ∈ [0,m],

xm(m), t ∈ [m,∞),
ym(t) =

ym(t), t ∈ [0,m],

ym(m), t ∈ [m,∞).
(5.2.26)

Clearly, xm, ym ∈ C1[0,∞) and satisfy

0 ≤ xm(t) < M, 0 ≤ x′m(t) < M, t ∈ [0,∞),

0 ≤ ym(t) < M, 0 ≤ y′m(t) < M, t ∈ [0,∞).
(5.2.27)

We claim that

{x′m}m∈N0\{0} and {y′m}m∈N0\{0} are equicontinuous on [0, 1]. (5.2.28)

Using (5.2.25), (5.2.26), (5.2.27) and (H43), we obtain

−x′′m(t) ≤ p1(t)h1(M)k1(M)(u1(x
′
m(t)) + v1(x

′
m(t))), t ∈ (0, 1),

−y′′m(t) ≤ p2(t)h2(M)k2(M)(u2(y
′
m(t)) + v2(y

′
m(t))), t ∈ (0, 1),

which implies that

−x′′m(t)

u1(x′m(t)) + v1(x′m(t))
≤ h1(M)k1(M)p1(t), t ∈ (0, 1),

−y′′m(t)

u2(y′m(t)) + v2(y′m(t))
≤ h2(M)k2(M)p2(t), t ∈ (0, 1).

Hence, for t1, t2 ∈ [0, 1], we have

|J1(x′m(t1))− J1(x
′
m(t2))| ≤ h1(M)k1(M)

∣∣∣∣∫ t2

t1

p1(t)dt

∣∣∣∣ ,
|J2(y′m(t1))− J2(y

′
m(t2))| ≤ h2(M)k2(M)

∣∣∣∣∫ t2

t1

p2(t)dt

∣∣∣∣ . (5.2.29)

In view of (5.2.29), (H41), uniform continuity of J−1
i over [0, Ji(L)] (i = 1, 2) and

|x′m(t1)− x′m(t2)| = |J−1
1 (J1(x

′
m(t1)))− J−1

1 (J1(x
′
m(t2)))|,

|y′m(t1)− y′m(t2)| = |J−1
2 (J2(y

′
m(t1)))− J−1

2 (J2(y
′
m(t2)))|,

we establish (5.2.28).

From (5.2.27) and (5.2.28), it follows that the sequences {(x(j)m , y
(j)
m )} (j = 0, 1) are

uniformly bounded and equicontinuous on [0, 1]. Hence, by Theorem 1.1.6, there exist

subsequence N1 of N0 \ {0} and (u1, v1) ∈ C1[0, 1] × C1[0, 1] such that for each j = 0, 1,

the sequence (x
(j)
m , y

(j)
m ) converges uniformly to (u

(j)
1 , v

(j)
1 ) on [0, 1] as m→ ∞ through N1.

Also from BCs (5.2.1), we have u1(0) = v1(0) = 0.
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Moreover, from (5.2.24) and (5.2.26), for each m ∈ N0 \ {0}, we have

xm(t) ≥ ΦM (t), ym(t) ≥ ΨM (t), t ∈ [0, 1],

x′m(t) ≥
∫ 1

t
p1(s)φM (s)(ΦM (s))γ1(ΨM (s))δ1ds, t ∈ [0, 1],

y′m(t) ≥
∫ 1

t
p2(s)ψM (s)(ΦM (s))γ2(ΨM (s))δ2ds, t ∈ [0, 1].

Passing to the limit m→ ∞ through N1, we obtain

u1(t) ≥ ΦM (t), v1(t) ≥ ΨM (t), t ∈ [0, 1],

u′1(t) ≥
∫ 1

t
p1(s)φM (s)(ΦM (s))γ1(ΨM (s))δ1ds, t ∈ [0, 1],

v′1(t) ≥
∫ 1

t
p2(s)ψM (s)(ΦM (s))γ2(ΨM (s))δ2ds, t ∈ [0, 1],

which shows that u1 > 0 and v1 > 0 on (0, 1], u′1 > 0 and v′1 > 0 on [0, 1).

By the same process as above, we can show that

{x′m}m∈N1\{1} and {y′m}m∈N1\{1} are equicontinuous families on [0, 2]. (5.2.30)

Further, in view of (5.2.27) and (5.2.30), it follows that the sequences {(x(j)m , y
(j)
m )} (j =

0, 1) are uniformly bounded and equicontinuous on [0, 2]. Hence, by Theorem 1.1.6, there

exist subsequence N2 of N1 \ {1} and (u2, v2) ∈ C1[0, 2] × C1[0, 2] such that for each

j = 0, 1, the sequence (x
(j)
m , y

(j)
m ) converges uniformly to (u

(j)
2 , v

(j)
2 ) on [0, 2] as m → ∞

through N2. Also from BCs (5.2.1), u2(0) = v2(0) = 0. Moreover, in view of (5.2.24) and

(5.2.26), for each m ∈ N1 \ {1}, we have

xm(t) ≥ ΦM (t), ym(t) ≥ ΨM (t), t ∈ [0, 2],

x′m(t) ≥
∫ 2

t
p1(s)φM (s)(ΦM (s))γ1(ΨM (s))δ1ds, t ∈ [0, 2],

y′m(t) ≥
∫ 2

t
p2(s)ψM (s)(ΦM (s))γ2(ΨM (s))δ2ds, t ∈ [0, 2].

Now, the limm→∞ through N2 leads to

u2(t) ≥ ΦM (t), v2(t) ≥ ΨM (t), t ∈ [0, 2],

u′2(t) ≥
∫ 2

t
p1(s)φM (s)(ΦM (s))γ1(ΨM (s))δ1ds, t ∈ [0, 2],

v′2(t) ≥
∫ 2

t
p2(s)ψM (s)(ΦM (s))γ2(ΨM (s))δ2ds, t ∈ [0, 2],

which shows that u2 > 0 and v2 > 0 on (0, 2], u′2 > 0 and v′2 > 0 on [0, 2). Note that,

u2 = u1 and v2 = v1 on [0, 1] as N2 ⊆ N1.

In general, for each k ∈ N0 \ {0}, there exists a subsequence Nk of Nk−1 \ {k − 1}
and (uk, vk) ∈ C1[0, k] × C1[0, k] such that (x

(j)
m , y

(j)
m ) converges uniformly to (u

(j)
k , v

(j)
k )
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(j = 0, 1) on [0, k], as m → ∞ through Nk. Also, uk(0) = vk(0) = 0, uk = uk−1 and

vk = vk−1 on [0, k − 1] as Nk ⊆ Nk−1. Moreover,

uk(t) ≥ ΦM (t), vk(t) ≥ ΨM (t), t ∈ [0, k],

u′k(t) ≥
∫ k

t
p1(s)φM (s)(ΦM (s))γ1(ΨM (s))δ1ds, t ∈ [0, k],

v′k(t) ≥
∫ k

t
p2(s)ψM (s)(ΦM (s))γ1(ΨM (s))δ1ds, t ∈ [0, k],

which shows that uk > 0 and vk > 0 on (0, k], u′k > 0 and v′k > 0 on [0, k).

Define functions x, y : R+ → R+ as:

For fixed τ ∈ R+
0 and k ∈ N0 \ {0} with τ ≤ k, x(τ) = uk(τ) and y(τ) = vk(τ). Then,

x and y are well defined as, x(t) = uk(t) > 0 and y(t) = vk(t) > 0 for t ∈ (0, k]. We can

do this for each τ ∈ R+
0 . Thus, (x, y) ∈ C1(R+) × C1(R+) with x > 0 and y > 0 on R+

0 ,

x′ > 0 and y′ > 0 on R+.

Now, we show that (x, y) is a solution of system of BVPs (5.0.5), (5.0.6). Choose a

fixed τ ∈ R+ and k ∈ N0 \ {0} such that k ≥ τ . Then, (xm(τ), ym(τ)) where m ∈ Nk,

satisfy

x′m(τ) = x′m(0)−
∫ τ

0
p1(s)f1(s, xm(s), ym(s), x′m(s))ds,

y′m(τ) = y′m(0)−
∫ τ

0
p2(s)f2(s, xm(s), ym(s), y′m(s))ds.

Passing to the limit m→ ∞ through Nk, we obtain

u′k(τ) = u′k(0)−
∫ τ

0
p1(s)f1(s, uk(s), vk(s), u

′
k(s))ds,

v′k(τ) = v′k(0)−
∫ τ

0
p2(s)f2(s, uk(s), vk(s), v

′
k(s))ds.

Hence,

x′(τ) = x′(0)−
∫ τ

0
p1(s)f1(s, x(s), y(s), x

′(s))ds,

y′(τ) = y′(0)−
∫ τ

0
p2(s)f2(s, x(s), y(s), y

′(s))ds,

which implies that

−x′′(τ) = p1(τ)f1(τ, x(τ), y(τ), x
′(τ)),

−y′′(τ) = p2(τ)f2(τ, x(τ), y(τ), y
′(τ)).

We can do this for each τ ∈ R+. Consequently,

−x′′(t) = p1(t)f1(t, x(t), y(t), x
′(t)), t ∈ R+

0 ,

−y′′(t) = p2(t)f2(t, x(t), y(t), y
′(t)), t ∈ R+

0 .
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Thus, (x, y) ∈ C2(R+
0 )× C2(R+

0 ), x(0) = y(0) = 0.

It remains to show that

lim
t→∞

x′(t) = lim
t→∞

y′(t) = 0.

First, we show that limt→∞ x′(t) = 0. Suppose limt→∞ x′(t) = ε0, for some ε0 > 0. Then,

x′(t) ≥ ε0 for all t ∈ [0,∞). Choose k ∈ N0 \ {0}, then for m ∈ Nk, in view of (5.2.26),

we have

x′(t) = u′k(t) = lim
m→∞

x′m(t) = lim
m→∞

x′m(t), t ∈ [0, k],

which leads to

x′(k) = lim
m→∞

x′m(k).

Thus for every ε > 0, there exist m∗ ∈ Nk such that |x′m(k) − x′(k)| < ε for all m ≥ m∗.

Without loss of generality assume thatm∗ = k, then |x′k(k)−x′(k)| < ε, that is, |x′(k)| < ε.

Which is a contradiction whenever ε = ε0. Hence, limt→∞ x′(t) = 0. Similarly, we can

prove limt→∞ y′(t) = 0. Thus, (x, y) is a C1-positive solution of system of BVPs (5.0.5),

(5.0.6).

Example 5.2.3. Let

fi(t, x, y, z) = ναi+1e−t(M + 1− x)(M + 1− y)|x|γi |y|δi |z|−αi , i = 1, 2,

where ν > 0, M > 0, αi > 0, 0 ≤ γi, δi < 1, i = 1, 2.

Assume that (1− γ1)(1− γ2) ̸= δ1δ2 and

ν <
M∑2

i=1(αi + 2)(αi + 1)
1

αi+1 (2M + 1)
2

αi+1M
γi+δi
αi+1

.

Taking pi(t) = e−t, hi(x) = ναi+1(M +1+x)xγi , ki(y) = (M +1+y)yδi , ui(z) = z−αi and

vi(z) = 0, i = 1, 2. Choose φM (t) = να1+1M−α1e−t and ψM (t) = να2+1M−α2e−t. Then,

Ji(µ) =
µαi+1

αi+1 and J−1
i (µ) = (αi + 1)

1
αi+1µ

1
αi+1 , i = 1, 2.

Also,

M

ω(M)
=

M∑2
i=1

∫∞
0
J−1
i

(
hi(M)ki(M)

∫∞
t
pi(s)ds

)
dt+

∑2
i=1 J

−1
i

(
hi(M)ki(M)

∫∞
0
pi(s)ds

)
=

M∑2
i=1

∫∞
0
J−1
i

(
ναi+1(2M + 1)2Mγi+δie−t

)
dt+

∑2
i=1 J

−1
i

(
ναi+1(2M + 1)2Mγi+δi

)
=

M

ν
∑2

i=1(αi + 2)(αi + 1)
1

αi+1 (2M + 1)
2

αi+1M
γi+δi
αi+1

> 1.

Clearly, (H41)− (H47) are satisfied. Hence, by Theorem 5.2.2, the system of BVPs (5.0.5),

(5.0.6) has at least one C1-positive solution.
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5.3 Singular systems of BVPs on infinite intervals with more

general BCs

We say, (x, y) ∈ (C1(R+)∩C2(R+
0 ))× (C1(R+)∩C2(R+

0 )) is a C
1-positive solution of the

system of BVPs (5.0.5), (5.0.7), if (x, y) satisfies (5.0.5) and (5.0.7), x > 0, y > 0, x′ > 0

and y′ > 0 on R+.

Assume that

(H48) there exist a constant M > 0 such that M
ω(M) > 1, where ω(M) = limε→0 ωε(M),

ωε(M) =

2∑
i=1

∫ ∞

0
[J−1

i

(
hi(M)ki(M)

∫ ∞

t
pi(s)ds+ Ji(ε)

)
]dt

+

2∑
i=1

(
1 +

bi
ai

)
J−1
i

(
hi(M)ki(M)

∫ ∞

0
pi(s)ds+ Ji(ε)

)
,

Ji(µ) =

∫ µ

0

dz

ui(z) + vi(z)
, for µ > 0, i = 1, 2.

5.3.1 Existence of positive solutions on finite intervals

Choose m ∈ N0 \ {0}, where N0 := {0, 1, · · · }, and consider the system of BVPs on finite

interval

−x′′(t) = p1(t)f1(t, x(t), y(t), x
′(t)), t ∈ (0,m),

−y′′(t) = p2(t)f2(t, x(t), y(t), y
′(t)), t ∈ (0,m),

a1x(0)− b1x
′(0) = x′(m) = 0,

a2y(0)− b2y
′(0) = y′(m) = 0.

(5.3.1)

First we show that the system of BVPs (5.3.1) has a C1-positive solution. We say, (x, y) ∈
(C1[0,m]∩C2(0,m))×(C1[0,m]∩C2(0,m)), a C1-positive solution of the system of BVPs

(5.3.1), if (x, y) satisfies (5.3.1), x > 0 and y > 0 on [0,m], x′ > 0 and y′ > 0 on [0,m).

Theorem 5.3.1. Under the hypothesis (H41) − (H43) and (H45) − (H48), the system of

BVPs (5.3.1) has at least one C1-positive solution.

Proof. In view of (H48), we choose ε > 0 small enough such that

M

ωε(M)
> 1. (5.3.2)

Choose n0 ∈ {1, 2, · · · } such that 1
n0

< ε. For each n ∈ N := {n0, n0 + 1, · · · }, define
retractions θ : R → [0,M ] and ρ : R → [ 1n ,M ] as

θ(x) = max{0,min{x,M}} and ρ(x) = max{ 1
n
,min{x,M}}.
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Consider the modified system of BVPs

−x′′(t) = p1(t)f
∗
1 (t, x(t), y(t), x

′(t)), t ∈ (0,m),

−y′′(t) = p2(t)f
∗
2 (t, x(t), y(t), x

′(t)), t ∈ (0,m),

a1x(0)− b1x
′(0) = 0, x′(m) =

1

n
,

a2y(0)− b2y
′(0) = 0, y′(m) =

1

n
,

(5.3.3)

where f∗1 (t, x, y, x
′) = f1(t, θ(x), θ(y), ρ(x

′)) and f∗2 (t, x, y, y
′) = f2(t, θ(x), θ(y), ρ(y

′)).

Clearly, f∗i (i = 1, 2) are continuous and bounded on [0,m]×R3. Hence, by Theorem 1.2.4,

the modified system of BVPs (5.3.3) has a solution (xm,n, ym,n) ∈ (C1[0,m]∩C2(0,m))×
(C1[0,m] ∩ C2(0,m)).

Using (5.3.3), (H41) and (H46), we obtain

x′′m,n ≤ 0 and y′′m,n ≤ 0 on ∈ (0,m).

Integrating from t to m and using the BCs (5.3.3), we obtain

x′m,n(t) ≥
1

n
and y′m,n(t) ≥

1

n
for t ∈ [0,m]. (5.3.4)

Integrating (5.3.4) from 0 to t, using the BCs (5.3.3) and (5.3.4), we have

xm,n(t) ≥ (t+
b1
a1

)
1

n
and ym,n(t) ≥ (t+

b2
a2

)
1

n
for t ∈ [0,m]. (5.3.5)

From (5.3.4) and (5.3.5), it follows that

∥xm,n∥7,m = xm,n(m) and ∥ym,n∥7,m = ym,n(m).

Now, we show that the following hold

∥x′m,n∥7,m < M and ∥y′m,n∥7,m < M. (5.3.6)

Suppose x′m,n(t1) ≥M for some t1 ∈ [0,m]. Using (5.3.3) and (H43), we have

−x′′m,n(t) ≤ p1(t)h1(θ(xm,n(t)))k1(θ(ym,n(t)))(u1(ρ(x
′
m,n(t))) + v1(ρ(x

′
m,n(t)))), t ∈ (0,m),

which implies that

−x′′m,n(t)

u1(ρ(x′m,n(t))) + v1(ρ(x′m,n(t)))
≤ h1(M)k1(M)p1(t), t ∈ (0,m).

Integrating from t1 to m, using the BCs (5.3.3), we obtain∫ x′
m,n(t1)

1
n

dz

u1(ρ(z)) + v1(ρ(z))
≤ h1(M)k1(M)

∫ m

t1

p1(t)dt,
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which can also be written as∫ M

1
n

dz

u1(z) + v1(z)
+

∫ x′
m,n(t1)

M

dz

u1(M) + v1(M)
≤ h1(M)k1(M)

∫ ∞

0
p1(t)dt.

Using the increasing property of J1, we obtain

J1(M) +
x′m,n(t1)−M

u1(M) + v1(M)
≤ h1(M)k1(M)

∫ ∞

0
p1(t)dt+ J1(ε),

and the increasing property of J−1
1 yields

M ≤ J−1
1 (h1(M)k1(M)

∫ ∞

0
p1(t)dt+ J1(ε)) ≤ ωε(M)

a contradiction to (5.3.2). Hence, ∥x′m,n∥7,m < M .

Similarly, we can show that ∥y′m,n∥7,m < M .

Now, we show that

∥xm,n∥7,m < M and ∥ym,n∥7,m < M. (5.3.7)

Suppose ∥xm,n∥7,m ≥M . From (5.3.3), (5.3.4), (5.3.6) and (H43), it follows that

−x′′m,n(t) ≤ p1(t)h1(θ(xm,n(t)))k1(θ(ym,n(t)))(u1(x
′
m,n(t)) + v1(x

′
m,n(t))), t ∈ (0,m),

which implies that

−x′′m,n(t)

u1(x′m,n(t)) + v1(x′m,n(t))
≤ h1(M)k1(M)p1(t), t ∈ (0,m).

Integrating from t to m, using the BCs (5.3.3), we obtain∫ x′
m,n(t)

1
n

dz

u1(z) + v1(z)
≤ h1(M)k1(M)

∫ m

t
p1(s)ds, t ∈ [0,m],

which can also be written as

J1(x
′
m,n(t))− J1(

1

n
) ≤ h1(M)k1(M)

∫ ∞

t
p1(s)ds, t ∈ [0,m].

The increasing property of J1 and J−1
1 , leads to

x′m,n(t) ≤ J−1
1 (h1(M)k1(M)

∫ ∞

t
p1(s)ds+ J1(ε)), t ∈ [0,m], (5.3.8)

Now, integrating from 0 to m, using the BCs (5.3.3) and (5.3.8), we obtain

M ≤ ∥xm,n∥7,m ≤
∫ m

0
[J−1

1 (h1(M)k1(M)

∫ ∞

t
p1(s)ds+ J1(ε))]dt

+
b1
a1
J−1
1 (h1(M)k1(M)

∫ ∞

0
p1(s)ds+ J1(ε)),
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which implies that

M ≤
∫ ∞

0
[J−1

1 (h1(M)k1(M)

∫ ∞

t
p1(s)ds+ J1(ε))]dt

+
b1
a1
J−1
1 (h1(M)k1(M)

∫ ∞

0
p1(s)ds+ J1(ε)) ≤ ωε(M),

a contradiction to (5.3.2). Therefore, ∥xm,n∥7,m < M .

Similarly, we can show that ∥ym,n∥7,m < M .

Hence, in view of (5.3.3)–(5.3.7), (xm,n, ym,n) is a solution of the following coupled

system of BVPs

−x′′(t) = p1(t)f1(t, x(t), y(t), x
′(t)), t ∈ (0,m),

−y′′(t) = p2(t)f2(t, x(t), y(t), y
′(t)), t ∈ (0,m),

a1x(0)− b1x
′(0) = 0, x′(m) =

1

n
,

a2y(0)− b2y
′(0) = 0, y′(m) =

1

n
,

(5.3.9)

satisfying

(t+
b1
a1

)
1

n
≤ xm,n(t) < M,

1

n
≤ x′m,n(t) < M, t ∈ [0,m],

(t+
b2
a2

)
1

n
≤ ym,n(t) < M,

1

n
≤ y′m,n(t) < M, t ∈ [0,m].

(5.3.10)

Now, we show that

{x′m,n}n∈N and {y′m,n}n∈N are equicontinuous on [0,m]. (5.3.11)

From (5.3.9), (5.3.10) and (H43), it follows that

−x′′m,n(t) ≤p1(t)h1(M)k1(M)(u1(x
′
m,n(t)) + v1(x

′
m,n(t))), t ∈ (0,m),

−y′′m,n(t) ≤p2(t)h2(M)k2(M)(u2(y
′
m,n(t)) + v2(y

′
m,n(t))), t ∈ (0,m),

which implies that

−x′′m,n(t)

u1(x′m,n(t)) + v1(x′m,n(t))
≤ h1(M)k1(M)p1(t), t ∈ (0,m),

−y′′m,n(t)

u2(y′m,n(t)) + v2(y′m,n(t))
≤ h2(M)k2(M)p2(t), t ∈ (0,m).

Thus for t1, t2 ∈ [0,m], we have

|J1(x′m,n(t1))− J1(x
′
m,n(t2))| ≤ h1(M)k1(M)

∣∣∣∣∫ t2

t1

p1(t)dt

∣∣∣∣ ,
|J2(y′m,n(t1))− J2(y

′
m,n(t2))| ≤ h2(M)k2(M)

∣∣∣∣∫ t2

t1

p2(t)dt

∣∣∣∣ . (5.3.12)
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In view of (5.3.12), (H41), uniform continuity of J−1
i over [0, Ji(M)] (i = 1, 2) and

|x′m,n(t1)− x′m,n(t2)| = |J−1
1 (J1(x

′
m,n(t1)))− J−1

1 (J1(x
′
m,n(t2)))|,

|y′m,n(t1)− y′m,n(t2)| = |J−1
2 (J2(y

′
m,n(t1)))− J−1

2 (J2(y
′
m,n(t2)))|,

we obtain (5.3.11).

From (5.3.10) and (5.3.11), it follows that the sequences {(x(j)m,n, y
(j)
m,n)}n∈N (j = 0, 1)

are uniformly bounded and equicontinuous on [0,m]. Hence, by Theorem (1.1.6), there

exist subsequence N∗ of N and (xm, ym) ∈ C1[0,m]× C1[0,m] such that for each j = 0, 1

the sequence (x
(j)
m,n, y

(j)
m,n) converges uniformly to (x

(j)
m , y

(j)
m ) on [0,m] as n → ∞ through

N∗. From the BCs (5.3.9), we have a1xm(0) − b1x
′
m(0) = a2ym(0) − b2y

′
m(0) = x′m(m) =

y′m(m) = 0. Next, we show that xm > 0 and ym > 0 on [0,m], x′m > 0 and y′m > 0 on

[0,m).

We claim that

x′m,n(t) ≥ Cγ1
13C

δ1
14

∫ m

t
p1(s)φM (s)ds, t ∈ [0,m], (5.3.13)

y′m,n(t) ≥ Cγ2
13C

δ2
14

∫ m

t
p2(s)ψM (s)ds, t ∈ [0,m], (5.3.14)

where

C13 =

(
b1
a1

∫ 1

0
p1(s)φM (s)ds

) 1−γ2
(1−γ1)(1−γ2)−δ1δ2

(
b2
a2

∫ 1

0
p2(s)ψM (s)ds

) δ1
(1−γ1)(1−γ2)−δ1δ2

,

C14 =

(
b1
a1

∫ 1

0
p1(s)φM (s)ds

) δ2
(1−γ1)(1−γ2)−δ1δ2

(
b2
a2

∫ 1

0
p2(s)ψM (s)ds

) 1−γ1
(1−γ1)(1−γ2)−δ1δ2

.

To prove (5.3.13), consider the following relation

xm,n(t) = (t+
b1
a1

)
1

n
+

1

a1

∫ t

0
(a1s+ b1)p1(s)f1(s, xm,n(s), ym,n(s), x

′
m,n(s))ds

+
1

a1

∫ m

t
(a1t+ b1)p1(s)f1(s, xm,n(s), ym,n(s), x

′
m,n(s))ds, t ∈ [0,m],

(5.3.15)

which implies that

xm,n(0) =
b1
a1

1

n
+
b1
a1

∫ m

0
p1(s)f1(s, xm,n(s), ym,n(s), x

′
m,n(s))ds.

Using (H47) and (5.3.10), we obtain

xm,n(0) ≥(xm,n(0))
γ1(ym,n(0))

δ1
b1
a1

∫ m

0
p1(s)φM (s)ds

≥(xm,n(0))
γ1(ym,n(0))

δ1 b1
a1

∫ 1

0
p1(s)φM (s)ds,

which implies that

xm,n(0) ≥ (ym,n(0))
δ1

1−γ1

(
b1
a1

∫ 1

0
p1(s)φM (s)ds

) 1
1−γ1

. (5.3.16)
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Similarly,

ym,n(0) ≥ (xm,n(0))
δ2

1−γ2

(
b2
a2

∫ 1

0
p2(s)ψM (s)ds

) 1
1−γ2

. (5.3.17)

Now, using (5.3.17) in (5.3.16), we have

(xm,n(0))
1− δ1δ2

(1−γ1)(1−γ2) ≥
(
b1
a1

∫ 1

0
p1(s)φM (s)ds

) 1
1−γ1

(
b2
a2

∫ 1

0
p2(s)ψM (s)ds

) δ1
(1−γ1)(1−γ2)

.

Hence,

xm,n(0) ≥ C13. (5.3.18)

Similarly, using (5.3.16) in (5.3.17), we obtain

ym,n(0) ≥ C14. (5.3.19)

Now, from (5.3.15), it follows that

x′m,n(t) ≥
∫ m

t
p1(s)f1(s, ym,n(s), x

′
m,n(s))ds.

Using (H46), (5.3.10), (5.3.18) and (5.3.19), we obtain (5.3.13).

Similarly, we can prove (5.3.14).

From (5.3.13) and (5.3.14), passing to the limit n→ ∞ through N∗, we obtain

x′m(t) ≥ Cγ1
13C

δ1
14

∫ m

t
p1(s)φM (s)ds, t ∈ [0,m],

y′m(t) ≥ Cγ2
13C

δ2
14

∫ m

t
p2(s)ψM (s)ds, t ∈ [0,m].

(5.3.20)

Consequently, x′m > 0, y′m > 0 on [0,m) and xm > 0, ym > 0 on [0,m].

Moreover, xm,n, ym,n satisfy

x′m,n(t) = x′m,n(0)−
∫ t

0
p1(s)f1(s, xm,n(s), ym,n(s), x

′
m,n(s))ds, t ∈ [0,m],

y′m,n(t) = y′m,n(0)−
∫ t

0
p2(s)f2(s, xm,n(s), ym,n(s), y

′
m,n(s))ds, t ∈ [0,m].

Letting n→ ∞ through N∗, we obtain

x′m(t) = x′m(0)−
∫ t

0
p1(s)f1(s, xm(s), ym(s), x′m(s))ds, t ∈ [0,m],

y′m(t) = y′m(0)−
∫ t

0
p2(s)f2(s, xm(s), ym(s), y′m(s))ds, t ∈ [0,m],

which imply that

−x′′m(t) = p1(t)f1(t, xm(t), ym(t), x′m(t)), t ∈ (0,m),

−y′′m(t) = p2(t)f2(t, xm(t), ym(t), y′m(t)), t ∈ (0,m).
(5.3.21)

Hence, (xm, ym) is a C1-positive solution of (3.4.1).
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5.3.2 Existence of positive solutions on an infinite interval

Theorem 5.3.2. Under the hypothesis (H41) − (H43) and (H45) − (H48), the system of

BVPs (5.0.5), (5.0.7) has at least one C1-positive solution.

Proof. By Theorem 5.3.1, for each m ∈ N0 \ {0}, the system of BVPs (5.3.1) has a C1-

positive solution (xm, ym) defined on [0,m]. By applying diagonalization argument we

will show that the system of BVPs (5.0.5), (5.0.7) has a C1-positive solution. For this we

define a continuous extension (xm, ym) of (xm, ym) by

xm(t) =

xm(t), t ∈ [0,m],

xm(m), t ∈ [m,∞),
ym(t) =

ym(t), t ∈ [0,m],

ym(m), t ∈ [m,∞).
(5.3.22)

Clearly, xm, ym ∈ C1[0,∞) and satisfy,

0 ≤ xm(t) < M, 0 ≤ x′m(t) < M, t ∈ [0,∞),

0 ≤ ym(t) < M, 0 ≤ y′m(t) < M, t ∈ [0,∞).
(5.3.23)

We claim that

{x′m}m∈N0\{0} and {y′m}m∈N0\{0} are equicontinuous on [0, 1]. (5.3.24)

Using (5.3.21), (5.3.22), (5.3.23) and (H43), we obtain

−x′′m(t) ≤ p1(t)h1(M)k1(M)(u1(x
′
m(t)) + v1(x

′
m(t))), t ∈ (0, 1),

−y′′m(t) ≤ p2(t)h2(M)k2(M)(u2(y
′
m(t)) + v2(y

′
m(t))), t ∈ (0, 1),

which implies that

−x′′m(t)

u1(x′m(t)) + v1(x′m(t))
≤ h1(M)k1(M)p1(t), t ∈ (0, 1),

−y′′m(t)

u2(y′m(t)) + v2(y′m(t))
≤ h2(M)k2(M)p2(t), t ∈ (0, 1).

Hence, for t1, t2 ∈ [0, 1], we have

|J1(x′m(t1))− J1(x
′
m(t2))| ≤ h1(M)k1(M)

∣∣∣∣∫ t2

t1

p1(t)dt

∣∣∣∣ ,
|J2(y′m(t1))− J2(y

′
m(t2))| ≤ h2(M)k2(M)

∣∣∣∣∫ t2

t1

p2(t)dt

∣∣∣∣ . (5.3.25)

In view of (5.3.25), (H41), uniform continuity of J−1
i over [0, Ji(L)] (i = 1, 2), and

|x′m(t1)− x′m(t2)| = |J−1
1 (J1(x

′
m(t1)))− J−1

1 (J1(x
′
m(t2)))|,

|y′m(t1)− y′m(t2)| = |J−1
2 (J2(y

′
m(t1)))− J−1

2 (J2(y
′
m(t2)))|,

we establish (5.3.24).
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From (5.3.23) and (5.3.24), it follows that the sequences {(x(j)m , y
(j)
m )} (j = 0, 1) are

uniformly bounded and equicontinuous on [0, 1]. Hence, by Theorem (1.1.6), there exist

subsequence N1 of N0 \ {0} and (u1, v1) ∈ C1[0, 1] × C1[0, 1] such that for each j = 0, 1,

the sequence (x
(j)
m , y

(j)
m ) converges uniformly to (u

(j)
1 , v

(j)
1 ) on [0, 1] as m→ ∞ through N1.

Also from BCs (5.3.1), we have a1u1(0)− b1u
′
1(0) = a2v1(0)− b2v

′
1(0) = 0.

Moreover, from (5.3.20) and (5.3.22), for each m ∈ N0 \ {0}, we have

x′m(t) ≥ Cγ1
13C

δ1
14

∫ 1

t
p1(s)φM (s)ds, t ∈ [0, 1],

y′m(t) ≥ Cγ2
13C

δ2
14

∫ 1

t
p2(s)ψM (s)ds, t ∈ [0, 1],

as limit m→ ∞ through N1, we obtain

u′1(t) ≥ Cγ1
13C

δ1
14

∫ 1

t
p1(s)φM (s)ds, t ∈ [0, 1],

v′1(t) ≥ Cγ2
13C

δ2
14

∫ 1

t
p2(s)ψM (s)ds, t ∈ [0, 1],

which shows that u′1 > 0 and v′1 > 0 on [0, 1), u1 > 0 and v1 > 0 on [0, 1].

By the same process as above, we can show that

{x′m}m∈N1\{1} and {y′m}m∈N1\{1} are equicontinuous families on [0, 2]. (5.3.26)

Now, in view of (5.3.23) and (5.3.26), it follows that the sequences {(x(j)m , y
(j)
m )} (j = 0, 1)

are uniformly bounded and equicontinuous on [0, 2]. Hence, by Theorem (1.1.6), there

exist subsequence N2 of N1 \ {1} and (u2, v2) ∈ C1[0, 2] × C1[0, 2] such that for each

j = 0, 1, the sequence (x
(j)
m , y

(j)
m ) converges uniformly to (u

(j)
2 , v

(j)
2 ) on [0, 2] as m → ∞

through N2. Also, a1u2(0)−b1u′2(0) = a2v2(0)−b2v′2(0) = 0. Moreover, in view of (5.3.20)

and (5.3.22), for each m ∈ N1 \ {1}, we have

x′m(t) ≥ Cγ1
13C

δ1
14

∫ 2

t
p1(s)φM (s)ds, t ∈ [0, 2],

y′m(t) ≥ Cγ2
13C

δ2
14

∫ 2

t
p2(s)ψM (s)ds, t ∈ [0, 2].

Now, the limm→∞ through N2 leads to

u′2(t) ≥ Cγ1
13C

δ1
14

∫ 2

t
p1(s)φM (s)ds, t ∈ [0, 2],

v′1(t) ≥ Cγ2
13C

δ2
14

∫ 2

t
p2(s)ψM (s)ds, t ∈ [0, 2],

which shows that u′2 > 0 and v′2 > 0 on [0, 2), u2 > 0 and v2 > 0 on [0, 2]. Note that,

u2 = u1 and v2 = v1 on [0, 1] as N2 ⊆ N1.

In general, for each k ∈ N0 \ {0}, there exists a subsequence Nk of Nk−1 \ {k − 1}
and (uk, vk) ∈ C1[0, k] × C1[0, k] such that (x

(j)
m , y

(j)
m ) converges uniformly to (u

(j)
k , v

(j)
k )
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(j = 0, 1) on [0, k], asm→ ∞ through Nk. Also, a1uk(0)−b1u′k(0) = a2vk(0)−b2v′k(0) = 0,

uk = uk−1 and vk = vk−1 on [0, k − 1] as Nk ⊆ Nk−1. Moreover,

u′k(t) ≥ Cγ1
13C

δ1
14

∫ k

t
p1(s)φM (s)ds, t ∈ [0, k],

v′k(t) ≥ Cγ2
13C

δ2
14

∫ k

t
p2(s)ψM (s)ds, t ∈ [0, k],

which shows that u′k > 0 and v′k > 0 on [0, k), uk > 0 and vk > 0 on [0, k].

Define functions x, y : R+ → R+ as:

For fixed τ ∈ R+
0 and k ∈ N0 \ {0} with τ ≤ k, x(τ) = uk(τ) and y(τ) = vk(τ). Then,

x and y are well defined as, x(t) = uk(t) > 0 and y(t) = vk(t) > 0 for t ∈ [0, k]. We can

do this for each τ ∈ R+
0 . Thus, (x, y) ∈ C1(R+) × C1(R+) with x > 0, y > 0, x′ > 0 and

y′ > 0 on R+.

Now, we show that (x, y) is a solution of system of BVPs (5.0.5), (5.0.7). Choose a

fixed τ ∈ R+ and k ∈ N0 \ {0} such that k ≥ τ . Then, (xm(τ), ym(τ)) where m ∈ Nk,

satisfy

x′m(τ) = x′m(0)−
∫ τ

0
p1(s)f1(s, xm(s), ym(s), x′m(s))ds,

y′m(τ) = y′m(0)−
∫ τ

0
p2(s)f2(s, xm(s), ym(s), y′m(s))ds.

Passing to the limit m→ ∞, we obtain

u′k(τ) = u′k(0)−
∫ τ

0
p1(s)f1(s, uk(s), vk(s), u

′
k(s))ds,

v′k(τ) = v′k(0)−
∫ τ

0
p2(s)f2(s, uk(s), vk(s), v

′
k(s))ds.

Hence,

x′(τ) = x′(0)−
∫ τ

0
p1(s)f1(s, x(s), y(s), x

′(s))ds,

y′(τ) = y′(0)−
∫ τ

0
p2(s)f2(s, x(s), y(s), y

′(s))ds,

which implies that

−x′′(τ) = p1(τ)f1(τ, x(τ), y(τ), x
′(τ)),

−y′′(τ) = p2(τ)f2(τ, x(τ), y(τ), y
′(τ)).

We can do this for each τ ∈ R+. Consequently,

−x′′(t) = p1(t)f1(t, x(t), y(t), x
′(t)), t ∈ R+

0 ,

−y′′(t) = p2(t)f2(t, x(t), y(t), y
′(t)), t ∈ R+

0 .
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Thus, (x, y) ∈ C2(R+
0 )× C2(R+

0 ), a1x(0)− b1x
′(0) = a2y(0)− b2y

′(0) = 0.

It remains to show that

lim
t→∞

x′(t) = lim
t→∞

y′(t) = 0.

First, we show that limt→∞ x′(t) = 0. Suppose limt→∞ x′(t) = ε0, for some ε0 > 0. Then,

x′(t) ≥ ε0 for all t ∈ [0,∞). Choose k ∈ N0 \ {0}, then for m ∈ Nk, in view of (5.3.22),

we have

x′(t) = u′k(t) = lim
m→∞

x′m(t) = lim
m→∞

x′m(t), t ∈ [0, k],

which leads to

x′(k) = lim
m→∞

x′m(k).

Thus for every ε > 0, there exist m∗ ∈ Nk such that |x′m(k) − x′(k)| < ε for all m ≥ m∗.

Without loss of generality assume thatm∗ = k, then |x′k(k)−x′(k)| < ε, that is, |x′(k)| < ε.

Which is a contradiction whenever ε = ε0. Hence, limt→∞ x′(t) = 0. Similarly, we can

prove limt→∞ y′(t) = 0. Thus, (x, y) is a C1-positive solution of the system of BVPs

(5.0.5), (5.0.7).

Example 5.3.3. Let

fi(t, x, y, z) = ναi+1e−t(M + 1− x)(M + 1− y)|x|γi |y|δi |z|−αi , i = 1, 2,

where ν > 0, M > 0, αi > 0, 0 ≤ γi, δi < 1, i = 1, 2.

Assume that (1− γ1)(1− γ2) ̸= δ1δ2 and

ν <
M∑2

i=1

(
bi
ai

+ αi + 2
)
(αi + 1)

1
αi+1 (2M + 1)

2
αi+1M

γi+δi
αi+1

.

Taking pi(t) = e−t, hi(x) = ναi+1(M +1+x)xγi , ki(y) = (M +1+y)yδi , ui(z) = z−αi and

vi(z) = 0, i = 1, 2. Choose φM (t) = να1+1M−α1e−t and ψM (t) = να2+1M−α2e−t. Then,

Ji(µ) =
µαi+1

αi+1 and J−1
i (µ) = (αi + 1)

1
αi+1µ

1
αi+1 , i = 1, 2.

Also,

M

ω(M)
=

M∑2
i=1

∫∞
0
J−1
i (hi(M)ki(M)

∫∞
t
pi(s)ds)dt+

∑2
i=1(1 +

bi
ai
)J−1

i (hi(M)ki(M)
∫∞
0
pi(s)ds)

=
M∑2

i=1

∫∞
0
J−1
i (ναi+1(2M + 1)2Mγi+δie−t)dt+

∑2
i=1(1 +

bi
ai
)J−1

i (ναi+1(2M + 1)2Mγi+δi)

=
M

ν
∑2

i=1(
bi
ai

+ αi + 2)(αi + 1)
1

αi+1 (2M + 1)
2

αi+1M
γi+δi
αi+1

> 1.

Clearly, (H41) − (H43) and (H45) − (H48) are satisfied. Hence, by Theorem 5.3.2, the

system of BVPs (5.0.5), (5.0.7) has at least one C1-positive solution.



Chapter 6

Concluding Remarks

In Chapter 2, Section 2.2, we studied the system of ODEs (2.0.2) subject to three–point

BCs (2.0.4). We have established four different results (Theorem 2.2.2, Theorem 2.2.4,

Theorem 2.2.6 and Theorem 2.2.8) for the existence of at least one positive solutions to

the system of SBVPs (2.0.2), (2.0.4) under the new hypothesis on the nonlinear functions

f and g. In Theorem 2.2.2, we provide the existence of at least one positive solution for the

system of SBVPs (2.0.2), (2.0.4) under the hypothesis (H1) − (H3), where (H1) is about

integrability condition while (H2) and (H3) are natural assumptions satisfied by a class

of singular nonlinear functions. Our next result, Theorem 2.2.4, is obtained by replacing

(H3) with (H4) in Theorem 2.2.2. Theorem 2.2.6 is obtained by replacing (H2) with (H5)

in Theorem 2.2.2. Moreover, Theorem 2.2.8 can be obtained either by replacing (H2)

with (H5) in Theorem 2.2.4 or by replacing (H3) with (H4) in Theorem 2.2.6. Further

in Section 2.3, Theorem 2.3.2, the existence of positive solutions to the system of ODEs

(2.0.3) subject to BCs (2.0.4) is provided under the hypothesis (H6) − (H9), where the

hypothesis (H6) is an extension of (H1) while (H7) corresponds to (H2) in two–dimensional

case. The hypothesis (H8) and (H9) are sublinear conditions on the nonlinear functions f

and g.

In Chapter 3, Section 3.1, we establish the existence results for a coupled system of

SBVPs (3.0.2), (3.0.3). In Theorem 3.1.2, we prove the existence of at least one C1-positive

solution for the system of SBVPs (3.0.2), (3.0.3) under the hypothesis (H10)− (H16). The

hypothesis (H10) and (H16) are some integrability conditions, (H11) is necessary because,

otherwise, positive solution (x, y) will not satisfy the condition x′ > 0 and y′ > 0 on [0, 1),

and therefore, (x, y) /∈ C2(0, 1) ∩ C2(0, 1), (H12) is a natural assumption when f(t, x, y)

and g(t, x, y) have singularity at y = 0, (H13) is required to bound the solution, whereas

(H14) is necessary for invertibility of the maps I and J , and the solution is positive due

to (H15). By replacing the hypothesis (H15) and (H16) of Theorem 3.1.2 with (H17) and

(H18), and including one more hypothesis (H19), we obtained the existence of at least two

128
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positive solutions for the system of ODEs (3.0.2) subject to two–point BCs (3.0.3), that is,

Theorem 3.2.2 of Section 3.2. The hypothesis (H19) is required for the existence of at least

two solutions. By replacing the hypothesis (H13) and (H16) of Theorem 3.1.2 with (H20)

and (H21) we get our next result, that is, Theorem 3.3.1 of Section 3.3, which provide

existence of at least one C1-positive solutions to the SBVPs (3.0.2), (3.0.4). Theorem

3.4.2 of Section 3.4 is obtained by replacing the hypothesis (H13) and (H18) of Theorem

3.2.2 with (H20) and (H22), which is a criteria for the existence of at least two C1-positive

solutions for the system of SBVPs (3.0.2), (3.0.4).

In Chapter 4, Section 4.1, we discuss the four–point coupled BCs and studied the

system of SBVPs (4.0.1). In Theorem 4.1.9, by employing the Guo–Krasnosel’skii fixed

point theorem for a completely continuous map on a positive cone, it is shown that the

system (4.0.1) has a positive solution under the assumptions (H23)−(H25), where (H23) is

about integrability condition while (H24) and (H25) are sublinear conditions on nonlinear

functions f and g. Moreover in Section 4.2, Theorem 4.2.1, we studied the existence of

C1-positive solutions to the system of SBVPs (4.0.2) under the hypothesis (H10)− (H12),

(H14), (H29), (H31) and (H32). The hypothesis (H29) is a replacement of (H20) in the

case of two–point coupled BCs (4.0.2), (H31) is a generalization of (H15) in case system

of SBVPs (4.0.2) while (H32) is nothing but (H16) for E =M and F = L.

In Chapter 5, Section 5.1, we develop the notion of upper and lower solutions for the

system of SBVPs (5.0.4). Theorem 5.1.1 guarantees the existence of C1-positive solutions

for the system (5.0.4) under the hypothesis (H33) − (H40), where (H33) is equivalent to

(H10), (H34) is just a continuity condition on nonlinear functions fi (i = 1, 2), (H35)

and (H36) defines upper and lower solutions, (H37) is a condition about the concavity of

solutions, (H38) is a natural assumption when the functions f , g are singular with respect

to x = 0 and y = 0, (H39) is about integrability condition and (H40) is desired to bound

the derivative of solution. Further in Section 5.2, we establish the existence of C1-positive

solutions to the coupled system of ODEs (5.0.5) subject to BCs (5.0.6). Theorem 5.2.2

offer C1-positive solutions to the system of SBVPs (5.0.5), (5.0.6) under the hypothesis

(H41) − (H47), where (H41) is about integrability condition on pi (i = 1, 2), (H42) and

(H46) are weaker than (H11), (H43) is more general than (H12) when nonlinear functions

are sign–changing, (H44) is required to bound the solution which is much simpler than

(H13), (H45) is just (H14) for I = J1 and J = J2, and (H47) is required to prove that the

solution is positive. By replacing the hypothesis (H44) in Theorem 5.2.2 with (H48) we

obtain Theorem 5.3.2 of Section 5.3, which is a criteria for the existence of at least one

C1-positive solutions to the system of ODEs (5.0.5) subject to BCs (5.0.7).
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