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Preface

The origin of the fixed point theory, in the later part of the nineteenth century,
was basically for the use of successive approximations to establish the existence
and uniqueness of solutions, particularly of differential equations.

This method is associated with the names of such celebrated mathematicians
as Cauchy, Liouville, Lipschitz, Peano, Fredholm and especially, Picard. Infact
the basic ideas of a fixed point theoretic approach are clearly visible in the work
of Picard. However, it is the Polish mathematician Banach who is credited with
placing the underlying ideas into an abstract framework suitable for broad appli-
cations well beyond those for elementary differential and integral equations.

The Banach fixed point theorem [6] states that every contraction f on a
complete metric space X has a unique fixed point ξ ∈ X and starting from any
point x ∈ X, the iterative sequence {xn+1 = fn+1(x) = f(xn)} converges to the
fixed point ξ. It has been noticed that the rate of convergence (Definition 1.1.5)
of the iterative sequence {fn(x)} is linear. A function ϕ : R+ → R+ is said to be
a gauge function if it satisfies at least one of the conditions given in Definition
1.1.8. Proinov [49] used the contractive condition:

d(fx, f 2x) ≤ ϕ(d(x, fx)) (0.0.1)

where ϕ is a gauge function to show that the function f : D ⊂ X → X has a fixed
point ξ ∈ D and that the iterative sequence {xn+1 = fn+1(x) = f(xn)} converges
to the fixed point ξ provided X is complete. In contrast to the Banach fixed point
theorem [6] the rate of convergence of the iterative sequence {xn+1 = fn+1(x) =

f(xn)} in this case is of higher order and not necessarily linear. Furthermore, the
Proinov fixed point theorem [49] also gives the error estimates.

Nadler [40] extended the Banach fixed point theorem [6] for a contraction from
a complete metric space X into the space of all nonempty closed and bounded
subsets of X. Suzuki [61] showed that Mizoguchi-Takahashi’s fixed point theorem
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[39] is indeed a generalization of Nadler fixed point theorem [40]. Inspired by the
results of Mizoguchi-Takahashi [39] and using the ideas of Feng and Liu [19],
Klim and Wardowski [34] obtained some fixed point theorems and showed that
their results are different from Reich’s fixed point theorem [53] and Mizoguchi-
Takahashi’s fixed point theorem [39]. Pathak and Shahzad [45] introduced a class
of functions and generalized some fixed point theorems by Klim and Wardowski
[34] by altering distances.

In this thesis, we have established some fixed point theorems for single valued
and multi-valued mappings. The results obtained generalize Proinov fixed point
theorem [49], Mizoguchi-Takahashi’s fixed point theorem [39] and a fixed point
theorem by Pathak and Shahzad [45]. Thus my results generalize many known
fixed point theorems.

This thesis is organized as follows. Chapter 1 is devoted to some fundamen-
tal notions and related results which are in understanding and development of
fixed point theory involving single valued as well as multi-valued mappings. We
illustrate the concepts by some examples.

There may exist more than one metric on a given nonempty set X. If this is
the case, and if X is complete with respect to one metric and a function f on
X satisfies the contractive condition (0.0.1) with respect to some other metric,
then it would be interesting to determine conditions which ensure that f has a
fixed point. In Chapter 2, we obtain two fixed point results for such mappings in
the space with two metrics. As an application we prove a homotopy result. The
results of this chapter appeared as [30] and [32].

In Chapter 3, we obtain some fixed point theorems for multi-valued mappings.
In Sections I and II, we extend the Proinov fixed point theorems [49] to the case
of multi-valued mappings. The results obtained not only generalize Nadler fixed
point theorem [40] but also give the higher order of convergence of the iterative
sequence involved. The contractive condition involved is weaker and need not
satisfy for every pair of elements from the given metric space. We have also
calculated the error bounds. In Section III, we apply the results of Section II
to obtain a solution to an integral inclusion. These results appeared as [29] and
accepted for publication as [31] respectively. In Section IV, we introduce a new
class of functions which is a subclass of the class of functions introduced by Pathak
and Shahzad and improve some results of Pathak and Shahzad [45]. The results
of this section presented as [33].
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Chapter 1

Basic Concepts and Notation

The term metric fixed point theory refers to those fixed point theoretic results
in which geometric conditions on the underlying spaces and/or mappings play a
crucial role.

In this chapter some fundamental concepts and relevant results of metric fixed
point theory are presented which are used throughout this thesis. To keep the
chapter as brief as possible, the results are mentioned without proofs. All the
necessary notation and the terminology used in the sequel are also introduced.

Throughout this thesis, X denotes a metric space with the metric d, unless
stated otherwise. If X and Y are non-empty sets and f : X → Y is a mapping
then fp denotes the image of p under f .

1.1 Fixed points of single valued mappings

1.1.1 Fixed points

Definition 1.1.1. Let f be a mapping from X into X. A point p ∈ X is said to
be a fixed point of f if p = fp.

Not all functions have fixed points. Further, if a function has a fixed point, it
may not be unique.

Definition 1.1.2. A mapping f : X → X is said to be Lipschitzian if there is a
constant k ≥ 0 such that for all x, y ∈ X

d(fx, fy) ≤ kd(x, y).

10
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The smallest number k for which the above condition holds is called the Lipschitz
constant of f .

Definition 1.1.3. A Lipschitzian mapping f : X → X with Lipschitz constant
k < 1 is said to be a contraction mapping or simply a contraction.

1.1.2 Banach contraction principle

The Banach contraction principle, also known as the contraction mapping prin-
ciple, is an important tool in the theory of metric spaces. It guarantees the
existence and uniqueness of fixed points of certain self maps of metric spaces and
provides a constructive method to find those fixed points. The principle first ap-
peared in explicit form in Banach’s PhD thesis [6], where it was used to establish
the existance of a solution to an integral equation.

Theorem 1.1.4. (Banach) Let X be a complete metric space and let f be a
mapping from X into X. If there exists a real number k with 0 ≤ k < 1 satisfying

d(fx, fy) ≤ kd(x, y)

for all x, y ∈ X, then f has a unique fixed point x0. Moreover, for each x ∈ X:

(i) The iterative sequence {fnx} converges to x0;

(ii) For n ≥ 1 the following apriori estimates holds;

d(fnx, x0) ≤ kn

1− k
d(x, fx);

(iii) For n ≥ 1 the following aposteriori estimates holds;

d(fn+1x, x0) ≤ d(fn+1x, fnx).

The strength of the contraction mapping principle lies in the fact that the
underlying space is quite general a complete metric space while the conclusion
is very strong, including even error estimates. Fig. 1.1 shows how the Banach
iterative scheme works in R . In Fig. 1.1(a) f is a contraction and the itera-
tive sequence converges to the unique fixed point ξ. In Fig. 1.1(b) f is not a
contraction, and it has a divergent iterative sequence.
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Figure 1.1: Visualization of Banach iterative scheme in R.

Definition 1.1.5. [12] Let {xn} be a sequence in X that converges to ξ. If
positive constants λ and α exist with

lim
n→∞

d(xn+1, ξ)

(d(xn, ξ))α
= λ

then α is called the rate of convergence of the sequence {xn}.

Remark 1.1.6. Note that the rate of convergence of the iterative sequence in
the Banach contraction principle is linear.

Before proceeding further, we turn to a simple application to illustrate the
usefulness of the Banach contraction principle. Consider the first order initial
value problem

x′(t) = f(t, x(t)), x(0) = x0. (1.1.1)

We now state the Picard-Lindelöf theorem.

Theorem 1.1.7. (Picard) Let f be continuous on a rectangle

R = {(t, x) : |t− t0| ≤ a, |x− x0| ≤ b}



13

and thus bounded on R, that is

|f(t, x)| ≤ c for all (t, x) ∈ R.

Suppose that f satisfies a Lipschitz condition on R with respect to x, that is for
(t, x), (t, y) ∈ R

|f(t, x)− f(t, y)| ≤ k|x− y|.

Then the initial value problem (1.1.1) has a unique solution on an interval [t0 −
β, t0 + β], where β < min{a, b

c
, 1

k
}.

1.1.3 Some extensions of the Banach contraction principle

using gauge functions and/or semicontinuity

There have been numerous extensions of Banach contraction principle which are
obtained for different collection of properties of the gauge functions (Definition
1.1.8) and/or using the notion of semicontinuity (Definiton1.1.9). Almost all such
extensions prove only the convergence of iterative procedure to the fixed points
of the mappings but only few of them are able to provide information on the
convergence rate. Here we mention some of the well known (related to our work)
extensions.

Definition 1.1.8. A function ϕ : R+ → R+ is said to be a gauge function if it
satisfies at least one of the following properties:

1. ϕ is monotone non decreasing;

2. ϕ(t) < t for all t > 0;

3. ϕ(0) = 0;

4. ϕ is continuous;

5. (ϕn(t)) converges to 0 for all t > 0;

6.
∑∞

n=0 ϕn(t) converges for all t > 0;

7. t− ϕ(t) →∞ as t →∞;

8. ϕ is subadditive.
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For example, ϕ(t) = at, t ∈ R+, a ∈ (0, 1) is a gauge function.

Definition 1.1.9. A mapping f : X → X is said to be a ϕ-contraction if there
exists a gauge function ϕ : R+ → R+ such that

d(fx, fy) ≤ ϕ(d(x, y)), (1.1.2)

for all x,∈ X.

Gauge means measure. Note from the above definition that if f is a ϕ-
contraction then the gauge function ϕ provides the measure of f in the sense
of inequality (1.1.2).

Definition 1.1.10. Let f : X → R. Then, for δ > 0 limit supremum of f and
limit infimum of f are defined respectively as:

lim sup fx :=

{
sup{fy : |x− y| < δ}, if the supremum exists
∞, otherwise.

lim inf fx :=

{
inf{fy : |x− y| < δ}, if the infimum exists
−∞, otherwise.

Definition 1.1.11. A function f : X → R is upper semicontinuous at x ∈ X if
fx ≥ lim sup fx, and it is lower semicontinuous at x ∈ X if fx ≤ lim inf fx. We
say that f is upper(lower) semicontinuous if it is upper(lower) semicontinuous
at each x ∈ X. Obviously f is continuous if it is both upper and lower semi
continuous.

In simple words, if f is upper semicontinuous at x, then the images of points
near x under f do not exceed fx "too much", while there is no restriction on how
far these images can fall below fx. Similarly, if f is lower semicontinuous at x,
then the images of points near x under f do not fall below fx "too much", but
they can still be very much greater than fx (Fig.1.2).
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Figure 1.2: Upper and lower semicontinuity of a function f .

Rakotch [51] generalized the Banach contraction principle, using a gauge function,
in the following way.

Theorem 1.1.12. [51] Let X be a complete metric space and suppose that
f : X → X satisfies

d(fx, fy) ≤ ϕ(d(x, y))d(x, y),

for each x, y ∈ X where ϕ : R+ → [0, 1) is monotonically decreasing. Then f has
a unique fixed point, ξ, and {fn(x)} converges to ξ for each x ∈ X.

Subsequently, Boyd and Wong [10] obtained a more general result.

Theorem 1.1.13. [10] Let X be a complete metric space and suppose f : X → X

satisfies
d(fx, fy) ≤ ϕ(d(x, y))

for each x, y ∈ X, where ϕ : R+ → [0,∞) is upper semicontinuous from the right
and satisfies 0 ≤ ϕ(t) < t for t > 0. Then f has a unique fixed point, ξ, and
{fn(x)} converges to ξ for each x ∈ X.

Since it is the explicit control over the error term that contributes so much to
the wide-spread usefulness of Banach contraction principle, the following variant
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of the Boyd-Wong theorem due to Browder [11] is also of interest.

Theorem 1.1.14. [11] Let X be a complete metric space and let D be a bounded
subset of X. Suppose f : D → D satisfies

d(fx, fy) ≤ ϕ(d(x, y))

for each x, y ∈ D, where ϕ : [0,∞) → [0,∞) is monotone nondecreasing and
continuous from the right, such that ϕ(t) < t for all t > 0. Then there is a unique
element ξ ∈ D such that {fn(x)} converges to ξ for each x ∈ D. Moreover, if γ

is the diameter of D, then
d(fnx, ξ) ≤ ϕn(γ)

and ϕn(γ) → 0 as n →∞.

Another variant is due to Matkowski [38] wherein the continuity condition on
ϕ is replaced with another condition.

Theorem 1.1.15. [38] Let X be a complete metric space and suppose that
f : X → X satisfies

d(fx, fy) ≤ ϕ(d(x, y))

for each x, y ∈ X, where ϕ : [0,∞) → [0,∞) is monotone non decreasing and
satisfies limn→∞ ϕn(t) = 0 for t > 0. Then f has a unique fixed point ξ, and
limn→∞ d(fn(x), ξ) = 0 for every x ∈ X.

1.1.4 Generalization of the Banach contraction principle

using a gauge function of higher order

Proinov [49] generalized the Banach contraction principle by using a gauge func-
tion of order greater or equal to 1. Before proceeding to his results, it will be
useful to establish the notations and terminology and some basic concepts about
gauge functions of high orders.
Throughout the subsequent work J denotes an interval on R+ containing 0, i.e;
an interval of the form [0, R], [0, R) or [0,∞) and Sn(t) = 1 + t + t2 + · · ·+ tn−1.

Definition 1.1.16. (Gauge function of order r ≥ 1). Let r ≥ 1. A function
ϕ : J → J is said to be a gauge function of order r on J if it satisfies the
following conditions:
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1. ϕ(λt) ≤ λrϕ(t) for all λ ∈ (0, 1) and t ∈ J ;

2. ϕ(t) < t for all t ∈ J \ {0}.

It is easy to see that the first condition of Definition 1.1.16 is equivalent to
the following: ϕ(0) = 0 and ϕ(t)/tr is nondecreasing on J \ {0}.

Example 1.1.17. 1. ϕ(t) = λt (0 < λ < 1) is a gauge function of the first
order on J = [0,∞).

2. ϕ(t) = ctr (c > 0, r > 1) is a gauge function of order r on J = [0, R), where
R = (1/c)1/(r−1).

Lemma 1.1.18. [49] Let ϕ be a gauge function of order r ≥ 1 on J . If φ is a
nonnegative and nondecreasing function on J satisfying

ϕ(t) = tφ(t) for all t ∈ J, (1.1.3)

then it has the following two properties:

(i) 0 ≤ φ(t) < 1 for all t ∈ J ;

(ii) φ(λt) ≤ λr−1φ(t) for all λ ∈ (0, 1) and t ∈ J .

Lemma 1.1.19. [49] Let ϕ be a gauge function of order r ≥ 1 on J . Then for
every n ≥ 0 we have

(i) ϕn(t) ≤ tφ(t)Sn(r) for all t ∈ J ,

(ii) φ(ϕn(t)) ≤ φ(t)rn for all t ∈ J ,

where φ is a nonnegative and nondecreasing function on J satisfying (1.1.3).

Definition 1.1.20. [49] A nondecreasing function ϕ : J → J is said to be a
Bianchini-Grandolfi gauge function [9] on J if

σ(t) =
∞∑

n=0

ϕn(t) < ∞, for all t ∈ J. (1.1.4)

Note that Ptak [50] called a function ϕ : J → J satisfying (1.1.4) a rate of
convergence on J and noticed that ϕ satisfies the following functional equation

σ(t) = σ(ϕ(t)) + t. (1.1.5)
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The following statement is an immediate consequence of the first part of
Lemma 1.1.19 and the obvious inequality Sn(r) ≥ n for all r ≥ 1.

Lemma 1.1.21. [49] Every gauge function of order r ≥ 1 on J is a Bianchini-
Grandolfi gauge function on J .

Definition 1.1.22. [49] Let f : D ⊂ X → X be an operator satisfying

d(fx, f 2x) ≤ ϕ(d(x, fx)) for all x, fx ∈ D with d(x, fx) ∈ J,

with a Bianchini-Grandolfi gauge function ϕ on an interval J . A point x0 ∈ D is
called an initial point of f if d(x0, fx0) ∈ J and all of the iterates x0, x1, x2, · · ·
are well-defined and belong to D.

From now on, S(x0, ρ) and S(x0, ρ) denote the open and closed balls in X,
respectively, with center x0 and radius ρ.

Theorem 1.1.23. [49, Theorem 4.1] Let f : D ⊂ X → X be an operator on a
complete metric space (X, d) satisfying

d(fx, f 2x) ≤ ϕ(d(x, fx)) for all x, fx ∈ D with d(x, fx) ∈ J,

with a Bianchini-Grandolfi gauge function ϕ on an interval J . Then, starting
from an initial point x0 of f the iterative sequence {xn} remains in S(x0, ρ0)

and converges to a point ξ which belongs to each of the closed balls S(xn, ρn);
n = 0, 1, · · · , where ρn = σ(d(xn, xn+1)) and σ is defined by (1.1.4). Moreover,
for each n ≥ 1 we have

d(xn, xn+1) ≤ ϕ(d(xn−1, xn)).

If ξ ∈ D and f is continuous at ξ, then ξ is a fixed point of f .

As a consequence of the above result Proinov obtained the following.

Theorem 1.1.24. [49, Theorem 4.2] Let f : D ⊂ X → X be an operator on a
complete metric space (X, d) satisfying

d(fx, f 2x) ≤ ϕ(d(x, fx)) for all x, fx ∈ D with d(x, fx) ∈ J,

with a gauge function ϕ of the order r ≥ 1 on an interval J . Suppose that x0 ∈ D

is an initial point of f . Then the following statements hold true.
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(i) The iterative sequence {xn} remains in S(x0, ρ0) and converges with rate of
convergence at least r to a point ξ which belongs to each of the closed balls
S(xn, ρn), n = 0, 1, · · · , where

ρn = d(xn, xn+1)
∞∑

j=0

[φ(d(xn, xn+1))]
Sj(r) ≤ d(xn, xn+1)

1− φ(d(xn, xn+1))
(1.1.6)

and φ is a non-negative and non-decreasing function on J satisfying (1.1.3)

(ii) For all n ≥ 0 we have the following apriori estimate

d(xn, ξ) ≤ d(x0, fx0)
∞∑

j=n

λSj(r) ≤ λSn(r)d(x0, fx0)

1− λrn , (1.1.7)

where λ = φ(d(x0, fx0)).

(iii) For all n ≥ 1 we have the following aposteriori estimate

d(xn, ξ) ≤ ϕ(d(xn, xn−1))
∞∑

j=0

[φ(ϕ(d(xn, xn−1)))]
Sj(r)

≤ ϕ(d(xn, xn−1))

1− φ(ϕ(d(xn, xn−1)))

≤ ϕ(d(xn, xn−1))

1− [φ(d(xn, xn−1))]r
. (1.1.8)

(iv) For all n ≥ 1 we have

d(xn, xn+1) ≤ ϕ(d(xn, xn−1)) ≤ λSn(r)d(x0, fx0). (1.1.9)

(v) If ξ ∈ D and f is continuous at ξ, then ξ is a fixed point of f .

1.1.5 Generalization of the Banach contraction principle by

introducing more than one metric on the underlying

set

Another direction of extending Banach contraction principle is to consider the
underlying space with two metrics. This approach is useful in obtaining homotopy
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(Definition 1.1.28) results and has a significant applications in solving boundary
value problem [1].

Example 1.1.25. Consider the function space C[a, b], where [a, b] is any given
closed interval on R. We can define two metrics on this space as follows:

d′(x, y) = max
t∈[a,b]

|x(t)− y(t)|

and

d(x, y) =

∫ b

a

|x(t)− y(t)|dt

for x, y ∈ C[a, b]. Note that C[a, b] is a complete metric space with respect to d′

but it is not complete with respect to d.

Whenever we consider X to be a set with two metrics d′ and d, we assume that
X is complete with respect to d′ but may or may not complete with respect to d.
In this case we denote by S(x0, ρ)d′ the d′-closure of S(x0, ρ) = {x ∈ X : d(x, x0) <

ρ} and by S(x0, ρ) the usual d-closure of S(x0, ρ) = {x ∈ X : d(x, x0) < ρ}.
Using two metrics on a given set, Agarwal et. al. [1] obtained the following

results.

Theorem 1.1.26. [1, Theorem 2.1] Let (X, d′) be a complete metric space, d

another metric on X, x0 ∈ X, r > 0 and f : S(x0, r)
d′ → X. Suppose that there

exists a q ∈ (0, 1) such that for x, y ∈ S(x0, r)
d′ we have

d(fx, fy) ≤ q max{d(x, y), d(x, fx), d(y, fy),
1

2
[d(x, fy) + d(y, fx)]}.

In addition assume that the following three properties hold:

d(x0, fx0) < (1− q)r (1.1.10)

If d � d′ then f is uniformly continuous from (S(x0, r), d) into(X, d′), (1.1.11)

and

If d 6= d′ then f is continuous from (S(x0, r)
d′ , d′) into(X, d′). (1.1.12)

Then f has a fixed point i.e;, there exists x ∈ S(x0, r)
d′ with x = fx.
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Theorem 1.1.27. [1, Theorem 2.3] Let (X, d′) be a complete metric space, d

another metric on X and f : X → X. Suppose there exists q ∈ (0, 1) such that
for x, y ∈ X we have

d(fx, fy) ≤ q max{d(x, y), d(x, fx), d(y, fy),
1

2
[d(x, fy) + d(y, fx)]}.

In addition assume that the following two properties hold:

If d � d′ then f is uniformly continuous from (X, d) into(X, d′), (1.1.13)

and
If d 6= d′ then f is continuous from (X, d′) into(X, d′). (1.1.14)

Then f has a fixed point.

Definition 1.1.28. Let (X, d) be a complete metric space, and let U be an
open subset of X, f : Ū → X and g : Ū → X be two contractions where Ū

denotes the closure of U in X. We say that f and g are homotopic if there exists
H : Ū × [0, 1] → X with the following properties:

(a) H(., 0) = g and H(., 1) = f ;

(b) x 6= H(x, t) for every x ∈ ∂U and t ∈ [0, 1] (here ∂U denotes the boundary
of U in X);

(c) There exists a q, 0 ≤ q < 1, such that d(H(x, t), H(y, t)) ≤ qd(x, y) for every
x, y ∈ Ū and t ∈ [0, 1];

(d) There exists M, M ≥ 0, such that d(H(x, t), H(x, s)) ≤ M |t − s| for every
x ∈ Ū and t, s ∈ [0, 1].

Agarwal et. al. [3] showed that the property of having a fixed point is invariant
under homotopy for contractions.

Theorem 1.1.29. [3] Let (X, d) be a complete metric space and U an open
subset of X. Suppose f : Ū → X and g : Ū → X are two homotopic contractive
maps and g has a fixed point in U . Then f has a fixed point in U .

Using the Definition 1.1.28 the above Theorem can be restated as follows:

Theorem 1.1.30. Let (X, d) be a complete metric space and let U be an open
subset of X.Suppose H : Ū × [0, 1] → X satisfies the following properties:
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(a) x 6= H(x, t) for every x ∈ ∂U and t ∈ [0, 1] (here ∂U denotes the boundary
of U in X);

(b) There exists q, 0 ≤ q < 1, such that d(H(x, t), H(y, t)) ≤ qd(x, y) for every
x, y ∈ Ū and t ∈ [0, 1];

(c) There exists M, M ≥ 0, such that d(H(x, t), H(x, s)) ≤ M |t − s| for every
x ∈ Ū and t, s ∈ [0, 1].

In addition assume that H0 has a fixed point. Then H1 has a fixed point in U

(here Hλ(.) = H(., λ)).

Note that in above theorem the map H is taken as a homotopy between the
contractions f and g defined in Theorem 1.1.29. Further in [1] the authors estab-
lish general continuation type theorems for generalized contractive homotopies
on spaces with two metrics using Theorem 1.1.26.

Theorem 1.1.31. Let (X, d′) be a complete metric space and let d be another
metric on X. Let Q ⊆ X be d′-closed and let U ⊆ X be d-open and U ⊆ Q.
Suppose H : Q× [0, 1] → X satisfies the following five properties:

(i) x 6= H(x, λ) for x ∈ Q \ U and λ ∈ [0, 1];

(ii)There exists a q ∈ (0, 1) such that for all λ ∈ [0, 1] and x, y ∈ Q

d(H(x, λ), H(y, λ)) ≤ q max
{

d(x, y), d(x, H(x, λ)), d(y,H(y, λ))

1

2
[d(x,H(y, λ)) + d(y, H(x, λ))]

}
;

(iii) H(x, λ) is continuous in λ w.r.t. d, uniformly for x ∈ Q.

(iv) If d � d′ assume that H is uniformly continuous from U × [0, 1] endowed
with the metric d on U into (X, d′).

(v) If d 6= d′ assume that H is continuous from Q × [0, 1] endowed with the
metric d′ on Q into (X, d′).

In addition assume that H0 has a fixed point. Then for each λ ∈ [0, 1] we have
that Hλ has a fixed point xλ ∈ U (here Hλ(.) = H(., λ)).
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1.2 Fixed points of multi-valued mappings

1.2.1 Multi-valued mappings

A multi-valued map or set valued map is a total relation; i.e; every input is
associated with one or more outputs. Strictly speaking, a "well-defined" function
associates one, and only one, output to any particular input. The "multi-valued
mappings" are, therefore, not functions in a formal sense. Multi-valued mappings
often arise from functions which are not injective. Such functions do not have an
inverse function, but they do have an inverse relation.

Example 1.2.1. Let X = [0, 1] and let N(X) denote the family of all nonempty
subsets of X. Define T : X → N(X) by:

Tx = [x, 1],

and G : X → N(X) by:

Gx =

{
[0, 1], if x 6= 1

2
,

[0, 1
2
], if x = 1

2
.

Then T and G are multi-valued mappings. Fig.1.3. shows graphs of T and
G.

.

. .

.

Figure 1.3: Multi-valued maps T and G .
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Multi-valued maps can be observed in the study of dynamical systems and
control theory.

Example 1.2.2. Consider the following control problem:

ẋ(t) = f(t, x(t), u(t)), x(t) = x0, (1.2.1)

controlled by parameters u(t), where f : [0, a]×Rn×Rm → Rn. In order to solve
(1.2.1), we define a multi-valued map F : [0, a]×Rn → CL(X) as follows:

F (t, x) = {f(t, x, u)}u∈U .

Then any solution of (1.2.1) is a solution of the following differential inclusion:

ẋ(t) ∈ F (t, x(t)), x(0) = x0. (1.2.2)

Thus, any control problem (1.2.1) can be transformed, by means of multi-valued
maps, into problem (1.2.2).

Simple nonlinear dynamical systems and even piecewise linear systems can
exhibit a completely unpredictable behavior, which might seem to be random.
The physical world tend to be dissipative, if it were not for some driving force,
the motion would cease. Dissipation may come from internal friction, thermody-
namic losses, or loss of material, among many causes. The dissipation and the
driving force tend to combine to kill out initial transients and settle the system
into its typical behavior. This one part of the phase space of the dynamical sys-
tem corresponding to the typical behavior is the attracting section. Attractors
are parts of the phase space of the dynamical system. Until the 1960s, as evi-
denced by textbooks of that era, attractors were thought of as being geometrical
subsets of the phase space: points, lines, surfaces, volumes. Two simple attractors
are the fixed point and the limit cycle. In other words, the multi-valued map on
a metric space X can be interpreted as multi-valued dynamical system and the
fixed point of multi-valued map may be interpreted as the rest point or attractor
of the system (see Aubin [5] for instance).

Definition 1.2.3. [16] A subset A of X is called proximinal if, for each x ∈
X, there is an element a ∈ A such that d(x, a) = d(x,A), where d(x,A) =

inf{d(x, y) : y ∈ A}.
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Throughout subsequent discussion, N(X) denotes the family of all nonempty
subsets of X, CL(X) the family of all non-empty closed subsets of X, CB(X)

the family of all non-empty bounded closed subsets of X ,K(X) the family of all
nonempty compact subsets of X and PC(X) the class of all nonempty proximinal
closed subsets of X without mentioning explicitly.

Definition 1.2.4. Let T : X → N(X). A point p ∈ X is said to be a fixed point
of T if p ∈ Tp.

Example 1.2.5. Let X = [0, 1]. Define T : X → N(X) by Tx = [0, x2]. Then 0

and 1 are fixed points of T (see Fig 1.4.).

Figure 1.4: Fixed point of multi-valued map T .

For the investigation of fixed point of multi-valued maps, one needs a concept
of distance(metric) between two sets. One such notion is the notion of Hausdorff
metric that was introduced by Hausdorff and some of its properties explored
about 80 years ago.
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Definition 1.2.6. For A,B ∈ CB(X) H(A,B) defined by,

H(A,B) = max{sup
x∈A

d(x, B), sup
y∈B

d(y, A)}

is a metric on CB(X) and is called the Hausdorff metric generated by the metric
d. The metric H depends heavily on the choice of the metric d defined on X.
Fig.1.5 shows the geometrical interpretation of the Hausdorff metric in R and R2.
By Definition, first calculate {d(x,B) : x ∈ A} and {d(y, A) : y ∈ B} and take
supremum of these sets respectively. H(A,B) is then the maximum of these two
values.

a

b

c

d

A

B

),(sup|| Bxdab
Ax

),(sup|| Aydcd
By

|}||,max{|),( cdabBAH

Figure 1.5: Hausdorff metric.
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Definition 1.2.7. For A,B ∈ CL(X) the function,

H(A,B) =

{
max{supx∈A d(x,B), supy∈B d(y, A)}, if the maximum exists
∞, otherwise.

is called the Generalized Hausdorff metric generated by the metric d.

Remark 1.2.8. If (X, d) is a complete metric space, then so is the metric space
(CL(X), H). Further, CB(X), K(X) and PC(X) are all closed subsets of CL(X)

and thus are also complete with respect to H.

Following lemmas are needed in the sequel.

Lemma 1.2.9. [25] Let A,B ∈ CB(X) and ε > 0 with H(A,B) < ε, then, for
each a ∈ A, there exists an element b ∈ B such that d(a, b) < ε.

Lemma 1.2.10. [17] Let A,B ∈ CB(X). Then, for each a ∈ A,

d(a,B) ≤ H(A,B).

Lemma 1.2.11. [40] Let A,B ∈ CB(X) and let a ∈ A. If ε > 0, then there
exists b ∈ B such that

d(a, b) ≤ H(A,B) + ε.

Lemma 1.2.12. [26] If A,B ∈ K(X) and a ∈ A, then there exists an element
b ∈ B such that

d(a, b) ≤ H(A,B).

Lemma 1.2.13. [40] Let A,B ∈ CL(X) and q > 1. Then, for each a ∈ A, there
exists an element b ∈ B such that

d(a, b) ≤ qH(A,B).

Definition 1.2.14. A mapping T : X → CL(X) is said to be Lipschitzian if
there is a constant k ≥ 0 such that for all x, y ∈ X

H(Tx, Ty) ≤ kd(x, y).

The smallest number k for which the above condition holds is said to be the
Lipschitz constant of T .
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Definition 1.2.15. A Lipschitzian mapping T : X → CL(X) with Lipschitz
constant k < 1 is said to be a multi-valued contraction.

1.2.2 Nadler fixed point theorem

Banach contraction principle extends nicely to multi-valued mappings, a fact
first noticed by Nadler [40]. He extended the Banach contraction principle in the
following way.

Theorem 1.2.16. [40] Let (X, d) be complete metric space and T is a mapping
from X into CB(X) such that for all x, y ∈ X,

H(Tx, Ty) ≤ λd(x, y),

where 0 ≤ λ < 1. Then T has a fixed point.

In contrast to Banach contraction principle, the preceding theorem does not
assert that the fixed point is unique. Also, no information regarding error esti-
mates has been provided.

1.2.3 Some generalizations of the Nadler fixed point theo-

rem

Reich [53] extended the Nadler fixed point theorem in the following way:

Theorem 1.2.17. [53] If (X, d) is a complete metric space and T : X → K(X)

satisfies
H(Tx, Ty) ≤ α(d(x, y))d(x, y) (1.2.3)

for each x, y ∈ X, where α is a function of (0,∞) into [0, 1) such that

lim sup
r→t+

α(r) < 1 (1.2.4)

for each t ∈ (0,∞), then T has a fixed point.

This result generalizes the fixed point theorem for single valued mappings
and was proved by Boyd and Wong [10]. Reich [54] raised the question: If T

satisfies the same contractive condition (1.2.3), whether or not the range of T

can be relaxed. Specifically the question was whether the range of T , K(X) can
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be replaced by CB(X) or CL(X). In [39] Mizoguchi and Takahashi gave the
positive answer to the conjecture of Reich [53], when the inequality (1.2.4) holds
also for t = 0, in particular they proved:

Theorem 1.2.18. [39] Let (X, d) be a complete metric space and T : X →
CB(X). If α is a function of (0,∞) into [0, 1) such that

lim sup
r→t+

α(r) < 1

for each t ∈ [0,∞) and if

H(Tx, Ty) ≤ α(d(x, y))d(x, y) for each x, y ∈ X, (1.2.5)

then T has a fixed point in X.

It is worth mentioning that Suzuki [61] showed that Mizoguchi-Takahashi’s
fixed point theorem is a real generalization of Nadler fixed point theorem. Inspir-
ing from the result of Mizoguchi-Takahashi and using the ideas of Feng-Liu [19],
Klim and Wardowski [34] obtained the following result and showed that their
result is different from Theorem 1.2.17 and Theorem 1.2.18.

Definition 1.2.19. For b ∈ (0, 1] and x ∈ X, define

Ix
b = {y ∈ Tx : bd(x, y) ≤ d(x, Tx)}.

Theorem 1.2.20. [34] Let (X, d) be a complete metric space and let T : X →
CL(X). If:

(i) The map f : X → R defined by f(x) = d(x, Tx), x ∈ X, is lower semi-
continuous;

(ii) there exist α : [0,∞) → [0, 1) such that

∀t∈[0,∞){lim sup
r→t+

α(r) < 1}

and
∀x∈X∃y∈Ix

1
{d(y, Ty) ≤ α(d(x, y))d(x, y)};

then T has a fixed point.
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They also established the following:

Theorem 1.2.21. [34] Let (X, d) be a complete metric space and let T : X →
CL(X). Assume that the following conditions hold:

(i)The map f : X → R defined by f(x) = d(x, Tx), x ∈ X, is lower semi-
continuous;

(ii)there exist b ∈ (0, 1) and α : [0,∞) → [0, b) such that

∀t∈[0,∞){lim sup
r→t+

α(r) < b}

and
∀x∈X∃y∈Ix

b
{d(y, Ty) ≤ α(d(x, y))d(x, y)}.

Then T has a fixed point.

Pathak and Shahzad [45] introduced a new class of mappings Θ[0, A) as fol-
lows. Let A ∈ (0, +∞]. Θ[0, A) [45] denotes the class of functions θ : [0, A) → R

satisfy the following conditions: (i) θ is nondecreasing on [0, A); (ii) θ(t) > 0 for
each t ∈ (0, A); (iii) θ is subadditive in (0, A); i-e., θ(t1 + t2) ≤ θ(t1) + θ(t2) for
t1, t2 ∈ (0, A). Notice that (i) implies that θ is strictly inverse isotone on (0, A);
i-e., θ(t1) < θ(t2) ⇒ t1 < t2, t1, t2 ∈ (0, A). Moreover, for b ∈ (0, 1] and x ∈ X,

M(b, x; θ) = {y ∈ Tx : bθ(d(x, y)) ≤ θ(d(x, Tx))}.

Pathak and Shahzad generalized Theorems 1.2.20 and 1.2.21 in the following way.

Theorem 1.2.22. [45] Let (X, d) be a complete metric space and let T : X →
CL(X). If following conditions hold:

(i) The map f : X → R defined by f(x) = d(x, Tx), x ∈ X, is lower semi-
continuous;

(ii) there exists α : (0,∞) → [0, 1) such that

∀t ∈ [0,∞){lim sup
r→t+

α(r) < 1}

and
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(iii) there exists θ ∈ Θ[0, A) satisfying the following conditions:

for all x ∈ X, M(1, x; θ) is nonempty

and

∀x ∈ X∃y ∈ M(1, x; θ){θ(d(y, Ty)) ≤ α(d(x, y))θ(d(x, y))};

then T has a fixed point.

Theorem 1.2.23. [45] Let (X, d) be a complete metric space and let T : X →
CL(X). If following conditions hold:

(i) The map f : X → R defined by f(x) = d(x, Tx), x ∈ X, is lower semi-
continuous;

(ii) there exists b ∈ (0, 1) and α : (0,∞) → [0, b) such that

∀t ∈ [0,∞){lim sup
r→t+

α(r) < b}

and

(iii) there exists θ ∈ Θ[0, A) satisfying the following condition(with b and α of
(ii)):

for all x ∈ X,M(a, x; θ)is nonempty for any constant a ∈ (0, 1)

and

∀x ∈ X∃y ∈ M(b, x; θ){θ(d(y, Ty)) ≤ α(d(x, y))θ(d(x, y))};

then T has a fixed point.

Definition 1.2.24. For x0 ∈ X, if there is a sequence {xn} in X such that
xn = fxn−1 then O(f, x0) = {x0, x1, x2, · · · } is said to be orbit of f : X → X.

Definition 1.2.25. A mapping g : X → R is said to be f -orbitally lower semi-
continuous [24] if {xn} is a sequence in O(f, x0) and xn → ξ implies g(ξ) ≤
limn inf g(xn).
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Example 1.2.26. Let X = [0, 1] and g : X → R and f : X → X be defined as:

gx =





1
2
x, if x 6= 0and rational,

0, if x = 0,
1
3
x, if xis irrational.

and fx = 1
2
x. Then the map g is f -orbitally continuous but not continuous.



Chapter 2

Some generalizations of the Banach
contraction principle

The basic motivation behind this chapter is to combine the techniques discussed
in the sections 1.1.4 and 1.1.5.Therefore, the established results not only extend
Banach contraction principle but also some results of Agarwal et. al. [1] and
Proinov[49].

Throughout this chapter, the underlying set X is endowed with two metrics
d and d′ such that X is complete with respect to d′ and there is a map f :

D ⊂ X → X which is a ϕ-contraction with respect to d, where ϕ is a gauge
function. The results present in sections first and second are different due to the
conditions imposed on the map f . Rest of the terminology and notations are
same as introduced in the section 1.1.5. In the last section, a homotopy result is
obtained as an application.

2.1 Single valued ϕ-contractions

In this section, we establish a convergence theorem for the iterative processes of
the type:

xn+1 = fxn, n = 0, 1, 2, · · · , (2.1.1)

where f : D ⊂ X → X is an operator satisfying:

d(fx, f 2x) ≤ ϕ(d(x, fx)) for all x ∈ D, fx ∈ D with d(x, fx) ∈ J, (2.1.2)

33
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where ϕ is a gauge function on an interval J . The results of this section generalize,
extend and improve some results by Agarwal and O’Regan [1] and thus generalize
some results of Hardy and Rogers[22], Kannan [28], Maia [37], Precup [48] and
Reich [53]. We use the machinery of Proinov [49] to prove our results.

Theorem 2.1.1. If f : D ⊂ X → X is an operator satisfying condition (2.1.2),
with a Bianchini-Grandolfi gauge function ϕ on an interval J , then starting from
an initial point x0 of f the iterative sequence (2.1.1) remains in S(x0, ρ0)

d and
converges to a point ξ ∈ S(x0, ρ0)

d′ which is a fixed point of f provided that the
following three conditions hold:

If d � d′ then f is uniformly continuous from (S(x0, ρ0), d) into (X, d′); (2.1.3)

If d 6= d′ then f is continuous from (S(x0, ρ0)
d′ , d′) into (X, d′); (2.1.4)

If d = d′ then f is continuous at ξ. (2.1.5)

Proof. Since x0 is an initial point of f , it follows from [49, Lemma 3.2] that

S(xn+1, ρn+1) ⊂ S(xn, ρn) for all n ≥ 0, (2.1.6)

which implies that xn ∈ S(x0, ρ0) for all n ≥ 0. Using the definition of ρn, from
[49, Lemma 3.6], we get

ρn = σ(E(xn)) ≤ σ(ϕn(E(x0)))

=
∞∑

j=0

ϕj(ϕn(E(x0)))

=
∞∑

j=n

ϕj(E(x0)) for all n ≥ 0, (2.1.7)

since σ is non-decreasing. As ϕ is Bianchini-Grandolfi gauge function on J and
E(x0) ∈ J , from (2.1.7), we get

ρn → 0 as n →∞. (2.1.8)

From (2.1.6) and (2.1.8) it follow that {S(xn, ρn)d} is nested sequence of closed
spheres such that ρn → 0 as n →∞. Therefore, it follows from Cantor’s Theorem
that the sequence (2.1.1) is a Cauchy sequence with respect to d i.e., there exists
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N ∈ {1, 2, · · · } with

d(xn, xm) < δ whenever n, m ≥ N. (2.1.9)

We now claim that, (2.1.1) is a Cauchy sequence with respect to d′. If d ≥ d′ this
is trivial. Next suppose d � d′. Let ε > 0 be given. Then (2.1.3) guarantees that
there exists δ > 0 such that

d′(fx, fy) < ε whenever x, y ∈ S(x0, ρ0) and d(x, y) < δ (2.1.10)

Now (2.1.9) and (2.1.10) imply

d′(xn+1, xm+1) = d′(fxn, fxm) < ε whenever n,m ≥ N,

and as a result our claim is proved. Now since (X, d′) is complete there exists
ξ ∈ S(x0, ρ0)

d′ with d′(xn, ξ) → 0 as n → ∞. We claim that ξ = fξ. First
consider the case when d 6= d′.

d′(ξ, fξ) ≤ d′(ξ, xn) + d′(xn, fξ) = d′(ξ, xn) + d′(fxn−1, fξ) (2.1.11)

Let n →∞ then (2.1.4) insures that d′(ξ, xn) → 0 implies d′(fxn−1, fξ) → 0 and
so ξ = fξ. Next suppose d = d′.

d(ξ, fxn) ≤ d(ξ, xn) + d(xn, fxn) = d(ξ, xn) + d(xn, xn+1).

Taking limit as n →∞ we get,

limn→∞d(ξ, fxn) ≤ 0.

From (2.1.5) since f is continuous at ξ so we have d(ξ, fξ) = 0 which simply
means that ξ = fξ.

Remark 2.1.2. Theorem 2.1.1 remains true if ϕ is a gauge function of order
r ≥ 1.

Corollary 2.1.3. Let f : D ⊂ X → X is an operator satisfying

d(fx, fy) ≤ ϕ(d(x, y)) for all x, y, fx, fy ∈ D with d(x, y) ∈ J, (2.1.12)
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where ϕ is a gauge function of order r ≥ 1 on an interval J. If x0 is an initial
point of f such that d(x0, fx0) ∈ J then the following statements hold true:

(a) The iterative sequence (2.1.1) converges to a fixed point ξ of f .

(b) The operator f has a unique fixed point in S = {x ∈ X : d(x, ξ) ∈ J};
provided that (2.1.3) and (2.1.4) hold.

Proof. From (2.1.12) d(fx, f 2x) ≤ ϕ(d(x, fx)) holds for all x ∈ D, y = fx ∈ D

and d(x, fx) ∈ J . Further, by definition of ϕ we have d(fx, fy) ≤ ϕ(d(x, y)) <

d(x, y) for x 6= y. Hence, f is d continuous. Thus (a) follows immediately from
Theorem 2.1.1. To show the uniqueness, i.e., (b), assume that η ∈ S is another
fixed point of f . Then d(ξ, η) ∈ J . It follows from (2.1.12) that

d(ξ, η) = d(fξ, fη) ≤ ϕ(d(ξ, η)) < d(ξ, η)

Hence ξ = η.

Corollary 2.1.4. If f : D ⊂ X → X is an operator satisfying

d(fx, fy) ≤ ϕ(m(x, y)) for all x, y, fx, fy ∈ D (2.1.13)

where ϕ is a gauge function of order r ≥ 1 on an interval J = [0,∞) and

m(x, y) = max{d(x, y), d(x, fx), d(y, fy),
d(x, fy) + d(y, fx)

2
}, (2.1.14)

then for initial point x0 of f , the iterative sequence (2.1.1) converges to a unique
fixed point ξ of f provided that (2.1.3), (2.1.4) and (2.1.5) hold. Moreover, if ϕ

is continuous, then continuity of f in (2.1.5) can be omitted.

Proof. First we shall prove that, m(x, fx) = d(x, fx) for all x ∈ D. By (2.1.14)
and triangle inequality, we get

m(x, fx) = max{d(x, fx), d(x, fx), d(fx, f 2x), d(x, f 2x)}
= max{d(x, fx), d(fx, f 2x)} = max{E(x), E(fx)}

where E(x) = d(x, fx). If x = fx then m(x, fx) = E(x) = d(x, fx). If x 6= fx

then ϕ(t) < t for t > 0 so we have from (2.1.13)

E(fx) = d(fx, f 2x) ≤ ϕ(m(x, fx)) < m(x, fx) = max{E(x), E(fx)}
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which means m(x, fx) = E(x). Thus condition (2.1.13) implies (2.1.2). Applying
Theorem 2.1.1, we deduce that the iterative sequence (2.1.1) converges to the fixed
point ξ of f .

If η is another fixed point then from (2.1.14) we have m(ξ, η) = d(ξ, η) and
hence uniqueness follows immediately from Corollary 2.1.3.

Finally, suppose that d = d′ and ϕ is continuous then it follows from (2.1.13)
that

d(xn+1, fξ) = d(fxn, fξ) ≤ ϕ(m(xn, ξ)) for all n ≥ 0

Since m(xn, ξ) = d(xn, ξ) so passing limit as n →∞ we obtain d(ξ, fξ) ≤ ϕ(0) =

0 which implies ξ = fξ.

Remark 2.1.5. If ϕ(t) = qt (0 < q < 1), then Corollary 2.1.4 generalizes
Theorem 1.1.26 (resp. Theorem 1.1.27) in the following manner.

(i) Taking D = S(x0, r)
d′ (resp. D = X).

(ii) Uniform Continuity of the operator f in (1.1.11) (resp. in (1.1.13)) is required
from (S(x0, r), d) into (X, d′) (resp. from (X, d) into (X, d′)) while it is
required from (S(x0, ρ0), d) into (X, d′) in (2.1.3).

(iii)Continuity f the operator f in (1.1.12) (resp. in (1.1.14)) is required from
S(x0, r)d′ into (X, d′) (resp. from (X, d′) into (X, d′)) while it is required
from (S(x0, ρ0)

d′ , d′) into (X, d′) in (2.1.3).

(iv) Corollary 2.1.4 concludes with a unique fixed point.

(v) (2.1.5) can be omitted because ϕ is continuous in this case.

Remark 2.1.6. Note that in the hypothesis of Corollary 2.1.4 we assumed that
x0 is an initial point of f . This assumption was not the part of the hypothesis of
Theorem 1.1.26. But a closer look at condition (1.1.10) in Theorem 1.1.26 in-fact
implies that x0 is an initial point of f .

Remark 2.1.7. If d = d′, then Corollary 2.1.4 coincides with the first part of
[49, Corollary 4.5]. In addition, if ϕ(t) = qt (0 < q < 1) then it reduces to [1,
Corollary 2.2].
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2.2 Single valued generalized ϕ-contractions

In this section, we establish some fixed point results for generalized ϕ contractions
on a set with two metrics. The results generalize, extend and improve some recent
results by Agarwal and O’Regan [1] and thus generalize some results of Hardy
and Rogers [22], Kannan [28], Maia [37], Precup [48] and Reich [52].

Theorem 2.2.1. Let x0 ∈ X, ρ > 0 and f : S(x0, ρ) → X satisfies

d(fx, f 2x) ≤ ϕ(d(x, fx)) ∀x, fx ∈ S(x0, ρ) with d(x, fx) ∈ J, (2.2.1)

where ϕ is a Bianchini-Grandolfi gauge function on an interval J = [0,∞). Then,
starting from x0 the iterative sequence

xn+1 = fxn, n ≥ 0 (2.2.2)

converges to a point ξ ∈ S(x0, ρ)d′ which will be the fixed point of f if the
following conditions hold:

(i)
d(x0, fx0) < δ, (2.2.3)

where δ > 0 is such that σ(δ) ≤ ρ.

(ii) If d � d′ then f is uniformly continuous from (S(x0, ρ), d) into (X, d′).

(iii) If d 6= d′ then f is continuous from (S(x0, ρ)d′ , d′) into (X, d′).

(iv) If d = d′ then f is continuous at ξ.

Proof. Let x1 = fx0. Then from (i)

d(x0, x1) < δ ≤ σ(δ) ≤ ρ.

Next let x2 = fx1. Then from (2.2.1) we have

d(x1, x2) = d(fx0, f
2x0) ≤ ϕ(d(x0, x1)).
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Note that d(x1, x2) ∈ J . Further, x2 ∈ S(x0, ρ) since

d(x0, x2) ≤ d(x0, x1) + d(x1, x2)

≤ d(x0, x1) + ϕ(d(x0, x1))

< δ + σ(ϕ(δ))

= σ(δ) (using (1.1.5))

≤ ρ.

If x3 = fx2 then

d(x2, x3) = d(fx1, f
2x1) ≤ ϕ(d(x1, fx1)) = ϕ(d(fx0, f

2x0)) ≤ ϕ2(d(x0, x1)).

Note that d(x2, x3) ∈ J . Further, x3 ∈ S(x0, ρ) since

d(x0, x3) ≤ d(x0, x1) + d(x1, x2) + d(x2, x3)

≤ d(x0, x1) + ϕ(d(x0, x1)) + ϕ2(d(x0, x1)))

<

∞∑
j=0

ϕj(δ)

= σ(δ) ≤ ρ.

Proceeding inductively we obtain a sequence {xn}n∈N in S(x0, ρ) such that d(xn−1, xn) ∈
J where

xn = fxn−1, (2.2.4)

and
d(xn, xn+1) ≤ ϕn(d(x0, x1)). (2.2.5)

Note that {xn} is a Cauchy sequence w.r.t d since for n, p ∈ N, from (3.2.10) we
have

d(xn+p, xn) ≤ d(xn+p, xn+p−1) + · · ·+ d(xn+1, xn)

≤ ϕn+p−1(d(x0, x1)) + · · ·+ ϕn(d(x0, x1))

≤
∞∑

j=n

ϕj(d(x0, x1)) → 0 (using (1.1.4)).
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Thus, there exists N ∈ N with

d(xn, xm) < η whenever n,m ≥ N. (2.2.6)

We claim that, (2.2.2) is a Cauchy sequence with respect to d′. If d ≥ d′ this is
trivial. Next suppose d � d′. Let ε > 0 be given. Then (ii) guarantees that there
exists η > 0 such that

d′(fx, fy) < ε whenever x, y ∈ S(x0, ρ) and d(x, y) < η. (2.2.7)

Now (2.2.6) and (2.2.7) imply

d′(xn+1, xm+1) = d′(fxn, fxm) < ε whenever n,m ≥ N,

and this prove our claim. Since (X, d′) is complete there exists ξ ∈ S(x0, ρ)d′ with
d′(xn, ξ) → 0 as n → ∞. We claim that ξ = fξ. First consider the case when
d 6= d′.

d′(ξ, fξ) ≤ d′(ξ, xn) + d′(xn, fξ) = d′(ξ, xn) + d′(fxn−1, fξ) (2.2.8)

Let n → ∞ then (iii) insures that d′(ξ, xn) → 0 implies d′(fxn−1, fξ) → 0 and
so ξ = fξ. Next suppose d = d′.

d(ξ, fxn) ≤ d(ξ, xn) + d(xn, fxn) = d(ξ, xn) + d(xn, xn+1).

Taking limit as n →∞ we get,

lim
n→∞

d(ξ, fxn) ≤ 0.

From (iv), since f is continuous at ξ, we have d(ξ, fξ) = 0. This means that
ξ = fξ.

Remark 2.2.2. Theorem 2.2.1 remains true if ϕ is a gauge function of order
r ≥ 1.

The following global result can easily be obtain from Theorem 2.2.1 and Re-
mark 2.2.2.

Theorem 2.2.3. Let f : X → X is an operator satisfying (2.2.1) with gauge
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function ϕ of order r ≥ 1 on an interval J = [0,∞). Then, f has a fixed point if
the following conditions are satisfied:

(a) If d � d′ assume f is uniformly continuous from (X, d) into (X, d′).

(b) If d 6= d′ then f is continuous from (X, d′) into (X, d′).

(c) If d = d′ then f is continuous at ξ.

Proof. Fix x0 ∈ X. For δ > 0 such that

d(x0, fx0) < δ,

take ρ = σ(δ), where σ is given by (1.1.4). Now Theorem 2.2.1 guarantees that
there exists ξ ∈ S(x0, ρ)d′ with ξ ∈ fξ.

Theorem 2.2.4. Let x0 ∈ X, ρ > 0 and f : S(x0, ρ) → X is an operator
satisfying

d(fx, fy) ≤ ϕ(m(x, y)) for all x, y, fx, fy ∈ S(x0, ρ), (2.2.9)

where ϕ is a gauge function of order r ≥ 1 on an interval J = [0,∞) and

m(x, y) = max
{

d(x, y), d(x, fx), d(y, fy),
d(x, fy) + d(y, fx)

2

}
. (2.2.10)

Then, the iterative sequence (2.2.2) converges to a unique fixed point ξ of f if
conditions (i) - (iv) hold. Moreover, if ϕ is continuous then continuity of f in
(iv) can be omitted.

Proof. Let x1 = fx0. Then, from (i) we have

d(x0, fx0) < δ ≤ σ(δ) ≤ ρ.

If x2 = fx1 then from (2.2.9) we have

d(x1, x2) = d(fx0, fx1) ≤ ϕ(m(x0, x1))
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where,

m(x0, x1) = ϕ
(

max
{

d(x0, x1), d(x0, fx0), d(x1, fx1),

d(x0, fx1) + d(x1, fx0)

2

})

= ϕ
(

max
{

d(x0, x1), d(x1, x2),
d(x0, x2)

2

})
.

We claim that
d(x1, x2) ≤ ϕ(d(x0, x1)). (2.2.11)

Case 1. If m(x0, x1) = d(x0, x1) then clearly (2.2.11) is true.
Case 2. If m(x0, x1) = d(x1, x2) then we have

d(x1, x2) ≤ ϕ(d(x1, x2)) < d(x1, x2),

which is a contradiction.
Case 3. Finally suppose m(x0, x1) = d(x0,x2)

2
. Then, we have

d(x1, x2) ≤ ϕ(
d(x0, x2)

2
) <

d(x0, x2)

2
≤ d(x0, x1) + d(x1, x2)

2
,

Thus, d(x1, x2) < d(x0, x1). As a result,

m(x0, x1) ≤ d(x0, x1) + d(x1, x2)

2
< d(x0, x1),

which contradicts the definition of m(x0, x1). This prove our claim. Proceeding
inductively in a similar way as in Theorem 2.2.1 we obtain the iterative sequence
(2.2.2) converges to the fixed point ξ of f . If η is another fixed point then from
(2.2.9) and (3.2.26) we have m(ξ, η) = d(ξ, η) and

d(ξ, η) = d(fξ, fη) ≤ ϕ(m(ξ, η)) = ϕ(d(ξ, η)) < d(ξ, η).

So, ξ = η. Finally, suppose d = d′ and ϕ is continuous then it follows from (2.2.9)
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that

d(xn+1, fξ) = d(fxn, fξ) ≤ ϕ(m(xn, ξ)) for all n ≥ 0

= ϕ
(

max
{

d(xn, ξ), d(xn, fxn), d(ξ, fξ),

d(xn, fξ) + d(ξ, fxn)

2

})

so passing limit as n →∞ we obtain d(ξ, fξ) ≤ ϕ(d(ξ, fξ)) which is possible only
when ξ = fξ.

The following global result can easily be obtain from Theorem 2.2.4.

Theorem 2.2.5. Let f : X → X is an operator satisfying (2.2.9) with gauge
function ϕ of order r ≥ 1 on an interval J = [0,∞) and m(x, y) is defined in
(3.2.26). Then, f has a unique fixed point if the following conditions hold:

(a′)If d � d′ then f is uniformly continuous from (X, d) into (X, d′).

(b′)If d 6= d′ then f is continuous from (X, d′) into (X, d′).

(c′)If d = d′ then f is continuous at ξ.

Moreover, if ϕ is continuous, then continuity of f in (c′) can be omitted.

Remark 2.2.6. If ϕ(t) = qt (0 < q < 1), then Theorem 2.2.4 generalizes
Theorem 1.1.26 ([1, Theorem 2.1]) and Theorem 2.2.5 generalizes Theorem 1.1.27
([1, Theorem 2.2]). In addition if d = d′ then Theorem 2.2.4 and 2.2.5 reduces
to [1, Corollary 2.2 and 2.4] respectively. Note that unlike the results of [1] our
results also provide the uniqueness of fixed point.

2.3 Application: A homotopy result

In this section, we obtain a homotopy result as an application of Theorem 2.2.4.
The proof of the result is inspired by the [2, Theorem 2.4]. We begin with the
following Lemma whose proof is given in the proof of [2, Theorem 2.4]. The
section includes its detail for completeness.

Lemma 2.3.1. If {sn} is a sequence of nonnegative real numbers and ϕ : J → J

is a gauge function of the order r ≥ 1 then lim inf ϕ(sn) ≤ ϕ(lim inf sn).
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Proof. Fix ε > 0 and k ∈ N. Note that there exists m > k with

sm ≤ inf{sn : n > k}+ ε.

Since ϕ is nondecreasing we have

ϕ(sm) ≤ ϕ(inf{sn : n > k}+ ε) ≤ ϕ(lim inf sn + ε),

and so
inf{ϕ(sn) : n > k} ≤ ϕ(lim inf sn + ε).

Hence, lim inf ϕ(sn) ≤ ϕ(lim inf sn).

Theorem 2.3.2. Let U ⊆ X be d-open subset of X. Suppose H : Ud′×[0, 1] → X

satisfies the following properties:

(i) x 6= H(x, λ) for x ∈ Ud′ \ U and λ ∈ [0, 1];

(ii) For every x, y ∈ Ud′

d(H(x, λ), H(y, λ)) ≤ ϕ
(

max
{

d(x, y), d(x,H(x, λ)), d(y,H(y, λ)),

1

2
[d(x,H(y, λ)) + d(y, H(x, λ))]

})
;

where ϕ is a gauge function of the order r ≥ 1 on an interval J = [0,∞),
λ ∈ [0, 1] and;

(iii) H(x, λ) is continuous in λ w.r.t. d, uniformly for x ∈ Ud′ .

(iv) If d � d′ assume H is uniformly continuous from U × [0, 1] endowed with
the metric d on U into (X, d′).

(v) If d 6= d′ assume H is continuous from Ud′ × [0, 1] endowed with the metric
d′ on Ud′ into (X, d′).

(vi) If d = d′ then f is continuous.

(vii) inf{d(x,Hλ(x)) : x ∈ Ud′ \ U, λ ∈ [0, 1]} > 0.

Moreover, if H0 has a fixed point then, for each λ ∈ [0, 1], Hλ has a fixed point
xλ ∈ U (here Hλ(.) = H(., λ)).
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Proof. Let
A = {λ ∈ [0, 1] : x = H(x, λ) for some x ∈ U}.

Since H(., 0) has a fixed point and (i) holds we have that 0 ∈ A, so A is nonempty.
We will show A is both closed and open in [0, 1], and so by connectedness of [0, 1]

we have A = [0, 1].
First we show A is closed in [0,1]. Let (λk) be a sequence in A with λk → λ ∈ [0, 1]

as k → ∞. By definition for k, there exists xk ∈ U with xk = H(xk, λk). We
claim that,

inf
k≥1

d(xk, Ud′ \ U) > 0. (2.3.1)

Otherwise, for a fixed i ∈ N, there exists ni ∈ N and yni
∈ Ud′ \ U with

d(xni
, yni

) <
1

i
.

Consequently, there exists a subsequence K of {1, 2, · · · } and a sequence {yi} ⊆
Ud′ \ U (for i ∈ K) with

d(xi, yi) <
1

i
for i ∈ K. (2.3.2)

This together with (vii) implies

0 < inf{d(x, Hλ(x)) : x ∈ Ud′ \ U, λ ∈ [0, 1]} ≤ lim
i→∞

inf
i∈K

d(yi, Hλi
(yi)). (2.3.3)

We will now show that

lim
i→∞

inf
i∈K

d(yi, Hλi
(yi)) = 0. (2.3.4)

To see this, note that

lim
i→∞

inf
i∈K

d(yi, Hλi
(yi)) ≤ lim

i→∞
inf
i∈K

[d(yi, xi) + d(xi, Hλi
(yi))]

≤ lim
i→∞

inf
i∈K

[
1

i
+ d(H(xi, λi), H(yi, λi))]

= lim
i→∞

inf
i∈K

d(H(xi, λi), H(yi, λi))

≤ lim
i→∞

inf
i∈K

ϕ(max{d(xi, yi), d(xi, H(xi, λi)),

d(yi, H(yi, λi)),
1

2
[d(xi, H(yi, λi)) + d(yi, H(xi, λi))]}).
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Let

m(xi, yi) = max
{

d(xi, yi), d(xi, H(xi, λi)), d(yi, H(yi, λi)),

1

2
[d(xi, H(yi, λi)) + d(yi, H(xi, λi))]

}
.

Case 1: If m(xi, yi) = d(xi, yi) then

lim
i→∞

inf
i∈K

d(yi, Hλi
(yi)) ≤ lim

i→∞
inf
i∈K

ϕ(d(xi, yi))

< lim
i→∞

inf
i∈K

d(xi, yi) = lim
i→∞

inf
i∈K

1

i
= 0.

Hence (2.3.4) is true in this case.

Case 2: If m(xi, yi) = d(xi, H(xi, λi)) then m(xi, yi) = 0 and (2.3.4) is immediate.

Case 3: If m(xi, yi) = d(yi, H(yi, λi)) then by Lemma 2.3.1 we have

lim
i→∞

inf
i∈K

d(yi, Hλi
(yi)) ≤ lim

i→∞
inf
i∈K

ϕ(d(yi, Hλi
(yi))) ≤ ϕ( lim

i→∞
inf
i∈K

d(yi, Hλi
(yi))),

which implies limi→∞ infi∈K d(yi, Hλi
(yi)) = 0 since ϕ(z) < z if z > 0. Hence

(2.3.4) is true.

Case 4: Finally, if m(xi, yi) = 1
2
[d(xi, H(yi, λi)) + d(yi, H(xi, λi))]}

then ϕ(m(xi, yi)) ≤ m(xi, yi) implies that

lim
i→∞

inf
i∈K

d(yi, Hλi
(yi)) ≤ lim

i→∞
inf
i∈K

1

2
[d(xi, H(yi, λi)) + d(yi, H(xi, λi))]

≤ lim
i→∞

inf
i∈K

1

2
[d(xi, yi) + d(yi, H(yi, λi)) +

d(xi, yi) + d(xi, H(xi, λi))]

≤ lim
i→∞

inf
i∈K

1

2
[
1

i
+ d(yi, Hλi

(yi)) +
1

i
+ 0].

Hence (2.3.4) is immediate. Thus we have a contradiction from (2.3.3) and as a
result our claim (2.3.1) is true. Hence there exists s > 0 with d(xk, z) > s for all
k ≥ 1 and for all z ∈ Ud′ \ U . As a result (note xk ∈ U for each k)

S(xk, s)
d′ ⊆ U k ≥ 1.
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If we choose δ such that σ(δ) < s then S(xk, δ)
d′ ⊆ U for k ≥ 1. This together

with (iii) implies that there exists an integer n0 with

d(xn0 , Hλ(xn0)) = d(H(xn0 , λ), H(xn0 , λn0)) < δ.

Now Theorem 2.2.4 guarantees that Hλ has a fixed point xλ,n0 ∈ S(xk, δ)
d′ ⊆ Ud′ .

Note from (i) that xλ,n0 ∈ U . Consequently, λ ∈ A, so A is closed in [0, 1].
Next we will show that A is open in [0, 1]. Let λ0 ∈ A and x0 ∈ U with x0 =

H(x0, λ0). Since U is open there exists ε > 0 with S(x0, ε) ⊆ U . Now (iii)
guarantees that there exists η = η(ε, δ) > 0 with

d(x0, H(x0, λ)) = d(H(x0, λ0), H(x0, λ)) < δ

for λ ∈ [0, 1] and |λ−λ0| < η. We may choose δ such that σ(δ) < ε. Now Theorem
2.2.4 guarantees that there exists xλ ∈ S(x0, r)

d′ ⊆ Ud′ with xλ = Hλ(xλ) for
λ ∈ [0, 1] and |λ− λ0| < η. Hence A is open in [0, 1].

Remark 2.3.3. If ϕ(t) = qt (0 < q < 1), then Theorem 2.3.2 extends Theorem
1.1.31 ([1, Theorem 3.1]) and thus some results of [48, 21, 41].



Chapter 3

Some generalizations of the Nadler
fixed point theorem

This chapter consists on four sections. The motivation behind the first two sec-
tions is to extend the Nadler fixed point theorem by using the machinery intro-
duced in section 1.1.4. We succeeded in obtaining error bounds and high order
of convergence of the iterative scheme. In the first section, the partial general-
ization of Nadler theorem is obtained when the range of the multi-valued map
T is PC(X). In the second section, we extend the Nadler fixed point theorem
by combining the techniques of Proinov[49] and Agarwal [2]. The range of the
multi-valued map T in this case is CB(X). Another strength of these results is
their weaker contraction condition i.e; the contraction condition on the map T ,
which does not need to satisfy for every x, y ∈ X like Nadler theorem demands,
but only require satisfaction for every x ∈ X and y ∈ Tx. The results contains
several other important theorems which are mentioned in detail with references
in the sequel. In the third section, as an application to my result, an existence
and uniqueness result for the solution to a class of integral inclusions is obtained
with high order of convergence. In the last section, another extension of Nadler
theorem is obtained by altering the distance d on the space X by introducing a
class of functions Θh[0, A), improving some results of Pathak and Shahzad [45].

3.1 Multi-valued ϕ-contractions

In this section, we present the results that extend Proinov’s results Theorems
1.1.23 and 1.1.24 ([49, Theorems 4.1 and 4.2]) and thus generalize some results of

48
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Rheinboldt [56], Gel’man [20], Ciric [14], Rus [57], Hicks and Rhoades [24], Hicks
[23] and others. Theorem 3.1.15 (below) also provide a generalization of Nadler
fixed point theorem [40] in the case when T is a map from X into PC(X). The
presented results may be useful for computational methods of solutions to opti-
mization problems (see Polac [47] and Zangwill [64] for instance) and in system
theory (see Willems [62] for instance).

Definition 3.1.1. Let T : X → N(X). A sequence {xn} ⊆ X satisfying xn+1 ∈
Txn with d(xn, xn+1) = d(xn, Txn) for n = 0, 1, · · · , is called a proximinal orbit
of T at the point x0.

Example 3.1.2. Let X = [0, 1] with usual metric and T : X → N(X) defined
by Tx = [0, x2]. Take x0 = 1

2
. Then, T 1

2
= [0, 1

4
] and d(1

2
, T 1

2
) = 1

4
. So, there is

a point x1 = 1
4
∈ T 1

2
such that d(1

2
, 1

4
) = d(1

2
, T 1

2
). Further, x2 = 1

16
∈ T 1

4
such

that d(1
4
, 1

16
) = d(1

4
, T 1

4
). Continuing this procedure we obtain 1

2
, 1

4
, 1

16
, 1

256
, · · · as

a proximinal orbit of T at the point 1
2
.

Following Lemma is obvious.

Lemma 3.1.3. Let T : X → PC(X) and x0 ∈ X. Then there exists a proximinal
orbit {xn} ⊆ X of T at the point x0, i.e.,

xn+1 ∈ Txn, n = 0, 1, 2, · · · . (3.1.1)

with
d(xn, xn+1) = d(xn, Txn). (3.1.2)

Unless otherwise stated, we assume that D ⊂ X and T is an operator from
D into PC(X) satisfying

H(Tx, Ty) ≤ ϕ(d(x, y)) (3.1.3)

for all x ∈ D, Tx ⊂ D with d(x, y) ∈ J and for y ∈ Tx, where ϕ is a Bianchini-
Grandolfi gauge function on the interval J . For convenience we define the function
E : D → R+ by E(x) = d(x, Tx).

Lemma 3.1.4. Let x, y ∈ X. Suppose d(x, y) ∈ J for y ∈ Tx. Then E(x) ∈ J .

Proof. Since 0 ∈ J and J is an interval. Therefore, 0 ≤ d(x, Tx) ≤ d(x, y) implies
E(x) ∈ J .
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Lemma 3.1.5. Suppose a point x0 ∈ X satisfies E(x0) ∈ J . Then, E(xn) ∈ J

for any n ≥ 0.

Proof. For n = 0, the Lemma is trivial. For n ≥ 1, using Lemma 3.1.3 we get xn

such that xn ∈ D, since Tx ⊂ D for all x ∈ D. As, 0 ∈ J and ϕ(t) ∈ J for all
t ∈ J we have, using (3.1.3), that

0 ≤ E(xn) = d(xn, Txn) ≤ H(Txn−1, Txn)

≤ ϕ(E(xn−1)) (using (3.1.3), as xn ∈ Txn−1).

Substituting n = 1, we get

0 ≤ E(x1) ≤ ϕ(E(x0)) ∈ J ⇒ E(x1) ∈ J.

By induction, for any n ≥ 0, we have E(xn) ∈ J .

Definition 3.1.6. Suppose x0 ∈ D and E(x0) ∈ J . Then for every iterate
xn(n ≥ 0) which belongs to D we define the closed ball S(xn, ρn) with center xn

and radius ρn = σ(E(xn)), where σ : J → R+ is defined by (1.1.4).

Lemma 3.1.7. Suppose a point x0 ∈ D satisfies E(x0) ∈ J and S(xn, ρn) ⊂ D

for some n ≥ 0. Then xn+1 ∈ D and S(xn+1, ρn+1) ⊂ S(xn, ρn).

Proof. For each n ≥ 0, xn+1 is well-defined, since xn ∈ D. Further, Lemma 3.1.5
implies that E(xn) ∈ J . As, σ(t) ≥ t for all t ∈ J . Therefore, using Lemma 3.1.3
we have

d(xn, xn+1) = d(xn, Txn) = E(xn) ≤ σ(E(xn)) = ρn.

Hence, xn+1 ∈ S(xn, ρn) ⊂ D. Now we shall prove the second part of Lemma.
First note that

E(xn+1) = d(xn+1, Txn+1) ≤ H(Txn, Txn+1) ≤ ϕ(E(xn)). (3.1.4)

Let x ∈ S(xn+1, ρn+1), then, d(x, xn+1) ≤ ρn+1. Using the triangle inequality, we
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have

d(x, xn) ≤ d(x, xn+1) + d(xn+1, xn)

≤ ρn+1 + d(xn, Txn) = σ(E(xn+1)) + E(xn)

≤ σ(ϕ(E(xn))) + E(xn) = ρn (using (1.1.5 & 3.1.4)),

since σ is non-decreasing. Hence, x ∈ S(xn, ρn) and so S(xn+1, ρn+1) ⊂ S(xn, ρn).

Definition 3.1.8. (Initial points). A point x0 ∈ D will be called an initial point
of T if E(x0) ∈ J and all of the iterates x0, x1, x2, · · · are well-defined and belong
to D.

Lemma 3.1.9. (Test for initial points). Assume x0 ∈ D satisfies E(x0) ∈ J and
there exists an integer n ≥ 0 such that S(xn, ρn) ⊂ D. Then x0 is an initial point
of T .

Proof. Lemma 3.1.7 insure that xn+1 ∈ D and S(xn+1, ρn+1) ⊂ S(xn, ρn) for
n ≥ 0. This implies that x0, x1, x2, · · · are well-defined and belong to D, so x0 is
an initial point of T .

Lemma 3.1.10. For every initial point x0 ∈ D of T and every n ≥ 0 we have

E(xn+1) ≤ ϕ(E(xn))

and
E(xn) ≤ ϕn(E(x0)).

In addition, if ϕ is a gauge function of order r ≥ 1, then

E(xn) ≤ E(x0)λ
Sn(r)

and
φ(E(xn)) ≤ λrn

,

where λ = φ(E(x0)) and φ is a nonnegative and nondecreasing function on J

satisfying (1.1.3).

Proof. Note that xn+1 ∈ D, since x0 is an initial point of T . As xn+1 ∈ Txn,
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using (3.1.3), we get

E(xn+1) = d(xn+1, Txn+1) ≤ H(Txn, Txn+1) ≤ ϕ(E(xn)).

As, ϕ is non-decreasing on J we have

E(xn) ≤ ϕ(E(xn−1))

≤ ϕ2(E(xn−2)) · · · ≤ ϕn(E(x0)).

If ϕ is a gauge function of order r ≥ 1, then from Lemma 1.1.19-(i)

E(xn) ≤ ϕn(E(x0)) ≤ E(x0)(φ(E(x0)))
Sn(r) = E(x0)λ

Sn(r).

Further, from Lemma 1.1.19-(ii), we have

φ(E(x0)) ≤ φ(ϕn(E(x0)) ≤ (φ(E(x0)))
rn

= λrn

,

since φ is non-decreasing.
From Lemma 3.1.10 we get the following Lemma, which is muti valued version
of Proinov [49, Lemma 3.7], i.e., here E(x) = d(x, Tx) where T is a map from X

into PC(X) satisfying (3.1.3).

Lemma 3.1.11. (Bounds for inclusion radii) Suppose x0 is an initial point of T
and ϕ is a gauge function of order r ≥ 1. Then for the radii ρn = σ(E(xn)); n =

0, 1, 2, ... the following estimates hold:

(i) ρn ≤ E(xn)
∞∑

j=0

[φ(E(xn))]Sj(r) ≤ E(xn)

1− φ(E(xn))
; (3.1.5)

(ii) ρn ≤ E(xn)
∞∑

j=0

[λrn

]Sj(r) ≤ E(xn)

1− λrn ; (3.1.6)

(iii) ρn ≤ E(x0)λ
Sn(r)

∞∑
j=0

[λrn

]Sj(r) ≤ λSn(r)E(x0)

1− λrn ; (3.1.7)

(iv) ρn+1 ≤ ϕ(E(xn))
∞∑

j=0

[φ(ϕ(E(xn)))]Sj(r) ≤ ϕ(E(xn))

1− φ(ϕ(E(xn)))
; (3.1.8)

(v) ρn+1 ≤ ϕ(E(xn))
∞∑

j=0

[λrn

]Sj(r) ≤ ϕ(E(xn))

1− λrn ; (3.1.9)
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where λ = φ(E(x0)).

Proof. We will make use of the following facts during the proof.

0 ≤ φ(t) < 1, Sj(r) ≥ j and 0 ≤ λrn

< 1.

(i) Using Lemma 1.1.19-(i) and definition of ρn we have

ρn = σ(E(xn)) =
∞∑

j=0

ϕj(E(xn))

≤
∞∑

j=0

E(xn)[φ(E(xn))]Sj(r)

= E(xn)
∞∑

j=0

[φ(E(xn))]Sj(r)

≤ E(xn)
∞∑

j=0

[φ(E(xn))]j =
E(xn)

1− φ(E(xn))
.

(ii) From (3.1.5)

ρn ≤ E(xn)
∞∑

j=0

[φ(E(xn))]Sj(r)

≤ E(xn)
∞∑

j=0

[λrn

]Sj(r) (using Lemma 3.1.10)

≤ E(xn)
∞∑

j=0

[λrn

]j =
E(xn)

1− λrn .

(iii) From(3.1.6)

ρn ≤ E(xn)
∞∑

j=0

[λrn

]Sj(r)

≤ E(x0)λ
Sn(r)

∞∑
j=0

[λrn

]Sj(r) (using Lemma 3.1.10)

≤ E(x0)λ
Sn(r)

∞∑
j=0

[λrn

]j

≤ E(x0)
λSn(r)

1− λrn .
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(iv) Since E(xn+1) ≤ ϕ(E(xn)) and φ is non-decreasing, using Lemma 1.1.19 we
have

ρn+1 = σ(E(xn+1)) =
∞∑

j=0

ϕj(E(xn+1))

≤ E(xn+1)
∞∑

j=0

[φ(E(xn+1))]
Sj(r)

≤ ϕ(E(xn))
∞∑

j=0

[φ(ϕ(E(xn)))]Sj(r)

≤ ϕ(E(xn))
∞∑

j=0

[φ(ϕ(E(xn)))]j

=
ϕ(E(xn))

1− φ(ϕ(E(xn)))
.

(v) Using (3.1.8) we get

ρn+1 ≤ ϕ(E(xn))
∞∑

j=0

[φ(E(xn+1))]
Sj(r)

≤ ϕ(E(xn))
∞∑

j=0

[λrn+1

]Sj(r) (using Lemma 3.1.10)

= ϕ(E(xn))
∞∑

j=0

[λrn

]rSj(r)

≤ ϕ(E(xn))
∞∑

j=0

[λrn

]Sj+1(r)−1 (using definition of Sj(r))

≤ ϕ(E(xn))
∞∑

j=0

[λrn

]j+1−1

=
ϕ(E(xn))

1− λrn .

Theorem 3.1.12. Let T : D ⊂ X → PC(X) be an operator on a complete
metric space (X, d) satisfying (3.1.3) with a Bianchini-Grandolfi gauge function
ϕ on an interval J . Then, starting from an initial point x0 of T the iterative
sequence {xn} remains in S(x0, ρ0) and converges to a point ξ which belongs to
each of the closed balls S(xn, ρn); n = 0, 1, · · · , where ρn = σ(d(xn, Txn)) and σ



55

is defined by (1.1.4). Moreover, for each n ≥ 1 we have

d(xn, xn+1) ≤ ϕ(d(xn−1, xn)).

If ξ ∈ D and T is continuous at ξ, then ξ is a fixed point of T .

Proof. Since x0 is an initial point of T , it follows from Lemma 3.1.7 that

S(xn+1, ρn+1) ⊂ S(xn, ρn) for all n ≥ 0, (3.1.10)

which implies that xn ∈ S(x0, ρ0) for all n ≥ 0. Using the definition of ρn, from
Lemma 3.1.10, we get

ρn = σ(E(xn)) ≤ σ(ϕn(E(x0)))

=
∞∑

j=0

ϕj(ϕn(E(x0)))

=
∞∑

j=n

ϕj(E(x0)) for all n ≥ 0, (3.1.11)

since σ is non-decreasing. As ϕ is Bianchini-Grandolfi gauge function on J and
E(x0) ∈ J , from (3.1.11), we get

ρn → 0 as n →∞. (3.1.12)

From (3.1.10) and (3.1.12) it follow that {S(xn, ρn)} is nested sequence of closed
spheres such that ρn → 0 as n →∞. Therefore, it follows from Cantor’s Theorem
that there exists a unique point ξ such that ξ ∈ S(xn, ρn) for all n ≥ 0 and xn → ξ.
In other words, limn→∞d(xn, ξ) = 0. Now,

d(ξ, Txn) ≤ d(ξ, xn) + d(xn, Txn) = d(ξ, xn) + d(xn, xn+1).

Taking limit as n →∞ we get,

limn→∞d(ξ, Txn) ≤ 0.

If ξ ∈ D and T is continuous at ξ then we have d(ξ, T ξ) = 0 which simply means
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that ξ ∈ Tξ. Moreover, from Lemma 3.1.10 we get

d(xn, xn+1) = d(xn, Txn) = E(xn) ≤ ϕ(E(xn−1))

= ϕ(d(xn−1, Txn−1))

= ϕ(d(xn−1, xn)).

Corollary 3.1.13. Let T : D ⊂ X → PC(X) be an operator on a complete
metric space (X, d) satisfying

H(Tx, Ty) ≤ ϕ(d(x, Tx))

for all x ∈ D, Tx ⊂ D with d(x, y) ∈ J and for y ∈ Tx, with a Bianchini-
Grandolfi gauge function ϕ on an interval J . Then, starting from an initial
point x0 of T the iterative sequence {xn} remains in S(x0, ρ0) and converges to
a point ξ which belongs to each of the closed balls S(xn, ρn); n = 0, 1, · · · , where
ρn = σ(d(xn, Txn)) and σ is defined by (1.1.4). Moreover, for each n ≥ 1 we have

d(xn, xn+1) ≤ ϕ(d(xn−1, xn)).

If ξ ∈ D and T is continuous at ξ, then ξ is a fixed point of T .

Remark 3.1.14. Note that when T is a single valued map from D ⊂ X into
X Theorem 3.1.12 extends Theorem 1.1.23 (Proinov [49, Theorem 4.1]) and thus
generalize/extend some results of Bianchini-Grandolfi [9] and Hicks [23, Theorems
1 and 2].

Theorem 3.1.15. Let T : D ⊂ X → PC(X) be an operator on a complete
metric space (X, d) satisfying (3.1.3) with a gauge function ϕ of the order r ≥ 1

on an interval J . Suppose that x0 ∈ D is an initial point of T . Then the following
statements hold true.

(i) The iterative sequence (3.1.1) remains in S(x0, ρ0) and converges with rate
of convergence at least r to a point ξ which belongs to each of the closed
balls S(xn, ρn), n = 0, 1, · · · , where

ρn = d(xn, xn+1)
∞∑

j=0

[φ(d(xn, xn+1))]
Sj(r) ≤ d(xn, xn+1)

1− φ(d(xn, xn+1))
(3.1.13)
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and φ is a non-negative and non-decreasing function on J satisfying (1.1.3).

(ii) For all n ≥ 0 we have the following a priori estimate

d(xn, ξ) ≤ d(x0, Tx0)
∞∑

j=n

λSj(r) ≤ λSn(r)d(x0, Tx0)

1− λrn , (3.1.14)

where λ = φ(d(x0, Tx0)).

(iii) For all n ≥ 1 we have the following a posteriori estimate

d(xn, ξ) ≤ ϕ(d(xn, xn−1))
∞∑

j=0

[φ(ϕ(d(xn, xn−1)))]
Sj(r)

≤ ϕ(d(xn, xn−1))

1− φ(ϕ(d(xn, xn−1)))

≤ ϕ(d(xn, xn−1))

1− [φ(d(xn, xn−1))]r
. (3.1.15)

(iv) For all n ≥ 1 we have

d(xn, xn+1) ≤ ϕ(d(xn, xn−1)) ≤ λSn(r)d(x0, Tx0). (3.1.16)

(v) If ξ ∈ D and T is continuous at ξ, then ξ is a fixed point of T .

Proof. (i) Theorem 3.1.12 insures that the iterative sequence (3.1.1) remains in
S(x0, ρ0) and converges to ξ which belongs to each of the closed balls S(xn, ρn), n =

0, 1, · · · . Further, from Lemma 3.1.11, estimate (3.1.5), we have (by using E(xn) =

d(xn, xn+1))

ρn ≤ d(xn, xn+1)
∞∑

j=0

[φ(d(xn, xn+1))]
Sj(r) ≤ d(xn, xn+1)

1− φ(d(xn, xn+1))
.

(ii) For m > n

d(xn, xm) ≤ d(xn, xn+1) + d(xn+1, xn+2) + ... + d(xm−1, xm)

= E(xn) + E(xn+1) + ... + E(xm−1)

≤ E(x0)[λ
Sn(r) + λSn+1(r) + ... + λSm−1(r)] (by Lemma 3.1.10)

= E(x0)
m−1∑
j=n

λSj(r).
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Keeping n fixed and letting m →∞, we get

d(xn, ξ) ≤ E(x0)
∞∑

j=n

λSj(r) = d(x0, Tx0)
∞∑

j=n

λSj(r). (3.1.17)

Note that,

∞∑
j=n

λSj(r) = λSn(r) + λSn+1(r) + · · ·

= λSn(r)[1 + λrn

+ λrn+rn+1

+ λrn+rn+1+rn+2

+ · · · ]

Since r ≥ 1, therefore

rn + rn+1 ≥ 2rn, rn + rn+1 + rn+2 ≥ 3rn · · ·

and hence,
λrn+rn+1 ≤ λ2rn

, λrn+rn+1+rn+2 ≤ λ3rn · · · ,

since 0 < λ < 1. Thus,

∞∑
j=n

λSj(r) ≤ λSn(r)[1 + λrn

+ λ2rn

+ λ3rn

+ · · · ] =
λSn(r)

1− λrn

Substituting this in (3.1.17), we get

d(xn, ξ) ≤ E(x0)
∞∑

j=n

λSj(r) = d(x0, Tx0)
λSn(r)

1− λrn .

(iii) From (3.1.14) we have for n ≥ 0,

d(xn, ξ) ≤ d(x0, x1)
∞∑

j=n

[φ(d(x0, x1))]
Sj(r).

Putting n = 0, y0 = xn and y1 = x1 we have,

d(y0, ξ) ≤ d(y0, y1)
∞∑

j=0

[φ(d(y0, y1))]
Sj(r).
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Putting y0 = xn, and y1 = xn+1 we have,

d(xn, ξ) ≤ d(xn, xn+1)
∞∑

j=0

[φ(d(xn, xn+1))]
Sj(r) (3.1.18)

≤ ϕ(d(xn, xn−1))
∞∑

j=0

[φ(ϕ(d(xn, xn−1)))]
Sj(r)

≤ ϕ(d(xn, xn−1))
∞∑

j=0

[φ(ϕ(d(xn, xn−1)))]
j

=
ϕ(d(xn, xn−1))

1− φ(ϕ(d(xn, xn−1)))
, (3.1.19)

since Sj(r) ≥ j. Now by Lemma 1.1.19-(ii), we have

φ(ϕ(d(xn, xn−1))) ≤ [φ(d(xn, xn−1))]
r

which means that,

1

1− φ(ϕ(d(xn, xn−1)))
≤ 1

1− [φ(d(xn, xn−1))]r
. (3.1.20)

From (3.1.18) we get for n ≥ 1,

d(xn, ξ) ≤ ϕ(d(xn, xn−1))
∞∑
0

[φ(ϕ(d(xn, xn−1)))]
Sj(r)

≤ ϕ(d(xn, xn−1))

1− φ(ϕ(d(xn, xn−1)))

≤ ϕ(d(xn, xn−1))

1− [φ(d(xn, xn−1))]r
(using (3.1.20))
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(iv) For n ≥ 1, using Lemma 3.1.10 we have

d(xn+1, xn) = E(xn) ≤ ϕ(E(xn−1))

= E(xn−1)φ(E(xn−1)) (using Lemma 1.1.18)

≤ E(x0)λ
Sn−1(r)φ(E(xn−1))

≤ E(x0)λ
Sn−1(r)λrn−1

= E(x0)λ
Sn−1(r)+rn−1

= E(x0)λ
Sn(r)

= λSn(r)d(x0, Tx0).

(v) Proof is similar as in the proof of Theorem 3.1.12.

Corollary 3.1.16. Let T : D ⊂ X → PC(X) be an operator on a complete
metric space (X, d) satisfying

H(Tx, Ty) ≤ ϕ(d(x, Tx))

for all x ∈ D, Tx ⊂ D with d(x, y) ∈ J and for y ∈ Tx, with a gauge function ϕ

of the order r ≥ 1 on an interval J . Suppose that x0 ∈ D is an initial point of T .
Then the following statements hold true.

(i) The iterative sequence (3.1.1) remains in S(x0, ρ0) and converges with rate
of convergence at least r to a point ξ which belongs to each of the closed
balls S(xn, ρn), n = 0, 1, · · · , where

ρn = d(xn, xn+1)
∞∑

j=0

[φ(d(xn, xn+1))]
Sj(r) ≤ d(xn, xn+1)

1− φ(d(xn, xn+1))
(3.1.21)

and φ is a non-negative and non-decreasing function on J satisfying (1.1.3).

(ii) For all n ≥ 0 we have the following a priori estimate

d(xn, ξ) ≤ d(x0, Tx0)
∞∑

j=n

λSj(r) ≤ λSn(r)d(x0, Tx0)

1− λrn , (3.1.22)

where λ = φ(d(x0, Tx0)).
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(iii) For all n ≥ 1 we have the following a posteriori estimate

d(xn, ξ) ≤ ϕ(d(xn, xn−1))
∞∑

j=0

[φ(ϕ(d(xn, xn−1)))]
Sj(r)

≤ ϕ(d(xn, xn−1))

1− φ(ϕ(d(xn, xn−1)))

≤ ϕ(d(xn, xn−1))

1− [φ(d(xn, xn−1))]r
. (3.1.23)

(iv) For all n ≥ 1 we have

d(xn, xn+1) ≤ ϕ(d(xn, xn−1)) ≤ λSn(r)d(x0, Tx0). (3.1.24)

(v) If ξ ∈ D and T is continuous at ξ, then ξ is a fixed point of T .

Remark 3.1.17. Note that when T is a single valued map from D ⊂ X into X

Theorem 3.1.12 extends Theorem 1.1.24 (Proinov [49, Theorem 4.2]).

Corollary 3.1.18. Let (X, d) be a complete metric space, T : X → PC(X) be
a continuous operator satisfying

H(Tx, Ty) ≤ ϕ(d(x, y)) (3.1.25)

for any x ∈ X, y ∈ Tx with d(x, y) ∈ J and ϕ is a gauge function of order r ≥ 1

on an interval J . Assume that x0 is a point in X such that d(x0, Tx0) ∈ J . Then,
the following statements hold true.

(i) The iterative sequence (3.1.1) converges to a fixed point ξ of T .

(ii) The estimates (3.1.14) - (3.1.16) are valid.

Following simple example shows the generality of our result over the Nadler
contraction principle, in the case when T is a map from X int PC(X).

Example 3.1.19. Let X = [0, 3
5
] equipped with usual metric d. Define T : X →

PC(X) by Tx = [0, x2]. Then, for any x ∈ X and y ∈ Tx,

H(Tx, Ty) ≤ 24

25
d(x, y).
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By taking ϕ(t) = 24
25

t and J = [0,∞), we see that all conditions of Corollary 3.1.18
are satisfied and 0 is fixed point of T . Note that Nadler contraction principle is
not applicable here.

Corollary 3.1.20. Let (X, d) be complete metric space, T : X → PC(X) be an
operator satisfying

H(Tx, Ty) ≤ ϕ(d(x, y)) (3.1.26)

for all x, y ∈ X (x 6= y) with d(x, y) ∈ J and ϕ is a gauge function of order r ≥ 1

on an interval J . Assume that x0 is a point in X such that d(x0, Tx0) ∈ J . Then,
the following statements hold true.

(i) The iterative sequence (3.1.1) converges to a fixed point ξ ∈ S = {x ∈ X :

d(x, ξ) ∈ J} of T .

(ii) The estimates (3.1.14) - (3.1.16) are valid.

Proof. It follows from (3.2.24) that

H(Tx, Ty) ≤ ϕ(d(x, y)) < d(x, y) (3.1.27)

for all x, y ∈ X (x 6= y). Hence T is continuous. Thus (i) and (ii) follow
immediately from Theorem 3.1.15.

Remark 3.1.21. In the case when T is a mapping from X into PC(X), Nadler
contraction principle (Theorem 1.2.16) is a special case of Corollary 3.1.20. To
see this, take ϕ(t) = λt (0 < λ < 1) and J = [0,∞).

Corollary 3.1.22. (Proinov [49, Corollary 4.4]) Let (X, d) be complete metric
space, T : X → X be an operator satisfying

d(Tx, Ty) ≤ ϕ(d(x, y)) (3.1.28)

for all x, y ∈ X (x 6= y) with d(x, y) ∈ J and ϕ is a gauge function of order r ≥ 1

on an interval J . Assume that x0 is a point in X such that d(x0, Tx0) ∈ J . Then,
the following statements hold true.

(i) The iterative sequence xn+1 = Txn converges to a fixed point ξ of T .

(ii) The operator T has a unique fixed point in S = {x ∈ X : d(x, ξ) ∈ J}.
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(iii) The estimates (3.1.14) - (3.1.16) are valid.

Corollary 3.1.23. Let T : X → PC(X) be a continuous operator on a complete
metric space (X, d) satisfying

H(Tx, Ty) ≤ ϕ(m(x, y)) (3.1.29)

for all x ∈ X, y ∈ Tx where ϕ is a gauge function of the first order on J = [0,∞)

and

m(x, y) = max{d(x, y), d(y, Ty)} (3.1.30)

Then for each x0 ∈ X the following statements hold true.

(i) The iterative sequence {xn} converges to a unique fixed point ξ of T .

(ii) For n ≥ 0 we have the following a priori estimate

d(xn, ξ) ≤ λn

1− λ
d(x0, Tx0). (3.1.31)

(iii)For all n ≥ 1 we have the following a posteriori estimate

d(xn, ξ) ≤ ϕ(d(xn, xn−1))

1− φ[ϕ(d(xn, xn−1))]
. (3.1.32)

Proof. Let x ∈ X. It follows from (3.1.29) that

H(Tx, Ty) ≤ ϕ(max{d(x, y), d(y, Ty)}), (3.1.33)

for y ∈ Tx. Suppose max{d(x, y), d(y, Ty)} = d(y, Ty), then we have

d(y, Ty) ≤ H(Tx, Ty) ≤ ϕ(d(y, Ty)) < d(y, Ty),

which is a contradiction. Therefore, from (3.1.33) we get

H(Tx, Ty) ≤ ϕ(d(x, y)),

for all x ∈ X with d(x, y) ∈ J and for y ∈ Tx, which is nothing, but the condition
(3.1.3). Applying Theorem 3.1.15 we deduce that the iterative sequence {xn}
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converges to a point ξ ∈ X. Since r = 1 in this case so the a priori and a
posteriori estimates (3.1.14) and (3.1.15) becomes (3.1.31) and (3.1.32). The
uniqueness of ξ follows from Corollary 3.1.18.

Remark 3.1.24. Theorem 3.1.15 extends/generalize Theorem 1.1.24 ([49, Theo-
rem 4.2]) and thus extends/generalize Rheinboldt [56], Kornstaedt [35, Satz 4.1],
Hicks and Rhoades [23], Park [44, Theorem 2], Gel’man [20, Theorem 3] and
Hicks [23, Theorem 3].

3.2 Multi-valued generalized ϕ-contractions

In the first section we extended some results of Proinov [49] to the case of multi-
valued maps from a complete metric space X into the space of all nonempty
proximinal closed subsets of X. In this section we present some fixed point
theorems for multi-valued maps that generalize [39, Theorem 5], [16, Theorem
2.1], Theorems 3.1.12 and 3.1.15 ([?, Theorems 2.11 & 2.15]) and [2, Theorems,2.1
& 2.2].

Theorem 3.2.1. Let (X, d) be a complete metric space, D be a closed subset
of X, ϕ is a Bianchini-Grandolfi gauge function on an interval J and T be a
mapping from D into CB(X) such that Tx ∩D 6= ∅ and

H(Tx ∩D, Ty ∩D) ≤ ϕ(d(x, y)) (3.2.1)

for all x ∈ D, y ∈ Tx ∩D with d(x, y) ∈ J . Moreover, the strict inequality holds
when d(x, y) 6= 0. Suppose x0 ∈ D is such that d(x0, z) ∈ J for some z ∈ Tx0∩D.
Then:

(i) there exists an orbit {xn} of T in D and ξ ∈ D such that limn xn = ξ;

(ii) ξ is fixed point of T if and only if the function f(x) := d(x, Tx ∩ D) is
T -orbitally lower semi continuous at ξ.

Proof. Take x1 = z ∈ Tx0 ∩D. We assume that d(x0, x1) 6= 0, for otherwise x0

is fixed point of T . Define ρ0 = σ(d(x0, x1)) where σ is defined by (1.1.4). Since
from (1.1.5), σ(t) ≥ t so we have

d(x0, x1) ≤ ρ0. (3.2.2)
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Notice that x1 ∈ S(x0, ρ0) . It follow from (3.2.1) that H(Tx0 ∩D, Tx1 ∩D) <

ϕ(d(x0, x1)). Choose an ε1 > 0 with

H(Tx0 ∩D,Tx1 ∩D) + ε1 ≤ ϕ(d(x0, x1)). (3.2.3)

It follows from Lemma 1.2.11 that there exists x2 ∈ Tx1 ∩D such that

d(x1, x2) ≤ H(Tx0 ∩D, Tx1 ∩D) + ε1, (3.2.4)

since D is closed and Tx1 is closed and bounded. We assume that d(x1, x2) 6= 0,
for otherwise x1 is fixed point of T . From inequalities (3.2.3) and (3.2.4) we have

d(x1, x2) ≤ ϕ(d(x0, x1)). (3.2.5)

Note that d(x1, x2) ∈ J . Further, x2 ∈ S(x0, ρ0), since

d(x0, x2) ≤ d(x0, x1) + d(x1, x2)

≤ d(x0, x1) + ϕ(d(x0, x1))

≤ d(x0, x1) + σ(ϕ(d(x0, x1)))

= σ(d(x0, x1)) (using (1.1.5))

= ρ0.

Now choose ε2 > 0 with

H(Tx1 ∩D,Tx2 ∩D) + ε2 ≤ ϕ(d(x1, x2)). (3.2.6)

It again follows from Lemma 1.2.11 that there exists x3 ∈ Tx2 ∩D such that

d(x2, x3) ≤ H(Tx1 ∩D, Tx2 ∩D) + ε2. (3.2.7)

We assume that d(x2, x3) 6= 0, for otherwise x2 is fixed point of T . From inequal-
ities (3.2.5), (3.2.6) and (3.2.7) we have

d(x2, x3) ≤ ϕ2(d(x0, x1)). (3.2.8)



66

Note that d(x2, x3) ∈ J . Further, x3 ∈ S(x0, ρ0), since

d(x0, x3) ≤ d(x0, x1) + d(x1, x2) + d(x2, x3)

≤ d(x0, x1) + ϕ(d(x0, x1)) + ϕ2(d(x0, x1)))

≤
∞∑

j=0

ϕj(d(x0, x1))

= σ(d(x0, x1)) = ρ0.

Repeating the above argument, inductively we obtain the a sequence {xn}n∈N
such that

xn ∈ Txn−1 ∩D, (3.2.9)

d(xn, xn+1) ≤ ϕn(d(x0, x1)), (3.2.10)

d(xn−1, xn) ∈ J, and xn ∈ S(x0, ρ0). (3.2.11)

We claim that {xn} is a Cauchy sequence. For n, p ∈ N, from (3.2.10) we have

d(xn+p, xn) ≤ d(xn+p, xn+p−1) + · · ·+ d(xn+1, xn)

≤ ϕn+p−1(d(x0, x1)) + · · ·+ ϕn(d(x0, x1))

≤
∞∑

j=n

ϕj(d(x0, x1)).

Using (1.1.4), it follows from the above inequality that {xn} is a Cauchy sequence.
Thus there exists ξ ∈ S(x0, ρ0) with xn → ξ. Note that ξ ∈ D, as well. Since
xn ∈ Txn−1 ∩D, it follow from (3.2.1) that

d(xn, Txn ∩D) ≤ H(Txn−1 ∩D, Txn ∩D)

≤ ϕ(d(xn−1, xn)) (3.2.12)

< d(xn−1, xn).

Letting n →∞, from (3.4.16) we get

lim
n→∞

d(xn, Txn ∩D) = 0. (3.2.13)

Suppose f(x) = d(x, Tx ∩D) is T orbitally lower continuous at ξ, then

d(ξ, T ξ ∩D) = f(ξ) ≤ lim
n

inf f(xn) = lim
n

inf d(xn, Txn ∩D) = 0.
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Hence, ξ ∈ Tξ, since Tξ is closed. Conversely, if ξ is fixed point of T then
f(ξ) = 0 ≤ limn inf f(xn), since ξ ∈ D.

Example 3.2.2. Let X = [0, 3
5
] equipped with usual metric d. Define T : X →

CB(X) by Tx = [0, x2]. Then, for any x, y ∈ X

H(Tx, Ty) = |x2 − y2| = |x + y||x− y|
≤ |x + y|d(x, y).

Therefore, for x ∈ [0, 3
5
] and y ∈ [0, x2], we have

H(Tx, Ty) ≤ (
3

5
+

9

25
)d(x, y)

=
24

25
d(x, y).

By taking ϕ(t) = 24
25

t and J = [0,∞), we see that all conditions of Theorem 3.2.1
are satisfied and 0 is the only fixed point of T . Observe that for 0 ≤ λ < 1,

H(T
1

2
, T

3

5
) =

11

100

 λ

1

10
= d(

1

2
,
3

5
).

Therefore, T does not satisfies the hypothesis of [39, Theorem5] and [16, Theorem
2.1].

In [13, 59, 49] the following class of functions was introduced and studied.

Definition 3.2.3. [13, 59, 49] Let ψ : R+ → R+. The function ψ is said to
satisfy the condition (Φ) (denoted by ψ ∈ (Φ)) if

(i) ψ(t) < t for all t ∈ (0,∞),

(ii) ψ is upper semicontinuous from the right on (0,∞) and

(iii) there exists a positive real number s such that ψ is nondecreasing on (0, s]

and
∑∞

n=0 ψn(t) < ∞ for all t ∈ (0, s].

Following lemma is an immediate consequence of the third part of Definition
3.2.3 and Definition 1.1.16.

Lemma 3.2.4. Every ψ ∈ (Φ) is a Bianchini-Grandolfi gauge function on J =

(0, s].
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Remark 3.2.5. Chang [13] observed that if k : (0,∞) → [0, 1) satisfies

lim sup
s→t+

k(s) < 1 for every t ∈ [0,∞), (3.2.14)

then there exists a function ψ ∈ (Φ) such k(t)t ≤ ψ(t) for all t ∈ (0,∞).

As a consequence of above Lemma and Remark we have the following Corol-
lary.

Corollary 3.2.6. ([39, Theorem 5],[16, Theorem 2.1]) Let (X, d) be a complete
metric space and T : X → CB(X). Assume that T satisfies

H(Tx, Ty) ≤ k(d(x, y))d(x, y) (3.2.15)

for all x, y ∈ X with x 6= y where k : (0,∞) → [0, 1) satisfies (3.2.14). Then T

has a fixed point in X.

Remark 3.2.7. In [61], Suzuki proved that Corollary 3.2.6 is a real generalization
of Nadler Theorem. As a result, we can see Theorem 3.2.1 as a generalization of
Nadler Theorem.

Theorem 3.2.8. Let (X, d) be a complete metric space, D be a closed subset of
X, ϕ is a gauge function of order r ≥ 1 on an interval J and T be a mapping
from D into CB(X) such that Tx ∩D 6= ∅ and

H(Tx ∩D, Ty ∩D) ≤ ϕ(d(x, y)) (3.2.16)

for all x ∈ D, y ∈ Tx ∩D with d(x, y) ∈ J . Moreover, the strict inequality holds
when d(x, y) 6= 0. Suppose x0 ∈ D is such that d(x0, z) ∈ J for some z ∈ Tx0∩D.
Then:

(i) there exists an orbit {xn} of T in S(x0, ρ0) that converges with rate of con-
vergence at least r to a point ξ ∈ S(x0, ρ0);

(ii) for all n ≥ 0 we have the following a priori estimate

d(xn, ξ) ≤ λSn(r)d(x0, x1)

1− λrn , (3.2.17)

where λ = φ(d(x0, x1));
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(iii) for all n ≥ 1 we have the following a posteriori estimate

d(xn, ξ) ≤ ϕ(d(xn, xn−1))
∞∑

j=0

[φ(ϕ(d(xn, xn−1)))]
Sj(r)

≤ ϕ(d(xn, xn−1))

1− φ(ϕ(d(xn, xn−1)))

≤ ϕ(d(xn, xn−1))

1− [φ(d(xn, xn−1))]r
; (3.2.18)

(iv) for all n ≥ 1 we have

d(xn, xn+1) ≤ ϕ(d(xn, xn−1)) ≤ λSn(r)d(x0, x1); (3.2.19)

(v) ξ is fixed point of T if and only if the function f(x) := d(x, Tx ∩ D) is
T -orbitally lower semi continuous at ξ.

Proof. (i) Theorem 3.2.1 insures the existence of an orbit {xn} of T in S(x0, ρ0)

that converges to ξ which belongs to S(x0, ρ0).
(ii) For m > n, using (3.2.10) and Lemma 1.1.19-(i) we have

d(xn, xm) ≤ d(xn, xn+1) + d(xn+1, xn+2) + ... + d(xm−1, xm)

≤ ϕn(d(x0, x1)) + ϕn+1(d(x0, x1)) + · · ·+ ϕm−1(d(x0, x1))

≤ d(x0, x1)[λ
Sn(r) + λSn+1(r) + ... + λSm−1(r)]

= d(x0, x1)
m−1∑
j=n

λSj(r).

Keeping n fixed and letting m →∞, we get

d(xn, ξ) ≤ d(x0, x1)
∞∑

j=n

λSj(r). (3.2.20)

Note that,

∞∑
j=n

λSj(r) = λSn(r) + λSn+1(r) + · · ·

= λSn(r)[1 + λrn

+ λrn+rn+1

+ λrn+rn+1+rn+2

+ · · · ]
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Since r ≥ 1, therefore

rn + rn+1 ≥ 2rn, rn + rn+1 + rn+2 ≥ 3rn · · ·

and hence,
λrn+rn+1 ≤ λ2rn

, λrn+rn+1+rn+2 ≤ λ3rn · · · ,

since 0 < λ < 1. Thus,

∞∑
j=n

λSj(r) ≤ λSn(r)[1 + λrn

+ λ2rn

+ λ3rn

+ · · · ] =
λSn(r)

1− λrn

Substituting this in (3.2.20), we get

d(xn, ξ) ≤ d(x0, x1)
λSn(r)

1− λrn .

(iii) From (3.2.20) we have for n ≥ 0,

d(xn, ξ) ≤ d(x0, x1)
∞∑

j=n

[φ(d(x0, x1))]
Sj(r).

Putting n = 0, y0 = xn and y1 = x1 we have,

d(y0, ξ) ≤ d(y0, y1)
∞∑

j=0

[φ(d(y0, y1))]
Sj(r).

Putting y0 = xn, and y1 = xn+1 we have,

d(xn, ξ) ≤ d(xn, xn+1)
∞∑

j=0

[φ(d(xn, xn+1))]
Sj(r) (3.2.21)

≤ ϕ(d(xn, xn−1))
∞∑

j=0

[φ(ϕ(d(xn, xn−1)))]
Sj(r)

≤ ϕ(d(xn, xn−1))
∞∑

j=0

[φ(ϕ(d(xn, xn−1)))]
j

=
ϕ(d(xn, xn−1))

1− φ(ϕ(d(xn, xn−1)))
, (3.2.22)
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since Sj(r) ≥ j. Now by Lemma 1.1.19-(ii), we have

φ(ϕ(d(xn, xn−1))) ≤ [φ(d(xn, xn−1))]
r

which means that,

1

1− φ(ϕ(d(xn, xn−1)))
≤ 1

1− [φ(d(xn, xn−1))]r
. (3.2.23)

From (3.2.21) we get for n ≥ 1,

d(xn, ξ) ≤ ϕ(d(xn, xn−1))
∞∑
0

[φ(ϕ(d(xn, xn−1)))]
Sj(r)

≤ ϕ(d(xn, xn−1))

1− φ(ϕ(d(xn, xn−1)))

≤ ϕ(d(xn, xn−1))

1− [φ(d(xn, xn−1))]r
(using (3.2.23))

(iv) For n ≥ 1, using (3.2.10) and Lemma 1.1.19 we have

d(xn+1, xn) ≤ ϕ(d(xn, xn−1))

≤ d(x0, x1)λ
Sn−1(r)φ(d(xn−1, xn))

≤ d(x0, x1)λ
Sn−1(r)λrn−1

= d(x0, x1)λ
Sn−1(r)+rn−1

= d(x0, x1)λ
Sn(r)

(v) Proof is similar as in the proof of Theorem 3.2.1.

Remark 3.2.9. We can note the rate of convergence from the a priori estimate
(3.2.17) through the standard technique as follows:

d(xn+1, ξ)

(d(xn, ξ))r
=

λSn+1(r)d(x0, x1)

1− λrn+1

( 1− λrn

λSn(r)d(x0, x1)

)r

=
λ

(d(x0, x1))r−1

(1− λrn
)r

1− λrn+1

Taking the limit when n →∞ we get

lim
n→∞

d(xn+1, ξ)

(d(xn, ξ))r
=

λ

(d(x0, x1))r−1
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so the rate of convergence of the iterative sequence (xn) is at least r with asymp-
totic error constant λ

(d(x0,x1))r−1 .

Remark 3.2.10. Theorems 3.2.1 and 3.2.8 generalize Theorems 3.1.12 and 3.1.15
([?, Theorems 2.11 & 2.15]), as the range of T can be taken as CB(X) instead of
the space of all nonempty proximinal closed subsets of X.

Corollary 3.2.11. Let (X, d) be complete metric space, T : X → CB(X) be an
operator satisfying

H(Tx, Ty) ≤ ϕ(d(x, y)) (3.2.24)

for all x, y ∈ X (x 6= y) with d(x, y) ∈ J and ϕ is a gauge function of order r ≥ 1

on an interval J . Assume that x0 is a point in X such that d(x0, z) ∈ J for some
z ∈ Tx0. Then, the following statements hold true.

(i) There exists an orbit {xn} of T in X that converges to a fixed point ξ ∈ S =

{x ∈ X : d(x, ξ) ∈ J} of T .

(ii) The estimates (3.2.17) - (3.2.19) are valid.

Proof. It follows from (3.2.24) that

H(Tx, Ty) ≤ ϕ(d(x, y)) < d(x, y) (3.2.25)

for all x, y ∈ X (x 6= y). Hence T is continuous. Thus (i) and (ii) follow
immediately from Theorem 3.2.8.

Corollary 3.2.12. Let (X, d) be a complete metric space, D be a closed subset
of X, and T be a continuous mapping from D into CB(X) such that Tx∩D 6= ∅
and

H(Tx ∩D, Ty ∩D) ≤ ϕ(m(x, y)) for all x ∈ D, y ∈ Tx ∩D (3.2.26)

with strict inequality holds if m(x, y) 6= 0 where ϕ is a gauge function of the first
order on J = [0,∞) and

m(x, y) = max{d(x, y), d(x, Tx), d(y, Ty),
1

2
[d(x, Ty) + d(y, Tx)]}. (3.2.27)

Then for each x0 ∈ D such that d(x0, z) ∈ J for some z ∈ Tx0 ∩D the following
statements hold true.
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(i) There exists an orbit of T at x0 in D that converges to a unique fixed point
ξ of T .

(ii) For n ≥ 0 we have the following a priori estimate

d(xn, ξ) ≤ λn

1− λ
d(x0, x1). (3.2.28)

(iii)For all n ≥ 1 we have the following a posteriori estimate

d(xn, ξ) ≤ ϕ(d(xn, xn−1))

1− φ[ϕ(d(xn, xn−1))]
. (3.2.29)

Proof. Choose x1 = z ∈ Tx0 ∩D. Define ρ0 = σ(d(x0, x1)) where σ is defined by
(1.1.4). Since from (1.1.5), σ(t) ≥ t so we have

d(x0, x1) ≤ ρ0. (3.2.30)

We may assume that m(x0, x1) 6= 0, for otherwise d(x0, Tx0) ≤ m(x0, x1) = 0

and x0 is the fixed point of T . From (3.2.26) we have H(Tx0 ∩ D, Tx1 ∩ D) <

ϕ(m(x0, x1)) we may choose ε1 > 0 with

H(Tx0 ∩D,Tx1 ∩D) + ε1 ≤ ϕ(m(x0, x1)). (3.2.31)

It follows from Lemma 1.2.11 that there exists x2 ∈ Tx1 ∩D such that

d(x1, x2) ≤ H(Tx0 ∩D, Tx1 ∩D) + ε1. (3.2.32)

From above two inequalities we get

d(x1, x2) ≤ ϕ(m(x0, x1)) (3.2.33)

≤ ϕ
(

max
{

d(x0, x1), d(x0, Tx0), d(x1, Tx1),

d(x0, Tx1) + d(x1, Tx0)

2

})
(3.2.34)

≤ ϕ
(

max
{

d(x0, x1), d(x1, Tx1),
d(x0, Tx1)

2

})
(3.2.35)

We claim that
d(x1, x2) ≤ ϕ(d(x0, x1)). (3.2.36)
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Let
η1 = max{d(x0, x1), d(x1, Tx1),

d(x0, Tx1)

2
}. (3.2.37)

Case 1. If η1 = d(x0, x1) then clearly (3.2.36) is true.
Case 2. If η1 = d(x1, Tx1). Since x2 ∈ Tx1 we have

d(x1, x2) ≤ ϕ(d(x1, Tx1)) < d(x1, Tx1) ≤ d(x1, x2),

which is a contradiction.
Case 3. Finally suppose η1 = d(x0,Tx1)

2
. Then we have

d(x1, x2) ≤ ϕ(
d(x0, Tx1)

2
) <

d(x0, x2)

2
≤ d(x0, x1) + d(x1, x2)

2
,

since x2 ∈ Tx1. Thus, d(x1, x2) < d(x0, x1). As a result,

η1 ≤ d(x0, x1) + d(x1, x2)

2
< d(x0, x1),

which contradicts the definition of η1. This proves our claim. Proceeding induc-
tively in a similar way as in Theorem 3.2.1 we obtain the sequence {xn} in D

such that xn → ξ ∈ D and limn d(xn+1, Txn) = 0. Since T is continuous so taking
limit as n →∞ we have ξ ∈ Tξ. If η is another fixed point then m(ξ, η) = d(ξ, η)

and uniqueness follows immediately . Estimates (3.2.17) and (3.2.18) becomes
(3.2.28) and (3.2.29) for r = 1.

Remark 3.2.13. Corollary 3.2.12 can be observed as an improved version (with
uniqueness of fixed point and error bounds) of [2, Theorem,2.1,2.2] if the contin-
uous function φ in [2] is replace by the gauge function ϕ of order 1.

3.3 Existence and uniqueness for the solution to

integral inclusions

In this section we apply Corollary 3.2.11 to establish the existence of unique
solution for the class of integral inclusions. Let R denote the real line. We
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consider the following integral inclusion.

x(t) ∈ P

∫ t

t0

k(s, x(s))ds + β

∈ PKx(t) + β (3.3.1)

where

Kx(t) :=

∫ t

t0

k(s, x(s))ds (3.3.2)

P is a closed and bounded (compact) subset of R, β ∈ R and k : R × R → R

satisfies:
|k(t, x(t))− k(t, y(t))| ≤ q

α
|x(t)− y(t)|r (3.3.3)

where α = maxp∈P |p|, 0 < q ≤ α and 1 < r ≤ 2;

|k(t, x)| < 1

2α
(
1

q
)r−1 (3.3.4)

and is continuous on R = {(t, x) : |t− t0| ≤ (1
q
)2−r, |x− β| ≤ 1

2q
}.

Theorem 3.3.1. Under the above assumptions (3.3.2) - (3.3.4), the integral
inclusion (3.3.1) has a unique solution on I = [t0 − (1

q
)2−r, t0 + (1

q
)2−r].

Remark 3.3.2. Note that in almost all the existence results, as for as we know,
for integral inclusions or integral equations the kernel of the equation satisfies
Lipschitz condition in some sense. But in this result the kernel satisfies the
inequality (3.3.3), which is not Lipschitz condition, since 1 < r ≤ 2. This result
not only guarantees the existence but also the uniqueness of the solution and
provide the iterative scheme with higher convergence rate. It also provides the
domain of existence of the solution.

Proof. (Theorem 3.3.1) Consider the space of all continuous functions C(I) en-
dowed by the classical metric

d(x, y) = sup
t∈I

|x(t)− y(t)|.

Note that C(I) is complete with respect to the metric ′d′. Let C̃ = {x ∈ C(I) :

d(x, β) ≤ 1
2q
}. Then, C̃ is a closed subspace of C(I) and thus is complete. Define
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an operator T by:

Tx(t) = P

∫ t

t0

k(s, x(s))ds + β

= PKx(t) + β. (3.3.5)

Then, (3.3.5) and (3.3.1) are equivalent problems in a sense that fixed point(s) of
T are solution(s) of (3.3.1). We claim that T : (C̃, d) → (K(C̃), H). For this we
need to prove that: (i) T is defined for each x ∈ C̃. (ii) Tx is a compact subset
of C̃ for any x ∈ C̃.
If τ ∈ I then |τ − t0| ≤ (1

q
)2−r. Hence by Definition of C̃ we have, |x(τ)−β| ≤ 1

2q
.

So, if τ ∈ I then (τ, x(τ)) ∈ R and since k is continuous on R, therefore integral
(3.3.2) exists in (3.3.5) and T is defined for each x ∈ C̃. We now show that
Tx ⊂ C̃. Let y(t) ∈ Tx(t). Then, y(t) = pKx(t) + β for some p ∈ P , and

|y(t)− β| = |pKx(t)|
= |p||Kx(t)|
≤ α

∫ t

t0

k(s, x(s))ds|

≤ α

∫ t

t0

|k(s, x(s))|ds

< α|t− t0| 1

2α

(1

q

)r−1

≤ 1

2q
.

Thus, d(y, β) < 1
2q

for any y ∈ Tx and hence Tx ⊂ C̃ for any x ∈ C̃. Next we
show that Tx is compact. Consider a sequence (un) ⊂ Tx then, un = pnKx(t)+β,
where (pn) is a sequence in P . Since P is compact there is a subsequence (pni

)

of (pn) such that pni
→ p ∈ P . Let u = pKx(t) + β. Then

d(uni
, u) = sup

t∈I
(|pni

− p||Kx(t)|) ≤ |pni
− p| sup

t∈I
|Kx(t)| → 0

when ni →∞. This proves our claim. Further, note that

H(Tx, Ty) = H(PKx(t) + β, PKy(t) + β)

≤ H(PKx(t), PKy(t)). (3.3.6)
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By definition,

H(PKx(t), PKy(t)) = max{ max
a∈PKx(t)

d(a, PKy(t)), max
b∈PKy(t)

d(b, PKx(t))}.

Consider,

max
a∈PKx(t)

d(a, PKy(t)) = max
a∈PKx

min
b∈PKy

d(a, b)

= max
p∈P

min
p∗∈P

d(pK(t, x), p∗K(t, y))

= max
p∈P

min
p∗∈P

sup
t∈I

|pK(t, x)− p∗K(t, y)|
≤ max

p∈P
min
p∗∈P

sup
t∈I

[|pK(t, y)− p∗K(t, y)|+ |pK(t, y)− pK(t, x)|]
≤ max

p∈P
min
p∗∈P

[|p| sup
t∈I

|K(t, y)−K(t, x)|+ |p− p∗| sup
t∈I

|K(t, y)|]
= max

p∈P
|p| sup

t∈I
|K(t, y)−K(t, x)|

= α sup
t∈I

|K(t, y)−K(t, x)|.

Now,

|K(t, y)−K(t, x)| ≤
∫ t

t0

|k(s, y(s))− k(s, x(s))|ds

≤ q

α

∫ t

t0

|y(s)− x(s)|rds

≤ q

α
(sup

t∈I
|y(s)− x(s)|)r

∫ t

t0

ds

=
q

α
|t− t0|(d(x, y))r

≤ q

α

(1

q

)2−r

(d(x, y))r =
qr−1

α
(d(x, y))r.

Hence,

max
a∈PKx(t)

d(a, PKy(t)) ≤ α
qr−1

α
(d(x, y))r = qr−1(d(x, y))r.

Changing roles of x and y we obtain,

max
b∈PKy(t)

d(b, PKx(t)) ≤ qr−1(d(x, y))r.



78

Now from (3.3.6) we have,

H(Tx, Ty) ≤ qr−1(d(x, y))r.

Since for all x, y ∈ C̃ we have d(x, y) < 1
q
. So, if we take ϕ(t) = qr−1tr for

t ∈ J = [0, 1
q
), then ϕ is the gauge function of the order r. To prove this, note

that for λ ∈ (0, 1) and t ∈ J we have

ϕ(λt) = λrqr−1tr ≤ λrφ(t).

Further, for t ∈ J − {0} we have

ϕ(t) = qr−1tr = qr−1ttr−1 < qr−1t(
1

q
)r−1 = t.

From the above arguments we have

H(Tx, Ty) ≤ ϕ(d(x, y)) (3.3.7)

for all x, y ∈ C̃ with d(x, y) ∈ J . Hence starting from x0 = β the iterative
sequence xn ∈ Txn−1; n = 1, 2, · · · converges to the unique fixed point ξ of T at
a rate r.

As a consequence of the above result we have the following theorem.

Theorem 3.3.3. Consider the integral inclusion

x(t) ∈ P

∫ t

t0

k(s, x(s))ds + Q (3.3.8)

where P and Q are compact subsets of R. Under the assumptions (3.3.2), (3.3.3)
and (3.3.4) that hold on R = {(t, x) : |t − t0| ≤ (1

q
)2−r, |x − β| ≤ 1

2q
} for any

β ∈ Q the problem (3.3.8) has a solution on I = [t0 − (1
q
)2−r, t0 + (1

q
)2−r].

In the Theorem 3.3.1 if we let P = 1 then the integral inclusion (3.3.1) becomes

x(t) =

∫ t

t0

k(s, x(s))ds + β

which is equivalent to the initial value problem

x′(t) = k(t, x(t)), x(t0) = β.
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In fact, we have got the Picard’s type Theorem [29, Theorem 3.1] which can also
be viewed as an application of Theorem 3.1.15 as follows:

Consider the following first order initial value problem:

x′(t) = k(t, x(t)), x(t0) = β. (3.3.9)

Suppose k(t, x(t)) have the following properties:

(i) k is continuous,

(ii) k satisfies the condition

|k(t, x)− k(t, y)| ≤ q|x(t)− y(t)|r, (3.3.10)

(iii) k is bounded in such a way that

|k(t, x)| < 1

2
(
1

q
)r−1, (3.3.11)

on R = {(t, x) : |t− t0| ≤ (1
q
)2−r, |x− β| ≤ 1

2q
} where 1 < r ≤ 2 and 0 < q ≤ 1.

Theorem 3.3.4. [29] Under the assumptions (i), (ii) and (iii), the initial value
problem (3.3.9) has a unique solution on I = [t0 − ( 1

k
)2−r, t0 + ( 1

k
)2−r].

Remark 3.3.5. The rate of convergence of the iterative sequence obtained in
Theorem 3.3.4 is at least r, as compared to the Picard’s Theorem 1.1.7 in which
the rate of convergence is linear.

3.4 Multi-valued contractions by altering distances

Pathak and Shahzad [45] introduced a class of functions Θ[0, A) and general-
ized some fixed point theorems of Klim and Wardowski by altering distances,
i-e., for the mapping T (from a complete metric space (X, d) into the class of
nonempty closed subsets of X). A crucial assumption in the hypothesis of Theo-
rem 1.2.22 (Pathak and Shahzad [45]) is that M(1, x; θ) = {y ∈ Tx : θ(d(x, y)) ≤
θ(d(x, Tx))} is nonempty. We observe that it exclude all such θ’s which are
strictly increasing from the class Θ[0, A). Note that we have the following inclu-
sion.

K(X) ⊆ PC(X) ⊆ CB(X) ⊆ CL(X) ⊆ N(X).
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Therefore, if T is a mapping from X into CL(X) having values in CL(X)\PC(X)

then in general for any x ∈ X we have d(x, y) > d(x, Tx)∀y ∈ Tx and if θ is
strictly increasing then obviously θ(d(x, y)) > θ(d(x, Tx))∀y ∈ Tx. In simple
words, if θ is strictly increasing then M(1, x; θ) will be nonempty only when T

have values in the set of proximinal subsets of X. Thus, the question arises that
whether one can remove the condition M(1, x; θ) 6= ∅ from the hypotheses of the
Theorem 1.2.22 so that the result still holds. In this section we give an affirmative
answer to this question provided the function θ ∈ Θ[0, A) is positive homogenous
in [0, A); i-e.,

(iv) θ(at) ≤ aθ(t) ∀ a > 0, t ∈ [0, A).

We denote by Θh[0, A) the class of function θ ∈ Θ[0, A) satisfying condition (iv),
above. The established results not only relax the conditions but also the proofs
are simpler than those of [45].
We start with the following simple Lemmas.

Lemma 3.4.1. Let B ∈ CL(X). Then for each x ∈ X and q > 1 there exists an
element b ∈ B such that

d(x, b) ≤ qd(x,B). (3.4.1)

Proof. Let d(x,B) = 0 then x ∈ B, since B is closed subset of X. Further, taking
b = x we see that (3.4.3) holds. Now, suppose that d(x,B) > 0 and choose

ε = (q − 1)d(x, B). (3.4.2)

Then using the definition of d(x,B) it follow that there exists b ∈ B such that

d(x, b) ≤ d(x,B) + ε

≤ qd(x,B) (using (3.4.2)).

Lemma 3.4.2. Let θ ∈ Θh[0, A) and B ∈ CL(X). Then for each x ∈ X and
q > 1 there exists an element b ∈ B such that

θ(d(x, b)) ≤ qθ(d(x,B)). (3.4.3)

Theorem 3.4.3. Let (X, d) be a complete metric space and α is a function from
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(0,∞) into (0, b], 0 < b < 1 such that

lim sup
r→t+

α(r) < b for each t ∈ [0,∞). (3.4.4)

Let T : X → CL(X). Assume that the following condition holds.

θ(d(y, Ty)) ≤ α(d(x, y))θ(d(x, y)) for each x ∈ X and y ∈ Tx, (3.4.5)

where θ ∈ Θh[0, A). Then,

(i) for each x0 ∈ X, there exists an orbit {xn} of T and ξ ∈ X such that
limn xn = ξ;

(ii) ξ is fixed point of T if and only if the function f(x) := d(x, Tx) is T -orbitally
lower semi continuous at ξ.

Proof. Theorem 3.4.3 Let x0 ∈ X. Since Tx0 6= ∅, there exists x1 ∈ X such
that x1 ∈ Tx0. If x0 = x1, then x0 is fixed point of T . Let x0 6= x1, by taking
q = 1√

α(d(x0,x1))
it follows from Lemma 3.4.2 that there exists x2 ∈ Tx1 such that

θ(d(x1, x2)) ≤ 1√
α(d(x0, x1))

θ(d(x1, Tx1)). (3.4.6)

Repeating the above argument we obtain a sequence {xn}n∈N in X such that

θ(d(xn, xn+1)) ≤ 1√
α(d(xn−1, xn))

θ(d(xn, Txn)) (3.4.7)

where,
xn ∈ Txn−1, n = 1, 2, · · · . (3.4.8)

We have assumed that xn−1 6= xn, for otherwise xn−1 is fixed point of T . Using
(3.4.5) it follows from (3.4.7) that

θ(d(xn, xn+1)) ≤
√

α(d(xn−1, xn))θ(d(xn−1, xn)) (3.4.9)

< θ(d(xn−1, xn)). (3.4.10)

Hence {θ(d(xn, xn+1))} is decreasing sequence of positive real numbers bounded
below by 0. Since θ is strictly inverse isotone {d(xn, xn+1)} is also a decreasing
sequence of positive real numbers bounded below by 0, thus convergent. Let
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{θ(d(xn, xn+1))} converges to some nonnegative real number r, say. We claim
that r = 0, for otherwise, by taking limits in (3.4.9) we get

r ≤
√

lim
n→∞

sup α(d(xn−1, xn)) r < br < r (using (3.4.4)),

which is a contradiction. We claim that {d(xn, xn+1)} also converges to 0. Sup-
pose d(xn, xn+1) → γ > 0. Then, for 0 < ε < γ, there exists a natural number n0

such that
0 < δ = γ − ε < d(xn, xn+1) ∀n ≥ n0.

Since θ is positive and nondecreasing,

0 < θ(δ) ≤ θ(d(xn, xn+1)) ∀n ≥ n0,

which is a contradiction, since θ(d(xn, xn+1)) → 0. From (3.4.9), we get

θ(d(xn, xn+1)) ≤ [
√

α(d(xn−1, xn)) · · ·
√

α(d(x0, x1))]θ(d(x0, x1)). (3.4.11)

It follow from (3.4.4) that we may choose an ε > 0 and a ∈ (0, b) such that

α(t) < a2 for t ∈ (0, ε). (3.4.12)

Let N be such that
d(xn−1, xn) < ε for n ≥ N. (3.4.13)

Then, from (3.4.11) we have

θ(d(xn, xn+1)) ≤ an−(N−1)[
√

α(d(xN−2, xN−1)) · · ·
√

α(d(x0, x1))]θ(d(x0, x1))

< an−N+1bN−1θ(d(x0, x1)). (3.4.14)

Therefore, for any m ∈ N we have

θ(d(xn, xn+m)) ≤ θ(d(xn, xn+1)) + · · ·+ θ(d(xn+m−1, xn+m))

< an−N+1bN−1[1 + a + a2 + · · ·+ am−1]θ(d(x0, x1))

< bN−1an−N+1

1− a
θ(d(x0, x1)). (3.4.15)
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Therefore
lim

n,m→∞
θ(d(xn, xm)) = 0.

We claim that
lim

n,m→∞
d(xn, xm) = 0.

Suppose not. Then there exist δ > 0 and subsequences {xmi
} and {xni

} respec-
tively such that

d(xmi
, xni) > δ ∀i.

Since θ is nondecreasing,

0 < θ(δ) ≤ θ(d(xmi
, xni

)) → 0,

which is a contradiction. This proves our claim. Hence {xn} is Cauchy sequence in
X. Since X is complete there exists ξ ∈ X such that xn → ξ. Since xn ∈ Txn−1,
it follow from (3.4.18) that

θ(d(xn, Txn)) ≤ α(d(xn−1, xn))θ(d(xn−1, xn))

< θ(d(xn−1, xn)), (3.4.16)

which implies that d(xn, Txn) < d(xn−1, xn). Letting n → ∞, from (3.4.16) we
get

lim
n→∞

d(xn, Txn) = 0. (3.4.17)

Suppose f(x) = d(x, Tx) is T orbitally lower continuous at ξ, then

d(ξ, T ξ) = f(ξ) ≤ lim
n

inf f(xn) = lim
n

inf d(xn, Txn) = 0.

Hence, ξ ∈ Tξ, since Tξ is closed. Conversely, if ξ is fixed point of then f(ξ) =

0 ≤ limn inf f(xn).

If we take b = 1 then the following Theorem can be obtained as a consequence of
Theorem 3.4.3.

Theorem 3.4.4. Let (X, d) be a complete metric space and T : X → CL(X)

satisfying

θ(d(y, Ty)) ≤ α(d(x, y))θ(d(x, y)) for each x ∈ X and y ∈ Tx, (3.4.18)
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where α is a function from (0,∞) into (0, 1] such that

lim sup
r→t+

α(r) < 1 for each t ∈ [0,∞), (3.4.19)

and θ ∈ Θh[0, A). Then,

(i) for each x0 ∈ X, there exists an orbit {xn} of T and ξ ∈ X such that
limn xn = ξ;

(ii) ξ is fixed point of T if and only if the function f(x) := d(x, Tx) is T -orbitally
lower semi continuous at ξ.

Example 3.4.5. Let l2 denote the Hilbert space of all square summable se-
quences of real numbers with usual norm. Note that for x = (x1, x2, · · · ) and
y = (y1, y2, · · · )

d(x, y) = ‖x− y‖ =

√√√√
∞∑
i=1

(xi − yi)2.

For each n = 1, 2, · · · , let en be the vector in l2 with zeros in all its coordinates
except the nth coordinate which is equal to 1. Take a = (−1,−1

2
, · · · ,− 1

n
, · · · ),

and B = {e1, e2, · · · , en, · · · }. Define T : l2 → CL(l2) by

Tx = B ∀ x ∈ l2.

Then, for θ(t) = t condition (3.4.18) of Theorem 3.4.4 is obviously satisfied.
Further,

d(a, B) = inf ‖a− en‖ = inf(‖a‖2 + 1 +
2

n
)

1
2 = (‖a‖2 + 1)

1
2 .

Observe that B ∈ CL(X) and there is no en in B such that ‖a − en‖ ≤ d(a,B)

and hence M(1, x; θ) is empty in this case and conditions of Theorem 1.2.22 are
not satisfied. Note that, e1, e2, · · · are fixed points of T .

Corollary 3.4.6. Let (X, d) be a complete metric space and let T : X → CL(X)

satisfying

∫ θ(d(y,Ty))

0

ψ(t)dt ≤ α(d(x, y))

∫ θ(d(x,y))

0

ψ(t)dt, for each x ∈ X and y ∈ Tx.

(3.4.20)



85

Where α is a function from (0,∞) into (0, 1] such that

lim sup
r→t+

α(r) < 1 for each t ∈ [0,∞), (3.4.21)

θ ∈ Θh[0, A) and Ψ ∈ Θh[0, A) given by Ψ(ε) =
∫ ε

0
ψ(t)dt and ψ : [0,∞) → [0,∞)

is a Lebesgue-integrable mapping satisfying
∫ ε

0
ψ(t)dt > 0 for all ε > 0. Then T

has a fixed point.

Since d(y, Ty) ≤ H(Tx, Ty) for y ∈ Tx. We have the following.

Corollary 3.4.7. Let (X, d) be a complete metric space and T : X → CL(X)

satisfying

H(Tx, Ty) ≤ α(d(x, y))d(x, y) for each x ∈ X and y ∈ Tx. (3.4.22)

Where α is a function from (0,∞) into (0, 1] such that

lim sup
r→t+

α(r) < 1 for each t ∈ [0,∞). (3.4.23)

Then,

(i) for each x0 ∈ X, there exists an orbit {xn} of T and ξ ∈ X such that
limn xn = ξ;

(ii) ξ is fixed point of T if and only if the function f(x) := d(x, Tx) is T -orbitally
lower semi continuous at ξ.

Remark 3.4.8. Note that Corollary 3.4.7 generalize Theorem 1.2.18 in the fol-
lowing sense:

(i) the inequality (3.4.22) is weaker than the inequality (1.2.5);

(ii) the range of T in Corollary 3.4.7 is CL(X) which is general than CB(X);

(iii) for the existence of fixed point we merely require that d(x, Tx) is T orbitally
continuous at ξ, whereas condition (1.2.5) in Theorem 1.2.18 demands that
T is a continuous map from X into CB(X).

We have the following simple example which shows the generality of our result.
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Example 3.4.9. Let X = (−∞, 3
5
] equipped with usual metric d. Define T :

X → CL(X) by

Tx =

{
(−∞, 1

2
x] if x ∈ (−∞, 0),

(−∞, x2] if x ∈ [0, 3
5
].

Case 1. When x ∈ (−∞, 0) and y ∈ Tx = (−∞, 1
2
x], then we have

H(Tx, Ty) =
1

2
|x− y| = 1

2
d(x, y),

since y ∈ (−∞, 0) in this case.
Case 2. When x ∈ [0, 3

5
] and y ∈ Tx, then we have

H(Tx, Ty) ≤ |x2 − y2| = (x + y)d(x, y) ≤ 24

25
d(x, y).

Thus, for any x ∈ X and y ∈ Tx, we have

d(y, Ty) ≤ H(Tx, Ty) ≤ 24

25
d(x, y).

By taking α(t) = c, where 24
25
≤ c < 1 , we see that all conditions of Corollary

3.4.7 are satisfied and 0 is fixed point of T . Note that T does not satisfies the
hypothesis of Theorems 1.2.18 and 1.2.20.
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Abstract

Recently Proinov [P.D. Proinov, A generalization of the Banach contraction principle with high order of convergence of
successive approximations, Nonlinear Analysis (2006), doi:10.1016/j.na.2006.09.008] generalized Banach contraction principle
with high order of convergence. We extend some results of Proinov to the case of multi-valued maps from a complete metric space
X into the space of all nonempty proximinal closed subsets of X . Our results not only generalize Nadler’s fixed-point theorem
(in the case when T is a mapping from a complete metric space X into the space of all nonempty proximinal closed subsets
of X ) but also gives high order of convergence. As an application, we obtain an existence theorem for first-order initial value
problem.
c© 2007 Elsevier Ltd. All rights reserved.

MSC: 47H10; 54H25

Keywords: Fixed-point theorems; Gauge functions

1. Introduction and preliminaries

Let (X, d) be a metric space. A subset A of X is called proximinal [7] if, for each x ∈ X , there is an element
a ∈ A such that d(x, a) = d(x, A). For x ∈ X and A ⊆ X , d(x, A) = inf{d(x, y) : y ∈ A}. We denote by N (X) the
class of all nonempty subsets of X , by CL(X) the class of all nonempty closed subsets of X , by CB(X) the class of
all nonempty bounded closed subsets of X , by PC(X) the class of all nonempty proximinal closed subsets of X . Let
H be the generalized Hausdorff metric on CL(X) generated by the metric d , that is,

H(A, B) = max

{
sup
x∈A

d(x, B), sup
y∈B

d(y, A)

}
for every A, B ∈ CL(X). A point p ∈ X is said to be a fixed point of T : X → CL(X) if p ∈ T p. Throughout this
paper J denotes an interval on R+ containing 0, that is an interval of the form [0, A], [0, A) or [0,∞) and Sn(t) denote
the polynomial Sn(t) = 1+ t + · · · + tn−1. We use the abbreviation ϕn for the nth iterate of a function ϕ : J → J .

∗ Corresponding author.
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Definition 1.1 ([16]). Let r ≥ 1. A function ϕ : J → J is said to be a gauge function of order r on J if it satisfies
the following conditions:

(i) ϕ(λt) ≤ λrϕ(t) for all λ ∈ (0, 1) and t ∈ J ;
(ii) (ii) ϕ(t) < t for all t ∈ J − {0}.

It is easy to see that the first condition of Definition 1.1 is equivalent to the following: ϕ(0) = 0 and ϕ(t)/tr is
nondecreasing on J − {0}.

The metric fixed-point theory is very rich in fixed-point theorems given for various classes of ϕ-contractions, which
are obtained for different collection of properties of the comparison or gauge function ϕ. Almost all such fixed-point
theorems prove only the convergence of iterative procedure to the fixed point of the mapping but only few of them
are able to provide information on the convergence rate. Banach contraction principle is one which not only discuss
iterative scheme but also the convergence rate and stability. Nadler extended the Banach contraction principle in the
following way.

Theorem 1.2 (Nadler Contraction Principle [12]). Let (X, d) be complete metric space and T is a mapping from X
into CB(X) such that for all x, y ∈ X,

H(T x, T y) ≤ λd(x, y)

where 0 < λ < 1. Then T has a fixed point.

Afterward many authors obtained important fixed-point theorems, see for example, Berinde [2,3], Ciric [5,6],
Petrusel [14,20], Rus [19,20] and Shahzad [21,22]. Recently, Proinov [16] generalizes the Banach contraction
principle with high order of convergence. The purpose of this paper is to extend Proinov’s results [16, Theorems 4.1,
and 4.2] to the case of multi-valued mappings. The multi-valued map on a metric space X can be interpreted as set-
valued dynamical system and the fixed point of multi-valued map may be interpreted as the rest point of the system
(see Aubin [1] for instance). Our results extend Proinov’s results [16, Theorems 4.1 and 4.2] and thus generalize
some results of Rheinboldt [18], Gel’man [8], Ciric [5], Rus [19], Hicks and Rhoades [10], Hicks [9] and others.
Theorem 2.15 (below) also provide a generalization of Nadler’s fixed-point theorem [12] in the case when T is a
map from X into PC(X). Our results may be useful for computational methods of solutions to optimization problems
(see Polac [15] and Zangwill [24] for instance) and in system theory (see Willems [23] for instance). We need the
following lemmas for the sequel.

Lemma 1.3 ([16]). Let ϕ be a gauge function of order r ≥ 1 on J . If φ is a nonnegative and nondecreasing function
on J satisfying

ϕ(t) = tφ(t) for all t ∈ J, (1)

then it has the following two properties:
(i) 0 ≤ φ(t) < 1 for all t ∈ J ;

(ii) φ(λt) ≤ λr−1φ(t) for all λ ∈ (0, 1) and t ∈ J .

Lemma 1.4 ([16]). Let ϕ be a gauge function of order r ≥ 1 on J . Then for every n ≥ 0 we have
(i) ϕn(t) ≤ tφ(t)Sn(r) for all t ∈ J ,

(ii) φ(ϕn(t)) ≤ φ(t)r
n

for all t ∈ J ,

where φ is a nonnegative and nondecreasing function on J satisfying (1).

Definition 1.5 ([16]). A nondecreasing function ϕ : J → J is said to be a Bianchini–Grandolfi gauge function [4]
on J if

σ(t) =
∞∑

n=0

ϕn(t) <∞, for all t ∈ J. (2)

Note that Ptak [17] called a function ϕ : J → J satisfying (2) a rate of convergence on J and noticed that ϕ satisfies
the following functional equation

σ(t) = σ(ϕ(t))+ t. (3)
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The following statement is an immediate consequence of the first part of Lemma 1.4 and the obvious inequality
Sn(r) ≥ n for all r ≥ 1.

Lemma 1.6 ([16]). Every gauge function of order r ≥ 1 on J is a Bianchini–Grandolfi gauge function on J .

2. Main results

We begin this section by introducing the following definition.

Definition 2.1. Let (X, d) be a metric space and T : X → N (X). A sequence {xn} ⊆ X satisfying xn+1 ∈ T xn with
d(xn, xn+1) = d(xn, T xn) for n = 0, 1, . . ., is called a proximinal orbit of T at the point x0.

Following lemma is obvious.

Lemma 2.2. Let (X, d) be a metric space, T : X → PC(X) and x0 ∈ X. Then there exists a proximinal orbit
{xn} ⊆ X of T at the point x0, i.e.,

xn+1 ∈ T xn, n = 0, 1, 2, . . . . (4)

with

d(xn, xn+1) = d(xn, T xn). (5)

Unless otherwise stated, we assume that X is a metric space with metric d and T is an operator from D ⊂ X into
PC(X) satisfying

H(T x, T y) ≤ ϕ(d(x, y)) (6)

for all x ∈ D, T x ⊂ D with d(x, y) ∈ J and for y ∈ T x , where ϕ is a Bianchini–Grandolfi gauge function on the
interval J . For convenience we define the function E : D→ R+ by E(x) = d(x, T x).

Lemma 2.3. Let x, y ∈ X. Suppose that d(x, y) ∈ J for y ∈ T x. Then E(x) ∈ J .

Proof. Since 0 ∈ J and J is an interval. Therefore, 0 ≤ d(x, T x) ≤ d(x, y) implies E(x) ∈ J . �

Lemma 2.4. Suppose that a point x0 ∈ X satisfies E(x0) ∈ J . Then, d(xn, T xn) ∈ J for any n ≥ 0.

Proof. For n = 0, the Lemma is trivial. For n ≥ 1, using Lemma 2.2 we obtain xn such that xn ∈ D, since T x ⊂ D
for all x ∈ D. As, 0 ∈ J and ϕ(t) ∈ J for all t ∈ J we have, using (6), that

0 ≤ E(xn) = d(xn, T xn) ≤ H(T xn−1, T xn)

≤ ϕ(E(xn−1)) (using (6), as xn ∈ T xn−1).

Substituting n = 1, we obtain

0 ≤ E(x1) ≤ ϕ(E(x0)) ∈ J ⇒ E(x1) ∈ J.

By induction, for any n ≥ 0, we have E(xn) ∈ J . �

Definition 2.5. Suppose that x0 ∈ D and E(x0) ∈ J . Then for every iterate xn(n ≥ 0) which belongs to D we define
the closed ball S(xn, ρn) with center xn and radius ρn = σ(E(xn)), where σ : J → R+ is defined by (2).

Lemma 2.6. Suppose that a point x0 ∈ D satisfies E(x0) ∈ J and S(xn, ρn) ⊂ D for some n ≥ 0. Then xn+1 ∈ D
and S(xn+1, ρn+1) ⊂ S(xn, ρn).

Proof. For each n ≥ 0, xn+1 is well-defined, since xn ∈ D. Further, Lemma 2.4 implies that E(xn) ∈ J . As, σ(t) ≥ t
for all t ∈ J . Therefore, using Lemma 2.2 we have

d(xn, xn+1) = d(xn, T xn) = E(xn) ≤ σ(E(xn)) = ρn .
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Hence, xn+1 ∈ S(xn, ρn) ⊂ D. Now we shall prove the second part of lemma. First note that

E(xn+1) = d(xn+1, T xn+1) ≤ H(T xn, T xn+1) ≤ ϕ(E(xn)). (7)

Let x ∈ S(xn+1, ρn+1), then, d(x, xn+1) ≤ ρn+1. Using the triangle inequality, we have

d(x, xn) ≤ d(x, xn+1)+ d(xn+1, xn)

≤ ρn+1 + d(xn, T xn) = σ(E(xn+1))+ E(xn)

≤ σ(ϕ(E(xn)))+ E(xn) = ρn (using (3) & (7)),

since σ is nondecreasing. Hence, x ∈ S(xn, ρn) and so S(xn+1, ρn+1) ⊂ S(xn, ρn). �

Definition 2.7 (Initial Points). A point x0 ∈ D will be called an initial point of T if E(x0) ∈ J and all of the iterates
x0, x1, x2, . . . are well-defined and belong to D.

Lemma 2.8 (Test for Initial Points). Assume that x0 ∈ D satisfies E(x0) ∈ J and there exists an integer n ≥ 0 such
that S(xn, ρn) ⊂ D. Then x0 is an initial point of T .

Proof. Lemma 2.6 insures that xn+1 ∈ D and S(xn+1, ρn+1) ⊂ S(xn, ρn) for n ≥ 0. This implies that x0, x1, x2, . . .

are well-defined and belong to D, so x0 is an initial point of T . �

Lemma 2.9. For every initial point x0 ∈ D of T and every n ≥ 0 we have

E(xn+1) ≤ ϕ(E(xn))

and

E(xn) ≤ ϕ
n(E(x0)).

In addition, if ϕ is a gauge function of order r ≥ 1, then

E(xn) ≤ E(x0)λ
Sn(r)

and

φ(E(xn)) ≤ λ
rn
,

where λ = φ(E(x0)) and φ is a nonnegative and nondecreasing function on J satisfying (1).

Proof. Note that xn+1 ∈ D, since x0 is an initial point of T . As xn+1 ∈ T xn , using (6), we obtain

E(xn+1) = d(xn+1, T xn+1) ≤ H(T xn, T xn+1) ≤ ϕ(E(xn)).

As, ϕ is nondecreasing on J we have

E(xn) ≤ ϕ(E(xn−1))

≤ ϕ2(E(xn−2)) · · · ≤ ϕ
n(E(x0)).

If ϕ is a gauge function of order r ≥ 1, then from Lemma 1.4(i)

E(xn) ≤ ϕ
n(E(x0)) ≤ E(x0)(φ(E(x0)))

Sn(r) = E(x0)λ
Sn(r).

Further, from Lemma 1.4(ii), we have

φ(E(x0)) ≤ φ(ϕ
n(E(x0))) ≤ (φ(E(x0)))

rn
= λrn

,

since φ is nondecreasing.
From Lemma 2.9 we obtain the following Lemma, which is muti-valued version of Proinov [16, Lemma 3.7], i.e.,

here E(x) = d(x, T x) where T is a map from X into PC(X) satisfying (6). �
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Lemma 2.10 (Bounds for Inclusion Radii). Suppose that x0 is an initial point of T and ϕ is a gauge function of order
r ≥ 1. Then for the radii ρn = σ(E(xn)); n = 0, 1, 2, . . . the following estimates hold:

(i) ρn ≤ E(xn)

∞∑
j=0

[φ(E(xn))]
S j (r) ≤

E(xn)

1− φ(E(xn))
, (8)

(ii) ρn ≤ E(xn)

∞∑
j=0

[λrn
]
S j (r) ≤

E(xn)

1− λrn , (9)

(iii) ρn ≤ E(x0)λ
Sn(r)

∞∑
j=0

[λrn
]
S j (r) ≤

λSn(r)E(x0)

1− λrn , (10)

(iv) ρn+1 ≤ ϕ(E(xn))

∞∑
j=0

[φ(ϕ(E(xn)))]
S j (r) ≤

ϕ(E(xn))

1− φ(ϕ(E(xn)))
, (11)

(v) ρn+1 ≤ ϕ(E(xn))

∞∑
j=0

[λrn
]
S j (r) ≤

ϕ(E(xn))

1− λrn , (12)

where λ = φ(E(x0)).

Proof. We will make use of the following facts during the proof.

0 ≤ φ(t) < 1, S j (r) ≥ j and 0 ≤ λrn
< 1.

(i) Using Lemma 1.4(i) and definition of ρn we have

ρn = σ(E(xn)) =

∞∑
j=0

ϕ j (E(xn))

≤

∞∑
j=0

E(xn)[φ(E(xn))]
S j (r)

= E(xn)

∞∑
j=0

[φ(E(xn))]
S j (r)

≤ E(xn)

∞∑
j=0

[φ(E(xn))]
j
=

E(xn)

1− φ(E(xn))
.

(ii) From (8)

ρn ≤ E(xn)

∞∑
j=0

[φ(E(xn))]
S j (r)

≤ E(xn)

∞∑
j=0

[λrn
]
S j (r) (using Lemma 2.9)

≤ E(xn)

∞∑
j=0

[λrn
]

j
=

E(xn)

1− λrn .

(iii) From (9)

ρn ≤ E(xn)

∞∑
j=0

[λrn
]
S j (r)

≤ E(x0)λ
Sn(r)

∞∑
j=0

[λrn
]
S j (r) (using Lemma 2.9)
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≤ E(x0)λ
Sn(r)

∞∑
j=0

[λrn
]

j

≤ E(x0)
λSn(r)

1− λrn .

(iv) Since E(xn+1) ≤ ϕ(E(xn)) and φ is nondecreasing, using Lemma 1.4 we have

ρn+1 = σ(E(xn+1)) =

∞∑
j=0

ϕ j (E(xn+1))

≤ E(xn+1)

∞∑
j=0

[φ(E(xn+1))]
S j (r)

≤ ϕ(E(xn))

∞∑
j=0

[φ(ϕ(E(xn)))]
S j (r)

≤ ϕ(E(xn))

∞∑
j=0

[φ(ϕ(E(xn)))]
j

=
ϕ(E(xn))

1− φ(ϕ(E(xn)))
.

(v) Using (11) we obtain

ρn+1 ≤ ϕ(E(xn))

∞∑
j=0

[φ(E(xn+1))]
S j (r)

≤ ϕ(E(xn))

∞∑
j=0

[λrn+1
]
S j (r) (using Lemma 2.9)

= ϕ(E(xn))

∞∑
j=0

[λrn
]
r S j (r)

≤ ϕ(E(xn))

∞∑
j=0

[λrn
]
S j+1(r)−1 (using definition of S j (r))

≤ ϕ(E(xn))

∞∑
j=0

[λrn
]

j+1−1

=
ϕ(E(xn))

1− λrn . �

Theorem 2.11. Let T : D ⊂ X → PC(X) be an operator on a complete metric space (X, d) satisfying (6) with
a Bianchini–Grandolfi gauge function ϕ on an interval J . Then, starting from an initial point x0 of T the iterative
sequence {xn} remains in S(x0, ρ0) and converges to a point ξ which belongs to each of the closed balls S(xn, ρn);
n = 0, 1, . . ., where ρn = σ(d(xn, T xn)) and σ is defined by (2). Moreover, for each n ≥ 1 we have

d(xn, xn+1) ≤ ϕ(d(xn−1, xn)).

If ξ ∈ D and T is continuous at ξ , then ξ is a fixed point of T .

Proof. Since x0 is an initial point of T , it follows from Lemma 2.6 that

S(xn+1, ρn+1) ⊂ S(xn, ρn) for all n ≥ 0, (13)

which implies that xn ∈ S(x0, ρ0) for all n ≥ 0. Using the definition of ρn , from Lemma 2.9, we obtain
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ρn = σ(E(xn)) ≤ σ(ϕ
n(E(x0)))

=

∞∑
j=0

ϕ j (ϕn(E(x0)))

=

∞∑
j=n

ϕ j (E(x0)) for all n ≥ 0, (14)

since σ is nondecreasing. As ϕ is Bianchini–Grandolfi gauge function on J and E(x0) ∈ J , from (14), we obtain

ρn → 0 as n→∞. (15)

From (13) and (15) it follows that {S(xn, ρn)} is nested sequence of closed spheres such that ρn → 0 as n → ∞.
Therefore, it follows from Cantor’s Theorem that there exists a unique point ξ such that ξ ∈ S(xn, ρn) for all n ≥ 0
and xn → ξ . In other words, limn→∞ d(xn, ξ) = 0. Now,

d(ξ, T xn) ≤ d(ξ, xn)+ d(xn, T xn) = d(ξ, xn)+ d(xn, xn+1).

Taking limit as n→∞ we obtain,

lim
n→∞

d(ξ, T xn) ≤ 0.

If ξ ∈ D and T is continuous at ξ then we have d(ξ, T ξ) = 0 which simply means that ξ ∈ T ξ . Moreover, from
Lemma 2.9 we obtain

d(xn, xn+1) = d(xn, T xn) = E(xn) ≤ ϕ(E(xn−1))

= ϕ(d(xn−1, T xn−1))

= ϕ(d(xn−1, xn)). �

Corollary 2.12. Let T : D ⊂ X → PC(X) be an operator on a complete metric space (X, d) satisfying

H(T x, T y) ≤ ϕ(d(x, T x))

for all x ∈ D, T x ⊂ D with d(x, y) ∈ J and for y ∈ T x, with a Bianchini–Grandolfi gauge function ϕ on an interval
J . Then, starting from an initial point x0 of T the iterative sequence {xn} remains in S(x0, ρ0) and converges to a
point ξ which belongs to each of the closed balls S(xn, ρn); n = 0, 1, . . ., where ρn = σ(d(xn, T xn)) and σ is defined
by (2). Moreover, for each n ≥ 1 we have

d(xn, xn+1) ≤ ϕ(d(xn−1, xn)).

If ξ ∈ D and T is continuous at ξ , then ξ is a fixed point of T .

When T is a single-valued map from D ⊂ X into X , from the above corollary we obtain at once the following.

Corollary 2.13 (Proinov [16, Theorem 4.1]). Let T : D ⊂ X → X be an operator on a complete metric space
(X, d) satisfying

d(T x, T 2x) ≤ ϕ(d(x, T x))

for all x ∈ D, T x ⊂ D with d(x, T x) ∈ J , with a Bianchini–Grandolfi gauge function ϕ on an interval J . Then,
starting from an initial point x0 of T the iterative sequence {xn} remains in S(x0, ρ0) and converges to a point ξ
which belongs to each of the closed balls S(xn, ρn); n = 0, 1, . . ., where ρn = σ(d(xn, T xn)) and σ is defined by (2).
Moreover, for each n ≥ 1 we have d(xn, xn+1) ≤ ϕ(d(xn−1, xn)). If ξ ∈ D and T is continuous at ξ , then ξ is a fixed
point of T .

Remark 2.14. Note that Theorem 2.11 extends Proinov [16, Theorem 4.1] and thus generalizes/extends some results
of Bianchini–Grandolfi [4] and Hicks [9, Theorems 1 and 2].
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Theorem 2.15. Let T : D ⊂ X → PC(X) be an operator on a complete metric space (X, d) satisfying (6) with a
gauge function ϕ of the order r ≥ 1 on an interval J . Suppose that x0 ∈ D is an initial point of T . Then the following
statements hold true.

(i) The iterative sequence (4) remains in S(x0, ρ0) and converges with the rate of convergence at least r to a point ξ
which belongs to each of the closed balls S(xn, ρn), n = 0, 1, . . ., where

ρn = d(xn, xn+1)

∞∑
j=0

[φ(d(xn, xn+1))]
S j (r) ≤

d(xn, xn+1)

1− φ(d(xn, xn+1))
(16)

and φ is a nonnegative and nondecreasing function on J satisfying (1).
(ii) For all n ≥ 0 we have the following a priori estimate

d(xn, ξ) ≤ d(x0, T x0)

∞∑
j=n

λS j (r) ≤
λSn(r)d(x0, T x0)

1− λrn , (17)

where λ = φ(d(x0, T x0)).
(iii) For all n ≥ 1 we have the following a posteriori estimate

d(xn, ξ) ≤ ϕ(d(xn, xn−1))

∞∑
j=0

[φ(ϕ(d(xn, xn−1)))]
S j (r)

≤
ϕ(d(xn, xn−1))

1− φ(ϕ(d(xn, xn−1)))

≤
ϕ(d(xn, xn−1))

1− [φ(d(xn, xn−1))]r
. (18)

(iv) For all n ≥ 1 we have

d(xn, xn+1) ≤ ϕ(d(xn, xn−1)) ≤ λ
Sn(r)d(x0, T x0). (19)

(v) If ξ ∈ D and T is continuous at ξ , then ξ is a fixed point of T .

Proof. (i) Theorem 2.11 insures that the iterative sequence (4) remains in S(x0, ρ0) and converges to ξ which belongs
to each of the closed balls S(xn, ρn), n = 0, 1, . . .. Further, from Lemma 2.10, estimate (8), we have (by using
E(xn) = d(xn, xn+1))

ρn ≤ d(xn, xn+1)

∞∑
j=0

[φ(d(xn, xn+1))]
S j (r) ≤

d(xn, xn+1)

1− φ(d(xn, xn+1))
.

(ii) For m > n

d(xn, xm) ≤ d(xn, xn+1)+ d(xn+1, xn+2)+ · · · + d(xm−1, xm)

= E(xn)+ E(xn+1)+ · · · + E(xm−1)

≤ E(x0)[λ
Sn(r) + λSn+1(r) + · · · + λSm−1(r)] (by Lemma 2.9)

= E(x0)

m−1∑
j=n

λS j (r).

Keeping n fixed and letting m →∞, we obtain

d(xn, ξ) ≤ E(x0)

∞∑
j=n

λS j (r) = d(x0, T x0)

∞∑
j=n

λS j (r). (20)

Note that,
∞∑

j=n

λS j (r) = λSn(r) + λSn+1(r) + · · ·

= λSn(r)[1+ λrn
+ λrn

+rn+1
+ λrn

+rn+1
+rn+2

+ · · ·].
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Since r ≥ 1, therefore

rn
+ rn+1

≥ 2rn, rn
+ rn+1

+ rn+2
≥ 3rn . . .

and hence,

λrn
+rn+1

≤ λ2rn
, λrn

+rn+1
+rn+2

≤ λ3rn
. . . ,

since 0 < λ < 1. Thus,
∞∑

j=n

λS j (r) ≤ λSn(r)[1+ λrn
+ λ2rn

+ λ3rn
+ · · ·] =

λSn(r)

1− λrn .

Substituting this in (20), we obtain

d(xn, ξ) ≤ E(x0)

∞∑
j=n

λS j (r) = d(x0, T x0)
λSn(r)

1− λrn .

(iii) From (29) we have for n ≥ 0,

d(xn, ξ) ≤ d(x0, x1)

∞∑
j=n

[φ(d(x0, x1))]
S j (r).

Putting n = 0, y0 = xn and y1 = x1 we have,

d(y0, ξ) ≤ d(y0, y1)

∞∑
j=0

[φ(d(y0, y1))]
S j (r).

Putting y0 = xn , and y1 = xn+1 we have,

d(xn, ξ) ≤ d(xn, xn+1)

∞∑
j=0

[φ(d(xn, xn+1))]
S j (r) (21)

≤ ϕ(d(xn, xn−1))

∞∑
j=0

[φ(ϕ(d(xn, xn−1)))]
S j (r)

≤ ϕ(d(xn, xn−1))

∞∑
j=0

[φ(ϕ(d(xn, xn−1)))]
j

=
ϕ(d(xn, xn−1))

1− φ(ϕ(d(xn, xn−1)))
, (22)

since S j (r) ≥ j . Now by Lemma 1.4(ii), we have

φ(ϕ(d(xn, xn−1))) ≤ [φ(d(xn, xn−1))]
r

which means that,

1
1− φ(ϕ(d(xn, xn−1)))

≤
1

1− [φ(d(xn, xn−1))]r
. (23)

From (21) we obtain for n ≥ 1,

d(xn, ξ) ≤ ϕ(d(xn, xn−1))

∞∑
0

[φ(ϕ(d(xn, xn−1)))]
S j (r)

≤
ϕ(d(xn, xn−1))

1− φ(ϕ(d(xn, xn−1)))

≤
ϕ(d(xn, xn−1))

1− [φ(d(xn, xn−1))]r
(using (23)).
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(iv) For n ≥ 1, using Lemma 2.9 we have

d(xn+1, xn) = E(xn) ≤ ϕ(E(xn−1))

= E(xn−1)φ(E(xn−1)) (using Lemma 1.3)

≤ E(x0)λ
Sn−1(r)φ(E(xn−1))

≤ E(x0)λ
Sn−1(r)λrn−1

= E(x0)λ
Sn−1(r)+rn−1

= E(x0)λ
Sn(r)

= λSn(r)d(x0, T x0).

(v) Proof is similar as in the proof of Theorem 2.11. �

Corollary 2.16. Let T : D ⊂ X → PC(X) be an operator on a complete metric space (X, d) satisfying

H(T x, T y) ≤ ϕ(d(x, T x))

for all x ∈ D, T x ⊂ D with d(x, y) ∈ J and for y ∈ T x, with a gauge function ϕ of the order r ≥ 1 on an interval
J . Suppose that x0 ∈ D is an initial point of T . Then the following statements hold true.

(i) The iterative sequence (4) remains in S(x0, ρ0) and converges with the rate of convergence at least r to a point ξ
which belongs to each of the closed balls S(xn, ρn), n = 0, 1, . . ., where

ρn = d(xn, xn+1)

∞∑
j=0

[φ(d(xn, xn+1))]
S j (r) ≤

d(xn, xn+1)

1− φ(d(xn, xn+1))
(24)

and φ is a nonnegative and nondecreasing function on J satisfying (1).

(ii) For all n ≥ 0 we have the following a priori estimate

d(xn, ξ) ≤ d(x0, T x0)

∞∑
j=n

λS j (r) ≤
λSn(r)d(x0, T x0)

1− λrn , (25)

where λ = φ(d(x0, T x0)).

(iii) For all n ≥ 1 we have the following a posteriori estimate

d(xn, ξ) ≤ ϕ(d(xn, xn−1))

∞∑
j=0

[φ(ϕ(d(xn, xn−1)))]
S j (r)

≤
ϕ(d(xn, xn−1))

1− φ(ϕ(d(xn, xn−1)))

≤
ϕ(d(xn, xn−1))

1− [φ(d(xn, xn−1))]r
. (26)

(iv) For all n ≥ 1 we have

d(xn, xn+1) ≤ ϕ(d(xn, xn−1)) ≤ λ
Sn(r)d(x0, T x0). (27)

(v) If ξ ∈ D and T is continuous at ξ , then ξ is a fixed point of T .
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From the above Corollary, we obtain at once the following.

Corollary 2.17 (Proinov [16, Theorem 4.2]). Let T : D ⊂ X → X be an operator on a complete metric space
(X, d) satisfying

d(T x, T 2 y) ≤ ϕ(d(x, T x))

for all x ∈ D, T x ⊂ D with d(x, T x) ∈ J and for y ∈ T x, with a gauge function ϕ of the order r ≥ 1 on an interval
J . Suppose that x0 ∈ D is an initial point of T . Then the following statements hold true.

(i) The iterative sequence (4) remains in S(x0, ρ0) and converges with the rate of convergence at least r to a point ξ
which belongs to each of the closed balls S(xn, ρn), n = 0, 1, . . ., where

ρn = d(xn, xn+1)

∞∑
j=0

[φ(d(xn, xn+1))]
S j (r) ≤

d(xn, xn+1)

1− φ(d(xn, xn+1))
(28)

and φ is a nonnegative and nondecreasing function on J satisfying (1).
(ii) For all n ≥ 0 we have the following a priori estimate

d(xn, ξ) ≤ d(x0, T x0)

∞∑
j=n

λS j (r) ≤
λSn(r)d(x0, T x0)

1− λrn , (29)

where λ = φ(d(x0, T x0)).
(iii) For all n ≥ 1 we have the following a posteriori estimate

d(xn, ξ) ≤ ϕ(d(xn, xn−1))

∞∑
j=0

[φ(ϕ(d(xn, xn−1)))]
S j (r)

≤
ϕ(d(xn, xn−1))

1− φ(ϕ(d(xn, xn−1)))

≤
ϕ(d(xn, xn−1))

1− [φ(d(xn, xn−1))]r
. (30)

(iv) For all n ≥ 1 we have

d(xn, xn+1) ≤ ϕ(d(xn, xn−1)) ≤ λ
Sn(r)d(x0, T x0). (31)

(v) If ξ ∈ D and T is continuous at ξ , then ξ is a fixed point of T .

Corollary 2.18. Let (X, d) be a complete metric space, T : X → PC(X) be a continuous operator satisfying

H(T x, T y) ≤ ϕ(d(x, y)) (32)

for any x ∈ X, y ∈ T x with d(x, y) ∈ J and ϕ is a gauge function of order r ≥ 1 on an interval J . Assume that x0 is
a point in X such that d(x0, T x0) ∈ J . Then, the following statements hold true.

(i) The iterative sequence (4) converges to a fixed point ξ of T .
(ii) The estimates (29)–(31) are valid.

The following simple example shows the generality of our results over the Nadler’s contraction principle, in the
case when T is a map from X int PC(X).

Example 2.19. Let X = [0, 3
5 ] equipped with usual metric d . Define T : X → PC(X) by T x = [0, x2

]. Then, for
any x ∈ X and y ∈ T x ,

H(T x, T y) ≤
24
25

d(x, y).

By taking ϕ(t) = 24
25 t and J = [0,∞), we see that all conditions of Corollary 2.18 are satisfied and 0 is a fixed point

of T . Note that Nadler’s contraction principle is not applicable here.
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Corollary 2.20. Let (X, d) be complete metric space, T : X → PC(X) be an operator satisfying

H(T x, T y) ≤ ϕ(d(x, y)) (33)

for all x, y ∈ X (x 6= y) with d(x, y) ∈ J and ϕ is a gauge function of order r ≥ 1 on an interval J . Assume that x0
is a point in X such that d(x0, T x0) ∈ J . Then, the following statements hold true.

(i) The iterative sequence (4) converges to a fixed point ξ of T .
(ii) The operator T has a unique fixed point in S = {x ∈ X : d(x, ξ) ∈ J }.

(iii) The estimates (29)–(31) are valid.

Proof. It follows from (33) that

H(T x, T y) ≤ ϕ(d(x, y)) < d(x, y) (34)

for all x, y ∈ X (x 6= y). Hence T is continuous. Thus (i) and (iii) follow immediately from Theorem 2.15. To show
the uniqueness, that is (ii), assume that η ∈ S is another fixed point of T . Then d(ξ, η) ∈ J . It follows from (34) that

d(ξ, η) ≤ H(T ξ, Tη) ≤ ϕ(d(ξ, η))

which gives ξ = η. �

Remark 2.21. In the case when T is a mapping from X into PC(X), Nadler’s contraction principle (Theorem 1.2) is
a special case of Corollary 2.20. To see this, take ϕ(t) = λt (0 < λ < 1) and J = [0,∞).

Corollary 2.22 (Proinov [16, Corollary 4.4]). Let (X, d) be complete metric space, T : X → X be an operator
satisfying

d(T x, T y) ≤ ϕ(d(x, y)) (35)

for all x, y ∈ X (x 6= y) with d(x, y) ∈ J and ϕ is a gauge function of order r ≥ 1 on an interval J . Assume that x0
is a point in X such that d(x0, T x0) ∈ J . Then, the following statements hold true.

(i) The iterative sequence xn+1 = T xn converges to a fixed point ξ of T .
(ii) The operator T has a unique fixed point in S = {x ∈ X : d(x, ξ) ∈ J }.

(iii) The estimates (29)–(31) are valid.

Corollary 2.23. Let T : X → PC(X) be a continuous operator on a complete metric space (X, d) satisfying

H(T x, T y) ≤ ϕ(m(x, y)) (36)

for all x ∈ X, y ∈ T x where ϕ is a gauge function of the first order on J = [0,∞) and

m(x, y) = max{d(x, y), d(y, T y)}. (37)

Then for each x0 ∈ X the following statements hold true.

(i) The iterative sequence {xn} converges to a unique fixed point ξ of T .
(ii) For n ≥ 0 we have the following a priori estimate

d(xn, ξ) ≤
λn

1− λ
d(x0, T x0). (38)

(iii) For all n ≥ 1 we have the following a posteriori estimate

d(xn, ξ) ≤
ϕ(d(xn, xn−1))

1− φ[ϕ(d(xn, xn−1))]
. (39)

Proof. Let x ∈ X . It follows from (36) that

H(T x, T y) ≤ ϕ(max{d(x, y), d(y, T y)}), (40)

for y ∈ T x . Suppose that max{d(x, y), d(y, T y)} = d(y, T y), then we have

d(y, T y) ≤ H(T x, T y) ≤ ϕ(d(y, T y)) < d(y, T y),
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which is a contradiction. Therefore, from (40) we obtain

H(T x, T y) ≤ ϕ(d(x, y)),

for all x ∈ X with d(x, y) ∈ J and for y ∈ T x , which is nothing, but the condition (6). Applying Theorem 2.15
we deduce that the iterative sequence {xn} converges to a point ξ ∈ X . Since r = 1 in this case so the a priori and a
posteriori estimates (29) and (30) become (38) and (39). The uniqueness of ξ follows from Corollary 2.18. �

Remark 2.24. Theorem 2.15 extends/generalizes [16, Theorem 4.2] and thus extends/generalize Rheinboldt [18],
Kornstaedt [11, Satz 4.1], Hicks and Rhoades [9], Park [13, Theorem 2], Gel’man [8, Theorem 3] and Hicks [9,
Theorem 3].

3. Application

In this section we apply Theorem 2.15 to establish the existence of unique solution for first-order initial value
problem:

x ′(t) = f (t, x(t)), x(t0) = x0. (41)

Suppose that f (t, x(t)) have the following properties:

(i) f is continuous,
(ii) f satisfies the condition

| f (t, x)− f (t, y)| ≤ k|x(t)− y(t)|r , (42)

(iii) f is bounded in such a way that

| f (t, x)| <
1
2

(
1
k

)r−1

, (43)

on R = {(t, x) : |t − t0| ≤ ( 1
k )

2−r , |x − x0| ≤
1

2k } where 1 < r ≤ 2 and 0 < k ≤ 1.

Theorem 3.1. Under the assumptions (i), (ii) and (iii), the initial value problem (41) has a unique solution on
I = [t0 − ( 1

k )
2−r , t0 + ( 1

k )
2−r
].

Proof. Consider the metric space C(I ) of all continuous functions on I . Note that C(I ) is complete with respect to
the metric

d(x, y) = max
t∈I
|x(t)− y(t)|. (44)

Let C̃ be the subspace of C(I ) such that

d(x, x0) ≤
1

2k
. (45)

Then, C̃ is a closed subspace of C(I ) and thus is complete. From (41) on integration, we obtain

x(t) = x0 +

∫ t

t0
f (τ, x(τ ))dτ. (46)

Define T : C̃ → C̃ by

T x(t) = x0 +

∫ t

t0
f (τ, x(τ ))dτ. (47)

Then (46) and (47) are equivalent problems in a sense that fixed point(s) of T are solution(s) of (46). We now show
that T is defined for each x ∈ C̃ . Indeed, if τ ∈ I then |τ − t0| ≤ ( 1

k )
2−r . Hence from (45) we have |x(τ )− x0| ≤

1
2k .

So, if τ ∈ I then (τ, x(τ )) ∈ R and since f is continuous on R, therefore, the integral in (47) exists and T is defined
for each x ∈ C̃ .
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From (47) we can write

T x(t)− x0 =

∫ t

t0
f (τ, x(τ ))dτ

|T x(t)− x0| =

∣∣∣∣∫ t

t0
f (τ, x(τ ))dτ

∣∣∣∣
≤

∫ t

t0
| f (τ, x(τ ))|dτ

<
1
2

(
1
k

)r−1 ∫ t

t0
dτ (using (43))

=
1
2

(
1
k

)r−1

|t − t0| ≤
1
2

(
1
k

)r−1 (1
k

)2−r

=
1

2k
.

Hence T x(t) ∈ C̃ that is T maps C̃ to C̃ .
Lastly,

T x(t)− T y(t) =
∫ t

t0
[ f (τ, x(τ ))− f (τ, y(τ ))]dτ

|T x(t)− T y(t)| ≤
∫ t

t0
| f (τ, x(τ ))− f (τ, y(τ ))|dτ

≤ k
∫ t

t0
|x(τ )− y(τ )|r dτ (using (42))

≤ k

(
max
t∈J
|x(t)− y(t)|

)r ∫ t

t0
dτ

≤ k|t − t0|(d(x, y))r ≤ k

(
1
k

)2−r

(d(x, y))r

= kr−1(d(x, y))r . (48)

Note that from (46), in fact we have for x ∈ C̃ ,

x(t)− x0 =

∫ t

t0
f (τ, x(τ ))dτ

|x(t)− x0| =

∣∣∣∣∫ t

t0
f (τ, x(τ ))dτ

∣∣∣∣
≤

∫ t

t0
| f (τ, x(τ ))|dτ

<
1
2

(
1
k

)r−1 ∫ t

t0
dτ (using (43))

=
1
2

(
1
k

)r−1

|t − t0| ≤
1
2

(
1
k

)r−1 (1
k

)2−r

=
1

2k

which turns out to be d(x, x0) <
1

2k and so for all x, y ∈ C̃ we have d(x, y) < 1
k . So, if we take ϕ(s) = kr−1sr for

s ∈ J = [0, 1
k ), then ϕ is the gauge function of the order r . The proof is rather simple. Indeed, for λ ∈ (0, 1) and

s ∈ J we have

ϕ(λs) = λr kr−1sr
≤ λrφ(s).

Further, for s ∈ J − {0} we have

ϕ(s) = kr−1sr
= kr−1ssr−1 < kr−1s

(
1
k

)r−1

= s
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Hence, (48) gives

d(T x, T y) ≤ ϕ(d(x, y)) (49)

for all x, y ∈ C̃ with d(x, y) ∈ J . Therefore, all conditions of Corollary 2.22 are satisfied. Hence, the iterative
sequence xn = T xn−1; n = 1, 2, . . . converges to the unique fixed point of T at a rate at least r as compared to
Picard’s iteration in which the rate of convergence is linear. �
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In [N. Mizoguchi, W. Takahashi, Fixed point theorems for multi-valued mappings on
complete metric spaces, J. Math. Anal. Appl. 141 (1989) 177–188] the authors gave a
positive answer to the conjecture of S. Reich concerning the existence of fixed points
of multi-valued mappings that satisfy certain contractive conditions. In this paper, we
establish some results for multi-valued mappings that satisfy a generalized contractive
condition in a way that it containsMizoguchi’s result as one of its special cases. In addition,
our results not only improve the results of Kiran and Kamran [Q. Kiran, T. Kamran, Nadler’s
type principle with high order of convergence, Nonlinear Anal. TMA 69 (2008) 4106–4120]
and some results of Agarwal et al. [R.P. Agarwal, Jewgeni Dshalalow, Donal O’Regan, Fixed
point and homotopy results for generalized contractive maps of Reich type, Appl. Anal. 82
(4) (2003) 329–350] but also provide the high order of convergence of the iterative scheme
and error bounds. As an application of our results, we obtain an existence result for a class
of integral inclusions.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction and preliminaries

Let (X, d) be a metric space. For x ∈ X and A ⊆ X , d(x, A) = inf{d(x, y) : y ∈ A}. We denote by N(X) the class of all
nonempty subsets of X , by CL(X) the class of all nonempty closed subsets of X , by CB(X) the class of all nonempty bounded
closed subsets of X and by K(X) the class of all nonempty compact subsets of X . Let H be the generalized Hausdorff metric
on CB(X) generated by the metric d, that is,

H(A, B) = max
{
sup
x∈A
d(x, B), sup

y∈B
d(y, A)

}
for every A, B ∈ CB(X). A point p ∈ X is said to be a fixed point of T : X → CL(X) if p ∈ Tp. If, for x0 ∈ X , there
exists a sequence {xn} in X such that xn ∈ Txn−1 then O(T , x0) = {x0, x1, x2, . . .} is said to be orbit of T : X → CL(X).
A mapping f : X → R is said to be T -orbitally lower semi-continuous if {xn} is a sequence in O(T , x0) and xn → ξ
implies f (ξ) ≤ limn inf f (xn). Throughout this paper J denotes an interval on R+ containing 0, that is an interval of the
form [0, A], [0, A) or [0,∞) and Sn(t) denotes the polynomial Sn(t) = 1 + t + · · · + tn−1. We use the abbreviation ϕn for
the nth iterate of a function ϕ : J → J .

Definition 1.1 ([1]). Let r ≥ 1. A function ϕ : J → J is said to be a gauge function of order r on J if it satisfies the following
conditions:

(i) ϕ(λt) ≤ λrϕ(t) for all λ ∈ (0, 1) and t ∈ J;
(ii) ϕ(t) < t for all t ∈ J − {0}.
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It is easy to see that the first condition of Definition 1.1 is equivalent to the following: ϕ(0) = 0 and ϕ(t)/t r is nondecreasing
on J − {0}. We are stating the following results for convenience.

Lemma 1.2 ([2]). Let A, B ∈ CB(X) and let a ∈ A. If ε > 0, then there exists b ∈ B such that d(a, b) ≤ H(A, B)+ ε.

Lemma 1.3 ([1]). Let ϕ be a gauge function of order r ≥ 1 on J. If φ is a nonnegative and nondecreasing function on J satisfying

ϕ(t) = tφ(t) for all t ∈ J, (1)

then it has the following two properties:
(i) 0 ≤ φ(t) < 1 for all t ∈ J;
(ii) φ(λt) ≤ λr−1φ(t) for all λ ∈ (0, 1) and t ∈ J .

Lemma 1.4 ([1]). Let ϕ be a gauge function of order r ≥ 1 on J. Then for every n ≥ 0 we have
(i) ϕn(t) ≤ tφ(t)Sn(r) for all t ∈ J ,
(ii) φ(ϕn(t)) ≤ φ(t)r

n
for all t ∈ J ,

where φ is a nonnegative and nondecreasing function on J satisfying (1).

Definition 1.5 ([1]). A nondecreasing function ϕ : J → J is said to be a Bianchini–Grandolfi gauge function [3] on J if

σ(t) =
∞∑
n=0

ϕn(t) <∞, for all t ∈ J. (2)

Note that Ptak [4] called a function ϕ : J → J satisfying (2) a rate of convergence on J and noticed that ϕ satisfies the
following functional equation

σ(t) = σ(ϕ(t))+ t. (3)

The following statement is an immediate consequence of the first part of Lemma 1.4 and the obvious inequality Sn(r) ≥ n
for all r ≥ 1.

Lemma 1.6 ([1]). Every gauge function of order r ≥ 1 on J is a Bianchini–Grandolfi gauge function on J.

Definition 1.7 ([5]). Suppose (xn) is a sequence that converges to ξ . If positive constants λ and α exist with

lim
n→∞

d(xn+1, ξ)
(d(xn, ξ))α

= λ

then (xn) is said to converge to ξ of order α, with asymptotic error constant λ.

Remark 1.8. In general, a sequence with high order of convergence converges more rapidly than a sequence with a lower
order. If α = 1, the method is called linear. If α = 2, the method is called quadratic.

In [6], Reich proved that a mapping T : X → K(X) has a fixed point in X if it satisfies
H(Tx, Ty) ≤ k(d(x, y))d(x, y) (4)

for all x, y ∈ X with x 6= y, where k : (0,∞) → [0, 1) satisfies lim sups→t+ k(s) < 1 for every t ∈ (0,∞). This result
generalizes the fixed point theorem for single-valued mappings that was proved by Boyd and Wong [7]. Reich questioned
in [8,9] that whether or not the range of T , K(X) can be replaced by CB(X). Mizoguchi and Takahashi [10], Daffer and
Kaneko [11] and Tong-Huei Chang [12] gave a positive answer to the conjecture of Reich. Recently, Pathak and Shahzad [13]
generalized Nadler’s contraction principle in contrast to Reich’s andMizoguchi–Takahashi’s theorems.More recently, Thagfi
and Shahzad [14] obtained some fixed point theorems for an operator which is closely related to the Reich type contraction.
The authors in [15] extended some results of Proinov [1] to the case of multi-valued maps from a complete metric space
X into the space of all nonempty proximinal closed subsets of X . The purpose of this paper is to obtain some fixed point
theorems formulti-valuedmapswhich not only provide the iterative schemewith a high convergence rate but also the error
bounds. Our results generalize [10, Theorem 5], [11, Theorem 2.1], [15, Theorems 2.11 & 2.15] and [16, Theorems 2.1 & 2.2].

2. Main results

Theorem 2.1. Let (X, d) be a complete metric space, D be a closed subset of X, ϕ is a Bianchini–Grandolfi gauge function on an
interval J and T be a mapping from D into CB(X) such that Tx ∩ D 6= ∅ and

H(Tx ∩ D, Ty ∩ D) ≤ ϕ(d(x, y)) (5)

for all x ∈ D, y ∈ Tx ∩ D with d(x, y) ∈ J . Moreover, the strict inequality holds when d(x, y) 6= 0. Suppose x0 ∈ D is such that
d(x0, z) ∈ J for some z ∈ Tx0 ∩ D. Then:
(i) there exists an orbit {xn} of T in D and ξ ∈ D such that limn xn = ξ ;
(ii) ξ is a fixed point of T if and only if the function f (x) := d(x, Tx ∩ D) is T -orbitally lower semi-continuous at ξ .

Please cite this article in press as: Q. Kiran, T. Kamran, Fixed point theorems for generalized contractivemulti-valuedmaps, Computers andMathematics
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Proof. Take x1 = z ∈ Tx0 ∩ D. We assume that d(x0, x1) 6= 0, for otherwise x0 is fixed point of T . Define ρ0 = σ(d(x0, x1))
where σ is defined by (2). Since from (3), σ(t) ≥ t so we have

d(x0, x1) ≤ ρ0. (6)

Notice that x1 ∈ S(x0, ρ0). It follow from (5) that H(Tx0 ∩ D, Tx1 ∩ D) < ϕ(d(x0, x1)). Choose an ε1 > 0 with

H(Tx0 ∩ D, Tx1 ∩ D)+ ε1 ≤ ϕ(d(x0, x1)). (7)

It follows from Lemma 1.2 that there exists x2 ∈ Tx1 ∩ D such that

d(x1, x2) ≤ H(Tx0 ∩ D, Tx1 ∩ D)+ ε1, (8)

since D is closed and Tx1 is closed and bounded. We assume that d(x1, x2) 6= 0, for otherwise x1 is fixed point of T . From
inequalities (7) and (8) we have

d(x1, x2) ≤ ϕ(d(x0, x1)). (9)

Note that d(x1, x2) ∈ J . Further, x2 ∈ S(x0, ρ0), since

d(x0, x2) ≤ d(x0, x1)+ d(x1, x2)
≤ d(x0, x1)+ ϕ(d(x0, x1))
≤ d(x0, x1)+ σ(ϕ(d(x0, x1)))
= σ(d(x0, x1)) (using (3))
= ρ0.

Now choose ε2 > 0 with

H(Tx1 ∩ D, Tx2 ∩ D)+ ε2 ≤ ϕ(d(x1, x2)). (10)

It again follows from Lemma 1.2 that there exists x3 ∈ Tx2 ∩ D such that

d(x2, x3) ≤ H(Tx1 ∩ D, Tx2 ∩ D)+ ε2. (11)

We assume that d(x2, x3) 6= 0, for otherwise x2 is fixed point of T . From inequalities (9), (10) and (11) we have

d(x2, x3) ≤ ϕ2(d(x0, x1)). (12)

Note that d(x2, x3) ∈ J . Further, x3 ∈ S(x0, ρ0), since

d(x0, x3) ≤ d(x0, x1)+ d(x1, x2)+ d(x2, x3)
≤ d(x0, x1)+ ϕ(d(x0, x1))+ ϕ2(d(x0, x1))

≤

∞∑
j=0

ϕj(d(x0, x1))

= σ(d(x0, x1)) = ρ0.

Repeating the above argument, inductively we obtain the a sequence {xn}n∈N such that

xn ∈ Txn−1 ∩ D, (13)

d(xn, xn+1) ≤ ϕn(d(x0, x1)), (14)

d(xn−1, xn) ∈ J, and xn ∈ S(x0, ρ0). (15)

We claim that {xn} is a Cauchy sequence. For n, p ∈ N, from (14) we have

d(xn+p, xn) ≤ d(xn+p, xn+p−1)+ · · · + d(xn+1, xn)

≤ ϕn+p−1(d(x0, x1))+ · · · + ϕn(d(x0, x1))

≤

∞∑
j=n

ϕj(d(x0, x1)).

Using (2), it follows from the above inequality that {xn} is a Cauchy sequence. Thus there exists ξ ∈ S(x0, ρ0)with xn → ξ .
Note that ξ ∈ D, as well. Since xn ∈ Txn−1 ∩ D, it follow from (5) that

d(xn, Txn ∩ D) ≤ H(Txn−1 ∩ D, Txn ∩ D)
≤ ϕ(d(xn−1, xn))

< d(xn−1, xn). (16)

Please cite this article in press as: Q. Kiran, T. Kamran, Fixed point theorems for generalized contractivemulti-valuedmaps, Computers andMathematics
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Letting n→∞, from (16) we get

lim
n→∞

d(xn, Txn ∩ D) = 0. (17)

Suppose f (x) = d(x, Tx ∩ D) is T orbitally lower continuous at ξ , then

d(ξ , Tξ ∩ D) = f (ξ) ≤ lim
n
inf f (xn) = lim

n
inf d(xn, Txn ∩ D) = 0.

Hence, ξ ∈ Tξ , since Tξ is closed. Conversely, if ξ is fixed point of T then f (ξ) = 0 ≤ limn inf f (xn), since ξ ∈ D. �

Example 2.2. Let X =
[
0, 35

]
equipped with usual metric d. Define T : X → CB(X) by Tx = [0, x2]. Then, for any x, y ∈ X

H(Tx, Ty) = |x2 − y2| = |x+ y||x− y|
≤ |x+ y|d(x, y).

Therefore, for x ∈
[
0, 35

]
and y ∈ [0, x2], we have

H(Tx, Ty) ≤
(
3
5
+
9
25

)
d(x, y)

=
24
25
d(x, y).

By taking ϕ(t) = 24
25 t and J = [0,∞), we see that all conditions of Theorem 2.1 are satisfied and 0 is the only fixed point of

T . Observe that for 0 ≤ λ < 1,

H
(
T
1
2
, T
3
5

)
=
11
100


 λ
1
10
= d

(
1
2
,
3
5

)
.

Therefore, T does not satisfies the hypothesis of [10, Theorem 5] and [11, Theorem 2.1].

In [12,17,1] the following class of functions was introduced and studied.

Definition 2.3 ([12,17,1]). Let ψ : R+ → R+. The function ψ is said to satisfy the condition (Φ) (denoted by ψ ∈ (Φ)) if

(i) ψ(t) < t for all t ∈ (0,∞),
(ii) ψ is upper semicontinuous from the right on (0,∞) and
(iii) there exists a positive real number s such that ψ is nondecreasing on (0, s] and

∑
∞

n=0 ψ
n(t) <∞ for all t ∈ (0, s].

Following lemma is an immediate consequence of the third part of Definitions 2.3 and 1.1.

Lemma 2.4. Every ψ ∈ (Φ) is a Bianchini–Grandolfi gauge function on J = (0, s].

Remark 2.5. Chang [12] observed that if k : (0,∞)→ [0, 1) satisfies

lim sup
s→t+

k(s) < 1 for every t ∈ [0,∞), (18)

then there exists a function ψ ∈ (Φ) such k(t)t ≤ ψ(t) for all t ∈ (0,∞).

As a consequence of above lemma and remark we have the following corollary.

Corollary 2.6 ([10, Theorem 5], [11, Theorem 2.1]). Let (X, d) be a complete metric space and T : X → CB(X). Assume that T
satisfies

H(Tx, Ty) ≤ k(d(x, y))d(x, y) (19)

for all x, y ∈ X with x 6= y where k : (0,∞)→ [0, 1) satisfies (18). Then T has a fixed point in X.

Remark 2.7. In [18], Suzuki proved that Corollary 2.6 is a real generalization of Nadler’s Theorem. As a result, we can see
Theorem 2.1 as a generalization of Nadler’s Theorem.

Theorem 2.8. Let (X, d) be a complete metric space, D be a closed subset of X, ϕ is a gauge function of order r ≥ 1 on an interval
J , φ : J → R+ is a nondecreasing function defined by (1) and T be a mapping from D into CB(X) such that Tx ∩ D 6= ∅ and

H(Tx ∩ D, Ty ∩ D) ≤ ϕ(d(x, y)) (20)

for all x ∈ D, y ∈ Tx ∩ D with d(x, y) ∈ J . Moreover, the strict inequality holds when d(x, y) 6= 0. Suppose x0 ∈ D is such that
d(x0, z) ∈ J for some z ∈ Tx0 ∩ D. Then:
(i) there exists an orbit {xn} of T in S(x0, ρ0) that converges with rate of convergence at least r to a point ξ ∈ S(x0, ρ0);
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(ii) for all n ≥ 0 we have the following a priori estimate

d(xn, ξ) ≤
λSn(r)d(x0, x1)
1− λrn

, (21)

where λ = φ(d(x0, x1));
(iii) for all n ≥ 1 we have the following a posteriori estimate

d(xn, ξ) ≤ ϕ(d(xn, xn−1))
∞∑
j=0

[φ(ϕ(d(xn, xn−1)))]Sj(r)

≤
ϕ(d(xn, xn−1))

1− φ(ϕ(d(xn, xn−1)))

≤
ϕ(d(xn, xn−1))

1− [φ(d(xn, xn−1))]r
; (22)

(iv) for all n ≥ 1 we have

d(xn, xn+1) ≤ ϕ(d(xn, xn−1)) ≤ λSn(r)d(x0, x1); (23)

(v) ξ is fixed point of T if and only if the function f (x) := d(x, Tx ∩ D) is T -orbitally lower semi-continuous at ξ .

Proof. (i) Theorem 2.1 ensures the existence of an orbit {xn} of T in S(x0, ρ0) that converges to ξ which belongs to S(x0, ρ0).
(ii) Form > n, using (14) and Lemma 1.4-(i) we have

d(xn, xm) ≤ d(xn, xn+1)+ d(xn+1, xn+2)+ · · · + d(xm−1, xm)
≤ ϕn(d(x0, x1))+ ϕn+1(d(x0, x1))+ · · · + ϕm−1(d(x0, x1))
≤ d(x0, x1)[λSn(r) + λSn+1(r) + · · · + λSm−1(r)]

= d(x0, x1)
m−1∑
j=n

λSj(r).

Keeping n fixed and lettingm→∞, we get

d(xn, ξ) ≤ d(x0, x1)
∞∑
j=n

λSj(r). (24)

Note that,
∞∑
j=n

λSj(r) = λSn(r) + λSn+1(r) + · · ·

= λSn(r)[1+ λr
n
+ λr

n
+rn+1

+ λr
n
+rn+1+rn+2

+ · · ·].

Since r ≥ 1, therefore

rn + rn+1 ≥ 2rn, rn + rn+1 + rn+2 ≥ 3rn · · ·

and hence,

λr
n
+rn+1

≤ λ2r
n
, λr

n
+rn+1+rn+2

≤ λ3r
n
· · · ,

since 0 < λ < 1. Thus,
∞∑
j=n

λSj(r) ≤ λSn(r)[1+ λr
n
+ λ2r

n
+ λ3r

n
+ · · ·] =

λSn(r)

1− λrn
.

Substituting this in (24), we get

d(xn, ξ) ≤ d(x0, x1)
λSn(r)

1− λrn
.

(iii) From (24) we have for n ≥ 0,

d(xn, ξ) ≤ d(x0, x1)
∞∑
j=n

[φ(d(x0, x1))]Sj(r).
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Putting n = 0, y0 = xn and y1 = x1 we have,

d(y0, ξ) ≤ d(y0, y1)
∞∑
j=0

[φ(d(y0, y1))]Sj(r).

Putting y0 = xn, and y1 = xn+1 we have,

d(xn, ξ) ≤ d(xn, xn+1)
∞∑
j=0

[φ(d(xn, xn+1))]Sj(r) (25)

≤ ϕ(d(xn, xn−1))
∞∑
j=0

[φ(ϕ(d(xn, xn−1)))]Sj(r)

≤ ϕ(d(xn, xn−1))
∞∑
j=0

[φ(ϕ(d(xn, xn−1)))]j

=
ϕ(d(xn, xn−1))

1− φ(ϕ(d(xn, xn−1)))
, (26)

since Sj(r) ≥ j. Now by Lemma 1.4-(ii), we have

φ(ϕ(d(xn, xn−1))) ≤ [φ(d(xn, xn−1))]r

which means that,

1
1− φ(ϕ(d(xn, xn−1)))

≤
1

1− [φ(d(xn, xn−1))]r
. (27)

From (25) we get for n ≥ 1,

d(xn, ξ) ≤ ϕ(d(xn, xn−1))
∞∑
0

[φ(ϕ(d(xn, xn−1)))]Sj(r)

≤
ϕ(d(xn, xn−1))

1− φ(ϕ(d(xn, xn−1)))

≤
ϕ(d(xn, xn−1))

1− [φ(d(xn, xn−1))]r
(using (27)).

(iv) For n ≥ 1, using (14) and Lemma 1.4 we have

d(xn+1, xn) ≤ ϕ(d(xn, xn−1))

≤ d(x0, x1)λSn−1(r)φ(d(xn−1, xn))

≤ d(x0, x1)λSn−1(r)λr
n−1

= d(x0, x1)λSn−1(r)+r
n−1

= d(x0, x1)λSn(r).

(v) Proof is similar to the proof of Theorem 2.1. �

Remark 2.9. We can note the rate of convergence from the a priori estimate (21) as follows:

d(xn+1, ξ)
(d(xn, ξ))r

=
λSn+1(r)d(x0, x1)

1− λrn+1

(
1− λr

n

λSn(r)d(x0, x1)

)r
=

λ

(d(x0, x1))r−1

(
1− λr

n)r
1− λrn+1

.

Taking the limit when n→∞we get

lim
n→∞

d(xn+1, ξ)
(d(xn, ξ))r

=
λ

(d(x0, x1))r−1
,

so by Definition 1.7 the rate of convergence of the iterative sequence (xn) is r with asymptotic error constant λ

(d(x0,x1))r−1
.

Remark 2.10. Theorems 2.1 and 3.4 generalize [15, Theorems 2.11 & 2.15], as the range of T can be taken as CB(X) instead
of the space of all nonempty proximinal closed subsets of X .
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Corollary 2.11. Let (X, d) be a complete metric space, T : X → CB(X) be an operator satisfying

H(Tx, Ty) ≤ ϕ(d(x, y)) (28)

for all x, y ∈ X (x 6= y) with d(x, y) ∈ J and ϕ is a gauge function of order r ≥ 1 on an interval J . Assume that x0 is a point in X
such that d(x0, z) ∈ J for some z ∈ Tx0. Then, the following statements hold true.

(i) There exists an orbit {xn} of T in X that converges to a fixed point ξ ∈ S = {x ∈ X : d(x, ξ) ∈ J} of T .
(ii) The estimates (21)–(23) are valid.

Proof. It follows from (28) that

H(Tx, Ty) ≤ ϕ(d(x, y)) < d(x, y) (29)

for all x, y ∈ X (x 6= y). Hence T is continuous. Thus (i) and (ii) follow immediately from Theorem 3.4. �

Corollary 2.12. Let (X, d) be a complete metric space, D be a closed subset of X, and T be a continuous mapping from D into
CB(X) such that Tx ∩ D 6= ∅ and

H(Tx ∩ D, Ty ∩ D) ≤ ϕ(m(x, y)) for all x ∈ D, y ∈ Tx ∩ D (30)

where strict inequality holds if m(x, y) 6= 0 where ϕ is a gauge function of the first order on J = [0,∞) and

m(x, y) = max
{
d(x, y), d(x, Tx), d(y, Ty),

1
2
[d(x, Ty)+ d(y, Tx)]

}
. (31)

Then for each x0 ∈ D such that d(x0, z) ∈ J for some z ∈ Tx0 ∩ D the following statements hold true.

(i) There exists an orbit of T at x0 in D that converges to a unique fixed point ξ of T .
(ii) For n ≥ 0 we have the following a priori estimate

d(xn, ξ) ≤
λn

1− λ
d(x0, x1). (32)

(iii) For all n ≥ 1 we have the following a posteriori estimate

d(xn, ξ) ≤
ϕ(d(xn, xn−1))

1− φ[ϕ(d(xn, xn−1))]
. (33)

Proof. Choose x1 = z ∈ Tx0 ∩ D. Define ρ0 = σ(d(x0, x1))where σ is defined by (2). Since from (3), σ(t) ≥ t so we have

d(x0, x1) ≤ ρ0. (34)

We may assume that m(x0, x1) 6= 0, for otherwise d(x0, Tx0) ≤ m(x0, x1) = 0 and x0 is the fixed point of T . From (30) we
have H(Tx0 ∩ D, Tx1 ∩ D) < ϕ(m(x0, x1))we may choose ε1 > 0 with

H(Tx0 ∩ D, Tx1 ∩ D)+ ε1 ≤ ϕ(m(x0, x1)). (35)

It follows from Lemma 1.2 that there exists x2 ∈ Tx1 ∩ D such that

d(x1, x2) ≤ H(Tx0 ∩ D, Tx1 ∩ D)+ ε1. (36)

From the above two inequalities we get

d(x1, x2) ≤ ϕ(m(x0, x1)) (37)

≤ ϕ

(
max

{
d(x0, x1), d(x0, Tx0), d(x1, Tx1),

d(x0, Tx1)+ d(x1, Tx0)
2

})
(38)

≤ ϕ

(
max

{
d(x0, x1), d(x1, Tx1),

d(x0, Tx1)
2

})
. (39)

We claim that

d(x1, x2) ≤ ϕ(d(x0, x1)). (40)

Let

η1 = max
{
d(x0, x1), d(x1, Tx1),

d(x0, Tx1)
2

}
. (41)

Case 1. If η1 = d(x0, x1) then clearly (40) is true.
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Case 2. If η1 = d(x1, Tx1). Since x2 ∈ Tx1 we have

d(x1, x2) ≤ ϕ(d(x1, Tx1)) < d(x1, Tx1) ≤ d(x1, x2),

which is a contradiction.
Case 3. Finally suppose η1 =

d(x0,Tx1)
2 . Then we have

d(x1, x2) ≤ ϕ
(
d(x0, Tx1)
2

)
<
d(x0, x2)
2

≤
d(x0, x1)+ d(x1, x2)

2
,

since x2 ∈ Tx1. Thus, d(x1, x2) < d(x0, x1). As a result,

η1 ≤
d(x0, x1)+ d(x1, x2)

2
< d(x0, x1),

which contradicts the definition of η1. This proves our claim. Proceeding inductively in a similar way as in Theorem 2.1 we
obtain the sequence {xn} in D such that xn → ξ ∈ D and limn d(xn+1, Txn) = 0. Since T is continuous so taking the limit as
n→∞ we have ξ ∈ Tξ . If η is another fixed point thenm(ξ , η) = d(ξ , η) and uniqueness follows immediately. Estimate
(21) and (22) becomes (32) and (33) for r = 1. �

Remark 2.13. Corollary 2.12 can be observed as an improved version (with uniqueness of fixed point and error bounds) of
[16, Theorems 2.1 and 2.2] if the continuous function φ in [16] is replaced by the gauge function ϕ of order 1.

3. Application

In this section we apply Corollary 2.11 to establish the existence of unique solution for the class of integral inclusions.
Let R denote the real line. Consider the following integral inclusion.

x(t) ∈ P
∫ t

t0
k(s, x(s))ds+ β

∈ PK x(t)+ β (42)

where

K x(t) :=
∫ t

t0
k(s, x(s))ds. (43)

P is a closed and bounded (compact) subset of R, β ∈ R and k : R× R→ R satisfies:

|k(t, x(t))− k(t, y(t))| ≤
q
α
|x(t)− y(t)|r (44)

where α = maxp∈P |p|, 0 < q ≤ α and 1 < r ≤ 2

|k(t, x)| <
1
2α

(
1
q

)r−1
(45)

and is continuous on R =
{
(t, x) : |t − t0| ≤

(
1
q

)2−r
, |x− β| ≤ 1

2q

}
.

Theorem 3.1. Under the above assumptions (2)–(4), the integral inclusion (42) has a unique solution on I = [t0 − ( 1q )
2−r , t0 +

( 1q )
2−r
].

Remark 3.2. Note that in almost all the existence results, as for as we know, for integral inclusions or integral equations the
kernel of the equation satisfies the Lipschitz condition in some sense. But in our result the kernel satisfies the inequality (44),
which is not the Lipschitz condition, since 1 < r ≤ 2. Our result not only guarantees the existence but also the uniqueness
of the solution and provides the iterative scheme with a higher convergence rate. It also provides the domain of existence
of the solution.

Proof of Theorem 3.1. Consider the space of all continuous functions C(I) endowed by the classical metric

d(x, y) = sup
t∈I
|x(t)− y(t)|.

Note that C(I) is complete with respect to the metric ‘d’. Let C̃ =
{
x ∈ C(I) : d(x, β) ≤ 1

2q

}
. Then, C̃ is a closed subspace of

C(I) and thus is complete. Define an operator T by:

Please cite this article in press as: Q. Kiran, T. Kamran, Fixed point theorems for generalized contractivemulti-valuedmaps, Computers andMathematics
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Tx(t) = P
∫ t

t0
k(s, x(s))ds+ β

= PK x(t)+ β. (46)

Then, (46) and (42) are equivalent problems in a sense that fixed point(s) of T are solution(s) of (42). We claim that
T : (̃C, d) → (K (̃C),H). For this we need to prove that: (i) T is defined for each x ∈ C̃ , and (ii) Tx is a compact subset
of C̃ for any x ∈ C̃ .

If τ ∈ I then |τ − t0| ≤
(
1
q

)2−r
. Hence by definition of C̃ we have, |x(τ ) − β| ≤ 1

2q . So, if τ ∈ I then (τ , x(τ )) ∈ R and

since k is continuous on R, therefore integral (43) exists in (46) and T is defined for each x ∈ C̃ . We now show that Tx ⊂ C̃ .
Let y(t) ∈ Tx(t). Then, y(t) = pK x(t)+ β for some p ∈ P , and

|y(t)− β| = |pK x(t)|
= |p| |K x(t)|

≤ α

∫ t

t0
|k(s, x(s))ds|

≤ α

∫ t

t0
|k(s, x(s))|ds

< α|t − t0|
1
2α

(
1
q

)r−1
≤
1
2q
.

Thus, d(y, β) < 1
2q for any y ∈ Tx and hence Tx ⊂ C̃ for any x ∈ C̃ . Next we show that Tx is compact. Consider a sequence

(un) ⊂ Tx then, un = pnK x(t)+β , where (pn) is a sequence in P . Since P is compact there is a subsequence (pni) of (pn) such
that pni → p ∈ P . Let u = pK x(t)+ β . Then

d(uni , u) = sup
t∈I
(|pni − p| |K

x(t)|) ≤ |pni − p| sup
t∈I
|K x(t)| → 0

when ni →∞. This proves our claim. Further, note that

H(Tx, Ty) = H(PK x(t)+ β, PK y(t)+ β)

≤ H(PK x(t), PK y(t)). (47)

By definition,

H(PK x(t), PK y(t)) = max
{
max
a∈PK x(t)

d(a, PK y(t)), max
b∈PKy(t)

d(b, PK x(t))
}
.

Consider,

max
a∈PK x(t)

d(a, PK y(t)) = max
a∈PK x

min
b∈PKy

d(a, b)

= max
p∈P
min
p∗∈P
d(pK(t, x), p∗K(t, y))

= max
p∈P
min
p∗∈P
sup
t∈I
|pK(t, x)− p∗K(t, y)|

≤ max
p∈P
min
p∗∈P
sup
t∈I

[
|pK(t, y)− p∗K(t, y)| + |pK(t, y)− pK(t, x)|

]
≤ max

p∈P
min
p∗∈P

[
|p| sup

t∈I
|K(t, y)− K(t, x)| + |p− p∗| sup

t∈I
|K(t, y)|

]
= max

p∈P
|p| sup

t∈I
|K(t, y)− K(t, x)|

= α sup
t∈I
|K(t, y)− K(t, x)|.

Now,

|K(t, y)− K(t, x)| ≤
∫ t

t0
|k(s, y(s))− k(s, x(s))|ds

≤
q
α

∫ t

t0
|y(s)− x(s)|rds

Please cite this article in press as: Q. Kiran, T. Kamran, Fixed point theorems for generalized contractivemulti-valuedmaps, Computers andMathematics
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≤
q
α

(
sup
t∈I
|y(s)− x(s)|

)r ∫ t

t0
ds

=
q
α
|t − t0|(d(x, y))r

≤
q
α

(
1
q

)2−r
(d(x, y))r =

qr−1

α
(d(x, y))r .

Hence,

max
a∈PK x(t)

d(a, PK y(t)) ≤ α
qr−1

α
(d(x, y))r = qr−1(d(x, y))r .

Changing roles of x and ywe obtain,

max
b∈PKy(t)

d(b, PK x(t)) ≤ qr−1(d(x, y))r .

Now from (47) we have,

H(Tx, Ty) ≤ qr−1(d(x, y))r .

Since for all x, y ∈ C̃ we have d(x, y) < 1
q . So, if we take ϕ(t) = q

r−1t r for t ∈ J = [0, 1q ), then ϕ is the gauge function of the
order r . To prove this, note that for λ ∈ (0, 1) and t ∈ J we have

ϕ(λt) = λrqr−1t r ≤ λrφ(t).

Further, for t ∈ J − {0}we have

ϕ(t) = qr−1t r = qr−1tt r−1 < qr−1t
(
1
q

)r−1
= t.

From the above arguments we have

H(Tx, Ty) ≤ ϕ(d(x, y)) (48)

for all x, y ∈ C̃ with d(x, y) ∈ J . Hence starting from x0 = β the iterative sequence xn ∈ Txn−1; n = 1, 2, . . . converges to
the unique fixed point ξ of T at a rate r .

Remark 3.3. Note that if we take P to be {1}, then the integral inclusion (42) becomes:

x(t) =
∫ t

t0
k(s, x(s))ds+ β

which is equivalent to the initial value problem

x′(t) = k(t, x(t)), x(t0) = β. (49)

Thus, we observe that [15, Theorem 3.1] is a special case of Theorem 3.1.

One may generalize the above result as follows.

Theorem 3.4. Consider the integral inclusion

x(t) ∈ P
∫ t

t0
k(s, x(s))ds+ Q (50)

where P and Q are compact subsets of R. Under the assumptions (43), (44) and (45) that hold on R = {(t, x) : |t − t0| ≤
( 1q )

2−r , |x− β| ≤ 1
2q } for any β ∈ Q the problem (50) has a solution on I = [t0 − (

1
q )
2−r , t0 + ( 1q )

2−r
].
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Abstract

We establish a convergence theorem for iterative processes of the
type: xn+1 = Txn, n = 0, 1, 2, · · ·, where T : D ⊂ X → X is an
operator on a complete metric space (X,d′) satisfying:

d(Tx, T 2x) ≤ ϕ(d(x,Tx)) for all x ∈ D,Tx ∈ D with d(x, Tx) ∈ J,

ϕ is a Bianchini-Grandolfi gauge function on an interval J and d is
another metric on X.
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1 Introduction and Preliminaries

Throughout this paper J denotes an interval on R+ containing 0, that is an
interval of the form [0, A], [0, A) or [0,∞). We use the abbreviation ϕn for the
nth iterate of a function ϕ : J → J . Let r ≥ 1, a function ϕ : J → J is said to
be a gauge function [7, Definition 1.1] of order r on J if it satisfies the following
conditions: (i) ϕ(λt) ≤ λrϕ(t) for all λ ∈ (0, 1) and t ∈ J ; (ii) ϕ(t) < t for
all t ∈ J − {0}. It is easy to see that the first condition of this definition is
equivalent to the following: ϕ(0) = 0 and ϕ(t)/tr is nondecreasing on J −{0}.
A nondecreasing function ϕ : J → J is said to be a Bianchini-Grandolfi gauge
function [2, 7, Definition 2.3] on J if

σ(t) =

∞∑

n=0

ϕn(t) < ∞, for all t ∈ J. (1)
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Let (X, d′) be a complete metric space, d another metric on X. For x0 ∈ X,
r > 0 and S(x0, r) = {x ∈ X : d(x, x0) < r} we denote by S(x0, r)d′ the
d′-closure of S(x0, r) and by S(x0, r)d the d-closure of S(x0, r). In this paper
we establish a convergence theorem for iterative processes of the type:

xn+1 = Txn, n = 0, 1, 2, · · · (2)

where T : D ⊂ X → X is an operator satisfying:

d(Tx, T 2x) ≤ ϕ(d(x, Tx)) for all x ∈ D, Tx ∈ D with d(x, Tx) ∈ J, (3)

and ϕ is a Bianchini-Grandolfi gauge function on an interval J . Our results
generalize, extend and improve some recent results by Agarwal and O’Regan
[1] and thus generalize some results of Ciric [3], Hardy and Rogers[4], Kannan
[5], Maia [6], Precup [8] and Reich [9]. We use the machinery of Proinov [7]
to prove our results. For convenience we define the function E : D → R+ by
E(x) = d(x, Tx). Therefore condition (3) can be rewritten in the form

E(Tx) ≤ ϕ(E(x)) for all x ∈ D with Tx ∈ D and E(x) ∈ J. (4)

Suppose x0 ∈ D and E(x0) ∈ J . Then for every iterate xn (n ≥ 0) which
belongs to D we define the closed ball S(xn, ρn)d with center xn and radius
ρn = σ(E(xn)), where σ : J → R+ is defined by (1). A point x0 ∈ D will be
called an initial point [7, Definition 3.2] of T if E(x0) ∈ J and all of the iterates
x0, x1, x2, · · · are well-defined and belong to D. We state following results for
convenience.

Lemma 1.1 [7, Lemma 2.4] Every gauge function of order r ≥ 1 on J is a
Bianchini-Grandolfi gauge function on J .

Theorem 1.2 [1, Theorem 2.1] Let (X, d′) be a complete metric space, d an-
other metric on X, x0 ∈ X, r > 0 and F : B(x0, r)d′ → X. Suppose there
exists q ∈ (0, 1) such that for x, y ∈ B(x0, r)d′ we have

d(Fx, Fy) ≤ q max{d(x, y), d(x, Fx), d(y, Fy),
1

2
[d(x, Fy) + d(y, Fx)]}.

In addition assume the following three properties hold:

d(x0, Fx0) < (1 − q)r (5)

If d � d′ assume F is uniformly continuous from (B(x0, r), d) into(X, d′), (6)

and

If d �= d′ assume F is continuous from (B(x0, r)d′, d′) into(X, d′), (7)

Then F has a fixed point. That is, there exists x ∈ B(x0, r)d′ with x = Fx.
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Theorem 1.3 [1, Theorem 2.3] Let (X, d′) be a complete metric space, d an-
other metric on X and F : X → X. Suppose there exists q ∈ (0, 1) such that
for x, y ∈ X we have

d(Fx, Fy) ≤ q max{d(x, y), d(x, Fx), d(y, Fy),
1

2
[d(x, Fy) + d(y, Fx)]}.

In addition assume the following two properties hold:

If d � d′ assume F is uniformly continuous from (X, d) into(X, d′), (8)

and

If d �= d′ assume F is continuous from (X, d′) into(X, d′), (9)

Then F has a fixed point.

2 Main Results

Theorem 2.1 Let (X, d′) be a complete metric space, d another metric on X
and T : D ⊂ X → X is an operator satisfying condition (3), with a Bianchini-
Grandolfi gauge function ϕ on an interval J . Then starting from an initial
point x0 of T the iterative sequence (2) remains in S(x0, ρ0)d and converges to
a point ξ ∈ S(x0, ρ0)d′ which is a fixed point of T provided that the following
three conditions hold:

If d � d′ then T is uniformly continuous from (S(x0, ρ0), d) into (X, d′)
(10)

If d �= d′ then T is continuous from (S(x0, ρ0)d′ , d′) into (X, d′), (11)

If d = d′ then T is continuous at ξ. (12)

Proof: Since x0 is an initial point of T , it follows from [7, Lemma 3.2] that

S(xn+1, ρn+1)d ⊂ S(xn, ρn)d for all n ≥ 0, (13)

which implies that xn ∈ S(x0, ρ0)d for all n ≥ 0. Using the definition of ρn,
from [7, Lemma 3.6], we get

ρn = σ(E(xn)) ≤ σ(ϕn(E(x0)))

=

∞∑

j=0

ϕj(ϕn(E(x0)))

=
∞∑

j=n

ϕj(E(x0)) for all n ≥ 0, (14)
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since σ is non-decreasing. As ϕ is Bianchini-Grandolfi gauge function on J
and E(x0) ∈ J , from (14), we get

ρn → 0 as n → ∞. (15)

From (13) and (15) it follow that {S(xn, ρn)d} is nested sequence of closed
spheres such that ρn → 0 as n → ∞. Therefore, it follows from Cantor’s
Theorem that the sequence (2) is a Cauchy sequence with respect to d i.e.,
there exists N ∈ {1, 2, · · ·} with

d(xn, xm) < δ whenever n, m ≥ N. (16)

We now claim that, (2) is a Cauchy sequence with respect to d′. If d ≥ d′ this
is trivial. Next suppose d � d′. Let ε > 0 be given. Then (10) guarantees that
there exists δ > 0 such that

d′(Tx, Ty) < ε whenever x, y ∈ S(x0, ρ0) and d(x, y) < δ (17)

Now (16) and (17) imply

d′(xn+1, xm+1) = d′(Txn, Txm) < ε whenever n, m ≥ N,

and as a result our claim is proved. Now since (X, d′) is complete there exists
ξ ∈ S(x0, ρ0)d′ with d′(xn, ξ) → 0 as n → ∞. We claim that ξ = Tξ. First
consider the case when d �= d′.

d′(ξ, T ξ) ≤ d′(ξ, xn) + d′(xn, T ξ) = d′(ξ, xn) + d′(Txn−1, T ξ) (18)

Let n → ∞ then (11) insures that d′(ξ, xn) → 0 implies d′(Txn−1, T ξ) → 0
and so ξ = Tξ. Next suppose d = d′.

d(ξ, Txn) ≤ d(ξ, xn) + d(xn, Txn) = d(ξ, xn) + d(xn, xn+1).

Taking limit as n → ∞ we get,

limn→∞d(ξ, Txn) ≤ 0.

From (12) since T is continuous at ξ so we have d(ξ, T ξ) = 0 which simply
means that ξ = Tξ.

Remark 2.2 Theorem 2.1 remains true if ϕ is a gauge function of order r ≥
1.

Corollary 2.3 Let (X, d′) be a complete metric space, d another metric on X
and T : D ⊂ X → X is an operator satisfying

d(Tx, Ty) ≤ ϕ(d(x, y)) for all x, y, Tx, Ty ∈ D with d(x, y) ∈ J (19)

where ϕ is a gauge function of order r ≥ 1 on an interval J. Assume that x0 is
an initial point of T such that d(x0, Tx0) ∈ J . Then the following statements
hold true:
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(a) The iterative sequence (2) converges to a fixed point ξ of T .

(b) The operator T has a unique fixed point in S = {x ∈ X : d(x, ξ) ∈ J},
provided that (10) and (11) hold.

Proof: From (19) d(Tx, T 2x) ≤ ϕ(d(x, Tx)) holds for all x ∈ D, y = Tx ∈ D
and d(x, Tx) ∈ J . Further, by definition of ϕ we have d(Tx, Ty) ≤ ϕ(d(x, y)) <
d(x, y) for x �= y. Hence, T is d continuous. Thus (a) follows immediately from
Theorem 2.1. To show the uniqueness, i.e., (b), assume that η ∈ S is another
fixed point of T . Then d(ξ, η) ∈ J . It follows from (19) that

d(ξ, η) = d(Tξ, Tη) ≤ ϕ(d(ξ, η)) < d(ξ, η)

Hence ξ = η.

Corollary 2.4 Let (X, d′) be a complete metric space, d another metric on X
and T : D ⊂ X → X is an operator satisfying

d(Tx, Ty) ≤ ϕ(m(x, y)) for all x, y, Tx, Ty ∈ D (20)

where ϕ is a gauge function of order r ≥ 1 on an interval J = [0,∞) and

m(x, y) = max{d(x, y), d(x, Tx), d(y, Ty),
d(x, Ty) + d(y, Tx)

2
}. (21)

Then for initial point x0 of T , the iterative sequence (2) converges to a unique
fixed point ξ of T provided that (10),(11) and (12) hold. Moreover, if ϕ is
continuous, then continuity of T in (12) can be omitted.

Proof: First we shall prove that, m(x, Tx) = d(x, Tx) for all x ∈ D. By (21)
and triangle inequality, we get

m(x, Tx) = max{d(x, Tx), d(x, Tx), d(Tx, T 2x), d(x, T 2x)}
= max{d(x, Tx), d(Tx, T 2x)} = max{E(x), E(Tx)}

where E(x) = d(x, Tx). If x = Tx then m(x, Tx) = E(x) = d(x, Tx). If
x �= Tx then since ϕ(t) < t for t > 0 so we have from (20)

E(Tx) = d(Tx, T 2x) ≤ ϕ(m(x, Tx)) < m(x, Tx) = max{E(x), E(Tx)}

which means m(x, Tx) = E(x). Thus condition (20) implies (3). Applying
Theorem 2.1, we deduce that the iterative sequence (2) converges to the fixed
point ξ of T .

If η is another fixed point then from (21) we have m(ξ, η) = d(ξ, η) and
hence uniqueness follows immediately from Corollary 2.3.
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Finally, suppose that d = d′ and ϕ is continuous then it follows from (20)
that

d(xn+1, T ξ) = d(Txn, T ξ) ≤ ϕ(m(xn, ξ)) for all n ≥ 0

Since m(xn, ξ) = d(xn, ξ) so passing limit as n → ∞ we obtain d(ξ, T ξ) ≤
ϕ(0) = 0 which implies ξ = Tξ.

Remark 2.5 If ϕ(t) = qt (0 < q < 1), then Corollary 2.4 generalizes Theo-
rem 1.2 (resp. Theorem 1.3) in the following manner.

(i) Taking D = B(x0, r)
d′ (resp. D = X).

(ii) Uniform Continuity of the operator T in (6) (resp. in (8)) is required
from (B(x0, r), d) into (X, d′) (resp. from (X, d) into (X, d′)) while it is
required from (S(x0, ρ0), d) into (X, d′) in (10).

(iii)Continuity f the operator T in (7) (resp. in (9)) is required from B(x0, r)d′

into (X, d′) (resp. from (X, d′) into (X, d′)) while it is required from
(S(x0, ρ0)d′ , d′) into (X, d′) in (10).

(iv) Corollary 2.4 concludes with a unique fixed point.

(v) (12) can be omitted because ϕ is continuous in this case.

Remark 2.6 Note that in the hypothesis of Corollary 2.4 we assumed that x0

is an initial point of T . This assumption was not the part of the hypothesis of
Theorem 1.2. But a closer look at condition (5) in Theorem 1.2 in-fact implies
that x0 is an initial point of T .

Remark 2.7 If d = d′, then Corollary 2.4 coincides with the first part of [7,
Corollary 4.5]. In addition, if ϕ(t) = qt (0 < q < 1) then it reduces to [1,
Corollary 2.2].
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FIXED POINT AND HOMOTOPY RESULTS

FOR GENERALIZED CONTRACTIONS ON SPACES

WITH TWO METRICS

Abstract. In this paper, we establish fixed point and homotopic results for gener-
alized contractions on spaces with two metrics. Our results generalize and extend the
results of Agarwal and O’Regan [R. P. Agarwal, Donal O’Regan, Fixed point theory for
generalized contractions on spaces with two metrics, J. Math. Anal. Appl. 248 (2000),
402–414] and those contain therein.

1. Introduction and preliminaries

Throughout this paper J denotes an interval on R+ containing 0, that is
an interval of the form [0, A], [0, A) or [0,∞). We use the abbreviation ϕn

for the nth iterate of a function ϕ : J → J . Let s ≥ 1, a function ϕ : J → J
is said to be a gauge function [7, Definition 1.1] of order s on J if it satisfies
the following conditions: (i) ϕ(λt) ≤ λsϕ(t) for all λ ∈ (0, 1) and t ∈ J ;
(ii) ϕ(t) < t for all t ∈ J − {0}. It is easy to see that the first condition
of this definition is equivalent to the following: ϕ(0) = 0 and ϕ(t)/ts is
nondecreasing on J −{0}. A nondecreasing function ϕ : J → J is said to be
a Bianchini-Grandolfi gauge function [3, 2, Definition 2.3] on J if

σ(t) =
∞∑

n=0

ϕn(t) < ∞, for all t ∈ J.(1)

Ptak [2] noticed that a function ϕ : J → J satisfying (1) on J also satisfies
the following functional equation

σ(t) = σ(ϕ(t)) + t.(2)

Let (X, d′) be a complete metric space, d another metric on X. For x0 ∈ X,

r > 0 and S(x0, r) = {x ∈ X : d(x, x0) < r} we denote by S(x0, r)d′ the

Key words and phrases: fixed point theorems, Gauge functions, homotopic.
1991 Mathematics Subject Classification: 7H10, 54H25.
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d′-closure of S(x0, r) and by S(x0, r)d the d-closure of S(x0, r). Our results
generalize, extend and improve some recent results by Agarwal and O’Regan
[1] and thus generalize some results of Hardy and Rogers [4], Kannan [5],
Maia [6], Precup [8] and Reich [9]. We state following results for convenience.

Lemma 1.1. [7, Lemma 2.4] Every gauge function of order s ≥ 1 on J is a
Bianchini-Grandolfi gauge function on J .

2. Main results

Theorem 2.1. Let (X, d′) be a complete metric space, d another metric
on X, x0 ∈ X, r > 0 and T : S(x0, r) → X satisfies

(3) d(Tx, T 2x) ≤ ϕ(d(x, Tx)) ∀x, Tx ∈ S(x0, r) with d(x, Tx) ∈ J

where ϕ is a Bianchini-Grandolfi gauge function on an interval J = [0,∞).
Then starting from x0 the iterative sequence

(4) xn+1 = Txn, n ≥ 0

converges to a point ξ ∈ S(x0, r)d′ which will be the fixed point of T if the
following conditions are satisfied:

(i)

(5) d(x0, Tx0) < δ,

where δ > 0 is such that σ(δ) ≤ r.
(ii) If d � d′ assume T is uniformly continuous from (S(x0, r), d) into

(X, d′).

(iii) If d 6= d′ then T is continuous from (S(x0, r)d′ , d′) into (X, d′).
(iv) If d = d′ then T is continuous at ξ.

Proof. Let x1 = Tx0. Then from (i)

d(x0, x1) < δ ≤ σ(δ) ≤ r.

Next let x2 = Tx1. Then from (3) we have

d(x1, x2) = d(Tx0, T
2x0) ≤ ϕ(d(x0, x1)).

Note that d(x1, x2) ∈ J . Further, x2 ∈ S(x0, r)d since

d(x0, x2) ≤ d(x0, x1) + d(x1, x2)

≤ d(x0, x1) + ϕ(d(x0, x1))

< δ + σ(ϕ(δ)) = σ(δ) (using (2)) ≤ r.

Let x3 = Tx2. Then,

d(x2, x3) = d(Tx1, T
2x1) ≤ ϕ(d(x1, Tx1)) = ϕ(d(Tx0, T

2x0))

≤ ϕ2(d(x0, x1)).



Fixed point results for spaces with two metrics 153

Note that d(x2, x3) ∈ J . Further, x3 ∈ S(x0, r)d since

d(x0, x3) ≤ d(x0, x1) + d(x1, x2) + d(x2, x3)

≤ d(x0, x1) + ϕ(d(x0, x1)) + ϕ2(d(x0, x1)))

<
∞∑

j=0

ϕj(δ) = σ(δ) ≤ r.

Proceeding inductively we obtain a sequence {xn}n∈N in S(x0, r)d such that
d(xn−1, xn) ∈ J where

(6) xn = Txn−1,

and

(7) d(xn, xn+1) ≤ ϕn(d(x0, x1)).

Note that {xn} is a Cauchy sequence w.r.t d since for n, p ∈ N, from (7) we
have

d(xn+p, xn) ≤ d(xn+p, xn+p−1) + · · · + d(xn+1, xn)

≤ ϕn+p−1(d(x0, x1)) + · · · + ϕn(d(x0, x1))

≤
∞∑

j=n

ϕj(d(x0, x1)) → 0 (using (1)).

Thus, there exists N ∈ N with

(8) d(xn, xm) < η whenever n, m ≥ N.

We claim that, (4) is a Cauchy sequence with respect to d′. If d ≥ d′ this is
trivial. Next suppose d � d′. Let ǫ > 0 be given. Then (ii) guarantees that
there exists η > 0 such that

(9) d′(Tx, Ty) < ǫ whenever x, y ∈ S(x0, ρ0) and d(x, y) < η.

Now (8) and (9) imply

d′(xn+1, xm+1) = d′(Txn, Txm) < ǫ whenever n, m ≥ N,

and this prove our claim. Since (X, d′) is complete there exists ξ ∈ S(x0, ρ0)d′

with d′(xn, ξ) → 0 as n → ∞. We claim that ξ = Tξ. First consider the
case when d 6= d′

(10) d′(ξ, Tξ) ≤ d′(ξ, xn) + d′(xn, T ξ) = d′(ξ, xn) + d′(Txn−1, T ξ).

Let n → ∞ then (iii) insures that d′(ξ, xn) → 0 implies d′(Txn−1, T ξ) → 0
and so ξ = Tξ. Next suppose d = d′

d(ξ, Txn) ≤ d(ξ, xn) + d(xn, Txn) = d(ξ, xn) + d(xn, xn+1).
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Taking limit as n → ∞ we get,

lim
n→∞

d(ξ, Txn) ≤ 0.

From (iv) since T is continuous at ξ so we have d(ξ, Tξ) = 0 which simply
means that ξ = Tξ.

Remark 2.2. Theorem 2.1 remains true if ϕ is a gauge function of order
s ≥ 1.

The following global result can easily be obtain from Theorem 2.1 and
Remark 2.2.

Theorem 2.3. Let (X, d′) be a complete metric space, d another metric
on X and T : X → X is an operator satisfying (3) with gauge function ϕ of
order s ≥ 1 on an interval J = [0,∞). Then T has a fixed point provided
that the following conditions are satisfied:

(a) if d � d′ assume T is uniformly continuous from (X, d) into (X, d′).
(b) if d 6= d′ then T is continuous from (X, d′) into (X, d′).
(c) if d = d′ then T is continuous at ξ.

Proof. Fix x0 ∈ X. For δ > 0 such that

d(x0, Tx0) < δ,

take r = σ(δ), where σ is given by (1). Now Theorem 2.1 guarantees that

there exists ξ ∈ S(x0, r)d′ with ξ ∈ Tξ.

Theorem 2.4. Let (X, d′) be a complete metric space, d another metric
on X, x0 ∈ X, r > 0 and T : S(x0, r) → X is an operator satisfying

(11) d(Tx, Ty) ≤ ϕ(m(x, y)) for all x, y, Tx, Ty ∈ S(x0, r)

where ϕ is a gauge function of order s ≥ 1 on an interval J = [0,∞) and

(12) m(x, y) = max

{
d(x, y), d(x, Tx), d(y, Ty),

d(x, Ty) + d(y, Tx)

2

}
.

Then the iterative sequence (4) converges to a unique fixed point ξ of T
provided that (i)–(iv) hold. Moreover, if ϕ is continuous, then continuity
of T in (iv) can be omitted.

Proof. Let x1 = Tx0. Then from (i)

d(x0, Tx0) < δ ≤ σ(δ) ≤ r.

Next let x2 = Tx1 then from (11) we have

d(x1, x2) = d(Tx0, Tx1) ≤ ϕ(m(x0, x1))
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where,

m(x0, x1) = ϕ
(

max
{

d(x0, x1), d(x0, Tx0), d(x1, Tx1),

d(x0, Tx1) + d(x1, Tx0)

2

})

= ϕ
(

max
{

d(x0, x1), d(x1, x2),
d(x0, x2)

2

})
.

We claim that

(13) d(x1, x2) ≤ ϕ(d(x0, x1)).

Case 1. If m(x0, x1) = d(x0, x1) then clearly (13) is true.
Case 2. If m(x0, x1) = d(x1, x2). Then we have

d(x1, x2) ≤ ϕ(d(x1, x2)) < d(x1, x2),

which is a contradiction.
Case 3. Finally suppose m(x0, x1) = d(x0,x2)

2 . Then we have

d(x1, x2) ≤ ϕ

(
d(x0, x2)

2

)
<

d(x0, x2)

2
≤

d(x0, x1) + d(x1, x2)

2
.

Thus, d(x1, x2) < d(x0, x1). As a result,

m(x0, x1) ≤
d(x0, x1) + d(x1, x2)

2
< d(x0, x1),

which contradicts the definition of m(x0, x1). This prove our claim. Pro-
ceeding inductively in a similar way as in Theorem 2.1 we obtain the iterative
sequence (4) converges to the fixed point ξ of T . If η is another fixed point
then from (11) and (12) we have m(ξ, η) = d(ξ, η) and

d(ξ, η) = d(Tξ, Tη) ≤ ϕ(m(ξ, η)) = ϕ(d(ξ, η)) < d(ξ, η).

So, ξ = η. Finally, suppose d = d′ and ϕ is continuous then it follows from
(11) that

d(xn+1, T ξ) = d(Txn, T ξ) ≤ ϕ(m(xn, ξ)) for all n ≥ 0

= ϕ
(

max
{
d(xn, ξ), d(xn, Txn), d(ξ, Tξ),

d(xn, T ξ) + d(ξ, Txn)

2

})

so passing limit as n → ∞ we obtain d(ξ, Tξ) ≤ ϕ(d(ξ, Tξ)) which is possible
only when ξ = Tξ.

The following global result can easily be obtain from Theorem 2.4.

Theorem 2.5. Let (X, d′) be a complete metric space, d another metric
on X and T : X → X is an operator satisfying (11) with gauge function
ϕ of order s ≥ 1 on an interval J = [0,∞) and m(x, y) is defined in (12).
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Then T has a unique fixed point provided that the following conditions are
satisfied:

(a′) If d � d′ assume T is uniformly continuous from (X, d) into (X, d′).
(b′) If d 6= d′ then T is continuous from (X, d′) into (X, d′).
(c′) If d = d′ then T is continuous at ξ.

Moreover, if ϕ is continuous, then continuity of T in (c′) can be omitted.

Remark 2.6. If ϕ(t) = qt (0 < q < 1), then Theorem 2.4 generalizes
[1, Theorem 2.1] and Theorem 2.5 generalizes [1, Theorem 2.2]. In addition
if d = d′ then Theorem 2.4 and 2.5 reduces to [1, Corollary 2.2 and 2.4]
respectively. Note that unlike the results of [1] our results also provide the
uniqueness of fixed point.

3. Homotopy result

In this section we obtain a homotopy result as an application of Theo-
rem 2.4. The proof of the result is inspired by the [10, Theorem 2.4]. We
begin with the following Lemma whose proof is given in the proof of [10,
Theorem 2.4]. We include its detail for completeness.

Lemma 3.1. If {sn} is a sequence of nonnegative real numbers and
ϕ : J → J is a gauge function of the order s ≥ 1 then lim inf ϕ(sn) ≤
ϕ(lim inf sn).

Proof. Fix ǫ > 0 and k ∈ N. Note that there exists m > k with

sm ≤ inf{sn : n > k} + ǫ.

Now since ϕ is nondecreasing we have

ϕ(sm) ≤ ϕ(inf{sn : n > k} + ǫ) ≤ ϕ(lim inf sn + ǫ),

and so

inf{ϕ(sn) : n > k} ≤ ϕ(lim inf sn + ǫ).

Hence, lim inf ϕ(sn) ≤ ϕ(lim inf sn).

Theorem 3.2. Let (X, d′) be a complete metric space and d be another

metric on X. Let U ⊆ X be d-open subset of X. Suppose H : Ud′×[0, 1] → X
satisfies the following properties:

(i) x 6= H(x, λ) for x ∈ Ud′ \ U and λ ∈ [0, 1].

(ii) For every x, y ∈ Ud′

d(H(x, λ), H(y, λ)) ≤ ϕ
(

max
{
d(x, y), d(x, H(x, λ)), d(y, H(y, λ)),

1

2
[d(x, H(y, λ)) + d(y, H(x, λ))]

})
;
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where ϕ is a gauge function of the order s ≥ 1 on an interval J =
[0,∞), λ ∈ [0, 1] and;

(iii) H(x, λ) is continuous in λ w.r.t. d, uniformly for x ∈ Ud′.
(iv) If d � d′ assume H is uniformly continuous from U × [0, 1] endowed

with the metric d on U into (X, d′).

(v) If d 6= d′ assume H is continuous from Ud′ × [0, 1] endowed with the

metric d′ on Ud′ into (X, d′).
(vi) If d = d′ then T is continuous.

(vii) inf{d(x, Hλ(x)) : x ∈ Ud′ \ U, λ ∈ [0, 1]} > 0.

In addition assume H0 has a fixed point. Then for each λ ∈ [0, 1] we have
that Hλ has a fixed point xλ ∈ U (here Hλ(.) = H(., λ)).

Proof. Let

A = {λ ∈ [0, 1] : x = H(x, λ) for some x ∈ U}.

Now since H(., 0) has a fixed point and (i) holds we have that 0 ∈ A, so A
is nonempty. We will show A is both closed and open in [0, 1], and so by
connectedness of [0, 1] we have A = [0, 1].
First we show A is closed in [0,1]. Let (λk) be a sequence in A with λk → λ ∈
[0, 1] as k → ∞. By definition for k, there exists xk ∈ U with xk = H(xk, λk).
We claim that,

(14) inf
k≥1

d(xk, Ud′ \ U) > 0.

Suppose not. For a fixed i ∈ N, there exists ni ∈ N and yni
∈ Ud′ \ U with

d(xni
, yni

) <
1

i
.

Consequently, there exists a subsequence K of {1, 2, · · · } and a sequence

{yi} ⊆ Ud′ \ U (for i ∈ K) with

(15) d(xi, yi) <
1

i
for i ∈ K.

This together with (vii) implies

(16) 0 < inf{d(x, Hλ(x)) : x ∈ Ud′ \ U, λ ∈ [0, 1]} ≤ lim
i→∞

inf
i∈K

d(yi, Hλi
(yi)).

We will now show that

(17) lim
i→∞

inf
i∈K

d(yi, Hλi
(yi)) = 0.
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To see this, note that

lim
i→∞

inf
i∈K

d(yi, Hλi
(yi))

≤ lim
i→∞

inf
i∈K

[d(yi, xi) + d(xi, Hλi
(yi))]

≤ lim
i→∞

inf
i∈K

[
1

i
+ d(H(xi, λi), H(yi, λi))]

= lim
i→∞

inf
i∈K

d(H(xi, λi), H(yi, λi))

≤ lim
i→∞

inf
i∈K

ϕ(max{d(xi, yi), d(xi, H(xi, λi)),

d(yi, H(yi, λi)),
1

2
[d(xi, H(yi, λi)) + d(yi, H(xi, λi))]}).

Let

m(xi, yi) = max
{
d(xi, yi), d(xi, H(xi, λi)), d(yi, H(yi, λi)),

1

2
[d(xi, H(yi, λi)) + d(yi, H(xi, λi))]

}
.

Case 1: If m(xi, yi) = d(xi, yi) then,

lim
i→∞

inf
i∈K

d(yi, Hλi
(yi)) ≤ lim

i→∞
inf
i∈K

ϕ(d(xi, yi))

< lim
i→∞

inf
i∈K

d(xi, yi) = lim
i→∞

inf
i∈K

1

i
= 0.

Hence (17) is true in this case.

Case 2: If m(xi, yi) = d(xi, H(xi, λi)). Then m(xi, yi) = 0 and (17) is im-
mediate.

Case 3: If m(xi, yi) = d(yi, H(yi, λi)) then by Lemma 3.1 we have

lim
i→∞

inf
i∈K

d(yi, Hλi
(yi)) ≤ lim

i→∞
inf
i∈K

ϕ(d(yi, Hλi
(yi)))

≤ ϕ( lim
i→∞

inf
i∈K

d(yi, Hλi
(yi))),

which implies limi→∞ infi∈K d(yi, Hλi
(yi)) = 0 since ϕ(z) < z if z > 0.

Hence (17) is true.

Case 4: Finally, if m(xi, yi) = 1
2 [d(xi, H(yi, λi)) + d(yi, H(xi, λi))]}. Then

ϕ(m(xi, yi)) ≤ m(xi, yi) implies that
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lim
i→∞

inf
i∈K

d(yi, Hλi
(yi)) ≤ lim

i→∞
inf
i∈K

1

2
[d(xi, H(yi, λi)) + d(yi, H(xi, λi))]

≤ lim
i→∞

inf
i∈K

1

2
[d(xi, yi) + d(yi, H(yi, λi)) +

d(xi, yi) + d(xi, H(xi, λi))]

≤ lim
i→∞

inf
i∈K

1

2

[
1

i
+ d(yi, Hλi

(yi)) +
1

i
+ 0

]
.

Hence (17) is immediate. Thus we have a contradiction from (16) and as a
result our claim (14) is true. Hence there exists r > 0 with d(xk, z) > r for

all k ≥ 1 and for all z ∈ Ud′ \ U . As a result (note xk ∈ U for each k)

S(xk, r)d′ ⊆ U k ≥ 1.

If we choose δ such that σ(δ) < r then S(xk, δ)d′ ⊆ U for k ≥ 1. This
together with (iii) implies that there exists an integer n0 with

d(xn0
, Hλ(xn0

)) = d(H(xn0
, λ), H(xn0

, λ)) < δ.

Now Theorem 2.4 guarantees that Hλ has a fixed point xλ,n0
∈ S(xk, r)d′ ⊆

Ud′ . Note from (i) that xλ,n0
∈ U . Consequently, λ ∈ A, so A is closed in

[0, 1].
Next we will show that A is open in [0, 1]. Let λ0 ∈ A and x0 ∈ U with
x0 = H(x0, λ0). Since U is open there exists r > 0 with S(x0, r) ⊆ U . Now
(iii) guarantees that there exists η = η(r, δ) > 0 with

d(x0, H(x0, λ)) = d(H(x0, λ0), H(x0, λ)) < δ

for λ ∈ [0, 1] and |λ − λ0| < η. We may choose δ such that σ(δ) < r.

Now Theorem 2.4 guarantees that there exists xλ ∈ S(x0, r)d′ ⊆ Ud′ with
xλ = Hλ(xλ) for λ ∈ [0, 1] and |λ − λ0| < η. Hence A is open in [0, 1].

Remark 3.3. If ϕ(t) = qt (0 < q < 1), then Theorem 3.2 extends [1,
Theorem 3.1] and thus some results of [8, 11, 12].
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Coincidence and fixed points
for hybrid tangential maps
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Abstract. In [9] by Liu et al. the common property .E:A/ for two pairs of hybrid maps
is defined. Recently, O’Regan and Shahzad [16] have introduced a very general con-
tractive condition and obtained some fixed point results for hybrid maps. We introduce
a new property for pairs of hybrid maps that contains the property .E:A/ and obtain some
coincidence and fixed point theorems that extend/generalize some results from the above-
mentioned papers.

Keywords. Fixed points, hybrid maps, the property .E:A/, weak commutativity.
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1 Introduction

In recent years, many fixed point theorems have appeared in the literature using
the notion of compatibility [4] by various authors. Compatible mappings of type
.A/ [5], type .B/ [12] (which is the extension of type .A/ compatible maps),
type .P / [13] and type .C / [14] have also been the subject of interest for many
researchers. It is noted that if the maps are continuous then the notions of compati-
bility, compatibility of type .A/, .B/, .C / and type .P / are all equivalent [12–14].
Jungck and Rhoades [6] introduced the notion of weak-compatibility which is the
extension of compatibility and all of its types [2]. Pant [10, 11] initiated the study
of non-compatible maps by introducing the concept of pointwise R-weakly com-
muting mappings. It is known [7, 11] that at an coincidence point, pointwise R-
weak commutativity is equivalent to weak compatibility and [11] that pointwise
weak commutativity is a minimal condition for the existence of fixed points. Itoh
and Takahashi [3] defined the notion of .I T /-commuting maps for the setting of
single-valued and multivalued maps. Note that at a coincidence point, a weakly
compatible Hybrid pair .f; T / is .I T /-commuting but the converse is not true [17,
Example 1]. Sastry and Murthy [15] defined the notion of tangential single-valued
maps. Aamri and Moutawakil [1] rediscovered the notion of tangential maps and
called it the property .E:A/. They obtained some common fixed point theorems
for pair(s) of weakly compatible maps satisfying the property .E:A/. The class
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274 T. Kamran and Q. Kiran

of maps satisfying the property .E:A/ has a remarkable property that it contains
the class of non-compatible maps. Kamran [7] extended the notion of the property
.E:A/ for a hybrid pair .f; T /, introduced the notion of T -weak commutativity,
and showed that .I T /-commutativity at a coincidence point of a hybrid pair .f; T /

implies T -weak commutativity at the same point but the converse is not true in
general [7, Example 3.8]. Recently, Y. Liu et al. [9] defined the common prop-
erty .E:A/ for two pairs of hybrid maps and obtained some coincidence and fixed
point results for such pairs. More recently, O’Regan and Shahzad [16] introduced
a very general contractive condition and obtained some fixed point results for hy-
brid maps, as an application of their results they got some invariant approximation
results. The purpose of our paper is to define a new property for hybrid maps that
contains the common property .E:A/. Using this notion we obtain some coinci-
dence and fixed point theorems. Our results extend the results of O’Regan and
Shahzad [16] substantially and thus generalize many fixed point theorems in the
literature.

2 Preliminaries

Let X be a metric space with metric d . Then, for x 2 X and A � X , d.x; A/ D
inf¹d.x; y/ W y 2 Aº. We denote by CB.X/ the class of all nonempty bounded
closed subsets of X , by CL.X/ the class of all nonempty closed subsets of X .
Let H be the generalized Hausdorff metric on CL.X/ generated by the metric d ,
that is,

H.A; B/ D max

²
sup
x2A

d.x; B/; sup
y2B

d.y; A/

³

for every A; B 2 CL.X/. A point p 2 X is said to be a fixed point of T W X !
CL.X/ if p 2 Tp. The point p is called a coincidence point of f W X ! X

and T W X ! CL.X/ if fp 2 Tp. The set of coincidence points of f and T is
denoted by C.f; T / and the set of fixed points of f by F.f /.

Definition 2.1 ([8]). Maps f W X ! X and T W X ! CL.X/ are said to be
compatible if f T x 2 CL.X/ for all x 2 X and H.f T xn; Tf xn/ ! 0 whenever
¹xnº is a sequence in X such that T xn ! A 2 CL.X/ and f xn ! t 2 A.

Remark 2.2. Therefore, the maps f W X ! X and T W X ! CL.X/ are
non-compatible if f T x 2 CL.X/ for all x 2 X and there exists at least one
sequence ¹xnº in X such that T xn ! A 2 CL.X/ and f xn ! t 2 A but
limn!1 H.f T xn; Tf xn/ ¤ 0 or nonexistent.
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Coincidence and fixed points for hybrid tangential maps 275

Definition 2.3 ([6]). Maps f W X ! X and T W X ! CL.X/ are weakly com-
patible if they commute at their coincidence points, i.e., if f T x D Tf x whenever
f x 2 T x.

Definition 2.4 ([3, 17]). Maps f W X ! X and T W X ! CL.X/ are said to be
.I T /-commuting at x 2 X if f T x � Tf x.

Example 2.5 ([17]). Let X D Œ1; 1/ with the usual metric. Define f W X ! X ,
T W X ! CL.X/ by f x D 4x and T x D Œ3 C x; 1/ for all x 2 X . Then at
x D 1, f and T are .I T /-commuting but not weakly compatible.

Definition 2.6 ([7]). Let T W X ! CL.X/, then f W X ! X is said to be T -
weakly commuting at x 2 X if ff x 2 Tf x.

Example 2.7 ([7]). Let X D Œ1; 1/ with the usual metric. Define f W X ! X ,
T W X ! CL.X/ by f x D 2x and T x D Œ1; 2x C 1� for all x 2 X . Then for all
x 2 X , f x 2 T x, ff x D 4x 2 Œ1; 4x C 1� D Tf x, f T x D Œ2; 4x C 2� ¢ Tf x.
Therefore f is T -weakly commuting but not .I T /-commuting. Also note that f

and T are not weakly compatible.

Definition 2.8 ([7]). Maps f W X ! X and T W X ! CL.X/ are said to satisfy the
property .E:A/ if there exists a sequence ¹xnº in X , some t 2 X and A 2 CL.X/

such that limn!1 f xn D t 2 A D limn!1 T xn.

Definition 2.9 ([9]). Let f; g W X ! X and S; T W X ! CL.X/. The hybrid pairs
.f; T / and .g; S/ are said to satisfy the common property .E:A/ if there exist two
sequences ¹xnº, ¹ynº in X , some t 2 X , and A; B 2 CL.X/ such that

lim
n!1 T xn D A; lim

n!1 Syn D B; lim
n!1 f xn D lim

n!1 gyn D t 2 A \ B: (2.1)

We state the following results for convenience.

Theorem 2.10 ([9]). Let f; g be two self-maps of the metric space .X; d/ and let
F; G be two maps from X into CB.X/ such that

.1/ .f; F / and .g; G/ satisfy the common property .E:A/;

.2/ for all x ¤ y 2 X ,

H.F x; Gy/ < max

²
d.f x; gy/;

d.f x; F x/ C d.gy; Gy/

2
;

d.f x; Gy/ C d.gy; F x/

2

³
: (2.2)
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276 T. Kamran and Q. Kiran

If fX and gX are closed subsets of X , then

(a) f and F have a coincidence point;

(b) g and G have a coincidence point;

(c) f and F have a common fixed point provided that f is F -weakly commuting
at v and ff v D f v for v 2 C.f; F /;

(d) g and G have a common fixed point provided that g is G-weakly commuting
at v and ggv D gv for v 2 C.g; G/;

(e) f; g; F , and G have a common fixed point provided that both (c) and (d) are
true.

Theorem 2.11 ([16]). Let X WD .X; d/ be a metric space, f W X ! X and
T W X ! CL.X/ such that f and T satisfy the property .E:A/. Suppose that there
exist a continuous non-decreasing function � W Œ0; 1/ ! Œ0; 1/ and continuous
functions �i W Œ0; 1/ ! Œ0; 1/ .i D 1; 2; : : : ; 7/ satisfying �i.0/ D 0 for i D
1; 2; 4 and �.�i .z// < z for z > 0 and i D 3; 5; 6; 7 and

H.T x; Ty/ � �
�

max¹�1.d.f x; fy//; �2.d.f x; T x//; �3.d.fy; Ty//;

�4.d.fy; T x//; �5.d.f x; Ty//; �6.d.f x; fy/ C d.f x; T x/

C d.fy; T x/ C d.fy; Ty//; �7.d.f x; fy/ C d.f x; T x/

C d.fy; T x/ C d.f x; Ty//º�; (2.3)

for all x; y 2 X . If fX is closed, then C.f; T / ¤ ¿.

We have the following definition.

Definition 2.12. Let X WD .X; d/ be a metric space, f; g W X ! X and S; T W
X ! CL.X/. The hybrid pair .f; T / is said to be g-tangential at t 2 X if
there exist two sequences ¹xnº, ¹ynº in X , A 2 CL.X/ such that limn!1 Syn 2
CL.X/ and

lim
n!1 f xn D lim

n!1 gyn D t 2 A D lim
n!1 T xn: (2.4)

Lemma 2.13. Let X WD .X; d/ be a metric space and the hybrid pairs .f; T / and
.g; S/ satisfy the common property .E:A/, then .f; T / is g-tangential and .g; S/

is f -tangential.

However, the following example shows that if .f; T / is g-tangential, then it is
not necessary that .f; T / and .g; S/ satisfy the common property .E:A/.
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Coincidence and fixed points for hybrid tangential maps 277

Example 2.14. Let X D Œ1; 1/ with the usual metric. Define f; g W X ! X and
S; T W X ! CL.X/ by

f x D 2 C 1

2
x; gx D 2 C 1

3
x; Sx D Œ1; 2� and T x D Œ2; 2 C x�

for all x 2 X . Consider the sequences ¹xnº D ®
1 C 1

n

¯
n2N and ¹ynº D ®

3
2 C

1
n

¯
n2N in X . Then

lim
n!1 f xn D lim

n!1 gyn D 5

2
2 Œ2; 3� D lim

n!1 T xn:

Therefore the hybrid pair .f; T / is g-tangential. Suppose that there exist ¹xnº and
¹ynº in X such that limn!1 T xn D A, limn!1 Tyn D B and limn!1 f xn D
limn!1 gyn D t 2 A\B D ¹2º. This implies that limn!1 xn D limn!1 yn D
0. Clearly, there do not exist such sequences in X .

3 Main results

We begin with the following theorem.

Theorem 3.1. Let X WD .X; d/ be a metric space, f; g W X ! X and T; S W X !
CL.X/ be such that either .f; T / is g-tangential or .g; S/ is f -tangential. Sup-
pose that there exist a continuous non-decreasing function � W Œ0; 1/ ! Œ0; 1/

and continuous functions �i W Œ0; 1/ ! Œ0; 1/ .i D 1; 2; : : : ; 7/ satisfying
�i .0/ D 0 for i D 1; 2; 4 and �.�i .z// < z for z > 0 and i D 3; 5; 6; 7 and

H.T x; Sy/ � �
�

max¹�1.d.f x; gy//; �2.d.f x; T x//; �3.d.gy; Sy//;

�4.d.gy; T x//; �5.d.f x; Sy//; �6.d.f x; gy/ C d.f x; T x/

C d.gy; T x/ C d.gy; Sy//; �7.d.f x; gy/ C d.f x; T x/

C d.gy; T x/ C d.f x; Sy//º�; (3.1)

H.Sx; Ty/ � �
�

max¹�1.d.gx; fy//; �2.d.gx; Sx//; �3.d.fy; Ty//;

�4.d.fy; Sx//; �5.d.gx; Ty//; �6.d.gx; fy/ C d.gx; Sx/

C d.fy; Sx/ C d.fy; Ty//; �7.d.gx; fy/ C d.gx; Sx/

C d.fy; Sx/ C d.gx; Ty//º�; (3.2)

for all x; y 2 X . Further suppose that one of the following holds:

(i) fX is a closed subset of X and TX � gX;
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278 T. Kamran and Q. Kiran

(ii) gX is a closed subset of X and SX � fX;

(iii) fX and gX are closed subsets of X .

Then C.f; T / ¤ ¿ and C.g; S/ ¤ ¿.

Proof. Suppose that the hybrid pair .f; T / is g-tangential, then there exist se-
quences ¹xnº and ¹ynº in X such that

lim
n!1 f xn D lim

n!1 gyn D t 2 A D lim
n!1 T xn:

Let limn!1 Syn D B . We claim that A D B . Suppose the contrary, i.e.,
H.A; B/ > 0. Using

H.A; Syn/ � H.A; T xn/ C H.T xn; Syn/;

from (3.1) we get

H.A; Syn/ � H.A; T xn/ C �
�

max¹�1.d.f xn; gyn//; �2.d.f xn; T xn//;

�3.d.gyn; Syn//; �4.d.gyn; T xn//; �5.d.f xn; Syn//;

�6.d.f xn; gyn/ C d.f xn; T xn/ C d.gyn; T xn/

C d.gyn; Syn//; �7.d.f xn; gyn/ C d.f xn; T xn/

C d.gyn; T xn/ C d.f xn; Syn//º�
� H.A; T xn/ C �

�
max¹�1.d.f xn; gyn//; �2.d.f xn; T xn//;

�3.d.gyn; A/ C H.A; Syn//; �4.d.gyn; T xn//; �5.d.f xn; A/

C H.A; Syn//; �6.d.f xn; gyn/ C d.f xn; T xn/ C d.gyn; T xn/

C d.gyn; A/ C H.A; Syn//; �7.d.f xn; gyn/ C d.f xn; T xn/

C d.gyn; T xn/ C d.f xn; A/ C H.A; Syn//º�:
Letting n ! 1, we get (using �i.0/ D 0 for i D 1; 2; 4)

H.A; B/

� �
�

max¹�3.H.A; B//; �5.H.A; B//; �6.H.A; B//; �7.H.A; B//º�: (3.3)

Then, if

�3.H.A; B//Dmax
®
�3.H.A; B//; �5.H.A; B//; �6.H.A; B//; �7.H.A; B//

¯
;

from (3.3) we have (using �.�3.z// < z for z > 0)

H.A; B/ � �.�3.H.A; B/// < H.A; B/;
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Coincidence and fixed points for hybrid tangential maps 279

which is a contradiction. Similarly, for other cases we get contradictions as well.
Hence,

lim
n!1 Syn D A:

Now, suppose that condition (i) holds, i.e., fX is a closed subset of X and TX �
gX . Then, there exists a 2 X such that limn!1 f xn D t D fa. We claim that
a 2 C.f; T /. Otherwise, from (3.2) we have

H.Syn; Ta/ � �
�

max¹�1.d.gyn; fa//; �2.d.gyn; Syn//; �3.d.fa; Ta//;

�4.d.fa;Syn//;�5.d.gyn;Ta//;�6.d.gyn;fa/Cd.gyn;Syn/

C d.fa; Syn/ C d.fa; Ta//; �7.d.gyn; fa/ C d.gyn; Syn/

C d.fa; Syn/ C d.gyn; Ta//º�:
Letting n ! 1, from the above inequality we have

H.A; Ta/ � �
�

max¹�1.0/; �2.0/; �3.d.fa; Ta//; �4.0/; �5.d.fa; Ta//;

�6.d.fa; Ta//; �7.d.fa; Ta//º�: (3.4)

Suppose d.fa; Ta/ > 0. Then, if �3.d.fa; Ta// D maxiD3;5;6;7 �i .d.fa; Ta//,
from (3.4), we have (using �.�3.z// < z for z > 0)

H.A; Ta/ < d.fa; Ta/: (3.5)

Inequality (3.5) also holds for other cases as well. Since fa 2 A, using the defi-
nition of Hausdorff metric, from (3.5) we get d.fa; Ta/ < d.fa; Ta/, which is
a contradiction. Thus C.f; T / ¤ ¿.

Now, we shall show that C.g; S/ ¤ ¿. As Ta � gX , there exists b 2 X such
that fa D gb D t . Using (3.1), we get

H.Ta; Sb/ � �
�

max¹�1.d.fa; gb//; �2.d.fa; Ta//; �3.d.gb; Sb//;

�4.d.gb; Ta//; �5.d.fa; Sb//; �6.d.fa; gb/ C d.fa; Ta/

C d.gb; Ta/ C d.gb; Sb//; �7.d.fa; gb/ C d.fa; Ta/

C d.gb; Ta/ C d.fa; Sb//º�
D �

�
max¹�1.0/; �2.0/; �3.d.gb; Sb//; �4.0/; �5.d.gb; Sb//;

�6.d.gb; Sb//; �7.d.gb; Sb//º�: (3.6)

Then, if �3.d.gb; Sb// D maxiD3;5;6;7 �i .d.gb; Sb//, using the definition of
Hausdorff metric, from (3.6) we have (using �.�3.z// < z for z > 0)

d.gb; Sb/ D d.fa; Sb/ � H.Ta; Sb/ < d.gb; Sb/ (3.7)
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which is a contradiction. Inequality (3.7) also holds for other cases as well. Thus,
b 2 C.g; S/, since Sb is closed. The proofs are similar if (i) is replaced by (ii)
or (iii), or/and the g-tangentiality of .f; T / is replaced by the f -tangentiality of
.g; S/.

Corollary 3.2. Let X WD .X; d/ be a metric space, f; g W X ! X and T; S W X !
CL.X/. Suppose that the pairs .f; T / and .g; S/ satisfy the common property
.E:A/, there exist a continuous non-decreasing function � W Œ0; 1/ ! Œ0; 1/ and
continuous functions �i W Œ0; 1/ ! Œ0; 1/ .i D 1; 2; : : : ; 7/ satisfying �i .0/ D 0

for i D 1; 2; 4 and �.�i .z// < z for z > 0 and i D 3; 5; 6; 7 and

H.T x; Sy/ � �
�

max¹�1.d.f x; gy//; �2.d.f x; T x//; �3.d.gy; Sy//;

�4.d.gy; T x//; �5.d.f x; Sy//; �6.d.f x; gy/ C d.f x; T x/

C d.gy; T x/ C d.gy; Sy//; �7.d.f x; gy/ C d.f x; T x/

C d.gy; T x/ C d.f x; Sy//º�; (3.8)

H.Sx; Ty/ � �
�

max¹�1.d.gx; fy//; �2.d.gx; Sx//; �3.d.fy; Ty//;

�4.d.fy; Sx//; �5.d.gx; Ty//; �6.d.gx; fy/ C d.gx; Sx/

C d.fy; Sx/ C d.fy; Ty//; �7.d.gx; fy/ C d.gx; Sx/

C d.fy; Sx/ C d.gx; Ty//º�; (3.9)

for all x; y 2 X . Further, suppose that one of the following holds:

(i) fX is a closed subset of X and TX � gX;

(ii) gX is a closed subset of X and SX � fX;

(iii) fX and gX are closed subsets of X .

Then C.f; T / ¤ ¿ and C.g; S/ ¤ ¿.

Proof. The proof follows from Theorem 3.1, using Lemma 2.13.

Remark 3.3. Note that when g D f and T D S , inequalities (3.1) and (3.2)
reduce to inequality (2.3). Therefore, substituting g D f and T D S in Corol-
lary 3.2 we obtain Theorem 2.11.

Lemma 3.4. Let X WD .X; d/ be a metric space, f W X ! X , T W X ! CL.X/,
f be T -weakly commuting at a 2 C.f; T / and ffa D fa. Then f and T have
a common fixed point.
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Proof. Let t D fa, then t D f t D ffa 2 Tfa D T t .

We have extracted the following lemma from the proof of [16, Theorem 2.5].

Lemma 3.5. Let X WD .X; d/ be a metric space, f W X ! X , T W X ! CL.X/

be .I T /-commuting at a 2 C.f; T /. Then, (I) for each natural number n, f n.a/

is a coincidence point of f and T , (II) if f is continuous, T is closed .that is, has
a closed graph/, and limn!1 f n.a/ exists, then f and T have a common fixed
point.

Proof.
(I) Since fa 2 Ta, the statement is true for n D 1. Suppose that it is true for

n D k 2 N (that is, f kC1.a/ 2 Tf k.a/). Then f .f kC1.a// 2 f Tf k.a/ �
Tf kC1.a/.

(II) Using (I), we have

f n�1Ta D f n�2f Ta � f n�2Tfa

D f n�3f Tfa

� f n�3Tf 2a

D � � � � Tf n�1a

Thus f na D f n�1fa 2 f n�1Ta � Tf n�1a. Let t D limn!1 f na.
Then taking n ! 1, we get t 2 T t and from the continuity of f we get
t D f .t/.

Theorem 3.6. Let X WD .X; d/ be a metric space, f; g W X ! X and T; S W X !
CL.X/ be such that either .f; T / is g-tangential or .g; S/ is f -tangential. Sup-
pose that there exist a continuous non-decreasing function � W Œ0; 1/ ! Œ0; 1/

and continuous functions �i W Œ0; 1/ ! Œ0; 1/ .i D 1; 2; : : : ; 7/ satisfying
�i .0/ D 0 for i D 1; 2; 4 and �.�i .z// < z for z > 0 and i D 3; 5; 6; 7 and

H.T x; Sy/ � �
�

max¹�1.d.f x; gy//; �2.d.f x; T x//; �3.d.gy; Sy//;

�4.d.gy; T x//; �5.d.f x; Sy//; �6.d.f x; gy/ C d.f x; T x/

C d.gy; T x/ C d.gy; Sy//; �7.d.f x; gy/ C d.f x; T x/

C d.gy; T x/ C d.f x; Sy//º�; (3.10)
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H.Sx; Ty/ � �
�

max¹�1.d.gx; fy//; �2.d.gx; Sx//; �3.d.fy; Ty//;

�4.d.fy; Sx//; �5.d.gx; Ty//; �6.d.gx; fy/ C d.gx; Sx/

C d.fy; Sx/ C d.fy; Ty//; �7.d.gx; fy/ C d.gx; Sx/

C d.fy; Sx/ C d.gx; Ty//º�; (3.11)

for all x; y 2 X . Further, suppose that one of the following holds:

(i) fX is a closed subset of X and TX � gX;

(ii) gX is a closed subset of X and SX � fX;

(iii) fX and gX are closed subsets of X .

If one of the following conditions holds:

(a) f; g are continuous, S; T are closed (that is, have a closed graph), f is
.I T /-commuting at a 2 C.f; T /, g is .IS/-commuting at b 2 C.g; S/ and
limn!1 f na, limn!1 gnb exist;

(b) f is T -weakly commuting at a and ffa D fa for any a 2 C.f; T / and g is
S -weakly commuting at b and ggb D gb for any b 2 C.g; S/;

then F.f / \ F.T / ¤ ¿ and F.g/ \ F.S/ ¤ ¿.

Proof. Theorem 3.1 guarantees that C.f; T / ¤ ¿ and C.g; S/ ¤ ¿. Thus there
exist a; b 2 X such that fa 2 Ta and gb 2 Sb. The rest of the proof follows
from Lemmas 3.4 and 3.5.

Example 3.7. Let X D Œ0; 1/ with the usual metric. Define f; g W X ! X and
S; T W x ! CL.X/ by

f x D 2 C 1

2
x; gy D 2 C 1

4
y; T x D Œx; 2 C x� and Sy D

hy

2
; 2 C 1

2
y

i

for all s; y 2 X . Consider the sequences xn D ¹1 C 1
n

º and yn D ¹2 C 1
n

º in X .
Then

lim
n!1 f xn D lim

n!1 gyn D 5

2
D Œ1; 3� D lim

n!1 T xn D lim
n!1 Syn:
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Therefore the pair .f; T / is g-tangential and the pair .g; S/ is f -tangential. Also,

H.T x; Sy/ D
ˇ̌̌
x � y

2

ˇ̌̌

D 2d.f x; gy/

� �
�

max¹�1.d.f x; gy//; �2.d.f x; T x//; �3.d.gy; Sy//;

�4.d.gy; T x//; �5.d.f x; Sy//; �6.d.f x; gy/ C d.f x; T x/

C d.gy; T x/ C d.gy; Sy//; �7.d.f x; gy/ C d.f x; T x/

C d.gy; T x/ C d.f x; Sy//º�;

and

H.Sx; Ty/ D
ˇ̌̌
y � x

2

ˇ̌̌

D 2d.gx; fy/

� �
�

max¹�1.d.gx; fy//; �2.d.gx; Sx//; �3.d.fy; Ty//;

�4.d.fy; Sx//; �5.d.gx; Ty//; �6.d.gx; fy/ C d.gx; Sx/

C d.fy; Sx/ C d.fy; Ty//; �7.d.gx; fy/ C d.gx; Sx/

C d.fy; Sx/ C d.gx; Ty//º�;

for all x; y 2 X , here �.t/ D 2t , �i.t/ D t; i D 1; 2; 4 and �i.t/ D t; i D
3; 5; 6; 7. Therefore all hypotheses of Theorem 3.1 are satisfied. Note that 4 2
C.f; T / and 8

3
2 C.g; S/. Moreover, f is T -weakly commuting at 4 2 X , g is

S -weakly commuting at 8
3

, ff 4 D 4 and gg 8
3

D 8
3

. Therefore all hypotheses
of Theorem 3.6 are satisfied. Indeed, 4 2 F.f / \ F.T / and 8

3
2 F.g/ \ F.S/.

Furthermore, Theorem 2.10 is not applicable here.

Remark 3.8. As applications of our results one can extend the invariant approxi-
mation results in O’Regan and Shahzad [16] to pairs of hybrid maps.
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Fixed Point Theorems for Multi-valued Mappings

by Altering Distances

Quanita Kiran and Tayyab Kamran

Abstract

Recently T. Suzuki showed that Mizoguchi-Takahashi’s fixed point the-
orem is a real generalization of Nadler’s fixed point theorem. Inspiring
from the result of Mizoguchi-Takahashi and using the ideas of Feng and
Liu, Klim and Wardowski obtained some fixed point Theorems and showed
that their results are different from Reich point theorem and Mizoguchi-
Takahashi’s fixed point theorem. Very recently, Pathak and Shahzad in-
troduced a class of functions and generalized some fixed point theorems
by Klim and Wardowski by altering distances, i-e., for the mapping T
(from a complete metric space (X, d) into the class of nonempty closed
subsets of X). We notice that results of Pathak and Shahzad actually
holds only when T takes values in the set of proximinal subsets of X. In
this paper we introduce a new class of functions which is the subclass of
the class introduced by Pathak and Shahzad and improve some results of
Pathak and Shahzad by allowing T to have values in closed subsets of X,
indeed.

Key words and phrases. Complete metric space, Hausdorff metric, Nadler’s
Theorem, Reich’s Theorem.

2000 Mathematics Subject Classification. 47H10, 54H25.

1 Preliminaries

Let (X, d) be a metric space. For x ∈ X and A ⊆ X, d(x,A) = inf{d(x, y) :
y ∈ A}. A subset A of X is called proximinal [2] if, for each x ∈ X, there is
an element a ∈ A such that d(x, a) = d(x,A). We denote by N(X) the class of
all nonempty subsets of X, by CL(X) the class of all nonempty closed subsets
of X, by PC(X) the class of all nonempty proximinal subsets of X, by CB(X)
the class of all nonempty closed and bounded subsets of X and by K(X) the
class of all nonempty compact subsets of X . Let H be the Hausdorff metric on
CL(X) generated by the metric d, that is,

H(A,B) =
{

max{supx∈A d(x,B), supy∈B d(y, A)}, if the maximum exists
∞, otherwise.

for every A,B ∈ CL(X). A point p ∈ X is said to be a fixed point of T : X →
CL(X) if p ∈ Tp. If, for x0 ∈ X, there exists a sequence {xn} in X such that
xn ∈ Txn−1 then O(T, x0) = {x0, x1, x2, · · ·} is said to be orbit of T : X →
CL(X). A mapping f : X → R is said to be T -orbitally lower semi-continuous
[7] if {xn} is a sequence in O(T, x0) and xn → ξ implies f(ξ) ≤ limn inf f(xn).

1
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Let T : X → N(X). For b ∈ (0, 1] and x ∈ X, we define Ix
b = {y ∈ Tx :

bd(x, y) ≤ d(x, Tx)}, and M(b, x; θ) = {y ∈ Tx : bθ(d(x, y)) ≤ θ(d(x, Tx))}. Let
A ∈ (0, +∞] and R denote the set of real numbers. Θ[0, A) [3] denoted the class
of functions θ : [0, A) → R satisfy the following conditions: (i) θ is nondecreasing
on [0, A); (ii) θ(t) > 0 for each t ∈ (0, A); (iii) θ is subadditive in (0, A); i-e.,
θ(t1 + t2) ≤ θ(t1) + θ(t2) for t1, t2 ∈ (0, A). Notice that (i) implies that θ is
strictly inverse isotone on (0, A); i-e., θ(t1) < θ(t2) ⇒ t1 < t2, t1, t2 ∈ (0, A).

2 Introduction

Nadler [10] initiated the study of fixed points for multivalued maps by extending
the Banach contraction principle in the following way.

Theorem 2.1 (Nadler [10]). Let (X, d) be a complete metric space and T is a
mapping from X into CB(X) such that for all x, y ∈ X,

H(Tx, Ty) ≤ λd(x, y)

where, 0 ≤ λ < 1. Then T has a fixed point.

Next, S. Reich [11] established the following:

Theorem 2.2 (Reich [11]) If (X, d) be a complete metric space and T : X →
K(X) satisfies

H(Tx, Ty) ≤ α(d(x, y))d(x, y) (1)

for each x, y ∈ X, where α is a function of (0,∞) into [0, 1) such that

lim sup
r→t+

α(r) < 1 (2)

for each t ∈ (0,∞), then T has a fixed point.

Reich [12] raised the question: If T satisfies the same contractive condition (1),
whether or not the range of T can be relaxed. Specifically the question was
whether the range of T , K(X) can be replaced by CB(X) or CL(X). In [9]
Mizoguchi and Takahashi gave the positive answer to the conjecture of Reich
[11], when the inequality (2) holds also for t = 0, in particular they proved:

Theorem 2.3 (Mizoguchi-Takahashi[9]) Let (X, d) be a complete metric space
and T : X → CB(X). If α is a function of (0,∞) into [0, 1) such that
lim supr→t+ α(r) < 1 for each t ∈ [0,∞) and if

H(Tx, Ty) ≤ α(d(x, y))d(x, y) for each x, y ∈ X, (3)

then T has a fixed point in X.

It is worth mentioning to note that recently T. Suzuki [13] showed that Mizoguchi-
Takahashi’s fixed point theorem is a real generalization of Nadler’s fixed point
theorem. Inspiring from the result of Mizoguchi-Takahashi and using the ideas of
Feng-Liu [1], Klim and Wardowski [8] obtained the following result and showed
that their result is different from Theorem 2.2 and Theorem 2.3.

Theorem 2.4 (Klim, Wardowski [8]) Let (X, d) be a complete metric space and
let T : X → CL(X). Assume that the following conditions hold:

2
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(i)The map f : X → R defined by f(x) = d(x, Tx), x ∈ X, is lower semi-
continuous;

(ii)there exist α : [0,∞) → [0, 1) such that

∀t∈[0,∞){lim sup
r→t+

α(r) < 1}

and
∀x∈X∃y∈Ix

1
{d(y, Ty) ≤ α(d(x, y))d(x, y)}.

Then T has a fixed point.

They also established the following result:

Theorem 2.5 (Klim, Wardowski [8]) Let (X, d) be a complete metric space and
let T : X → CL(X). Assume that the following conditions hold:

(i)The map f : X → R defined by f(x) = d(x, Tx), x ∈ X, is lower semi-
continuous;

(ii)there exist b ∈ (0, 1) and α : [0,∞) → [0, b) such that

∀t∈[0,∞){lim sup
r→t+

α(r) < b}

and
∀x∈X∃y∈Ix

b
{d(y, Ty) ≤ α(d(x, y))d(x, y)}.

Then T has a fixed point.

Recently, H. K. Pathak and N. Shahzad [3] introduced a new class of mappings
Θ[0, A) and generalizes Theorem 2.4 and Theorem 2.5.

Theorem 2.6 (Pathak, Shahzad [3]) Let (X, d) be a complete metric space and
let T : X → CL(X). Assume that the following conditions hold:

(i)The map f : X → R defined by f(x) = d(x, Tx), x ∈ X, is lower semi-
continuous;

(ii)there exists α : (0,∞) → [0, 1) such that

∀t ∈ [0,∞){lim sup
r→t+

α(r) < 1}

and

(iii)there exists θ ∈ Θ[0, A) satisfying the following condition:

for all x ∈ X, M(1, x; θ)is nonempty

and

∀x ∈ X∃y ∈ M(1, x; θ){θ(d(y, Ty)) ≤ α(d(x, y))θ(d(x, y))}.

Then T has a fixed point.

3
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Theorem 2.7 (Pathak, Shahzad [3]) Let (X, d) be a complete metric space and
let T : X → CL(X). Assume that the following conditions hold:

(i)The map f : X → R defined by f(x) = d(x, Tx), x ∈ X, is lower semi-
continuous;

(ii)there exists b ∈ (0, 1) and α : (0,∞) → [0, b) such that

∀t ∈ [0,∞){lim sup
r→t+

α(r) < b}

and

(iii)there exists θ ∈ Θ[0, A) satisfying the following condition(with b and α of
(ii)):

for all x ∈ X, M(a, x; θ)is nonempty for any constant a ∈ (0, 1)

and

∀x ∈ X∃y ∈ M(b, x; θ){θ(d(y, Ty)) ≤ α(d(x, y))θ(d(x, y))}.

Then T has a fixed point.

3 Motivation

A crucial assumption in the hypothesis of Theorem 2.6 is that M(1, x; θ) = {y ∈
Tx : θ(d(x, y)) ≤ θ(d(x, Tx))} is nonempty. We observe that it exclude all such
θ’s which are strictly increasing from the class Θ[0, A). Note that we have the
following inclusion.

K(X) ⊆ CB(X) ⊆ PC(X) ⊆ CL(X) ⊆ N(X).

Therefore, if T is a mapping from X into CL(X) having values in CL(X) \
PC(X) then in general for any x ∈ X we have d(x, y) > d(x, Tx)∀y ∈ Tx
and if θ is strictly increasing then obviously θ(d(x, y)) > θ(d(x, Tx))∀y ∈ Tx.
In simple words, if θ is strictly increasing then M(1, x; θ) will be nonempty
only when T have values in the set of proximinal subsets of X. Thus, the
question arises that whether we can remove the condition M(1, x; θ) 6= ∅ from
the hypotheses of the Theorem 2.6 so that the result still holds. In this paper
we give an affirmative answer to this question provided the function θ ∈ Θ[0, A)
is positive homogenous in [0, A); i-e.,

(iv) θ(at) ≤ aθ(t) ∀ a > 0, t ∈ [0, A).

We denote by Θh[0, A) the class of function θ ∈ Θ[0, A) satisfying condition
(iv), above. Our results not only relax the conditions but also the proofs are
simpler than those of [3].

4
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4 Main Result

We start with the following simple Lemmas.

Lemma 4.1 Let (X, d) be a metric space and B ∈ CL(X). Then for each
x ∈ X and q > 1 there exists an element b ∈ B such that

d(x, b) ≤ qd(x,B). (4)

Proof. Let d(x,B) = 0 then x ∈ B, since B is closed subset of X. Further,
taking b = x we see that (6) holds. Now, suppose that d(x,B) > 0 and choose

ε = (q − 1)d(x,B). (5)

Then using the definition of d(x,B) it follow that there exists b ∈ B such that

d(x, b) ≤ d(x,B) + ε

≤ qd(x,B) (using (5)).

Lemma 4.2 Let (X, d) be a metric space θ ∈ Θh[0, A) and B ∈ CL(X). Then
for each x ∈ X and q > 1 there exists an element b ∈ B such that

θ(d(x, b)) ≤ qθ(d(x,B)). (6)

Theorem 4.3 Let (X, d) be a complete metric space and α is a function from
(0,∞) into (0, b], 0 < b < 1 such that

lim sup
r→t+

α(r) < b for each t ∈ [0,∞). (7)

Let T : X → CL(X). Assume that the following condition holds.

θ(d(y, Ty)) ≤ α(d(x, y))θ(d(x, y)) for each x ∈ X and y ∈ Tx, (8)

where θ ∈ Θh[0, A). Then,

(i) for each x0 ∈ X, there exists an orbit {xn} of T and ξ ∈ X such that
limn xn = ξ;

(ii) ξ is fixed point of T if and only if the function f(x) := d(x, Tx) is T -
orbitally lower semi continuous at ξ.

Proof of Theorem 4.3 Let x0 ∈ X. Since Tx0 6= ∅, there exists x1 ∈ X such
that x1 ∈ Tx0. If x0 = x1, then x0 is fixed point of T . Let x0 6= x1, by taking
q = 1√

α(d(x0,x1))
it follows from Lemma 4.2 that there exists x2 ∈ Tx1 such that

θ(d(x1, x2)) ≤ 1√
α(d(x0, x1))

θ(d(x1, Tx1)). (9)

Repeating the above argument we obtain a sequence {xn}n∈N in X such that

θ(d(xn, xn+1)) ≤ 1√
α(d(xn−1, xn))

θ(d(xn, Txn)) (10)

5
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where,
xn ∈ Txn−1, n = 1, 2, · · · . (11)

We have assumed that xn−1 6= xn, for otherwise xn−1 is fixed point of T . Using
(8) it follows from (10) that

θ(d(xn, xn+1)) ≤
√

α(d(xn−1, xn))θ(d(xn−1, xn)) (12)
< θ(d(xn−1, xn)). (13)

Hence {θ(d(xn, xn+1))} is decreasing sequence of positive real numbers bounded
below by 0. Since θ is strictly inverse isotone {d(xn, xn+1)} is also a decreasing
sequence of positive real numbers bounded below by 0, thus convergent. Let
{θ(d(xn, xn+1))} converges to some nonnegative real number r, say. We claim
that r = 0, for otherwise, by taking limits in (12) we get

r ≤
√

lim
n→∞

sup α(d(xn−1, xn)) r < br < r (using (7)),

which is a contradiction. we claim that {d(xn, xn+1)} also converges to 0. Sup-
pose d(xn, xn+1) → γ > 0. Then, for 0 < ε < γ, there exists a natural number
n0 such that

0 < δ = γ − ε < d(xn, xn+1) ∀n ≥ n0.

Since θ is positive and nondecreasing,

0 < θ(δ) ≤ θ(d(xn, xn+1)) ∀n ≥ n0,

which is a contradiction, since θ(d(xn, xn+1)) → 0. From (12), we get

θ(d(xn, xn+1)) ≤ [
√

α(d(xn−1, xn)) · · ·
√

α(d(x0, x1))]θ(d(x0, x1)). (14)

It follow from (7) that we may choose an ε > 0 and a ∈ (0, b) such that

α(t) < a2 for t ∈ (0, ε). (15)

Let N be such that
d(xn−1, xn) < ε for n ≥ N. (16)

Then, from (14) we have

θ(d(xn, xn+1)) ≤ an−(N−1)[
√

α(d(xN−2, xN−1)) · · ·
√

α(d(x0, x1))]θ(d(x0, x1))
< an−N+1bN−1θ(d(x0, x1)). (17)

Therefore, for any m ∈ N we have

θ(d(xn, xn+m)) ≤ θ(d(xn, xn+1)) + · · ·+ θ(d(xn+m−1, xn+m))
< an−N+1bN−1[1 + a + a2 + · · ·+ am−1]θ(d(x0, x1))

< bN−1 an−N+1

1− a
θ(d(x0, x1)). (18)

Therefore
lim

n,m→∞
θ(d(xn, xm)) = 0.
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We claim that
lim

n,m→∞
d(xn, xm) = 0.

Suppose not. Then there exist δ > 0 and subsequences {xmi} and {xni} respec-
tively such that

d(xmi , xni) > δ ∀i.
Since θ is nondecreasing,

0 < θ(δ) ≤ θ(d(xmi , xni)) → 0,

which is a contradiction. This proves our claim. Hence {xn} is Cauchy sequence
in X. Since X is complete there exists ξ ∈ X such that xn → ξ. Since
xn ∈ Txn−1, it follow from (21) that

θ(d(xn, Txn)) ≤ α(d(xn−1, xn))θ(d(xn−1, xn))
< θ(d(xn−1, xn)), (19)

which implies that d(xn, Txn) < d(xn−1, xn). Letting n →∞, from (19) we get

lim
n→∞

d(xn, Txn) = 0. (20)

Suppose f(x) = d(x, Tx) is T orbitally lower continuous at ξ, then

d(ξ, T ξ) = f(ξ) ≤ lim
n

inf f(xn) = lim
n

inf d(xn, Txn) = 0.

Hence, ξ ∈ Tξ, since Tξ is closed. Conversely, if ξ is fixed point of then f(ξ) =
0 ≤ limn inf f(xn).

If we take b = 1 then the following Theorem can be obtained as a consequence
of Theorem 4.3.

Theorem 4.4 Let (X, d) be a complete metric space and T : X → CL(X)
satisfying

θ(d(y, Ty)) ≤ α(d(x, y))θ(d(x, y)) for each x ∈ X and y ∈ Tx, (21)

where α is a function from (0,∞) into (0, 1] such that

lim sup
r→t+

α(r) < 1 for each t ∈ [0,∞), (22)

and θ ∈ Θh[0, A). Then,

(i) for each x0 ∈ X, there exists an orbit {xn} of T and ξ ∈ X such that
limn xn = ξ;

(ii) ξ is fixed point of T if and only if the function f(x) := d(x, Tx) is T -
orbitally lower semi continuous at ξ.

Example 4.5 Let l2 denote the Hilbert space of all square summable sequences
of real numbers with usual norm. Note that for x = (x1, x2, · · ·) and y =
(y1, y2, · · ·)

d(x, y) = ‖x− y‖ =

√√√√
∞∑

i=1

(xi − yi)2.
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For each n = 1, 2, · · · , let en be the vector in l2 with zeros in all its coordinates
except the nth coordinate which is equal to 1. Take a = (−1,− 1

2 , · · · ,− 1
n , · · ·),

and B = {e1, e2, · · · , en, · · ·}. Define T : l2 → CL(l2) by

Tx = B ∀ x ∈ l2.

Then, for θ(t) = t condition (21) of Theorem 4.4 is obviously satisfied. Further,

d(a, B) = inf ‖a− en‖ = inf(‖a‖2 + 1 +
2
n

)
1
2 = (‖a‖2 + 1)

1
2 .

Observe that B ∈ CL(X) and there is no en in B such that ‖a− en‖ ≤ d(a, B)
and hence M(1, x; θ) is empty in this case and conditions of Theorem 2.6 are
not satisfied. Note that, e1, e2, · · · are fixed points of T .

Corollary 4.6 Let (X, d) be a complete metric space and let T : X → CL(X)
satisfying
∫ θ(d(y,Ty))

0

ψ(t)dt ≤ α(d(x, y))
∫ θ(d(x,y))

0

ψ(t)dt, for each x ∈ X and y ∈ Tx.

(23)
Where α is a function from (0,∞) into (0, 1] such that

lim sup
r→t+

α(r) < 1 for each t ∈ [0,∞), (24)

θ ∈ Θh[0, A) and Ψ ∈ Θh[0, A) given by Ψ(ε) =
∫ ε

0
ψ(t)dt and ψ : [0,∞) →

[0,∞) is a Lebesgue-integrable mapping satisfying
∫ ε

0
ψ(t)dt > 0 for all ε > 0.

Then T has a fixed point.

Since d(y, Ty) ≤ H(Tx, Ty) for y ∈ Tx. We have the following.

Corollary 4.7 Let (X, d) be a complete metric space and T : X → CL(X)
satisfying

H(Tx, Ty) ≤ α(d(x, y))d(x, y) for each x ∈ X and y ∈ Tx. (25)

Where α is a function from (0,∞) into (0, 1] such that

lim sup
r→t+

α(r) < 1 for each t ∈ [0,∞). (26)

Then,

(i) for each x0 ∈ X, there exists an orbit {xn} of T and ξ ∈ X such that
limn xn = ξ;

(ii) ξ is fixed point of T if and only if the function f(x) := d(x, Tx) is T -
orbitally lower semi continuous at ξ.

Remark 4.8 Note that Corollary 4.7 generalize Theorem 2.3 in the following
sense:

(i) the inequality (25) is weaker than the inequality (3);

(ii) the range of T in Corollary 4.7 is CL(X) which is general than CB(X);
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(iii) for the existence of fixed point we merely require that d(x, Tx) is T orbitally
continuous at ξ, whereas condition (3) in Theorem 2.3 demands that T is
a continuous map from X into CB(X).

we have the following simple example which shows the generality of our result.

Example 4.9 Let X = (−∞, 3
5 ] equipped with usual metric d. Define T : X →

CL(X) by

Tx =
{

(−∞, 1
2x] if x ∈ (−∞, 0),

(−∞, x2] if x ∈ [0, 3
5 ].

Case 1. When x ∈ (−∞, 0) and y ∈ Tx = (−∞, 1
2x], then we have

H(Tx, Ty) =
1
2
|x− y| = 1

2
d(x, y),

since y ∈ (−∞, 0) in this case.
Case 2. When x ∈ [0, 3

5 ] and y ∈ Tx, then we have

H(Tx, Ty) ≤ |x2 − y2| = (x + y)d(x, y) ≤ 24
25

d(x, y).

Thus, for any x ∈ X and y ∈ Tx, we have

d(y, Ty) ≤ H(Tx, Ty) ≤ 24
25

d(x, y).

By taking α(t) = c, where 24
25 ≤ c < 1 , we see that all conditions of Corollary

4.7 are satisfied and 0 is fixed point of T . Note that T does not satisfies the
hypothesis of Theorems 2.3 and 2.4.
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