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Abstract

The aging population in Western and developed countries, combined with advancements

in medical sciences, has resulted in a growing demand for smart home healthcare moni-

toring systems. These systems cater to the needs of elderly individuals who prefer to age

in place rather than relocate healthcare facilities. To address this demand, researchers

have explored the integration of Internet of Things (IoT) techniques and lightweight

virtualization technology in edge computing. This approach offers improved resource

management, service isolation, and seamless deployment of diverse hardware compo-

nents. In this study, a containerized architectural framework is proposed to enable

the concurrent deployment of multiple IoT applications in senior citizen homes. The

framework included sensor networks and containerized microservices, which are centrally

managed and orchestrated following the principles of DevOps.

The primary objective of the proposed smart healthcare monitoring system is to monitor

the activities and well-being of occupants and provide crucial information to healthcare

providers. By tracking various parameters and identifying signs of discomfort, the sys-

tem facilitates timely and effective assistance from healthcare professionals. The utiliza-

tion of containerization technology ensures efficient management and scalability of the

deployed applications, enabling customization and adaptation to individual needs. This

research aims to bridge the gap between traditional healthcare settings and the com-

fort of home, offering elderly individuals a comprehensive and personalized healthcare

monitoring solution that promotes independence and enhances their overall quality of

ix

life.



Chapter 1

Introduction

1.1 Background Information

1.1.1 Internet of Things

The Internet of Things (IoT) has emerged as a groundbreaking technology, connecting

various objects and devices to the Internet to enable data collection, exchange, and

analysis. Within the healthcare sector, the IoT holds tremendous potential for revo-

lutionizing patient care, enhancing healthcare delivery, and improving overall system

efficiency. By integrating medical devices, sensors, wearables, and other interconnected

objects, healthcare providers can access real-time patient data, remotely monitor vi-

tal signs, and leverage advanced analytics to develop personalized treatment plans and

proactive interventions[24]

. The Internet of Things (IoT) has brought about significant transformations in various

sectors and holds the potential to reshape our lives in numerous ways. It refers to a

network of interconnected physical objects, devices, sensors, and software applications

that autonomously exchange data over the Internet, enabling automation, real-time

monitoring, and intelligent decision-making.

• Future Prospects of IoT

The future prospects of IoT are extensive and promising, with expected growth

across domains such as healthcare, transportation, agriculture, manufacturing,

and smart cities. Potential applications range from smart homes to autonomous

vehicles and industrial automation, offering opportunities to enhance efficiency,

1



Chapter 1: Introduction

Figure 1.1: Internet of Things

productivity, and overall quality of life.

• Demands of IoT

The demand for IoT stems from the increasing need for connectivity, automation,

and data-driven insights. Gathering and analyzing real-time data from devices

empower informed decision-making, driving businesses to optimize operations,

improve customer experiences, and foster innovation. Consumers expect seam-

less connectivity and personalized experiences through IoT-enabled devices and

applications.

• Challenges of IoT

While IoT presents significant potential, challenges must be addressed for widespread

adoption and successful implementation. Interoperability and standardization

across devices, communication protocols, and data formats are crucial for seamless

integration. Privacy and security concerns arise from the collection of vast amounts

of data, requiring robust measures to protect personal information and mitigate

cybersecurity risks. Scalability, data management, and power consumption are

critical considerations, necessitating efficient infrastructure for storage, process-

2



Chapter 1: Introduction

ing, and analysis[24]. Power efficiency is vital for devices with limited battery life

or relying on energy harvesting techniques.

The Internet of Things holds tremendous promise in transforming industries and

improving our daily lives. Addressing challenges such as interoperability, privacy,

security, scalability, and power efficiency is essential for successful adoption. By

overcoming these challenges, IoT can revolutionize our world, creating intercon-

nected ecosystems that drive productivity, innovation, and an enhanced quality of

life.

• Gateway Devices

n the realm of the Internet of Things (IoT), a gateway device plays a crucial role

as a bridge between various smart devices and cloud applications. It serves as a

central component within the network layer, connecting the smart IoT devices at

the bottom layer (perception layer) to diverse applications in the upper application

layer. The gateway device takes on essential tasks, including protocol translation

between sensors and the internet, as well as providing local data storage.

The importance of a gateway device in IoT stems from its role in enabling seamless

communication and data exchange between IoT devices and the cloud. It acts

as a mediator, facilitating the flow of information between the devices and the

applications. By translating protocols, the gateway device ensures that different

devices with distinct communication protocols can communicate effectively with

each other and with the cloud[3].

Figure 1.2: Gateway Setup

3



Chapter 1: Introduction

One of the key functions of a gateway device is to aggregate and filter data collected

by connected IoT devices. It collects data from multiple sensors and devices in its

vicinity and processes it before transmitting it to the cloud. This data aggregation

and preprocessing at the edge help in reducing latency and optimizing network

bandwidth utilization. It also enables real-time or near-real-time decision-making

by filtering and forwarding only the relevant data to the cloud for further analysis

and action[2].

The gateway device also plays a vital role in enabling local data storage and edge

computing capabilities. It allows for data to be stored and processed locally,

reducing the dependency on cloud resources and improving the overall system

efficiency. This is particularly important in scenarios where low latency, offline

operations, or intermittent connectivity are critical requirements.

Furthermore, the gateway device provides an additional layer of security by acting

as a firewall and implementing security protocols. It helps in protecting the IoT

network and devices from potential cybersecurity threats by applying encryption,

access control, and authentication mechanisms. The gateway can also facilitate

secure remote access and management of IoT devices[10].

Overall, the gateway device holds significant importance in IoT systems as it acts

as a central point of connectivity, data aggregation, preprocessing, storage, and

security. It enables efficient and reliable communication between IoT devices and

the cloud, optimizes network bandwidth, reduces latency, and enhances overall

system performance. By serving as a gateway between the edge and the cloud,

it empowers IoT systems to gather, process, and utilize data effectively, enabling

various applications and services to leverage the power of IoT technology.

1.1.2 Microservice Arcitecture

Microservice architecture has gained significant attention and popularity in the

context of the Internet of Things (IoT) due to its ability to address the challenges

posed by the distributed and heterogeneous nature of IoT systems. In a microser-

vices architecture, an application is built as a collection of small, loosely coupled

services that can be independently developed, deployed, and scaled. Each service

focuses on a specific functionality or feature, and they communicate with each

4



Chapter 1: Introduction

other through well-defined APIs[23][13].

In the context of IoT, microservices offer several benefits. Firstly, they enable

modularity and flexibility in IoT system design. Since IoT systems consist of

a diverse range of devices, protocols, and data formats, breaking down the sys-

tem into microservices allows for granular control and management of individual

components. Developers can focus on building and maintaining small, specialized

services that are better suited to handle the specific requirements of IoT devices

and applications.

[3]Secondly, microservices promote scalability and agility. As the number of IoT

devices and the volume of data they generate continue to grow rapidly, scalability

becomes a crucial aspect. With microservices, scaling can be done selectively

based on the demand for specific services, rather than scaling the entire monolithic

application. This approach ensures efficient resource utilization and allows for

better responsiveness to changing IoT workloads.

Also microservices enable easier integration and interoperability in IoT systems.

With well-defined APIs, different microservices can communicate seamlessly and

exchange data, regardless of the underlying technologies or protocols used. This

interoperability is vital in IoT, where devices and systems from different vendors

need to work together to provide cohesive solutions.

Figure 1.3: Microservice Architecture

5
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Microservices also contribute to fault tolerance and resilience in IoT systems. By

isolating services and encapsulating their functionalities, failures or issues in one

service do not necessarily impact the entire system. This enables easier fault

detection, isolation, and recovery, improving the overall reliability and availability

of IoT applications.

However, implementing microservices in IoT comes with its own challenges. It

requires careful consideration of issues such as service discovery, data consistency,

event-driven communication, security, and deployment orchestration. These chal-

lenges need to be addressed to ensure the seamless operation and management of

microservices in IoT environments.

Hence microservices architecture offers a promising approach to tackling the com-

plexities and scale of IoT systems. By breaking down applications into smaller,

independent services, microservices enable modularity, scalability, flexibility, inte-

gration, and fault tolerance. It allows for efficient management of IoT devices and

data, facilitating the development of innovative and scalable IoT applications and

services.

• Microservice Architecture for health care IOT system

The applications of IoT in healthcare are vast, spanning remote patient monitor-

ing, telemedicine, smart hospitals, medication management, and health behavior

tracking. Wearable devices, for instance, can continuously track an individual’s

heart rate, physical activity, sleep patterns, and other health-related data, enabling

personalized recommendations, preventive care strategies, and early interventions

that lead to improved patient outcomes and reduced healthcare costs[12].

However, the adoption of IoT in healthcare also presents notable challenges that

must be addressed. These challenges include ensuring the privacy and security of

data, managing the substantial volume of data generated by IoT devices, estab-

lishing interoperability and standardization across devices and data formats, and

addressing ethical and legal considerations associated with IoT-driven healthcare

systems.

To overcome these challenges and unlock the full potential of IoT in healthcare,

innovative frameworks and architectures are essential. This thesis focuses on ex-

ploring the feasibility and benefits of a containerized microservice framework de-

6



Chapter 1: Introduction

ployed on edge devices for healthcare IoT systems. By harnessing the capabilities

of edge computing, this framework aims to overcome the limitations of traditional

centralized architectures, enabling efficient data processing, reduced latency, im-

proved scalability, and robust data privacy and security measures.

7



Chapter 1: Introduction

The research conducted in this thesis aims to contribute to the development of more

efficient, flexible, and secure architectures for healthcare IoT applications. Specifically,

it investigates the application of containerization and microservices in healthcare IoT

systems, particularly when deployed on edge devices. These advancements have the

potential to drive widespread adoption of IoT technologies in healthcare, resulting in

enhanced patient care, increased operational efficiency, and the realization of the full

transformative potential of IoT in the healthcare landscape.

The proliferation of IoT devices in healthcare has created a tremendous amount of data,

emphasizing the critical requirement for efficient and scalable systems to effectively

manage this data. Managing the large volume, velocity, and variety of healthcare data

generated by IoT devices in a timely and scalable manner has become a significant

challenge.

Healthcare IoT devices, including wearable sensors, medical monitoring devices, and

smart healthcare equipment, continuously generate diverse data such as vital signs,

patient records, diagnostics, and treatment information. Traditional healthcare systems

often struggle to handle the dynamic and data-intensive nature of this information,

highlighting the need for innovative approaches.

Efficient and scalable systems are essential for managing healthcare data derived from

IoT devices. These systems must be capable of processing high data rates and meet-

ing real-time processing demands presented by continuous data streams. Additionally,

they should offer robust storage capabilities to accommodate the growing volume of

healthcare data.

Scalability is crucial to adapt to the increasing number of IoT devices and the exponential

growth of data generation. By adopting scalable systems, healthcare organizations can

seamlessly expand their infrastructure to meet the rising demand for IoT devices and

effectively manage the corresponding increase in data volume[26].

Efficiency plays a pivotal role in optimizing resource utilization, minimizing latency,

and ensuring timely access to critical healthcare data. By implementing efficient data

processing algorithms and technologies, healthcare organizations can derive valuable in-

sights from IoT-generated data, enabling quicker decision-making and improved patient

outcomes.

In response to the need for efficient and scalable systems in healthcare IoT, novel

8



Chapter 1: Introduction

approaches like containerized microservice frameworks deployed on edge devices have

gained prominence. These frameworks leverage the computing capabilities of edge de-

vices to enable data processing and analysis closer to the data source. By distributing

computing tasks to edge devices, latency can be reduced, and bandwidth utilization can

be optimized[3].

To summarize, the escalating volume of healthcare data generated by IoT devices ne-

cessitates the development of efficient and scalable systems. These systems must be

capable of handling high data volumes, ensuring real-time processing, and accommodat-

ing the increasing number of IoT devices. Innovative approaches, such as containerized

microservice frameworks on edge devices, offer potential solutions to overcome the chal-

lenges associated with healthcare IoT data management. By adopting these approaches,

healthcare organizations can enhance healthcare delivery, improve patient care, and cre-

ate more efficient healthcare systems[16].

In recent years, the Internet of Things (IoT) has revolutionized numerous sectors and

has a significant impact on our daily lives. The rapid growth in IoT devices has been

exponential, with billions already deployed and a projected 50 billion devices expected

by 2020. Researchers have explored various applications and future prospects of IoT

devices. For example, in the authors emphasized the increasing interest in real-time

locating systems and the utilization of radio frequency identification (RFID) for object

identification and tracking in response to the surge in IoT devices.

With the continuous expansion of IoT applications, the characteristics of connected

devices are evolving. The ubiquitous connectivity and information-sharing capabilities

of IoT systems are reshaping industries. This connectivity leads to the generation of

massive amounts of data from embedded sensors, requiring efficient data processing and

computation power. The authors highlighted the significance of deep computation, data

analytics, and machine learning in achieving state-of-the-art performance for feature

learning on big data in industrial IoT applications.

As the IoT ecosystem continues to evolve, it is essential to address the challenges associ-

ated with processing and analyzing the vast volumes of data generated by IoT devices.

Efficient data management, computation, and analytics play a crucial role in harnessing

the potential of IoT technologies and leveraging the insights derived from IoT-generated

data.

9
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The exponential growth of IoT devices has brought about transformative changes across

various sectors. The ability of IoT systems to connect and share information has become

pervasive, leading to the generation of substantial data that require efficient processing

and computation. Researchers are actively exploring advanced techniques such as deep

computation, data analytics, and machine learning to tackle the challenges and unlock

the full potential of IoT in industrial and everyday applications. In the healthcare

IoT domain, the implementation of microservices architecture offers the opportunity

to break down complex healthcare applications into smaller, self-contained services.

These microservices are designed to address specific functionalities or domains within

the healthcare system, such as patient monitoring, electronic health records (EHR)

management, data analytics, and telehealth services. This modular approach facilitates

independent development, deployment, and maintenance of each microservice, enabling

agile practices and quicker time-to-market for healthcare solutions[24].

Scalability is a crucial requirement in healthcare IoT, given the increasing number of

connected medical devices and the growing volume of patient data. Microservices ar-

chitecture provides a granular scalability capability, allowing individual services to scale

independently based on demand. This flexibility ensures efficient resource utilization

and the ability to handle diverse workloads across various healthcare applications.

Interoperability is another notable advantage offered by microservices in the health-

care IoT landscape. Through well-defined APIs, microservices can seamlessly communi-

cate and exchange data, regardless of the underlying technologies, devices, or protocols

involved. This interoperability facilitates the integration of disparate healthcare sys-

tems, devices, and applications, fostering smooth data sharing and collaboration among

healthcare providers, patients, and other stakeholders.

Moreover, microservices facilitate the delivery of personalized and patient-centric care in

healthcare IoT. By decomposing applications into smaller services, healthcare providers

can develop tailored solutions that address specific patient needs. For instance, a mi-

croservice focused on remote patient monitoring can collect real-time data from wearable

devices and securely transmit it to other microservices responsible for data analysis,

anomaly detection, or generating alerts. This personalized approach enables timely

interventions and enhances patient outcomes.

Nevertheless, the adoption of microservices in healthcare IoT is not without challenges.

10
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Data security and privacy emerge as critical concerns when dealing with sensitive patient

information. It is essential to implement robust encryption, authentication, and access

control mechanisms to safeguard patient data across microservices and ensure compli-

ance with privacy regulations. Additionally, effective coordination and communication

among microservices must be established through service discovery, event-driven com-

munication, and orchestration mechanisms to guarantee the overall seamless functioning

of the healthcare system.

As microservices architecture provides numerous benefits for healthcare IoT by enabling

the decomposition of complex applications into smaller, independent services. The mod-

ular design facilitates scalability, interoperability, and personalized care delivery. How-

ever, addressing challenges related to data security, privacy, and effective coordination

is essential for successful implementation in healthcare IoT environments.

1.1.3 DevOps and GitOps

DevOps and GitOps are two methodologies widely employed in software development

and deployment to improve collaboration, streamline processes, and enhance the relia-

bility and scalability of software systems.

DevOps, short for Development and Operations, is a cultural and collaborative approach

that emphasizes breaking down silos between development and operations teams. It fo-

cuses on automating processes, fostering continuous integration and delivery (CI/CD)

pipelines, and promoting a shared responsibility for software development and deploy-

ment. DevOps practices, including infrastructure as code, continuous monitoring, and

iterative feedback loops, enable organizations to deliver software more rapidly and reli-

ably[15].

By embracing DevOps, organizations can reap various benefits. They can reduce time-

to-market by implementing automated and frequent releases through CI/CD practices,

resulting in shorter feedback cycles and the ability to adapt swiftly to changing cus-

tomer needs and market demands. DevOps also enhances the stability and dependabil-

ity of software systems by automating testing, deployment, and monitoring processes.

Collaboration and shared ownership among development and operations teams lead to

increased transparency and efficiency throughout the software development lifecycle.

GitOps, an extension of the DevOps philosophy, focuses on utilizing Git as a central

11
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repository for managing infrastructure and application configurations. With GitOps,

organizations can version control and orchestrate their entire infrastructure and de-

ployment process using Git repositories. Storing infrastructure and application config-

urations as code allows for versioning, easy rollbacks, and seamless replication across

different environments.

A key principle of GitOps is declarative infrastructure and application management.

The desired state of the system is defined within Git repositories, and specialized tools

such as Kubernetes operators or deployment agents ensure that the actual state aligns

with the desired state. This approach simplifies infrastructure management, improves

traceability, and enables auditable and reproducible deployments.

Implementing GitOps practices provides several advantages. It promotes consistency,

transparency, and reproducibility in software deployments. Changes to infrastructure

and application configurations can be tracked, allowing for straightforward rollbacks and

facilitating collaboration between development, operations, and security teams. GitOps

also enables the automation of deployment processes, reducing manual intervention and

minimizing the potential for human errors.

In summary, DevOps and GitOps are complementary methodologies that foster collab-

oration, automation, and reliability in software development and deployment. DevOps

emphasizes breaking down barriers and optimizing processes, while GitOps extends these

principles by utilizing Git as a centralized repository for managing infrastructure and ap-

plication configurations. Embracing these practices empowers organizations to enhance

the speed, quality, and stability of their software systems.

1.2 Problem Statement

By the year 2030, the number of IoT devices and sensors is projected to reach around

100 billion[25]. With the increasing adoption of IoT technology, various applications

demand high availability, scalability, low latency, and data privacy. The healthcare

sector, in particular, faces unique challenges due to the limited processing power of edge

gateway devices and concerns about data privacy. Therefore, there is a pressing need

for a versatile framework for edge devices (gateway devices) that can effectively address

these requirements and be applicable across different IoT applications.

12
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The management and processing of healthcare IoT data pose significant challenges and

limitations for traditional centralized architectures. These limitations can have a sub-

stantial impact on the efficiency and effectiveness of healthcare IoT systems. The fol-

lowing key challenges and limitations are observed[29]:

• Latency: Traditional centralized architectures introduce latency as data is sent to

remote servers for processing and analysis. This delay in accessing and processing

healthcare IoT data can hinder real-time decision-making and patient care, which

is critical in the healthcare domain.

• Bandwidth Constraints: The continuous data generation by healthcare IoT devices

strains network bandwidth during data transmission to centralized servers. Lim-

ited bandwidth can lead to data congestion and slower transmission, negatively

affecting the overall system performance and responsiveness.

• Scalability: Traditional centralized architectures may face challenges in effectively

scaling healthcare IoT systems to accommodate the increasing number of devices

and the resulting growth in data volume. Significant infrastructure upgrades and

resource allocation may be required to meet the expanding demands of healthcare

IoT systems.

• Data Privacy and Security: The sensitive and private nature of healthcare IoT data

raises concerns about data privacy and security when transmitting it to centralized

servers. Ensuring robust data encryption, access control, and compliance with

privacy regulations can be challenging for traditional architectures.

• Reliability and Fault Tolerance: Dependence on a single centralized server intro-

duces a single point of failure. Any issues or downtime experienced by the server

can disrupt the entire healthcare IoT system, impacting data collection, analysis,

and decision-making processes.

• Edge Computing Advantages: The adoption of a containerized microservice frame-

work on edge devices offers advantages over traditional centralized architectures.

Edge devices enable local data processing, reducing the need for constant data

transmission to remote servers. This approach minimizes latency, optimizes band-

width usage, and facilitates real-time data analysis at the edge, enhancing system

responsiveness and efficiency[13].
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By implementing a containerized microservice framework on edge devices, healthcare

IoT systems can overcome these challenges and limitations. This framework harnesses

the computing capabilities of edge devices, allowing for distributed data processing,

improved scalability, reduced latency, and enhanced data privacy. Containerization fa-

cilitates the deployment of lightweight and modular microservices, ensuring efficient

resource utilization and seamless scalability to meet the specific requirements of health-

care IoT systems[8].

1.3 Research Objective

The following research objectives aim to explore the feasibility, benefits, and challenges

of utilizing containerized microservice frameworks on edge devices in healthcare IoT

systems. The research seeks to contribute to the understanding of how such frameworks

can address the limitations of traditional centralized architectures and provide efficient,

scalable, secure, and privacy-conscious solutions for managing and processing healthcare

IoT data[22] [24].

• Assess the viability and effectiveness of implementing a containerized microservice

framework on edge devices for healthcare IoT systems.

• Investigate the impact of edge device utilization on healthcare IoT data processing,

including latency reduction and enhanced system responsiveness.

• Evaluate the scalability of containerized microservice frameworks on edge devices

to accommodate the increasing number of IoT devices and data volume in health-

care environments. Examine the security and privacy implications associated with

deploying containerized microservice frameworks on edge devices for managing

healthcare IoT data.

• Compare the performance and resource utilization of containerized microservice

frameworks with traditional centralized architectures in healthcare IoT systems.

• Analyze the advantages and limitations of containerized microservice frameworks

on edge devices for healthcare IoT applications, such as improved data privacy,

reliability, and fault tolerance.
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• Develop guidelines and best practices for the implementation of containerized mi-

croservice frameworks on edge devices in healthcare IoT systems, considering de-

ployment strategies, orchestration mechanisms, and system monitoring.

1.4 Limitations

The deployment of containerized microservice frameworks on edge devices for health-

care IoT systems faces several limitations. These include the resource constraints of

edge devices, connectivity challenges, device heterogeneity, security risks, management

complexity, limited remote control and maintenance, and integration with existing sys-

tems. Addressing these limitations is crucial to ensure the successful implementation

and maximize the benefits of this approach in healthcare IoT applications[19].

• Edge Device Resource Constraints: Edge devices typically have limited computing

resources such as processing power, memory, and storage capacity. This may pose

limitations on the complexity and scale of the containerized microservice frame-

work that can be deployed on these devices. Resource-intensive applications or

scenarios with a high number of concurrent microservices may exceed the capabil-

ities of edge devices.

• Connectivity Challenges: Edge devices may face connectivity challenges, espe-

cially in remote or rural areas with limited network coverage. In such scenarios,

maintaining consistent and reliable connectivity for real-time data processing and

communication with the central system can be problematic. These connectivity

limitations can affect the overall performance and responsiveness of the healthcare

IoT system.

• Edge Device Heterogeneity: The landscape of edge devices used in healthcare IoT

systems can be highly heterogeneous. Different devices may have varying capabil-

ities, operating systems, or compatibility with containerization technologies. This

heterogeneity can introduce complexities in deploying and managing a standard-

ized containerized microservice framework across diverse edge devices.

• Security Risks: Edge devices deployed in healthcare IoT systems may be suscepti-

ble to security risks and vulnerabilities. These devices are often deployed in open
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and uncontrolled environments, making them potential targets for attacks. En-

suring the security of the containerized microservice framework on edge devices

becomes crucial to protect sensitive healthcare data and maintain the integrity of

the system.

• Management and Orchestration Complexity: Managing and orchestrating con-

tainerized microservices on edge devices can be complex, particularly when dealing

with a large number of devices and microservices. Efficiently deploying, updating,

and monitoring the microservices across distributed edge devices require robust

management and orchestration mechanisms. The complexity increases as the sys-

tem scales and evolves.

• Limited Remote Control and Maintenance: Edge devices are often located in re-

mote or physically inaccessible locations, making remote control and maintenance

challenging. Troubleshooting, updating, and managing the containerized microser-

vice framework on edge devices may require physical access or involve additional

logistical considerations, which can impact the efficiency of system maintenance

and updates.

• Integration with Existing Systems: Integrating a containerized microservice frame-

work on edge devices into existing healthcare IT infrastructure can present chal-

lenges. Interoperability and compatibility with legacy systems, data formats, and

protocols need to be addressed to ensure seamless integration and data exchange

between the edge devices and the centralized healthcare system[14].
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Literature Review

Researchers have actively explored the development of containerized microservice frame-

works on edge devices for IoT systems. This comprehensive literature review provides an

in-depth analysis of the latest research advancements, methodologies, and challenges in

this field. The literature review delves into the various aspects of containerized microser-

vice frameworks for healthcare IoT systems on edge devices. It explores the fundamental

principles of architectural design, deployment models, and communication protocols rel-

evant to this domain. Furthermore, it examines the advantages and limitations of these

frameworks, considering factors such as resource constraints, security considerations,

interoperability, and real-time data processing capabilities.

To assess the effectiveness of containerized microservice frameworks, it investigates the

evaluation methodologies and metrics employed by researchers. It critically evaluates the

performance, scalability, reliability, and usability of different frameworks, highlighting

their respective strengths and weaknesses.

In [9], the author presents an innovative system for home-based healthcare using IoT,

Fog computing, and cloud computing technologies. The proposed system architecture

incorporates both local and remote monitoring functionalities by utilizing sensing units

and a mobile application acting as the Fog server. This design allows for real-time anal-

ysis of environmental aspects within the patient’s room, while vital signs are captured

by the sensors. The integration of IoT devices and Fog computing enables efficient

data processing and analysis, leading to timely interventions and improved healthcare

decision-making.

A notable contribution of the system is its utilization of Fog computing, which brings
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computation, storage, and networking capabilities closer to the edge devices. By of-

floading data processing tasks to Fog nodes, the system reduces latency and enhances

responsiveness, making it suitable for time-sensitive healthcare applications[9]. To ad-

dress the challenges posed by data heterogeneity, the system employs a NoSQL database

for data persistence. This choice enables efficient storage and retrieval of diverse health-

care data, accommodating the complex nature of such information and ensuring scal-

ability and flexibility. Additionally, the system provides access to the collected data

through a web server REST API, allowing nurses and medical staff to retrieve patient

information and make informed decisions. This feature facilitates effective communica-

tion and collaboration among healthcare professionals, contributing to improved patient

care.

The technique highlights the significance of the proposed home hospitalization system

in enhancing healthcare services through the integration of IoT, Fog computing, and

cloud computing technologies. The real-time monitoring, data analysis, and timely in-

terventions enabled by this system hold great potential for improving the quality of

home-based healthcare. This research contributes to the existing knowledge in the field

of IoT-enabled healthcare systems. The integration of Fog computing and cloud comput-

ing with IoT devices offers promising opportunities for the development of efficient and

reliable home hospitalization solutions. Continued research and development in this area

can further advance the capabilities of such systems, leading to better patient outcomes

and a more sustainable healthcare ecosystem. It has several limitations. These include

the lack of cost-effectiveness, as the financial implications are not discussed. The system

also fails to address the incorporation of existing sensors and legacy systems, hindering

interoperability. Additionally, assumptions about stable WiFi connections and elderly

users’ ability to handle smart devices may not reflect real-world scenarios. Lastly, the

absence of a microservice architecture limits the system’s modularity and adaptability.

Addressing these limitations would improve the practicality and effectiveness of the pro-

posed system. In [18], The author proposes a platform for remote patient monitoring

in intensive care units (ICUs) using IoT technology. The methodology employed in this

study involves the integration of sensors to capture physiological and environmental

data, analysis of the collected data to detect anomalies, and the use of a smartphone

application and a web interface for data visualization.

One advantage of the methodology is its ability to provide efficient and centralized
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monitoring of ICU patients, enabling healthcare providers to remotely monitor multiple

patients simultaneously. The use of IoT sensors and data analysis techniques allows for

early detection of anomalies and timely alarms, enhancing patient safety and facilitating

proactive medical interventions. Additionally, the integration of the standard multi-

parameter monitor using MQTT gateway technology enables seamless data transmission

to the cloud, ensuring data availability and accessibility.

However, there are limitations to consider. The paper does not extensively discuss the

implementation challenges or technical issues encountered during the deployment of the

proposed platform. The scalability and interoperability of the system with existing

healthcare infrastructure and devices may also require further investigation. Addition-

ally, the paper does not provide detailed insights into the data privacy and security

measures implemented to protect patient information.

Further research and evaluation are necessary to assess the platform’s effectiveness,

scalability, and reliability in real-world ICU environments. Future work should also

consider addressing the challenges related to data integration, system performance, and

ensuring compliance with privacy and security regulations in healthcare settings.

In [21], the author adopts a methodology that involves designing and implementing a

three-layer system architecture for healthcare IoT applications. The technique includes

the development of an edge gateway responsible for device management, cloud con-

nection, data storage, data preprocessing, and security. The wireless router is utilized

to extend the range of wireless sensor nodes and enable efficient edge task execution.

The paper also presents three healthcare case studies to demonstrate the reliability and

effectiveness of the proposed platform in different scenarios.

This lie in its comprehensive approach to addressing the specific requirements of health-

care IoT applications. By incorporating edge computing capabilities, the system enables

real-time data processing, reducing latency and enhancing responsiveness. The use of

a three-layer architecture allows for distributed data management, ensuring efficient

utilization of resources and improved scalability. Additionally, the inclusion of wire-

less routers extends the communication range, enabling seamless connectivity and data

collection from remote sensor nodes.

It has some limitations too as the paper does not fully explore the potential of mi-

croservices, which could hinder scalability and modularity. Additionally, the absence
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of a detailed discussion on the implementation of a firewall at the gateway level raises

concerns about data security. Furthermore, the ease of deploying containerized mi-

croservices, which could enhance system flexibility and management, is not addressed.

In future, it should focus on leveraging microservices to maximize system scalability

and adaptability. Implementing robust security measures, such as firewalls, at the edge

gateway level is essential to protect sensitive healthcare data. Additionally, consider-

ing the deployment of containerized microservices can improve the system’s agility and

ease of management. Addressing these limitations will contribute to the advancement

and practical implementation of edge-based hybrid systems for long-range safety and

healthcare IoT applications.

In [11], the author presents a framework to enhance the security and efficiency of edge

computing in healthcare systems using Software-Defined Networking (SDN) technology.

The paper focuses on addressing the challenges of securing IoT-enabled healthcare sys-

tems by leveraging edge computing capabilities. It proposes an architecture that com-

bines SDN principles with edge computing to establish a secure and scalable infras-

tructure. The framework incorporates features such as network slicing, encryption,

authentication, and access control to protect sensitive healthcare data.

The study highlights the advantages of using SDN-based edge computing in healthcare,

including improved data processing efficiency, reduced latency, enhanced security, and

better resource utilization. It also discusses the practical implementation and evaluation

of the proposed framework, demonstrating its effectiveness in meeting the security and

performance requirements of healthcare IoT applications.

Overall, it contributes to the field of IoT-enabled healthcare systems by providing a

comprehensive framework that addresses the security challenges associated with edge

computing. It offers valuable insights and recommendations for designing secure and

efficient healthcare infrastructures, paving the way for the adoption of IoT technolo-

gies in healthcare with enhanced security measures.[11] The research paper proposes a

secured framework for SDN-based edge computing in IoT-enabled healthcare systems.

The framework consists of three layers: the infrastructure layer, edge computing layer,

and core computing layer. The infrastructure layer includes low-poared embedded sen-

sors and IoT devices, while the edge computing layer comprises different edge servers

for data exchange, storage, processing, and job migration. The core computing layer
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involves core networks and cloud services responsible for hosting applications and man-

aging the IoT architecture. The paper presents a lightweight authentication approach,

SDN-based collaborative edge computing, and job migration on edge servers as part of

the proposed framework. However, limitations of the research include the lack of con-

sideration for containerization and microservices and potential security vulnerabilities

such as denial-of-service attacks[11].

In [20], The proposed methodology presents an edge-IoT framework for smart health-

care applications based on blockchain technology. The framework involves generating

an intrusion detection dataset in the edge network where IoMT data is processed. Pre-

processing techniques are applied to handle missing and noisy data, and Principal Com-

ponent Analysis (PCA) is used for feature selection. The Deep Neural Network (DNN)

is trained using the generated dataset, and a Crow Search algorithm is employed for

hyperparameter tuning. The system architecture is designed to enhance the reliability

of IoMT devices and improve intrusion detection capabilities. The methodology also

discusses user configuration validation and the mathematical representation of intrusion

detection in the IoMT environment. The article highlights the importance of designing

and developing secure IoMT ecosystems and addresses various algorithmic approaches

for streamlining IoT and IoMT devices.

In another research article [28], explores the integration of fog computing into healthcare

Internet of Things (IoT) applications. It emphasizes the significance of addressing per-

formance, security, and offloading challenges to enhance the efficiency and effectiveness

of healthcare systems.

The discussed proposals aim to improve performance by reducing service response time,

optimizing energy consumption, and enhancing decision-making accuracy. Several stud-

ies demonstrate considerable enhancements in these areas compared to existing solutions.

Privacy and security are also crucial considerations in healthcare IoT applications, with

researchers proposing frameworks and architectures to safeguard patient information.

Efficient offloading strategies for fog servers are another focal point, given the expo-

nential growth of IoT devices and data. These proposals strive to minimize overload

on fog computing servers by optimizing task assignments. The survey results empha-

size the role of fog computing in real-time healthcare applications such as monitoring

hypertension attacks, diagnosing diseases, and supporting COVID-19 treatment.
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While significant advancements have been made, the paper acknowledges the remaining

challenges in fog-IoT applications. These challenges include refining offloading schemes,

developing efficient scheduling algorithms, and ensuring privacy and security in fog

servers. As the integration of fog computing and IoT applications is still in its early

stages, further research is necessary to overcome these obstacles.

This concludes with an overview of the current state of fog computing in healthcare IoT

applications, highlighting the proposed performance, security, and offloading approaches

by various researchers. The survey results demonstrate the potential of fog computing

in improving healthcare systems while underscoring the need for further advancements

to tackle the existing challenges. In [5], Author proposed the development of a secure

edge computing framework for smart healthcare surveillance. The framework aims to

enhance the security and privacy of healthcare data while enabling real-time monitor-

ing and analysis of patient information. It leverages edge computing technology to

process data locally at the edge devices, reducing latency and network congestion. The

proposed framework incorporates various security mechanisms, including encryption, ac-

cess control, and anomaly detection, to safeguard sensitive healthcare data. The authors

conducted experiments to evaluate the performance and effectiveness of the framework,

demonstrating its ability to provide secure and efficient healthcare surveillance. the re-

search paper has a few limitations that should be considered. Firstly, the framework’s

evaluation is based on experiments conducted in a controlled environment, which may

not fully reflect real-world conditions and challenges. Further studies and field trials are

necessary to assess the framework’s scalability and robustness in diverse healthcare set-

tings. Secondly, while the paper discusses security mechanisms, it does not delve deeply

into the potential vulnerabilities and attack vectors that the framework may face. A

more comprehensive analysis of security threats and countermeasures would enhance

the paper’s insights and provide a clearer understanding of the framework’s resilience.

The methodology focuses primarily on the technical aspects of the surveillance frame-

work, neglecting potential ethical and legal considerations associated with smart health-

care surveillance. It would be beneficial to address the ethical implications and regu-

latory requirements, such as data privacy and consent, to ensure the framework aligns

with relevant standards and guidelines.

In [27], A Reinforcement Learning-Based Approach" explores the utilization of con-
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tainerization and reinforcement learning techniques to optimize the deployment of micro-

services in fog computing environments. The main objective is to address the resource

allocation and task scheduling challenges in fog devices, aiming to enhance the over-

all performance and scalability of fog computing systems. The authors begin by em-

phasizing the increasing demand for fog computing, which extends cloud computing

capabilities to the edge of the network, close to the data source. This approach of-

fers advantages such as reduced latency, improved data privacy, and enhanced real-time

decision-making. However, deploying micro-services in fog devices presents challenges

due to limited resources, diverse hardware configurations, and dynamic workloads.

To tackle these challenges, the authors propose an approach that leverages containeriza-

tion and technologies like Docker to encapsulate micro-services and their dependencies

in lightweight and portable containers. By utilizing containers, fog devices can effec-

tively manage resource allocation, isolation, and scalability. Moreover, the paper in-

troduces a reinforcement learning-based approach to optimize micro-service deployment

in fog devices. Through reinforcement learning algorithms such as Q-learning or Deep

Q-networks, the system learns from interactions with the fog environment, enabling

intelligent decision-making regarding resource allocation and task scheduling. The au-

thors provide detailed insights into the design and implementation of the reinforcement

learning model, highlighting its adaptability to dynamic fog computing environments

and its potential to enhance micro-service performance.

The proposed approach is evaluated through simulations and experiments, demonstrat-

ing its effectiveness in optimizing resource allocation and task scheduling. The results

showcase improvements in service latency, energy consumption reduction, and scalability

compared to traditional approaches. This research paper makes a significant contribu-

tion to the field of fog computing by addressing the challenges of micro-service deploy-

ment in fog devices. The combination of containerization and reinforcement learning

in the proposed approach offers a promising solution for optimizing resource allocation

and improving the performance of fog computing systems.

However, it is important to acknowledge certain limitations in this study. The pa-

per primarily focuses on the technical aspects of the proposed approach and does not

extensively discuss potential trade-offs or challenges associated with implementing con-

tainerization and reinforcement learning in fog devices. A more comprehensive analysis

23



Chapter 2: Literature Review

of the limitations and constraints of these technologies within fog computing scenarios

would enhance understanding of their practical implications.

Additionally, the evaluation of the proposed approach relies primarily on simulations and

experiments, which may not fully capture the complexities and dynamics of real-world

fog environments. Future work should consider conducting field trials or real-world

deployments to validate the effectiveness and scalability of the approach across diverse

fog computing scenarios.

Despite these limitations, this research paper presents a valuable contribution by in-

troducing a containerization-based approach combined with reinforcement learning to

optimize micro-service deployment in fog devices. The findings provide insights into the

potential benefits of utilizing these technologies to enhance the performance and scala-

bility of fog computing systems. Further research is necessary to address the identified

limitations and explore additional optimization techniques for micro-service deployments

in fog environments.
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Design and Methodology

The Internet of Things (IoT) has revolutionized the way we interact with our surround-

ings, enabling seamless connectivity and communication between devices. At the heart

of the IoT ecosystem lies the gateway device, which acts as a bridge between the lo-

cal network and the wider internet. Gateway devices play a crucial role in collecting,

processing, and transmitting data from connected devices, making them an essential

component in IoT deployments. In this chapter, we will explore different frameworks

for gateway devices in the IoT domain and discuss their effectiveness in various types of

applications.

• Overview of Gateway Devices

Gateway devices serve as the intermediary between the local IoT network and

external networks, such as the cloud or the internet. They provide connectivity,

security, and data management functionalities, enabling efficient data flow be-

tween devices and backend systems. Gateway devices are responsible for protocol

translation, data filtering, data aggregation, and often include local processing

capabilities to perform edge computing tasks.

• Importance of Frameworks in IoT Gateway Devices

Frameworks for gateway devices provide a structured approach to develop, de-

ploy, and manage these crucial components in IoT systems. A framework offers a

set of tools, libraries, and predefined modules that simplify gateway development,

accelerate time-to-market, and enhance overall system reliability. Different frame-

works cater to diverse application requirements and development preferences, each
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offering unique features and capabilities.

In the previous chapter, we examined various proposed architectures for IoT gateways,

and it is evident that many of them are based on the monolithic gateway architecture.

However, the monolithic architecture inherits several shortcomings that can impact the

scalability, flexibility, reliability, modularity, performance, and security of IoT gateways.

• Scalability: Monolithic architectures are not easily scalable. As the number of

devices and the volume of data increase, the monolithic gateway may struggle to

handle the growing load. The lack of scalability can lead to performance degrada-

tion, increased response times, and an inability to efficiently process and manage

the influx of data. Additionally, adding or removing functionalities without affect-

ing the entire system becomes challenging in a monolithic architecture.

• Flexibility: Monolithic gateways tend to be rigid and inflexible. Introducing new

features or integrating with different protocols and technologies can be complicated

and time-consuming. Modifying one component often requires modifications to the

entire system, making it difficult to adapt to changing requirements or emerging

technologies. The lack of flexibility can hinder the agility and adaptability of IoT

gateways.

• Single Point of Failure: In a monolithic architecture, if one component fails, it

can bring down the entire gateway. This single point of failure increases the

risk of downtime and disruption of services. Troubleshooting and resolving issues

become challenging since isolating a specific component without affecting the rest

of the system is difficult. The dependency on a single monolithic gateway poses a

significant risk to the overall reliability and availability of the IoT system.

• Limited Modularity: Monolithic architectures lack modularity, making it difficult

to reuse or replace individual components. Upgrading or replacing a specific func-

tionality within the gateway becomes complex, as it often requires modifications

to the entire system. The absence of modularity inhibits the ability to leverage

advancements in specific areas or incorporate specialized functionalities without

extensive reconfiguration or redevelopment efforts.

• Performance Bottlenecks: In monolithic gateways, performance bottlenecks can

occur due to the centralized nature of the architecture. The processing and han-
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dling of data from multiple devices may become a bottleneck, leading to delays

and decreased overall system performance. The lack of distributed processing ca-

pabilities can limit the gateway’s ability to scale with increasing data volumes and

computational demands.

• Security Risks: Monolithic architectures pose security risks since a vulnerability in

one component can potentially expose the entire system. The centralized nature

of the architecture makes it challenging to implement granular security measures

and isolate potential threats. A breach in one component can compromise the

entire gateway, putting the IoT ecosystem at risk. The limited ability to imple-

ment specialized security mechanisms for different components or devices further

increases the vulnerability of the system.

To overcome these limitations, alternative architectural approaches, such as microservices-

based architectures and distributed gateway frameworks, have gained prominence in the

IoT domain. These alternative approaches offer improved scalability, flexibility, modu-

larity, fault tolerance, and security by decoupling functionalities into smaller, indepen-

dently deployable units. By adopting these architectures, IoT gateways can address the

shortcomings of the monolithic approach and enhance the overall performance, reliabil-

ity, and security of the system.

To overcome the limitations of monolithic gateways and address the issue of vendor

lock-in, a containerized service architecture can be adopted. This architecture leverages

containerization technology, such as Docker, to encapsulate individual services or func-

tionalities into independent containers. Each container runs as a lightweight, isolated

unit that can be easily deployed, scaled, and managed.

In a containerized service architecture for IoT gateways, different functionalities or ser-

vices, such as data ingestion, protocol adaptation, data processing, and communica-

tion with cloud platforms, are decoupled and packaged as individual containers. These

containers can be developed, tested, and deployed independently, allowing for greater

flexibility and modularity in the gateway system.

The use of containerization provides several benefits for IoT gateways. Firstly, it en-

ables vendor-agnosticism, as containers abstract the underlying hardware and operating

systems. This means that components from different vendors can be encapsulated as

containers, allowing for easy replacement or upgrade without impacting the entire sys-

27



Chapter 3: Design and Methodology

tem. Organizations can freely choose hardware, software, and services based on their

requirements, reducing dependency on specific vendors and promoting a competitive

market environment.

Secondly, containerization enhances scalability and agility. With container orchestra-

tion platforms like Kubernetes, the deployment and management of containers can be

automated, allowing for dynamic scaling and efficient resource utilization. This elastic-

ity ensures that the gateway can handle increasing data volumes and traffic demands

without compromising performance or stability.

Additionally, containerization facilitates the development of microservices-based archi-

tectures, where each container represents a specific microservice responsible for a par-

ticular functionality. This modular approach simplifies development, testing, and main-

tenance, as individual services can be updated or replaced without impacting the entire

system. It also promotes reusability, as containers can be easily shared and deployed

across different gateways, enabling organizations to leverage existing solutions and ac-

celerate development.

Figure 3.1: Flowchart

Furthermore, containerization improves security by isolating services within their own

containers. This isolation prevents vulnerabilities in one service from affecting the entire

system, reducing the attack surface and enhancing overall system resilience.
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By adopting a containerized service architecture for IoT gateways, organizations can

overcome the limitations of monolithic architectures, mitigate vendor lock-in risks, and

gain flexibility, scalability, modularity, and enhanced security. This architectural ap-

proach enables the seamless integration of diverse components and technologies, pro-

motes innovation, and fosters a more competitive ecosystem in the IoT domain.

Next, we will explore different frameworks and approaches that leverage these alternative

architectural paradigms to overcome the limitations of monolithic gateway architectures

in IoT deployments.

3.0.1 Underlying Hardware Components

Hardware components are integral elements within the architecture of Internet of Things

(IoT) systems, specifically when considering IoT gateways. These components serve

as the foundation by providing the necessary computational power, connectivity op-

tions, and physical interfaces essential for facilitating seamless communication among

IoT devices, edge networks, and the cloud. With a range of components, including

microcontrollers, microprocessors, wireless modules, sensors, and actuators, each plays

a crucial role in collecting, processing, and transmitting data, effectively bridging the

gap between the digital and physical domains. This chapter aims to explore the key

hardware components commonly utilized in IoT gateways, outlining their functional-

ities and assessing their impact on overall system performance and capabilities. By

comprehending the roles and characteristics of these hardware components, stakehold-

ers can make informed decisions during the design, deployment, and optimization phases

of IoT gateways, leading to successful IoT implementations.

• Sensor Nodes

Sensor nodes are fundamental components in the field of IoT, playing a crucial role

in collecting and transmitting data from the physical environment to the digital

realm. These nodes are equipped with various sensors that enable them to detect

and measure different environmental parameters such as temperature, humidity,

light intensity, motion, and more. Sensor nodes are typically compact and power-

efficient, making them suitable for deployment in large numbers across diverse

environments.

The primary function of a sensor node is to capture data from the surrounding
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environment. The sensors integrated into the node allow it to gather information

about specific physical phenomena. This data can be in the form of analog sig-

nals, which are then converted into digital signals for processing and transmission.

Sensor nodes are designed to operate with minimal power consumption to ensure

long battery life and extended periods of operation, making them well-suited for

applications where frequent maintenance or power supply is not feasible.

Sensor nodes also include additional components such as microcontrollers, wireless

communication modules, and memory storage, enabling them to process, trans-

mit, and store the collected data. The microcontroller acts as the brain of the

node, executing tasks and coordinating sensor operations. The wireless communi-

cation module enables the transmission of data to other devices or central servers,

facilitating real-time monitoring and analysis. Memory storage allows for the

temporary or permanent storage of data, depending on the application require-

ments.Sensor nodes serve as vital components in the IoT ecosystem, enabling the

collection and transmission of data from the physical environment. They consist

of sensors, microcontrollers, wireless communication modules, and memory stor-

age, all working together to capture, process, and transmit data efficiently. With

their compact size, low power consumption, and diverse sensing capabilities, sensor

nodes are essential building blocks for various applications, ranging from environ-

mental monitoring and smart cities to healthcare and industrial automation.

• Edge Box

The Xiao BLE Sense is a highly adaptable sensor node that leverages Bluetooth

Low Energy (BLE) technology for wireless data collection and transmission. Its

compact size and versatile features make it an excellent choice for IoT and wearable

applications. Equipped with a microcontroller, BLE module, and a variety of

sensors, this device offers a comprehensive solution for real-time data sensing.

Despite its small form factor, the Xiao BLE Sense delivers powerful performance

and is easily integrated into space-constrained environments or portable devices.

One of the notable advantages of the Xiao BLE Sense is its low power consumption,

which is a result of utilizing BLE technology. This ensures prolonged battery life,

making it suitable for applications requiring long-term operation without frequent

recharging or battery replacements. Additionally, the device boasts a range of cus-

30



Chapter 3: Design and Methodology

tomizable features that can be tailored to specific application requirements. With

the ability to program the microcontroller with custom firmware, developers can

optimize the device’s performance and execute specific algorithms for personalized

data processing and analysis.

This flexibility enables the Xiao BLE Sense to adapt to a wide array of use cases

and deliver tailored solutions to meet diverse application needs.The Xiao BLE

Sense stands out as a compact yet powerful sensor node that utilizes BLE tech-

nology for wireless data collection. Its small size, low power consumption, and

customizable features make it well-suited for IoT and wearable applications, pro-

viding seamless integration and reliable data transmission. With its diverse sensor

capabilities and adaptability to different use cases, the Xiao BLE Sense offers a

versatile solution for real-time data sensing in IoT ecosystems.

• Embedded Board

[17] The Raspberry Pi 4 (Rpi 4) is an affordable and high-performance embed-

ded board widely used as a gateway in the IoT domain. It serves as a crucial

component in connecting IoT devices to the internet, facilitating seamless data

transmission and efficient management within IoT ecosystems. With its robust

processing capabilities, multiple connectivity options, and GPIO pins for sensor

integration, the Rpi 4 offers a comprehensive solution for building reliable and

cost-effective IoT gateways.

The Rpi 4 stands out for its powerful processing capabilities, enabling it to handle

complex tasks and perform real-time data processing. This allows for efficient

communication and interaction between IoT devices and the cloud. Moreover,

the Rpi 4 provides various connectivity options, including Ethernet, Wi-Fi, and

Bluetooth, ensuring secure and reliable connections to the internet. This versatility

enables the gateway to be deployed in diverse networking environments, catering

to different connectivity requirements.

In addition to its processing and connectivity features, the Rpi 4 offers GPIO pins

that enable integration with a wide range of sensors and actuators. This allows

the gateway to collect data from the physical world and seamlessly incorporate

it into IoT applications. The flexibility provided by the GPIO pins enhances the

overall functionality and adaptability of the system, making the Rpi 4 a valuable
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choice for IoT projects.

Overall, the Raspberry Pi 4 serves as a powerful and cost-effective solution for

IoT gateways. Its processing capabilities, connectivity options, and support for

sensor integration make it a versatile platform for enabling secure and efficient data

transmission within IoT ecosystems[17]. By utilizing the Rpi 4 as an embedded

board, IoT developers can build scalable and reliable IoT systems tailored to the

specific requirements of various applications

3.0.2 Underlying Software Component

Software components play a vital role in the architecture of Internet of Things (IoT)

systems, enabling the management, analysis, and utilization of data collected from IoT

devices. These components encompass a wide range of functionalities, including data

processing, communication protocols, security mechanisms, and application develop-

ment frameworks. By leveraging software components effectively, IoT systems can un-

lock the full potential of the collected data, enabling actionable insights, automation,

and seamless integration with various applications and services.

• Docker

Docker is a container engine that revolutionizes the way applications are deployed

and managed. It simplifies the process by allowing developers to package their

applications and their dependencies into lightweight, isolated containers. These

containers encapsulate everything needed for the application to run, ensuring con-

sistency and eliminating compatibility issues across different systems. This con-

sistency and portability make Docker ideal for deploying applications in various

environments, from development to production[4].

One of the key advantages of Docker is its efficient resource utilization and scala-

bility. By using containers, Docker minimizes resource overhead and allows appli-

cations to run efficiently, even in resource-constrained environments. Additionally,

Docker’s ability to scale applications horizontally by running multiple containers

of the same application provides flexibility and enables efficient utilization of re-

sources. This scalability is particularly beneficial for microservices architectures,

where applications are divided into smaller, independent services that can be in-

dividually scaled up or down as needed.
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With Docker, developers can streamline the application deployment process. They

can package applications and their dependencies into Docker containers, which can

be easily distributed and deployed across different systems. This simplifies the

deployment process and improves productivity, as developers can focus on writing

code rather than dealing with complex deployment configurations. Overall, Docker

empowers developers to build, distribute, and deploy applications faster, enhancing

productivity and efficiency in the development and deployment lifecycle[4].

3.0.3 Data Management and Data Format

Data management and data format play crucial roles in the realm of information sys-

tems, including the Internet of Things (IoT). Data management involves the processes

and technologies used to efficiently acquire, store, organize, secure, and retrieve data.

It encompasses activities such as data collection, integration, storage, processing, and

analysis. Effective data management ensures that data is accessible, reliable, and ac-

curate, enabling organizations to make informed decisions and derive valuable insights

from their IoT systems.

Data format refers to the structure and organization of data, determining how it is

stored, transmitted, and interpreted. It encompasses the representation, encoding, and

decoding of data elements and their relationships. In the context of IoT, data format

plays a critical role in ensuring interoperability and seamless communication between

different devices, systems, and applications. Standardized data formats such as JSON

(JavaScript Object Notation) or XML (eXtensible Markup Language) enable data to be

exchanged and interpreted consistently across different platforms and technologies.

By effectively managing and organizing data, organizations can derive actionable in-

sights, identify patterns, and make informed decisions based on the data collected from

IoT devices. Furthermore, utilizing standardized data formats promotes interoperabil-

ity and enables the integration of diverse IoT systems, allowing data to be shared and

utilized seamlessly across different domains. Effective data management and the use of

appropriate data formats are essential for unlocking the full potential of IoT systems

and harnessing the value of the vast amount of data generated by IoT devices.

• Couchbase

Couchbase is a highly versatile distributed NoSQL database platform designed to
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meet the demands of modern applications. It combines the flexibility of JSON

(JavaScript Object Notation) with the scalability and performance required in

today’s data-intensive environments. At its core, Couchbase utilizes a document-

oriented data model, allowing developers to store and retrieve data flexibly and

schema-less. This approach enables seamless adaptation to evolving application

requirements, making it ideal for agile development processes. One of Couchbase’s

key strengths is its ability to support flexible querying. It provides a powerful

query language called N1QL (pronounced as "nickel"), allowing developers to per-

form rich, ad-hoc queries on JSON documents. This query language provides a

familiar SQL-like syntax, making it accessible to a wide range of developers. Ad-

ditionally, Couchbase incorporates various performance optimization techniques

such as indexing and caching to ensure efficient and low-latency data access[30].

In terms of scalability and availability, Couchbase offers robust features like repli-

cation, auto-sharding, and built-in caching. These features allow the platform to

seamlessly distribute data across multiple nodes, ensuring high availability and

scalability as data volumes and user loads increase. Furthermore, Couchbase’s

built-in caching mechanism accelerates data access by storing frequently accessed

data in memory, reducing the need for disk I/O and improving overall performance.

Overall, Couchbase provides developers with a powerful and flexible NoSQL database

platform that combines the advantages of JSON flexibility with the scalability and

performance required by modern applications. With its document-oriented data

model, flexible querying capabilities, and built-in scalability features, Couchbase

enables developers to build and deploy robust, high-performing applications that

can handle the challenges of today’s data-driven world.

• Nifi

NiFi, [6] also known as Apache NiFi, is a powerful open-source data integration

platform designed to streamline the process of transferring and transforming data

between various systems. Its user-friendly visual interface allows users to easily

design and manage complex data pipelines. With NiFi, data engineers and ad-

ministrators can efficiently route, filter, enrich, and transform data in real time,

ensuring seamless data flow across different systems and components. One of

the key strengths of NiFi is its ability to handle data provenance, which enables
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tracking the complete history and lineage of data. This feature is crucial for data

governance and compliance purposes, as it allows organizations to understand the

origin, transformations, and destinations of their data. Data provenance in NiFi

provides granular visibility into each step of the data flow, aiding in troubleshoot-

ing, auditing, and ensuring data integrity and quality.

NiFi’s extensible and modular architecture makes it highly adaptable to diverse

use cases and data integration scenarios. It supports a wide range of connectors,

processors, and controllers that can be easily configured and orchestrated to meet

specific requirements. Additionally, NiFi offers advanced features such as flow con-

trol, load balancing, and data prioritization, enabling efficient data management

and resource utilization.In summary, NiFi is an open-source data integration plat-

form that simplifies the process of transferring, transforming, and managing data

across various systems. Its visual interface, data provenance capabilities, and ex-

tensibility make it a valuable tool for organizations seeking to optimize their data

integration workflows, ensure data governance, and achieve seamless data flow and

transformation[6].

• SQLite

SQLite is a lightweight, serverless relational database management system (RDBMS)

widely used in research and industry. It offers a compact and self-contained

database engine that can be embedded within applications, eliminating the need

for separate server processes. SQLite’s simplicity, efficiency, and cross-platform

compatibility make it an attractive choice for managing structured data in various

domains, including IoT, mobile applications, and small-scale deployments.

• InfluxDB

InfluxDB is a popular time-series database designed specifically for handling high

volumes of time-stamped data. It provides efficient storage, retrieval, and analysis

of time-series data, making it suitable for a wide range of applications such as

IoT monitoring, real-time analytics, and operational metrics tracking. InfluxDB’s

scalable architecture, flexible querying language (InfluxQL), and support for con-

tinuous queries and downsampling make it a valuable tool for researchers and prac-

titioners seeking to analyze and visualize time-series data in their thesis writeups.
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3.0.4 Monitoring Tools

Monitoring tools are essential components in any system or network infrastructure as

they provide real-time visibility into the performance, availability, and health of vari-

ous components. These tools collect and analyze data from different sources, enabling

administrators to identify and address potential issues proactively. With features such

as automated alerts, customizable dashboards, and historical data analysis, monitoring

tools play a crucial role in ensuring the stability, reliability, and optimal functioning of

systems and networks.

• Grafana

Grafana is an open-source platform that provides powerful data visualization and

monitoring capabilities. It is widely used to create interactive and visually appeal-

ing dashboards that allow users to analyze and visualize data from diverse sources.

Grafana supports a wide range of data storage and monitoring systems, enabling

users to gather real-time data from multiple sources and display it in a unified and

intuitive manner.One of the key strengths of Grafana is its user-friendly interface,

which makes it accessible to users with varying levels of technical expertise. The

platform allows users to customize their dashboards, choosing from a wide range of

visualization options, including charts, graphs, and tables. Additionally, Grafana

offers advanced features such as alerting capabilities, allowing users to set up no-

tifications based on predefined conditions, and ensuring proactive monitoring of

critical metrics.

Grafana’s extensive plugin support is another notable feature, providing users

with the ability to extend its functionality and integrate with various data sources

and services. This flexibility enables users to connect to different data storage

systems, such as relational databases, time-series databases, and cloud-based plat-

forms, allowing them to gather and visualize data from diverse sources in a unified

dashboard. Overall, Grafana is a highly versatile platform that empowers users to

analyze and visualize data in a user-friendly and customizable manner. Its support

for multiple data sources, extensive visualization options, alerting capabilities, and

plugin ecosystem make it a valuable tool for researchers, analysts, and profession-

als in various industries who seek to gain insights from their data and monitor key

metrics effectively.
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• Zabbix

Zabbix is a widely used open-source monitoring solution that provides comprehen-

sive monitoring and alerting capabilities for networks, servers, applications, and

other IT resources. With its flexible and scalable architecture, Zabbix enables

administrators to monitor and collect data from a variety of sources, including

performance metrics, log files, and SNMP devices. It offers a user-friendly web in-

terface that allows for easy configuration, visualization, and analysis of monitored

data. Zabbix provides a wide range of monitoring features, including real-time

monitoring, trend analysis, event correlation, and anomaly detection. It supports

proactive monitoring through customizable triggers and alerts, allowing adminis-

trators to receive notifications when predefined thresholds are breached or specific

events occur. Zabbix also offers extensive reporting capabilities, enabling users to

generate detailed reports and graphs to gain insights into system performance and

trends over time.

Furthermore, Zabbix supports a distributed monitoring architecture, allowing the

deployment of multiple Zabbix servers and proxies to efficiently monitor large-scale

environments. It also provides integration with other tools and systems, enabling

seamless integration with existing infrastructure and workflows. Overall, Zabbix is

a powerful and flexible monitoring solution that empowers organizations to effec-

tively monitor and manage their IT infrastructure, ensuring optimal performance,

availability, and reliability.

3.0.5 Network Connectivity and Protocols

Network connectivity and protocols are fundamental aspects of IoT systems, allowing

devices to communicate and exchange data. Various protocols, such as MQTT and

CoAP, provide efficient and secure communication, while network technologies like Wi-Fi

and cellular connectivity enable seamless connectivity between devices and the Internet.

• MQTT

MQTT, also known as Message Queuing Telemetry Transport, is a lightweight mes-

saging protocol specifically designed for efficient communication within Internet of

Things (IoT) systems. Its publish-subscribe model enables devices to publish data
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to specific topics, while other devices or servers can subscribe to those topics to re-

ceive the published data. MQTT is highly regarded for its minimal bandwidth and

resource usage, making it ideal for IoT applications involving devices and networks

with limited resources.One of MQTT’s key advantages is its lightweight nature,

enabling it to operate effectively in low-bandwidth and unreliable network condi-

tions. It requires minimal processing power and has a small network footprint,

allowing for implementation on various devices, including small microcontrollers

and low-power sensors. Additionally, MQTT incorporates a Quality of Service

(QoS) mechanism that supports different levels of message reliability, ensuring

data delivery based on the desired level of assurance. The publish-subscribe model

employed by MQTT offers scalability and flexibility in data transmission within

IoT systems. Devices can publish data to multiple topics, and interested parties

can subscribe to those topics to receive real-time data. This decoupling of senders

and receivers simplifies data distribution and reduces the complexity associated

with point-to-point communication. MQTT also supports diverse communication

patterns, such as one-to-one, one-to-many, and many-to-many, accommodating

a wide range of IoT use cases. MQTT is a lightweight and efficient messaging

protocol that has gained significant popularity in IoT deployments. Its minimal

bandwidth and resource requirements, combined with the publish-subscribe model,

make it well-suited for IoT applications that prioritize resource conservation and

scalable communication[7].

• VPN

To ensure secure access to the gateway, we have chosen to implement WireGuard

VPN. WireGuard VPN is a contemporary and reliable virtual private network

protocol that offers enhanced security features. It utilizes efficient encryption

techniques to establish secure connections over untrusted networks, such as the

Internet. WireGuard stands out for its simplicity, impressive performance, and

strong security measures, making it a preferred solution for safeguarding commu-

nication in diverse environments, including IoT implementations.
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• 4G LTE

To ensure consistent and secure internet connectivity for the gateway, a 4G LTE

modem is employed. This allows the gateway to have uninterrupted access to the

internet, ensuring its availability at all times. 4G dongles are widely utilized in

IoT applications where wired connections are not feasible or accessible, enabling

seamless remote connectivity and efficient transmission of data. These dongles

leverage the high-speed capabilities of 4G networks, offering reliable and robust

connectivity for IoT deployments. The use of a 4G LTE modem ensures that the

gateway remains connected even in scenarios where traditional wired connections

are impractical, providing a reliable and versatile solution for IoT applications.

• BLE

BLE (Bluetooth Low Energy) is a wireless communication technology specifically

developed for establishing short-range connections between devices. It facilitates

the exchange of data with minimal power consumption, making it highly suitable

for IoT devices and applications that prioritize energy efficiency. BLE enables

devices to communicate with each other in close proximity, typically within a

range of a few meters. It offers a reliable and efficient means of transmitting data,

making it an essential technology for various IoT use cases, such as smart home

devices, wearable technology, and asset tracking systems. With its low power

requirements and optimized data transfer mechanisms, BLE has emerged as a key

enabler for IoT solutions that demand reliable, low-energy communication between

devices[1].

3.1 Framework

The proposed architecture focuses on distributing services across different computing

sites to enhance modularity and flexibility. The underlying services in the framework are

designed as separate deployable components or containers, allowing for easy management

and testing while abstracting their implementation details. This approach enables small

and loosely coupled characteristics, improving the testability and manageability of the

application. By leveraging containerization, the necessary environmental capabilities are

provisioned on each end device node, ensuring the proper functioning of the application.
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Figure 3.1 depicts the layers of the proposed architecture, each accompanied by its cor-

responding computational resources. The device layer, also known as the edge layer,

comprises the essential capabilities for sensing and communication with the surround-

ing environment. Sensor nodes are organized into groups, simplifying connection and

disconnection management. The gateways work collaboratively to efficiently cache and

process transmitted data, resulting in reduced system response times. Serving as a

single-entry point to local systems, the middle layer orchestrates communication among

the sensing nodes. In the cloud layer, the manager containers closely coordinate with

device groups to ensure the updates of system resources. By facilitating data and re-

source status sharing across multiple local domains, the manager containers enable the

concurrent execution of resource-intensive applications.

The primary goal of the proposed scheme is to effectively manage multiple deployed

sensor nodes and their resources within dynamic distributed systems. The manager,

represented by Rancher in Figure 3.2, plays a crucial role in optimizing resource al-

location by monitoring service deployment. It efficiently handles sensor node groups,

facilitates system scale-up, and ensures the timely update of containers across machine

clusters. This approach enables the efficient management of resources in highly dynamic

distributed systems, promoting effective coordination and scalability.

• Sense Layer/Edge Layer: The sensing layer of the proposed architecture consisted

of multiple sensor nodes strategically deployed throughout the testing environ-

ment. These sensor nodes are equipped with various functionalities such as sound

detection, door monitoring, CO2 measurement, movement sensing, and PIR (Pas-

sive Infrared) sensing, among others. Each sensor node operated independently

and is poared by its onboard batteries, providing backup availability for up to

two years. The nodes utilized Bluetooth Low Energy (BLE) modules for wireless

communication, enabling them to transmit and receive messages to and from the

gateway seamlessly.

• Gateway Layer: The gateway layer played a crucial role in facilitating communi-

cation between the edge layer (sensor nodes) and the cloud layer. Containerized

services are deployed within the gateway, encapsulating specific functionalities and

utilizing various network protocols for data transmission. Additionally, an inter-

mediate database is managed at this layer to ensure data integrity and prevent
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loss in case of network unavailability. When network connectivity is disrupted,

the data is cached within the database, and once the connection is restored, it is

transmitted through the appropriate channels. This approach guaranteed reliable

data transmission and mitigated the risk of data loss during temporary network

disruptions.

• Cloud Layer: The cloud layer encompassed cloud services responsible for the man-

agement and accessibility of the implemented microservices resources. Central

message hub services are deployed and fully managed in the cloud, providing con-

trolled data transmission through efficient queuing mechanisms. Database servers

are utilized to store persistent data for future use and enable efficient data re-

trieval. Web services are employed to facilitate data access and user permissions,

ensuring secure and controlled interactions across various user services within the

cloud layer. Additionally, data analytics operations are conducted in the cloud,

taking advantage of the scalability and abundant resources available in the cloud

infrastructure, which are typically limited at the edge nodes.

To facilitate the deployment of these services, Argo CD, a GitOps continuous deliv-

ery tool, is utilized. Deploying services with Argo CD offered several advantages.

It followed a declarative approach to manage deployments, ensuring consistency

and reproducibility across different environments. The integration with Git en-

abled version control and change tracking of the deployed services, simplifying

the management of configurations and updates. Argo CD also provided auto-

mated deployment and rollback capabilities, streamlining the process of deploying

and managing complex services. With its user-friendly interface and robust ac-

cess control mechanisms, Argo CD facilitated efficient collaboration among teams,

enhancing the reliability, scalability, and maintainability of the entire system.
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Implementation and Results

4.1 Implementation

4.1.1 Practical use case

In developed countries, the aging population is on the rise due to increasing life ex-

pectancy and declining birth rates. Assisted living has become a prominent concept to

cater to the needs of the elderly. While old homes or healthcare centers are available

options, many senior citizens prefer to stay in their own homes. However, ensuring their

health and well-being becomes a challenge as regular visits from healthcare staff can be

expensive and time-consuming.

To address this issue, there is a growing need for smart healthcare systems specifically

designed for the elderly. These systems would enable healthcare providers to remotely

monitor the health conditions of patients and provide affordable healthcare services.

Previous research has proposed IoT frameworks for healthcare, but they often lack

reusability, modular design, and security.

This research aims to fill these gaps by proposing IoT frameworks tailored for smart

healthcare in elderly care. These frameworks prioritize key capabilities such as reusabil-

ity, scalability, accessibility, interoperability, and update ability. The goal is to develop

flexible and adaptable solutions that can be easily deployed, expanded, integrated with

other systems, and updated to meet the evolving needs of elderly care.

By implementing these IoT frameworks, healthcare providers can remotely assess the

health conditions of elderly patients, ensuring their well-being while allowing them to
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remain in the comfort of their own homes. Additionally, the frameworks enable cost-

effective and accessible healthcare solutions, benefiting both the patients and healthcare

providers.

4.1.2 Floor Plan

In the deployment of sensor nodes, a strategic arrangement has been made to ensure

comprehensive monitoring of the living environment. Five sound sensors have been

deployed in key locations including the hallway, living room, kitchen, bathroom, and

bedroom. These sound sensors are responsible for capturing audio data and providing

valuable insights into the activities and events occurring in each area.(Figure 4.2)

To validate the accuracy of the information captured by the sound sensors, infrared (IR)

sensors have been placed in the same locations. These IR sensors serve as a complemen-

tary technology to confirm the presence and movement detected by the audio sensors,

enhancing the reliability and accuracy of the overall monitoring system. In addition,

light sensors have been deployed in the bedroom and living room to validate occupancy.

These sensors can detect variations in light levels, helping to determine whether the

rooms are currently occupied or vacant.

To monitor the outdoor movements of the patients, a door sensor has been installed.

This sensor can detect and report any instances of the patient leaving the house or

attempting to exit through the monitored door.

To ensure effective communication and data transmission between all the deployed sen-

sors and the central monitoring system, a gateway device has been strategically posi-

tioned in the hallway, which serves as the middle of the house. This location allows the

gateway to be within the optimal broadcast range of all the deployed sensors, facilitating

seamless data collection and transmission.

Overall, this well-planned deployment of sensor nodes ensures comprehensive coverage

of the living space, enabling efficient monitoring and providing valuable insights into the

activities, occupancy, and movements within the house.
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4.1.3 Pre-Deployment Steps

Before deploying the sensor nodes, several crucial steps are necessary to ensure the

smooth operation and functionality of the system. Firstly, the gateways need to be

bootstrapped by manually installing the Ubuntu 20.04 operating system. Following that,

all the required packages are installed using Ansible, including the BLE stack, Zabbix

agent, Docker, K3s, Argo CD, and the integration with Rancher. These installations

are essential for establishing the foundation of the gateway and enabling its connectivity

and communication capabilities.

• Bootstrap the gateways: Manually install the Ubuntu 20.04 operating system on

the gateways.

• Install required packages: Use Ansible to install necessary packages such as the

BLE stack, Zabbix agent, Docker, K3s, Argo CD, and establish the link with

Rancher.

• Configure sensors: Set up the sensors to transmit data via Bluetooth Low Energy

(BLE) for communication with the gateway.

• Calibrate sound sensors: Fine-tune the sound sensors to ensure accurate data

collection and monitoring of the acoustic environment.

• Configure pipelines in the cloud: Set up pipelines to extract data from the mes-

saging broker and load it into the database.

• Configure post-processing pipelines: Create pipelines to process the stored data

for visualization on the dashboard.

• Establish plug-and-play capability: Ensure that the system is ready for seamless

integration and deployment.

4.1.4 Deployment Steps

It is important to configure all the sensors to transmit their information via Bluetooth

Low Energy (BLE). This configuration ensures that the sensors can effectively broadcast

the collected data to the gateway, establishing the communication link between the

sensor nodes and the central monitoring system.
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• Position sensor nodes: Deploy the sensors according to the desired floor plan,

placing them in locations such as the hallway, living room, kitchen, bathroom,

and bedroom.

• Turn on the gateway: Activate the gateway device to establish communication

with the deployed sensor nodes.

• Activate microservices: After a minimal interval, the microservices within the

gateway and cloud infrastructure come alive, ready to receive and process the

sensor data.

• Monitor data transmission: Monitor the data transmission from the sensors to the

gateway, ensuring that the information is being captured accurately.

• Visualize data on the dashboard: Use the post-processing pipelines to process the

data and display it on the dashboard for easy visualization and analysis.

By following these steps, the system is equipped with a plug-and-play capability, al-

lowing for seamless integration of the deployed sensors and ensuring that the gateway

and microservices are operational. Once the sensors are deployed according to the de-

sired floor plan, the gateway device is turned on, and after a minimal interval, the

microservices come alive and start listening to the messages broadcasted by the sensors.

This synchronization enables real-time data collection and monitoring within the smart

healthcare system.

The implementation pipeline depicted in the figure 4.1 demonstrates an efficient data

broadcasting process using Bluetooth Low Energy (BLE) to the gateway. The mi-

croservice deployed on the gateway utilizes the Kubernetes proxy API communication

capabilities to receive these broadcasted messages via the host network. By leveraging

the host network effectively and providing the necessary credentials to the respective

pods, the messages are securely transmitted to the gateway.

Once received, these messages are forwarded to the MQTT broker deployed in the cloud

using the TCP network protocol. This ensures that the messages are promptly trans-

mitted to the cloud with minimal latency. To account for potential network disruptions

or temporary outages, the gateway also persists the data locally using SQLite, ensuring

data availability and reliability.
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In the cloud infrastructure, the MQTT broker receives the messages from the gateway,

enabling seamless data transfer. To extract data from the MQTT broker and load it

into the database, an open-source tool called Apache NiFi is utilized. This tool not

only facilitates the data transfer process but also offers additional benefits such as data

lineage, tracking, validation, historical analysis, and performance optimization. These

features are especially valuable in the IoT domain, where multiple data generation points

need to be efficiently managed.

To visualize the data on the dashboard, a FastAPI-based microservice is deployed in

the cloud stack. This microservice performs the necessary post-processing on the data,

preparing it for visualization on Grafana. As the primary database does not have a

built-in plugin for our requirements, we opted for InfluxDB as the data source for the

dashboard. InfluxDB provides the necessary capabilities to store and retrieve data

efficiently, enabling seamless integration with the Grafana dashboard.

Overall, this implementation pipeline ensures a robust and streamlined flow of data from

the sensor nodes to the cloud, incorporating data persistence, extraction, processing,

and visualization steps. By leveraging advanced technologies and tools, the system can

efficiently handle the challenges associated with data management and visualization in

IoT applications.

4.2 Results

After the implementation let’s discuss the main components and how they performed

in our proposed framework. The main focus here to see if all the functionalities present

the and framework is able to deliver all the required tools and services microservice.

After the deployment, the gateway cluster is visible in the UI which can be seen in Fig

4.15. So as soon as the gateway comes live we have complete control of the cluster

and can deploy workload and manage the cluster remotely. Rancher’s Projects enable

dynamic grouping of related namespaces, allowing for strict access control and resource

limits. which are very important if multiple teams are working inside the same cluster.

The microservice running on the gateways is able to scan the broadcasted messages

from the sensor using host ble stack Fig 4.14 shows this. In Fig 4.6 and Fig 4.7, the

Nifi running on the cloud all relevant processors are configured to extract data sent
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to the MQTT broker and load it to Couchbase our primary Database. The data is

then post-processed and sent to the relevant dashboard to be shown to the healthcare

provider to access and examine the situation of the patients. Fig 4.8 illustrates the

activity happening in the bedroom and different sensors present in the bedroom and

their respective charts and 4.9 show the sound sensor performance and its ability to

detect different activities performed in the bathroom. All of these charts are shown

to the healthcare provider to better access the patient’s health and also observe their

pattern and plan the visits accordingly.

The main components of the cloud stack are provisioned using Argo CD which is visible

in Fig 4.2 in deployment of this kind when adding a new functionality, function, feature,

or maintenance there is no need to manually deploy changes no member of the team

needs access to the cluster itself all configuration and deployment files resides inside a git

repository and only way to commit changes inside the cluster is to commit changes in git

repository so in this way our framework encompasses the single source of truth principle.

Argo CD also provides automated deployment and rollback capabilities, simplifying the

management of complex deployments. Its intuitive user interface and robust access

control mechanisms facilitate efficient collaboration among teams. Overall, deploying

services with Argo CD enhances the reliability, scalability, and maintainability of the

system.

The monitoring of the gateways deployed is done via a Zabbix agent installed on the

gateways and Zabbix server deployed on the cloud. The Zabbix agent is a lightweight

software component that can be installed on the gateway devices, enabling them to

report valuable metrics and data to the Zabbix monitoring system. This allows for real-

time monitoring of key performance indicators, such as CPU usage, memory utilization,

and network connectivity. Exported metrics are seen in Fig 4.3, 4.10,4.11, and 4.13.

In addition to the metrics displayed By monitoring IoT gateways with the Zabbix

agent, administrators can gain insights into the health and performance of the gateways,

identify potential issues or bottlenecks, and proactively address them. This ensures the

smooth operation and optimal functionality of the IoT gateway infrastructure.

We will judge our gateway on the limitations that we previously discussed in the method-

ology section and some essential functionalities that we think our gateway must have:

• Monitoring: provided by Zabbix open source tool
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• scalability: provided by deploying services on a Kubernetes cluster

• High Availability: and Resilience also provided by kubernets

• Analytics and Insights: Grafana is to provide valuable analytics which is also open

source

• Interoperability: microservice architecture enables us to have an interoperable

system

• Remote Management: Rancher and Argo give us the ability of remote management

• Flexibility.

• Edge Computing Capabilities: the workload deployed on the k3s cluster running

on the gateway provides us with necessary

• Device Management: With Rancher Device management

• Continuous delivery: Argo CD
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Figure 4.1: Implementation Flow Diagram
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Figure 4.2: Grafana Dashboard for device health monitoring

Figure 4.3: Floor Plan
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Figure 4.4: Argo CD UI for Cloud stack Deployment

Figure 4.5: Gateway cluster visible from Rancher UI

Figure 4.6: View of logs running in microservices
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Figure 4.7: Configuration of Couchebase

Figure 4.8: Complete Pipeline and relevant Processors
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Figure 4.9: A Plot for activity in the bedroom area after post-processing

Figure 4.10: Overall activity tracker of the patient in-house

Figure 4.11: Monitoring Functionality using Zabbix Agent and Grafana

53



Chapter 4: Implementation and Results

Figure 4.12: Network monitoring through Zabbix agent 1

Figure 4.13: All gateway clusters available at rancher UI

Figure 4.14: Network monitoring through Zabbix agent 2
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Conclusion and Future Work

5.1 Conclusion

This research demonstrates the potential of integrating IoT techniques and lightweight

virtualization technology through a containerized architectural framework for smart

home healthcare monitoring systems. By combining sensor networks and container-

ized microservices, the deployment of multiple IoT applications simultaneously in senior

citizen homes becomes feasible. The centralized management and orchestration of these

applications, following the principles of DevOps, contribute to efficient resource utiliza-

tion and scalability.

The proposed smart healthcare monitoring system offers significant advantages for el-

derly individuals who prefer to age in place. It enables continuous monitoring of their

activities and well-being,[12] allowing healthcare providers to offer timely assistance

when necessary. Through the use of containerization, the system provides flexibility

and adaptability to cater to the unique needs of each individual, promoting indepen-

dence and enhancing their overall quality of life.

This research emphasizes the potential of the containerized framework to revolution-

ize home healthcare for the elderly. The seamless integration of IoT technologies and

virtualization opens up new opportunities for remote healthcare monitoring, improved

resource management, and personalized care. Future research can explore the inte-

gration of legacy network protocols to enhance communication capabilities, ensuring

seamless connectivity in diverse home environments.

In conclusion, the implementation and evaluation of the proposed smart healthcare
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monitoring system lay the foundation for advancing home-based healthcare solutions to

meet the increasing needs of an aging population. By embracing emerging technologies

and innovative approaches, we can envision a future where elderly individuals can age

comfortably and securely in their own homes while receiving the necessary care and

support[10].

5.2 Future work

While the implemented system showcases a robust implementation pipeline for data

broadcasting and processing, there are several areas that can be explored for future

enhancements and advancements.

It is important to address the reliance on the host network for the BLE service pod

to receive messages. Currently, the system requires an API proxy to effectively com-

municate with the host network. In the future, further research and development can

focus on improving the communication capabilities between the service pod and the

host network. This could involve exploring alternative communication mechanisms or

developing more efficient proxy solutions to enhance the overall system performance.

Additionally, an interesting avenue for future work is the communication ability with

legacy network protocols. The current implementation predominantly focuses on utiliz-

ing modern network protocols, such as BLE and TCP. However, many existing systems

and devices still rely on legacy network protocols. Extending the system’s communi-

cation abilities to seamlessly integrate with legacy protocols would greatly enhance its

interoperability and compatibility with a wider range of devices and networks.

So the system’s scalability and adaptability can be further explored. As the number of

sensor nodes and data sources increases, ensuring efficient data handling and processing

becomes crucial. Future work can focus on optimizing the system’s architecture, lever-

aging technologies like edge computing and distributed processing, to handle large-scale

deployments and high-volume data streams effectively.

Lastly, ongoing advancements in data analytics and machine learning can be leveraged to

enhance the system’s capabilities. This includes exploring predictive analytics, anomaly

detection, and real-time data processing techniques to extract valuable insights from the

collected data. Integrating advanced analytics capabilities can enable proactive mon-
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itoring, early detection of critical events, and improved decision-making in healthcare

scenarios.

Overall, the implementation process presented in this thesis provides a solid foundation

for further exploration and development. By addressing the communication challenges,

embracing legacy network protocols, ensuring scalability, and incorporating advanced

analytics, the system can continue to evolve and provide even more efficient, reliable,

and comprehensive solutions for smart healthcare and IoT applications.
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