
1

Design And Fabrication of Unmanned Aerial

Manipulative System

A Final Year Project Report

Presented to

SCHOOL OF MECHANICAL & MANUFACTURING

ENGINEERING

Department of Mechanical Engineering

NUST

ISLAMABAD, PAKISTAN

In Partial Fulfillment

of the Requirements for the Degree of

Bachelor of Mechanical Engineering

By

Muhammad Sheraz Amin

Asad Ullah

Rana Muhammad Hunain

June 2023

2

EXAMINATION COMMITTEE

We hereby recommend that the final year project report prepared under our supervision by:

Muhammad Sheraz Amin 289384

 Asad Ullah 307158

Rana Muhammad Hunain 288959

Titled: “Design and Fabrication of Unmanned Aerial Manipulative System” be accepted in partial

fulfillment of the requirements for the award of Mechanical Engineering degree.

Supervisor: Dr. Muhammad Jawad Khan, Assistant Professor,

Department of Robotics and Intelligent Machine Engineering,

SMME

Dated:

Committee Member:

Committee Member:

_____________________ ___________

 (Head of Department) (Date)

COUNTERSIGNED

Dated: _______________ ________________________

 (Dean / Principal)

3

Abstract

As usage of multi-purpose drones is skyrocketing, many innovations are a foot. The aerial

manipulator, a combination of a robotic arm and a flying platform, has emerged as a

cutting-edge technology with diverse applications in various fields, such as disaster

response, environmental monitoring, and infrastructure inspection. In this report, we

investigate the design and implementation of a 3-DOF robotic arm mounted on a

hexacopter, simulated using the Robot Operating System (ROS) and structurally analyzed

using ANSYS. We focus on the applications of this technology in active environments,

where tasks are hazardous or difficult for human operators.

The aerial manipulator can be equipped with sensors, cameras, and other tools, making it

an ideal solution for tasks such as search and rescue, inspection of pipelines and power

lines, and monitoring of forest fires. In addition, the aerial manipulator can reach locations

that are inaccessible to ground-based robots, making it a valuable asset in disaster response

scenarios.

To assess the market potential of aerial manipulators, we have analyzed data from various

sources, including industry reports and academic publications. The market for aerial

manipulators is projected to grow significantly in the coming years, driven by the

increasing demand for unmanned aerial vehicles (UAVs) in various industries. According

to a report by MarketsandMarkets, the global market for UAVs is expected to reach $55.8

billion by 2025, with aerial manipulators being one of the fastest-growing segments.

Our simulations using ROS have demonstrated the feasibility of the proposed design,

highlighting the importance of optimizing the configuration and control of the aerial

manipulator to achieve maximum efficiency and accuracy. The major capability of aerial

manipulator is Pick and Place. We believe that the aerial manipulator has the potential to

revolutionize the way we perform tasks in hazardous and inaccessible environments and

automotive tasks as delivery service.

In conclusion, our study has demonstrated the potential of the aerial manipulator in various

applications, including those where human intervention is limited or impossible. With the

market for aerial manipulators projected to grow rapidly in the coming years, we believe

that this technology will play a vital role in shaping the future of unmanned aerial systems.

4

Acknowledgements

Firstly, we give Allah, the Almighty, praise and thanks for His bounties that enabled us to

successfully complete the research for our Final Year project.

We would like to express our heartfelt gratitude to our research supervisor, Dr.

Muhammad Jawad Khan, Assistant Professor and Head, Aerial Robotics Lab SINES,

NUST for his invaluable guidance and support throughout the entire duration of our Final

Year Project. Without his expertise, dedication, and encouragement, we would not have

been able to successfully complete our research project.

Dr. Muhammad Jawad Khan has consistently provided us with constructive feedback,

insightful suggestions, and timely assistance whenever we needed it. He was always there

to answer our questions, clarify our doubts, and steer us in the right direction. His expertise

and experience have been crucial in helping us navigate the various challenges we

encountered during the course of our project.

Furthermore, he has been an excellent role model, demonstrating the importance of hard

work, diligence, and perseverance. We have learned so much from his/her example and are

grateful for the opportunity to work under his/her mentorship.

In conclusion, we would like to extend our heartfelt appreciation to Dr. Muhammad Jawad

Khan for his unwavering support and guidance throughout our project. We are truly

grateful for everything he has done for us and will always remember his contribution to

our success.

We are particularly appreciative of the School of Mechanical and Manufacturing

Engineering for giving us the chance to do research in this rapidly expanding area. We owe

a debt of gratitude to the academics and members of our thesis committee for their

invaluable advice, support, and direction during this effort.

We would like to express our gratitude to our friends and fellow undergraduate mechanical

engineering students at SMME NUST for their advice and guidance as we informally

discussed our projects during lunch breaks.

For their ongoing, unconditional financial and emotional support, without which our

initiative could not have been feasible, we are grateful to our parents and relatives.

Finally, we would like to express our gratitude to everyone who helped us, directly or

indirectly, to finish the study project.

 Muhammad Sheraz Amin

 Asad Ullah

 Rana Muhammad Hunain

7%
SIMILARITY INDEX

5%
INTERNET SOURCES

3%
PUBLICATIONS

4%
STUDENT PAPERS

1 1%

2 1%

3 1%

4 <1%

5 <1%

6 <1%

7 <1%

report
ORIGINALITY REPORT

PRIMARY SOURCES

Submitted to Higher Education Commission
Pakistan
Student Paper

Xiangdong Meng, Yuqing He, Feng Gu, Liying
Yang, Bo Dai, Zhong Liu, Jianda Han. "Design
and implementation of rotor aerial
manipulator system", 2016 IEEE International
Conference on Robotics and Biomimetics
(ROBIO), 2016
Publication

www.ncbi.nlm.nih.gov
Internet Source

dokumen.pub
Internet Source

dspace.mit.edu
Internet Source

Submitted to Cebu Institute of Technology
Student Paper

www.coursehero.com
Internet Source

6

Table of Contents

ABSTRACT --3

ACKNOWLEDGMENTS --4

ORIGINALITY REPORT---5

Table of Contents--6-7

List of Tables--8

List of Figures --9-10

Chapter 1: Introduction --11

1.1 Motivation --11

1.2 Versatility--11

1.3 Problem Statement--12

1.3.1 Lightweight/low inertia arm---12

1.3.2 COG Mechanism---12

1.3.3 Manufacturing Cost--13

Chapter 02 : Literature Review--14

2.1 Centralized and Decentralized Control---14

2.2 Adaptive Sliding Control--14-15

2.3 Topology Optimization --15

2.4 Quadcopter Dynamics--16

2.5 Flight Controls--17

2.6 Dynamics of 3DOF Manipulator---8

Chapter 03: Methodology--21

3.1 UV design Calculations--21-22

3.2 Design of robotic arm--23

3.3 Design Calculation---25-27

3.4 Material selection-- 27-28

3.5 FEM --28-32

3.6 Control System and Simulation---32-37

7

Chapter 04: Results and discussions_---38

4.1: UAM Final System Configuration --38-39

4.2: Final Simulation Results--39-41

4.3: Developed Aerial Manipulator System--41-43

Chapter 05: Conclusion and Recommendations---44

5.1: Future Recommendations---44-45

5.2: Applications--45

References: --46

8

LIST OF TABLES

Table 3.1: Propeller Data---20

Table 3.2: Thrust Calculations---21

Table 3.3: Material Properties---27

Table 4.1: Propeller and Motor Specs---39

Table 4.2: Frame Battery and ESC Specs---39

Table 4.3: Parameters of Arm Joints--40

9

LIST OF FIGURES

Figure 2.1: Adaptive Sliding Control ---15

Figure 2.2: Topology Optimization---15

Figure 2.3: Flight Control Layout---17

Figure 2.4: Overall Control Configuration---18

Figure 3.1: Initial CAD Design--23

Figure 3.2: Final CAD Model of Robotic Arm--24

Figure 3.3: End Effector--25

Figure 3.4: Total Deformation in Base Plate---28

Figure 3.5: Equivalent Von Mises in Base Plate---29

Figure 3.6: Motor Casing Total Deformation--29

Figure 3.7: Equivalent Von Mises Stresses in Motor Casing----------------------------------30

Figure 3.8: Total Deformation in Connecting Link---30

Figure 3.9: Equivalent Von Mises Stresses in Connecting Link-------------------------------31

Figure 3.10: Total Deformation in connecting link 2---31

Figure: 3.11: Equivalent Von Mises Stresses in Connecting Link 2-------------------------32

Figure: 3.12: Control Architecture of Robotic arm---33

Figure: 3.13: Robotic Manipulator in Gazebo ROS--34

Figure: 3.14: Planning group definition in MoveIt setup assistant---------------------------35

Figure 3.15: Robotic Manipulator in Zero Pose--35

Figure 3.16: Robotic Manipulator in picking object pose-------------------------------------36

Figure 3.17: Hexacopter Spwan--36

Figure 3.18: Hexacopter Hovering---37

Figure 4.1: Hexacopter at initial position--39

Figure 4.2: Hexacopter going to pick object--39

Figure 4.3: Hexacopter while picking object--40

Figure 4.4: Hexacopter returning back to drop the object-------------------------------------40

10

Figure 4.5: Hexacopter after dropping the object--41

Figure 4.6: Aerial Manipulation System---41

Figure 4.7: Robotic Manipulator--42

11

Chapter 1: Introduction

1.1 Motivation

Aerial manipulators have gained significant attention in recent years due to their ability to

perform a wide range of tasks in various industries. The global market for aerial

manipulators is projected to witness substantial growth in the coming years, with a CAGR

of 17.2% from 2021 to 2028.

The market for aerial manipulators is driven by several factors, including the growing

demand for automation and the need to increase efficiency and safety in various industries.

Additionally, advancements in technology, such as the development of lightweight

materials and sensors, are contributing to the increased adoption of aerial manipulators.

The market is expected to continue its growth trajectory in the coming years, with the Asia-

Pacific region projected to be the fastest-growing market due to the high demand for

automation in industries such as manufacturing and agriculture. However, challenges such

as high costs and regulatory hurdles may impede the market's growth. North America and

Europe are expected to adopt the aerial manipulator market faster, owing to the increasing

adoption of UAVs for various applications, including military and defense and oil and gas.

Ukraine war has demonstrated the efficiency of drones on battlefield where drones being

used from reconnaissance to bomb dropping.

Aerial manipulator market presents a significant opportunity for manufacturers and

investors looking to capitalize on the growing demand for automation.

1.2 Versatility

Main feature of aerial manipulators is the versatility they possess credited to a unique

combination of mobility of hexacopter and interaction of robotic arm with surroundings.

The versatility of aerial manipulators is one of their most significant advantages. With the

ability to fly and maneuver in three-dimensional space, they can access and perform tasks

in locations that are challenging or impossible for ground-based robots. Additionally, they

can carry various tools and sensors, enabling them to perform a wide range of tasks, from

inspection and maintenance to disaster response and environmental monitoring. This

versatility makes aerial manipulators an attractive solution for industries such as

agriculture, construction, and energy, where tasks often involve difficult-to-reach locations

or hazardous conditions.

12

1.3 Problem Statement

To design and develop a UAM platform in which robotic arm is

integrated on UAV such that external disturbances caused by the arm on

UAV are minimum.

Our energies are focused on following three design consideration:

1.3.1 Light Weight/ Low Inertia Arm

The significance of employing materials and manufacturing processes that minimize the

weight of the robotic arm cannot be overstated, as it decreases the resistance to

displacement and maneuverability. This, in turn, necessitates the use of less powerful

actuators, which, in conjunction with a smaller battery, can contribute to a lighter overall

weight of the robot.

By prioritizing lightweight construction, we can enhance the efficiency and agility of the

robotic arm, enabling it to operate with greater precision and speed. This approach is not

only practical but also essential in ensuring the robot's longevity and functionality.

Moreover, the benefits of lightweight construction extend beyond the robot itself, as it can

contribute to the overall sustainability and cost-effectiveness of the project. By reducing

the size and weight of components, we can minimize resource consumption and waste

generation while optimizing the efficiency of the system.

1.3.2 COG Mechanism

As the robotic arm traverses through a 3D Euclidean space, the displacement of mass is

spread over a greater distance. This, in turn, causes a displacement of the combined center

of gravity (COG) of the aerial manipulator, leading to an imbalanced weight distribution

and thrust misplacement that generates moments on the drone platform. Such distortions

can compromise the stability of the drone during its operations and pose a risk to its

reliability.

To mitigate these challenges, careful consideration must be given to the design and

placement of the robotic arm and its components. Furthermore, the selection of materials

must be optimized to ensure a balance between strength and weight. The use of advanced

algorithms and control systems can also aid in maintaining the stability and trajectory of

the drone.

13

1.3.3 Manufacturing Cost

Our manufacturing process will utilize easily accessible techniques such as 3D printing,

employing materials that are both economical and manageable. We have opted for PLA, a

material with attributes that fulfill the aforementioned requirements, to construct the

robotic arm. This methodology will enable us to curtail both expenses and time. The

assembly of the drone will also be a streamlined procedure, with an emphasis on the

construction of the frame and controls.

By embracing novel methods, we can improve the quality of our outputs while minimizing

the impact on our resources. Thus, we are confident that our approach will enable us to

achieve our objectives in a sustainable, cost-effective, and timely manner.

14

Chapter 2: Literature Review

A thorough summary of the literature review is noted down below and useful concepts

which we found helpful in our project are listed down and expounded upon.

2.1 Centralized and Decentralized Control:

In the context of aerial manipulator control, a centralized approach involves a single

controller that coordinates the motion and manipulation of the aerial vehicle and its end-

effector. This controller receives feedback from various sensors and calculates the required

control inputs to achieve the desired task.

On the other hand, a decentralized approach involves multiple controllers that work

together to achieve the desired task. In this approach, each controller is responsible for a

specific task, such as controlling the aerial vehicle or the end-effector and communicates

with other controllers to coordinate their actions.

Both approaches have their advantages and disadvantages. A centralized approach can

provide more precise and coordinated control of the aerial manipulator, but it can also be

more complex and less resilient to failures.

A decentralized approach can be more robust to failures and easier to implement, but it

may be less precise and coordinated than a centralized approach. The choice between a

centralized and decentralized approach will depend on the specific requirements and

constraints of the aerial manipulator task.

2.2 Adaptive Sliding Control:

Adaptive sliding control is a control technique that is used to control uncertain systems,

particularly those with unknown or varying parameters. Adaptive sliding control can

handle uncertainties while ensuring convergence to the desired trajectory. Aerial

manipulation is a complex task that involves picking and releasing objects while the aerial

vehicle is hovering. One of the crucial aspects of accurate manipulation is position holding,

which can be disrupted by sudden changes in the quadrotor's attitude caused by the

additional torque generated during object grabbing or releasing. Therefore, the controller

for aerial manipulation must be able to address challenges such as battery drainage,

miscalculated mechanical properties, measurement bias, and noise. It is essential to ensure

that the controller can handle these issues to maintain the stability and precision of the

aerial manipulator.

15

 Figure 2.1: Adaptive Sliding Control

2.3 Topology Optimization:

One of the main remedies of COG shifting problem is the topology optimization of robotic

arm/manipulator. Topology optimization is a design optimization technique that aims to

find the optimal distribution of material within a given design domain to achieve a desired

set of performance criteria. The technique uses mathematical algorithms to iteratively

optimize the topology or shape of a structure, while satisfying constraints on performance,

such as maximum stress, minimum weight, or maximum stiffness in our case lightweight

frame without compromising structural integrity.

 Figure 2.2: Topology Optimization

2.4 Quadcopter Dynamics:

A quadcopter is operated by controlling the RPM of its rotors, which, in turn, regulates the

lift, torque, and thrust of the rotors. Compared to other UAVs, quadcopters are relatively

small, allowing them to perform complex aerial maneuvers. However, due to their size,

precise control of the quadcopter's angles is necessary for performing these complex

16

maneuvers accurately. Therefore, careful handling of the angles is crucial to achieving the

required precision in flight control.

2.4.1 Take off:

To lift off the ground, a quadcopter must generate force equal to or greater than gravity.

This is achieved by controlling the engine and propeller direction to manage the lift and

descent of the aircraft. As the propeller blades spin, they push air downwards, and

according to Newton's Third Law, an equal and opposite reaction force is generated,

pushing the rotor upwards. Thus, the speed of the rotor determines the amount of lift

generated - faster rotation leads to more lift and vice versa.

2.4.2 Hovering:

To achieve hovering, net thrust of all six rotors must be equal to weight of drone and weight

of the robotic manipulator with all its accessories.

2.4.3 Thrust:

Rotating the propeller of a quadcopter generates an orthogonal force, known as thrust,

which propels the aircraft in the direction of the force. Equation of thrust:

However, the magnitude of thrust depends on the real-time air density, velocity (v), and

diameter (D) of the propeller. Neglecting changes in air density can compromise the

performance of the rotor, as it plays a critical role in determining the amount of thrust

generated. Therefore, it is crucial to consider environmental conditions when estimating

the thrust produced by the propeller.

 2.5 Flight Controls:

The hex-rotor aerial robot system consists of four sub-systems, including the flight control

sub-system, sensor sub-system, communication sub-system, and ground station sub-

system.

2.5.1 PixHawk

Pixhawk is an open-source autopilot platform designed for unmanned aerial vehicles

(UAVs) and other robotic systems. The Pixhawk platform consists of a main processor

board, peripheral sensors, and an array of input/output connectors that can be customized

to suit specific needs. It is equipped with a suite of sensors, including accelerometers,

gyroscopes, magnetometers, barometers, and GPS, which provide accurate and reliable

data for navigation, stabilization, and control of the UAV.

Pixhawk runs on the ArduPilot firmware, which is a popular open-source autopilot

software that provides a wide range of features and functions, including autonomous flight,

17

mission planning, and telemetry. It supports various communication protocols, such as

MAVLink, which enables real-time communication between the UAV and the ground

station.

 Figure 2.3: Flight Control Layout

2.5.2 Overall Control Configuration

RAMS (Rotor Aerial Manipulator System) consists of an onboard part and a ground

part that communicates wirelessly. The onboard part stabilizes the RAR(rotor aerial

robot), performs aerial manipulation tasks, and transmits data to the ground. The

Pixhawk autopilot is the core component, providing real-time flight state information

and recording various data. The ground part includes a ground station and operator,

responsible for commanding the aerial manipulator, performing ground operations, and

switching to manual control during emergencies. Effective communication between the

two parts is crucial for secure and efficient aerial manipulation.

18

 Figure 2.4: Overall Control Configuration

2.6 Dynamics of 3DOF manipulator

Dynamics of manipulators are quite a complex task involving various facets of

mathematics like tensor calculus. This leads to many novel terminologies.

2.6.1 Euler- Lagrange Approach

 The Euler-Lagrange approach is a mathematical framework used to derive the equations

of motion for a mechanical system. It is commonly used in control systems. The approach

is based on the principle of stationary action, which states that the actual motion of a system

is the one that minimizes the action integral over all possible paths. The action is defined

as the integral of the Lagrangian, which is a function that describes the kinetic and potential

energy of the system.

Lagrangian is first defined for the system, and then the Euler-Lagrange equations are

applied. These equations are a set of partial differential equations that describe the motion

of the system in terms of the Lagrangian.

Euler-Lagrangian approach yields the following expression for n-link manipulator.

∑𝑑𝑘𝑗
𝑗

(𝑞)𝑞̈𝑗 +∑𝐶𝑖𝑗𝑘(𝑞)𝑞̇𝑖
𝑖,𝑗

𝑞̇𝑗 + ɸ𝑘(𝑞) = 𝜏𝑘

In more general form this is written as,

 𝐷(𝑞)𝑞̈ + 𝐶(𝑞, 𝑞̇)𝑞̇ + 𝐺(𝑞) = 𝜏

19

Where D(q) represents all inertial effects of all links, C(𝑞, 𝑞̇) denotes the centripetal and

Coriolis force effects on link motions also known as velocity-product term and G(q) is the

effect of gravity on every link mass as it changes position in Euclidean space.

𝐷(𝑞) =∑𝑚𝑖

𝑛

𝑖=1

𝐽𝑇𝑣𝑖
𝐽𝑣𝑖 +∑𝐽𝑇𝑤𝑖

𝑛

𝑖=1

𝑅𝑖𝐼𝑏𝑅
𝑇
𝑖𝐽𝑤𝑖

Masses, rotation matrices and inertia tensors of every link are required along with

transrational and rotational Jacobians. MATLAB is used to compute all matrix

multiplications and additions.

G(q) is easily computable. It is a gravity vector which includes potential energies of every

link.

 𝑃 = ∑ 𝑃𝑖 = ∑ 𝑔𝑟𝑐𝑖𝑚𝑖
𝑛
𝑖=1

𝑛
𝑖=1

Here 𝑟𝑐𝑖 is the height of center of mass of each link. But we use angular displacements(ɵ)

of links as its substitute. Because both are analogous to each other.

2.6.2 Christoffel Number:

In the context of dynamic modeling of an n-link manipulator, the Christoffel symbols

represent the effects of the Coriolis and centripetal forces on the motion of the system.

These forces arise from the fact that the motion of each link is affected by the motion of all

the other links, due to the geometry of the system.

𝐶𝑖𝑗𝑘 =
1

2
{
Ձ𝑑𝑘𝑗

Ձɵ𝑖
+
Ձ𝑑𝑘𝑖
Ձɵ𝑗

−
Ձ𝑑𝑖𝑗

Ձɵ𝑘
}

𝐶𝑖𝑗𝑘 represents the “Christoffel symbols” of degree 1 . It is derived using tensor

calculus. It is also called coefficient of velocity product. In above mentioned equation,

i=j case is centripetal while i≠j is Coriolis effect of velocities.

20

Chapter no 3: Methodology

The previous chapter conducted a literature review in which various typed of models for

aerial manipulators were explored. The major research problem which was found the

existing research was the proper integration of UAV with Robotic Arm and to reduce the

external disturbance caused by the robotic manipulator on the aerial platform stability.

We saw in previous papers that various techniques were used to achieve above mentioned

objective. In one paper a timing belt mechanism was used to increase the mass distribution

near the base. In one six axis torque and force sensors were utilized to give the feedback to

control loop to minimize the disturbances.

In our design, using all these results of previous research conducted we will practically

demonstrate a prototype implementation of this concept.

3.1 UAV Design Calculations:

3.1.1 Thrust Calculations:

From Bench Test we found the following thrust value at certain RPMs:

 Table 3.1: Propeller Data

RPMs Current (A) Voltage (V) Thrust (g)

3925 2.03 11.23 212

7204 13.81 10.82 770

6360 9.3 10.97 620

By using numerical method of divided difference to approximate a polynomial to estimate

thrust or rpm at any given point, following relation is generated:

 𝑅𝑃𝑀 = 3925 + 5.968137(𝑇 − 212) − 0.0006119540024(𝑇 − 212)(𝑇 − 620)

At Different RPMs we calculated the values of Thrust using that equation

21

 Table 3.2: Thrust Calculations

Estimated Values APC Values Error

RPMs Thrust (g) RPMs Thrust

4000 224.07647 4000 259.6306 13.69

5000 387.9367 5000 406.6945 4.61

6000 557.4645 6000 585.8412 4.84

7000 733.29179 7000 798.9568 8.20

The Thrust values we calculated are almost equal to the actual Thrust values from

manufacturers website with some error.

Now Thrust calculated by APC propeller’s website:

At 6000 RPM

𝑇𝑜𝑡𝑎𝑙 𝑇ℎ𝑟𝑢𝑠𝑡 = 3515.04 (𝑔)

𝐻𝑜𝑣𝑒𝑟𝑖𝑛𝑔 𝑇ℎ𝑟𝑢𝑠𝑡 = 𝑇𝑜𝑡𝑎𝑙 𝑇ℎ𝑟𝑢𝑠𝑡/2

 = 1757.52 (𝑔)

At 7000 RPM

𝑇𝑜𝑡𝑎𝑙 𝑇ℎ𝑟𝑢𝑠𝑡 = 4793.74 (𝑔)

𝐻𝑜𝑣𝑒𝑟𝑖𝑛𝑔 𝑇ℎ𝑟𝑢𝑠𝑡 = 𝑇𝑜𝑡𝑎𝑙 𝑇ℎ𝑟𝑢𝑠𝑡/2

 = 2396.87 (𝑔)

3.1.2 Flight Time Calculations:

The estimated flight time for our UAV can be calculated using various parameters specified

by our selected components:

𝐵𝑎𝑡𝑡𝑒𝑟𝑦 = 5200𝑚𝐴𝐻

 = 5.2𝐴𝐻

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑑𝑟𝑎𝑤𝑛 𝑏𝑦 𝑜𝑛𝑒 𝑚𝑜𝑡𝑜𝑟 = 13𝐴

22

𝑇𝑜𝑡𝑎𝑙 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝐷𝑟𝑎𝑤𝑛 𝑏𝑦 6 𝑀𝑜𝑡𝑜𝑟𝑠 = 78 𝐴

Flight Time =
𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦(𝐴𝐻) ∗ 60

𝑇𝑜𝑡𝑎𝑙 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐷𝑟𝑎𝑤𝑛

𝐹𝑙𝑖𝑔ℎ𝑡 𝑇𝑖𝑚𝑒 =
5.2 ∗ 60

78

𝐹𝑙𝑖𝑔ℎ𝑡 𝑇𝑖𝑚𝑒 = 4 𝑚𝑖𝑛

𝑅𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑒𝑑 𝐹𝑙𝑖𝑔ℎ𝑡 𝑇𝑖𝑚𝑒 = 𝐹𝑎𝑐𝑡𝑜𝑟 𝑜𝑓 𝑆𝑎𝑓𝑒𝑡𝑦 ∗ 𝐹𝑙𝑖𝑔ℎ𝑡 𝑇𝑖𝑚𝑒

 = 0.7 ∗ 4

𝑅𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑒𝑑 𝐹𝑙𝑖𝑔ℎ𝑡 𝑇𝑖𝑚𝑒 = 2.8 𝑚𝑖𝑛𝑢𝑡𝑒𝑠

3.2 Design of Robotic Arm:

The Manipulator is crucial aspect of aerial manipulator. We designed the arm using the

iterative approach.

3.2.1 Initial Design:

The initial design of the robotic arm was designed using SolidWorks. This is a 3 Degree of

Freedom arm with 1 DOF End effector. The arm design had various features such as low

weight, distribution of mass at optimum position. The connecting rod mechanism to place

the actuator near the base of the UAV. The arm is shown in figure as below:

Figure 3.1: Initial CAD Design

23

The problem with this design is that the structural integrity of arm is very less. The arm has

low structural strength making it very unlikely to withstand various impacts during the

testing phase.

We need our robotic arm to be structurally rigid to make it able to withstand the impacts.

We have to choose a middle way between mass distribution and structural strength.

3.2.2 Finalized design:

The final design of the robotic manipulator is designed by considering all the necessary

factors into account. This is 3 Degree of Freedom Arm. It contains three revolute joints and

an end effector mounted at the end.

The main features of final design are:

1. For uniform weight distribution links are attached on both sides, in this way UAV’s

stability would not be affected as weight distribution is equal on both sides.

2. The structural integrity of the arm is increased.

The SolidWorks CAD model of the arm is shown as below:

Figure 3.2: Final CAD Model of Robotic Arm

24

The robotic Manipulator has two main components:

1) Robotic Arm

2) End Effector

3.2.3 End Effector:

The end effector design is Mechanically Robust. It can grasp fairly large objects and have

a strong grip. The parent gear will be derived from servo motor, this gear then transmits

the motion further.

Figure 3.3: End Effector

3.3 Design Calculations:

3.3.1 Forward kinematics:

Using forward kinematics, we will find the position and velocity of end effector given joint

angles and velocities.

The first transformation matrix from base to link 1:

𝑇 = [

𝑐𝑜𝑠(𝜃1) −𝑠𝑖𝑛(𝜃1) 0 0
0 0 −1 0

𝑠𝑖𝑛(𝜃1) 𝑐𝑜𝑠(𝜃1) 0 0
0 0 0 1

]1
0

25

Second transformation matrix:

And similarly, the third transformation matrix can also be obtained by:

The final transformation matrix from base link to end effector can be calculated from the

following expression:

The final transformation matrix we will obtain after multiplying the above three matrices

will give us our position and orientation of our end effector.

3.3.2 Inverse Kinematics:

Using the kinematic equations derived above we can find the desired motion of our robotic

arm to reach our desired position. There are various approaches to determine inverse

kinematics. We will use geometric approach to figure out aur inverse kinematics.

The calculated joint angles are:

𝑇 = [

𝑐𝑜𝑠(𝜃2) −𝑠𝑖𝑛(𝜃2) 0 (𝑎2)
𝑠𝑖𝑛(𝜃2) 𝑐𝑜𝑠(𝜃2) 0 0
0 0 1 0
0 0 0 1

]2
1

𝑇 = [

𝑐𝑜𝑠(𝜃3) −𝑠𝑖𝑛(𝜃3) 0 (𝑎3)
𝑠𝑖𝑛(𝜃3) 𝑐𝑜𝑠(𝜃3) 0 0
0 0 1 0
0 0 0 1

]3
2

𝑇 =3
0 𝑇1

0 × 𝑇2
1 × 𝑇3

2

𝜃1 = 𝑡𝑎𝑛
−1(

𝑦

𝑥
)

𝜃2 = 𝑐𝑜𝑠
−1(
𝑙2
2 + 𝑘2 − 𝑙3

2

2𝑘𝑙2
) + 𝑡𝑎𝑛−1(

(𝑧 − 𝑙1) 𝑐𝑜𝑠 𝜃

𝑥
)

26

These are the desired angles we will use to determine the motion of our robotic arm.

3.3.4 Dynamics:

The dynamic model is developed using Euler-Lagrange Formulation,

𝐷(𝑞)𝑞̈ + 𝐶(𝑞, 𝑞̇)𝑞̇ + 𝐺(𝑞) = 𝜏

Where,

𝐷(𝑞) = 𝐼𝑛𝑒𝑟𝑡𝑖𝑎 𝑀𝑎𝑡𝑟𝑖𝑥

𝐶(𝑞, 𝑞̇) = 𝐶𝑜𝑟𝑖𝑜𝑙𝑖𝑠 𝑀𝑎𝑡𝑟𝑖𝑥

𝐺(𝑞) = 𝐺𝑟𝑎𝑣𝑖𝑡𝑦 𝑉𝑒𝑐𝑡𝑜𝑟

3.4 Material Selection:

We will be 3D printing our robotic arm. PLA (Polylactic Acid) is one of the most commonly

used thermoplastic materials in 3D printing. It is a biodegradable and bioactive polymer

made from renewable resources such as cornstarch or sugarcane. Considering the cost,

structural strength, and other limiting factors we will be using PLA to 3D print our parts.

The material properties of PLA are:

 Table 3.3: Material Properties

Material Property Value

Density 1.25 𝑔/𝑐𝑚3

Melting Temperature 160 °𝐶

Yield Strength 45 𝑀𝑃𝑎

𝜃3 = sin
−1

(

𝑘

𝑙3
sin

(

 cos−1

(

𝑐𝑜𝑠θ1

2(𝑙2 − 𝑙3
2 + (𝑧 − 𝑙1)

2) + 𝑥2

2𝑙2 cos θ1√(𝑧 − 𝑙1)2𝑐𝑜𝑠θ1
2 +𝑥2)

)

)

27

Ultimate Tensile Strength 55 𝑀𝑃𝑎

Young’s Modulus 2.7 𝐺𝑃𝑎

Poisson’s Ration 0.3

Bulk Modulus 2.25 𝐺𝑃𝑎

Shear Modulus 1.0385 𝐺𝑃𝑎

3.5 Finite Element Analysis:

The Finite Element Analysis of the developed robotic arm was done using Ansys

Mechanical to test its structural strength and integrity. The material properties of the

Polylactide (PLA) were defined in Ansys material definition Module.

After defining the appropriate Geometry and Mesh Generation, the Von Mises stress and

deformation were plotted and visualized. Maximum values of stress and deformation were

noted. These maximum values noted were less than the critical values which the material

can withstand.

3.5.1 Base Plate:

Figure 3.4: Total Deformation in base plate

28

Figure 3.5: Equivalent Von Mises stresses in base plate.

3.5.2 Motor Casing:

Figure 3.6: Motor Casing Total Deformation

29

Figure 3.7: Equivalent Von Mises Stresses in Motor Casing

3.5.3 Connecting Link:

Figure 3.8: Total Deformation in Connecting link.

30

Figure 3.9: Equivalent Von Mises Stresses in Connecting Link

3.5.4 Connecting Link 2:

Figure 3.10: Total Deformation in Connecting link 2

31

Figure 3.11: Equivalent Von Mises Stresses in Connecting Link

3.6 Control system and Simulation:

3.6.1 Control system of Robotic Manipulator:

The control system for the robotic arm is based on an Arduino microcontroller. It serves as

the central processing unit, coordinating the communication between the mobile device

and the servos. The Arduino board is responsible for receiving control commands from the

mobile application via Bluetooth and translating them into appropriate signals to drive the

servos.

The following are the major components of control system:

 Microcontroller Arduino UNO

 Servo Motors MG 996R

 Servo Motor driver Adafruit PCA9685

 Bluetooth Module HC - 05

 Power Supply 5V - 3A

32

The control architecture of robotic arm:

 Figure 3.12: Control architecture of robotic arm

The major components of robotic arm are:

1. Servos and Actuation:

The MG996R servos are utilized to actuate the three joints of the robotic arm. Each servo

motor is connected to the Adafruit PCA9685 servo driver, which is interfaced with the

Arduino board. The PCA9685 servo driver allows precise control of the servos by

generating Pulse Width Modulation (PWM) signals. The Arduino sends the appropriate

PWM signals to the servo driver, instructing the servos to move to the desired positions.

2. Control Interface:

The mobile application's user interface is designed to facilitate intuitive control of the

robotic arm. The user can interact with the arm by using sliders corresponding to individual

servo positions or by using command coordinated movements. The interface provides real-

time visual feedback, allowing the user to monitor the arm's position and movements.

3. Wireless Communication:

The HC-05 Bluetooth module acts as a wireless communication link between the mobile

device and the Arduino board. The Arduino is equipped with the necessary libraries and

functions to establish a Bluetooth connection and receive data from the mobile application.

33

The communication protocol ensures reliable and real-time transmission of control

commands, enabling seamless control of the robotic arm.

3.6.2 Manipulator Simulation:

The Manipulator is also simulated in Gazebo combining with ROS control. The

manipulation of the robotic arm done using MoveIt ROS Package. This package is the most

widely used package for motion planning and manipulation purposes.

First, the URDF File of the robotic arm was generated using SolidWorks CAD Model we

have already designed. The workspace was then set up in Ubuntu to generate our package.

We have created package robot_urdf and created launch file named arm_urdf.launch.

To launch the gazebo world file in the terminal we used the command:

~/moveit_ws$ roslaunch robot_urdf arm_urdf.launch

The robotic arm in our gazebo world is shown:

Figure 3.13: Robotic Manipulator in Gazebo ROS

Now, we will launch MoveIt Setup Assistant to control our robotic arm.

34

Running the following command on the terminal will start the MoveIt Setup Assistant.

~/moveit_ws$ roslaunch moveit_setup_assistant setup_assistant.launch

After loading our created package, we can set up our manipulator and Controllers in MoveIt

Setup Assistant.

Following are the some of snapshots of creating and controlling different Robot Poses.

Figure 3.14: Planning Groups Definition in MoveIt Setup Assistant

Figure 3.15: Robotic Manipulator in zero pose

35

Figure 3.16: Robotic Manipulator in picking object pose

3.6.3 UAV Simulation and Control:

The UAV was simulated in Gazebo environment using ROS (Robot Operating System)

Noetic. The drone was spawned in a simulated gazebo environment and was controlled

using terminal commands.

The snapshots of drone in Gazebo environment are:

Figure 3.17: Hexacopter spawn

36

Figure 3.18: Hexacopter hovering

37

Chapter no 4: Results and Discussions:

This chapter will focus on the results of all the calculations and simulations from the

previous chapter. Following that final parametric results will be selected. Also, the final

design would be validated. The selection of components will also be discussed.

4.1 UAM Final System Configuration:

4.1.1 UAV Propeller and Motor Selection:

The initial design calculations for the required thrust were done in previous chapter.

Following that results will select following motor and propellers.

 Table 4.1: Propeller and Motor Specifications

Propeller APC 1045”

Motor A2212/13T 1000KV Brushless DC Motor

4.1.2 Frame, Battery, and ESC’s Selection:

According to our requirements we selected the frame of UAV as well as batteries and

ESC’s.

 Table 4.2: Frame, Battery and ESC Specs

Frame DJI F550

ESC 30 Amp

Battery 5200 mAh 3S Lipo 11.1 Volt

38

4.2 Final Simulation Results:

The UAV was simulated in Gazebo environment using ROS (Robot Operating System)

Noetic. The drone was spawned in a simulated gazebo environment and was controlled

using terminal commands.

The snapshots of drone in Gazebo environment are:

Figure 4.1: Hexacopter at initial position

Figure 4.2: Hexacopter going to pick object

39

Figure 4.3: Hexacopter while picking the object

Figure 4.4: Hexacopter returning back to drop the object

40

Figure 4.5: Hexacopter after dropping the object

4.3 Aerial Manipulation System:

The final design of the Aerial Manipulator will have the integration of the Robotic Arm

with our UAV.

Figure 4.6: Aerial Manipulation System

41

Figure 4.7: Robotic Manipulator

42

The arm is made up of three revolute joints. Following are the main parameters of the

arm joints:

 Table 4.3: Parameters of Arm Joints

Joint Motion Range Motor Model Stall Torque Motor Weight

Base Joint [0, 360] Tower Pro

MG996r

9.4 kg.cm 55 g

Joint1 [0, 180] Tower Pro

MG996r

9.4 kg.cm 55 g

Joint2 [0, 180] Tower Pro

MG996r

9.4 kg.cm 55 g

Joint 3 [0, 180] Tower Pro

MG996R

9.4 kg.cm 55g

43

Chapter no 5: Conclusion and Recommendations

This Aerial Manipulation system manufactured as per the requirements. Test Flight has

been concluded successfully.

Selection of drone components were quite accurate as the drone system provided thrust as

per our requirement. The thrust produced was enough to fly the whole manipulation system

along with the mass attached with the arm. At full throttle the maximum flight time is

calculated to be 4 minutes. But after applying factor of safety, it reduced to 2.8 minutes.

The selection of PLA material was a good decision which was also proved by the Finite

Element Analysis of the arm. PLA is a promising thermoplastic aliphatic polyester with

relatively high mechanical strength (flexural strength up to 140 MPa, Young's modulus 5–

10 GPa), with excellent optical properties, good processing ability (with low shrinkage not

causing product deformation) and complete biodegradation Performing a finite element

analysis (FEA) of the robotic arm made of PLA material helped in understanding the

structural integrity and potential failure points of the arm.

All the stresses produced in the robotic arm were in the prescribed limits which can be seen

through Finite Element Analysis.

5.1 Some of Future Recommendations are follows:

5.1.1 Control System:

The drone-mounted robotic arm can be operated either manually or autonomously.

Developing an advanced control system that allows for more precise control and accurate

object recognition would improve its efficiency and performance.

5.1.2 Load Capacity:

The current load capacity of the arm is limited by the strength of the material used for 3D

printing. To enhance its capability, future designs could use stronger materials, or the arm

could be reinforced with metal or other high-strength materials.

5.1.3 Battery Life:

The operation of the drone and robotic arm is dependent on battery power, and the current

battery life may limit its usefulness. Innovations in battery technology could help to extend

its operational duration, enabling it to perform more tasks.

44

5.1.3 Sensor Integration:

 Integrating sensors like cameras, LIDAR, and ultrasonic sensors into the drone and robotic

arm would improve its ability to detect and avoid obstacles, enhancing its safety and

accuracy.

5.2 Applications:

The drone-mounted robotic arm has a wide range of applications in various industries,

including logistics, agriculture, and construction. It can be used to pick objects from

inaccessible places specially in case of emergency. In case of fire in a room or building,

this manipulation system can be sent to pick some important stuff from the room like

mobile phone or some very important documents. Further research could be conducted to

explore and develop more innovative use cases for this technology.

45

References

[1] 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

Aerial Manipulation Using a Quadrotor with a Two DOF Robotic Arm.

Suseong Kim , Seungwon Choi and H. Jin Kim.

[2] A Versatile Aerial Manipulator Design and Realization of UAV Take-Off

from a Rocking Unstable Surface.

Hannibal Paul ,Ryo Miyazaki,Takamasa Kominam ,Robert Ladig and Kazuhiro

Shimonomura

[3] Design of a High-Performance Dual Arm Aerial Manipulator

Pedro Grau, Alejandro Suarez, Victor Manuel Vega, Angel Rodriguez-Castaño and Anibal Ollero

[4] Proceedings of the 2016 IEEE International Conference on Robotics and Biomimetics Qingdao,

China, December 3-7, 2016

Design and Implementation of Rotor Aerial Manipulator System

Xiangdong Meng, Yuqing He, Feng Gu, Liying Yang, Bo Dai, Zhong Liu and Jianda Han

[5] Ruggiero, F., Lippiello, V., & Ollero, A. (2018). Aerial Manipulation: A Literature Review.

IEEE Robotics and Automation Letters, 3(3), 1957–1964.

https://doi.org/10.1109/lra.2018.2808541

[6] Imanberdiyev, N., Sood, S., Kircali, D., & Kayacan, E. (2022). Design, development and

experimental validation of a lightweight dual-arm aerial manipulator with a COG balancing

mechanism. Mechatronics, 82, 102719.

https://doi.org/10.1016/j.mechatronics.2021.102719

[7] Paul, H., Miyazaki, R., Kominami, T., Ladig, R., & Shimonomura, K. (2021). A Versatile

Aerial Manipulator Design and Realization of UAV Take-Off from a Rocking Unstable

Surface. Applied Sciences, 11(19), 9157. https://doi.org/10.3390/app11199157

[8] AlAkhras, A., Sattar, I. H., Alvi, M., Qanbar, M. W., Jaradat, M. A., & Alkaddour, M.

(2022). The Design of a Lightweight Cable Aerial Manipulator with a CoG Compensation

Mechanism for Construction Inspection Purposes. Applied Sciences, 12(3), 1173.

https://doi.org/10.3390/app12031173

https://doi.org/10.1109/lra.2018.2808541
https://doi.org/10.1016/j.mechatronics.2021.102719
https://doi.org/10.3390/app11199157
https://doi.org/10.3390/app12031173

46

Appendix 1: Manipulator Codes

#include <Wire.h>

#include <Adafruit_PWMServoDriver.h>

Adafruit_PWMServoDriver pwm = Adafruit_PWMServoDriver(); // use the default address 0x40

void motor(uint8_t servo, int startAngle, int finalAngle, int dA, int dt, int restTime);

#define SERVOMIN 100 // This is the 'minimum' pulse length count (out of 4096)

#define SERVOMAX 450 // This is the 'maximum' pulse length count (out of 4096)

#define USMIN 600 // This is the rounded 'minimum' microsecond length based on the minimum

pulse of 150

#define USMAX 2400 // This is the rounded 'maximum' microsecond length based on the

maximum pulse of 600

#define SERVO_FREQ 50 // Analog servos run at ~50 Hz updates

uint8_t servo1 = 12; int x1 = 100;

uint8_t servo2 = 3; int x2 = 100;

uint8_t servo2b = 8;

uint8_t servo3 = 1; int x3 = 100;

uint8_t servo4 = 15; int x4 = 100;

int dx = 30;

int da = 1;

void setup() {

 Serial.begin(9600);

 Serial.println("4 channel Servo test!");

 pwm.begin();

 pwm.setOscillatorFrequency(27000000);

47

 pwm.setPWMFreq(SERVO_FREQ); // Analog servos run at ~50 Hz updates

 delay(10);

}

void loop()

{

 if (Serial.available() > 0)

 {

 char inChar = Serial.read(); // read incoming serial data:

 if(inChar=='a')

 {

 if (x1 >= SERVOMAX) {Serial.println("M1. upper limit: "); Serial.println(x1);}

 else {motor(servo1, x1, x1+dx, da, 5, 0); x1 = x1 + dx; Serial.println(x1);}

 }

 if(inChar=='z')

 {

 if (x1 <= SERVOMIN) {Serial.println("M1. lower limit: "); Serial.println(x1);}

 else {motor(servo1, x1, x1-dx, da, 5, 0); x1 = x1 - dx; Serial.println(x1);}

 }

 if(inChar=='s')

 {

 if (x2 >= SERVOMAX) {Serial.println("M2. upper limit: "); Serial.println(x2);}

 else {

 motor(servo2, x2, x2+dx, da, 5, 0); x2 = x2 + dx/2; Serial.println(x2);

 motor(servo2b, x2, x2-dx, da, 5, 0); x2 = x2 + dx/2;

 }

 }

 if(inChar=='x')

48

 {

 if (x2 <= SERVOMIN) {Serial.println("M2. lower limit: "); Serial.println(x2);}

 else {

 motor(servo2, x2, x2-dx, da, 5, 0); x2 = x2 - dx/2; Serial.println(x2);

 motor(servo2b, x2, x2+dx, da, 5, 0); x2 = x2 - dx/2;

 }

 }

 if(inChar=='d')

 {

 if (x3 >= SERVOMAX) {Serial.println("M3. upper limit: "); Serial.println(x3);}

 else {motor(servo3, x3, x3+dx, da, 5, 0); x3 = x3 + dx; Serial.println(x3);}

 }

 if(inChar=='c')

 {

 if (x3 <= SERVOMIN) {Serial.println("M3. lower limit: "); Serial.println(x3);}

 else {motor(servo3, x3, x3-dx, da, 5, 0); x3 = x3 - dx; Serial.println(x3);}

 }

 if(inChar=='f')

 { zz

 if (x4 >= SERVOMAX) {Serial.println("M4. upper limit: "); Serial.println(x4);}

 else {motor(servo4, x4, x4+dx, da, 5, 0); x4 = x4 + dx; Serial.println(x4);}

 }

 if(inChar=='v')

 {

 if (x4 <= SERVOMIN) {Serial.println("M4. lower limit: "); Serial.println(x4);}

 else {motor(servo4, x4, x4-dx, da, 5, 0); x4 = x4 - dx; Serial.println(x4);}

 }

 }

49

}

//------------------------------------

// Motor Function

//------------------------------------

void motor(uint8_t servo, int startAngle, int finalAngle, int dA, int dt, int restTime)

{

 // increase the angle

 if (startAngle < finalAngle)

 {

 for (uint16_t pulselen = startAngle; pulselen < finalAngle; pulselen=pulselen+dA)

 {pwm.setPWM(servo, 0, pulselen); delay(dt);}

 }

 // decrease the angle

 else

 {

 for (uint16_t pulselen = startAngle; pulselen > finalAngle; pulselen=pulselen-dA)

 {pwm.setPWM(servo, 0, pulselen); delay(dt);}

 }

 delay(restTime);

}

50

Appendix 2: ROS Simulation Codes

===

=====================

Drone Controller:

===

=====================

joint_state_controller:

 type: joint_state_controller/JointStateController

 publish_rate: 50

joint_motor_controller:

 type: velocity_controllers/JointGroupVelocityController

 joints:

 - joint_front_right_prop

 - joint_front_left_prop

 - joint_left_prop

 - joint_back_left_prop

 - joint_back_right_prop

 - joint_right_prop

===

=====================

Arm Controller:

===

=====================

arm_controller:

 type: "position_controllers/JointTrajectoryController"

 joints:

 - hip

 - shoulder

 - elbow

 - wrist

51

===

=====================

Launch File 1 - Spawn + Drone Controller:

===

=====================

<launch>

 <include file="$(find gazebo_ros)/launch/empty_world.launch">

 <arg name="world_name" value="$(find fly_bot)/worlds/demo.world" />

 <arg name="paused" default="false" />

 <arg name="use_sim_time" default="true" />

 <arg name="gui" default="true" />

 <arg name="headless" default="false" />

 <arg name="debug" default="false" />

 </include>

 <group ns="Hexacopter">

 <param name="robot_description" command="$(find xacro)xacro '$(find

fly_bot)/urdf/HexaCbot.xacro'" />

 <node name="spawn_urdf" pkg="gazebo_ros" type="spawn_model"

respawn="false" output="screen" args="-param robot_description -urdf -model Kwad -x 0 -y 0 -z

0.4" />

 <rosparam file="$(find fly_bot)/config/Kwad_control.yaml" command="load"

ns="/Kwad" />

 <node name="control_spawner" pkg="controller_manager" type="spawner"

respawn="false" output="screen" args="joint_state_controller joint_motor_controller" />

 <node name="robot_state_publisher" pkg="robot_state_publisher"

type="robot_state_publisher" respawn="false" output="screen">

 <param name="publish_frequency" type="double" value="5.0" />

 </node>

 </group>

</launch>

===

=====================

Launch File 2 - Manipulator Controller:

52

===

=====================

<launch>

 <group ns="Hexacopter">

 <rosparam file="$(find fly_bot)/arm_controllers.yaml" command="load"/>

 <node name="controller_spawner" pkg="controller_manager" type="spawner"

args="arm_controller"/>

 <node name="robot_state_publisher" pkg="robot_state_publisher"

type="robot_state_publisher"/>

 </group>

</launch>

===

=====================

Python Script:

===

=====================

#!/usr/bin/env python

import sys, rospy, tf, random # moveit_commander

from geometry_msgs.msg import Pose, Point, Quaternion

from trajectory_msgs.msg import JointTrajectory, JointTrajectoryPoint

from math import pi

import time

from std_msgs.msg import Float64MultiArray

rospy.init_node('p_hexacopter', anonymous=True)

pub = rospy.Publisher('/Kwad/armp_controller/command', JointTrajectory, queue_size=10)

velPub = rospy.Publisher('/Kwad/joint_motor_controller/command', Float64MultiArray,

queue_size=6)

rate = rospy.Rate(1)

traj = JointTrajectory()

traj.joint_names = ["hip", "shoulder", "elbow", "wrist"]

53

pointT = JointTrajectoryPoint()

pointT.positions = [0.0, 0.0, 0.0, 0.0]

pointT.time_from_start = rospy.Duration(1.0)

traj.points.append(pointT)

def trajectory(hp, shd, elb, wrs):

 traj.points.pop()

 pointT.positions = [hp, shd, elb, wrs]

 pointT.time_from_start = rospy.Duration(dur)

 traj.points.append(pointT)

 pub.publish(traj)

def wait(t):

 stime = time.time()

 while True:

 if time.time()-stime > t: break

f = Float64MultiArray()

def thrust(F):

 fl_motor_vel = F; fr_motor_vel = F

 l_motor_vel = F; r_motor_vel = F

 bl_motor_vel = F; br_motor_vel = F

 f.data = [fr_motor_vel, -fl_motor_vel, l_motor_vel, -bl_motor_vel, br_motor_vel, -

r_motor_vel]

 velPub.publish(f)

ctime = time.time()

seq = 0

while not rospy.is_shutdown():

 if seq == 1:

 thrust(40);

 elif seq == 2:

54

 wait(1); thrust(40)

 trajectory(0.0,-0.6,-0.7, 0.0)

 elif seq == 3:

 trajectory(0.0,-0.6,-0.7, 0.0); wait(1)

 elif seq == 4:

 trajectory(0.0,-0.6,-0.7, 0.0)

 elif seq == 5:

 trajectory(0.0,-0.6,-0.7, 0.0); wait(1)

 elif seq == 6:

 trajectory(0.0,-0.6,-0.7, 0.0)

 elif seq == 7:

 trajectory(0.0,-0.6,-0.7, 0.0); wait(1)

 elif seq == 8:

 trajectory(0.0,0.0,0.7, 0.0)

 elif seq == 9:

 trajectory(0.0,0.0,0.7, 0.0); wait(1)

 elif seq == 10:

 trajectory(0.0,0.0,0.7, 0.0); wait(1)

 elif seq == 11:

 trajectory(0.0,0.0,0.7, 0.0); wait(1)

 elif seq == 12:

 trajectory(0.0,0.0,0.7, 0.0)

 elif seq == 13:

 wait(2); trajectory(0.0,0.0,0.7, 0.0)

 elif seq == 14:

 wait(3); trajectory(0.0,0.0,0.7, 0.8)

 elif seq == 15:

 trajectory(0.0,-0.3,-0.4, 0.79)

 seq = seq + 1

 rate.sleep()

55

===

=====================World Simulation Setup:

===

=====================<sdf version='1.6'>

 <world name='default'>

 <light name='sun' type='directional'>

 <cast_shadows>1</cast_shadows>

 <pose frame=''>0 0 10 0 -0 0</pose>

 <diffuse>0.8 0.8 0.8 1</diffuse>

 <specular>0.2 0.2 0.2 1</specular>

 <attenuation>

 <range>1000</range>

 <constant>0.9</constant>

 <linear>0.01</linear>

 <quadratic>0.001</quadratic>

 </attenuation>

 <direction>-0.5 0.1 -0.9</direction>

 </light>

 <model name='ground_plane'>

 <static>1</static>

 <link name='link'>

 <collision name='collision'>

 <geometry>

 <plane>

 <normal>0 0 1</normal>

 <size>100 100</size>

 </plane>

 </geometry>

 <surface>

 <contact>

 <collide_bitmask>65535</collide_bitmask>

 <ode/>

56

 </contact>

 <friction>

 <ode>

 <mu>100</mu>

 <mu2>50</mu2>

 </ode>

 <torsional>

 <ode/>

 </torsional>

 </friction>

 <bounce/>

 </surface>

 <max_contacts>10</max_contacts>

 </collision>

 <visual name='visual'>

 <cast_shadows>0</cast_shadows>

 <geometry>

 <plane>

 <normal>0 0 1</normal>

 <size>100 100</size>

 </plane>

 </geometry>

 <material>

 <script>

 <uri>file://media/materials/scripts/gazebo.material</uri>

 <name>Gazebo/Grey</name>

 </script>

 </material>

 </visual>

 <self_collide>0</self_collide>

 <enable_wind>0</enable_wind>

57

 <kinematic>0</kinematic>

 </link>

 </model>

 <gravity>0 0 -9.8</gravity>

 <magnetic_field>6e-06 2.3e-05 -4.2e-05</magnetic_field>

 <atmosphere type='adiabatic'/>

 <physics name='default_physics' default='0' type='ode'>

 <max_step_size>0.001</max_step_size>

 <real_time_factor>1</real_time_factor>

 <real_time_update_rate>1000</real_time_update_rate>

 </physics>

 <!-- PLACE URDF CODES HERE FOR OBJECTS IN THE WORLD -->

 </world>

</sdf>

===

=====================

Hexacopter URDF Xacro Code:

===

=====================

=-=

1. Variable Initialization and Imports:

=-=

<robot xmlns:xacro="http://www.ros.org/wiki/xacro" name="Kwad">

 <xacro:property name="width" value="0.0315" />

 <xacro:property name="length" value="0.45" />

 <xacro:property name="height" value="0.01" />

 <xacro:property name="mass_pr" value="0.0055" />

58

 <xacro:property name="pi_value" value="3.14159263" />

 <xacro:property name="radiusp" value="0.20" />

 <xacro:property name="prop_loc" value="0.15909" />

 <xacro:property name="prop_angle" value="0.1" />

 <xacro:property name="Ixx_prop" value="0.0" />

 <xacro:property name="Iyy_prop" value="0.0" />

 <xacro:property name="Izz_prop" value="4.42448e-5" />

 <xacro:property name="cyl_mass" value="0.00001" />

 <xacro:property name="cyl_ix_iy" value="0.00000022333" />

 <xacro:property name="cyl_iz" value="0.00000002" />

 <xacro:property name="mass_fr" value="0.5" />

 <xacro:property name="frame_ix" value="0.04989/2" />

 <xacro:property name="frame_iy" value="0.04989/2" />

 <xacro:property name="frame_iz" value="0.24057/2" />

 <xacro:include filename="$(find fly_bot)/urdf/material.xacro" />

 <xacro:include filename="$(find fly_bot)/urdf/Hexa.gazebo.xacro" />

 <xacro:macro name="default_inertial" params="mass p ix_value iy_value iz_value" >

 <inertial>

 <origin xyz="0 0 0" rpy="0 0 ${p}" />

 <mass value="${mass}" />

 <inertia ixx="${ix_value}" ixy="0" ixz="0"

 iyy="${iy_value}" iyz="0" izz="${iz_value}" />

 </inertial>

 </xacro:macro>

=-=

2. Drone Frame:

=-=

The following code is repeated 3 times to create 3 cuboids for the drone frame:

59

 <link name="base_link1">

 <visual>

 <origin xyz="0 0 0" rpy="0 0 ${pi_value/6}" />

 <geometry><box size="${width} ${length} ${height}" /></geometry>

 <material name="red" />

 </visual>

 <collision>

 <origin xyz="0 0 0" rpy="0 0 ${pi_value/6}" />

 <geometry><box size="${width} ${length} ${height}" /></geometry>

 </collision>

 <!--xacro:default_inertial mass="${mass_fr}" p="${pi_value/6}"

ix_value="${frame_ix}" iy_value="${frame_iy}" iz_value="${frame_iz}" /-->

 <inertial>

 <mass value="${mass_fr}" />

 <inertia ixx="${frame_ix}" ixy="0" ixz="0"

 iyy="${frame_iy}" iyz="0" izz="${frame_iz}" />

 </inertial>

 </link>

=-=

3. Drone Plate:

=-=

The following code is repeated 2 times to make the center part of the drone:

 <link name="plate1">

 <visual>

 <origin xyz="0 0 0" rpy="0 0 0" />

 <geometry><box size="${0.12} ${0.12} ${0.01}" /></geometry>

 <material name="black" />

 </visual>

60

 <collision>

 <origin xyz="0 0 0" rpy="0 0 0" />

 <geometry><box size="${0.12} ${0.12} ${0.01}" /></geometry>

 </collision>

 <!--xacro:default_inertial mass="${0.01}" p="${0}" ix_value="${0}"

iy_value="${0}" iz_value="${2.4-5}" /-->

 </link>

=-=

4. Fixed Joints:

=-=

The following code is repeated several times to fix the individual

parts of the drone frame:

 <joint name="joint_plate1_frame" type="fixed">

 <parent link="base_link1" />

 <child link="plate1" />

 <origin xyz="${0} ${0} 0.005" rpy="0 0 0" />

 <axis xyz="0 0 1" />

 </joint>

=-=

5. Brushless DC Motor:

=-=

The following code is repeated 6 times to make the cylindrical brushless motor:

 <link name="cyl1">

 <visual>

 <origin xyz="0 0 0" rpy="0 0 ${pi_value/2}" />

 <geometry><cylinder radius="0.016" length="0.02" /></geometry>

 <material name="golden" />

61

 </visual>

 <collision>

 <origin xyz="0 0 0" rpy="0 0 ${pi_value/2}" />

 <geometry><cylinder radius="0.016" length="0.02" /></geometry>

 </collision>

 <xacro:default_inertial mass="${cyl_mass}" p="${0}" ix_value="${cyl_ix_iy}"

iy_value="${cyl_ix_iy}" iz_value="${cyl_iz}" />

 </link>

=-=

6. Propeller:

=-=

The following code is repeated 2 times to make a single propeller.

This single propeller instance is repeated 6 times for all propellers.

 <link name="propel_front_right">

 <visual>

 <origin xyz="0 ${radiusp*0.2} 0" rpy="0 ${prop_angle} 0" />

 <geometry><box size="${0.03302/3} ${radiusp*0.4} ${0.001}"

/></geometry>

 <material name="black" />

 </visual>

 <collision>

 <origin xyz="0 ${radiusp*0.2} 0" rpy="0 ${prop_angle} 0" />

 <geometry><box size="${0.03302/3} ${radiusp*0.4} ${0.001}"

/></geometry>

 </collision>

 <xacro:default_inertial mass="${mass_pr}" p="${0}" ix_value="${Ixx_prop}"

iy_value="${Iyy_prop}" iz_value="${Izz_prop}" />

 </link>

62

=-=

7. Propeller Joint:

=-=

The following code is repeated 6 times to implement a continuous joint

for the propellers. This makes the propellers free to rotate.

 <joint name="joint_front_right_propel" type="continuous">

 <parent link="base_link1" />

 <child link="propel_front_right" />

 <origin xyz="0.1 0.1732 0.021" rpy="0 0 0"/>

 <axis xyz="0 0 1" />

 </joint>

=-=

8. Propeller Transmission:

=-=

The following code is used to make a velocity-controlled actuation

at the propeller joints:

 <transmission name="front_right_transmission" >

 <type>transmission_interface/SimpleTransmission</type>

 <joint name="joint_front_right_propel">

 <hardwareInterface>hardware_interface/VelocityJointInterface</hardwareInterface>

 </joint>

 <actuator name="brushless_motor1">

 <hardwareInterface>hardware_interface/VelocityJointInterface</hardwareInterface>

 <mechanicalReduction>1</mechanicalReduction>

63

 </actuator>

 </transmission>

=-=

9. Manipulator - Base:

=-=

 <link name="base_arm">

 <visual>

 <geometry> <cylinder length="0.01" radius="0.05"/> </geometry>

 <material name="silver"> <color rgba="0.75 0.75 0.75 1"/> </material>

 <origin rpy="0 0 0" xyz="0 0 0.025" />

 </visual>

 <collision>

 <geometry> <cylinder length="0.01" radius="0.05"/> </geometry>

 <origin rpy="0 0 0" xyz="0 0 0.025" />

 </collision>

 <inertial>

 <mass value="0.1"/>

 <origin rpy="0 0 0" xyz="0 0 0.025"/>

 <inertia ixx="0.00006333" iyy="0.00006333" izz="0.000125" ixy="0" ixz="0" iyz="0"/>

 </inertial>

 </link>

=-=

10. Manipulator - Torso:

=-=

 <link name="torso">

 <visual>

 <geometry> <cylinder length="0.1" radius="0.01"/> </geometry>

 <material name="silver"/>

 <origin rpy="0 0 0" xyz="0 0 0.0" />

64

 </visual>

 <collision>

 <geometry> <cylinder length="0.1" radius="0.01"/> </geometry>

 <origin rpy="0 0 0" xyz="0 0 0.0" />

 </collision>

 <inertial>

 <mass value="0.05"/>

 <origin rpy="0 0 0" xyz="0 0 0.0"/>

 <inertia ixx="0.0000429" iyy="0.0000429" izz="0.0000025" ixy="0" ixz="0" iyz="0"/>

 </inertial>

 </link>

=-=

11. Manipulator - Upper Arm:

=-=

 <link name="upper_arm">

 <visual>

 <geometry> <cylinder length="0.15" radius="0.01"/> </geometry>

 <material name="silver"/>

 <origin rpy="0 0 0" xyz="0 0 0.0"/>

 </visual>

 <collision>

 <geometry> <cylinder length="0.1" radius="0.01"/> </geometry>

 <origin rpy="0 0 0" xyz="0 0 0.0"/>

 </collision>

 <inertial>

 <mass value="0.05"/>

 <origin rpy="0 0 0" xyz="0 0 0.0"/>

 <inertia ixx="0.000095" iyy="0.000095" izz="0.0000025" ixy="0" ixz="0" iyz="0"/>

 </inertial>

 </link>

65

=-=

12. Manipulator - Lower Arm:

=-=

 <link name="lower_arm">

 <visual>

 <geometry> <cylinder length="0.1" radius="0.01"/> </geometry>

 <material name="silver"/>

 <origin rpy="0 0 0" xyz="0 0 0.0"/>

 </visual>

 <collision>

 <geometry> <cylinder length="0.1" radius="0.01"/> </geometry>

 <origin rpy="0 0 0" xyz="0 0 0.0"/>

 </collision>

 <inertial>

 <mass value="0.05"/>

 <origin rpy="0 0 0" xyz="0 0 0.0"/>

 <inertia ixx="0.0000429" iyy="0.0000429" izz="0.0000025" ixy="0" ixz="0" iyz="0"/>

 </inertial>

 </link>

=-=

13. Manipulator - Gripper:

=-=

The following code implements the palm that holds the gripper joints:

 <link name="palm">

 <visual>

 <geometry> <box size="0.03 0.06 0.02"/> </geometry>

 <material name="silver"/>

 </visual>

66

 <collision>

 <geometry> <box size="0.03 0.06 0.02"/> </geometry>

 </collision>

 <inertial>

 <mass value="0.1"/>

 <inertia ixx="0.000015" iyy="0.000015" izz="0.000015" ixy="0" ixz="0" iyz="0"/>

 </inertial>

 </link>

The following code is repeated 2 times to make the gripper ends:

 <link name="grip1">

 <visual>

 <geometry> <box size="0.03 0.02 0.07"/> </geometry>

 <material name="silver"/>

 <origin rpy="0 0 0" xyz="0 0 0.04"/>

 </visual>

 <collision>

 <geometry> <box size="0.03 0.02 0.01"/> </geometry>

 <origin rpy="0 0 0" xyz="0 0 0.04"/>

 <surface>

 <contact>

 <ode>

 <max_vel>0.1</max_vel>

 <min_depth>0.001</min_depth>

 </ode>

 </contact>

 <friction>

 <ode>

 <mu>1000.0</mu>

 <mu2>1000.0</mu2>

67

 </ode>

 </friction>

 </surface>

 </collision>

 <inertial>

 <mass value="0.1"/>

 <inertia ixx="0.000015" iyy="0.000015" izz="0.000015" ixy="0" ixz="0" iyz="0"/>

 </inertial>

 </link>

=-=

14. Manipulator Joints:

=-=

 <joint name="hip" type="continuous">

 <axis xyz="0 0 1" />

 <parent link="base_arm" />

 <child link="torso" />

 <origin rpy="0 3.14 0" xyz="0.0 0.0 -0.02" />

 </joint>

 <joint name="shoulder" type="continuous">

 <axis xyz="0 1 0"/>

 <parent link="torso"/>

 <child link="upper_arm"/>

 <origin rpy="0 1.5708 0" xyz="0.066 0.0 0.055"/>

 </joint>

 <joint name="elbow" type="continuous">

 <axis xyz="0 1 0"/>

 <parent link="upper_arm"/>

68

 <child link="lower_arm"/>

 <origin rpy="0 -1.5708 0" xyz="-0.05 0.0 0.07"/>

 </joint>

 <joint name="wrist" type="continuous">

 <axis xyz="0 1 0"/>

 <parent link="lower_arm"/>

 <child link="palm"/>

 <origin rpy="0 0 0" xyz="0.0 0.0 0.03"/>

 </joint>

 <joint name="wrist1" type="revolute">

 <axis xyz="1 0 0" />

 <parent link="palm" />

 <child link="grip1" />

 <limit effort="100000.0" lower="-5.0" upper="5.0" velocity="1"/>

 <origin rpy="0 0 0" xyz="0.0 0.03 0.0"/>

 </joint>

 <joint name="wrist2" type="revolute">

 <axis xyz="1 0 0"/>

 <parent link="palm"/>

 <child link="grip2"/>

 <limit effort="100000.0" lower="-5.0" upper="5.0" velocity="1"/>

 <origin rpy="0 0 0" xyz="0.0 -0.03 0.0"/>

 </joint>

=-=

15. Manipulator Transmissions:

=-=

The following code is used to make a position-controlled actuation

at the manipulator joints:

69

 <transmission name="transmission1">

 <type> transmission_interface/SimpleTransmission </type>

 <joint name="hip">

 <hardwareInterface> PositionJointInterface </hardwareInterface>

 </joint>

 <actuator name="motor1">

 <hardwareInterface> PositionJointInterface </hardwareInterface>

 <mechanicalReduction> 1 </mechanicalReduction>

 </actuator>

 </transmission>

=-=

16. Manipulator Plugin:

=-=

 <gazebo>

 <plugin name="joint_state_publisher" filename="libgazebo_ros_joint_state_publisher.so">

 <jointName> hip, shoulder, elbow, wrist </jointName>

 </plugin>

 </gazebo>

