
Deep Learning Methods for Disease

Identification of Cotton Plants

Author

Sajeel Fasihi

Fall 2019-MS(RIME)-00000319310

Supervisor

Dr. Karam Dad Kallu

MS ROBOTICS & INTELLIGENT MACHINE ENGINEERING

DEPARTMENT OF ROBOTICS & AI

SCHOOL OF MECHANICAL & MANUFACTURING ENGINEERING

National University of Sciences and Technology (NUST)

Islamabad, Pakistan

(August 2023)



THESIS ACCEPTANCE CERTIFICATE

Certified that final copy of MS/MPhil thesis written by Regn No. 00000319310 Sajeel Fasihi of School of

Mechanical & Manufacturing Engineering (SMME) (SMME) has been vetted by undersigned, found

complete in all respects as per NUST Statues/Regulations, is free of plagiarism, errors, and mistakes and is

accepted as partial fulfillment for award of MS/MPhil degree. It is further certified that necessary

amendments as pointed out by GEC members of the scholar have also been incorporated in the said thesis

titled. Deep Learning Methods for Disease Identification of Cotton Plants

Signature:  

Name (Supervisor): Karam Dad 

Date: 23 - Aug - 2023

Signature (HOD):  

Date: 23 - Aug - 2023

Signature (DEAN):  

Date: 23 - Aug - 2023

Email: info@nust.edu.pk  Web: http://www.nust.edu.pk

Page: 1 / 1



Form TH-4

National University of Sciences & Technology (NUST)

MASTER’S THESIS WORK

We hereby recommend that the dissertation prepared under our supervision by: Sajeel Fasihi (00000319310)

Titled: Deep Learning Methods for Disease Identification of Cotton Plants be accepted in partial fulfillment of the requirements

for the award of MS in Robotics & Intelligent Machine Engineering degree.

Examination Committee Members

1. Name: Hasan Ali Khattak Signature: 

2. Name: Zuhair Zafar Signature: 

3. Name: Hasan Sajid Signature: 

Supervisor: Karam Dad Signature:  

Date: 23 - Aug - 2023

23 - Aug - 2023

Head of Department Date

COUNTERSINGED

23 - Aug - 2023

Date Dean/Principal









Copyright Statement

• Copyright in text of this thesis rests with the student author. Copies (by any

process) either in full, or of extracts, may be made only in accordance with

instructions given by the author and lodged in the Library of NUST School of

Mechanical & Manufacturing Engineering (SMME). Details may be obtained

by the Librarian. This page must form part of any such copies made. Further

copies (by any process) may not be made without the permission (in writing)

of the author.

• The ownership of any intellectual property rights which may be described

in this thesis is vested in NUST School of Mechanical & Manufacturing

Engineering, subject to any prior agreement to the contrary, and may not

be made available for use by third parties without the written permission

of the SMME, which will prescribe the terms and conditions of any such

agreement.

• Further information on the conditions under which disclosures and exploita-

tion may take place is available from the Library of NUST School of Me-

chanical & Manufacturing Engineering, Islamabad.

v



Acknowledgments

In the name of Allah, the most merciful and benevolent. All praises to Allah

Almighty for giving me the fortitude to finish my thesis. I owe my supervisor

Dr. Karam Dad Kallu and my co-supervisor Dr. Hassan Ali Khattak the utmost

gratitude.Due to their persistent concern for the project, as well as wise counsel,

encouragement, and support, would have left this effort futile. I also want to

express my gratitude to my committee members Dr. Zuhair Zafar and Dr Has-

san Sajid for their insightful suggestions throughout this investigation. I am so

appreciative of my parents’ love and unwavering support during this journey.

vi



Dedication

I would love to dedicate my thesis to my beloved parents, teachers, my family

and my supervisor Dr. Karam dad Kallu who belived in my skills and abilities

and guided me throughout my thesis. I would also like to thank my

co-supervisor Dr Hasan Ali Khattak for supporting me and guiding. Lastly i

would thank Salman Hassan and Arslan who helped and motivated me during

entire MS degree.

vii



Abstract

Cotton is a vital cash crop, contributing significantly to the global textile indus-

try and the livelihoods of millions of farmers worldwide. However, diseases such

as bacterial blight, leaf curl virus, and whitefly infestations pose a severe threat

to cotton production and quality. Timely detection and accurate identification of

these diseases are crucial for implementing effective control measures and ensuring

crop health by exploring multiple state-of-the-art deep learning models, including

CNNs and transformers. The research utilizes a diverse dataset of cotton plant

images, encompassing healthy and diseased leaves, to train and fine-tune the deep

learning models and Vision transformers. Additionally, we will focus on evalu-

ating the models’ capability to detect varying intensities of whitefly infestations,

which is critical for assessing disease severity and implementing appropriate con-

trol strategies. The models were cross-validated and regularized to improve the

models working. This study has the potential to contribute significantly to the

field of computer vision, particularly for cotton disease detection.
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Chapter 1

Introduction

Agriculture plays a key role in meeting the escalating food demands of a growing

global population, while also serving as a substantial source of revenue. However,

this sector confronts significant challenges, chiefly due to the rising demand for

food and the prevalence of crop diseases. Such diseases can substantially under-

mine agricultural productivity, resulting in notable crop losses, diminished food

quality, and consequently, a reduced food supply.

1.1 Background

In particular, cotton, a leading cash crop worldwide, has substantial economic

and social implications, influencing the global textile industry and providing liveli-

hoods to countless farmers. However, cotton cultivation is not without its chal-

lenges, as diseases pose a primary threat to crop yield and quality. The detection

and management of these diseases, therefore, is of utmost importance to ensure

the sustainability of cotton production.

The prompt and accurate detection of crop diseases, coupled with well-planned

management strategies, are vital to curbing the spread of these diseases and

mitigating their deleterious effects on yields. In this context, the integration

of cutting-edge technologies and data-driven methodologies can offer substantial

benefits. Through these approaches, the agricultural sector can enhance its re-
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Chapter 1: Introduction

silience against crop diseases, thereby ensuring sustainable production to cater

to the needs of a growing population. The application of these novel strategies

is particularly pertinent to cotton disease detection and management, given its

economic and social importance worldwide.

1.2 Importance of Cotton Disease Detection

The detection of diseases in cotton is of paramount importance, as it directly

impacts the health of the crop and, consequently, the quality and quantity of the

yield. Cotton, being a significant cash crop in many regions worldwide, plays

a vital role in economies, contributing to income generation, employment, and

trade. Therefore, disease-inflicted losses can have severe repercussions not just at

the individual farmer level, but also at regional and national scales[6]. Efficient

and early detection of diseases allows for timely intervention, minimizing crop

damage and preventing widespread outbreaks. This is particularly critical given

the evolving disease landscape due to factors such as climate change and the

increased movement of people and goods. Hence, enhancing our capabilities in

cotton disease detection is not merely a matter of improving agricultural practices,

but also of ensuring food security, promoting economic stability, and safeguarding

the livelihoods of millions who rely on cotton cultivation.

1.3 Problem Statement

The need for effective and efficient detection of cotton diseases is crucial due to

its significant impact on agricultural productivity. Traditional detection methods,

while valuable, have their limitations in terms of labor intensity, timeliness, and

precision. This research addresses this issue by exploring the application of deep

learning models, specifically Convolutional Neural Networks (CNNs) and Vision

Transformers (ViT small, Swin Transformer, and CCT), for automated cotton

disease detection. Furthermore, it aims to evaluate these models’ ability to classify

the severity of damage caused by Whitefly on cotton leaves. The ultimate goal is

2
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to contribute to an automated, precise, and early detection mechanism for cotton

diseases, thereby aiding in their timely management and potentially reducing crop

losses.

1.4 Proposed Solution

The proposed solution involves the implementation of different deep learning mod-

els—specifically, Convolutional Neural Networks (CNNs) and three types of Vision

Transformers (ViT small, Swin Transformer, and CCT)—trained and tested on a

curated dataset of cotton disease images.

The solution should also include the application of transfer learning and tuning

strategies to optimize these models for the task. Importantly, it extends beyond

disease detection, with an additional focus on classifying the intensity of cotton

leaf damage caused by Whitefly.

By employing these advanced machine learning methods, the proposed solution

seeks to provide a robust, automated, and high-performance tool for early and ac-

curate cotton disease detection and severity classification. This could significantly

aid timely disease management, potentially reducing crop losses and improving

overall agricultural productivity.

1.5 Expected Outcome

The target of this research is to propose a comprehensive and efficient deep

learning-based system capable of accurately detecting and classifying cotton dis-

eases, as well as quantifying the severity of leaf damage caused by Whitefly. This

system is anticipated to surpass traditional methods in terms of speed, accuracy,

and scalability.

The rigorous evaluation of the proposed models is expected to identify the most

effective architecture—whether it be a Convolutional Neural Network or one of

the Vision Transformers—for cotton disease detection. In particular, we anticipate

3
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that the application of transfer learning and tuning strategies will significantly en-

hance the performance of these models.Additionally, the research hopes to demon-

strate the practicality of using such automated tools in a real-world agricultural

context, potentially paving the way for their wider adoption in the industry. By

enabling earlier and more precise detection of cotton diseases, the proposed system

could substantially aid in timely disease management, thereby reducing crop losses

and enhancing agricultural productivity. Overall, this research aims to make a sig-

nificant contribution to the agricultural sector by revolutionizing the way cotton

diseases are detected and managed.

1.6 Thesis Overview

This thesis presents a comprehensive study on the application of deep learning

techniques for the detection and severity classification of cotton diseases. The

research is situated at the intersection of agricultural health management and ar-

tificial intelligence, leveraging advanced machine learning methods to revolutionize

traditional practices of disease detection in cotton cultivation.

The work begins with an exploration of Convolutional Neural Networks (CNNs)

applied to a curated dataset of cotton disease images. The CNN models are

fine-tuned using transfer learning and tuning techniques, thereby adapting the

pre-trained models to the specific task of cotton disease detection.

The thesis then transitions to an examination of three distinct Vision Transformers

– ViT small, Swin Transformer, and CCT. These transformer-based models are

trained and tested on the same dataset, providing a comparative analysis of their

performances against the earlier deployed CNN models.

In addition to disease detection, the research expands to investigate the classifica-

tion of disease intensity, specifically focusing on the damage caused by Whitefly

on cotton leaves. This additional layer of investigation provides a more nuanced

understanding of disease impact, which could be crucial for effective disease man-

agement strategies.The final segment of the thesis involves a comparative analysis
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of the performance of all the tested models. F1 score and accuracy metrics are em-

ployed to evaluate and compare model performances, resulting in a comprehensive

understanding of the most effective deep learning architecture for this task.

Overall, the thesis provides a substantial contribution to the domain of cotton

disease detection by proposing a robust, automated, and high-performing deep

learning-based system. It not only showcases the potential of deep learning in rev-

olutionizing traditional agricultural practices but also provides valuable insights

for future research in this direction.

5
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Literature Review

2.1 Overview

Deep learning technologies are making significant inroads into various sectors,

including agriculture, healthcare, transportation, and manufacturing. However,

this thesis study will primarily concentrate on the application of deep learning

techniques in identifying cotton diseases within the agricultural industry[7]. Cot-

ton, being one of the most vital cash crops, plays a crucial role in the economies

of many countries. The detection and management of diseases affecting cotton

plants are paramount in ensuring a healthy yield. Traditional methods may not

be fast or accurate enough, leading to significant losses. Utilizing deep learning

algorithms can revolutionize the early detection of diseases, thereby minimizing

damage and maximizing production. The application of deep learning in cotton

disease identification is a promising frontier that can bring substantial advance-

ments in agriculture, helping farmers and industries alike. This research aims to

explore and develop deep learning models specifically tailored to the identifica-

tion and management of various cotton diseases, ensuring a robust, efficient, and

timely response[8].

6
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2.2 Historical background

Research in the identification of cotton diseases has advanced significantly with the

advent of deep learning techniques. Early efforts relied on traditional image pro-

cessing, followed by machine learning methods, which required extensive feature

engineering. The shift to deep learning, employing architectures like Convolu-

tional Neural Networks (CNN), brought a more robust and automated approach,

enhancing efficiency and accuracy[9].

However, initial deep learning models faced challenges such as the need for exten-

sive labeled datasets and issues with overfitting. Subsequent research addressed

these limitations through data augmentation, transfer learning, and optimized

training algorithms. Recent advancements have explored hybrid models, combin-

ing various deep learning structures for even more precise disease identification in

cotton[10].

The evolution from traditional methods to deep learning in cotton disease identi-

fication highlights an essential progression in agricultural technology, continually

improving accuracy and efficiency in this critical field[11]

2.3 Work done in the literature

The implementation of a plant disease diagnosis system is vital for the agricul-

tural industry to enhance crop production capacity by timely identifying and

controlling diseases in their early stages. The proposed approach utilizes im-

age processing techniques to analyze leaf samples and detect disease symptoms

in their early stages. The research employs thresholding techniques to fragment

the affected regions in the leaf images, precisely identifying the areas impacted

by diseases.Furthermore, the study incorporates Gray-Level Co-occurrence Ma-

trix (GLCM) features extracted from the diseased portions of the leaves. These

GLCM features are used to categorize the type of disease affecting the cotton

plants. By accurately identifying the specific diseases, farmers can make informed

decisions to mitigate the spread and impact of these diseases, thereby protecting

7
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their crops and enhancing productivity[12].

The research emphasizes the significance of using image processing techniques and

GLCM-based analysis for cotton disease detection, as it provides a non-intrusive

and rapid method for identifying the presence of diseases in cotton plants. Early

detection enables timely interventions, such as targeted treatments or preventive

measures, leading to better crop protection and increased yields[13]

The paper "Detection and Classification of Cotton Leaf Diseases Using

Faster R-CNN on Field Condition Images" [14] presents a study on the use

of convolutional neural networks to detect and classify diseases in cotton crops.

The paper discusses the significance of cotton cultivation in Pakistan and other

developing countries, and how the use of Faster R-CNN improves the accuracy

of disease detection in cotton crops. The study was conducted on field condi-

tion images collected in Pakistan, and the results showed promising potential for

improving crop management and increasing yields.

The article byM. Zekiwos [15] explains the gathering of images from the field

using digital cameras and cellphones is an essential initial step in the process of

building this model.Initially, images of cotton leaves with potential diseases and

pests are acquired from the field using digital cameras and smartphones. Pre-

processing techniques are then applied to prepare the acquired images for further

analysis.Next, the preprocessed images are fed into a Convolutional Neural Net-

work (CNN) for feature extraction. CNN extracts the most relevant features

from the images to represent them effectively. These extracted features are then

subjected to image analysis techniques to identify the best-suited representations

for each image.Based on the extracted features, the study creates training and

testing datasets for disease and pest identification. A trained knowledge base is

developed, which classifies new images into their respective classes of diseases and

pests. This classification enables efficient and accurate diagnosis, aiding farmers

in taking timely and appropriate actions to manage and control the threats to

their crops. The automated system provides a non-intrusive and rapid method

for identifying diseases and pests, allowing farmers to make informed decisions for

effective crop protection and management.

8



Chapter 2: Literature Review

"Cotton Crop Disease Detection Using SWIN Transformers and Attention-

based CNN" [16] explains a proposed system which was trained on large and

small datasets of images of healthy and diseased cotton crops, covering three dif-

ferent diseases. The model utilizes SWIN Transformers and Attention-based CNN

to achieve high accuracy in detecting the diseases. The paper also discusses the

benefits of using deep learning and computer vision for crop disease detection and

compares the proposed model with other existing models. Overall, the proposed

model shows promising results and can be used as a tool for early detection and

prevention of crop diseases .

In another research article named An Image is Worth 16x16 Words [17] pro-

posed the use of Transformers for image recognition at scale, shows the efficacy

of using a pristine transformer model directly on sequences of picture patches,

yielding exceptional performance in the realm of image classification problems.

The findings demonstrate that the Vision Transformer (ViT) exhibits superior

performance in comparison to state-of-the-art convolutional networks when pre-

trained on extensive datasets and applied to various mid-sized or small image

recognition benchmarks. Notably, the ViT achieves these excellent results while

necessitating significantly fewer computational resources for training. The pa-

per also discusses potential applications of this research and future directions for

exploring self-supervised pre-training methods and further scaling of ViT.

The paper titled Vision Transformers For Weeds and Crops Classification Of High

Resolution UAV Images [18] provides a comprehensive analysis of the application

of Vision Transformers for the classification of high-resolution UAV images in the

context of weeds and crops. This study investigates the use of self-attention pro-

cesses using Vision Transformer (ViT) models for the purpose of classifying weeds

and crops in high-resolution UAV pictures within the domain of plant classifica-

tion.This study provides an overview of the process involved in obtaining, pro-

cessing, and manually annotating the information obtained from a high-resolution

camera installed on an unmanned aerial vehicle (UAV). The Vision Transformer

(ViT) model demonstrates superior performance compared to the current state-

of-the-art convolutional neural network (CNN)-based models, namely ResNet and

9
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EfficientNet, even when trained on a limited amount of labelled data. The report

finishes by presenting encouraging findings and discussing potential avenues for

future research.

In a relevant study by Jajja) [19] The researchers put out a proposal to train

a Compact Convolutional Transformer (CCT) model for the purpose of detect-

ing instances of whitefly bites in cotton crops.The main objective of this work

is to devise a method that is both more effective and precise in detecting the

presence of whiteflies, a common pest that can cause significant damage to cot-

ton plantsThe CCT-based methodology integrates the respective advantages of

Convolutional Neural Networks (CNNs) and Transformers. Convolutional Neu-

ral Networks (CNNs) demonstrate proficiency in extracting features from images,

whereas Transformers have exceptional capabilities in gathering comprehensive

contextual information and effectively modelling relationships that span across

large distances. By integrating these two architectures, the CCT model aims to en-

hance its capability to detect whitefly attacks in cotton crops effectively.Compact

version of the Transformer architecture tailored for image processing tasks, en-

suring computational efficiency while maintaining competitive performance. The

CCT model processes the input images using convolutional operations, followed

by self-attention mechanisms from Transformers to capture relevant spatial rela-

tionships and contextual information.CCT-based approach in accurately detecting

whitefly attacks in cotton crops. The model’s compact design allows for faster in-

ference and efficient deployment, making it well-suited for real-world agricultural

applications.

A similar study with the name "Vision transformers for remote sensing im-

age classification" [20] The text initiates The current consensus in the field ac-

knowledges vision transformers as the leading remote-sensing scene-classification

approaches in natural language processing. Unlike normal convolutional neural

networks (CNNs), these models do not depend on convolution layers. Instead,

multihead attention processes are employed as the primary component to estab-

lish extensive contextual relationships among pixels in visuals. The initial stage

involves partitioning the analysed pictures into smaller sections, which are subse-

10
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quently transformed into a sequential format through the processes of flattening

and embedding. In order to retain information pertaining to the location, the

inclusion of an embedding position is included inside these patches. Next, the

generated sequence is inputted into many multihead attention layers in order to

produce the ultimate representation. During the classification step, the initial

sequence of tokens is inputted into a softmax classification layer.

The paper titled "Understanding robustness of transformers for image

classification" [21] suggested that Deep Convolutional Neural Networks (CNNs)

have historically been the preferred architectural choice for computer vision ap-

plications. In contemporary times, Transformer-based designs, such as the Vision

Transformer (ViT), have demonstrated comparable or even superior performance

to Residual Networks (ResNets) in the domain of picture categorization..The ro-

bustness of Vision Transformer (ViT) models versus ResNet baselines under input

and model perturbations has been extensively studied. Despite initial concerns due

to unique architecture aspects like non-overlapping patches, these models showed

comparable robustness when pre-trained on substantial data. The ViT models

also demonstrated resilience to changes in their structure, maintaining function-

ality even with the removal of almost any single layer. Despite high correlation

between activations from later layers, their role in classification remained crucial,

underscoring the model’s robustness and versatility.

A novel research paper named " Vision Transformer (ViT)-based Applica-

tions in Image Classification" [22] provided information for ViT. The Vision

Transformer (ViT) is a paradigm introduced by the Google team in 2020, which

utilises a transformer architecture for the purpose of picture categorization.ViT

model, which is a transformer-based model that applies self-attention mechanisms

to image classification. The Vision Transformer (ViT) model, focusing on its

capacity to depict long-range dependencies and its dynamic response characteris-

tics.A comparison is made between the performance of Vision Transformer (ViT)

and standard Convolutional Neural Networks (CNNs) in the context of picture

categorization tasks. The findings indicate that the performance of ViT is com-

parable to that of CNNs, and in certain instances, it significantly surpasses them.

11
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Additionally, the research presents an enhanced ViR model derived from ViT,

hence augmenting the picture classification capabilities of ViT.

Another research using YOLOX model[23] proposed to address the challenges in

automatic detection of plant diseases, specifically in cotton plants. Modifications

include a Spatial Pyramid Pooling (SPP) layer for feature extraction and IoU-

based regression loss function. Testing on a self-collected dataset from Pakistan,

the model achieved a 73.13% mAP and outperformed the original YOLOX model

by 3.27% in accuracy, demonstrating its efficacy in detecting diseases with varying

symptoms and severities

The computerized method described in this work utilizes a pre-trained VGG-16

model[24] in conjunction with 11 fully convolutional layers for early detection

of cotton leaf diseases. Data augmentation is employed to get a more balanced

distribution of input data, hence enhancing the training process of the model.

Additionally, the model is trained using carefully selected hyperparameters.

The rise of Transformers in language processing and computer vision has led to

a belief that they are unsuitable for small data sets, a notion associated with

concerns about limited data availability and exclusion of researchers with scarce

resources. This study challenges the misconception that Transformers exhibit high

data dependency, demonstrating their ability to rival contemporary Convolutional

Neural Networks (CNNs) on limited datasets, frequently achieving superior ac-

curacy while using fewer parameters. The authors provide a novel model that

effectively removes the requirement for class tokens and positional embeddings

by employing a unique sequence pooling method and convolutional operations.

With flexibility in size, the model can function with as few as 0.28M parameters,

performance of contemporary Convolutional Neural Networks (CNNs) such as

ResNet and more current Neural Architecture Search (NAS)-based methods like

Proxyless-NAS is surpassed. The compact and easily accessible architecture of

Transformers expands the potential usage of this technology, even for individuals

or organisations with limited resources or tiny datasets[25].

The CvT: Introducing Convolutions to Vision Transformers [26] paper introduces

12
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a new architecture called Convolutional vision Transformer (CvT) that combines

the benefits of convolutional neural networks (CNNs) and Transformers for image

classification tasks. The CvT model incorporates several key components from

Convolutional Neural Networks (CNNs), including local receptive fields, shared

weights, and spatial subsampling. Additionally, it leverages dynamic attention,

global context fusion, and improved generalisation techniques from Transform-

ers. The authors demonstrate that CvT achieves state-of-the-art performance

on ImageNet-1k and ImageNet-22k datasets while being lightweight and efficient.

They also show that CvT can accommodate variable resolutions of input images

and can be fine-tuned for downstream tasks.
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Methodology

This section would primarily focus on the approach and methodology that is fol-

lowed in this research study. The main focus of the work includes identification of

different cotton leaves diseases and to classify the intensity of the leaves affected by

Whitefly insects.. A comparison is drawn amongst different deep learning models,

improvements made in those models and to test the use of vision transformers for

this problem to bring out the best results and taking a different approach while

working with cotton disease detection. It also helps in bringing up the limitations

and improvements that would be a focal point in the later research

3.1 Research Questions

The basic questions that this research aims to answer are as mentioned below

• How effectively Deep learning models are able to detect cotton disease and

classify the intensity of affect in case of Whitefly?

• Which deep learning model successfully detects the cotton diseases with a

high accuracy?

• Performance of Vision Transformer for the classification of cotton leaf dis-

eases.

• Comparison of results for deep learning models and vision transformers.
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• Comparison of Vision transformers for performance on the dataset.

The series of experiments conducted in the subsequent sections of the paper aimed

to provide comprehensive answers to the research questions posed above. Through

careful design and execution of the experiments, we would seek to obtain clear

and reliable results that would shed light on the topic under investigation. The

results obtained from the experiments were analyzed in detail to draw meaningful

conclusions and address the objectives. By presenting these experiments and their

corresponding results, the report aimed to contribute valuable insights and provide

a solid foundation for further understanding of the topic.

3.2 Data Collection

Two publicly available datasets were used for the research. Both the datasets were

merged to produce a large dataset having multiple classes of diseases keeping in

mind the class imbalance factor. Dataset 1 had 6 classes of diseases with 600

images each in a single class. The classes were Aphids,Armyworm, Bacterial

blight, Healthy, Powdery Mildew, Target spot. Dataset 2 had images for Whitefly

diseases with classes of intensity of affected leaves due to Whitefly. THe classes

were Mild,Severe,Nutritional deficiency. 200 images from each class of dataset 2

were used to build a new class whitefly and the final dataset for the model 1 was

prepared.

The Dataset 2 was also used to train the model 2 to detect the intensity of the

effect of whitefly on cotton leaves..[19]

DataSet for model 1: 600 images for each 7 classes

DataSet for model 2: 400 images for each 3 classes.
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3.2.1 DataSet Distribution

The Distribution of the Dataset is as follows

Table 3.1: Data Classes Model-1

CLASSES IMAGES

Aphids 600

Army Worm 600

Bacterial Blight 600

Healthy 600

Powdery Mildew 600

Target Spot 601

White Fly 600

Table 3.2: Data Classes Model-2

CLASSES IMAGES

Severe 200

Mild 200

Nutritional deficiency 200

3.2.2 Data Preprocessing

The Data Preprocessing has five main stages of processing.

• Resizing:The photos should be resized to a uniform size that corresponds to

the input dimensions required by the model. In this case, the image_size

hyperparameter is set to 254, so you should resize the images to that reso-

lution.

• Normalization: Normalize the pixel values of the images to bring them

within a specific range. In general, the process entails rescaling the pixel

values to a range of 0 to 1 or standardising them by removing the mean and

dividing by the normal deviation.
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• Data Augmentation: The implementation of data augmentation techniques

is employed to enhance the variety of the training data and thus enhance

the generalisation capabilities of the model. Common data augmentation

techniques include random flips, rotations, zooming, and brightness adjust-

ments.

• Converting to Tensor: Convert the images from NumPy arrays or other im-

age formats to TensorFlow tensors. The model expects TensorFlow tensors

as input.

• Batching: Organize the images into batches before feeding them to the

model. This is usually done to improve computational efficiency during

training.

Figure 3.1: FLOWCHART
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3.3 Architecture of CNN

Convolutional Neural Network (CNN) is a deep learning architecture particularly

tailored for the processing of visual data. Fundamentally, a Convolutional Neural

Network (CNN) has three primary categories of layers: convolutional layers, pool-

ing layers, and fully connected layers. The convolutional layers apply filters to

the input, extracting essential features such as edges or textures through convolu-

tion operations. Pooling layers then downsample the extracted features to reduce

their dimensionality, preserving the most important information. These layers

are often stacked, with multiple convolutional and pooling layers in sequence, to

detect more complex patterns. Finally, the fully connected layers interpret these

high-level patterns and perform the final classification or regression task. Reg-

ularisation approaches, such as the use of dropout, are commonly employed in

academic research and practical applications to mitigate overfitting and improve

the generalisation performance of machine learning models. CNNs are widely used

for image classification, object detection, and various other computer vision tasks,

effectively learning hierarchical representations of visual data
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Figure 3.2: Basic CNN architecture[1]

3.3.1 ResNet Architecture

The ResNet-50 architecture is a specific configuration of the Residual Network

(ResNet) that utilizes skip connections, or shortcuts, to jump over certain layers.

Comprising 50 layers, ResNet-50 contains a series of stacked residual blocks where

each block consists of a shortcut connection parallel to the main path of convo-

lutional layers. The main path includes convolutional layers with small kernel

sizes, such as 1x1 and 3x3, along with Batch Normalization and ReLU activation

functions. The utilisation of shortcut connections facilitates the circumvention of

the primary pathway for certain inputs, hence enabling the network to acquire

identity functions with more ease.. This design helps mitigate the vanishing gra-

dient problem and allows the training of much deeper networks. The architecture

starts with an initial convolutional and max-pooling layer, architecture consists of

a sequence of four residual blocks, followed by a global average pooling layer and

a fully linked layer that is utilised for classification purposes. ResNet-50 is widely
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utilized for various computer vision tasks due to its efficiency and ability to learn

complex patterns.

Figure 3.3: Resnet architecture[2]

The pre-trained ResNet-50 model is loaded without the top (classification) layer,

additional unique dense layers, namely a Global Average Pooling layer and two

fully linked layers using Rectified Linear Unit (ReLU) and softmax activations,

respectively. The model’s final layer’s output size is determined by the num-

ber of classes in the dataset. The model is subsequently constructed using the

Adam optimizer and sparse categorical cross-entropy loss, with accuracy and top-

5-accuracy serving as evaluation measures. Additionally, the last ten layers of the

model are set as trainable for fine-tuning. The model’s summary is displayed,

followed by training the model on the training dataset for 30 epochs. A batch

size of 32 is utilised, and the model’s performance is evaluated against a separate

validation dataset. The historical record of training is saved within the variable

denoted as "history".
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Figure 3.4: Resnet Model Code

3.4 Vision Transformer

The Vision Transformer (ViT) is an innovative architectural approach that em-

ploys transformers, initially developed for natural language processing, for the

purpose of addressing computer vision challenges. In contrast to conventional

convolutional neural networks (CNNs) which employ local operations for image
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processing, the Vision Transformer (ViT) approach involves partitioning a picture

into a predetermined number of non-overlapping patches and subsequently em-

bedding them as a sequential arrangement of vectors. Subsequently, the vectors

undergo processing through a series of transformer layers, enabling the model to

concurrently analyse the interconnections among all components of the image. To

convey spatial arrangement information of the patches, a learnable positional en-

coding is incorporated into the patch embeddings. Finally, the processed sequence

is passed through a classifier head to generate predictions.

3.4.1 Architecture of Vision Transformer

The Vision Transformer (ViT) architecture applies the transformer model to visual

data by treating images as sequences of patches. An image is divided into fixed-

size non-overlapping patches, and each patch is linearly embedded into a vector.

Positional encodings are added to these vectors to maintain spatial information,

forming the input sequence for the transformer. The transformer architecture is

composed of several levels, with each layer comprising multi-head self-attention

mechanisms and feed-forward neural networks. The utilisation of the attention

mechanism enables the model to assess the significance of various patches in re-

spect to one another, therefore capturing comprehensive interconnections within

the image. The final output of the transformer is taken from the embedding cor-

responding to a special [CLS] token or aggregated across patch embeddings and

passed through a classification head, usually a simple linear layer, to produce

predictions for tasks like image classification. The ViT architecture has proven

effective in various computer vision tasks and highlights the flexibility and capa-

bility of the transformer model outside the realm of text.
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Figure 3.5: Vision Transformer Architecture[3]

3.4.2 ViT Base

ViT Base is a specific configuration of the Vision Transformer (ViT) architecture,

the objective of this design is to provide a harmonious equilibrium between com-

puting efficiency and performance in the realm of computer vision activities. In

the ViT Base model, an image is divided into 16x16 patches, and these patches

are linearly embedded into 768-dimensional vectors. The architectural component

referred to as the transformer has a total of 12 layers. Each of these layers is

equipped with a multi-head self-attention mechanism, which consists of 12 atten-

tion heads. The feed-forward neural networks within the transformer layers also

follow specific dimensions. A special [CLS] token is used to gather classification

information, and its corresponding output embedding is sent through a final linear

layer to generate predictions. ViT Base is often used as a standard configuration

for various vision tasks, offering a more compact alternative to larger ViT models

while still delivering strong performance.
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3.4.2.1 Data Split and Hyperparameters

Figure 3.6: Vision Transformer Hyperparameter

3.4.2.2 Data Augmentation

Figure 3.7: ViT Data Augmentation
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3.4.2.3 MLP Unit and Image Patches

Mlp function creates a Multi-Layer Perceptron (MLP), a type of feedforward neu-

ral network. It builds dense layers with the specified number of hidden units using

the GELU activation function. A dropout operation, set by dropout_rate, follows

each dense layer, acting as a regularization technique to mitigate overfitting.

Patches function creates a custom TensorFlow layer, extracts non-overlapping

patches from the input images. Upon initialization, it sets a patch_size param-

eter. The call method uses tf.image.extract_patches to segment input images

into patches of the given size.

Figure 3.8: MLP Unit
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Figure 3.9: Image after patch

3.4.2.4 ViT Classifier

The function constructs a Vision Transformer (ViT) classifier model. It starts by

accepting an input of a defined shape and applying data augmentation to it. This

is followed by breaking down the augmented input into patches and encoding these

patches using the previously defined Patches and PatchEncoder classes, respec-

tively. Multiple layers of Transformer blocks are then created, each layer comprises

a multi-head self-attention mechanism and a feedforward neural network (MLP).

For improved learning stability, residual connections and layer normalization are

integrated around both components. The output from the final Transformer block

undergoes layer normalization, is then flattened, and processed via a dropout op-

eration, followed by an MLP. Ultimately, the final class probabilities are obtained

through a dense layer with units equal to the number of classes.
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Figure 3.10: ViT Classifier

The AdamW optimizer is employed with a predetermined learning rate and weight

decay. Additionally, the model is constructed using the Sparse Categorical Crossen-

tropy loss function, along with accuracy and top-5 accuracy measures. A check-

point callback is created to save the best weights of the model during training to a

temporary file path. The model is then trained for 75 epochs on the training data

with a validation split of 10%, using the specified batch size, and the checkpoint

callback to save the best model.Following the completion of training, the optimal

weights are loaded, and subsequently, the model is assessed using the test data.
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Figure 3.11: ViT model training

3.4.3 SWIN Transformer

The SWIN Transformer, also known as the Shifted Window Transformer, is a

vision paradigm that use Transformers to process both local windows and global

pictures, therefore establishing a hierarchical framework. Unlike traditional Trans-

formers that operate on fixed-size patches,the SWIN model employs a technique

wherein the picture is partitioned into distinct windows that do not overlap, and

subsequently applies self-attention mechanisms within each of these windows. In

order to encompass a wider scope, these windows are systematically moved across

many layers, so establishing a method of shifted windowing.. This allows for

more efficient computation without sacrificing the ability to model long-range de-

pendencies. By combining local and global attentions in this hierarchical manner,

SWIN Transformers provide strong performance for various vision tasks. They are

designed to be computationally efficient, and the architecture is easily scalable,

making it suitable for different sizes and complexities of vision tasks.
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3.4.3.1 Architecture of SWIN transformer

Figure 3.12: SWIM transformer architecture[4]

3.4.3.2 Hyperparameters

Hyperparameters for a SWIN Transformer model and its training. It uses 2x2

image patches, 8-head attention, 64-dimension embeddings, and MLP layers of

size 256. Attention windows have size 2 with shift size 1. Training parameters

include a learning rate of 0.001, batch size of 128, and 40 epochs. The model

applies 10% validation split, weight decay of 0.0001 for regularization, and label

smoothing with a factor of 0.1
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Figure 3.13: SWIM transformer hyperparameters

3.4.3.3 Window Partition

window_partition(x, window_size): Splits the input tensor x into non-overlapping

windows of window_size size. This is done by reshaping and transposing the in-

put.

window_reverse(windows, window_size, height, width, channels): It re-

verts the window partition operation, transforming the windowed input back to

its original form. The transformation is achieved by reshaping and transposing

the windowed input.

DropPath: A custom Keras layer that implements DropPath regularization, a

variant of dropout. Given a probability drop_prob, it stochastically drops entire

paths (as opposed to individual nodes in standard dropout) in the computational

graph of the model. This is done by generating a random tensor, creating a binary

path mask, and applying it to the input. If a path is dropped, the remaining paths

are scaled to maintain the expectation of the output.
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Figure 3.14: SWIM transformer Window function

3.4.3.4 Window Attention

The WindowAttention class implements a window-based multi-head self-attention

layer. It initializes with parameters like dimensions, window size, number of heads,

and QKV bias. The build method sets up a table to track relative positional biases.

During the forward pass in call method, the input undergoes QKV transformation,

scaled dot-product attention calculation with positional biases, optional masking,

softmax normalization, and dropout. The layer output results from a projection

of the attention-weighted values
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Figure 3.15: SWIM transformer Window Attention

3.4.3.5 SWIN Transformer

The SwinTransformer class represents a Transformer block with a Swin Trans-

former architecture. Upon initialization, it sets up key layers like LayerNormal-

ization, WindowAttention, DropPath, and an MLP sequence. The build method

configures an attention mask if the shift size isn’t zero. During the forward pass

in call method, the input goes through layer normalization, partitioning into win-

dows, window attention application (with optional shift), path dropout, and finally

an MLP. An important feature here is the residual connections used after drop

path and MLP, adding the original input (or ’skip’ input) back into the layer

outputs, promoting information flow throughout the network.
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Figure 3.16: SWIM Transformer

First, the input image is processed with random cropping and horizontal flip-

ping for data augmentation. Then, patches are extracted from the image using

a custom PatchExtract layer, and these patches are embedded into vectors us-

ing a PatchEmbedding layer. Two instances of the SwinTransformer layer are

applied sequentially, responsible for modeling both local and global relationships

between the patches. Each SWIN Transformer has specific hyperparameters such

as embedding dimensions, the number of attention heads, window size, shift size,

MLP size, QKV bias, and dropout rate. After the second transformer block, the

patches are merged using a PatchMerging layer. The resulting output is pooled

globally, and a dense output layer with softmax activation is used to produce the

final class predictions. The overall architecture represents a deep neural network

that leverages the SWIN Transformer to handle visual tasks and is designed for
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classification over a predefined number of classes.

Figure 3.17: SWIM transformer Model training

3.4.4 Compact Convolution Transformer

Compact Convolutional Transformers (CCT) present a fusion of convolutional

neural networks (CNNs) with transformers to efficiently process visual data. Un-

like conventional transformers that operate on fixed-sized patches, CCT starts

with a convolutional stem, applying smaller convolutions to the input image, ef-

fectively integrating local spatial information. This retains a more fine-grained

understanding of the spatial structures in the image while reducing the sequence

length that the transformer has to handle. After the convolutional stem, the trans-

formed data is passed through a series of transformer blocks, inheriting the ability

of transformers to model long-range dependencies. CCT aims to combine the
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spatial effectiveness of CNNs with the expressive power of transformers, thereby

enabling a more compact and computationally efficient model. It is found to be

effective in various visual tasks, including image classification, without needing ex-

tensive computational resources like many of its transformer-based counterparts.

3.4.4.1 CCT Architecture

Figure 3.18: CCT Architecture[5]

3.4.4.2 CCT Model

The function create_cct_model builds a Convolutional Classifier Transformer

(CCT) for image classification. It augments inputs, encodes them into patches

with CCTTokenizer, and optionally adds positional embeddings. It then builds a

series of transformer layers, each including layer normalization, multi-head self-

attention, skip connections, and an MLP. Stochastic depth is used within these

layers for regularization. Finally, it applies layer normalization and sequence pool-

ing to the outputs of the transformer blocks, and passes them through a dense

layer to get the class probabilities. The function returns this configured CCT

model.
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Figure 3.19: CCT Model
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Results and Challenges

The chapter presents the results of a study on Cotton disease detection using

deep learning techniques. The study evaluates the effectiveness of different eval-

uation metrics, such as Accuracy, Mean absolute error and Classification Report

in predicting intrusion attacks.

In the preceding section, an extensive exposition was provided on the compre-

hensive methodology, approach, and steps undertaken to train the three machine

learning models. This detailed account encompassed the challenges encountered

during the research process, elucidating their impact and the deliberate measures

implemented to overcome them. Building upon this foundation, the subsequent

section focuses on the outcomes attained as a direct consequence of the method-

ological framework delineated above. Herein, we delve into a comprehensive analy-

sis of the results, presenting a comprehensive evaluation of the model performance

and their efficacy in addressing the research objectives.

The research endeavor encompassed a meticulous application of various data trans-

formation techniques and methodological approaches to Deep Learning models:

Resnet 50, ViT Base,SWIN transformer, and Compact Convolution Transformer.

Through a rigorous evaluation process involving multiple deep learning algorithms,

these three models emerged as the focal point of the research investigation. Con-

sequently, the dataset underwent extensive training and optimization procedures,

aimed at maximizing the performance and efficacy of the models. This deliberate
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focus on the three selected models underscores their significance and prominence

within the research, setting the stage for comprehensive analysis and evaluation

of their outcomes.

4.1 Evaluation Metrics

As discussed in the previous sections, the research had two main portions of the

study. The first one was the detection of the records as either Normal or Attacked

and the second one were for the detection of the stage at which the attack was

carried out. For both these categories, bucket approach was followed, as discussed

with details in the previous section, for the three machine learning models used.

Four main evaluation metrics used for the models are

• Accuracy Score

• Mean Absolute Error (MAE)

• Classification Report

4.1.1 Accuracy

The accuracy score is a commonly utilised statistic for assessing the efficacy of

machine learning models. The metric assesses the predictive accuracy of the model

in assigning proper class labels to instances within a certain dataset. The accuracy

score is given as a percentage and is calculated as the proportion of correctly

categorised cases to all instances. It is frequently utilised in many machine learning

applications and provides an accurate indicator of the model’s overall predicted

accuracy.

To determine the accuracy score for training and test datasets, the following steps

are typically followed:

1. The training of the model is conducted by utilising the training dataset,

which comprises instances that have been labelled with known class labels.
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2. After training,the model is subsequently employed to generate predictions

on the test dataset, which comprises examples that have been labelled and

has known class labels. model’s predicted class labels are compared to the

actual class labels in the test dataset.

3. The accuracy score is obtained by multiplying the ratio of properly detected

cases to the total number of occurrences in the test dataset by 100.

When the accuracy score is higher, it signifies that the model is making a greater

number of correct predictions. Conversely, a lower accuracy score indicates that

the model’s predictions are less accurate. The accuracy score is a dependable

metric used to evaluate the model’s performance in terms of its ability to make

accurate predictions.

While accuracy is an important metric for evaluating model performance, it may

not provide a comprehensive understanding, particularly in situations with class

imbalances or other complexities, as observed in our research. Therefore, it was

necessary to incorporate additional evaluation metrics, including precision, recall,

and F1 score. These metrics offer a more nuanced assessment of the model’s

performance from various perspectives and cater to specific requirements of the

problem domain. By considering multiple evaluation metrics, we were able to gain

a more comprehensive and reliable assessment of the model’s performance.

4.1.2 Classification Report

In the deep learning Classification Report function offers a thorough analysis

of a classification model’s performance. It computes a number of metrics for each

class in the classification task, including precision, recall, F1 score, and support.

• PRECISION: By comparing the proportion of accurate positive predic-

tions to all positive predictions, precision, a performance metric for machine

learning, quantifies the accuracy of positive predictions. It offers insightful

data on the percentage of accurately identified positive examples, assisting

in evaluating the model’s accuracy in identifying good outcomes.
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• RECALL: Recall, in the context of classification models, refers to the ratio

of correctly predicted positive occurrences to the total number of positive

instances. The evaluation measures the model’s ability to effectively de-

tect positive events and calculates the proportion of positive cases that are

correctly classified.

• F1 SCORE: The F1 score, a widely used metric in machine learning, com-

bines precision and recall by calculating their harmonic mean. This balanced

measure takes into account both precision and recall, making it particularly

useful in scenarios where achieving a balance between the two is important.

The F1 score proves valuable in situations with imbalanced class distribu-

tions, allowing for a comprehensive evaluation of model performance.

Through an analysis of the accuracy, recall, and F1 score derived from the classi-

fication report, valuable insights were obtained on the efficacy of the models:

• High precision indicates a low false positive rate, meaning that the model

has a low tendency to incorrectly classify negative instances as positive

• High recall indicates a low false negative rate, meaning that the model has

a low tendency to incorrectly classify positive instances as negative

• The F1 score is a metric that offers a fair evaluation by taking into account

both precision and recall.It is useful when you want to evaluate the model’s

overall performance, especially when there is an imbalance between classes

By analyzing these metrics for each class, you can understand how well the model

is performing for different categories and identify any imbalances or specific is-

sues. This information helped us make informed decisions about the model’s

performance and potential areas for improvement to get the optimized results for

each model.
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4.2 Deep Learning Model Result

This portion would discuss the results that we were able to achieve during the

classification of cotton disease dataset.

4.2.1 Resnet 50

4.2.1.1 Training and Validation Accuracy

Figure 4.1: Resnet Training and Validation Accuracy

4.2.1.2 Classification Report

Classification report for the Resnet 50 Model using transfer learning
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Figure 4.2: Resnet Classification Report

4.2.2 ViT Base

4.2.2.1 Validation and Training Accuracy

Figure 4.3: ViT Base Training and Validation Accuracy
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4.2.2.2 Validation and Training Loss

Figure 4.4: ViT Base Training and Validation Loss

4.2.2.3 Top 5 Validation and Training Accuracy

Figure 4.5: ViT Base Top5 Training and Validation Accuracy
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4.2.2.4 Classification Report

Figure 4.6: ViT Base Classification Report

4.2.2.5 Precision Recall Graph

Figure 4.7: ViT Base Precision Recall Graph
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4.2.3 Swin Transformer

4.2.3.1 Validation and Training Accuracy

Figure 4.8: Swin Transformer Training and Validation Accuracy

4.2.3.2 Validation and Training Loss

Figure 4.9: Swin Transformer Training and Validation Loss
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4.2.3.3 Classification Report

Figure 4.10: Swin Transformer Classification Report
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4.2.4 Compact Convolution Transformer

4.2.4.1 Training and Validation Accuracy

Figure 4.11: CCT Training and Validation Accuracy

4.2.4.2 Validation and Training Loss

Figure 4.12: CCT Training and Validation Loss
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4.2.4.3 Top 5 Validation and Training Accuracy

Figure 4.13: CCT Top5 Training and Validation Accuracy

4.2.4.4 Classification Report

Figure 4.14: CCT Classification Report
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4.2.4.5 Precision Recall Graph

Figure 4.15: CCT Precision Recall Graph

4.2.5 Error Analysis

Error analysis in the context of deep learning refers to the process of examining

mistakes made by your model. It involves diving deep into the cases where the

model predicted incorrectly, understanding the possible reasons for these mistakes,

and considering strategies to rectify them

4.2.5.1 Importance of Error Analysis

• Understanding Model Limitations: No model is perfect. By performing error

analysis, you can understand where your model falls short

• Guiding Future Work: By understanding where errors are coming from, you

can prioritize which aspects of your model or data to improve next

• Avoiding Overfitting: It can help in identifying if the model is overfitting to

certain kinds of data or certain types of errors.
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• Enhancing Generalization: Understanding error patterns can provide in-

sights into model biases, which when rectified, can improve generalization.

• Building Trust: For those who use your model, seeing a detailed error anal-

ysis can build trust.

4.2.5.2 Error Analysis Models 1

• Class 0 and Class 3 Confusion: Class 0 instances are most commonly misclas-

sified as class 3 (4 times). Similarly, class 3 instances are most commonly

misclassified as class 0 (4 times). This indicates a potential similarity or

overlap between these two classes which the model is finding challenging.

• High Precision Classes: Classes 2 and 6 have the least misclassifications,

with class 6 having the highest true positive count of 119. This suggests the

model can distinguish these classes quite well compared to others.

• Misclassification Patterns: Class 5 is misclassified across four other classes,

indicating potential overlapping features or less clear boundaries with other

classes.

• Potential Improvements: To improve the model’s performance, one could

investigate the data points that are commonly misclassified. For instance,

examining the overlap between class 0 and class 3 could provide insights into

the source of confusion.

• Overall Performance: The majority of predictions are on the diagonal, which

indicates that the model performs well. However, the off-diagonal elements,

which represent errors, provide valuable feedback for model improvement

In summary, the confusion matrix suggests that the model performs quite well on

this 7-class problem, with some room for improvement, especially concerning the

confusion between certain class pairs like class 0 and class 3
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4.2.5.3 Confusion Matrix ViT Small

Figure 4.16: Confusion Matrix ViT Small Model 1

4.2.5.4 Confusion Matrix Compact Convolutional Transformer

Figure 4.17: Confusion Matrix CCT Model 1
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4.2.5.5 Model 2

• Mutual Confusion: Class 0 instances sometimes confuse with Class 1 (15

times) and Class 2 (13 times). Similarly, both Class 1 and Class 2 have

instances that are misclassified as Class 0.

• Distinct Classes: Class 1 and Class 2 both stand out with minimal cross-

confusion. Class 1 has a distinct 62 true positives with very few instances

misclassified as Class 0, and no instances confused with Class 2.

• Overlap Issues: Class 0 has features that possibly overlap with both Class

1 and Class 2, given that it gets misclassified into both these classes more

frequently than the other way around.

• Recommendation: Investigate the similarities between Class 0 with both

Class 1 and Class 2 to reduce misclassifications.

• General Performance: Most predictions are spot-on, with the primary source

of errors stemming from Class 0 misclassifications.

4.2.5.6 Confusion Matrix ViT Model 2

Figure 4.18: Confusion Matrix ViT Model 2
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4.2.5.7 Confusion Matrix CCT Model 2

Figure 4.19: Confusion Matrix CCT Model 2
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Conclusions and Future Work

The final chapter of this thesis provides a summary of the research presented and

emphasizes its significant contributions. The chapter serves as a conclusion to the

study, highlighting the key insights, outcomes and action points.

5.1 Summary

Let us recall the research questions that were put forward at the start. Those

questions were

1. How effectively Deep learning models are able to detect cotton disease and

classify the intensity of affect in case of Whitefly?

2. Which deep learning model successfully detects the cotton diseases with a

high accuracy?

3. Performance of Vision Transformer for the classification of cotton leaf dis-

eases

4. Comparison of results for deep learning models and vision transformers.

5. Comparison of Vision transformers for performance on the dataset

As we conclude our research we will try to answer each one of the question one

by one with the help of the results and the findings in the above sections.
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5.1.1 Effectiveness of the Deep learning models used

The comprehensive evaluation and fine-tuning of multiple deep learning models

have yielded highly compelling results, affirming the reliability and efficacy of these

models in detecting cotton diseases. The meticulous selection and implementa-

tion of deep learning algorithms in this research have consistently demonstrated

remarkable accuracy, with results ranging from a minimum of 86% to an impres-

sive maximum of 96% in certain cases.

5.1.2 Most effective Deep Learning model

The efficacy of these algorithms can be assessed through two distinct perspectives.

Firstly, the accuracy in identifying the cotton disease, serves as a primary evalu-

ation criterion. Secondly, the effectiveness of the model in detecting the severity

of Whitefly effected leaves. The findings obtained from this study, which focused

on various deep learning algorithms, demonstrate that the Compact convolution

transformer outperformed others when it comes to accurately detecting cotton

diseases, achieving an accuracy rate slightly exceeding 96%. Similarly, in terms

of severity detection for Whitefly disease, the CCT yielded the most favorable

results, boasting an accuracy rate of nearly 90%. It is important to emphasize

that these accuracies were calculated based on the test dataset following model

training.

5.1.3 Performance of Vision Transformer

Vision Transformers (ViT) have demonstrated remarkable performance on the

dataset in question, outpacing traditional convolution-based models. By leverag-

ing self-attention mechanisms that allow the model to consider the entire image

at once, ViT captures long-range dependencies and intricate patterns within the

data. This global perspective enables a more comprehensive understanding of the

spatial hierarchies present in the images, leading to improved accuracy and robust-

ness. The success of ViT on this dataset underscores its potential as a powerful

alternative to conventional architectures, reflecting a significant advancement in
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the field of computer vision

5.1.4 Comparison of Results

In the comparative analysis conducted on the specific dataset, various Vision

Transformers (ViTs) were pitted against the well-established ResNet architecture.

The evaluation focused on key performance metrics, primarily test accuracy, and

revealed a noteworthy edge in favor of the ViTs. While ResNet has historically

been a strong performer in various computer vision tasks, the self-attention mech-

anism within ViTs allows them to capture global dependencies and complex pat-

terns more effectively. This nuanced understanding of spatial relations led to

higher test accuracy, illustrating the ViTs’ ability to generalize better from the

training data. The superior performance of Vision Transformers over ResNet

in this experiment not only underscores the evolution and adaptability of trans-

former models but also signifies a potential shift in preferred methodologies for

image analysis, encouraging further exploration and adoption of transformer-based

architectures in the field of deep learning.

5.1.5 Comparison of Vision Transformer

In the pursuit of solving the intricate problem of cotton disease detection, three

distinctive vision transformer architectures were deployed: ViT Base, Swin Trans-

former, and Compact Convolution Transformer (CCT). Each was methodically

tailored and assessed on the specific dataset. While all demonstrated commend-

able capabilities, the Compact Convolution Transformer emerged as the most

efficacious model. The architecture of CCT, which elegantly fuses the benefits of

both convolution and transformer layers, enabled a more nuanced understanding

of the spatial features within the images. This allowed for a more accurate and

robust classification of the diverse disease manifestations present in the cotton

samples. The superior performance of the CCT underscores the value of continu-

ous architectural innovation and reaffirms the adaptability of transformer models

to specialized domains. This success not only sets a new benchmark for cotton
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disease detection but also lays a promising pathway for further exploration and

development within the agricultural domain of intelligent machine learning appli-

cations

5.2 Conclusion

This research offers valuable insights into the feasibility of employing deep learn-

ing methodologies for the identification of cotton diseases, which play a crucial

role in the management of agricultural health. It explored the efficacy of Convolu-

tional Neural Networks (CNNs) and a new generation of Vision Transformers for

this task. CNN models were honed using transfer learning and tuning techniques,

thereby adapting the pre-trained models to the specifics of the cotton disease

dataset. Meanwhile, the application of three distinct Vision Transformers—ViT

small, Swin Transformer, and CCT—was investigated.

When compared with each other, it was found that Vision Transformers generally

outperformed CNN models in terms of F1 score and accuracy. This outcome rein-

forces the supremacy of transformer-based architectures in the field of deep learn-

ing, demonstrating their ability to capture complex patterns in visual data, even

in diverse contexts such as plant disease detection. Moreover, it also underscores

the potential of transfer learning techniques in increasing model generalization

and mitigating overfitting issues.

Within the domain of Vision Transformers, the Cross-Covariance Transformer

(CCT) emerged as the most potent model, yielding the highest performance in

both F1 score and accuracy metrics. This demonstrates the strength of CCT, with

its unique mechanism of leveraging cross-covariance for image classification tasks.

The promising performance of ViT small and Swin Transformer should not be un-

derstated either; both models showed considerable potential for this application.

The results of this research therefore not only provide a concrete direction for

the immediate improvement of cotton disease detection but also pave the way for

broader investigations into the application of deep learning in agricultural health.
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5.3 Future Work

This study opens several exciting avenues. Given the demonstrated superior per-

formance of Vision Transformers, more research is needed to fine-tune these models

specifically for the task of cotton disease detection. For instance, we can explore

how various architectural modifications or training strategies could potentially en-

hance their performance. It would also be of interest to study the incorporation

of self-supervised learning techniques into Vision Transformers, as they could po-

tentially improve the model’s ability to learn meaningful representations from the

data.

Beyond this, as the current dataset was developed from public sources and may

not fully capture the diversity of cotton diseases, it would be valuable to test and

validate these models on larger and more heterogeneous datasets. This could in-

clude different types of cotton diseases, different stages of disease progression, and

cotton crops grown under a variety of environmental conditions. It would also be

insightful to integrate other modalities of data, such as thermal or hyperspectral

imaging, to examine if these can contribute to improved performance.

Lastly, since the Cross-Covariance Transformer (CCT) demonstrated the highest

performance among the tested models, an in-depth investigation into the workings

of CCT is warranted. It would be worthwhile to understand why this particular

model performed so well, and how its unique attributes could be further leveraged

or enhanced for the task of cotton disease detection. Collectively, these future

directions promise to not only advance the specific field of cotton disease detec-

tion but also contribute significantly to the broader domain of agricultural health

management through deep learning
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