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Abstract

State of the art Deep learning models, despite being at par to human level
in some of the challenging tasks, still suffer badly when they are put in the
condition where they have to learn with the passage of time. This open chal-
lenge problem of making deep learning model learn with the passage of time
is often called with synonymous names like Lifelong Learning, Incremental
Learning or Continual Learning etc. In each increment new classes / tasks are
introduced to the existing model and trained on them while maintaining the
accuracy on the previously learnt classes / tasks. But accuracy of the deep
learning model on the previously learnt classes / tasks decreases with each
increment. Main reason behind this accuracy drop is catastrophic forgetting,
an inherent flaw in the deep learning models, where weights learnt during the
past increments, get disturbed while learning the new classes / tasks from
new increment. Approaches have been proposed to mitigate or avoid this
catastrophic forgetting, such as use of knowledge distillation, rehearsal over
previous classes, or dedicated paths for different increments etc.

Here in my work I proposed a novel approach based on transfer learn-
ing methodology, which uses a combination of pre-trainied shared and fixed
network as backbone, along with a dedicated network extension in incremen-
tal setting for the learning of new tasks incrementally. Results have shown
that proposed architecture successfully bypasses the catastrophic forgetting
issue and completely eradicate the need of saved exemplars or retraining
phases which are required by the current state of the art model to maintain
performance, and still have performance comparable to the state of the art
incremental learning model.

xi



Chapter 1

Introduction

Machine learning (ML) is one of the most prominent and active research
branch of Artificial intelligence (AI). A Machine learning algorithm, enables
the computation system to be able to learn and improve from the training
data (which is sometimes referred as experience E in the literature), without
being specifically programmed. Field of ML is mainly focused on finding
useful patterns automatically from the data given to its model, without any
involvement or assistance from human, and then use those patterns for pre-
dictive purpose.

Machine learning approaches are often broadly categorized into three ma-
jor sub-fields based on the nature of the “signal” or “feedback”, which is
available to the learning system [4].

• Supervised learning: In this learning scenario, each input training ex-
ample has its corresponding desired output, usually known as label.
Therefore model will learn the generalized mapping rule from the in-
put and output pairs.

• Unsupervised learning: In this setting no pairs of inputs and their
corresponding outputs are given to the model. Instead, inputs are
given to the model without labels and model has to extract the useful
patterns and structures from the given inputs on its own.

• Reinforcement learning: Model being as an agent, interacts with the
given dynamic environment, upon which model receives feedback (re-
ferred as reward) from its environment. Goal of the learning in this
setting is to maximize its reward received from the environment.

There are various families of ML algorithms: like Näıve Bayes, Ran-
dom forests, Sport Vector Machines (SVMs) and Artificial Neural Networks

1
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(ANNs) to name a few, which are commonly used in vast variety of scenarios.
All ML models have their own merits and demerits.

Among these models, Artificial Neural Networks are loosely designed on
the structure of neurons and synapses of the brain. As show in the Figure
1.1. Initially, design was intended to work out problems like a human brain,
however, with the passage of time, ANNs was moulded to achieve specific
task with distinctive performance. Since then ANNs have been successfully
applied to vast variety of domains like vision, speech, translation and games.
ANNs have outperformed other ML models multiple times in different sce-
narios. In 2012, success of AlexNet [21] in the ILSVRC2012 [34] competition
gave breakthrough to the Deep Learning (DL) and as of 2020, Deep Learning
is the most prominent approach to work on in the field of ML [2].

Figure 1.1: Basic structure of Artificial Neural Networks. Input layer has
3 blue, Hidden layer has 4 orange and Output layer has 2 green neurons.
Arrows show the learnable parameters called weights.

As the research done under this thesis is mainly focused on the domain
of Deep Learning (DL) so we will discuss the Neural Networks (NNs) and
closely related models in incremental setting in detail.

1.1 Incremental Learning Overview

Humans and other higher mammals have distinctive ability to learn and ac-
quire knowledge in incremental fashion, throughout their life span [6]. Their
brain have a good balance of synaptic stability-plasticity [1]. Therefore, they
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can incorporate new skills and information without disturbing the old one,
which they have acquired in the past.

In Machine Learning, method which makes an ML model capable of ex-
tending its knowledge by learning new tasks with time, when and as new
tasks become available, without degrading the performance of model on the
tasks learned in past is called Incremental Learning. In the real world sce-
nario, information is being generated continuously with the passage of time.
Therefore, Incremental Learning capability for an ML model is an essential
feature for a true artificially-intelligent computational system. Despite being
a very crucial feature, design of a true incremental learning model is still a
long standing challenge in the field of machine learning [11].

Although, it has been proved multiple times that, in the field of machine
learning, Deep learning models are the best performing models in vast variety
of domains – due to the reason, that Deep learning models have excellent
ability to learn the specific task in a single go. Still DL model suffer badly,
when model is put in a setting where it has to learn tasks incrementally
with the passage of time. Main reason for DL model to suffer badly in
incremental setting is because all the training data is not available at the
same time so they suffer from phenomena called catastrophic forgetting or
catastrophic inference [ [25], [7]].

1.2 Background

Since the mid of 20th century, computers alone have revolutionize the world
more than any other technology else. It has impacted almost all industries
and all sectors of the world. It will be safe to say that computers have im-
pacted every person’s life directly or indirectly. Since 1970s, computation
power of computers kept increasing, with doubling every two years as de-
picted by the Moore’s Law in 1965. With the help of computers we were
able to do enormous amount of computations which could never be thought
before, would be possible. This trend is still followed today and will keep
continuing, given the Moore’s law is followed.

At very early stage, people in the computer industry realized that, com-
puters despite being extremely powerful in computations, are simply dumb
machines. Computers require to be programmed in very fine and clear details
and that they cannot do a simplest task or take a simplest decision on their
own. Therefore, in mid 1950s, people in the computing field started to work
on the design of algorithms which could make computers behave intelligently
and thus the field of Artificial Intelligence research was established.

Field of Artificial intelligence itself has a very large landscape. Which
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involves, logic building, reasoning, planning and decision making, search and
optimization and learning. Learning part of AI developed in the field promi-
nently known as Machine Learning (ML). Machine learning plays a very
important role in the making a better artificial intelligent (AI) system, be-
cause ML makes an agent well informed and educated about its environment,
and better the agent is informed about its surroundings better will be the
response it can generate.

Learning of an intelligent agent is ideally a continuous process. Whereas,
ML state of the art models lack this ability in true sense. To further discuss
it in detail we break the discussion in to two parts:

1.2.1 Dynamic nature of the world

World is fundamentally dynamic in nature. Change is simply happening all
the time. Among those changes is the generation of data, and with data
comes information. Data is being produced by different sources and in dif-
ferent forms. With the digitalization of technology, rate of data production
has increased by many folds. Global level interconnectivity via World Wide
Web, smart phone technology and Internet of Things (IoT) has increased
this data generation rate exponentially. The rate itself is growing with time.
Therefore enormous amount of new information is taking form every day. So
there is always new stuff to learn.

New concepts are emerging and new products are being introduced. Even
concept for same thing changes with time. For example with the perspective
of classification: specific car name can refer to all of its generations yet each
generation is visually quite different from each other. Moreover, concept
changes can be gradual as well as abrupt.

Distribution of the data can change with time as well, called as concept
drift. Concept drift can itself be of different types: if change is only to the
distribution, it is called virtual concept drift. If change is in the functionality
as well then it is called real concept drift. Then concept drift could be local
if changes are in the specific range of data space [39].

Conclusively, world is dynamic in nature and Incremental learning capa-
bility is an essential feature for a true Artificial Intelligent (AI) system.

1.2.2 Limitations of the DL models

Currently deep learning models have outperformed other ML model families
in various domains. Deep learning models have even surpassed humans in
performance in specific settings. There are multiple reason behind their
success. Some of them are as follows
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• ANNs by design, have the capacity to learn very good approximation
of even very complex functions.

• They can almost always make good use of data available. Which means
that more data is always helpful in the performance improvement of
ANNs. Now a days, data is already available in abundance. Thus
ANNs can get better and better with the availability of data, where
other models usually stop learning any further.

• Their design is dynamic and can be extended to virtually any number
of layers, which usually helps in increasing performance. With the
introduction of state of the art designs in the field of Deep learning,
research have shown that networks can be extended extended from 100s
of layers to even well over 1000 layers.

• Deep learning models can be computation hungry. But with the ad-
vancement and availability of powerful hardware, we can easily paral-
lelize and deploy big architectures.

Despite being outperforming and powerful models their design has some
limitations. Most prominent is that, data used for training a DL model
must be available right at the time of training. But in real world scenario
world being dynamic in nature as discussed in the section 1.2.1, this cannot
always be possible to have all the training data available during training
phase. This raises the requirement of DL models to must have feature of
Incremental learning capability.

1.3 Requirement of Incremental Learning

Keeping in view of Dynamic nature of the real world scenarios. We now know
that we cannot always have all the data available at the time of training phase
or in some cases data distribution can change overtime or itself the concept
for a single thing can change. These all mentioned scenarios lead us to fill
the gap of learning within the dynamic environment of the world

Whereas DL models are not yet capable of learning with time, as and
when data become available. Therefore, a strong need arise for the require-
ment of model which can learn within the dynamic environment of the world
by incrementally learning about new tasks / classes when and as their train-
ing data become available, without forgetting about the tasks / classes learnt
it past also and without degrading the performance.
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1.4 Challenges

Challenges involved in designing DL models capable of incrementally learning
with time, are being studied since early 90s. Although DL models are very
flexible in design from one perspective but still there are some inherent issues
with their design which makes them difficult to work around and make them
fully incremental learning model. Some of main issues are below:

1.4.1 Catastrophic Forgetting

One of the main issue which is considered the core issue for making DL models
to have true incremental learning capability, is the catastrophic forgetting.
By design DL models have learn-able parameters called weights. Basically
these weights are learned (adjusted) iteratively, during the training phase.
These learned weights collectively depict the approximation of function which
the model has learnt. Therefore in the incremental setting when the new
data becomes available. Then during the training phase when model tries to
learn on this newly available data, weights of the models adjust themselves
according to this new data and hence the adjustment of weights for the
previously learnt data gets disturbed. As the result model performance on
the previously learnt tasks / classes starts to degrade while learning the
new ones. This issue is referred as catastrophic forgetting. Whereas in DL
models, this balance between plasticity (ability to learn new tasks / classes)
and stability (ability to retain the performance on the old tasks /classes) is
called stability-plasticity dilemma.

1.4.2 Data Availability

In the mitigation of catastrophic forgetting issue, some proposed incremental
designs have used the technique of rehearsals or retraining of old tasks /
classes, during the training phase of new tasks / classes. In this method
some of the examples from old distributions are passed to the models along
with the new training data. Therefore, where model learns about the new
task / classes in the current increment, it also retains the accuracy to some
extent on the tasks/ classes learnt in the past, by the rehearsal on their own
data distribution examples.

• There are scenarios where data is coming in streams. Therefore data
cannot always be available for the retraining phase. Especially in online
learning strategies this situation arises. So retraining strategy could
become ineffective.
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• As in the retraining phase, old training data examples are required
for the rehearsal purposes. Therefore old training data examples are
saved on the disk for later used in the rehearsal purpose. But in some
cases data is sensitive and could possibly arise the privacy issue, due
to which data cannot be saved on the disk anymore. Therefore it
will be not possible to rehearse the old training. Thus it will hinder
in making the incremental training for the model effective. Another
reason which could become issue in saving data will be the data rights.
Which could arise the issue where we cannot save the data on the disk.
Thus rehearsal will be not possible or may become ineffective resulting
in degrading the true incremental ability of the DL model

1.4.3 Scalability

Scalability is another one of the most important and difficult challenge in de-
sign of incremental learning model. Where an incremental learning algorithm
can keep learning without becoming an issue in the space and time complex-
ity. Which should be linear or even less in its growth rate at and best if it is
not increasing at all. Scalability is further discussed in the following points:

• As the true incremental ability require the model to learn for very
long periods of time which could be analogous to lifelong learning of
humans. But models having incremental ability based on rehearsal
strategy requires data to be stored on the disk. But for the very long
term incremental learning scenarios very large number of increments
should incorporated. By design, for each increment some data exam-
ples should be stored on the disk. But for the very large number of
increments scenario, this disk requirement will become humongous.

• By design, DL model have to incorporate some new connections, ev-
ery time an increment is added. Hence model size increases by some
factor on each increment. Therefore for the long term incremental sce-
nario, size of the model kept increasing ultimately becoming model of
enormous size.

1.5 Applications

A true incremental learning model will be beneficial in multiple fields. Ar-
tificial intelligence is already being applied in numerous sectors and fields of
the world. Healthcare, automotive industry, Finance and economics, security
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and cybersecurity, Gaming industry, government, military, media and art in-
dustry are one of the few fields benefiting from the capabilities of AI and
ML. If we look closely all these fields are dynamic in nature. Therefore AI
and ML models featuring incremental learning capability will be extremely
beneficial.

1.5.1 Autonomous systems

Currently world is shifting from automatic to autonomous machines. Where
less supervision will be necessary to be given to machines to complete the
desired tasks. For the robots working in the industry will have more gen-
eralized knowledge base and their knowledge can be extended according to
the specific needs of the domain they will be applied on, rather every time
training them from scratch for any new task they are shifted on. Medical
robots’ training can be extended further with time without any overhead of
complete retraining. Autonomous vehicles skill and knowledge base can be
extended with the new data and environments easily on the go.

1.5.2 Computer Vision

In the field of image classification it can beneficial in many ways, some of
them are as follows: Image classifiers working for search engines can expand
their knowledge base as and when new classes and examples become available.
Auto tagging tools can learn new tags with time without requiring the overall
training again and again Face detection systems working can learn about new
people from time to time, without any overhead of complete training data.
Object detectors working in ecommerce domain can be trained on the new
objects as and when required, without training again and again on the data.

1.5.3 Continuous stream of data

In the era of big data, data is being generated at fast pace and pattern
analysis of the data distributions where concept drift in already in place.
Incremental learning models can work way better than simple static ML /
DL models. In such online based scenarios data cannot even be saved, just
in case we train the complete model again and again, where distribution or
concepts can even change with time. Thus, incremental learning models can
easily accommodate these changes in distributions and change in concepts
along with the completely novel concepts coming at a fast pace in with the
time.
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1.6 Motivation

AI is getting better and better with each passing year. This improvement
rate in the performance has even increased by many folds especially with
the advancement in the field of Deep Learning and by the advancement and
availability of the parallelizable hardware usually know as Graphic process-
ing units (GPUs). Therefore with AI models’ improvement, these models
are now widely accepted in multiple fields all around the world and has been
successfully applied in them. AI is now directing the whole industry of the
world towards new direction. But still there are huge gaps in the filed yet
which need to be addressed to make AI systems fully autonomous and de-
pendable. In the current age, we have lots and lots of data available. Which
can be used to improve the capability of AI models.

Keeping in the view of gaps available in the field and availability of data
we can use make more robust and intelligent models. One feature among
those fields is Incremental learning, which will have a very huge impact in
the filed of ML in specific and on AI in general. Therefore, with growing
and ever changing data, introduction of new knowledge by every passing day
and need to have model for the sake of Artificial general intelligence (AGI),
capable of learning with time just we humans do, it has become exigent
necessity to have model with Incremental learning capability.

1.7 Problem statement

Although problem with the Deep learning models regarding incremental
learning capability has been identified in early 90s as catastrophic forget-
ting but still this feature is an open research problem. Despite being nu-
merous efforts by the research community to design the model with good
balance between plasticity and stability, still deep learning models’ perfor-
mance degrades with every increment during the learning process. Current
Incremental learning models are still far from being application worthy to
real world problems. Most of those models even rely on some level of retrain-
ing and disk requirement for saving data for old classes’ representation as
well. Research efforts are being made by the research community to improve
the Incremental learning performance, while keeping the memory and disk
requirement as less as possible
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1.8 Scope

From the perspective of architecture, research scope of the work done un-
der this thesis is designing of Deep Learning (DL) architecture based model,
capable of Incremental Learning. Proposed model is based on the Convo-
lutional Neural Networks (CNNs). Therefore it is targeting the domain of
Computer Vision and is trained and tested on the classification problem of
image based datasets.

Regarding Incremental scenarios, we have worked on task based incre-
mental learning setup. Hence, complete dataset is divided equally as per
total number of classes. Each sub-dataset of classes represent a unique task.
Therefore during each increment only one task is added to the model. During
training phase, only training data from current task is passed to the model.
But during testing, combined test data from all the learned tasks is passed
to the model.

1.9 Thesis Contribution

In this thesis work is done on designing the Incremental learning model based
on the architectural strategy rather rehearsal strategy in order to avoid catas-
trophic forgetting. Results have shown that proposed model have almost
same performance results to that of state of the art incremental model, along
with the following plus points:

• By passing the effect of catastrophic forgetting: In proposed
model, I have designed the architecture mainly in two major parts -
first, combination of fixed shared parameters and second, single-layer
dedicated network extension. Thus the designing the model in the said
way has eliminated the effects of catastrophic forgetting.

• Eliminating the Retraining Requirement: Model is designed in
such a way that it eliminates the requirement of retraining over the
past classes at any stage.

• No disk space required: As the design of the model does not require
retraining. Therefore no data or distribution samples are needed to be
saved on the disk. Thus, no disk space is required.

• No data rights / privacy issue: There could be the case when
the training data is protected with rights or there could be privacy
concerns. Proposed model being independent of rehearsal phase, does
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not require to save any data for the rehearsal. Which automatically
eliminates the issue of data privacy or data rights related issues.

• Separate task performance preserved: As model desing has two
parts one as shared and fixed used by all increments. Second dedicated
and learnable. Therefore, due to this scheme of layer design, model
accuracy over the separate tasks is fully preserved.

1.10 Thesis Structure

This thesis has 5 chapters. Chapter-1 has through introduction of this thesis.
Chapter-2 discusses related work done by the research community in the
related field. In Chapter-3, proposed work is discussed in detail along with
implementation details of the proposed model. While all the experiments
and comparisons are in Chapter-4. Chapter-5 contains conclusions on the
research done in this thesis and future prospects.



Chapter 2

Literature review

In this chapter, related work done in the field of incremental learning is
reviewed on the landscape of deep learning. Different architectures towards
modeling incremental learning algorithms are discussed. Merits and demerits
of each algorithm design is discussed in detail.

2.1 Incremental Learning Overview

Based on Machine learning models belonging to similar family, Machine
learning has multiple sub fields. Here we will discuss Incremental learning, a
sub filed of Machine learning, in prospect of Deep learning.

2.1.1 Working mechanism of Deep Learning Models

Deep Learning models has advanced in the current decade than any other
family of machine learning models after the AlexNet [21] success on dataset
from ILSVRC-2010, and iLSVRC-2012 [34]. Since then, many state of the art
deep learning architectures like Resnet [13], GoogleNet [37], Inception [18],
and Densenet [17], have been proposed. These state of the art architectures
has performed extremely well on vast variety of datasets in different do-
mains like Image recognition, Object detection, Object recognition, Natural
Language Processing etc. But still there is one big constrain on these deep
learning models. That deep learning models cannot learn with time, just like
we humans do. They require all the training data during the training phase
in order to perform at their best.

This can be explained easily if we look closely on the working principals
of the deep learning architecture. Complete structure of the model is based
on Neurons and connections which connects the neurons of the model. These

12
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Figure 2.1: Basic working principle of single neuron in the Artificial Neural
Network [43]

connections among the neurons are usually called weights, which are adjusted
(referred as learning) during the training phase in order to approximate the
function on which model is set to learn. The learning mechanism is based on
the backpropagation algorithm [33], in which relative loss is back propagated.
This loss is calculated based on the derivative of loss function with respect
to weights.

1. Feed forward: During the feed forward pass. Input is passed to the
model. Where each input is multiplied with the weights of the neurons
and then bias for each neuron is added. This weighted input is then
passed to the activation function to get the output from that specific
neuron. This process is done for each neuron in the layer and multiple
layers can be combined to make the network deeper. All combined
activation from all neurons of the last layer is the final output. Simple
feed forward of for single input vector is given in the equation below.

2. Feed backward: The output from the model is compared with the
target (true labels given for training purpose). Thus the total loss is
calculated and with the help of derivatives calculated-loss-contribution
of each weight is then propagated back to all the weights of the network.
Therefore, weights of each layer are then updated by the learning factor
during the back-propagation process. This feed forward and backward
process is usually iterated thousands of time until global maxima of the
loss function is reached.
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From this feed forward and backward mechanism we can get the insight,
that in DL model weights are getting adjusted at each iteration therefore
effect of this process on the incremental learning setting will be discussed in
the next section.

zln =
m∑
i=1

(
wl

n,ix
l−1
i + bln

)
(2.1)

aln = σ
(
zln
)

(2.2)

where: l = number of layer in the network
n = number of neuron in the specific layer
m = number of the neurons (activations) in the previous layer
w = weights of specific neuron in a layer
b = bias of specific neuron in a layer
z = weighted input of the specific neuron in a layer
σ() = activation function
a = activation of specific neuron of a layer

2.1.2 Catastrophic Forgetting

From the working principle of the DL model it is clear that weights of the DL
model gets adjusted in every iteration for the learning during the training
process. That is why all the training data must be available to the DL model
during the training phase, because if part of training data is not passed to
the DL model during training phase, it will later disturb the weights learnt
previously, when this data will be passed later to the model for learning.
Therefore performance of the whole model drops on the data distribution
learnt in the older training phase. This issue is referred as catastrophic
forgetting / inference [ [25], [7]]. This issue was identified by researchers in
the late 80s and in 90s. Since then it is the major long standing issue in DL
model architecture for making them a good incremental model.

DL models can easily adopt to the new data distribution and hence con-
sidered as very plastic nature. From one perspective it is very good attribute
for a model to have incremental capability. But this attribute comes at the
price of the stability of the model performance on the previous data distri-
butions. It means that when the new data distribution is introduced to the
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model, it learns the new distributions in a way that it starts to forget about
the data distributions learnt in the past. So the stability of the model suffers
at the cost of plasticity. This dilemma is called plasticity-stability dilemma.
This dilemma is tightly related to the catastrophic forgetting.

2.2 Typical model-design philosophies

Catastrophic forgetting being the inherent issue in the deep learning models.
To mitigate the issue different design philosophies has been proposed. Some
designs have tried with the approach to mitigate the issue of catastrophic
forgetting. While other have tried to avoid it at all in first place. Some of
them are discussed below.

2.2.1 Retraining Phases

One design philosophy used in incremental learning models is “retraining
phase”. Where, during the training phase of new task, some part of previous
tasks’ training data is also used with the training data of new task. In this
regard some mechanism should be devised to select some part of training
data form previously trained classes.

In iCaRL [31], they used herding technique from [41], to get the best
exemplars for the retraining phase. Herding was used in order to achieve two
objectives: first, to make exemplars set to exhibit true class mean approx-
imation at initial stage, second, herding algorithm could remove exemplars
when necessary while keeping the approximation as close as possible, thus
usage of disk space for saving the exemplars was kept constant.

Another approach for the retraining phase was the use of Generative
adversarial networks [9], [30]. In this setting training data of old classes were
generated with the use of generator of the generative adversarial network
and thus augmented with the training data for the new increment. In [36]
they used the combination of generator and solver, making complete model
for current state as scholar as shown in Figure 2.2. On new increment,
generator and solver of old scholar generated pseudo training samples for old
data and their labels respectively. Which were then combined with the data
and labels for new classes to train the new scholar. This helped in keeping the
accuracies over previously trained classes as high as possible while learning
the new classes with time.

Advantage of this generative adversarial network based retraining ap-
proach, is retaining the accuracy over the old classes along with learning the
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Figure 2.2: Continual learning based on Generative strategy [36]

new classes while eliminating the requirement of saving old classes’ data on
disk.

Limitation of this method is that generator has difficulty in generating
visually complex dataset classes like CIFAR100 [20], CUBs200 [40], ImageNet
[34] etc, as mentioned in [19]. Therefore performance drops when generator
based architecture are put to test with such datasets. This results in limiting
its application over the visually complex datasets.

2.2.2 Network Extension

During the each increment, model is further trained on some specific number
of new classes. Which requires the addition of output node in the output
layer of the network. When new nodes are added to the network, new set
of weights making connection between output and last hidden layer are also
added [31].

In Learning without forgetting [22], they used the task incremental strat-
egy instead of class incremental strategy. Where their network was divided
into two categories depending on the parameters’ access to specific task. One
is shared part of network having shared parameters θs across all tasks, other
part is network extension with parameters θn which was added on intro-
duction of new task. While at the same level of θn, parameters of network
extensions added for old tasks were referred as θo, as elaborated in Figure
2.3 part (e).

2.2.3 Distillation Loss

During the training phase of new increment, retraining part is required.
Where some mechanism of loss calculation over the previous training dataset
becomes necessary, in order to maintain some balance between the train-
ing quality of new classes and retaining the accuracy of old classes. This is



CHAPTER 2. LITERATURE REVIEW 17

Figure 2.3: Continual learning based on Lwf [22]

usually done using the changes in the in loss calculation method in the loss
function for the model. In [31] they used the loss function as the combination
of two loss functions: classification loss and distillation loss. The later term
was used to prevent the catastrophic forgetting by using the variation of loss
function used in [16]. Equation (2.1) was used by [31] for the calculation
of loss during training. Which was originally proposed for the information-
transfer between neural networks. But in [31] it was used along different time
stamps in same neural network.

The same technique of Distillation loss, applied in [31] was also proposed
by [22] to keep the accuracy over the old task as high as possible after the
addition of new task. But in [22] they used it for task incremental scenario
rather class incremental scenario as used in [31].

2.2.4 Nearest Class Mean Classification

Although this thesis is focused on deep learning for incremental learning
scenario. In [26] for the first time, it was exhibited that nearest-class-mean
classifier can accommodate new classes in incremental manner, by keeping
the mean of feature vectors of all examples form all classes. During testing,
feature vector of example from test data was classified with the label of
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mean-of-feature-vectors, which was most similar on metric to test feature
vector. This proposed method exhibited to work well when applied in the
incremental learning scenario [26] , [27], [32].

In [31] they used different family of algorithm for the classification purpose
only, along with the neural network as backbone of the whole algorithm.
They used the nearest-mean-of-exemplars as their classification algorithm.
In this algorithm they used to assign the label of class to the test image which
had closest mean-of-exemplars to the feature vector of that test image.

Main idea of using this algorithm for classification was taken from nearest-
class-mean classifier from [26]. The difference between both implementations
[31] , [26] is the use of only feature representation of exemplars in [31] instead
of feature representation of whole data set examples. This is due to the reason
that they cannot have all the training data stored for the above mentioned
purpose in the incremental setting which will eat up the disk space with time.

Usage of this algorithm in [31] made the classifier robust to changes in
feature representation, as class-prototypes could automatically adjust them-
selves to changes in feature representation.

Figure 2.4: PackNet pruning and training strategy on 5x5 filter [24]

2.2.5 Network in Network

Inspired by pruning techniques in neural networks, and redundancies in large
deep learning models, PackNet [24] proposed the method for learning of tasks
with time in incremental manner, which is relatively different than all the
other models discussed here yet. They used the redundancies of the deep
learning model to their advantage and freed up the excess parameters for the
learning of new tasks without the drop of performance in any task learnt.
Using network retraining along with iterative pruning they were able to make
the model learn multiple tasks with minimal drop in performance. Another
major difference from other tasks was that they always used to optimize for
the current (new) task, rather optimizing the balance between the new and
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old tasks using some proxy loss functions. Their strategy is illustrated in
Figure 2.4

Limitation of PackNet [24] is that it cannot keep on adding new tasks
with time, a property, which a true incremental learning algorithm should
have. This is due to the reason that after some increments there will be no
more room left for pruning in the model thus model will reach its limit and
will not be able to learn any further tasks afterwards.

2.3 Summary

Incremental learning, despite being the much needed capability of the ma-
chine learning model, is long standing open research problem. Which has not
been addressed properly before the recent advancement in the field of deep
learning. With the successful application of deep learning in this decade, in
vast variety of fields has again given the spark to the need of Incremental
learning. In this regard major work done in the domain of deep learning can
be categorized as architectural based designs and rehearsal based designs.
Both have improved the results slowly but yet the state of the art results are
far from being application ready.



Chapter 3

Proposed Model

This chapter discusses the main work this thesis in detail. Basic design
philosophies involved in designing the model. High level architecture of the
model and training and testing pipeline are described in detail.

3.1 Coming up with the architecture design

Incremental learning, as discussed in Chapter 1, is much required capability
of machine learning algorithm. In machine learning algorithms, family of
Deep learning algorithms out perform all other families of machine learning
algorithms by healthy margin in vast variety of scenarios. So, in this thesis,
focus of the work is to design a deep learning based model capable of learning
new classes incrementally with time.

Therefore, first it is to point out the issues involved in the design of the
model so that it is clear what are the objectives and what are the main issues
involved in achieving the required objectives.

Main issues faced by the researchers in designing deep learning models
capable of true incremental learning ability are as follows:

I Catastrophic forgetting: This is the most prominent issue of all in Deep
learning models in the domain of incremental learning. Which even
raises further issues as well. All of those major issues will be discussed
here. Deep learning model must have design which eliminates this issue
in first place, or it should at least minimize the effect of catastrophic
forgetting, which can be done with rehearsal strategies, which leads to
further issues.

II Constant requirement of old training data: While model design can em-
ploy the retraining phases on each increment, but this leads to the issue

20
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of constant requirement of training data of old classes. But training
data of old classes might not be available in all cases.

III Privacy of training data: Another reason is, because retraining phase
requires old training data, which must be saved on the disk for rehearsal
purpose so limitation could arise when the training data is proprietary
or has privacy issues, and cannot be saved on the disk for later use in
retraining phase [31].

IV Increasing data: Requirement of old data should be saved on disk as
discussed in point (iii). But in true incremental scenario for every new
classes data will be saved on the disk and this saved data for old classes
will keep on increasing with every increment.

V Generative approach: All the three issues (II, III, IV) discussed above
can be eliminated, by incorporating the generative approaches [9], [30],
[36] for retraining phase, in the model for generating the samples for
old training data rather having them saved on the disk. But this ap-
proach has its own limitation, because generative models’ performance
decreases significantly when samples of visually complex datasets are
generated for rehearsal [19].

VI Requirement of Proxy losses: Issues in points (II – IV) require some
method, during the retraining phase, to maintain balance between keep-
ing the accuracy over old classes as high as possible and training the
new classes as good as possible. This was done with the help of making
the loss function with the combination of two losses: Classification loss
and Distillation loss [31] , [22]. Although this works well but still there
is much room for improvement and requires a lot of optimization still
to be done.

Therefore, it is necessary to come up with the design which addresses the
above discussed issues being faced in the design of Deep learning algorithms
in Incremental setting.

3.2 Overview of proposed model

Basic design of the proposed model is based on the design philosophy of
avoiding the catastrophic forgetting in first place. In this way, chain of issues
involved with “minimizing the effect of catastrophic forgetting” approach can
be avoided as well. For example in PackNet [24], they used the same archi-
tectural approach where catastrophic forgetting was not an issue. Therefore,
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during the increment, they only focused on optimizing for the task in hand,
rather to worry about retraining phases and all complexities involved along
with that phase as discussed in points II – IV of section 3.1.

Basic architecture backbone, for our model is one of the state of the art
deep learning model named ResNet34 [12] with some modifications. Before
the introduction of ResNet in 2016, adding layers to deep learning network
was not simply beneficial due to vanishing/exploding gradient problem [3],
[8]. For the first time ResNet [12] architecture made it possible for deep
learning model to have layers up to hundreds or even thousands of layers,
while achieving compelling performance [14]. In ResNet [12] this was achieved
by architecture design called identity shortcut connection, in which one or
more layers were skipped, shown in Figure 3.1.

Figure 3.1: Residual Learning: a building block, Concept which revolu-
tionized the deep learning models to go very deep without the vanish-
ing/exploding gradient issue [12]

ResNet34 has, first layer as convolution layer followed by four intermedi-
ate layers, while fc layer is at the end of fourth intermediate layer. There are
6, 8, 12 and 6 bottleneck blocks in intermediate layers from. Each bottleneck
block has two layers of convolution layer. The detail of layers are shown in
Figure 3.2. ResNet34 has 3.6billion FLOPS.

In proposed model here, I have used the ResNet34 network per-trained
on the ImageNet [34] 1000-class dataset. In presented model fully connected
layer of the ResNet34 is removed and one dedicated convolution layer and
fully connected layer is add for each increment.

During training phase the shared part of the model remains fixed as
discussed above. However, for each increment right from zero increment



CHAPTER 3. PROPOSED MODEL 23

Figure 3.2: Architecture of Resnet model in different number of layers con-
figurations [12]

(base increment), network extension will be added for the current increment
in hand. While network extensions from other previous increments will not be
accessible in the current increment. With this setting, the whole model will
then be trained on the dataset of the current increment only and optimized for
the current training dataset. No retraining or dataset from old increments
will be required at all in any future increment. Parameters learnt for old
increments will be saved on the disk during each new increment and remain
inaccessible to any other training phase except their own training phase.

During testing phase shared part of the model along with network ex-
tensions from all the increments will be loaded to the model in torch.eval()
mode. Combined test data from all increments will be passed at once to
model in all the network extensions. Each extension will make prediction for
both in-distribution and out-of-distribution examples. Prediction from all
network extensions will then be combined in manner specified in the section
3.4 for final prediction.

3.3 Detailed architecture of proposed model

As already discussed in the section 3.2 the proposed model is based on the
idea of avoiding the Catastrophic forgetting therefore complete model can be
divided in to two main parts according to the sharing of parameters. One
part of the model will have parameters shared along all the increments but
this part will remain fixed through all increments as to abide by the chosen
philosophy, while the other part will have the dedicated parameters.
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Figure 3.3: Architecture of Proposed model: Shared and fixed layers of the
model are taken from the pre-trained Resnet34. While Network Extension
part of the model has one dedicated Convolutional and Fully connected layer,
which are added for each increment, during training phase of incremental
setting.

The shared and fixed part of the model is taken from the ResNet34,
pertained on the ImageNet [34] 1000-class dataset. Pre trained is chosen due
to the reason that being this part of the model as shared and fixed, it should
have, out of the box, rich capability of extracting the features from input.

Output features from all four intermediate layers of ResNet part are taken
in order to get all level i.e. from high level to all the way to low level features
are gathered. Outputs from first, second and third intermediate layers are of
size (height x width) 56x56, 28x28 and 14x14 respectively. Which are then
resized to 7x7 and then concatenated with the output of fourth intermediate
layer which has already output of size 7x7.

In the ResNet34 model, last layer i.e. fully connected layer is removed
and a small dedicated network extension is added for each increment. This
network extension has one convolution layer and one fully connected layer.
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Figure 3.4: Training pipeline of model: Two increments are shown i.e. Base
increment, first increment. Legend is in Fig 3.5
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Figure 3.5: Testing pipeline of model: Combined testing for ’n’ increments.
Data passed is combined testing data set from all ’n’ increments
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The convolution layer of the network extension has 512 kernels of size 3x3,
followed by batch normalization layer and ReLU activation function respec-
tively. Output is of dimension 7x7x512 as height x width x depth (number
of feature maps). This output is passed through maxpooling layer before
passing to the fully connected layer of the network extension. This fully
connected layer has 512 input neurons with dropout probability of 0.5 and
output neuron are equal to the number of classes in that specific increment.
Softmax() activation function is used on the final output. Complete archi-
tecture of the proposed model is shown in the Figure 3.3.

3.3.1 Training pipeline

During training phase the shared part of the model remains fixed as discussed
above. However, for each increment right from zero increment (base incre-
ment), network extension will be added for the current increment in hand.
While network extensions from other previous increments will not be accessi-
ble in the current increment. With this setting, the whole model will then be
trained on the dataset of the current increment only and optimized for the
current training dataset. No retraining or dataset from old increments will be
required at all in any future increment. Parameters learnt for old increments
will be saved on the disk during each new increment and remain inaccessi-
ble to any other training phase except their own training phase. Pipeline of
training phase is shown in Figure 3.4.

3.3.2 Testing pipeline

During testing phase shared part of the model along with network extensions
from all the increments will be loaded to the model in torch.eval() mode.
Combined test data from all increments will be passed at once to model in
all the network extensions. Each extension will make prediction for both in-
distribution and out-of-distribution examples. Prediction from all network
extensions will then be combined in manner specified in the section 3.4 for
final prediction. Pipeline of the testing phase is shown in the Figure 3.5

3.4 Search for optimal classifier

As discussed in the section 3.3, there are different pipelines for testing and
training phases. Moreover, model is independent of retraining phase for the
rehearsal over old increments’ training data. Therefore, distributions of each
increment during training phase and during combined and separate testing
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phases differ from each other. So model must have a classifier which could
work well in all types of settings i.e. incremental training phase as well as
in combined and separate testing phases. In this regard, extensive search for
the optimal classifier was done. Details are as follows:

3.4.1 Nearest task mean classifier

Nearest mean classifier [26] can classify between classes based on the mean-
feature-vector-of-class. . Implementation Idea was taken from iCaRL [31],
but here in proposed model it is used for differentiating between the tasks
rather than classes. In the proposed model, each increment is regarded as
task. Where each task has equal number of classes. Task mean classifier
(TCM) will have the updated mean feature vector for each task during the
training phase.

During the test phase, the combined distribution of test data from all
increments is passed to the model. Feature vectors of all the test data is
passed to Task mean classifier before passing it to fully connected layer in
each network extension. At this stage, task mean classifier will help in differ-
entiating each passed sample between tasks. So that, samples belonging to
the specific task can be passed to only fully connected layer of that specific
network extension while samples from other tasks are suppressed.

In theory this design seems to work out well, but when implemented,
task mean classifier was barely able to differentiate between the tasks. Rea-
son identified behind this behavior was that, mean of feature vectors of each
class in the specific task has its own uniqueness. Whereas, when these fea-
ture vectors from all the classes of one task are combined in one mean, the
resultant mean loses the uniqueness with the means overlap it should math-
ematically poses.

3.4.2 Nearest class mean classifier

From section 3.4.1, Task mean classifier being not suitable for the classifier in
the given setting. New strategy was devised to use the Class mean classifier.
In which, mean of feature vectors of all classes from all tasks are stored with
respect to the task it belongs.

Therefore, during the testing phase, instead of differentiating each test
sample from other tasks based on the mean of task, each sample is compared
with mean of feature vectors of all classes. Based on this comparison, each
sample can be identified that in which class and task it belongs. Thus sample
belonging to specific task will be passed to its respective Network extension’s
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fully connected layer, while other samples will be suppressed for that fully
connected layer.

Implementation of the idea showed no adequate results. Mean of feature
vectors from inter task-classes were not different at the scale where, based
on its feature vector, it could be used to identify the task of test sample.
Reason, behind this failure was, classes of one task was trained independent
of other task classes. Therefore, model did not learned to make adequate
differentiation (gap) among all the learned feature vectors of all the classes
coming from different tasks. This caused the huge overlap in inter task-classes
and resulted in bad classification accuracy.

3.4.3 Mean mode classifier

In proposed model, convolution layer of network extension gives the feature
vector of 512 size. Techniques described in section 3.4.1 and 2 were unable
to give desired results. Those techniques were using the complete feature
vector as single identifier. Which was considered as waste of information.
Therefore, new approach was devised. In this approach, idea was to use
each feature of the feature vector independently for the comparison with the
respective feature of mean of all other classes from all tasks. Then to each
feature class label was assigned. In this way 512 labels were assigned to a
single sample i.e. each label for single feature in the whole vector. After
labeling each feature in the vector, then final label to the sample is given by
taking the mode of all 512 labels given on each feature. This technique was
named as mean mode classifier.

Results on the technique was not up to mark. Reason behind this was
exactly as discussed in the section 3.4.2.

3.4.4 Confidence estimation based classifier

Deep learning models are very good at learning when the train and test data
is from same distribution. But research have shown that, still deep learning
models tend to give very high score or missclassify with high confidence to
test images, which could be perturbed in distribution, out of distribution or
not even recognizable images in first place [28], [10], [38].

This leads to many research frontiers in the domain of Deep learning,
one of which is formulated as the problem of Out-of-distribution detec-
tion [15]. Model being able to differentiate between the in-distribution and
out-distribution for a specific task will be a major advantage in classification
during the combined test phase. Therefore, Out-of-distribution technique
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from [5] was used to have layer for confidence measure along with the classi-
fication layer. In this way test examples from other increments could be be
identified as out-of-distribution dataset, and thus it was suppressed in their
non-relevant fully connected layer.

Although, this technique was able to identify the out of distribution exam-
ples in the incremental setting but the confidence measure had a confidence
overlap in out-of-distribution and in-distribution datasets, which was below
the acceptable level. Overlap in shown in the Fig (3.3)

Figure 3.6: Confidence density comparison: It is clearly shown in the graph,
that Gaussian, and Uniform noise being Out-of-Distribution data set has
high density in very low confidence range, while In-Distribution data set has
very high density in high confidence range.

3.4.5 Maxout of stacked logits

Fully connected layer in the each network extension, gives output for all
passed samples i.e. both in-distribution and out-of-distribution samples.
It was observed that logits outputted for most of out-of-distribution sam-
ples from network extension has values less than values outputted for in-
distribution samples. Therefore, idea is to use these logits produced for all
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samples from all the network extensions. Then stack them sample-wise and
use the max function i.e. torch.max() along the stacked dimension. Final
classification will be made on the output of the max function.

y′f = argmax
(
concat

[
y′i
]n
i=0

)
(3.1)

where: y′f = logits of ith Network Extension (NE)
n = Total number of increments at specific time stamp
concat() = concatenation function: concatenates logits in specified

dimension
argmax() = function to get the index of max-value in specified di-

mension

Advantages of this relatively straight and simple technique, produced re-
sults equal to the results produced by the state-of-the-art incremental model,
along with following pros.

I No requirement of retraining over the training data of old increments
is required at all.

II No need to save the training data of old increments.

III Possible privacy issue is eliminated.

IV Accuracy for each increment is completely preserved in separate testing
setting.

3.5 Implementation Details

In this section all the implementation details of the model are discussed,
which are required to reproduce the results given in this thesis.

In proposed model, for the shared and fixed part, Resnet18, Renet34
and Densenet201 are used. There are some implementation difference in the
implementation model, based on these architectures.
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3.5.1 Hardware and Software

• In the implementation of all versions of proposed model, for the GPU
acceleration, hardware used are NVIDIA GeForce GTX TITAN X and
GeForce GTX 1060 GPUs.

• On software part, libraries used for the model development are as fol-
lows. The whole model is used in Python language, version 3.7. Ana-
conda3 is used as default package manager for the development envi-
ronment. While the deep learning frame work used is PyTorch [29]
version 0.4.0 with CUDA version x.

3.5.2 Data set and pre-processing

• Dataset used is CIFAR100 [20]. There are 100 classes in total. The
complete dataset has 60000 examples. Where training set has 50000
examples, with 500 examples for each class. While test set has 10000
examples, with 100 examples for each class.

• For the pre-processing part: Dataset has each example of size 32x32x3
which defines as height, width and RGB channels, respectively. Each
example was up sampled to 224x224x3 and then normalized before
passing to the model.

• During training phase two augmentation techniques are used: Random
horizontal flip and Random cropping the image.

3.5.3 Training setup

• For incremental setting complete dataset is divided into equal number
of classes per increment – i.e. for total of twenty increments, each
increment has 5 classes. For 10 increments, each increment has 10
classes. For 5 increments, each increment has 20 classes.

• Each model version is trained for 150 epochs. Cross Entropy Loss is
used for loss calculation. While standard Stochastic Gradient Descent
(SGD) is used with learning rate of 0.01 along with 0.9 momentum.
Batch size of 64 is used for 5 and 10 increment setting, while for 20
increments setting 32 batch size is used.
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3.6 Summary

Proposed model fundamentally is based on the architectural design philoso-
phy in contrast with the rehearsal based designs. Architectural strategy was
choosen to avoid catastrophic forgetting in first place. Thus, all the issues
related to catstrophic forgetting and rehearsal phase are avoided automati-
cally. Model has two main parts: One is shared and fixed part. This part
is actually the back bone of the model and taken from the ReNet34 (except
FC layer). The ResNet part of the model is pre-trained on the ImageNet
dataset. pretrained model was taken for the reason, that this part is shared
and fixed part we must have this part already good enough feature extractor
in first place for all the classes in the coming increments without training.
Second is the dedicated part which are small CNN layers sub module and
will be learned on ever task. Testing and training pipeline are different due
to the dynamic architecture of the model. Final classification is done on the
basis of max function on the stacked logits from all NEs.



Chapter 4

Performance Evaluation

In this chapter performance of the proposed model is evaluated. Different
aspects of the proposed model are evaluated against multiple quantitative
measures. Performance of the model is also directly evaluated with the per-
formance of different architectures in different settings.

4.1 Accuracy Comparisons

In my proposed model I used pre-trained Resent 18, Resnet 34 and Densenet
201 for the shared and fix part of the model. In my proposed model when I
used pre-trained resnet18, resnet34, the output of intermediate layers except
the last intermediate layer were down- sampled and then concatenated with
the output of last intermediate layer. Then all the concatenated outputs
are passed to the network extension of the current increment. While, in the
implementation of pre-trained Densenet 201, no output of intermediate layers
are concatenated. This is because, in Densenet architecture the output of
previous layers all already concatenated.

Resnet architecture is one of the best model in deep learning family and
used in wide variety of domains. In icarl [9], they used Resnet 34 as well.
So in my model I used the resnet architecture for a fair comparison. While,
advantage of Densenet architecture, over the resnet architecture is that it
can give the comparable performance at less parameters and computation
cost. All the results are compared in the coming sections.

Accuracy comparisons were done in two settings: First use of combined
testing data from all increments i.e. all previous and current increment at
the time of testing, second use of separate testing data from all increments is
used - at each increment in testing phase. Therefore for the combined testing
data we compared results with state of the art iCaRL [9], and baseline Lwf

34
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[11]. While performance of the proposed model on separate testing data for
each increment, results are compared with the results from PackNet[20].

4.1.1 05 increments

In the setting of total of five increments. During each increment, model is
trained on 20 new classes. Comparison of our model in different configura-
tions with other implementations are shown in Figure 4.1.

Figure 4.1: Incremental accuracy comparison over 05 increments. Brackets
indicate the pre-trained model used in part of proposed model

4.1.2 10 increments

In the setting of total of ten increments. Model is trained on 10 new classes
in each increments. Comparison of our model in different configurations with
other implementations are shown in Figure 4.2.

4.1.3 20 increments

In the setting of total of twenty increments. Model is trained on 5 new classes
in each increments. Comparison of our model in different configurations with
other implementations are shown in Figure 4.3.
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Figure 4.2: Incremental accuracy comparison over 10 increments. Brackets
indicate the pre-trained model used in part of proposed model

4.2 Confusion matrices

Figure x, y and z shows the confusion matrices of the 20, 10 and 5 incre-
ments. Shown confusion matrices are of model with ResNet34 backbone.
Each matrix represents learning over 100 classes in 20, 10 and 5 classes as
discussed previously.

4.2.1 Observations

From all the 3 figures x, y and z we can clearly make following observations:

I Generally, true positive rates for all classes are significantly higher than
its respective false negative and false positives

II Spread of predictions made by the model for each class are almost
uniformly distributed.

III True positive rates in the Matrix where the number of increments are
less has generally higher true positive rates than matrix where the
number of increments are higher. Same behavior can be shown and
verified from accuracy graph figures and accuracy tables.



CHAPTER 4. PERFORMANCE EVALUATION 37

Figure 4.3: Incremental accuracy comparison over 20 increments. Brackets
indicate the pre-trained model used in part of proposed model

4.2.2 Analysis

Analysis on the basis of observations made in section 4.2.1 on the confusion
matrices of 20, 10, and 5 incremental setting.

• Point (I) shows that learning of the model for all classes from all incre-
ments is optimized

• point (I) and point (II) shows that model is capable of retaining the
performance for all classes and increments at the balance rate.

• point (II) shows that Learning of the model is not biased towards some
specific class(es) or increment(s)

• from point (III) we can conclude that less increments has better over-
all performance than more increments, although number of classes at
respective task are same.
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(a) Confusion matrix over 5
increments

(b) Confusion matrix over 10
increments

(a) Confusion matrix over 20 increments

4.3 Accuracy of separate tasks - with sepa-

rate test data set

Discretely task specific test data is passed to the model to observe the model
performance on separate tasks setting, discretely on tasks’ own test data over
all the increments. Following analysis is made on the basis of observations
from Figure 4.4



CHAPTER 4. PERFORMANCE EVALUATION 39

(b) 05 increments

(c) 10 increments

(d) 20 increments

Figure 4.4: Accuracy of each task separately, with only task’s test data, at all
succeeding increments. Starting point of the graph lines from the left shows
the task number



CHAPTER 4. PERFORMANCE EVALUATION 40

4.3.1 Observations

These are the following observations made on the accuracy of seperate task
tested separately.

I It is clear from the graphs in figure 4.4, that performance of each task
is sustained for all the succeeding increments, at the point where it was
during the training time.

II Overall accuracy for all the tasks differ for all the three increment-
settings. For more increment-setting number of classes per task are
less so the learning is better and model accuracy is higher and vice
versa.

4.3.2 Analysis

From the point (I) and (II) in the section 4.3.1. we can conclude the reasons
for the sustained accuracy on the separate task are as follows.

• Design of the model incorporates the dedicated network extension for
each new increment. Only the parameters of the dedicated part will be
learned for the task in hand.

• Training pipe line of the model train the only the dedicated part of the
model specifically added for that specific task.

• Shared part of the model is fixed for all increments. So no shared
parameters are changing. Therefore weights does not get disturbed
during the training phase of new increment. So from the results it
is clear that catastrophic forgetting has avoided in by the model, as
discussed in section 3.3.2 in detail

4.4 Individual accuracies of all tasks - on com-

bined test dataset

Table x, y and z shows the observation of the overall accuracy performance
trend of each task individually over the span of all succeeding increments.
Following observation can be made from the analysis of the table:
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4.4.1 Observations

From the the data available in the Table x, y, and z we can make the following
observations.

I General trend for all classes is, the gradual drop in the accuracy with
each increment, except a few points where accuracy increases for a
single increment in the middle but then again follows the general trend.

II Latest task added at each increment has generally more accuracy than
all preceding tasks.

III Performance for each task has same behavior, showing the un-biasness
of the model. Contradicting observation of presence of slight biasness
in the model, as discussed in the point above is resolved in succeeding
increments.

4.4.2 Analysis

On the basis of observations made in the section 4.4.1, we can conclude the
following points on the design and performance of the proposed model:

• Point (I) shows the sustained behaviour of the model for all the tasks
and classes added during the course of 20, 10 and 5 increments.

• From point(II) we can conclude that although shared part of the model
has fixed parameters. But by the design of the pipeline of the model,
running mean and running variance for shared part are different for
all the increments.

• Therefore, Each increment uses the shared part of the model which
has fixed parameters but training pipeline of the model uses the shared
part from the latest increment. Which has running mean and running
variance from latest increment. Therefore, generally performance is
slightly higher for the latest task.

• from point (III) we can conform that proposed model exhibits the un-
biasness in learning and in incremental performance for all the classes
and task learned.
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Table 4.1: Individual Accuracies of each task over 5 increments

Inc →
Task ↓

1 2 3 4 5

1 83.15 68.3 62.25 56.3 56.15
2 - 74.15 63.1 59.8 57.6
3 - - 67.15 61.6 55.85
4 - - - 57.5 51.6
5 - - - - 63.9
total Acc 83.15 71.25 64.16 58.80 57.02

Table 4.2: Individual Accuracies of each task over 10 increments

Inc →
Task ↓

1 2 3 4 5 6 7 8 9 10

1 90.9 78.0 69.9 64.5 65.2 62.6 55.6 54.6 56.6 53.3
2 - 77.2 68.3 65.3 62.2 59.9 56.3 53.6 53.1 52.1
3 - - 72.1 62.1 58.9 56.4 53.4 52.7 54.4 53.8
4 - - - 70.4 64.2 59.3 57.0 54.4 51.7 49.8
5 - - - - 63.1 56.5 53.2 53.3 52.8 47.5
6 - - - - - 59.4 50.3 46.0 46.1 41.4
7 - - - - - - 65.2 58.3 51.3 54.4
8 - - - - - - - 53.9 45.0 48.6
9 - - - - - - - - 63.4 54.2
10 - - - - - - - - - 55.7
total Acc 90.9 77.6 70.1 65.6 62.7 59.0 55.8 53.4 52.7 51.1

4.5 Summary

In this chapter, we have evaluated the performance of proposed model in
comparison with the other models and state of the art models in the incre-
mental setting. We have evaluated the model with in different task sizes
(number of classes in each tasks) and different number of increments.

Results on Aggregate Incremental accuracy have shown that our model
has performed better or better or equal to that of the state of the art model
in different incremental and task size settings, without any requirement of
rehearsal phase, retraining data and disk requirement for the data saving,
which was absolutely necessary for the state of the art model.

From the analysis of confusion matrices, it has been analyzed that our
model learning is completely unbiased and has not shown any biasness to-
wards any increment, task or classes. Furthermore, analysis on the individual
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tasks’ accuracy in combined test data setting, conforms the same unbiased
learning behavior of our model. Which is the much required feature of any
incremental learning model.

From the perspective of separate task performance, when tested sepa-
rately on the test data of its own task only, it has been observed that our
model has sustained the performance on each task without any level of degra-
dation.
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Table 4.3: (a) Individual Accuracies of each task over 20 increments

Inc →
Task ↓

1 2 3 4 5 6 7 8 9 10

1 91.2 83.6 70.4 65.4 62.8 63.8 57.8 55.2 55.0 51.2
2 - 84.2 80.0 74.8 69.2 59.8 49.0 54.2 49.4 44.4
3 - - 78.8 71.6 68.8 66.0 58.0 60.4 53.0 54.6
4 - - - 66.8 60.2 60.0 59.4 56.6 54.8 52.4
5 - - - - 79.0 74.0 63.6 67.6 63.2 54.0
6 - - - - - 60.0 59.4 56.8 50.6 46.2
7 - - - - - - 70.8 65.2 66.2 58.0
8 - - - - - - - 63.8 58.8 58.2
9 - - - - - - - - 61.4 57.6
10 - - - - - - - - - 60.4
total Acc 91.2 83.9 76.4 69.6 68.0 63.9 59.7 59.9 56.9 53.7

Continued ...

Table 4.4: (b) Individual Accuracies of each task over 20 increments

in continuation with table 4.3
Inc →
Task ↓

11 12 13 14 15 16 17 18 19 20

1 53.0 45.0 50.0 39.2 41.6 44.0 38.8 36.4 40.6 39.2
2 47.6 48.8 43.4 41.4 41.4 40.6 46.8 42.0 43.6 40.6
3 51.2 52.4 46.6 46.8 41.4 39.8 43.0 44.2 43.2 39.4
4 53.6 52.4 48.2 48.2 45.8 46.2 43.0 42.0 44.0 46.6
5 49.4 56.0 51.2 54.8 45.0 41.0 41.6 46.0 44.6 46.6
6 45.2 48.8 44.2 46.0 43.4 43.4 42.8 46.4 41.2 42.8
7 58.2 53.6 58.8 55.6 53.6 55.8 44.0 47.2 49.6 48.2
8 49.6 54.2 47.8 53.6 47.2 47.6 43.2 51.0 46.6 47.6
9 54.6 55.8 57.4 52.6 54.8 60.0 44.2 43.4 47.6 52.6
10 56.8 54.8 55.4 50.8 51.2 48.8 47.0 46.4 46.0 45.0
11 61.2 44.0 46.8 35.4 37.2 40.6 43.4 28.6 43.4 31.0
12 - 50.2 47.8 44.8 44.2 38.4 43.0 41.4 41.2 38.4
13 - - 49.4 51.6 43.2 44.6 35.4 37.0 35.2 40.0
14 - - - 58.4 54.4 55.0 47.8 50.8 51.6 53.4
15 - - - - 48.0 43.8 33.0 32.8 38.0 42.4
16 - - - - - 48.4 42.2 38.6 43.0 45.4
17 - - - - - - 54.6 41.2 46.2 33.2
18 - - - - - - - 56.4 50.4 51.2
19 - - - - - - - - 48.2 46.0
20 - - - - - - - - - 43.4
total Acc 52.8 51.3 49.8 48.5 46.2 46.1 43.2 42.9 44.4 43.6



Chapter 5

Conclusions and Future
Prospects

Incremental learning is an active research problem in the field of machine
learning. It is much needed capability for a machine learning algorithm to
learn with time just like as we humans do.

In the research work done under this thesis, I have proposed the deep
learning based model for the incremental learning. Results have shown that
proposed model has performed equal to the state of the art incremental
algorithm, in the incremental setting of 20, 10 and 05 increments on the total
of 100 different classes. Our model has achieved results without any need of
retraining and requirement of saving training data of old classes on the disk,
which was required by the state of the art algorithm. This is achieved by
designing the model architecture on the design philosophy of avoiding the
catastrophic forgetting.

Accuracy achieved in this research work and by iCaRL [31], both fall from
somewhere 90% to almost 50% in just 20 increments. This performance is
still far from being application ready. Therefore, there is a large performance
gap, which yet to be covered by the incremental learning algorithms. In this
regard, some research directions are discussed in the following section.

5.1 Future research prospects

Incremental learning is an active research topic and still has large gap to
improve. Main gaps are the reduction of accuracy drop rate and keeping the
rate of model size-increase as low as possible. Accuracy drops by 40% for
100 classes’ dataset on the span of 20 increments. Which is still too high
for the model to considered application ready. Similarly model size increases

45
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with every increment, which must be controlled to the factor where it can be
applied for long-term incremental setting.

There are generally two main directions, i.e. architecture based and re-
hearsal based designs, in which research community has worked to improve
incremental learning capability of the model. Therefore, some possible future
research in the aforementioned directions are discussed in the section below

5.1.1 Architectural Based Designs

• It is obvious from the design of all discussed incremental models, their
model size increases every time new increment is added to the model.
For a true incremental learning model, will have to learn for long span
of time. But increase in size with every increment can become the
bottle neck at some point so this issue must be addressed by effectively
minimizing the rate at which model size increases on increment.

• Model capable of knowing what it does not know could have a great
impact on the improvement. This due to the fact that in single in-
crement model automatically learn to differentiate between intra-task
classes. But how would it will able to learn inter-task classes. This can
be achieved by making the model know what it does not know. There-
fore, model will tend to avoid from giving classification probabilities to
classes it has not trained on. This will significantly reduce the false
positive rate and improve the overall accuracy of the model.

• In the light of above point, one approach used in the model could
be – Out of Distribution detection capability [15], [23]. In this way
model will be able to differentiate between the tasks learnt in different
increments on different time stamps. Therefore, false positives rate of
the model will be less and overall accuracy will improve.

• Another approach which could achieve the similar results discussed in
the above point is, the use of Bayesian Neural Networks (BNNs). As
BNNs can be employed for differentiating between the examples from
in-distribution datasets and out-of-distribution datasets. Thus false
positive rates for other tasks can be mitigated and overall accuracy can
be improved.

• Deep neural network has inherent issue of catastrophic forgetting. De-
sign changes like, structure semantics to the core of deep learning ar-
chitecture can make them even more robust and semantically intelli-
gent. This might help neural network know what it don’t know and
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could simply eliminate the issue of catastrophic forgetting also. A sim-
ilar approach in CapsNet [35] proposed where neurons of previous layer
transfer their knowledge only to the relevant neurons of preceding layer
only.

5.1.2 Rehearsal Based Designs

• In the rehearsal based models, we have to use modified loss function
which can keep the balance between the performance of the old tasks
and learning of the new task. Like the loss function used in [31]. A
better loss function can deliver even better results, in terms of retaining
accuracies over previous increments as well as validation accuracy over
the current task.

• Rehearsal based model clearly require time for the rehearsal part. Model
can be designed in order to incorporate the changes required by the new
task, while retaining the crucial parameters for the performance of old
task in a way that each increment requires: 1) less time, 2) Less Ex-
amples from old tasks’ training data and 3) fast convergence of loss to
the minima.

• - Another technique used for the rehearsal based models is, Generative
approach. As discussed in the section 3.1, this can have a great impact,
if generative models are able to generate semantically correct images
donating the same data distribution as in the real training data for
the all the classes from the previous tasks. This will eliminate the
saving requirement of training data on the disk. Privacy concern for
the training data will also not be an issue any more if any.
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