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Abstract

In this thesis, a detailed study of traveling wave solutions of some higher order nonlin-

ear Schrödinger equations (NLSEs) are discussed. Among these NLSEs, the (2+1)-

perturbed nonlinear Schrödinger equation (P-NLSE) in nonlinear fiber optics and

higher order cubic-quintic nonlinear Schrödinger equation (CQ-NLSE) are examined.

In nonlinear wave motion, a main and recent progress is the discovery of different

methods for the solutions of such kind of nonlinear equations. This work motivates the

fruitful implementation of three analytical methods, such as tanh-coth, Kudryashov’s

and sine-cosine methods. These are used to investigate the solitary wave solutions of

higher order NLSEs that arise in mathematical physics in a useful and advanced way.

We have retrieved trigonometric, hyperbolic, rational and singular solutions. The con-

straint conditions fall out as an additional product that agree with the existence of the

solutions.
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Chapter 1

Introduction

People are compelled to understand what is happening around them because of the

earth’s revolution around the sun. The more we ponder, the more we learn that each

natural process has a model attached to it like a sticker describing its natural charac-

teristics, attributes and connections with other process. Although, it is evident that

a basic equation aids comprehension, but nature is much more complex and still in-

fants in our ability to link nature with our system of interpretation and representation.

Therefore, some large mathematical equations are utilized to express complex natural

processes and the solution of such models is not always guaranteed. If an equation

describes a natural law, the solution is not necessarily as straightforward as it appears.

Differential equations are the most realistic and widely used representations of vari-

ous natural processes and their application is required practically in every discipline

of science, regardless of subject. Many fundamental rules found in chemistry, physics,

biology and other scientific fields are explained by differential models. A quantum

mechanical system’s wave function is managed by a linear PDE called the Schrödinger

equation. Its discovery was a significant milestone in the history of quantum mechan-

ics and is a significant result in the field. The equation is named after an Austrian

scientist Erwin Schrödinger, who developed it in 1925 and published it in 1926. This

work served as the foundation for his Nobel Prize in 1933 in Physics. A nonlinear form

of the Schrödinger equation is the NLSE. It is a classical field equation that primar-

ily describes how light moves through planar waveguides and nonlinear optical fibres.
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NLSEs are extremely essential in a variety of domains because nonlinearities in such

equations are vital for a realistic representation since they explain the evolution of com-

plicated physical occurrences. NLSEs are investigated from several angles, although

researchers are concerned with whether or not their solution exists. Exact solutions

will always play a role in understanding various physical processes in numerous sci-

entific domains. NLSEs, used to address real world issues cannot be solved directly.

In other words, there are no closed form solutions. Instead, using various numerical

methods, solutions can be approximated. However, accurate results are still needed for

the verification of the numerical results. In certain natural science fields, it is critical

to find exact solutions and to comprehend characteristics of physical laws adequately.

Exact solutions of NLSEs have historically played and continue to play a critical part

in the scientific understanding of many physical features. There are two categories of

integrable and non-integrable NLSEs that are found in theoretical and applied physics

and other scientific fields. Many investigators have investigated integrable equations

completely because of their logical appearance and remarkable physical properties. The

three different types of Schrödinger equations include relativistic equation, time depen-

dent wave equation and time independent wave equation. Every type own its unique

physical significance and applications.

• To illustrate how a system changes over time, the time dependent Schrödinger

equation is used. This is the most popular form of the equation and it is used in

a wide range of physics domains.

• The time independent Schrödinger equation is used to characterise the system’s

stationary states. In quantum mechanics and atomic physics, this form of the

equation is frequently employed.

• The relativistic Schrödinger equation is used to describe systems operating at

near-light speeds. In high-energy physics, this version of the equation is employed.

A basic equation that governs any physical phenomenon is easier to comprehend and

examine its solutions too. It is critical to keep in mind that the exact solutions can
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serve as a prototypical model for testing the validity and precision of various numerical

and analytic approaches, even if they lack a clear physical description. The creation

of exact solutions to nonlinear PDEs is a fundamental element of nonlinear sciences

and this discipline has advance significance in recent decades on account of advance-

ment in computer technology. This conflict is crucial to comprehend and interpret the

physical appearances. Integrable NLSEs possess special kind of solutions known as

solitons. Nonlinear wave processes in plasmas, fluid dynamics and optical fibres are

illustrated by kink shaped tanh and bell shaped sech type solutions. Many of these so-

lutions have been developed and symbolic computations are carried out using MAPLE,

MATHEMATICA, or other similar software.

1.1 Preliminaries

A travelling wave arises when the media travels in the direction of the wave’s prop-

agation. A travelling wave is also related to maintaining a constant speed during its

propagation. Such waves have been recorded in a variety of fields, including combus-

tion, which can be generated from a chemical process. In mathematical biology, the

apparent impulses in nerve fibres are represented as travelling waves. Traveling waves

are used to describe shock characteristics. However, before moving forward, some key

terms must be cleared.

1.1.1 Travelling wave solutions

A permanent form solution of wave equation travelling at a constant speed is known

as a travelling wave solution. Nonlinear PDEs are often transformed into comparable

ODEs in order to discover travelling wave solutions. The solution of travelling wave is

given as,

P (x, t) = f(x− ct),

where c is the wave speed, x and t are space and time variables respectively. There are

many different forms of travelling waves and only a few of them will be discussed.

3



(a) (b)

Figure 1.1: Travelling waves in water

1.1.2 Solitary waves

Solitary waves are travelling waves with fixed velocity and shapes that asymptotically

approach zero at long distances. The transition of solitary wave is confined in η from

one asymptotic state, η = −∞ to the other, η = ∞.

1.1.3 Periodic solutions

Periodic solutions, such as cos(x−wt), are periodic travelling wave solutions. Periodic

solutions can be found using the conventional wave equation utt = uxx.

(a)

Figure 1.2: Graph of a periodic solution p(x, t) = cos(x− wt),−2π ≤ x, t ≤ 2π
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1.1.4 Kink waves

Kink waves change from one asymptotic state to the next. The kink solution approaches

a constant at infinity. The dissipative Burger’s equation

ut + 6uux = vuxx,

where v is the coefficient of viscosity.

Figure 1.3: Graph of a kink solution u(x, t) = 1− tanh(x− wt),−20 ≤ x, t ≤ 20

1.1.5 Peakons

Peakons are single wave solutions with peaks. Except for a peak at the crest’s corner,

the travelling wave solutions are plane. After interacting peakons are the only solitons

that retain their speed and shape. The integrable Camassa-Holm equation gives the

following peakon solution,

p(x, t) = we−|(x−wt)|,−2 ≤ x, t ≤ 2,

Figure 1.4: Graph of a peakon solution p(x, t) = e−|(x−t)|,−2 ≤ x, t ≤ 2, with w = 1

5



1.1.6 Compactons

Compactons are solitary waves that reappear with the same consistent shape after

colliding with other compactons, which is a unique soliton characteristic.

p(x, t) = cos
1
2 (x− wt)

Compactons have following properties:

• The wavelength of compactons is finite.

• Compactons are compact support solitons.

• Compactons do not have exponential tails.

Figure 1.5: Graph of a compacton p(x, t) = cos
1
2 (x− t),−2 ≤ x, t ≤ 2, with w = 1

1.2 Solitons

A Soliton is travelling wave solution of NLEEs having following properties:

• A wave of permanent form should be visible in the solution.

• While keeping its identity, the solitons interacts with other solitons.

6



• The solution is confined, which implies that either it dissipates exponentially to

zero, as in the KdV equation solitons, or reaches to an infinity, as in the solitary

waves of Sine-Gordon’s equation.

Figure 1.6: Graphical representation of a soliton solution p(x, t) = sech2(x− t),−2π ≤
x, t ≤ 2π

Figure 1.7: Solitary waves in Ocean

7



1.2.1 Discovery of solitons

In 1834, a Scottish engineer John Scott Russell (1808-1882), made the very first ob-

servation of solitary waves in Edinburgh. He noted a large bulge of water waves with

same shape moving across the canal. Russell says, “I was observing the motion of a

boat which was rapidly drawn along a narrow channel by a pair of horses, when the

boat suddenly stopped not so the mass of water in the channel which it had put in

motion; it accumulated round the prow of the vessel in a state of violent agitation, then

suddenly leaving it behind, rolled forward with great velocity, assuming the form of a

large solitary elevation, a rounded, smooth and well-defined heap of water, which con-

tinued its course along the channel apparently without change of form or diminution of

speed. I followed it on horseback and overtook it still rolling on at a rate of some eight

or nine miles an hour, preserving its original figure some thirty feet long and a foot to

a foot and a half in height. Its height gradually diminished and after a chase of one or

two miles I lost it in the windings of the channel. Such in the month of August 1834,

was my first chance interview with that singular and beautiful phenomenon which I

have called wave of translation” [1]. Scott Russell’s findings contradicted Isaac New-

ton’s and Daniel Bernoulli’s hydrodynamic theories. George Bid-dell Airy and George

Gabriel Stokes declined to accept the experimental findings of Scott Russell due to dis-

agreements with previously accepted water wave theories. Lord Rayleigh and Joseph

Boussineq [2] did not provide answers to their disagreements until the 1870s. In 1895,

the KdV equation was published by Gustav de-Vries and Diederik Korteweg, which in-

cluded solutions for solitary waves [3]. Using a finite difference approach, In 1965, Bell

Labs’ Norman Zabusky and Princeton University’s Martin Kruskal discovered soliton

in the Korteweg de-Vries equation [4]. By definition, Collisions with other solitons have

no effect on their form or speed [5]. So, solitary waves on an ocean’s surface are near-

solitons, but just not exactly, even though when two (overtaking or colliding) solitary

waves combine, they become near-solitons, their amplitude changes and an oscillatory

remnant is left behind [6].

8



1.3 Application of solitons

Solitons are used in many fields of pure and applied mathematics, differential equations,

differential geometry, Lie algebras, Lie groups and algebraic geometry and other fields.

1.3.1 In Fiber Optics

In fiber optics applications, solitons have been extensively tested. Because of Soliton’s

stability, without the use of transmitters, long-distance communication is possible and

it can also function with higher transmission capacity [7, 8, 9].

1.3.2 In Biology

The theory of soliton has been used to explain low-frequency collective motion in the

propagation of energy and signal in bio-membranes, as well as in DNA and proteins, the

nervous system and other phenomena. A concept in neuroscience posits that signals in

the form of density waveform are transmitted to neurons as a kind of solitons. Solitons

can be defined as a symmetric energy transfer in bio-molecular systems that emerges

as a wave-like transmission of electronic disturbances and associated conformational

[10, 11, 12].

1.3.3 In Nuclear Physics

Under certain temperature and energy conditions, the entire nuclear wave function is

assumed to be a soliton. Such circumstances are considered to prevail in the nuclei of

several nuclear objects, where nuclei do not rebound and proceed each other unaffected,

with their soliton waves remaining unchanged as a result of the collision.

1.4 Dispersion and dissipation

Dispersion is the connection between a wave’s phase velocity and its frequency in optics.

The phase velocities of waves of different frequencies will differ. Wave dispersion de-

scribes the change in phase velocity of water waves as the number of waves change. The

9



mediums with these characteristics are dispersive. A rainbow is a simple illustration of

dispersion, which occurs when light is spatially split into wavelength components (dif-

ferent colors). A dissipative wave is one that gradually loses amplitude due to energy

loss. The solution of the dissipative equation shows that waves propagate with unity

speed. In dispersive media, velocity varies with wave number and in dissipative media,

waves propagate at a unity speed. Some 2D graphs are shown to see the dynamic

behavior of dissipation terms in PDEs.

(a) t = 0 (b) t = 0.5

(c) t = 0.7 (d) t = 1.5

Figure 1.8: 2D Graphs of solution of dissipative equation
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1.5 Literature Review

The study of nonlinear PDEs help researchers to understand complex physical phe-

nomena of nature. NLSEs essentially examine the behavior of nonlinear matter waves

in nonlinear transmission systems or Bose-Einstein condensates. Physicists and mathe-

maticians with an interest in this area have been drawn to NLSEs. Developing solitary

wave solutions to NLSEs helps in comprehending underlying physics. A natural sys-

tem can be properly explained by generating the travelling wave solutions of NLSEs.

Hence, analytical methodologies are required to generate travelling wave solutions of

governing models. Several strategies have been developed during the last few decades.

In 1991, Satsuma and Sasa studied a recent type of soliton solution for a higher order

NLSE [13]. In 1996, Schurmann constructed the traveling wave solutions of the cubic

quintic NLSE [14]. In 2007, Mingliang, Wang, Jinliang Zhang and Xiangzheng Li ap-

plied the Sub-ODE method and found solitary wave solutions for higher order NLSE

[24]. In 2010, A. Borhanifar and Reza Abzari solved the coupled Schrödinger equa-

tions using the differential transformation method [15]. In 2011, Gui-Qiong discussed

new types of exact solutions for the fourth order dispersive and cubic-quintic NLSE

[16]. In 2011, Anjan and Masood used Lie symmetry analysis to find the stationary

solution of the NLSE with log law nonlinearity [17]. In 2011, Dai, C. Q., Wang, X. G.

and Wang, Y. Y. found the ultrashort self-similar solutions of the cubic quintic NLSE

with distributed coefficients in the in-homogeneous fiber [18]. In 2012, Taghizadeh

and Mirzazadeh examined the P-NLSE with Kerr law non linearity using the simplest

equation method [19]. In 2015, Li, Tao Xu, Min and Lei Wang discussed the soliton

solutions and the dynamical behaviors of a generalized higher order NLSE in optical

fibers [20].

Soliton in optical communication systems has become a major topic to discuss through-

out time. In 2004, A. M. Wazwaz found the traveling wave solutions of nonlinear

equations using the tanh method [21]. In 2006, Chen and Zhang elucidated the be-

havior of pulses in fiber optics with non linearity and variable dispersion [22]. In 2007,

Gao and Tian used symbolic computation and Backlund transformation to investigate
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the Schrödinger euation in fiber optics [23]. In 2009, Lee used the rational function

method to provide analytical solutions to the Jimbo-Miwa equation [25]. In 2010, D.

Milovic and A. Biswas discovered dark and brilliant solitons of the generalized nonlin-

ear Schrödinger equation [26]. In 2011, A. Biswas obtained dark solitons with parabolic

and dual power law nonlinearities for a generalized nonlinear Schrödinger equation for

the second time [27]. In 2017, Arshad, M., Lu, D. and Seadawy, A. R. found the

exact dark and bright solitary wave solutions of the higher order cubic–quintic NLSE

and discussed its stability [28]. In 2018, N. Raza and A. Javid investigated singular

and optical dark solitons for the Biswas-Milovic equation in spatiotemporal disper-

sion optics [29]. In 2019, N. Raza and A. Javid used the extended trial equation and

direct algebraic methods to create the optical dark and dark singular solitons in the

(1+2)-dimensional chiral NLSE [30]. S. Yakada, B. Depelair, et al. applied the new

extended direct algebraic method to investigate exact solutions for generalized NLSE

modeling few cycle pulse propagation in meta materials [31]. In 2019, Chunxiao and

Boling discussed the existence of global solutions for the fourth-order NLSEs [32]. In

2020, Saima Arshed and Aqsa Arif found soliton solutions of nonlinear kudryashov’s

equation and higher-order NLSE [33]. In 2021, Rezazadeh, Hadi, et al. applied the

new Kudryashov method to find the optical soliton solutions of the generalized nonau-

tonomous NLSEs [34]. In 2022, Wazwaz found the dark and bright optical solitons

of the (2+1)-dimensional P-NLSE in nonlinear optical fibers [35]. In 2022, Esen, H.,

Secer, A., Ozisik, M. and Bayram, M. discussed the influence of the model’s parameters

and investigated the analytical soliton solutions of the higher order cubic-quintic NLSE

[36]. The thesis is organized as follows:

• In chapter 2, the description of tanh-coth method, Kudryashov’s method and

sine-cosine method is illustrated.

• In chapter 3, the application of tanh-coth method, Kudryashov’s method and

sine-cosine method to investigate the solutions of the (2+1)-dimensional P-NLSE

in nonlinear fiber optics and higher order CQ-NLSE is given.

• In chapter 4, a summary and conclusion is given.
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Chapter 2

Methodologies

In this chapter, we delve into the exploration and analysis of three distinct yet pow-

erful mathematical methods, the tanh-coth, Kudryashov’s and the sine-cosine. These

methodologies hold supreme importance in the field of applied mathematics and have

garnered considerable attention due to their effectiveness in solving a wide range of

complex mathematical problems. Throughout this study, we aim to provide a compre-

hensive overview of each method, elucidating their underlying principles, advantages

and limitations. By delving into the intricate details of these methods, we aspire to

equip readers with a profound understanding of their applicability and potential in

tackling various mathematical challenges. The insights gained from this research are

poised to enrich the existing body of knowledge in the domain of mathematical analysis

and provide valuable tools for researchers and practitioners alike.

2.1 Description of the tanh-coth method

This segment contains a short explanation of the tanh-coth method.

Let having a nonlinear PDE:

L(P, Pt, Px, Py, Ptt, Pxx, Pyy, Pxxx, ...) = 0, (2.1)

using the transformation

P (x, y, t) = p(ξ)eιη, ξ = x+ y − vt and η = x+ y + ωt,

13



where ω, v are arbitrary constants.

Eq. (2.1) decreases to an ODE

Q(p(ξ), p′(ξ), p′′(ξ), p′′′(ξ), ...) = 0, (2.2)

Eq. (2.2) is then integrated as much as all terms have derivatives and integration

constants are zeros. Malfliet [1] established the standard tanh approach, in which the

tanh is employed as a new variable, because all derivatives of a tanh are represented

by the tanh itself. For example, if we set R = tanh(ξ), then we have

R = tanh(ξ),

R′ = 1−R2,

R′′ = −2R + 2R3, (2.3)

R′′′ = −2 + 8R2 − 6R4,

R(4) = 16R− 40R3 + 24R5.

Moreover, introducing a new independent variable

S(ξ) = tanh(µξ), ξ = x+ y − vt, (2.4)

where µ is a wave number, this leads to the change of derivatives

d

dξ
= µ(1− S2)

d

dS
,

d2

dξ2
= −2µ2S(1− S2)

d

dS
+ µ2(1− S2)2

d2

dS2
,

d3

dξ3
= 2µ3(1− S2)(3S2 − 1)

d

dS
− 6µ3S(1− S2)2

d2

dS2
µ3(1− S2)3

d3

dS3
, (2.5)
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d4

dξ4
= −8µ4S(1− S2)(3S2 − 2)

d

dS
+ 4µ4(1− S2)2(9S2 − 2)

d2

dS2

−12µ4S(1− S2)3
d3

dS3
+ µ4(1− S2)4

d4

dS4
,

the tanh-coth method [2] follows the use of finite expansion

p(ξ) = R(S) =
m∑
k=0

akS
k +

m∑
k=1

bkS
−k. (2.6)

In tanh-coth method, m is taken as an integer that is positive, that can be found by

balancing principle. The standard tanh-coth method can be obtained by substituting

bk = 0, 1≤k≤m, in expansion (2.6), the value of m is generally acquired by equating the

highest oder linear terms and the highest order nonlinear terms in the final equation.

If parameter m is not an integer, then this problem is removed by a transformation

technique. In order to calculate the values ak(k = 0, ...,m), bk(k = 1, ...,m) and v

we get an algebraic system of equations in powers of Y by putting (2.6) into the final

ODE. Finally, we get a closed form of an exact solution p(x, y, t). The solutions we

find may be solitons, compacton, cuspon, peakon, kink, periodic and travelling wave

solutions as well.

2.2 Description of the Kudryashov’s method

This segment contains short explanation of the Kudryashov’s method.

Consider a nonlinear PDE:

L(P, Pt, Px, Py, Ptt, Pxx, Pyy, Pxxx, ...) = 0, (2.7)

here, P (x, y, t) and the partial derivatives of P (x, y, t) also the nonlinear terms are

involved in polynomial L.

Applying the following transformation

p(x, y, t) = p(ξ)eιη, ξ = x+ y − vt and η = x+ y + ωt, (2.8)
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where the parameters ω and v are arbitrary. Putting Eq.(2.8), in Eq.(2.7) results to a

nonlinear ODE.

Q(p(ξ), p′(ξ), p′′(ξ), p′′′(ξ), ...) = 0, (2.9)

the following are the key steps of the Kudryashov’s method:

Step 1: Suppose that the solution of Eq. (2.9) can be represented by the following

form:

p(ξ) =
n∑

i=0

aiZ
i(ξ), (2.10)

where the constants ai(i = 0, 1, ..., n) will be obtained algebraically, such that an ̸= 0.

While the following Ricatti differential equation is satisfied by the function Z = Z(ξ)

dZ

dξ
= Z2(ξ)− Z(ξ), (2.11)

it is clear that the solution of Eq. (2.11) is

Z(ξ) =
1

1 + Aeξ
, (2.12)

where A is an integration constant.

Step 2: The positive integer n in Eq. (2.10) can be determined by applying the bal-

ancing principle on the highest power nonlinear terms and the highest order derivatives

from Eq. (2.9).

Step 3: We put p(ξ) given in Eq. (2.10) and the required derivatives p′(ξ), p′′(ξ), p′′′(ξ),

... to substitute them in Eq. (2.9) and finally we will obtain the polynomial equation:

P [Z(ξ)] = 0. (2.13)

Step 4: We select all the terms that have the same algebraic powers of Q from the

polynomial equation Eq. (2.13), set them equal to zero and obtain a system of alge-

braic equations with the set of unknowns {ai(i = 0, 1, ..., n), v, ω}. We can use some

calculation software, such as Maple, to solve the system with the natural restrictions

of the model and also considering that it is required that an ̸= 0.

Step 5: Finally, substituting the obtained values and Eq. (2.11) in Eq. (2.10), we

produce all the feasible solutions of the Eq. (2.9) and therefore those of Eq. (2.7).
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2.3 Description of the sine-cosine method

This section contains short explanation of the sine-cosine method.

Having a nonlinear PDE:

L(P, Pt, Px, Py, Ptt, Pxx, Pyy, Pxxx, ...) = 0, (2.14)

here, P (x, y, t) and the partial derivatives of P (x, y, t) also the nonlinear terms are

involved in polynomial L.

The key steps of the sine-cosine method are as follows:

Step 1: We apply the following transformation:

P (x, y, t) = p(ξ)eιη, ξ = x+ y − vt and η = x+ y + ωt, (2.15)

here, the parameters ω and v are arbitrary. Substituting Eq. (2.15) into Eq. (2.14),

we get a nonlinear ODE.

Q(p(ξ), p′(ξ), p′′(ξ), p′′′(ξ), ...) = 0, (2.16)

Step 2: In this step, we integrate the ODE (2.16) as many time as possible while

assuming that the integration constant is zero.

Step 3: Following the conclusions made in [37], the solution may be set in the form

p(x, t) = λ sinβ[µξ], |ξ| ≤ π

µ
, (2.17)

or in the form

p(x, t) = λ cosβ[µξ], |ξ| ≤ π

2µ
. (2.18)

Where µ, λ and β are variables that will be calculated.

Step 4: We put Eq. (2.17) or Eq. (2.18) into the equation obtained in Eq. (2.16),

equate the terms of sine functions when Eq. (2.17) is used, or equate the terms of

cosine functions when Eq. (2.18) is used and using Maple, solve the obtained system

of algebraic equations to find all feasible solutions of the variables µ, λ and β.
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Chapter 3

Travelling Wave Solutions of Higher
Order NLSEs

In this chapter, the tanh-coth, Kudryashov’s and sine-cosine methods are used to solve

higher-order NLSEs that arise in mathematical physics in a useful and advanced way.

Higher order (2+1)-dimensional P-NLSE in nonlinear optical fibers and higher order

CQ-NLSEs are solved by the tanh-coth, Kudryashov’s and sine-cosine methods. A gen-

eralized (2+1)-dimensional P-NLSE contains Kerr law nonlinearity, in the existence of

nonlinear effects and random dispersion. Second Higher-order NLSE with cubic-quintic

nonlinearity (CQNL) terms that define the propagation of ultrashort pulses, third-order

dispersion(3OD) and fourth-order dispersion(4OD). These higher-order NLSEs have

many applications in the dynamics of traffic flow, fluid mechanics, propagation of light

in planar waveguides, nonlinear optical fibers and the study of waves propagating in

plasma. Consequently, new exact hyperbolic, periodic, rational and singular solutions

of NLSEs are attained.

3.1 Application of tanh-coth method

In this section, a new analytical approach as, tanh-coth method is used for finding trav-

elling wave solutions and solitons for (2+1)-dimensional P-NLSE in nonlinear optical

fibres and higher order CQ-NLSE, which have significant implications in a telecommu-

nication system and ultra-fast signal routing.
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3.1.1 Exact solutions of (2+1)-dimensional P-NLSE in nonlin-
ear optical fibres

Here, we implement tanh-coth method to find travelling wave solutions of the (2+1)-

dimensional P-NLSE in nonlinear optical fibres, which is given as [35]

ιUt + r1Uxx + r2Uyy + U |U |2 − ι
(
aUx − b

(
|U |2U

)
x
− cU

(
|U |2

)
x

)
+ Uxxxx − Uyyyy = 0,

(3.1)

where ι=
√
−1 and a, b, c, r1 and r2 are arbitrary constants.

The generalized (2+1)-dimensional P-NLSE contains the terms describing self steep-

ening in x and y direction, the terms with self frequency and the 4OD terms.

Applying the following transformation,

U(x, y, t) = u(ξ)eιη, ξ = x+ y − vt and η = x+ y + ωt. (3.2)

We generate nonlinear ODEs by combining Eq. (3.2) and Eq. (3.1) as follows, then

separating the real and imaginary components respectively:

(r1 + r2)u
′′(ξ) + (a− ω − (r1 + r2))u(ξ) + (1− b)u3(ξ) = 0, (3.3)

(2(r1 + r2)− a− v)u′(ξ) + (2c+ 3b)u′(ξ)u2(ξ) = 0, (3.4)

here, the variables a, b, c, r1 and r2 are real.

Applying the balancing principle on u′′(ξ) and u3(ξ) from Eq. (3.3), the balancing

constant is found to be m = 1. Furthermore, the tanh-coth method allows for the

employment of the finite expansion,

u(ξ) = A0 + A1Y (ξ) +
B1

Y (ξ)
. (3.5)

Substituting Eq. (3.5) into Eq. (3.3) and Eq. (3.4) and we obtain the following system

by accumulating the coefficients of the similar exponents of Y (ξ) and setting them to

zero,

−bA3
1 + 2µ2A1r1 + 2µ2A1r2 + A1

3 = 0,
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−3bA0A1
2 + 3A0A1

2 = 0,

−3bA0
2A1 − 3bA1

2B1 − A1r1 − A1r2 − 2µ2A1r1 − 2µ2A1r2 + aA1 − ωA1

+3A0
2A1 + 3A1

2B1 = 0,

−bA0
3 − A0r1 − A0r2 + aA0 − ωA0 + A0

3 + 6A0A1B1 − 6bA0A1B1 = 0,

−3bA0
2B1 − 3bB1

2A1 −B1r1 −B1r2 − 2µ2B1r1 − 2µ2B1r2 + aB1 − ωB1

+3A0
2B1 + 3A1B1

2 = 0,

−3bµA0B1
2 + 3A0B1

2 = 0,

−bB1
3 + 2µ2B1r1 + 2µ2B1r2 +B1

3 = 0,

−µ(3bA1
3 + 2cA1

3) = 0,

−µ(6bA0A1
2 + 4cA0A1

2) = 0,

−µ(3bA0
2A1 − 3bA1

3 + 2cA0
2A1 + 3bA1

2B1 − 2cA1
3 + 2cA1

2B1 + 2A1r1

+2A1r2 − aA1 − vA1) = 0,

−µ(−6bA0A1
2 − 4cA0A1

2) = 0,

−µ(−3bA0
2A1 − 3bA0

2B1 − 3bA1
2B1 − 3bA1B1

2 − 2cA0
2A1 − 2cA0

2B1 − 2cA1
2B1

−2cA1B1
2 − 2A1r1 − 2A1r2 − 2B1r1 − 2B1r2 + aA1 + vA1 + aB1 + vB1) = 0,

−µ(−6bA0B1
2 − 4cA0B1

2) = 0,

−µ(3bA0
2B1 + 3bA1B1

2 − 3bB1
3 + 2cA0

2B1 + 2cA1B1
2 − 2cB1

3 + 2B1r1 + 2B1r2

−aB1 − vB1) = 0, − µ(6bA0B1
2 + 4cA0B1

2) = 0,

−µ(3bB1
3 + 2cB1

3) = 0,

where r1, r2, µ, ω, v are arbitrary constants.

The outcomes of solving the above system using maple are the following sets of solutions

and A0 = 0:

(i) The first set:

B1 = 0, b = −2

3
c, v = 2(r1 + r2)− a,
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A1 =

√
3(ω + v − r1 − r2)

3 + 2c
, µ =

√
(r1 + r2 − ω − v)

2(r1 + r2)
. (3.6)

(ii) The second set:

A1 = 0, b = −2

3
c, v = 2(r1 + r2)− a,

B1 =

√
3(ω + v − r1 − r2)

3 + 2c
, µ =

√
(r1 + r2 − ω − v)

2(r1 + r2)
. (3.7)

(iii) The third set:

b = −2

3
c, v = 2(r1 + r2)− a,

A1 = B1 =

√
3(ω + v − r1 − r2)

4(3 + 2c)
, µ =

√
(r1 + r2 − ω − v)

8(r1 + r2)
. (3.8)

(iv) The fourth set:

b = −2

3
c, v = 2(r1 + r2)− a,

A1 = B1 =

√
3(ω + v − r1 − r2)

2(3 + 2c)
, µ =

√
(r1 + r2 − ω − v)

4(r1 + r2)
. (3.9)

Using above solution sets in (3.5) we get the following general sets of solutions:

uI(ξ) =

√
3(ω + v − r1 − r2)

3 + 2c
Y (ξ), b = −2

3
c, (3.10)

uII(ξ) =

√
3(ω + v − r1 − r2)

3 + 2c
Y −1(ξ), b = −2

3
c, (3.11)

uIII(ξ) =

√
3(ω + v − r1 − r2)

4(3 + 2c)
(Y (ξ) + Y −1(ξ)), b = −2

3
c, (3.12)

uIV (ξ) =

√
3(ω + v − r1 − r2)

2(3 + 2c)
(Y (ξ) + Y −1(ξ)), b = −2

3
c. (3.13)
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If we combine Eqs. (2.4), (3.2), (3.5), (3.1.1) and solution set uI(ξ), then we get the

solution as follows:

u1(x, y, t) =

√
3(ω − a+ r1 + r2)

3 + 2c

(
tanh

[
µ(x+ y − (2(r1 + r2)− a)t)

])
e(x+y+ωt)ι,

(3.14)

where

µ =

√
(a− ω − r1 − r2)

2(r1 + r2)
.

Considering Eqs. (2.4), (3.2), (3.5), (3.1.1) and (27), then we produce the following

solution:

u2(x, y, t) =

√
3(ω − a+ r1 + r2)

3 + 2c

(
coth

[
µ(x+ y − (2(r1 + r2)− a)t)

])
e(x+y+ωt)ι,

(3.15)

where

µ =

√
(a− ω − r1 − r2)

2(r1 + r2)
.

Assuming Eqs. (2.4), (3.2), (3.5), (3.1.1) and solution set uIII(ξ), then we derive the

following solution as follows:

u3(x, y, t) =

√
3(ω − a+ r1 + r2)

4(3 + 2c)

(
tanh

[
µ(x+ y − vt)

]

+coth

[
µ(x+ y − vt)

])
e(x+y+ωt)ι, (3.16)

where

µ =

√
(a− ω − (r1 + r2))

8(r1 + r2)
, v = (2(r1 + r2)− a).

Assuming Eqs. (2.4), (3.2), (3.5), (3.1.1) and solution set uIV (ξ), then we derive the

following solution as follows:

u4(x, y, t) =

√
3(ω − a+ r1 + r2)

2(3 + 2c)

(
tanh

[
µ(x+ y − vt)

]

+coth

[
µ(x+ y − vt)

])
e(x+y+ωt)ι, (3.17)
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where

µ =

√
(a− ω − (r1 + r2))

4(r1 + r2)
, v = (2(r1 + r2)− a).

Graphical illustration of a solution

(a) (b)

Figure 3.1: Graphical representation of a soliton solution u1(x, y, t) =

−2
√

3
13
eι(x−5t) tanh[3t− x], y = 0,−1 ≤ x, t ≤ 1, (a) 3D Plot (b) 2D Plot

(a) (b)

Figure 3.2: Graphical representation of a soliton solution u2(x, y, t) =

−2
√

3
13
eι(x−5t) coth[3t− x], y = 0,−1 ≤ x, t ≤ 1, (a) 3D Plot (b) 2D Plot

23



3.1.2 Exact Solutions of higher order CQ-NLSE

Here, we implement tanh-coth method to find travelling wave solutions of the higher

order CQ-NLSE, which is given as [36]:

ιUt−
α1

2
Uxx+β1U |U |2−ι

α2

6
Uxxx−

α3

24
Uxxxx+β2

(
|U |4U

)
−ιγ1

(
|U |2U

)
x
−ιγ2U

(
|U |2

)
x
= 0,

(3.18)

where ι=
√
−1 and α1, α2, α3, β1, β2, γ1 and γ2 are real parameters.

Applying the following transformation,

U(x, t) = u(ξ)eιη, ξ = px− vt and η = x+ ωt. (3.19)

We generate the nonlinear ODEs by combining Eq. (3.19) and Eq. (3.18) as follows,

then separating the real and imaginary components respectively:

α3p
4u(4)(ξ) + 6(2α1 − 2α2 − α3)p

2u′′(ξ) + (24ω + 4α2 − 12α1 + α3)u(ξ)

−24(γ1 + β1)u
3(ξ)− 24β2u

5(ξ) = 0, (3.20)

(α2 + α3)p
3u′′′(ξ) + (6v + 6α1p− 3α2p− α3p)u

′(ξ)

+p(18γ1 + 12γ2)u
2(ξ)u′(ξ) = 0, (3.21)

here, the parameters α1, α2, α3, β1, β2, γ1 and γ2 are arbitrary.

Applying the balancing principle om u(4)(ξ) and u5(ξ) from Eq. (3.20), the balancing

constant is found to be m = 1. Furthermore, the tanh-coth method allows for the

employment of the finite expansion,

u(ξ) = A0 + A1Y (ξ) +
B1

Y (ξ)
. (3.22)

Putting Eq. (3.22) into Eq. (3.20) and Eq. (3.21) and we obtain the following system

by accumulating the coefficients of the similar exponents of Y (ξ) and setting them to

zero,

24µ4p4A1α3 − 24A5
1β2 = 0,

−120β2A0A
4
1 = 0,
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−40µ4p4A1α3 + 24µ2p2A1α1 − 24µ2p2A1α2 − 12µ2p2A1α3 − 240A2
0A

3
1β2 − 120A4

1B1β2

−24A3
1β1 − 24A3

1γ1 = 0,

−240A3
0A

2
1β2 − 480A0A

3
1B1β2 − 72A0A

2
1β1 − 72A0A

2
1γ1 = 0,

16µ4p4A1α3 − 24µ2p2A1α1 + 24µ2p2A1α2 + 12µ2p2A1α3 − 120A4
0A1β2 − 720A2

0A
2
1B1β2

−240A3
1B

2
1β2 − 72A2

0A1β1 − 72A2
0A1γ1 − 72A2

1B1β1 − 72A2
1B1γ1 + 24ω1

−12A1α1 + 4A1α2 + A1α3 = 0,

−24β2A
5
0 − 480β2A

3
0A1B1 − 720β2A0A

2
1B

2
1 − 24β1A

3
0 − 24γ1A

3
0

−144β1A0A1B1 − 144γ1A0A1B1 + 24ωA0 − 12α1A0 + 4α2A0 + α3A0 = 0,

16µ4p4B1α3 − 24µ2p2B1α1 + 24µ2p2B1α2 + 12µ2p2B1α3 − 120A4
0B1β2

−720A2
0A1B

2
1β2 − 240A2

1B
3
1β2 − 72A2

0B1β1 − 72A2
0B1γ1 − 72A1B

2
1β1

−72A1B
2
1γ1 + 24ωB1 − 12B1α1 + 4B1α2 +B1α3 = 0,

−240A3
0B

2
1β2 − 480A0A1B

3
1β2 − 72A0B

2
1β1 − 72A0B

2
1γ1 = 0,

−40µ4p4B1α3 + 24µ2p21α1 − 24µ2p2B1α2 − 12µ2p2B1α3 − 240A2
0B

3
1β2

−120A1B
4
1β2 − 24B3

1β1 − 24B3
1γ1 = 0,

−120β2A0B
4
1 = 0,

24µ4p4B1α3 − 24B5
1β2 = 0,

6µ2p3A1α2 + 6µ2p3A1α3 + 18pA1
3γ1 + 12pA1

3γ2 = 0,

36p0A
2
1γ1 + 24pA0A

2
1γ2 = 0,

−8µ2p3A1α2 − 8µ2p3A1α3 + 18pA0
2A1γ1 + 12pA0

2A1γ2 − 18pA1
3γ1 − 12pA1

3γ2

+18pA1
2B1γ1 + 12pA1

2B1γ2 + 6pA1α1 − 3pA1α2 − pA1α3 + 6vA1 = 0,

−36pA0A
2
1γ1 − 24pA0A

2
1γ2 = 0,

2µ2p3A1α2 + 2µ2p3A1α3 + 2µ2p3B1α2 + 2µ2p3B1α3 − 18pA0
2A1γ1 − 12pA0

2A1γ2

−18pA0
2B1γ1 − 12pA0

2B1γ2 − 18pA1
2B1γ1 − 12pA1

2B1γ2 − 18pA1B
2
1γ1 − 12pA1B

2
1γ2
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−6pA1α1 + 3pA1α2 + pA1α3 − 6pB1α1 + 3pB1α2 + pB1α3 − 6vA1 − 6vB1 = 0,

−36pA0B
2
1γ1 − 24pA0B

2
1γ2 = 0,

−8µ2p3B1α2 − 8µ2p3B1α3 + 18pA0
2B1γ1 + 12pA0

2B1γ2 + 18pA1B
2
1γ1 + 12pA1B

2
1γ2

−18pB1
3γ1 − 12pB1

3γ2 + 6pB1α1 − 3pB1α2 − pB1α3 + 6vB1 = 0,

36pA0B
2
1γ1 + 24pA0B

2
1γ2 = 0,

6µ2p3B1α2 + 6µ2p3B1α3 + 18pB1
3γ1 + 12pB1

3γ2 = 0.

Here, α1, α2, α3, β1, β2, γ1 and γ2 are arbitrary constants.

The outcomes of solving the above system using maple are the following sets of solutions

and A0 = 0:

(i) The first set:

A1 = 0, p = p, α2 = α2, µ = − 1√
2p

,

ω = −1

8

pα3 + 8v

p
, α1 =

1

3

2pα2 + pα3 − 3v

p
, B1 =

√
− 2pα3 + 3v

6pβ1 − 4pγ2
,

β2 =
p2α3(3β1 − 2γ2)

2

4p2α3
2 + 12pvα3 + 9v2

, γ1 =
1

3

3pα2β1 − 2pα2γ2 + 3pα3β1 − 6pα3γ2 − 6vγ2
2pα3 + v

.

(3.23)

(ii) The second set:

B1 = 0, p = p, α2 = α2, µ = − 1√
2p

,

ω = −1

8

pα3 + 8v

p
, α1 =

1

3

2pα2 + pα3 − 3v

p
, A1 =

√
− 2pα3 + 3v

6pβ1 − 4pγ2
,

β2 =
p2α3(3β1 − 2γ2)

2

4p2α3
2 + 12pvα3 + 9v2

, γ1 =
1

3

3pα2β1 − 2pα2γ2 + 3pα3β1 − 6pα3γ2 − 6vγ2
2pα3 + v

.

(3.24)

(iii) The third set:

p = p, α2 = α2, µ =
ι

2p
,

ω = −1

8

pα3 + 8v

p
, α1 =

1

3

2pα2 + pα3 − 3v

p
, A1 =

√
2pα3 + 3v

6pβ1 − 4pγ2
, B1 = −A1,
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β2 =
p2α3(3β1 − 2γ2)

2

4p2α3
2 + 12pvα3 + 9v2

, γ1 =
1

3

3pα2β1 − 2pα2γ2 + 3pα3β1 − 6pα3γ2 − 6vγ2
2pα3 + v

.

(3.25)

(iv) The fourth set:

p = p, α2 = α2, µ =
1

2
√
2p

,

ω = −1

8

pα3 + 8v

p
, α1 =

1

3

2pα2 + pα3 − 3v

p
, A1 = B1 =

√
− 2pα3 + 3v

24pβ1 − 16pγ2
,

β2 =
p2α3(3β1 − 2γ2)

2

4p2α3
2 + 12pvα3 + 9v2

, γ1 =
1

3

3pα2β1 − 2pα2γ2 + 3pα3β1 − 6pα3γ2 − 6vγ2
2pα3 + v

.

(3.26)

(v) The fifth set:

p = p, α2 = −α3, µ = µ,

ω = − 1

24

16µ4p5α3 + 8µ2p3α3 − 48µ2p2v + pα3 + 12v

p
,

α1 = −1

3

pα3 + 3v

p
, γ1 = −2

3
γ2, A1 =

√
20µ2p4α3 + p2α3 − 6pv

6β1 − 4γ2
µ,

B1 = −A1, β2 =
4p2α3

2(3β1 − 2γ2)
2

400µ4p6α3
2 + 40µ2p4α3

2 − 240µ2p3vα3 + 12pvα3 + p2α3
2 + 36v2

.

(3.27)

(vi) The sixth set:

p = p, α2 = −α3, µ =
1

p

√
pα3 − 6v

10pα3

,

ω = − 1

600

11p2α3
2 − 732pvα3 + 1296v2

p2α3

, α1 = −1

3

pα3 + 3v

p
,

γ1 = −2

3
γ2, β2 = −4

9

(9β1
2 − 12β1γ2 + 4γ2

2)p2α3

p2α3
2 − 12pvα3 + 36v2

,

A1 =
pα3 − 6v

p
4

√
− 9

3600α3
2β1

2 − 4800α3
2β1γ2 + 1600α3

2γ22
,

B1 = −20α3(3β1 − 2γ2)(pα3 − 6v)

3p
4

√(
− 9

3600α3
2β1

2 − 4800α3
2β1γ2 + 1600α3

2γ22

)3

.

(3.28)

(vii) The seventh set:

p = p, α2 = −α3, µ = µ,
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ω = − 1

24

256µ4p5α3 − 16µ2p3α3 + 96µ2p2v + pα3 + 12v

p
,

α1 = −1

3

pα3 + 3v

p
, γ1 = −2

3
γ2, A1 = B1 =

√
p2α3 − 40µ2p4α3 − 6pv

6β1 − 4γ2
µ,

β2 =
4p2α3

2(3β1 − 2γ2)
2

1600µ4p6α3
2 − 80µ2p4α3

2 + 480µ2p3vα3 − 12pvα3 + p2α3
2 + 36v2

.

(3.29)

Using above solution sets in (3.22) we get the following general sets of solutions

uI(ξ) =

√
− 2pα3 + 3v

6pβ1 − 4pγ2
Y −1(ξ), (3.30)

uII(ξ) =

√
− 2pα3 + 3v

6pβ1 − 4pγ2
Y (ξ), (3.31)

uIII(ξ) =

√
2pα3 + 3v

6pβ1 − 4pγ2

(
Y (ξ)− Y −1(ξ)

)
, (3.32)

uIV (ξ) =

√
− 2pα3 + 3v

6pβ1 − 4pγ2

(
Y (ξ) + Y −1(ξ)

)
, (3.33)

uV (ξ) =

√
20µ2p4α3 + p2α3 − 6pv

6β1 − 4γ2
µ

(
Y (ξ)− Y −1(ξ)

)
, (3.34)

uV I(ξ) =
pα3 − 6v

p

(
4

√
− 9

3600α3
2β1

2 − 4800α3
2β1γ2 + 1600α3

2γ22
Y (ξ)

−20α3(3β1 − 2γ2)

3
4

√
(− 9

3600α3
2β1

2 − 4800α3
2β1γ2 + 1600α3

2γ22
)3Y −1(ξ)

)
, (3.35)

uV II(ξ) =

√
p2α3 − 40µ2p4α3 − 6pv

6β1 − 4γ2
µ

(
Y (ξ) + Y −1(ξ)

)
. (3.36)

If we combine Eqs. (2.4), (3.19), (3.22), (3.23) and solution set uI(ξ), then we produce

the following solution:

u1(x, t) =

√
− 2pα3 + 3v

6pβ1 − 4pγ2
coth

[
µ (px− vt)

]
e

(
x+(− 1

8
pα3+8v

p
)t
)
ι
,
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where

µ = − 1√
2p

.

Considering Eqs. (2.4), (3.19), (3.22), (3.23) and solution set uII(ξ), then we produce

the following solution:

u2(x, t) =

√
− 2pα3 + 3v

6pβ1 − 4pγ2
tanh

[
µ(px− vt)

]
e

(
x+(− 1

8
pα3+8v

p
)t
)
ι
,

where

µ = − 1√
2p

.

Assuming Eqs. (2.4), (3.19), (3.22), (3.23) and solution set uIII(ξ), then we acquire

the following solution:

u3(x, t) =

√
2pα3 + 3v

6pβ1 − 4pγ2

(
tanh

[
µ(px− vt)

]
− coth

[
µ(px− vt)

])
e

(
x−( v

p
)t
)
ι
,

where

µ =
ι

2p
.

Assuming Eqs. (2.4), (3.19), (3.22), (3.23) and solution set uIV (ξ), then we acquire

the following solution:

u4(x, t) =

√
− 2pα3 + 3v

24pβ1 − 16pγ2

(
tanh

[
µ(px− vt)

]
+ coth

[
µ(px− vt)

])
e

(
x+(− 1

8
pα3+8v

p
)t
)
ι
,

where

µ =
ι

2p
.

Assuming Eqs. (2.4), (3.19), (3.22), (3.23) and solution set uV (ξ), then we acquire the

following solution:

u5(x, t) =

√
20µ2p4α3 + p2α3 − 6pv

6β1 − 4γ2
µ
[
tanh

[
µ(px− vt)

]
− coth

[
µ(px− vt)

]]
e(x+ωt)ι,

where

ω = − 1

24

16µ4p5α3 + 8µ2p3α3 − 48µ2p2v + pα3 + 12v

p
.
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Assuming Eqs. (2.4), (3.19), (3.22), (3.23) and solution set uV I(ξ), then we acquire

the following solution:

u6(x, t) =
pα3 − 6v

p

(
4

√
−

9

3600α3
2β1

2 − 4800α3
2β1γ2 + 1600α3

2γ22
tanh

[
µ(px− vt)

]

−20α3(3β1 − 2γ2)

3
4

√(
−

9

3600α3
2β1

2 − 4800α3
2β1γ2 + 1600α3

2γ22

)3

coth
[
µ(px− vt)

])
e(x+ωt)ι,

where

ω = − 1

600

11p2α3
2 − 732pvα3 + 1296v2

p2α3

and µ =
1

p

√
pα3 − 6v

10pα3

.

Assuming Eqs. (2.4), (3.19), (3.22), (3.23) and solution set uV II(ξ), then the following

solution is derived:

u7(x, t) =

√
p2α3 − 40µ2p4α3 − 6pv

6β1 − 4γ2
µ
(
tanh

[
µ(px− vt)

]
+ coth

[
µ(px− vt)

])
e(x+ωt)ι,

where

ω = − 1

24

256µ4p5α3 − 16µ2p3α3 + 96µ2p2v + pα3 + 12v

p
.

Graphical illustration of a solution

(a) (b)

Figure 3.3: Graphical representation of a soliton solution u1(x, t) =√
19
2
eι(x+

5t
4
)(coth[−t−x√

2
]),−1 ≤ x, t ≤ 1, (a) 3D Plot (b) 2D Plot
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(a) (b)

Figure 3.4: Graphical representation of a soliton solution u2(x, t) =√
19
2
eι(x+

5t
4
)(tanh[−t−x√

2
]),−5 ≤ x, t ≤ 5, (a) 3D Plot (b) 2D Plot

3.2 Application of Kudryashov’s method

In this section, a new analytical approach as, Kudryashov’s method is used for find-

ing travelling wave solutions and solitons for (2+1)-dimensional P-NLSE in nonlin-

ear optical fibres and higher order CQ-NLSE, which have significant implications in

telecommunication system and ultra-fast signal routing.

3.2.1 Exact solutions of (2+1)-dimensional P-NLSE in nonlin-
ear optical fibres

Here, we implement Kudryashov’s method to find travelling wave solutions of the

(2+1)-dimensional P-NLSE in nonlinear optical fibres, which is given as [35]:

ιUt + r1Uxx + r2Uyy + U |U |2 − ι
(
aUx − b

(
|U |2U

)
x
− cU

(
|U |2

)
x

)
+ Uxxxx − Uyyyy = 0,

(3.37)

where ι=
√
−1 and a, b, c, r1 and r2 are real arbitrary constants.

The generalized (2+1)-dimensional P-NLSE contains the terms describing self steep-

ening in x and y direction, the terms with self frequency and the 4OD terms.
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Using the following transformation,

U(x, y, t) = u(ξ)eιη, ξ = x+ y − vt and η = x+ y + ωt. (3.38)

We generate nonlinear ODEs by combining Eq. (3.38) and Eq. (3.37) as follows, then

separating the real and imaginary components respectively:

(r1 + r2)u
′′(ξ) + (a− ω − (r1 + r2))u(ξ) + (1− b)u3(ξ) = 0, (3.39)

(2(r1 + r2)− a− v)u′(ξ) + (2c+ 3b)u2(ξ)u′(ξ) = 0, (3.40)

here, the parameters a, b, c, r1 and r2 are arbitrary.

Using the homogeneous balance principle on u′′(ξ) and u3(ξ) from Eq. (3.39), the

balancing constant is found to be m = 1. Furthermore, the Kudryashov’s method

allows for the employment of the finite expansion,

u(ξ) = A0 + A1Z(ξ). (3.41)

Putting Eq. (3.41) into Eq. (3.39) and Eq. (3.40) and we obtain the following system

by accumulating the coefficients of the similar exponents of Z(ξ) and setting them to

zero,

2(r1 + r2)A1 + (1− b)A1
3 = 0,

−3(r1 + r2)A1 + 3(1− b)A0A1
2 = 0,

(r1 + r2)A1 + (−r1 − r2 + a− ω)A1 + 3(1− b)A0
2A1 = 0,

(−r1 − r2 + a− ω)A0 + 3(1− b)A0
3 = 0,

3bA1
3 + 2cA1

3 = 0,

6bA0A1
2 − 3bA1

3 + 4cA0A1
2 − 2cA1

3 = 0,
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3bA0
2A1 − 6bA0A1

2 + 2cA0
2A1 − 4cA0A1

2 + 2A1r1 + 2A1r2 − aA1 − vA1 = 0,

−3bA0
2A1 − 2cA0

2A1 − 2A1r1 − 2A1r2 + aA1 + vA1 = 0,

where r1, r2, µ, ω, v are arbitrary constants.

The outcome of solving the above system using maple is the following set of solution:

b = −2

3
c, v = 2(r1 + r2)− a, ω =

r1 + r2 + 2a

2
, A0 =

√
−3(+r1 + r2)

2(3 + 2c)
, A1 = 2A0.

(3.42)

Using above solution set in (3.41) we get the following general set of solution:

u(ξ) =

√
−3(+r1 + r2)

2(3 + 2c)
(1 + Z(ξ)), b = −2

3
c, (3.43)

If we combine Eqs. (2.12), (3.38), (3.41), (3.42) and solution set u(ξ), then we acquire

the following solution:

u1(x, y, t) =

√
−3(+r1 + r2)

2(3 + 2c)

(
1 +

1

1 + Ae(x+y−(2(r1+r2)−a)t)

)
e(x+y+ωt)ι, (3.44)

where

ω =
r1 + r2 + 2a

2
.
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Graphical illustration of a solution

(a) (b)

Figure 3.5: Graphical representation of a soliton solution u1(x, y, t) =
√

3
5
eι(x−3t)(1 +

1
1+3e(x−8t) ), y = 0,−2 ≤ x, t ≤ 2, (a) 3D Plot (b) 2D Plot

3.2.2 Exact Solutions of higher order CQ-NLSE

Here, we implement Kudryashov’s method to find travelling wave solutions of the higher

order CQ-NLSE, which is given as [36]:

ιUt−
α1

2
Uxx+β1U |U |2−ι

α2

6
Uxxx−

α3

24
Uxxxx+β2

(
|U |4U

)
−ιγ1

(
|U |2U

)
x
−ιγ2U

(
|U |2

)
x
= 0,

(3.45)

where ι=
√
−1 and α1, α2, α3, β1, β2, γ1 and γ2 are real parameters.

Applying the following transformation,

U(x, t) = u(ξ)eιη, ξ = px− vt and η = x+ ωt. (3.46)

We generate nonlinear ODEs by combining Eq. (3.46) and Eq. (3.45) as follows, then

separating the real and imaginary components respectively:

α3p
4u(4)(ξ) + 6(2α1 − 2α2 − α3)p

2u′′(ξ) + (24ω + 4α2 − 12α1 + α3)u(ξ)

−24(γ1 + β1)u
3(ξ)− 24β2u

5(ξ) = 0, (3.47)
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(α2 + α3) p
3u′′′(ξ) + (6v + 6α1p− 3α2p− α3p)u

′(ξ) + p (18γ1 + 12γ2)u
2(ξ)u′(ξ) = 0,

(3.48)

here α1, α2, α3, β1, β2, γ1 and γ2 are arbitrary constants.

Applying the balancing principle on u(4)(ξ) and u5(ξ) from Eq. (3.47), the balancing

constant is found to be m = 1. Furthermore, the Kudryashov method allows for the

employment of the finite expansion,

u(ξ) = A0 + A1Z(ξ). (3.49)

Putting Eq. (3.49) into Eq. (3.47) and Eq. (3.48) and we obtain the following system

by accumulating the coefficients of the similar exponents of Z(ξ) and setting them to

zero,

24p4A1α3 − 24A5
1β2 = 0,

−60p4A1α3 − 120A0A
4
1β2 = 0,

50p4A1α3 − 240A2
0A

3
1β2 + 24p2A1α1 − 24p2A1α2 − 12p2A1α3 − 24A3

1β1 − 24A3
1γ1 = 0,

−15p4A1α3 − 240A3
0A

2
1β2 − 36p2A1α1 + 36p2A1α2 + 18p2A1α3 − 72A0A

2
1β1

+72A0A
2
1γ1 = 0,

p4A1α3 − 120A4
0A1β2 + 12p2A1α1 − 12p2A1α2 − 6p2A1α3 − 72A2

0A1β1 − 72A2
0A1γ1

+24ωA1 − 12A1α1 + 4A1α2 + A1α3 = 0,

−24β2A0
5 − 24β1A0

3 − 24γ1A0
3 + 24ωA0 − 12α1A0 + 4α2A0 + α3A0 = 0,

6p3A1α2 + 6p3A1α3 + 18pA1
3γ1 + 12pA1

3γ2 = 0,
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−12p3A1α2 − 12p3A1α3 + 36pA0A1
2γ1 + 24pA0A1

2γ2 − 18pA1
3γ1 − 12pA1

3γ2 = 0,

7p3A1α2 + 7p3A1α3 + 18pA0
2A1γ1 + 12pA0

2A1γ2 − 36pA0A1
2γ1

−24pA0A1
2γ2 + 6pA1α1 − 3pA1α2 − pA1α3 + 6vA1 = 0,

−p3A1α2 − p3A1α3 − 18pA0
2A1γ1 − 12pA0

2A1γ2 − 6pA1α1 + 3pA1α2v

+pA1α3 − 6vA1 = 0,

α1, α2, α3, β1, β2, γ1 and γ2 are arbitrary constants.

The outcome of solving the above system using maple is the following set of solution:

p =
√
2, α1 = −1

6

9
√
2vβ1 − 18γ1

√
2v − 18

√
2vγ2 + 6α3β1 − 24γ1α3 − 20α3γ2

3β1 − 2γ2
,

α2 =
3

2

3γ1
√
2v + 2

√
2vγ2 − 2α3β1 + 4γ1α3 + 4α3γ2

3β1 − 2γ2
, β2 =

2α3(9β1
2 − 12β1γ2 + 4γ2

2)

12
√
2α3v + 9v2 + 8α3

2
,

A1 =

√
−3

√
2v + 4α3

3β1 − 2γ2
, A0 = −1

2
A1, ω = −1

8

36v3
√
2 + 44vα3

2
√
2 + 105v2α3 + 8α3

3

12
√
2α3v + 9v2 + 8α2

3

.

(3.50)

Using above solution sets in (3.49) we get the following general sets of solutions:

u(ξ) =

√
3
√
2v + 4α3

2γ2 − 3β1

(
−1

2
+ Z(ξ)

)
. (3.51)

If we combine Eqs. (2.12), (3.46), (3.49), (3.50) and solution set u(ξ), then we acquire

the following solutions:

u1(x, t) =

√
3
√
2v + 4α3

2γ2 − 3β1

(
−1

2
+

1

Ae(
√
2x−vt)

)
e(x+ωt)ι, (3.52)

where

ω = −1

8

36v3
√
2 + 44vα3

2
√
2 + 105v2α3 + 8α3

3

12
√
2α3v + 9v2 + 8α2

3

.
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Graphical illustration of a solution

(a) (b)

Figure 3.6: Graphical representation of a travelling wave solution u1(x, t) =√
(16+3

√
2)

5
e
ι(− (932+740

√
2)t

8(137+48
√
2)

+x)
(−1

2
+ et−

√
2x),−2 ≤ x, t ≤ 2, (a) 3D Plot (b) 2D Plot

3.3 Application of sine-cosine method

In this section, a new analytical approach as, sine-cosine method is used for finding

travelling wave solutions, solitons and optical solitons for (2+1)-dimensional P-NLSE in

nonlinear optical fibres and Higher order CQ-NLSE, which have significant implications

in telecommunication system and ultra-fast signal routing.

3.3.1 Exact solutions of (2+1)-dimensional P-NLSE in nonlin-
ear optical fibres

Here, we implement sine-cosine method to find travelling wave solutions of the (2+1)-

dimensional P-NLSE in nonlinear optical fibres, which is given as [35]:

ιUt + r1Uxx + r2Uyy + U |U |2 − ι
(
aUx − b

(
|U |2U

)
x
− cU

(
|U |2

)
x

)
+ Uxxxx − Uyyyy = 0,

(3.53)

where ι=
√
−1 and a, b, c, r1 and r2 are arbitrary constants.

The generalized (2+1)-dimensional P-NLSE contains the terms describing self steep-
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ening in x and y direction, the terms with self frequency and the 4OD terms.

Applying the following transformation,

U(x, y, t) = u(ξ)eιη, ξ = x+ y − vt and η = x+ y + ωt. (3.54)

We generate the following nonlinear ODEs by combining Eq. (3.54) and Eq. (3.53),

then separating the real and imaginary components respectively:

(r1 + r2)u
′′(ξ) + (a− ω − (r1 + r2))u(ξ) + (1− b)u3(ξ) = 0, (3.55)

(2(r1 + r2)− a− v)u′(ξ) + (2c+ 3b)u2(ξ)u′(ξ) = 0, (3.56)

here, the parameters a, b, c, r1 and r2 are arbitrary.

The sine-cosine method allows one to employ the presumed result:

u(ξ) = λ cosβ[µξ]. (3.57)

Substituting Eq. (3.57) into Eq. (3.56) and we obtain the following system by ac-

cumulating the coefficients of the similar exponents of cosβ[µξ] and setting them to

zero,

1− b = 0,

−β2µ2r1 − µ2r2 − r1 − r2 + a− ω = 0,

β2µ2r1 + β2µ2r2 − βµ2r1 − βµ2r2 = 0,

−3b− 2c = 0,

−2r1 − 2r2 + a+ v = 0,

where r1, r2, ω, v, a are arbitrary constants.

The outcomes of solving the above system using maple are the following sets of solu-

tions:

(i) The first set:

λ = λ, µ = µ, β = 0, b = 1,
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c = −3

2
, v = 2(r1 + r2)− a, ω = a− r1 − r2. (3.58)

(ii) The second set:

λ = λ, µ = 0, β = β, b = 1,

c = −3

2
, v = 2(r1 + r2)− a, ω = a− r1 − r2. (3.59)

(iii) The third set:

λ = λ, ω = ω, β = 1, b = 1,

c = −3

2
, v = 2(r1 + r2)− a, µ =

√
(a− ω)− (r1 + r2)

(r1 + r2)
. (3.60)

Using above solution sets in (3.57) we get the following general sets of solutions:

uI(ξ) = λ, c = −3

2
, (3.61)

uII(ξ) = λ cos

[√
(a− ω)− (r1 + r2)

(r1 + r2)
ξ

]
, c = −3

2
. (3.62)

If we combine Eqs. (3.54), (3.57), (3.58) and solution set uI(ξ), then we acquire the

following solution:

u1(x, y, t) = λe(x+y+ωt)ι, (3.63)

If we combine Eqs. (3.54), (3.57), (3.60) and solution set uII(ξ), then we acquire the

following solution:

u2(x, y, t) = λ cos

[√
(a− ω)− (r1 + r2)

(r1 + r2)

(
x+ y − (2(r1 + r2)− a)t

)]
e(x+y+ωt)ι,

(3.64)

where λ and ω are arbitrary.

Graphical illustration of a solution
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(a) (b)

Figure 3.7: Graphical representation of a periodic solution u2(x, y, t) =
8eι(x−5t) cos[

√
2(x− 3t)], y = 0,−2 ≤ x, t ≤ 2, (a) 3D Plot (b) 2D Plot

3.3.2 Exact Solutions of Higher order CQ-NLSE

Here, we implement sine-cosine method to find travelling wave solutions of the higher

order CQ-NLSE, which is given as [36]:

ιUt−
α1

2
Uxx+β1U |U |2−ι

α2

6
Uxxx−

α3

24
Uxxxx+β2

(
|U |4U

)
−ιγ1

(
|U |2U

)
x
−ιγ2U

(
|U |2

)
x
= 0,

(3.65)

where ι=
√
−1 and α1, α2, α3, β1, β2, γ1 and γ2 are real parameters.

Applying the following transformation,

U(x, t) = u(ξ)eιη, ξ = px− vt and η = x+ ωt. (3.66)

We generate the following ODEs by combining Eq. (3.66) and Eq. (3.65), then sepa-

rating the real and imaginary components respectively:

α3p
4u(4)(ξ) + 6(2α1 − 2α2 − α3)p

2u′′(ξ) + (24ω + 4α2 − 12α1 + α3)u(ξ)

−24(γ1 + β1)u
3(ξ)− 24β2u

5(ξ) = 0, (3.67)

(α2 + α3) p
3u′′′(ξ) + (6v + 6α1p− 3α2p− α3p)u

′(ξ) + p (18γ1 + 12γ2)u
2(ξ)u′(ξ) = 0,

(3.68)
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Here α1, α2, α3, β1, β2, γ1 and γ2 are arbitrary constants.

The sine-cosine approach allows for the employment of the finite expansion,

u(ξ) = λ cosβ[µξ]. (3.69)

Substituting Eq. (3.69) into Eq. (3.67) and Eq. (3.68) and we obtain the following

system by accumulating the coefficients of the similar exponents of cosβ[µξ] and setting

them to zero,

−24β2λ
4 = 0,

−24λ2γ1 − 24λ2β1 = 0,

24ω − 12α1 + 4α2 + α3β
4µ4p4 + α3 − 12β2µ2p2α1 + 12β2µ2p2α2 + 6β2µ2p2α3 = 0,

6α3β
3µ4p4 − 8α3β

2µ4p4 + 4α3βµ
4p4 − 2α3β

4µ4p4 + 12β2µ2p2α1 − 12β2µ2p2α2

−6β2mu2p2α3 − 12βµ2p2α1 + 12βµ2p2α2 + 6βµ2p2α3 = 0,

α3β
4µ4p4 − 6α3βµ

4p4 + 11α3β
2µ4p4 − 6α3β

3µ4p4 = 0,

−18pλ2γ1 − 12pλ2γ2 = 0,

−β2µ2p3α2 − β2µ2p3α3 + 3βµ2p3α2 + 3βµ2p3α3 − 2µ2p3α2 − 2µ2p3α3 = 0,

β2µ2p3α2 + β2µ2p3α3 − 6pα1 + 3pα2 + pα3 − 6v = 0.

Here, γ1, γ2, α1, α2, α3, β1 and β2 are arbitrary constants.

The outcomes of solving the above system using maple are the following sets of solu-

tions:

(i) The first set:

µ = µ, p = p, β = 0, λ = λ, β2 = 0,
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ω = − 1

24

pα3 + 12v

p
, α1 = −1

3

pα3 + 3v

p
, α2 = −α3, β1 =

2

3
γ2, γ1 = −2

3
γ2 (3.70)

(ii) The second set:

µ = 0, p = p, β = β, λ = λ, β2 = 0,

ω =
1

24

2pα2 + pα3 − 12v

p
, α1 =

1

6

3pα2 + pα3 − 6v

p
, α2 = α2, β1 =

2

3
γ2, γ1 = −2

3
γ2

(3.71)

(iii) The third set:

µ =
1

p

√
1

2

pα3 − 6v

pα3

, p = p, β = 2, λ = λ, β2 = 0,

ω = − 1

24

pα3 − 12v

p
, α1 = −1

3

pα3 + 3v

p
, α2 = −α3, β1 =

2

3
γ2, γ1 = −2

3
γ2 (3.72)

(iv) The fourth set:

µ =
1

p

√
1

5

pα3 − 6v

pα3

, p = p, β = 3, λ = λ, β2 = 0, γ1 = −2

3
γ2

ω = − 1

150

4p2α3
2 + 102pvα3 − 81v2

p
, α1 = −1

3

pα3 + 3v

p
, α2 = −α3, β1 =

2

3
γ2

(3.73)

(v) The fifth set:

µ = µ, p = p, β = 2, λ = λ, β2 = 0, γ1 = −2

3
γ2

ω =
1

24

16µ4p5α3 − 8µ2p3α3 + pα3 + 48v

p(4µ2p2 − 3)
, α1 =

1

6

8µ4p5α3 − 6µ2p3α3 + 3pα3 + 36v

p(4µ2p2 − 3)
,

α2 = −2(µ2p3α3 − pα3 − 3v)

p(4µ2p2 − 3)
, β1 =

2

3
γ2 (3.74)

(vi) The sixth set:

µ = µ, p = p, β = 1, λ = λ, β2 = 0, γ1 = −2

3
γ2

ω =
1

24

2µ4p5α2 + µ4p5α3 − 4µ2p3α2 − 2µ2p3α3 − 12µ2p2v + 2pα2 + pα3 − 12v

p
,

α1 =
1

6

8µ4p5α3 − 6µ2p3α3 + 3pα3 + 36v

p(4µ2p2 − 3)
, α2 = −2(µ2p3α3 − pα3 − 3v)

p(4µ2p2 − 3)
, β1 =

2

3
γ2

(3.75)
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(vii) The seventh set:

µ =
1

24

√
3α3

v
, p = −12v

α3

, β = 2, λ = λ, β2 = 0,

ω =
α2 + α3

3
, α1 =

4α2 + 3α3

4
, α2 = α2, β1 =

2

3
γ2, γ1 = −2

3
γ2 (3.76)

Using above solution sets in (3.69), we get the following general sets of solutions re-

spectively:

uI(x, t) = λ, (3.77)

uII(x, t) = λ cos2

[
1

p

√
1

2

pα3 − 6v

pα3

ξ

]
, (3.78)

uIII(x, t) = λ cos3

[
1

p

√
1

5

pα3 − 6v

pα3

ξ

]
, (3.79)

uIV (x, t) = λ cos2 [µξ] , (3.80)

uV (x, t) = λ cos [µξ] , (3.81)

uV I(x, t) = λ cos2

[
1

24

√
3α3

v
ξ

]
. (3.82)

If we combine Eqs. (3.66), (3.69), (3.70) and (3.77), then we acquire the following

solution:

u1(x, t) = λe(x+ωt)ι, (3.83)

where

ω = − 1

24

pα3 + 12v

p
.

If we combine Eqs. (3.66), (3.69), (3.72) and (3.78), then we acquire the following

solution:

u2(x, t) = λ cos2

[
1

p

√
1

2

pα3 − 6v

pα3

(px− vt)

]
e(x+ωt)ι, (3.84)
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where

ω = − 1

24

pα3 − 12v

p
.

If we combine Eqs. (3.66), (3.69), (3.73) and (3.79), then we acquire the following

solution:

u3(x, t) = λ cos3

[
1

p

√
1

2

pα3 − 6v

pα3

(px− vt)

]
e(x+ωt)ι, (3.85)

where

ω = − 1

150

4p2α3
2 + 102pvα3 − 81v2

p
.

If we combine Eqs. (3.66), (3.69), (3.74) and (3.80), then we acquire the following

solution:

u4(x, t) = λ cos2[µ(px− vt)]e(x+ωt)ι, (3.86)

where

ω =
1

24

16µ4p5α3 − 8µ2p3α3 + pα3 + 48v

p(4µ2p2 − 3)
.

If we combine Eqs. (3.66), (3.69), (3.75) and (3.81), then we acquire the following

solution:

u5(x, t) = λ cos[µ(px− vt)]e(x+ωt)ι, (3.87)

where

ω =
1

24

2µ4p5α2 + µ4p5α3 − 4µ2p3α2 − 2µ2p3α3 − 12µ2p2v + 2pα2 + pα3 − 12v

p
.

If we combine Eqs. (3.66), (3.69), (3.76) and (3.83), then we acquire the following

solution:

u6(x, t) = λ cos2

[
1

24

√
3α3

v
(px− vt)

]
e(x+ωt)ι, (3.88)

where

ω =
α2 + α3

3
.

Graphical illustration of solution
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(a) (b)

Figure 3.8: Graphical representation of a periodic solution u2(x, t) =

8eι(−
13t
24

+x) cos2[
√

7
2
(x+ t)],−2 ≤ x, t ≤ 2, (a) 3D Plot (b) 2D Plot
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Chapter 4

Summary and Conclusion

In this work, we have explored three methods: tanh-coth, Kudryashov’s and sine-cosine.

The description of these three methods is given in chapter 2. These strategies have been

shown to be capable of producing more fruitful and new accurate solitary wave solu-

tions for a variety of NLSEs. A travelling wave transformation is used for transforming

nonlinear PDEs into ODEs. In chapter 3, by applying tanh-coth, Kudryashov’s and

sine-cosine methods to the (2+1)-dimensional P-NLSE in nonlinear fiber optics and

higher order CQ-NLSE, we have found travelling wave solutions and exact solutions in

the form of trigonometric, hyperbolic, rational and singular functions. Our proposed

solutions showed that these three methods are effective and reliable for finding travel-

ling wave solutions.
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