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Abstract

Physical properties of elastic and piezoelectric materials are studied by using tensors. It is
usual to represent a tensor by a matrix. If a tensor is invariant under rotation about a fixed
axis, the matrix representing the tensor commutes with rotation matrix. Therefore these
two matrices have common eigenvectors, consequently a knowledge of eigenvectors of the
rotation matrix provides us with a fair amount of information about eigenvectors of the
tensor. This result is utilized to derive familiar representations of a transversely isotropic
tensor of rank 2 and the elasticity tensor possessing tetragonal symmetry. Representation
of the elasticity tensor belonging to a particular symmetry class can be achieved in an
elegant manner.

In an arbitrary coordinate system, it is not obvious to identify the symmetry class
of the elastic materials under debate. In such circumstances Cowin-Mehrabadi Theorem
plays a vital role. Simple proofs are obtained for the Cowin-Mehrabadi Theorem for
the identification of a plane of symmetry or an axis of symmetry in an elastic material.
Necessary and sufficient Conditions are obtained for the identification of an n-fold axis
of symmetry with n > 3. The treatment is then generalized to a Cartesian tensor of
arbitrary rank and consequently the necessary and sufficient conditions are also found for
the existence of a plane of symmetry or an axis of symmetry for a piezoelectric material.

Young’s modulus is a material property that describes the stiffness of an elastic mate-
rial. It is therefore one of the most important properties in engineering design. The familiar
representation derived for a transversely isotropic (or hexagonal) material in this thesis is
applied to find an expression for Young’s modulus and consider its optimum values.

The expression of Young’s modulus for a hexagonal material is written in terms of one

variable only and hence the problem is solved by a straightforward manner.
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Chapter 1

Introduction

Material symmetry of an anisotropic elastic material plays an important role in the theory
of linear anisotropic elasticity. The constitutive relation for linear anisotropic elasticity is
the generalized Hooke’s law which describes the most general linear relationship between
stress and strain tensors. The fourth rank elasticity tensor emerges from Hooke’s law.
Elasticity tensor, in three dimensions, has 81 components. Due to symmetries of stress and
strain and the thermodynamic requirement that no work be done by the elastic material
in a closed loading cycle, the number of independent components reduces to 21 only.
Further reduction of independent components was classically based on the crystallographic
considerations [1-4]. It was shown by Huo and Del Piero [5] and S. Forte [6] that symmetry
in classical anisotropic elasticity are self contained and are independent of crystallography.
P. Chadwick et al. [7] have shown that elastic materials can be divided into eight classes
and each class being uniquely characterized by a precise set of planes of mirror symmetry
for the given elasticity tensor, see also [2,8].

Lord Kelvin first described the properties of an elastic material in terms of eigenval-
ues and eigenvectors of the elasticity tensor in the middle of the nineteenth century [9].
However, his description was independently discovered again by Rychlewski [10] and by
Mehrabadi and Cowin [11] (also see [12,13]). The main idea of [10,11] is to represent the
elasticity tensor ¢ of rank 4 in three dimensions, by a tensor ¢ of rank 2 in six dimensions.
The formulation of interpreting the eigenvectors of ¢, which are 6 x 1 column vectors, as

tensors of rank 2 in three dimensions has several advantages. One advantage is that the
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coordinate transformations of elasticity tensor can be achieved using matrix multiplica-
tions. This means that standard results of linear algebra become applicable. For example,
if a coordinate transform is applied to the elasticity tensor such that the elasticity tensor
is invariant under the transformation, then the transformation matrix Q must commute
with the tensor represented by the 6 x 6 matrix ¢. Ahmad and Khan have [14] used this
fact to create matrix representations for ¢ belonging to different symmetry classes. There
are many applications of the six dimensional representation of the elasticity tensor (see,
for example, [15,16] and references therein). Blinowski and Ostrowska-Maciejewska have
found expressions for the Youngs modulus and Poissons ratio in terms of eigenvalues and
eigenvectors of the elasticity tensor in case of orthotropic material [17]. In [18], Mehrabadi
et al. have discovered six-dimensional representation of the rotation in terms of the axis of
rotation n and the angle of rotation 6. Norris [19] has derived the coaxiality condition for
the strain energy to be a minimum under a state of uniform stress using this representation.

If the trace and determinant of a second rank tensor in three dimensions both vanish,
then it is called pure shear. Whereas, an isochoric tensor is a second rank traceless tensor.
A pure shear is also isochoric but the converse is not necessarily true. The properties of
pure shear have been discussed by Blinowski and Rychlewski in [20]. They have proved

the following result

Theorem 1.1. (Blinowski-Rychlewski Theorem). An elastic material is a symmetric one
only if at least two of its proper states are pure shears belonging to some subspace of shears

with common direction Py.

In [21], Ahmad has used the six-dimensional formulation of the elasticity tensor to

illuminate the following two interesting properties of elastic materials:

(1) An eigenvector of the elasticity tensor represents a state of stress tensor which is
proportional to a strain tensor. The top three components of these tensors represent
the normal stresses and strains. Vanishing of the sum of normal strains implies that
the rate of change of volume is zero i.e. the strain tensor represents an isochoric or
an equivoluminal state. Ahmad has shown that, for all materials which possess a
plane of symmetry, at least two such states of strain exist. This result is less general

than Theorem 1.1. However, his method is provides a simple proof of this Theorem.
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(2) A geometrical argument using the ‘law of rational indices’ establishes the result that
if a crystal possesses an n-fold axis of symmetry, A,, then n must be such that
cos(2m/n) is a rational number [22]. This allows n = 2,3,4 and 6 but forbids n = 5.
However, this argument does not imply that an arbitrary rotation about the Ag axis
should leave the system invariant. On the other hand, Hermann’s Theorem [23] states
that if a tensor of rank r possesses an axis of symmetry A, with p > r, then A, is
an axis of isotropy for that tensor. Hermann’s proof uses sophisticated mathematics
to prove his Theorem. Ahmad gives an elementary proof of the result: ¢ can have at
most four distinct coaxial planes of symmetry and an n-fold axis of symmetry, A,

with n > 4, must be an axis of isotropy. Also see Slawinski ( [24], chapter 5).

Physical properties of anisotropic elastic materials are described by means of tensors
such as the dielectric tensor, ¢, of rank two, the piezoelectric tensor, e, of rank three and
the elasticity tensor, c, of rank four. Tensors may be represented by matrices [26], for
instance, the elastic constants of anisotropic materials are written as 6 x 6 matrix c [27].
An advantage of representing a symmetric tensor by a symmetric matrix is that classical
results of linear algebra become readily available which play a significant role in enriching
the theory of tensors. For example, the elastic energy of the material is positive if the
6 x 6 matrix c is positive definite. Similarly eigenvectors play an important role in the
necessary and sufficient conditions for the identification of plane of symmetry or an axis
of symmetry of an elastic material. Components of these tensors which describes the
physical properties of anisotropic elastic materials, depend on the system of coordinate
axes and the tensors are usually represented in matrix form. If the crystal possesses a
plane of symmetry or an axis of symmetry, and an axis of a rectangular coordinate system
is chosen to be parallel to the normal to the plane of symmetry or the axis of symmetry, the
matrix representing the tensor acquires a simple form in which several components vanish
and relations among others become apparent. However with reference to an arbitrary
coordinate system, the components exhibit none of these features and it is not obvious
whether or not the crystal belongs to any of the symmetry classes characterizing elastic
materials. The origin of this discussion go back to the problem considered by Cowin and

Mehrabadi for identifying the elastic symmetry. For a plane of symmetry, they addressed
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this problem in [28]. They formulated a simple eigenvalue problem for the determination of
normals to the plane of symmetry of an elastic material. Let c;;x,1,j,k,1 = 1,2,3 denote
components of the elasticity tensor. Cowin and Mehrabadi [28] have proved a theorem
called Cowin-Mehrabadi Theorem which is stated as follows:

“A set of necessary and sufficient conditions for a unit vector n to be a normal to a
plane of symmetry is that it should be a common eigenvector of the tensors Uj; = cijkk,
Vij = Cikjk, Wir(n) = cijrsngns and Wip(m) = cijpsmjms, where m is any vector lying in
the symmetry plane, summation on the repeated indices is understood and free indices take
the values 1,2,3”.

The four conditions of the Cowin-Mehrabadi Theorem were then modified by Cowin [29]
to reduce the conditions to last two conditions only. Ting has provided some generaliza-
tions of the Cowin-Mehrabadi Theorem in [30]. Ahmad [31] has proved Cowin-Mehrabadi
Theorem for an axis of symmetry. He proved a Theorem having the following statement:
“For a unit vector p to be an axis of symmetry of an elastic material, it is necessary that
it is an eigenvector of U,V and Wir(p) = ¢ijkspips -

Ahmad [21] has also provided a six dimensional formulation of the Cowin-Mehrabadi The-
orem.

As a practical example of the identification of elastic symmetry, Cowin and Mehrabadi
considered bone as an elastic material in [29]. They applied their methods and numerical
algorithm to bone tissues to identify the elastic symmetries of bone. But these methods
can be applied to all materials.

This thesis is divided into six chapters. In chapter 2, we have reviewed basics of the
theory to be covered in the remainder of this thesis. This chapter contains a brief dis-
cussion on tensors, generalized Hooke’s law, the elasticity tensor and compliance tensor.
The reduction of the number of elastic constants due to material symmetry is explained
for isotropic and anisotropic materials clearly. Cowin-Mehrabadi formalism [11] defines a
tensor in six dimensions, it has been explained in detail and illustrated by an example too.
Cowin-Mehrabadi Theorem has been proved with detailed explanations and the modifica-
tions by several researchers is also mentioned in different cases. A suitable explanation of

piezoelectric tensor is given and the reduction of its components due to symmetry is dis-
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cussed. We also discuss the Young’s modulus, which is a material property that describes
its stiffness and is therefore one of the most important properties in engineering design.
In chapter 3, we shall make use of a well-known result of linear algebra which states
that if two Hermitian matrices commute then they can be simultaneously diagonalized.
This means that a set of orthonormal vectors exists, every member of which, is a common
eigenvector of both matrices. If a tensor is invariant under rotation about a fixed axis
and the rotation matrix and the matrix representing the tensor commute then these two
matrices have common eigenvectors. Therefore by investigating the eigenvectors of the
rotation matrix, we can find the eigenvectors of elasticity tensor too and hence apply this

result to derive representations of the elasticity tensors in the form
6
¢=Y _ ME; (1.1)
i=1

where E; are 6 X 6 matrices with properties

E;E; =0,i # j,
E} = Ej,

6

> E=

i=1

The above representation reduces calculations of powers and inverse of ¢ to trivial changes
in (1.1). Also it is very useful in finding invariant expressions for engineering constants
such as Young’s modulus, Poisson’s ratio etc.

The above representation has in effect partitioned the elasticity tensor into sets which
constitute an associative algebra [32]. Our work also reproduces eigenspaces found by Bona
et al. in their characterization of the symmetry classes of elasticity tensors [33,34]. These
examples are an indication of the power of Mehrabadi-Cowin formalism [11] to approach
classical results from a new perspective.

In chapter 4, we provide simple proofs of the necessary and sufficient conditions for the
identification of a plane of symmetry or an axis of symmetry given in Cowin-Mehrabadi
Theorem and its special case for axis of symmetry [31] by searching for invariant directions

associated with the elasticity tensor. In case of plane of symmetry, such a direction must
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be orthogonal to the normal n whereas in case of axis of symmetry, it must be parallel
to the vector p. We generalize this approach to tensors of arbitrary rank and apply it
to the third rank piezoelectric tensor to identify the plane of symmetry and do the same
for an axis of symmetry of piezoelectric material. We also obtain the conditions for the
identification of an n-fold axis of symmetry with n > 3. Some of these results are also
illustrated by means of explicit examples. These results are developed and generalized to
a tensor of arbitrary rank.

Chapter 5 is devoted to the application of familiar matrix representations obtained for
the elasticity tensors in chapter 3. The special case of hexagonal materials is discussed
there. By using the representation derived in chapter 3, we compute an expression for the
Young’s modulus and consider its extreme values. This approach extends to hexagonal
materials the results of Norris [35] who considered Poisson’s ratio in cubic materials.

In chapter 6, the results developed in this thesis are summarized explicitly.



Chapter 2

Preliminaries

2.1 A short review of tensors

Consider a real vector space V' and its elements u, v, w,... are vectors if they satisfy all
the axioms of a vector space. An n-dimensional vector space is denoted by V,,. Assume
that {e;}!" ; and {e;. "_y are two orthonormal bases in V,. These bases are related by the

following equations
e/j = Qljel and €; = Qﬂe; (2]‘)

where, the matrix Q = [Q;;] is the transformation matrix. Since this matrix represents

the change of an orthonormal basis and hence it is an orthogonal matrix [36]. So that we

can write
QQ " =1,det Q==+1and Q' = Q7
where
1 0 0
01 0
I= ,
0 0 1

therefore we have Q7! = QT = [Q;4].

Thus a vector u can be expressed in two ways

/

u = u;e; and u=u;

6]'.
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Now using (2.1), we can write the following relations
’U,; = Qmu, and U; = Qﬂu; (2.2)

These relations are called the transformation law of components of a vector. The matrix
form of (2.2) is
u = Qu and u = QTu/

T

! ! ! ! . . .
where, u = [u1, ug, ..., u,]T and U’ = [uy, Uy, ..., u,]T. This change of basis plays an impor-

tant role in the theory of material symmetry.

2.1.1 Second order tensor

Let V be a real vector space. A linear function T defined on V' and having values in V is

called a second order tensor [36]. That is we can write

u=T(v)=Tv,u, veVand

T(au+pv) =aTu+ Tv,Vu, veV, Vo, R

The second order tensors play a fundamental role in the mechanics of deformable bodies
because deformation and internal forces characterizing the behaviour of deformable bodies
are described mathematically by second order tensors such as strain and stress tensors.
The second order tensor satisfy all the axioms of a vector space. We denote the vector
space of all second order tensors by L.

The product u ® v = uv of two vectors u, v € V, defined on V and having values in V'
such that it is a linear function is called tensor product or dyadic product. That is we can
write

(uv)(w)=uv(w) =u(v.w) , forallw e V

and

uv(ax + fy) = auv(x) + fuv(y), for all x,y € V.

We note that the tensor product of two vectors u, v is also a second order tensor.
Let {ey}}?_, be an orthonormal basis in V,,. Consider T € £ an arbitrary tensor. Thus

Te,, € V, can be written as

Te,, = Tymeg, forall T € L
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which implies that
T =Tyenem, VT €L (2.3)

This shows that {eye., }},,_; is a basis in the vector space £ with dimension n?. By using

(2.3), the components of the tensor T in this basis can be written as
Tkm = ek.Tem. (2.4)

These components can also be represented by n x n matrix

Ty T ... Ti,

To1 The ... Th
T = [Tim] = "

Tnl Tn2 o Tln

Assume that {epe,}},,_, and {6;6;}2521 are the two bases in L correspond the two
orthonormal bases {ej,}7_, and {e, }7_, in Vj,. We can write the components of the tensor

T in these bases as

/ 7

T =Ty .enem =T, e.€ (2.5)

rsvr-s*

Thus with the help of equations (2.1), (2.4) and (2.5), we have

Tim = ex-Tey, = (ije;»).T(lee;)
= ijleTe;eg

= QujQuiT}.

This describes the transformation law of the components of a tensor corresponding the

change of basis in £ which can also be written in matrix form as
T =QT'Q’.

The above result is equivalent to
T' = Q'TQ,

which, in component form, becomes

!
Tqis = ri le ej Tkm .
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2.1.2 Tensor of higher order

A general tensor of rank r in n dimensions, is an entity that contains n” components

denoted as Tj,iqis..i, (%1,02,...,0r = 1,2,...,n). Consider a vector space of all tensors of

n

!
€5, S s1,82,.,5p=1 A€

/ /
rank 7, say, £, and assume that {e; e;,...e;, }} ;) _; and {eg e, .

the basis in £,.. The components of above tensor can be expressed as a linear combination
of members of these bases. The transformation law of the components of such a tensor
corresponding the change of basis in the vector space £, can be written as

/

T818283...Sr,- = Qi131 Qi232Qi333"'Qirsrﬂli2i3mir (Slv 82,y 8r = 1,2, ., n)

‘We note that a vector is a tensor of rank one while a scalar is a tensor of rank zero.

2.1.3 Symmetric and antisymmetric tensors

A tensor T iy, i, is said to be symmetric with respect to the indices (any two) i1 and i3
if
Tivigis..ir. = Tiginiy...ir
and it is said to be antisymmetric with respect to the indices (any two) ijand i3 if
n1i2i3...ir - _717:37:22'1‘..7;7« .

Any tensor can be written as a sum of symmetric and antisymmetric tensors. For instance,

1 1
Tij = §(Tm +Tj) + §(Tl —Tj;), Tj; is the transpose of tensor Tj;.

2.1.4 Principal values and principal directions of a symmetric tensor

Let T be a second order symmetric tensor. If u is a unit vector and A is a scalar such that
Tu = Au
or in components form
Tiju; = Aug,
then u is called principal direction or principal axis for the tensor Tj; and A is called its

principal value. We can write the above equation as

(T3 — Adij)u; = 0,
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in matrix form

Tn—X  Tio T13 Uy 0
Tio Too—X T3 ug | =10
T3 Tos  T33— A u3 0

Since u; is a unit vector(a nonzero vector), the determinant of Tj; — Ad;; must vanish. The

three roots of the following characteristic equation

Tn—XA T2 T3
Tho Too — X I3 =0
T3 Toz  T33— A

are called principal values of the tensor.

It is easily shown that for a symmetric tensor all the principal values are real, then there
are three principal directions or principal axes. If principal values are distinct, then three
principal directions are mutually orthogonal. If any two of the principal values are equal,
then the tensor has the diagonal form and it is independent of the choice of corresponding
axis. And if all the principal values are equal, then any direction is a principal direction. A
set of mutually orthogonal directions exist for a symmetric tensor of order 2. This defines

a Cartesian coordinate system.

2.2 Generalized Hooke’s Law

A medium is said to be elastic if it returns to its original state after the external forces
are removed. This return to the original state is due to the internal stress. There is a one
to one correspondence between stress and strain. Let us denote stress and strain tensors
by Tj; and S;j, respectively. We assume that Tj; is a function of S;j, that is Tj;(S;;). It
is known from experiments that the elastic behaviour of most substances is adequately
described (for small deformations) by the first order term in the Taylor expansion of the

equation:

(3
— ’ Sk1=0 Slemn =+ ...

T O*T;
j(Sk?l) J(O) + OSk ’S’“l 09kt + 0Sk10Smn Smn=0

or, since T;;(0) = 0, therefore

Tij = ¢ijkiSki, (2.6)
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where

oT;:
Cijkl = ﬁ;bklzo- (2.7)

Equation (2.6) is called generalized Hook’s Law. This law of proportionality between stress
and strain was first stated in the 17th century by Hooke, for the case of a stretched elastic

string.

2.2.1 Elasticity tensor

The coefficients c¢;jz; in the generalized Hook’s Law describes the most general linear rela-
tionship between the two second rank tensors T;; and Sy, are the components of a fourth
rank tensor called the elastic stiffness tensor or elasticity tensor.

A tensor of rank four, in three dimensions, has 3* = 81 components. Since the tensors
T;; and Sy are symmetric, the elastic constants defined by Hooke’s Law are unaffected

when either the first two or the last two indices are interchanged, so that
Cijkl = Cjikl and Cijrl = Cijik-

In terms of displacements, Hooke’s law in (2.6) becomes

1 Oou, 1 ouy

T = Qcijklaiul + §Cijkl37uk

and since ¢;jx = ¢;ji, the two summations on the right are equal, so that

oy,

Tii = ikl =—-
1J ijkl 8Uk

Due to the above symmetry relations the number of independent elastic constants reduces

from 81 to 36. Indeed, a pair of unordered indices (i,j) can give only six independent

values. These are numbered 1 to 6 according to the following convention

(11) «—1 (22) +— 2 (33) «—3 (2.8)
(23) = (32) «—4 (13)=(31)+—5 (12) = (21) «—6 '

The independent elastic moduli can thus be represented in terms of only two indices o and

B, with values 1 to 6, corresponding to a 6 X 6 square matrix with 36 entries, such that

Cap = Cijkl,
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where « is related to (lj) and 3 to (kl) For example, c14 = c1123 = c1132, C56 = C1312 =

€1321 = 1312 = ¢3112- This notation was introduced by Voigt [37] and is called the matrix

notation to distinguish it from the tensor notation c;;i;, can be extended to the stresses

and strains. Thus Hooke’s law, given by (2.6), can be written
To = capSp (o, f=1,2,...,6.),
where, T, are defined as follows
Ty =Tn, Ty = T, T3 =T33, Ty = Ta3,T5 = T13,T6 = T1o.
In order to to show that (2.9) gives Hooke’s law correctly, we must define Sg as
S1 = 511,52 = S22, 53 = S33, 514 = 2523, S5 = 2513, 56 = 2512.
For instance, if o = 2, we have

T2 = CQﬁSIB

= 2151 + 2252 + 2353 + 2454 + 2555 + 2656,

and

Too = c22k1Sk1

= 9911511 + €2222592 + 2233533 + 2¢2223 523 + 22213513 + 2¢2212512.

From this, we can easily identify T5 and T5s.

Elastic energy and symmetry of elasticity tensor

(2.9)

The existence of elastic potential energy defines an elastic continuum [24]. This implies

that c;jx; is invariant under permutations of pairs of subscripts ¢j and kl. This can be

derived as follows.

The expression of elastic potential energy is [24]

1
W= §Cijklskl-

Differentiating both sides of these equations with respect to S;;, Sk, respectively, we get

O*wW

ao o CGigkls .7 .7k7l: 17273 .
08, (M B 11,2,3)
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If W has continuous first and second order derivatives, then we can write [25]

PW W
0SijSk 0SpSij

which implies that

Cijkl = Cklij-
2.2.2 Compliance tensor
If we write strain in terms of stress, that is to invert Hooke’s law as
Sij = SijkiTi, (2.10)

where s;;; represents the compliance coefficients and form a fourth rank tensor called the
compliance tensor. This tensor also has the same properties as the elasticity tensor has,

so that
Sijkl = Sjikt and  Sijkl = Sijlk-

Similarly, we can write (2.9), in terms of S, as
So = 504813,

where the matrix s, called compliance matrix is the inverse of the matrix c,g, that is
SaBChy = ay,

where ., is the six-dimensional Kronecker delta. The relation between s.g and s;j1; is
given by
508 = 2Vsjk1,

where p is the number of indices greater than 3 in the pair («, ). For example,

541 = 2592311, 42 = 2523292, 543 = 259333, S44 = 452323, S45 = 452313, S46 = 452312, etc.

2.3 Mehrabadi and Cowin Formalism

The fourth rank elasticity tensor c;;x; is defined through the generalized Hooke’s law

Tij = cijkiSki (2.11)
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where T;; and Sy respectively denote the stress tensor and the strain tensor.

In this formalism, Mehrabadi and Cowin [11] have introduced a cartesian basis in
three dimensions to construct a cartesian basis in six dimensions. Let us denote the three
dimensional cartesian basis vectors by e; (i = 1,2,3) and those in six dimensions by &,

(e =1,...,6). These two bases are related by the following equations

1
él =€ ®e17 é4 = 7(E2®63+e3®e2),

\V)

~

é2292®927 €5 = (el®e3+93®el)7

Sl

. . 1
& =e3Re; & = ——(e1 ey +e2®@ey), (2.12)

S

where ® denotes the tensor product. The six-dimensional base vectors &y, ..., & may have
two meanings. That is, they behaves as vectors in six dimensional space (1,0, 0,0,0,0), ...(0,0,0,0,0, 1)

as well as they can be considered as special second rank tensors in three dimensional space

1 00 010
1
sem— 1 1
0 00 NG 0 0
0 00 0 00

We define six dimensional stress and strain wvectors,

T S11
Too Sa2
P T3 § - S33

V2Th3 V2523
V2T13 V2513
V2T1s V2512

The components of stress, strain and elasticity tensor with respect to the three and six

dimensional bases are respectively related by the following equations

Tije; @ ej = Tua,
Spier ® e = Sgéﬁ,

Cijki€; D ej @ ex @ e = Capla @ €g.
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If we write the relation between three and six dimensional bases in a concise manner, that

is if
1

Ca(i) =2 PV (6@ e+ 65 ® &),

1 1

) =277 Ty and Sp(; 5 = 277 Sy,

where a(i, j) = id;; + (9 —i — 7). Also define Ta(m-
where, 4,57 = 1,2,3 and o = 1,...,6. Thus in second rank tensor notations, we can write
(2.9) as

~ -~

To = éapSs, T = &85, (2.13)

where T and S are 1 x 6 column matrices and € is the 6 x 6 matrix. The matrix & has the

following representation

c11 c12 c13 V214 V2c15 V2ci6
C12 €22 ca3  V2cu V2cas V2c
c13 C23 cs3 V231 V235 V2cs0

&5 =
° V2cis V21 V2c34  2ca 2015 2c46
V2eis V2e5 V2c35  2ca5 2055 2cs6
V216 V26 V2c36  2ca6 2056 2ce6

Where ¢, is a symmetric matrix as discussed in section 2.2.1, that is cjju = cpij-

Mehrabadi and Cowin [11] have constructed a six dimensional rotation matrix Q from
a given three dimensional rotation matrix Q as follows.

By the transformation law, the bases e; and e; are related by
e; = Qijej, i,j =1,2,3, (2.14)
where Q is an orthogonal tensor in three dimensions. The bases é; and é; are related by

& = Qapés, @, =1,...,6, (2.15)

where Q is an orthogonal tensor in six dimensions. From (2.14) and (2.15), it can be

written that
& ® éj = Qiijmekem (2.16)

and

!

1l ! ! 1
SE®é+é;e) = i(Qiijm + QimQjk)er @ em. (2.17)
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Then from equation (2.15) and (2.12), it follows that
1 A .4
S Wik im imWjk)€i &K €5 & € & Em = WapEalp. .
5 (QirQjm + Qin@jk)e; ® e; @ e @ Q (2.18)

From this formula, the relationship between the components of Q and Q can be constructed
in the form of the following matrix

Qu Q12 Qs Qu Qi3 Qe
Qa1 Qa2 Qa3 Quu Qo5 Qo
Q31 Qs Qs Qu Qs Qs
Qu Qe Qi Qu Qi Qu
Q51 Q52 Qs3 Qsi Qss Qsg
Qo1 Qo2 Qss Qor Qos Qoo

o
Il

(2.19)
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where

Q11 = Q11, Q12 = @, Qa1 = Q3;, Qus = Q13, Qa1 = Q5
Q14 = V2Q12Q13, Qa1 = V2Q21Qs1,

Q15 = V2Q11Q13, @51 = V2QQs1,

Q16 = V2Q1Q12, Qo1 = V2Q11Qa1,

Q22 = Q35, Qa3 = Q53, Q32 = Q3

Q21 = V2Q2Q23, Qa2 = V2Q2Qs0,

Q25 = V2Q21Q23, Q52 = V2Q12Qs0,

Q26 = V2Q22Q21, Q2 = V2Q12Q2,

Q33 = @33, Q31 = V2Q33Q32, Quz = V2Q13Q33,
Q35 = V2Q33Q31, Q53 = V2Q13Qs3,

Q36 = V2Q31Q32, Qs3 = V2Q13Q13,

Qu1 = Q22Q33 + Q23Q30,

Qa5 = Q21Qs3 + Q31Q23, Q51 = Q21Q33 + Q31Qa3,
Q16 = Q21 Q32 + Q31Q22, Qos = Q12Qa3 + Q22Q13,
Qs5 = Q11Qs3 + Q13Qs1,

Q56 = Q11Q32 + Q31Q12, Qos = Q1 Qa3 + Qu Qus,
Qos = Q11Q22 + Q21 Q1.

With Q defined by above, equation (2.14) becomes a tensor equation in six dimension.

It can be shown that orthogonality of Q implies the orthogonality of Q, that is,

QQ'=Q'Q =1 (2.20)
implies that
QQ'=Q"'Q=1 (2.21)
in order to prove (2.21), consider
Qun Q12 Qi3 Qu Q2 @3

Q=1Qu Qxn Qo 7QT: Q12 Q22 @32 |-
Q31 Q32 Q33 Q13 Q23 @33
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which gives

Q% + Q% + Qi Q11Q21 + Q12Q22 + Q13Q23 Q11Q31 + Q12032 + Q13033
QQ" = | Q11Qu1 + Q12Q22 + Q13Qa3 Q31 + Q35 + Q34 QQ21Q31 + Q22Q32 + Q23Q33
Q11Q31 + Q12Q32 + Q13Q33 Q21Q31 + Q22Q32 + Q23Q33 Q31 + Q35 + Q34

(2.22)
Using (2.22) in (2.20), we have the following relations
hQL+QRL =1, (2.23)
Q51+ Q5+ Q33 = 1, (2.23b)
Q51+ Q5+ Q% =1, (2.23¢)
R11Q21 + Q12Q22 + Q13Q23 = 0, (2.23d)
R11Q31 + Q12Q32 + Q13Q33 = 0, (2.23¢)
R21Q31 + Q22Q32 + Q23Q33 = 0. (2.23f)

A A AT
For orthogonality of Q, we need to check each element of the product matrix QQ . Let

A AT .o
us denote these elements by [QQ ] , 4,7 =1,2,...,6. We can compute these components
ij

as follows
QQ"] = Qi + @t + Qls + 2010, + 201085 + 200,03
= (@1 + Q@ + Q)
= 1, using (2.23).
Similarly
QQ"| = (@3 +Qh+ k) = 1,
QQ'] = (@ +Qh+ Q) = 1.
QQ'| =[QQ"] = (Qu@a +Qu2Qz + QuQ2)* = 0,
QQ'| =[QQ'] = (Quasn + Qi +QuQs)* =,
QQ"] | =[QQ"] = (QuQs1 + Q2Qu + Q2Qu)* = 0, and 50 on.

Thus we have QQT = 1, similarly we can show that QTQ = I. This proves equation
(2.21).
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In a special case when Q is rotation about xj-axis through an angle @, that is,

1 0 0
Q=10 cosf sind |,

0 —sinf@ cos6

the corresponding matrix Q becomes

1 0 0 0 0 0
0 cos? 6 sin? 6 V/2sin cos 6 0 0
. . 0 sin? 6 cos? 0 —v/2sin 6 cosé 0 0
Q=Q(0) = (2.24)
0 —v2sinfcosf +/2sinfcosf cos?f — sin0 0 0
0 0 0 0 cosf —sinf
0 0 0 0 sinf cosf

2.4 Commuting Operators

We state a result in the following theorem about commuting operators which is well known
if the two operators (matrices) are Hermitian. In quantum mechanics, this result has
great significance. If the two operators representing observables commute, the associated

observables can be measured at the same time [38]. Two operators A and B are said to

commute if AB =BA or [A,B] = AB - BA =0.

Theorem 2.1. If the operators A and B commute and if one of the operators has an
eigenvalue of finite geometric multiplicity, both operators have a common eigenvector; that

is, there exists a vector v such that
Av =)v, Bv =pv,
where X\ and p are scalars.

Proof. Since Ay = \y implies that (A — AI)y = 0, the eigenvectors of A corresponding to

a given eigenvalue A are elements of the null space for the operator A — AI. Now if
AB =BA = (A - )I)B=B(A - \l).

Since, the null space of one of the commuting operators is an invariant subspace for the

other; consequently, the null space of A — Al is invariant subspace for B. It is known that
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if a finite dimensional subspace is invariant under an operator, the effect of that operator
may be represented by a matrix [26]. Since by hypothesis,the null space of A — AI is
finite dimensional, therefore B can be represented by a matrix in this space. If a finite
dimensional subspace is invariant under an operator, then there exists an eigenvector of
that operator in the corresponding subspace. It follows that B has an eigenvector v in the

null space of L — AI; consequently, we have
Bv =puv, (A=A)v=0= Av = )\v,
which proves the theorem. ]
As an application of theorem 2.1, we consider the classical orbital angular momentum
L=rxP,

where r = (z,y, 2) is the position vector and P = (pg,py,p-) is the (linear) momentum

vector for a particle [39]. The components of L are

L, =yp. — ZPy
L, = zp, — zp.

Lz = TPy — YPx

and the square magnitude of the total angular momentum vector L is
2 2 2 2
L*=L;+L,+ L.

The quantum mechanical operators corresponding to these observables are given by

~ ) o
L, = —zh(y& — za—y)
A . 0 0
L,= zh(z% - xa)
- . 0 0
L,= —zh(xa—y — y%)
I )
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We can show that

(L., L) = ihL,
Ly, L] = ihL,
(L., L] = ihL,. (2.25)
and
(L% L) = [L* L, = [L? L.] = 0. (2.26)

It is clear from (2.25) that the individual components of L don’t have common eigenstates
with one another (except for a special case of zero angular momentum). But (2.26) shows
that the components of L have simultaneous eigenfunctions with L2, For example, we can
say that L? and L, have simultaneous eigenfunctions. That is, there are states that are

eigenfunctions of both L? and L.. Let us call these eigenfunctions ¢y, such that

L2op, = R+ V), (1=0,1,2,...)

A

Logim = hmgpyn(m = =1, ..., +1).

2.5 Material Symmetry

The set of all those transformations which preserve the distances between all pairs of points
of the body and bring the body into coincidence with itself, describe the symmetry of the
body. Such a transformation is said to be a symmetry transformation. This set forms
a group, which is called the symmetry group of the body. There are three fundamental
transformations; rotation, reflection and translation. The set of distance preserving sym-
metry transformations can be built up from these fundamental transformations. Rotation
through an angle about some axis and a mirror reflection in a plane are possible for a body
of finite extension, a molecule or a macroscopic form of a mineral. Translation (parallel
displacement), can occur only when the body is infinite in extent, for example, an infinite
crystal lattice.

Let us write the elastic stiffnesses c;ji;, as the components of fourth rank elasticity

tensor. Under an orthogonal transformation

z; = Qijzj or x* = Qx (2.27)
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where Q is an orthogonal transformation (section 2.1). The elastic stiffnesses ik and

elastic compliances s; ikl referred to x] coordinate system are, respectively,

C;jkl = Qinijerlscpqrs (228)
and
S:jkl = QiPqurileSpqrs- (229)

When ijkl = ¢k and s;‘jkl = 8k, that is
Cijkl = Qinijerlstqrs (230)

and

Sijkl = QinijerlsSquSa (2'31)

the material is said to possess a symmetry with respect to Q. If (2.30) and (2.31) are

satisfied for

Q=] 0 -1 0 |, (2.32)

we say that the anisotropic material possess the symmetry of central inversion. Equa-
tions (2.30) and (2.31) are obviously satisfied for Q given in (2.32) for any c;ji; and s,
respectively. Hence all anisotropic elastic materials have the symmetry of central inversion.

The transformation (2.27) represents a rigid body rotation if Q is a proper orthogonal
matrix, i.e., if det Q = +1. When (2.30) and (2.31) are satisfied for a proper orthogonal

matrix Q, the material possesses a rotational symmetry. For example,

1 0 0
Q@)=|[0 cosf® sind (2.33)

0 —sinf cos6

represents a rotation about zi-axis through an angle . An orthogonal transformation Q

is called a mirror reflection in a plane if
Q=1I-2nn" (2.34)

in which n is a unit vector normal to the plane of reflection. The matrix form of (2.28) is
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1— 271% —2711712 —2’!11’!13
Q=] -2nn2 1-2n% —2n9ng
—2ning —2n9ng 1 — 2n§

If m is any vector on the plane, i.e., m_Ln,
Qn=-n, Qm =m. (2.35)

Thus a vector normal to the plane of reflection reverses its direction due to transformation
but a vector on the plane of reflection is unaltered. When (2.30) and (2.31) are satisfied

for the matrix Q of (2.34), the material possesses a plane of symmetry. For example, let
n? = [0, cosf,sin 6].

The plane of symmetry contains the zj-axis. The matrix Q of (2.34) has the following

expression
1 0 0
Q)=10 —cos20 —sin20|, — g <0< g (2.36)
0 —sin20 cos26
The matrix in (2.36) is an improper orthogonal matrix because det Q = —1. Since 6 and
¢ + m represents the same plane, where, —5 <6 < 5. At 6 =0,
1 0 0
Qo) =01 o |- (2.37)
0 0 -1

This represents a reflection about the plane 3 = 0. When (2.30) and (2.31) are satisfied
for the matrix Q(0) of (2.35), the material has a plane of symmetry at x3 = 0. If (2.30)
and (2.31) are satisfied for the matrix Q(6) of (2.36), the material is transversely isotropic.

The xp-axis is the axis of symmetry.

2.5.1 Effect of material symmetry on elastic constants

The elastic stiffness matrix ¢ and compliance matrix s are 6 x 6 matrices contain 21
independent elastic constants. The number of independent constants is reduced when the
material possesses a certain material symmetry. We will discuss reduction in the number of

these components of the tensors describing isotropic and anisotropic materials as follows.
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Isotropic materials

A material is said to be isotropic if its properties are same in all directions (e.g. many
structural metals such as steel and aluminium). This will happen if the tensor c;j is
an isotropic tensor (i.e. a tensor whose components remains invariant in all choices of
reference frames). An isotropic material possesses infinitely many rotational symmetries
and planes of reflection symmetry. A scalar and the Identity tensor §;; are the quantities
which are unaffected by the coordinate transformations. As §;; is symmetric, i.e. d;; = d;;,
therefore the only distinct combinations containing the four indices ¢, j, k, [ are d;;01, ;1051

and 0;0;;. Therefore c;j;; can be written as:
Cijkl = A0ijOps + p(0ikdj1 + 0irdjx) (2.38)

where A and p are Lamé constants. The tensor c;;; given in (2.27) satisfies (2.30) for any

orthogonal matrix Q. From this we have

A2 A A 00 0
A A+20 A 0.0 0
A A A+20 0 0 0
Caf = (2.39)
0 0 0 14 0 0
0 0 0 0
0 0 0 0 0 u

Thus instead of 21, it has only 2 independent components.

Triclinic materials

These are the most general anisotropic materials having no planes of symmetry. They
have only a center of symmetry which impose no condition, so all these materials have 21

independent constants and this number will not be reduced further. These constants can
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be arranged in the following matrix form

C11 €12 €13 Ci4 Ci15 Ci6
Cl2 €22 (€23 C24 C25 C26
C13 (€23 (€33 C34 C35 C36
Caf = . (2.40)

Cl4 C24 C34 C44 C45 C46

Ci5 C25 €35 C45 C55 Cs6

Cl6 €26 C36 C46 C56 C66
Monoclinic materials

Monoclinic materials possesses a plane of symmetry. Taking the dyad axis or axis of

symmetry along zs-axis. The symmetry plane will be at 1 = 0. The transformation of

coordinates is given by 93/1 = —x1, :cIQ = —x9, a;g = x3. Therefore the transformation matrix
will be
-1 0 O
Q=10 -1 0}- (2.41)
0 0 1

By using (2.41) into (2.30), the elastic constants in which the index 1 occurs once or three

times become zero. We have the following matrix form

ci1 ci2 ca3 0 0 ¢
cl2 c2 c3 0 0 o
c13 c23 ¢33 0 0 36
Cop = . (2.42)
0 0 0 ey g5 O

0 0 0 C45 Cs5 0

ci6 c6 ¢ 0 0 cep
Orthotropic materials

There are three symmetry planes for these materials. Taking three dyad axes along the

coordinate axis and apply the same argument to each coordinate axis as above, where the
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only non zero components are those having indices 2 or 4 times. The matrix is

CaB =

Cubic materials

c11

C12

C13
0
0
0

C12

€22

€23
0
0
0

C13

C23

€33
0
0
0

0
0
0
Ca4
0
0

o o o o

Cs5

0

o o o o o

C66

27

(2.43)

Cubic materials have at least four triad axes and three dyad axes. Taking the dyad axes

along the coordinate axes. A rotation by %” about the triad axis directed along the diagonal

gives a cyclic permutation of the axes. The elastic constants c;;,; are unchanged for the

cyclic permutation of the indices 123 — 231 — 312. This implies that

C1111 = €2222, C2222 = C3333, etc.

The matrix (2.43) for cubic materials becomes

Cap =

Materials with principal axis of order greater than two

C11

C12

C12
0
0
0

€12

11

C12
0
0
0

C12

C12

C11
0
0
0

0
0
0
C44
0
0

0
0
0
0

C44

0

0
0
0
0
0

C44

(2.44)

If a material remains unchanged after rotating through an angle 27”, the material has

principal axis A,, an n-fold axis of rotation. For materials of trigonal, tetragonal and

hexagonal systems, the value of n is greater than 2. That is n = 3, 4 and 6 respectively.

The rotation matrix Q about this principal axis is not diagonal now. For instance, taking
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A,, along x3-axis, we have
cos sinf 0
2m
Q=] —sinf cosf 0|, wheref = - #, (2.45)
0 0 1
which is not a diagonal matrix. In this case, the invariance condition (2.30) becomes

more complex. Therefore we diagonalize the matrix in (2.45) and get the orthonormal

basis £ = (%, %,O)T, €@ = (ﬁ, %,O)T and £2) = (0,0,1)T. The resulting diagonal
matrix is
I S )
V2 V2
=| < 1
Q 5 7 0l- (2.46)
0 0 1

let us denote the elastic constants by ~;;x; in this orthonormal basis. The relation (2.30)
becomes

(@) (@) (k) \ D

Vijki = A Yijkl (2.47)

By converting back to the constants c;;r;, we can write
Cijkl = Qinijk:rle'qurs (2'48)

Use of relation (2.37) leads us to the following matrix form for the trigonal materials [40]

c11 €12 €13 Cl4  —C5 0
cl12 €11 €13 —Cl4  C25 0
c13 €13 €33 C34  C35 0
Cap = . (2.49)
cta —cuu 0 cas g5 C25
—co5 c25 0 cas cu C14
0 0 0 Co5 Cl14 %

Similarly, for tetragonal materials, we have

ci1 c2 c3 0 0 cp
ci2 c1 caz 0 0 —cp
s = ci3 ¢z e 00 0 (2.50)
0 0 0 cgqa O 0
0 0 0 0 cuq 0
cig —cig O 0 0 C66
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and for hexagonal materials, the matrix form becomes

ci1 ci2 ci3 0
ci2 c11 ci3 O
c13 c13 ¢33 0

0 0 0 C44

Cop = (2.51)

o o o O
o o o o

0 0 0 0 Cyq4 0

0 0 0 0 0 cusa
2.6 Cowin-Mehrabadi Theorem

At a point in an elastic material, a plane with respect to which the material has reflective
symmetry is said to be a plane of symmetry. This section is devoted to the identification
of material symmetry for an anisotropic elastic material. That is, given form of ¢;;;; for
an elastic material relative to an arbitrary coordinate system, which of the traditional
elastic symmetries it belongs. To solve this problem, we need to find the orientation of the
traditional symmetry elements. Mehrabadi and Cowin [28] have proved a Theorem which
determines the orientations of the plane of symmetry of a given c;;; relative to arbitrary

coordinate system.

Theorem 2.2. A set of necessary and sufficient conditions for a unit vector n to be a
normal to a plane of symmetry is that it should be a common eigenvector of the following

tensors

Uij = cijiks
Vij = Cikjk,
Wir(n) = cijrmnjng,

Wir(m) = c;jmimy;

where m is any vector perpendicular to n.

Proof. For necessity of these conditions we have to show that n is a common eigenvector
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of above four tensors satisfying the following equations

CijkkTj = (CpgrrTipha)i; (2.52)
Citkink = (CpgrgMpny )N (2.53)
Cijkinjung = (CpgrsMpMgMrTis )N (2.54)
CijklM N = (CpgrsNpMgNrMis ). (2.55)

To prove (2.52) we multiply both sides of (2.30) by n;

Cijring = QipQiqQurQisCpgrsnj
= Qip(Qjqnj) Qrr QusCpyrs-
Using (2.35)
Cijkinj = —QipQrr QusCpgrsng,
when [ = k,
CijkkNj = —QipQrrQrsCpgrsny,

Since @ is orthogonal, so we have

ri ka = 57’5

and

CijkkTyj = _Qip5rscpqran
= —QipCpgrrng
= —(8ip — 2ninp)Cpgrrng

= —CigrrTg + 2CpgrrniNpng.
As q and r re dummy indices, so we can write
CijkkMj = —CigrrNgq + 2Cpq7'7“ninpnq~

This implies that
CijkkTj = (CpgrrTipng)ni.
Which proves (2.52). Similarly (2.53)-(2.55) can be proved by applying the same procedure

as above [28]. In chapter 4, we shall present a simpler argument to prove the above result.
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To prove sufficiency of the conditions, let 1 = 0 is a plane of symmetry so that

n; = 0;1,

m; = 00 cos6 + d;3sin 6,

31

(2.56)

(2.57)

where, 6 is an arbitrary constant. As the equations (2.52)-(2.55) are satisfied, using (2.56)

into (2.52)-(2.54), we have
Cijkkfs’il = (Cpqrr5p15q1)5i17
this implies that

Cilkk = C11r70i1-

For i = 1, equations (2.52)-(2.55) are trivially satisfied. For i = 2,3, we have

co1kk = 0 = c31kk

or
C2111 + C2122 + 2133 = 0 = ¢3111 + ¢3122 + C3133
or
c16 + c26 + c36 = 0 = c15 + 25 + C35
and

Cilk10i1 = Cpqrq5p15r16i1
this implies that
Cin110i1 = C1q1¢0i1-
For i = 2,3, we have
et =0 = c3u
or
C2111 + C2212 + 213 = 0 = ¢3111 + €3212 + C3313

or

c16 + c26 + ca5 = 0 = c15 + c46 + C35.

Also we have

Cijk10j10110k1 = CpqrqOp10r10510;1

(2.58)

(2.59)
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this implies that

Ci111 = C11110:1-

Fori = 2,3, we have

c2111 = 0 = c3111

or

c16 =0 =cy5. (2.60)
Now substitute (2.57) into (2.55), we have
Cijkl (042 cos 04083 5in 0) (652 cos 0403 5in 0)0x1 = CpgrsOp1 (dg2 €08 04043 5in 0) 0,1 (92 cos O-+ds3 sin )61
this implies that

Cio2 cOS> 0 + Ciogg cos 08in @ + ;512 cos 0sin 0 + ¢i312 sin 6 cos O + ¢;313 sin® 0

= (1212 €082 0 + 1913 cos 0sin 0 + c1312 cos 0sin O + 1312 sin 0 cos 6 + c1313 sin® 0)d;1.

For 0 = 0, 5 and for arbitrary value, respectively, we have

ci212 = 1212041
€i313 = €13130i1

(Ci213 + Ci312) cosfsinf = (61213 + Ci312) cos 0 sin 06;1.
For 6 # 0, 7 the above equation becomes
Ci212 + Ci312 = C1213 + Ci312-

Fori = 1, the above equations are satisfied. For i = 2,3, we have

co212 = 0 = 3212
or
co6 =0 =cyp

and

€2213 + 2312 = 0 = 3213 + €3312
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or

co5 + c46 = 0 = c45 + c36. (2.61)

From (2.58)-(2.61), we have
€26 = C46 = C45 = €35 = €25 = C36=0- (2.62)
As the equations (2.56)-(2.60) are the special cases of (2.52)-(2.55) if unit normal vector
n is along xq-axis, hence n is normal to the plane of symmetry. If z1 = 0 is a plane of
symmetry, we have
C15 = €16 = €25 = €26 = C35 = C36 = C45 = C46 = 0,

which shows that there is a plane of symmetry. O

2.6.1 Modified Cowin-Mehrabadi Theorems

Mehrabadi and Cowin [29] have shown that only the last two conditions, that is, (2.54)
and (2.55) are necessary and sufficient for n to be a plane of symmetry. Though conditions
(2.52) and (2.55) or (2.53) and (2.55) are also necessary and sufficient conditions for n to
be a plane of symmetry. Ting [41] has therefore modified the Cowin-Mehrabadi Theorem

2.2, whose statement is given as

Theorem 2.3. An anisotropic elastic material with given elastic stiffnesses c;ji has a
plane of symmetry if and only if n is an eigenvector of (i) Q(n) and Q(m), (i) U and
Q(m), or (i) V and Q(m). The vector n is normal to the plane of symmetry while m is

any vector on the plane of symmetry.

But it is not suitable to determine n by Theorem 2.3, because the matrix @ (m) depends
on m which, in turns, depends on n. Therefore Ting [41] has stated another Theorem which

is more useful for determining n.

Theorem 2.4. An anisotropic elastic material has a plane of symmetry if and only if the

normal n to the plane of symmetry is a common eigenvector of U and V and satisfies

CijklMiNiNEN ) = 0 (2.63)

CigklM M ;meEn; = 0 (2.64)
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for any two independent vectors m(®) (o = 1,2) on the plane of symmetry that don’t form

an angle a multiple of 5.

2.6.2 Generalized Cowin-Mehrabadi Theorems

Ting [30] has generalized Cowin-Mehrabadi Theorem 2.2 in the form of several simplified
versions. He has shown that there is no need to satisfy (2.55) for any m. In the following
consecutive Theorems we will see the different cases of Ting’s generalization of Cowin-

Mehrabadi Theorem 2.2 :

Theorem 2.5. A necessary and sufficient condition for n to be normal to a symmetry

plane is that n be an eigenvector of U, V, Q(n) and Q(m) for any one m.

Theorem 2.6. A necessary and sufficient condition for n to be normal to a symmetry

plane is that n be an eigenvector of U, V, and Q(m) for any two distinct m.

Theorem 2.7. A necessary and sufficient condition for n to be normal to a symmetry

plane is that n be an eigenvector of U, Q(n), and Q(m) for any two distinct m.

Theorem 2.8. A necessary and sufficient condition for n to be normal to a symmetry plane

is that n be an eigenvector of V, Q(n), and Q(m) for any two distinct nonorthogonal m.

Theorem 2.9. A necessary and sufficient condition for n to be normal to a symmetry
plane is that n be an eigenvector of U, V or Q(n) and any eigenvector of Q(m) for any

three distinct m.

2.6.3 Cowin-Mehrabadi Theorem for an axis of symmetry

A vector, p, is called an n-fold axis of rotation or an axis of symmetry, A, if a crystal
is invariant with respect to rotation through an angle 27” The tensor Q associated with

rotation of a rigid body about an axis p by an angle 6 is given by
Q=1I+5sinf P+ (1—cosh) P? (2.65)

where the tensor P = (P;;) is defined as Pj; = —¢&;jkpr and I denotes the unit tensor

di; [42,43]. Ahmad [31] has used the above properties to show that a vector parallel to
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an axis of symmetry must also satisfy the four conditions, (2.52)-(2.55) of the Cowin-
Mehrabadi Theorem. In the following Theorem, he has shown that p shares with n three

conditions, (2.52)-(2.55) out of four given in Theorem 2.2.

Theorem 2.10. A necessary condition for a vector p to be an axis of symmetry is that it

is a common eigenvector of U, V and W (p) as defined in theorem 2.2.

Ahmad [31] has also shown that an axis of rotational symmetry is normal to the plane of
symmetry except in the case of trigonal materials. This result can be seen in the following

Theorem

Theorem 2.11. A necessary and sufficient condition for an axis of symmetry A, to be a
normal to a plane of symmetry is that n be an even integer i.e n =2, 4 or 6. Thus As is

the only axis of symmetry which is not normal to the plane of symmetry.

If we want to verify whether or not a vector is normal to a plane of symmetry, we need
to satisfy the four conditions (see Theorems 2.2-2.9). On the other hand if we want to
verify whether or not a vector is an axis of symmetry, is relatively simple. We can observe

this in the following Theorem [31].

Theorem 2.12. A sufficient condition for a vector p to be an axis of symmetry is that it

is a common eigenvector of U and V corresponding to a nondegenerate eigenvalue.

2.7 Piezoelectricity

Piezoelectricity is a property of materials which converts mechanical energy and electrical
energy into one another. If a mechanical force is applied to a solid material and it becomes
electrically polarized and if an electric field is applied, it becomes mechanically deformed,
the solid is said to be piezoelectric. The former effect is called direct effect and the later
one is called inverse effect. The third order piezoelectric tensor can be emerged from the

following relation (see [44,45])
D=eS+ecFE — D; = eiijjk + EijEj, (2.66)

where D is the electric displacement, E is the electric field vector, e is the third order tensor

of piezoelectricity or piezoelectric tensor and ¢ is the second order dielectric permittivity
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tensor at null strain field. The piezoelectric constants e;;x relate changes of displacement
D; to strain Sj; in the solid provided the electric field held constant, so that

oD;

o , 2.
el]k asjk’E ( 67)

piezoelectric constants e;j;, can be expressed in units of C'/ m?. As we know that the strain
tensor is symmetric, i.e., Sj; = Si;, therefore the piezoelectric tensor e;j; is symmetric

with respect to the last two indices j and k, so that
€ijk = €ikj, (2.68)

which reduces the number of independent components from 27 to 18. Indeed the last two
indices j and k, form a pair which can only take six distinct values represented by the

number a. These are numbered 1 to 6 as follows:
(11) <> 1,(22) <> 2,(33) <> 3,(23) <> 4,(13) <> 5,(12) < 6.

Thus
Cia = €ijk, 1 = 1,2,3, a = (j, k) =1,2,...,6. (2.69)
Then the matrix form of the piezoelectric tensor is
€11 €12 €13 €4 €15 €l
(ia) = | €21 €22 e eu ez exp |- (2.70)

€31 €32 €33 €34 €35 €36
2.7.1 Effect of material symmetry on piezoelectric constants

The number of independent components of piezoelectric tensor (piezoelectric constants)
can be further reduced if the crystal possesses one or more symmetry elements. The trans-

formation associated with inversion in a center of symmetry has the matrix representation

@)= o -1 0o [ (2.71)

Invariance under this transformation leads to the vanishing of every component of a third

rank tensor, because

eijk = QilQjmQrnCimn
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or
eijk = (—1)eii,
or
ek = 0.
Thus there is no piezoelectricity in any of the centrosymmetric crystals.
A material is said to have point symmetry group m if it possesses a single plane of symmetry

M. We choose the coordinate axes so that the xz-axis is normal to M. The transformation

matrix associated with the reflection in M is

10 0
Qj)=101 0 |- (2.72)
00 —1

A tensor, T;; of rank 2, associated with the material will satisfy the equation

Ty = Qinqupqv

with the result that any component with the subscript 3 appearing once will vanish. Thus

T T2 O
(Tij) = T21 T22 0 (2'73)
0 0 T3s3

Same reasoning applied to the piezoelectric tensor e;;; indicates that any component having
one or three indices equal to 3 must vanish. Making use of the symmetry in the last two
indices i.e. e;;1, = €;5, we can use the two index notation to write the matrix representation

for the tensor as follows

e;1 ez e;3 0 0 e
(€ia) =] €21 e ez 0 0 e (2.74)
0 0 0 €34 €35 0
where ej3 = e133, €34 = e323 = e332 etc. In (2.74) we follow the usual convention that

Latin indices take values 1, 2,3 and Greek indices take values 1, .., 6.

A crystal which is symmetric with respect to rotation through an angle 7 is said to have
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the point symmetry group 2. With the x3-axis chosen parallel to the axis of symmetry,

the piezoelectric tensor for this crystal has the following representation [46,47]

0 0 0 €14 €15 0
(eia): 0 0 0 ey ey O . (2.75)

Similarly, for class 222, we have

0 00 eq O O
(ia) =] 0 0 0 0 eps 0 [, (2.76)
000 0 O es
for class 2mm,
0 0 0 0 e5 O
(Cia)=] 0 0 0 ey 0 0 (2.77)
ez1 ez ez 0 0 O
and for classes 4 and 6,
0 0 0 ey es O
(eia)=] 0 0 0 e —es 0 |- (2.78)
es1 €32 esz 0 0 O

The matrix forms of piezoelectric tensor for the remaining crystal classes (out of 32) can

be found in [47].

2.8 Young’s modulus

Young’s modulus F(n) for an elastic material is the ratio of the uniaxial stress applied
along the direction of a unit vector n to the longitudinal strain in the direction n.

If 011 # 0 and all other components vanish. For this Generalized Hooke’s law gives us

€11 = S1111011

= 511011

This implies that

1
Young’s modulus = au_ - (2.79)
11 Su
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If we apply uniaxial stress on;n; in an arbitrary direction specified by a unit vector n then
we can write

055 = Unmj

This will create a strain in the material. The component of strain tensor ;; in the direction
n is
Eijning
Young’s modulus = E(n) = A 7
EigNiN) O SijkIMiNNENY
1

FE = 2.80
(n) SigklTiN T ( )

For convenience, we usually take the reciprocal of F(n) as

1

m = SijkiM; T NET . (2.81)

2.8.1 Expression of Young’s modulus for general anisotropic (triclinic)

materials

Using s, as the contracted notation of s;;; the 6 x 6 matrix s,g is symmetric. The 6 x 6

matrix for elastic compliances, s, for general anisotropic (triclinic) materials has the form

S11 S12 S13  S14  S15  S16
S12 S22 823 S24 S25 526
$13 S23 S33 S34 S35 S36
5= . (2.82)
S14 S24 534 S44 S45  S46

815 825 835 845 S55 S56

516 526 S36 S46 S56 566

The full expression of Eq.(2.81) becomes

1 4 4 4 2,2
m =811M7 + S22M5 + S33n3 + (844 + 2823)”2”3

+ (555 + 2513)%%%% + (566 + 2812)12%11%
+ 2712713[(814 =+ 856)71% + 82477,% =+ 83477%]
+ 2n3n1[s15n7 + (825 + S46)13 + S35713)]

+ 2n1no [81671% + 82671% + (836 + S45)TL§] (2.83)
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This expression is same to that obtained by Ting [48-50]. The expressions of % for
a particular class of anisotropic materials can be obtained from this expression by using
corresponding matrix of compliances in each case. The following is an example for cubic

materials.

2.8.2 Expression of Young’s modulus for cubic materials

The 6 x 6 matrix of elastic compliances, s,g for cubic elastic materials has the form

s11 s12 si2 0
s12 s11 s12 0

s12 s12 su1 0O
(2.84)

o o o O

0 0 0 S44

o o o o o

0 0 0 0 sy

0 0 0 0 0 S44

therefore for cubic materials Eq.(2.83) reduces to

1

m = snni1 + snn% + snné + (844 + 2512)71%71% + (844 + 2312)n§n% + (844 + 2512)71%71%

= 311(n‘11 + né’ + n%) + (S44 + 2312)(n§n§ + n%n% + n%n%)

2 2 22 2 9 2 92 2 9
= s11(n7 +nj +n3)” — 2s11(nyn3 + nyni + ning)

+ (844 + 2512)(n§n§ + ngn% + n%n%) (2.85)



Chapter 3

Eigenvectors of a rotation matrix

If a tensor is invariant under rotation about a fixed axis, the matrices representing the
tensor and the rotation commute with each other. The two matrices have common eigen-
vectors, therefore a knowledge of eigenvectors of the rotation matrix provides us with a
fair amount of information about eigenvectors of the tensor. In this chapter, we apply this
result to derive familiar representations of a transversely isotropic tensor of rank 2 and the
elasticity tensor possessing tetragonal symmetry. The assumption of transverse isotropy
immediately leads to the conclusion that the tensor must be diagonal with two elements
equal. Then, we apply this result to the elasticity tensor possessing an axis of tetragonal
symmetry and obtain the classical matrix representation of the tensor. Representation
of the elasticity tensor belonging to a particular symmetry class can be achieved in an
elegant manner. We use this theory to obtain a partitioning of the elasticity tensor into
sets which constitute an associative algebra [32]. This work also reproduces eigenspaces
found by Bona et al. [33,34] in their characterization of the symmetry classes of elasticity
tensors. These examples are an indication of the power of Mehrabadi-Cowin formalism [11]
to approach classical results from a new perspective.

In this chapter, we shall make use of a well-known result of linear algebra which states
that if two Hermitian matrices commute then they can be simultaneously diagonalized.
This means that a set of orthonormal vectors exists, every member of which, is a common

eigenvector of both matrices.

41
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3.1 Eigenvectors of commuting matrices

We first apply Theorem 2.1 to find the eigenvectors of a transversely isotropic tensor of
rank 2 and then apply it to find the same to fourth rank elasticity tensors of isotropic

materials and anisotropic materials of different classes.

3.1.1 Transversely isotropic tensor of rank 2

As an application of Theorem 2.1, consider a symmetric tensor T;; which can be represented

by the matrix

T T Ti3
T= 1Ty Ty To (3.1)
Ty3 Toz T33

The rotation matrix representing a rotation through an angle 6, about zs-axis is

cosf sinf 0
Q= | —sinf cosf 0 (3.2)
0 0 1
Eigenvalues of the matrix @) are

0 —if
1,7 e
and the corresponding eigenvectors of () are

1 1
—(1,4,0)T, —(1,—-4,0)T and (0,0,1)7,
V2 V2

where, T' denotes the transpose. Suppose the tensor T;; possesses transverse isotropy
about xs-axis i.e. it is invariant with respect to arbitrary rotations about the xs3-axis.
This implies T = QTQ~! or TQ = QT, hence the matrix (3.1) has eigenvectors given in
(3.2). Since (1,7,0)” = (1,0,0)7 +4(0, 1,0)7, it follows that both (1,0,0)” and (0,1,0)” are
eigenvectors of the matrix T" belonging to the same eigenvalue while the third eigenvector
is (0,0,1)7. Thus all eigenvectors of T' are found without any appeal to its components.

Let the three eigenvectors of the tensor T along with their eigenvalues, be of the following
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form

>\17 v = (17070)T7
)\2 - )\171)2 == (07 170)T7

)\37 U3 = (0707 1)T
Since viand vy are eigenvectors belonging to an eigenvalue, A1, say, that is, we have

T v = )\1U1 and T Vo = )\11)2,

that is,
Tn T Tz (1 1
Tio Too Toz [ |O|=A1]0
Tz Tos Tz3) \O 0
and
Ty T Tiz) (O 0

Tia Too Ths 1l=M]1
Ti3 To3 133 0 0

This implies that
Tip = A1, Ti2 =Ti3=0 and Tip =T13 =0, Tos = A.

Hence T11 = Ths.
Similarly,
T v3 = A\3v3
that is,
Tn Tz Tws) (O 0
Tio Too Toz | |0 =A3]0
Tig To3 Tzz) \1 1
implies that
T3 = T53 = 0 and T33 = A3.
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We have recovered the well-known matrix representation for a transversely isotropic tensor

of rank 2 [40],
Tiu 0 0
0 T3 O
0 0 Ts3

3.1.2 Tetragonal symmetry

We apply Theorem 2.1 to the elasticity tensor corresponding to a material possessing
tetragonal symmetry. For this we consider the rotation about x3-axis through an angle 6,
which is represented by the following matrix
cosf sinf 0
Q=] —sinf cosf 0],
0 0 1

the corresponding 6D matrix (see section 2.3)

cos? 6 sin? 6 0 0 0 —+/2sin 6 cos b
sin? 6 cos2 6 0 0 0 V/2sin cos 6
N A 0 0 1 0 0 0
Q=Q(0) =
0 0 0 cosf@ —sinf 0
0 0 0 sinf cos@ 0
—V/2sinfcos® +/2sinfcosf 0 0 0 cos? § — sin’ 0

For tetragonal materials, we have 6 = %TW? so that the above matrix becomes

0100 0 O
1000 0 O

. o 0010 0 O

Q) =
0000 -1 0
0001 0 O
0000 O -1

The matrix ¢,g for tetragonal material commutes with the matrix Q(%{) Eigenvalues ~;

of the matrix Q(%T’T) are

Mm=v=Lys=vn=-lLys=1i7%=—1t
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and the corresponding eigenvectors u;, i = 1,..,6, of Q(%T’T) are

u = (0,0,1,0,0,0)7,
uy = (1,1,0,0,0,0)7,
uz = (0,0,0,0,0,1)7,
ug = (—1,1,0,0,0,0)7T,
us = (0,0,0,4,1,0)7,

ug = (0,0,0,—14,1,0)T.

From the pair of eigenvectors u; and ug, we deduce the existence of an eigenvector of ¢,g,
of the form

ayuy + agug = (az,az,a1,0,0,0)" = az(1,1,22,0,0,0)7.
an

Thus we can take v; = (1,1,a,0,0,0)7. An orthogonal vector belonging to the same
eigenvalue can be taken as vs = (a, a, —2,0,0,0)7. Similarly from the pair of eigenvectors

uz and u4, we can write
_ T _ —asg.\r
asus + aqug = (—(],4,(14,0,0,0,&3) - _a4(17 —1,0,0,0, a ) .
4

We may take v3 = (1,—1,0,0,0,b)” and as an orthogonal vector belonging to the same
eigenvalue we can take v4 = (b, —b,0,0,0, —2)T. The eigenvectors us and ug can be written

as

us = (0,0,0,0,1,0)T +4 (0,0,0,1,0,0)" and

ug = (0,0,0,0,1,0)7 —4(0,0,0,1,0,0)T,

respectively. From this we conclude that ¢,z will have a degenerate eigenvalue with eigen-
vectors vs = (0,0,0,0,1,0)” and vg = (0,0,0,1,0,0)”. Thus the six eigenvectors of an

arbitrary tensor possessing tetragonal symmetry, along with their eigenvalues, are of the
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following form

A1, v = (1,1,a,0,0,0)7T,

Ao, v2 = (a,a,—2,0,0,0)7,

A3, v3 = (1,—1,0,0,0,b)T,

M\, vg = (b,—b,0,0,0,-2)T,
X5, vs = (0,0,0,0,1,0)T,

¢ = A5, v6 = (0,0,0,1,0,0)T. (3.3)

Bona et al. [33, Eq. 39] found the above representation by a different method. The vectors
vy, @ = 1,..,6 are mutually orthogonal. The reason for the first four eigenvalues being
distinct will be given later. Multiply the vectors by suitable constants in order to normalize
them. Denote the orthonormal vectors by w;, ¢ = 1,..,6. The spectral decomposition of
the matrix is given by )

¢ = Z Nwgw! (3.4)

i=1

The above representation contains two parameters a, b and five eigenvalues. These are the
seven parameters required to completely specify a tensor possessing tetragonal symmetry.
However in a coordinate transformation the eigenvalues remain invariant and only a and
b will change.
We shall now use the eigenvectors vy, .., vg to deduce the classical 6 x 6 matrix representation
for an elasticity tensor having tetragonal symmetry. Since vs and vg are both eigenvectors

of ¢, belonging to the same eigenvalue, it follows that

¢ V5 = )\57)5

¢11 €12 €13 Cia C15 Cig 0 0

Cl2 Cap €23 Co4 Co5 Cop 0 0

C13 C23 €33 €34 C35 C36 0 0
= )\5

Cla Coa €34 Ca4a Ca5 Cap 0 0

Cl5 Co5 €35 C45 Cs5 Cs6 1 1
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Cl5 = Cg5 = Co5 = Co5 = C56 = 0, 55 = A5

and
¢ Vg = /\51]6
€11 €12 €13 Ci4 C15 Cig 0 0
Cla G2 C23 Cq4 Co5 Cog 0 0
€13 C23 €33 C34 C35 C36 0 0
— s
Cla Co4 C34 Caq Ca5 C4p 1 1
C15 Co5 €35 Ca5 Cs55 Cs6 | | O 0
€16 C26 C36 C46 Cs56  Co6 0 0

Cl4 = Co4 = C34 = C45 = C46 = 0, C4q = 5.

Which implies that ¢44 = é55. Since v; is an eigenvector belonging to an eigenvalue, Aq,

say, that is, we have

C v = /\11]1
€11 €12 €13 Cuu C15 Cig 1 1
C12 Cop C23 Coq C25 Cog 1 1
C13 Co3 C33 C34 C35 C36| |a a
-\

Cla Co4 C34 Caq Ca5 Cap 0 0
C15 Cos €35 Ca5 Cs55 Cse | | O 0
C16 C26 C36 Ca6 Cs6  Ce6 0 0

C11 + C12 + €13 a = A,

Cl2 + €2 + Co3 @ = Ay,

C13 + C23 + €33 a = M\,

Cla + €24 + ¢34 a =0,

15 + é25 + ¢35 a = 0,

C16 + Cog + €36 a = 0. (3.5)

The fourth and fifth equations of (3.5) are trivially satisfied. The first two equations imply

(G11 — C22) + (€13 —¢23) a =0 (3.6)
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Similarly, for vy, we can write

c Vo = )\2112
€11 C12 €13 €14 C15 Cig a a
Cl2 Co2 (o3 Coq Co5 Co6 a a
C13 C23 (33 C34 C35 C36 -2 -2
= A\

Cla Co4 C34 C44 C45 Cap 0 0
C15 Co5 €35 C45 Cs5 Cs6 0 0
¢16 C26 C36 Ca6 Cs6  Co6 0 0

c11a + ¢i2a — 2¢13 = Aaa,

C1oa + Co9a — 2693 = Aaa,

C13a + Caga — 2633 = —2A9,

¢14a + Coga — 2¢34 = 0,

C15a + Co5a — 2¢35 = 0,

C16a + Coga — 2¢36 = 0. (37)

Again the fourth and fifth equations of (3.7) are trivially satisfied. The first two equations

imply

a(éll — 622) — 2(613 - 625) =0 (38)
The determinant of the system of equations (3.6) and (3.8) is

1 a 9
:_(2_'_&)#07
a —2

therefore ¢11 = ¢ and ¢éo3 = ¢é13. The last equation of (3.5) combined with the corre-

sponding equation (3.7) yields the system
(16 + ¢26) + C36 a =0, (3.9)

a(é16 + Ca6) — 2636 = 0. (3.10)
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Again the determinant of the system of equations (3.9) and (3.10) is

1 a 9
— —2+a?) £0,
a —2
therefore ¢1g = —¢96 and ¢3¢ = 0. We have recovered the well-known matrix representation

for an elasticity tensor which possesses an axis of tetragonal symmetry

C16

—C16

(3.11)

o>
Il

0 0 0 cCaa
0 0 0 0 éu O

C16 —616 0 0 0 666
Eigenvalues of ¢,z

Since we know the eigenvectors of the matrix (3.11), finding eigenvalues is an easy task.
In order to find the eigenvalues corresponding to the eigenvectors viand vo, divide the first

equation of (3.5) by the third one, we get

C C c 1
tuntcetaga 1 (3.12)

2¢13 + C33a a

where we have made use of the fact ¢13 = ¢23. The parameter a is found by solving the

quadratic equation

¢130% + (611 + ¢12 — é33)a — 2613 = 0, (3.13)
That is
_ —(811 + é12 — é33) £ /(€11 + é12 — C33)% + 8634
2¢13 .
Note that
1 A 5 . A . 5 \2 2
SYON —(é11 + €12 — ¢33) + \/(011 + C12 — ¢33)% + 8¢,
C13
1 o .
T —(¢11 + ¢12 — ¢é33) — \/(611 + C12 — €33)% + 8¢5
2013
1

= Kfs((éll + é1g — 33)% — (\/(511 + é12 — é33)2 + 8¢63,)?

1 . R R . R . .

= @((611 + C12 — 033)2 — (€11 + €12 — 033)2 - 86?3)
13

= -2

)
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that is, the product of the two roots of (3.13) is —2, independent of the material constants.

Now the first pair of equations (3.5) now yields

11 + G12 + E33 £ \/(C11 + G12 — é33)2 + 863,

Mo = 5 (3.14)
To simplify it, we define tan o by means of
é11 + 12 — ¢33 = V8éi3tana
then (3.14) simplifies to
A2 = C33 + \/ﬁélg(tan a £ seca) (3.15)

The above expression differs slightly from the one reported in [11, Eq. (5.10)] which reads
)\172 = (33 \/5613(1:811 o + sec a)

The vectors v; and vy belong to the eigenvalues obtained from (3.14) by choosing the
upper and the lower sign respectively. Similarly, to find the eigenvalues corresponding to

the eigenvectors vs and vy, we can write

¢ V3 = )\3’03
C11 €12 €13 Ci4a Ci5 Ci6 1 1
Cl2 Co2 €23 C24 Co5 Cog -1 -1

C13 €23 €33 C34 C35 C36
Cla Co4 C34 Caa Ca5  C46

C15 C25 €35 C45 C55 Csp

>

>
= o o [an)
= o ) [an}

Ci6 C26 C36 Ca6 Cs6 Coo

¢11 — C12 + Ci6b = A3,
C12 — Co2 + Cogb = — A3,
€13 — €23 + 360 = 0,
C14 — Coq + 460 = 0,
¢15 — Co5 + G560 = 0,

C16 — Cog + Ceeb = bAs. (3.16)
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Making use of first and last equation of (3.16), we get

¢11 —Cia+cigb 1

2016+ Cogb b (3.17)
where we have made use of the fact ¢og = —¢16. The parameter b is found by solving the
quadratic equation

é160% + (611 — é19 — é66)b — 2616 = 0, (3.18)

That is

—(é11 — é12 — ¢66) £ 1/(G11 — G12 — Ge6)2 + 882,

b=
2¢16

Again the product of the two roots of (3.18) is —2, independent of material constants. The

first pair of equations (3.16) now yields
A3.4 = é66 + V2¢16(tan B = sec B)

where é17 — ¢12 — é66 = V/8¢16tan 3, in agreement with eigenvalues reported in [11]. And
the eigenvalues correponding to the eigenvectors vs and vg are ¢44 and ¢44, are exactly the

same to those reported in [11].

Degeneracy

Since v; = (1,1,a,0,0,0) and vy = (1,1, —%,0,0,0) are both eigenvectors of the matrix
(3.11). Assume that both of these eigenvectors have the same corresponding eigenvalue,
A, say. That is,

¢ vy = A1 and ¢ vg = Avg.
This implies that
11+ G2+ 3 a= A,
C12 + G2 + Co3 a = A,
¢13 + Co3 + C33 a = Aa, (3.19)
and
. . 2.
C11 + C12 — LG8 = A,
. . 2,
C12 + Ca2 — SC23 = A,

2 2
¢13 + o3 — 5@33 = —5)\- (3.20)
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Using the first equations of (3.19) and (3.20),
R 2,
¢13a + —¢13 = 0,
a
613((12 + 2) = O,

Which holds only if ¢;3 = 0. But this condition fails to hold. Therefore the two eigenvalues
will be distinct. A similar argument applied to vz and v4 shows that since ég # 0, the
corresponding eigenvalues will be distinct. A similar situation prevails in other classes of
crystal symmetry. Thus a degenerate real eigenvalue of the rotation matrix implies non-
degenerate eigenvalues of the elasticity tensor. On the other hand we have already observed
that a non-degenerate complex eigenvalue of the rotation matrix leads to degeneracy in

the elasticity tensor.

3.2 Representation of elasticity tensors

Let the matrix ¢ satisfy the following eigenvalue equation
évi = )\ivi, 1= 1, ...,6.

Since ¢ is a positive definite symmetric matrix, a set of orthonormal vectors {vi}?zl exists

and \; > 0,47 =1,...,6. Define
E; = v;v!, no summation on 1, (3.21)

where ¢ has the representation

6
¢=> NE (3.22)
i=1
It is easy to see that F; satisfy
EE; =0,i# ] (3.23)
E}=FE;, i=1,..,6 (3.24)

where I denotes the unit matrix of order 6. The representation (3.22) has the merit of

reducing the calculation of powers and products of ¢ to trivial calculations. For example

6

@F =D NE; (3.26)

=1



CHAPTER 3. EIGENVECTORS OF A ROTATION MATRIX 53

6
@ "= N"E (3.27)
=1

and if
6
&= ik, (3.28)
i=1
then
6
661 = Z )\l/,LZEl (3.29)
i=1

Representation (3.22) of a matrix is also useful in defining the logarithm of a matrix,

6
Log ¢= Z In Aol (3.30)
i=1

which in turn, may be employed to endow a metric space structure to a class of matrices
[56].

Walpole [32] has defined an algebra of fourth-rank tensors and has defined fourth-rank
tensors F; in terms of components of mutually perpendicular unit vectors a, b and c. These
tensors, for various crystal classes, are designed in such a manner as to satisfy counterparts
of equations (3.23)-(3.25), hence they yield a representation in the form of (3.22). The
task is made much easier in the Mehrabadi-Cowin formalism. We utilize the theory of
previous section and construct matrices E; from our knowledge of eigenvectors of the

matrix associated with the elasticity tensors pertaining to a particular crystal symmetry.

3.2.1 Cubic materials

The matrix representation ¢ of the elasticity tensor for cubic materials has the following
form
¢11 G2 ¢z 0

Cl2 ¢ ¢i2 0

o>
|

0

0

¢i2 ¢2 ¢n 0 0
0 0 0 ¢4 O
0 0 0 0 ¢G4

0 0 0 0 0 cu
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Let A1, Ao, ..., Ag be the eigenvalues of ¢. These eigenvalues and the corresponding eigen-

vectors of ¢ can be find as follows

1

A= éu 42800 = (L L, 1,0,0,0)7,
Ay = ¢ — € —1(11 2,0,0,0)
=cC — C12,V2 = y Ly T 4y Uy Uy )
2 11 12,02 \/6
1
A3 = Ao,v3 = —(1,—1,0,0,0,0)7,
3 2,U3 \/§( )

Mg = A5 = g = Cua,

vg = (0,0,0,1,0,0)T,

vs = (0,0,0,0,1,0)7,

ve = (0,0,0,0,0,1)7 (3.31)

Equation (3.22) becomes

¢=ME1 + \o(Ey + E3) + \(Fy + E5 + Eg)

= MF1 + Mo Fy + A\ F3 (3.32)
where
1 111000
1 111000
1 1 1 1 110 00
F1=E1=01v{:§ (1 1 1 00 O)Zg ;
0 000 O0OO0OTG O
0 00 0 O0O0TO O
0 000 O0O0OTG O
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Fy=Fy+ FE3 = 1}2?}; + ’Ug’l)g

1 1
1 —1
1] —2 1| O
=60<11—2000)+20
0 0
0 0
2 -1 -1 0 0 0
-1 2 -10 00
1| -1 -1 2 000
_5000000
0 0 0 00O
0 0 0 000

and

Fs=FE4+ FE5+ FEg = U4UZ + 1)51}%1 + vﬁvg

0 0
0 0
0 0

= (000100)-1— (000010)+
1 0
0 1
0 0
000O0O0© O
0 00O0O0O© O

_ 00 0O0O0GO

- 000100
000O0T10PO0
00 0O0O01

o o o o O

95

(1—10000)

(OOOOOl)

The matrices Fi, Fo and F3 are the same as the matrices J , K and L which are the

notations of Norris [57] and Walpole [32]. We note that the representation (3.32) of the
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tensor ¢, is an invariant representation which characterize the cubic materials.

3.2.2 Isotropic materials

For isotropic materials the matrix ¢ has the form

¢11 G2 C12 0 0 0
¢12 C¢11 G2 0 0 0
. C12 Ci2 C11 0 0 0
o 0 0 0 ¢1—¢io 0 0
0 0 0 0 €11 — €12 0

0 0 0 0 0 €11 — C12

which is easily seen to have the following eigenvalues

A1 = C11 + 2¢12

A2 = A3 = A4 = A5 = A\¢ = C11 — C12,

and the corresponding eigenvectors v;, i = 1,...,6, are the same as given by (3.31). But
the eigenvectors vs,...,vg belong to the eigenvalue ¢44 which becomes five fold degenerate.

Now the matrix ¢ has the representation
¢ =MEF + X\ Fy (333)
where

Fy=Fy+FE3s+ Ey+ E5 + Eg = UQU2T + U3U§U4’UZ + v5v5T + vgvép

2 -1 -1 0 0 O

-1 2 -1 0 00

1] -1 -1 2 0 0 0
3 0 0 0 300
0O 0 0 030

0 0 0 020 3

It can be easily shown that F1Fy = 0, F12 = Fq and F42 = Fy. Also B4 + Fy = 1.
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3.2.3 Transversely isotropic materials or hexagonal materials

The elasticity tensor which is invariant under rotation about x3-axis, through an arbitrary
angle is said to possess transverse isotropy with respect to xz-axis. If 8 is arbitrary, the

matrix Q has the following eigenvalues and eigenvectors

1, (0,0,1,0,0,0)7,

1
1, — (1,1,0,0,0,0)T,
\@( )

i 1
’\/é

o 1
61077(070’ 05 ia 17 O)Ta
V2

. 1
6_2105 (Z7 _ia 07 Oa 07 1)T>
3
o 1
246 .. T
e, —(—1,1,0,0,0,1 3.34
75 ) (334

It is clear that the matrix ¢ for transversely isotropic materials or hexagonal materials has

(07 07 07 71’7 17 O)Ta

the following eigenvectors

1
)\17 V1 = 7(171aa707070)T7
2 + a?
1
Ao, vg = ———(a,a,—2,0,0,0)7,
N )
1
A3, v3 = —=(1,-1,0,0,0,0)",

V2
A = A3, vg = (0,0,0,0,0,1)7,

A5, v5 = (0,0,0,1,0,0)T,
¢ = A5, v = (0,0,0,0,1,0)7, (3.35)

The above representation is equivalent to Eq. (19) in [33]. Matrix ¢ for a transversely

isotropic materials or hexagonal materials has the following representation
¢=ME1 4+ XoEy + A3(E3 + Ey) + \s(E5 + Eg) (3.36)

where F;, i = 1,...,6 have been defined in (3.21). Expressions for these matrices can be
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written as
1
By =v0f = —
1= 00 2+ a?
1
Ey—=vovl = — =
2702 Ty o2

FEs+ E4 = 1)31)%1 + 1)4UZ

DOl —
N[ =

N[
N[

o o o O
o o o o

o o O

o o o o o o

1
V2

o o o o o o

(aa—2000)_

o o o o o o

o o o o

o o o o o

o o O

4+ 202

(1—10000)—1—

o o O

o o o o o

58
0 00
0 00
0 00
0 00 7
0 00
0 00
(3.37)
a? —2a 0 0 0
a®2 —2a 0 0 0
—2¢ 4 0 00
0 0 00 0
0 0 000
0 0 000
(3.38)
<O 0000 1)
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and
0 0
0 0
T T 0 0
Es + Eg = vsv5 + vevg = , <000100)+ . (000010)
0 1
0 0
00 0O0O0O 0
00 0O0O00O0
000O0O00O0
- 000100
000O0T1O0
00 0O0O00 0

From (3.36) it is easy to verify familiar relations between the components of a transversely
isotropic tensor or hexagonal tensor. For example, any component ¢;;; with an odd number

of 1, 2 or 3 vanishes. Moreover

Al AQGQ 1
.
2+a2+4+2a2+2 3

C11 = Co2 =
Ce6 = A3 = C11 — C12,

C4q = C55 = As,
Ala 2A2a
24a?2 4+ 2a%

C13 = Co3 =

Thus we can write the following familiar matrix representation of the elasticity tensor for
transversely isotropic materials or hexagonal materials

¢i1 ¢z 3 0
¢i2 ¢11 a3 0
¢i3 Ci13 ¢33 0

0 0 0 cu

o>
Il

0 0
0 0
0 0
0 0
0

0 0 0 0 céu

0 0 0 0 0 ¢i1—=én
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3.2.4 Tetragonal materials

We try to find the familiar matrix representation ¢ of the elasticity tensor for tetragonal
materials, alternatively. For this, let \;,7 = 1,2, ...6, be its eigenvalues. For tetragonal ma-
terials @ = 7, therefore the matrix Q(%) and ¢ have common eigenvectors. The eigenvectors

corresponding to A; are as given in (3.3). The tensor ¢ has the following representation
c=MFE1 + NoEy 4+ M3E3 + M\ By + )\5(E5 + EG) (3.39)

where E; and Fs are the same as given respectively by (3.37) and (3.38), while rest of the

matrices are as follows

1 1 1000 b
~1 ~1 1 00 0 —b
By = vl = ’ (1—1000b)= veruud
2407 2401 o 90 000 o0
0 0 0 000 0
b b —b 0 0 0 b
b 2 b2 0 0 0
—b - ¥ 0 0 0
1 0 1 0 0 000
E4=v4v2=m . (b—bOOO—z)Zm C 0 00y
0 0 0 000
—2 2 2 0 0 0
0 000000
0 000000
. 0 000000
Es = vsv5 = (000010)2
0 000000
1 000010
0 000000

—2b

_ O O O
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and
0 000000
0 000000
0 000000
Eg = vevg = (0001oo)=
1 000100
0 000000
0 000000

It is easily verified that By + ...+ Eg = I and E;E; = 0,i # j and E? = E;. Also the
familiar relations between the components of a tensor with tetragonal symmetry (see 3.1.2)

are easily verified. For example

R R )\1 )\2(12 )\3 )\452
== T e T oy T a2
. Azb A4b .

Cl6 =53 "o G

Ca4 = C55 = A

Also
P N 24
2402 24052

Ce6 =

Thus the element ¢gg is a weighted average of the eigenvalues A3 and A4 and will lie between
them. Thus we can write the following familiar matrix representation of the elasticity tensor

for tetragonal materials

i1 ¢z i3 0 0 ¢

¢i2 ¢ a3 0 0 —éie
. |és Gz &3 00 0
o 0 0 0 ¢4 O 0

0 0 0 0 Cy 0

cte —¢ie 0 0 0 Ce6
3.2.5 Trigonal materials

The matrix ¢ representing the elasticity tensor for trigonal materials and the rotation

matrix Q (%”) commute with each other. Therefore both of these matrices have common

2
3

eigenvectors. The eigenvalues of Q(=*) are 1, 1, e 29 Among these eigenvalues et =
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+2i0 _ V3

%“/g and e = # become degenerate. The pairs of eigenvalues and corresponding

eigenvectors of the matrix Q(%ﬁ) are as follow

1, (0,0,1,0,0,0)7,

1
17 7(1’ 17 07 Oa 0’ O)T7

V2
—14+iv/3 1
—;Z\f7 §(i7_7;7070707\/§)T7
—-1+4/3 1
lv 7(0707072.7170)T7
2 V2
—-1—-w/3 1
72[7 7(_7:717070707\/5),117
2 2
—1-iv3 1 T
—, —(0,0,0,—1¢,1,0 3.40
5 g ) (3.40)
Let A\;,i = 1,2,...,6, be the eigenvalues of ¢ and v;,7 = 1,2,...,6, be its eigenvectors

corresponding to \;. The first two eigenvectors of ¢ are the same as these in (3.35) i.e.

1
Mg = ——(1,1,a,0,0,0) 3.41a
1,V1 m( ) ( )
A ! (a,a,—2,0,0,0)T (3.41b)
2 = —F/—==1\a,a, —4,U,U, .
22T Vit 2a?
To obtain v3 and vy we form a linear combination of the third and fourth vectors of (3.40)
ie.
) 0 0 1
—1 0 0 -1
0 ‘ 0 0 10
+ (¢ +1id) = +1
0 { —d c
0 1 c d
V2 0 V2 0
Thus, we can take
1
A3, v3 = ———(1,-1,0,¢,d,0)" 3.41c
P Varag d2( ) (3-41c)
1
M=N3, vg=——ou-"-1A(0,0,0,—d,c,vV2)" 3.41d
4 3, U4 R d2( ) ( )



CHAPTER 3. EIGENVECTORS OF A ROTATION MATRIX 63

as a pair of degenerate eigenvectors of ¢. To obtain vy and vg we form the following linear

combination of the last two vectors of (3.40) i.e.

—1 0 0 —1
) 0 0 1
0 1o o |o

— (e —1f) = +1 ,
0 —1 f e
0 1 —e f
V2 0 V2

provided that it should yield eigenvectors which are orthogonal to the vectors vs as well

as v4. These vectors will be orthogonal if it satisfy
ce +df =2 and cf = de.

This implies that
2c 2d

=oref=are

Thus the pair of eigenvectors vs and vg can be written as

/2 2 2 2
ctd (—1,1,0, > d ,0)T (3.41e)
V2c? +2d? + 4 cz+d?’ 2 4 d?
V2 + d? 2d 2c
A6 = As, Vg = 0,0,0 V)T 3.41f
R NN T ) (3.411)

sy 762+d27_c2+d27
Thus all eigenvectors of ¢ can be expressed in terms of three parameters. The matrix

A5, U5 =

representation of ¢ is as follows

c=MFE1+ NoFEy + )\3(E3 + E4) + )\5(E5 + Eﬁ) (3.42)
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where E; and E» are given respectively by (3.37) and (3.38) and

1
-1
1 0
_ T _
E:s—vgvg—2_|_62_|_d2 . (1 -1 0 ¢ d 0)
d
0
1 -1 0 ¢ d 0
-1 1 0 —¢ —-d 0
1 0 0 0 O 0 0
2+ +d? ¢c —c 0 & cd 0
d —d 0 cd d*> 0
0 0 0 O 0 0
0
0
1 0
Ey = vqvy rrETE| (0 00 —d c \/5)
c
V2
0 00 0 0 0
0 00 0 0 0
1 0 00 0 0 0
24+ g 0 @ —ed -2
0 00 —ecd c2 V2¢
00 0 —V/2d V2¢ 2
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-1
1
2 2 0
_.r__ c+d 2 2d )
Bs=vsts =00 0@ 14| o (_1 L0 e = O
P
2d
c2+d?
0
A+d>  —(P+d’) 0 -2 -2d 0
—(+d* E+d®> 0 2 2d 0
1 0 0 0 o0 0 0
T 52,9724
S I 2 0 g Hp O
4cd 4d?
—2d 2d 0 Sy S0
0 0 0 o0 0 0
0
0
2 g2 0
_r__ c+d 2d 2 )
Eﬁ—U5U5—2C2+2d2+4 2d (0 0 0 212 —CQ+76d2 \/i
L
2c
—ErE
V2
000 0 0 0
000 0 0 0
1 000 O 0 0
=92 2
2¢? 4+ 2d° + 4 00 0 024122 cgiCddQ 2v/2d
000 Fd A 22
0 0 0 2v2d —2v2c 2(c? +d?)

Advantages of new decomposition of elasticity tensor

Throughout this chapter we decomposed matrix representation the elasticity tensor for
isotropic and anisotropic materials in a new form. In the following lines, we give some

reasons which will show that these new decompositions are convenient:
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(i). For the cubic system, the representation (3.33) of the elasticity tensor ¢ contains
three parameters, A1, Ay and A4. These parameters are eigenvalues of the tensor and

these are invariant under a coordinate transformation.

(ii). For a transversely isotropic system, the representation (3.36) of the elasticity tensor ¢
contains five parameters, A1, A2, A3, A5 and a. The first four parameters are invariant

under a coordinate transformation.

(iii). For a tetragonal system, the representation (3.39) of the elasticity tensor ¢ contains
seven parameters, A1, A2, A3, A5, a and b. The first five parameters are invariant under

a coordinate transformation.

(iv). Similarly for a trigonal system, the representation (3.42) of the elasticity tensor é
contains seven parameters, A1, Ao, A3, A5,a,c and d. The first four parameters are

invariant under a coordinate transformation.

The strain energy is defined as

1 6
W=2> A

=1

A~

~ |2
E.N;| where(i = 1,2..., 6), (3.43)

where the vectors N represent the normalized eigenvectors of the six-dimensional matrix ¢,
the six eigentensors of strain are denoted by E and A; are the eigenvalues of ¢. Cowin and
Yang [16] have shown that this strain energy can be minimized with respect to single strain
state, by finding the elastic symmetry with the set of eigenvectors for fixed eigenvalues.
They have constructed the matrix representation for elasticity tensor corresponding to
the basis {NZ-}?:1 that minimized the strain energy with respect to a single strain state.
Instead of this basis, we use the basis {Vi}?zl as derived in previous two sections. we will
show that the later basis is more general than the previous one. Hence these results of the

work done by Cowin and Yang can be treated in a more general manner.
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First we consider the tetragonal symmetry, where the two principal strains of the strain

states are equal [16]. The basis {Ni}?zl is

sin 8 sin

N = ( 7% ,W,cosﬁ,O,O,O)T,

N, = (ij’;, CO\/S; —sinf3,0,0,0)7,

N = (\2, \_/;,o,o,o,o)T,

N, = (0,0,0,1,0,0)7,

N; = (0,0,0,0,1,0)7,

Ng = (0,0,0,0,0,1)7, (3.44)

where [ is a parameter. But the basis {vi}?zl for tetragonal symmetry, as derived in

section 3.2, can be written as follows

1 1 a

v = 5 9 707070T7
' (\/2%—a2 V2+a? V2+a )

a a 2 T
V2 = ) s 70a0a0 )
2 (\/4—|—2a2 VA + 242 V4 + 202 )

1 1 b o
V2 = ,— ,0,0,0, ,
= aaw Nopuz

b b 2
?}4:( )Ta

y 70707()’_7
V44202 4+ 2b2 V4 + 2b?
U5 = (07 07 07 17 07 0)T7

vs = (0,0,0,0,1,0)T. (3.45)

where a and b are the parameters. If we compare the two bases in (3.44) and (3.45), we

can easily see that
Nl = Vl,Ng = VQ,N4 = V6,N5 = V5, ifa= \/§cot6,

while

Ng = v3 and NG = vy only if b = 0.

But if b # 0, then these two bases are not the same and therefore the basis {vi}ES:l is
more general than {Ni}?zl. By using these basis, the matrix ¢ can be expressed in terms
of the strain parameters a, b and the eigenvalues \;, i = 1,...,6 as in equation (3.39).

Next, we consider hexagonal (transverse isotropy) symmetry that admits a basis {vi}?zl
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containing eigenvectors with two equal principal strains states. The eigenvectors for this
symmetry and tetragonal symmetry are the same [16]. They are distinguished only by
different eigenvalues. On the other hand, the basis {Vi}?zl for hexagonal symmetry can
be seen in (3.35), which contains only one parameter a. We can easily see that all the
eigenvectors of (3.44) and (3.35) are the same if a = v/2cot 3. The matrix ¢ for this case
is given by (3.36).

Now for Trigonal symmetry, the basis {Ni}?zl used by Cowin and Yang [16] contains
the eigenvectors which are not all orthogonal. But if we write it in the following correct

form, then the vectors become orthogonal, that is

- sinf sinf T

NIZ( ) 7COS/3a0a0a0) )
V2 V2

- cos B cosf3 . T

N2:( 777_8111/6707070) )
V2 V2

- CcoSy  Cos7y . T

N3 =(——,———=,0,sin+,0,0)
V2 V2

Ny = (-2 22 0, cos,0,0)7,

V2T VR
N5 = (0,0,0,0, — cos,sin )7,

Ng = (0,0,0,0,sin+,cosy)T, (3.46)

where 5 and «y are the parameters. The vectors of the basis {Vi}?:p for trigonal symmetry
are given by (3.41a)-(3.41f), where the parameters are a, ¢ and d. The comparison of

(3.46) with (3.41a)-(3.41f) gives the following results
N; = v; and Ny = vy, if a = v2cot 3,
while
N = V3,N4 = V5,N5 — vg and Ng = vy only if d =0 and ¢ = \/§tanfy.

But again if d # 0, the the basis vectors in {vi}?zl are more general than those in the

basis {Ni}?zl. Thus we can get more general form of the problem as discussed above.



Chapter 4

Planes and axes of symmetry

To study the physical properties of anisotropic materials, we use tensors. For instance, the
dielectric tensor, ¢, of rank two, the piezoelectric tensor, e, of rank three and the elasticity
tensor, ¢, of rank four. The components of these tensors can be arranged and it is usual
to represent it by a matrix. Due to the effect of symmetry with the choice of an axis of
rectangular coordinate system, taken to be parallel to the normal of symmetry plane or
an axis of symmetry, some of these components vanish and the matrix form consisting
of the remaining nonzero components becomes simpler. But if we consider an arbitrary
coordinate system, then these components may not vanish and it is not obvious to identify
the symmetry class of the elastic materials under consideration. For the identification
of plane of symmetry, Cowin and Mehrabadi [28] have proved Theorem 2.2, which is
also known as Cowin-Mehrabadi Theorem. The conditions (2.52)-(2.55) of theorem 2.2
were modified by Cowin [29] and has reduced to only two conditions (2.54) and (2.55).
Ting [30] has further generalized Cowin-Mehrabadi Theorem and has provided its several
cases. Ahmad [31] has proved Cowin-Mehrabadi Theorem for an axis of symmetry. He has
also proved Cowin-Mehrabadi Theorem in six dimensions [21]. In this chapter, we provide
simple proofs of the necessary and sufficient conditions for the identification of a plane of
symmetry or an axis of symmetry in an elastic material. This approach is generalized to
a cartesian tensor of arbitrary rank and apply this treatment to find the necessary and
sufficient conditions for the existence of a symmetry plane or an axis of symmetry for a

piezoelectric material. We also obtain the conditions for the identification of an n-fold axis

69
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of symmetry with n > 3.

This chapter consists of four sections. In section 4.1 we provide simple and short proofs
of necessary and sufficient conditions of Theorems 2.2 and 2.10 by searching for invariant
directions associated with the elasticity tensor. In case of plane of symmetry, such a
direction must be orthogonal to the normal n whereas in case of axis of symmetry, it must
be parallel to the vector p. In section 4.2, we generalize the approach of section 4.1 to
tensors of arbitrary rank and apply it to the third rank piezoelectric tensor to identify the
plane of symmetry and do the same in section 4.3 for an axis of symmetry of piezoelectric
material. In each of the previous sections the results are illustrated by explicit examples.
In section 4.4, we develop the results in the first two sections and generalize them to a

tenor of arbitrary rank.

4.1 Simple proofs of necessary conditions

4.1.1 Normal to the plane of symmetry

In an elastic material, suppose a plane of symmetry exists with n as normal. From (2.34)
and (2.35), it is clear that with respect to the transformation associated with the plane of
symmetry, every vector parallel to n reverses its direction but any vector orthogonal to n
is transformed into itself. Let us apply transformation (2.34) to n and m and denote the

transformed vectors with a prime then, (2.35) can be written as
n=-nandm =m (4.1)

where m is any vector on the plane such that m1n. Conversely, if a vector reverses its
direction, it can’t have a component in the plane orthogonal to n, hence it must be parallel
to n. Now consider the vectors Uj;n; = cijuenj, Vijnj = cikjrng, Wix(m)ng = cijunjnin

and Wip(m)ng = c;jimjngmy. By using (4.1), these vectors will, respectively, transform
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as follows
(Uijng) = (cijrrng) = ¢ijppnj, = Cijkr(—n5) = —Cikging, (4.2)
(Vigng) = (cikjknj) = Cipjen; = Cikjr(—nj) = —cikjrny, (4.3)
(Wi(m)ng) = (cirunmem) = cpmingm
= Cijki(—nj)(—ng) (=) = —cijrngngng, (4.4)
(Wir(m)ng) = (cijrmgnimy) = c;jpm ngm
= cijrr(my)(—ng) (my) = —cijrmingmy. (4.5)
From (4.2)-(4.5), we can easily see that each of the vectors U;in; = cireng, Vijn; =

CikjkNj, Wig(m)nyg, = cijmnjngng and Wi (m)ng = cjjrm ngmy reverses its direction hence
each of these vectors must be parallel to n;, which implies that n is an eigenvector of
each of the tensors U = Uj; = cijrk, V = Vij = cinjr, W) = Wir(n) = c¢jjun;n; and

W(m) = Wzk(m) = cijklmjml.

4.1.2 Axis of symmetry

With respect to the transformation associated with an axis of symmetry, p, a vector
transforms into itself if and only if it is parallel to p.
Consider the vectors U;jp; = ¢ijkkDj, Vijpj = Cikjkpj, and cijupjprpr. These vectors will,

respectively, transform as follows

(Uijpj) = (CijkkPi) = CijrkPj = CijkkPjs (4.6)
(Vijnj) = (CikjkPj) = CirjiPj = CikjkPys (4.7)
(CijklPiPKPL) = CijpaPiPEPL = CijkiDjPkDI- (4.8)

From(4.6)-(4.8), it is clear that each of the vectors Ui;p; = cijurpj, Vijp; = cijkp;, and
CijkiPjprp are parallel to p; leading to the result that p is an eigenvector of each of the

tensors U = Uy; = cijrk, V = Vij = Cikjr, Wa(P) = cijupjpr and Wi (p) = cijrup;ipi-
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4.1.3 Necessary and sufficient conditions for an A,-axis, n > 3.

If a tensor A of rank two is invariant with respect to rotation through an angle 27 /n,

n = 3,4,6 about x3-axis, then its matrix representation is of the form [46]

(A)=1| —ai2 ax 0 : (4.9)

Thus any tensor of rank 2 associated with the elasticity tensor will have the above repre-
sentation. The following Theorem uses this fact to characterize an axis of symmetry of a
tensor of order higher than 2. The Theorem enumerates a set of necessary conditions for
a vector p to be an axis of symmetry A,, n = 3,4 or 6. We recall a result of Ahmad [31]
that if p is an axis of symmetry A,,n > 3, it must be an eigenvector of both U and V

belonging, in each case, to a nondegenerate eigenvalue.

Theorem 4.1. A set of necessary conditions for a unit vector p to be an n-fold axis of

symmetry, A,,n > 3, is the following.
(i) p is a common eigenvector of U and V, belonging to a nondegenerate eigenvalue.

(ii) With coordinate azes chosen so that xs-axis is along p, matrices representing the
tensors U = ciip, V = Cijij, Wi(P) = cijuprpr and Wa(p) = cijup;pr are of the
form (4.9).

Proof. Proof of the first condition being necessary is contained in the observations following
(4.2)-(4.5). Since each of the four second rank tensors U = ¢, V = cijij, Wi(p) =
cijripepr and Wa(p) = ¢;jppjpr, is invariant with respect to a transformation associated
with a three fold, four fold or a six fold axis of symmetry, the matrix representation must
be of the form (4.9). Note that, if we compare a symmetric matrix, M = (m;;), with
(4.9), it implies the matrix must be diagonal with m1; = maos. However the corresponding
necessary and sufficient conditions for the piezoelectric tensor require comparison with a

non-symmetric matrix (see W3 in Theorem 4.7). O

The conditions given above are necessary but not sufficient for the existence of an A,

axis, n > 3, to be an axis of symmetry. In order to find necessary and sufficient conditions,
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we have to consider each case of n = 3,4 and 6, separately. One or more extra conditions

from the following set are required in each case.

(a) c16 =0, ces = 572,

(b) p is an eigenvector of ¢;jpm;my, where m is a unit vector perpendicular to p.

Now we are able to formulate necessary and sufficient conditions for the existence of

an A, axis, for each case of n = 3,4 and 6.

Theorem 4.2. Necessary and sufficient conditions for a unit vector p to be a 3-fold axis

of symmetry are conditions (i), (ii) of Theorem 4.1 and condition (a).

Proof. We choose z3-axis along p and consider the matrix representation of the tensor

CijkiPkPl = Cij33- Its matrix representation, in the two index notation, is

C13 C36 C35
C36 €23 C34

C35 C34 (33

A comparison with (4.9) gives
c34 = c35 = c36 = 0, c13 = co3. (4.10)
Matrix representation of the tensor c;jrnp;jp; = ci3k3 is

€55 C45 C35

C45 Ca4 C34 | >

€35 €34 €33
which leads to

C45 = 0, C44 = C55. (411)
The tensor c;;r; has the representation
€11 + Ce6 +Cs55 Ci6 + Co6 +Ca5  C15 + Ca6 + C35

C16 + C26 + C45 Cep + C22 + C44  C56 + C24 + C34

C15 + C46 +C35 C56 + Co4 + C34  Cs5 + C44 + C33
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Comparison with (4.9) and use of (4.10) and (4.11) leads to

c16+ =0, c15 +c46 =0, cog4 +¢56 =0, ¢11 = co9. (4.12)
Similarly, the tensor cyj; has the representation

c11 +c12 +c13 c16 +C26 +C36 C15 + Co5 + C35
C16 1+ C26 +C36 C12 + Co2 + Co3 C14 + C24 + C34

€15+ Co5 + €35 Ci14 + Coq4 + C34 €13 + C23 + C33

Comparison with (4.9) and use of (4.10) and (4.11) leads to

c15 +co5 =0, c14 + coq4 = 0. (4.13)

The 6 x 6 matrix representation of the elasticity tensor, with the use of (4.10)-(4.13),

becomes
Ci1 €12 €13  Ci4 C15 C16
€12 €11 €13 —Ci4a —Cl5 —Cig
c1i3 c3 c3 0 0 0 (4.14)
ciy —cuu 0 ey 0 —cs
c15 —c15 0 0 €44 C14
cie —ci6 0 —ci5 cuu Ces
If condition (a) also holds, the above matrix will become
11 Cl2 €13 14 C15 0
cl2 €11 €13 —Ci4 —Ci5 0
c13 c3 e33O0 0 0
ciy —cuu 0 ey 0 —C15 7
ci5 —c15 0 0 C44 c14
0 0 0 —C15 C14 011%
which shows the material possesses trigonal symmetry. This proves the Theorem. ]

Theorem 4.3. Necessary and sufficient conditions for a unit vector p to be a 4-fold axis

of symmetry are conditions (i), (ii) of Theorem 4.1 and condition (b).
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Proof. Let us choose z1 axis along m, that is m = (1,0,0)”. The tensor cijkim;my becomes

Ci1k1, Which has the matrix representation

C11 C16 Ci5
C61 Ce6 Co65

C51 Cs56 Cs5

Since p = (0,0, l)T is an eigenvector of the above matrix, we can write

€11 €16 Ci5 0 0
C61 C66 C65 0 |=A] 0
C51 €56 Cs5 1 1
or
C15 0
C65 = 0
C55 A

where ) is an eigenvalue corresponding to the eigenvector p = (0,0,1)7. We must have

c15 = cg5 = 0. But cg5 = c56 = c14. Therefore we have ¢14 = ¢35 = 0. The matrix (4.14)

becomes
ci1 ci2 c3 0 0 e
ciz c1 ca3 0 0 —cie
c13 c3 c33 0 0 0
0 0 0 cqa O 0 ’
0 0 0 0 cua 0

Cl6 —Ci6 0 0 0 C66
which is the matrix representation of the elasticity tensor with an A4 axis of symmetry [46].

This proves the Theorem. O

Theorem 4.4. Necessary and sufficient conditions for a unit vector p to be a 6-fold axis

of symmetry are conditions (i), (ii) of Theorem 4.1 and conditions (a) and (b)

Proof. To prove this Theorem, we follow on the same lines as those for the proof of Theo-
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rems 4.2 and 4.3. Additionally, if both (a) and (b) hold, the matrix (4.14) will become

ci1 ci2 c3 0
ci2 c11 c3 0
ci3 c13 ¢33 0

0
0
0
0 0 0 cyq O

0
0
0
0
0

0 0 0 0 C44

0 0 0 0 0 cuga

which characterizes hexagonal symmetry. This proves Theorem 4.4. O
Let q = (cos asin 3, sin asin 3, cos 3)7. The transformation
cosf 0 —sinpg cosa  sina 0
R = 0 1 0 —sina cosa 0
sin8 0 cosf 0 0 1

cosacosf sinacosf —sinf

= —sin « COS & 0 (4.15)

cosasin 8 sinasinf  cospf

is such that

cosacosf sinacosf —sinf cos asin 3
Rq = —sina cos 0 sin o sin 8
cosasinf3 sinasinf8  cospf cos 3
0
=10
1

Thus R orients an arbitrary vector specified by its Euler angles o and § along x3-axis.

4.2 Plane of symmetry of a piezoelectric material

The argument leading to and following (4.2)-(4.5) will now be applied to the piezoelectric

tensor e to find necessary and sufficient conditions for the existence of a plane of symmetry.
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Theorem 4.5. Let n and m be unit vectors orthogonal to each other. It is necessary and

sufficient for n to be a normal to a plane of symmetry of a piezoelectric material that
(a) it is orthogonal to each of the vectors vi = ejj, Va = €jjk, v3(n) = e;pning,

(a) it is parallel to each of the vectors wi(n, m) = e;jpn;m;, Wo(n, m) = e;jpm;n;, wy(n, m) =

ekijmm]—.

Proof. First suppose a plane of symmetry exists with normal n. The vectors v =
€kjj, V2 = €jjk, Vg(n) = €ijkN;N; can be expressed as Vi = (Sijekij,vz = 5ijez'jk and
v3 = e;j;n;n;, respectively. Under the transformation associated with the plane, men-

tioned above, these vectors transform as

/ /
Vi = (Oijerij)” = Oijerij = erjj = Vi,

/ /
vy = (Gijeijn) = dijeiji = ejjk = V2

and

/ /
vy = (€ikning) = eijr(—ni)(—n;) = ejjpning = vs.
Thus each of the vectors vi, vo and vs transforms into itself hence each of these vectors

must be orthogonal to n.

Next consider the transformations of wi(n, m), wa(n,m) and ws(n, m). We have

Wl(n, m)' = (eijknimj)’ = eijk(—ni)mj = —eijknimj,
wao(n,m)’ = (eeming)’ = eijemi(—n;) = —eijpmin;
and
wa(n, m) = (eg;jmin;) = exijmi(—nj) = —egimin,.
Thus wi(n,m)’ = —wj(n,m),ws(n,m) = —wsy(n,m) and wiz(n,m)" = —w3z(n,m)

leading to the conclusion that each of the vectors wi(n, m), wy(n, m) and ws(n, m) must
be parallel to n.
To show that the conditions (a) and (b) of this theorem are sufficient, choose coordinate

axes so that x1 and x3 axes are respectively aligned with m and n i.e. m =(1,0,0)” and
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n =(0,0,1)T. Vectors vi, vy and v, in components form, can be written as

T
vi = (e11 + e12 + e13,e21 + €22 + €23, €31 + €32 +€33)",
T
vy = (e11 + €26 + €35, €16 + €22 + €34, €15 + €24 + €33)",

V3 = (631, €32, 633)T-

The condition that n be orthogonal to each of these vectors, leads to the following

es1 +e3x+e33 =0,
e1s5 + eaq +e33 =0,

€33 — 0. (4.16)

Vectors w1 (n, m), wo(n, m) and w3 (n, m) respectively become (e31, es, e35)7, (€15, €14, €13)7
and (e15, €25, e35)7. Since n is parallel to each of them, therefore

n X wl(n, m) = (*636, 631,O)T = (0,0,0),

n X W2(n7 m) = (_6147 615)O)T = (07070)7

n x W3(n, m) = (—625,615,0)T = (0,0,0),

imply that

€31 — €36 — €14 — €15 — €25 = 0. (4.17)
Equations (4.16) and (4.17) together imply
€14 = €15 = €24 = €35 = €31 = €32 = €33 = e36 = 0,
which reduces the matrix (2.70) to the form

err ez ez 0 0 e
€= ey e e3 0 0 ey |-

0 0 0 e34 e35 O

so that the tensor e has z3-axis as a normal to a plane of symmetry [46]. O



CHAPTER 4. PLANES AND AXES OF SYMMETRY 79

Example 1. Consider the following 3 x 6 matrix representing a piezoelectric tensor d.

4.7754 —1.6177 —2.6007 —1.9427 —0.13572 —4.2248
d=| —-1.7186 0.34562 —0.49744 5.3860 3.4468  0.75776 (4.18)
—0.10442 —0.77998 1.1023 —7.7468 —3.0673 —0.60562

where components are in units of C’/m2. Note that d;o = d;ji, if « < 3 and d;o = 2d;j,
if o > 3 [46].
We wish to determine wether or not a plane of symmetry exists. Vectors vi and vo can

be readily obtained from (4.18) as

vi = (0.557023, —1.87039,0.217873)T and

vy = (3.62065, —5.64022, 3.72743)T .

If there is a plane of symmetry, then its normal n must be given by

n= "LXV2 _ (830497, —0.186178,0.524988)7 . (4.19)
’Vl X Vg‘

We can take m a unit vector along v,

m = = (0.28366, —0.952485,0.11095)" . (4.20)
Vi

We use (4.19) and compute the vector vs as

vy = (2.22809, —2.33557, 2.69643)%,

which is orthogonal to n, because

n.vs = 0.

Similarly, by using (4.20) we can compute unit vectors along wy, wg and ws, each of which

is found to be

(—0.830497, —0.186178, 0.524988) 7,

a vector identical to n. We conclude that a plane of symmetry exists, with normal

n = (—0.830497, —0.186178,0.524988)7. If we choose a = 3.36212 and 8 = 1.0181 then
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n = (cosasin 3, sin asin B, cos B)T = (—0.8305, —0.186176,0.524984)7". Application of the

transformation (4.15) to n transforms it to (0,0,1)7. That is

—0.51227 —0.114837 —0.851112 —0.8305
Rn= | 0.218744 —0.975782 0 —0.186176
—0.8305 —0.186176 0.524984 0.524984

0

=10

1

Same transformation applied to the tensor represented by (4.18) leads to the standard form

of the tensor for a monoclinic material with the normal to the plane of symmetry parallel

to xz-axis.
1.60894 0.72657 —2.59149 0 0 3.70196
d = —1.48785 —0.17272 3.60752 0 0 —2.82030 |,
0 0 0 2.76639 —3.16813 0

With coordinate axes so that xs-axis is along n, the tensor (4.18) transforms to

14 38 —42 0 -72 0
d’= 0 0 0 -26 0 8
022 —-23 08 0 22 0

which is the tensor representing the YCOB crystal reported in [51].

4.3 Axis of symmetry of a piezoelectric material

The following Theorem provides necessary and sufficient conditions for a vector p to be
at least a 2-fold axis of symmetry. However, since a four fold or a six fold axis is also a
dyad axis, conditions of the Theorem will be satisfied in case of an A4 or an Ag axis as
well. Necessary and sufficient conditions for an axis A,,n > 3 will be given in Theorems

4.7 and 4.8.

Theorem 4.6. Let p and m be unit vectors orthogonal to each other. It is necessary and

sufficient for p to be a 2-fold axis of symmetry of a piezoelectric material that it is parallel
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to each of the vectors vi = e;jj, Vo = €jji, V3(P) = €ijkpiPj, Va(P) = €ijkPjPk, Vs(m) =

eijkmimj, v6(m) = eijkmjmk.

Proof. The transformation associated with rotation about an axis p is represented by the
operator Q = —I + 2p ® p, where I is the identity operator, (see [31]). Unlike the trans-
formation defined by (2.28), used in the proof of Theorem 4.5, this transformation leaves
every vector parallel to p unchanged but reverses the direction of any vector orthogonal
to p. That is, Qp = p and Qm = —m, where m L p. The vectors vi = e;;;, V2 = €jji
can be expressed as vi = 0jxeijk, Vo = 0;j€jk, respectively. Under the transformation

associated with rotation about an axis p, mentioned above, these vectors transform as

/ /
Vi = (jkeijr) = djkeijk = €ijj = V1,

/ /
vy = (Gijeijn) = dijeijr = ejje = Va,

similarly

v3(p) = (eijkpipj)/ = eéjkpép} = eijkpiPj = V3(P),

vi(p) = (eijkpipr) = €ijpipy = eijkpipr = va(p),

vg(m) = (eijkmimj)/ = eijk(—mi)(—mj) = eijkmimj = V5(l’n)
and

ve(m) = (eijrmimp)’ = eijr(—m;)(—mp) = ejpm;me = ve(m).
Thus each of the vectors vi, va, v3(p), va(p), vs(m) and vg(m) transforms into itself
hence each of these vectors must be parallel to p.

To show that the given condition is sufficient, choose coordinate axes so that z; and x3

axes are respectively aligned with m and p i.e. m =(1,0,0)7 and p =(0,0,1)7. Vectors
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vi, V2, v3(p), va(p), vs(m) and vg(m), in components form, can be written as

vi = (e11 + e12 + €13, €21 + €22 + €23, €31 + €32 + 633)T,
vy = (e11 + €26 + €35, €16 + €22 + e34,e15 + €21 + e33)7
vy = (ess, €34, €33)"
vy = (e13,e23,€33)",
vs = (e11, €16, €15)"

ve = (e11, €21, e31)”,
respectively. The condition that p be parallel to each of these vectors, leads to the following

P X vy = (—e21 — e —e23,€e11 + €12+ 613,O)T = (0,0,0),
P X Vo = (—e16 — €22 — €34, €11 + €26 + €35,0)7 = (0,0,0),
p X v3(p) = (—es4,€35,0)" = (0,0,0),
p X v4(p) = (—ea3,€13,0)" = (0,0,0),
p x v5(m) = (—ey6,e11,0) = (0,0,0),

p x vg(m) = (—ea1, e11,0)” = (0,0,0).

That is
€21 + ea2 + ea3 = 0,
ein1 +ez+e3 =0,
e + €22 +e3q =0,
e11 + e+ e =0 (4.21)
and
€11 = €13 = €16 = €91 = €93 = €34 = e35 = 0. (4.22)

Equations (4.21) and (4.22) together imply that

€11 = €12 = €13 = €16 = €21 = €22 = €33 = €96 = €34 = €35 = 0,
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which reduces the matrix (2.70) to the form

0 0 0 ey es O
e = 0 0 0 e e O )
es1 e32 e33 0 0 e3¢
so that the tensor e has zz-axis as a 2-fold axis of symmetry of a piezoelectric material

[46]. O

Example 2. Consider the following 3 x 6 matrix representation of the piezoelectric

tensor e corresponding to a hypothetical material.

—0.756897  1.55523  —1.59723 0.0815332 —0.299296  0.138140

e 1.52488  —0.699927 —1.65214 0.296613 —0.0961851 0.222583 )

~1.79313  1.78259  0.007407 1.80617  1.73614  —0.068369
(4.23)

where the components are in units of C'/m?. Note that, unlike the tensor d used in Example
2, for e, ejo = €51, i =1,..,3,a=1,..,6.
We wish to determine wether or not an axis of symmetry exists. Vectors v and vo can

be obtained from (4.23) as

vy = (—0.798903, —0.827191, —0.0031403) ",

vy = (1.20183,1.24438, 0.0047241)T.

If p is a unit vector along vo then

:|V—2| — (0.694698, 0.719296, 0.002731)7 .
Vo

We take m a unit vector orthogonal to p
m =(0.719299, —0.694701,0)7.

Vectors vs, vy, vs and vg are computed as
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vs = (0.576599,0.597016, 0.0022665) ",
V4 = V3,
vy = (—1.1152, —1.15469, —0.0043836)7,

v = (0.220898,0.22872,0.0008683)” .

It is easily verified that

—Vi Vo V3 —Vs Ve
_— e —— e ———— = — = p.
lvil  |va|  |vs]  |vs|  |vgl

This shows that p = (0.694698, 0.719296, 0.002731)7 is indeed an axis of symmetry. Angles
a and [ pertaining to p are respectively 0.802793 and 1.56807 and the transformation

matrix (4.15) becomes

0.0018970 0.0019642 —0.999996
R=| —0.719299 0.694701 0 - (4.24)
0.694698  0.719296  0.002731

The above transformation aligns p along z3-axis, that is

0.0018970 0.0019642 —0.999996 0.694698
Rp= | —0.719299 0.694701 0 0.719296
0.694698  0.719296  0.002731 0.002731
0
=10 |>
1

and, with respect to the new coordinate axes, the piezoelectric tensor has the following

matrix representation

0 0 0 —1.78917  2.5053 0
0 0 0 —1.6053 —0.20917 0 )
—2.29798 0.317977 0.83 0 0 —0.386904
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which shows that the material has an As-axis parallel to x3-axis.
The following Theorem concerning the piezoelectric tensor is the counterpart of Theo-

rems 4.2-4.4 for the elasticity tensor.

Theorem 4.7. A set of necessary and sufficient conditions for a unit vector p to be a
three fold axis of symmetry for a piezoelectric material described by the tensor e = (e;ji),

is the following.
(i) p is parallel to vi = e;j; as well as vo = ejj;.

(ii) With coordinate azes chosen so that xs-azis is along p, the matrices representing

second rank tensors Ws = e;jrpr and W4 = e;j1p; are of the form (4.9).

Proof. Suppose an axis of symmetry exists. The vectors vi = e;;; and vo = ej;; can
be expressed as vi = djxe;jr and v = djpejki, respectively. Under the transformation
associated with rotation about an axis p, that is, Q = —I + 2 p ® p [31], these vectors

transform as

/ /
Vi = (jkeijr) = djkeijk = €ijj = V1,
vy = (0jke€jki) = Ojkejki = €jji = Va.

This shows that p is parallel to each of the vectors vi = e;;; and va = e;j;. Similarly we

have

W5 = (eikpk) = eijkpe = W3,

W) = (eijkpi)' = eijrpi = Wa.
Thus each of the W3 = e;;xpr and Wy = e;;;p; is invariant with respect to a transformation
associated with a three fold axis of symmetry, the matrix representation must be of the
form (4.9).

To show that the conditions are sufficient, we choose x3-axis parallel to p i.e. p =

(0,0, 1)T. Vectors vi,ve, in components form, can be written as

T
vi = (e11 + €12 + €13, €21 + €22 + €23, €31 + €32 + €33) ",

T
vy = (e11 + €26 + €35, €16 + €22 + €34,€15 + €24 + €33)" ,
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respectively. Since p is parallel to each of these vectors, therefore, we have

P X vy = (—e21 — e —e23,€e11 + €12+ 613,0)T = (0,0,0),

P X Vo = (—e16 — €22 — €34, €11 + €26 + €35,0)” = (0,0,0).

e11 +e2 + ez =0,
ea1 + €22 + ea3 = 0,
e11 + ez +e35 = 0,

e16 + e22 +e34 = 0. (4.25)
Matrix representation of the tensor W3 = e;xpr = €53 is

€15 €14 €13
W; = €25 €24 €23 )
€35 €34 €33

A comparison with (4.9) gives
e15 = €24, €14 = —€25, €13 = €23 = €34 = €35 = 0. (4.26)
Similarly, the matrix representation of the tensor Wy = e;xp; = e3jy, is

€31 €36 €35
W, = €36 €32 €34 )
€35 €34 €33

which, on comparison with (4.9), leads to
e31 = e32, €36 = —eze = 0. (4.27)

Equations (4.25)-(4.27) imply that there are only six independent components of the tensor

e and it will have the representation

e;1 —einr 0 es es  —ea
—eg9 e 0 es —ews —enn | (4.28)
es1 ez es3 O 0 0

which is the form of a tensor belonging to a trigonal material [46]. Thus the material has

trigonal symmetry. O
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Finally we have the following Theorem:

Theorem 4.8. Let m and n be mutually perpendicular unit vectors in the plane normal
to p. If, in addition to conditions (i) and (ii) of Theorem 4.7, the tensor e;j, satisfies the

condition
(iii) ejjpmin; + e;jjpmyn; =0,
then p is a 4-fold or a 6-fold axis of symmetry.

Proof. We can choose 1 and zo axes respectively along m and n, that is m =(1,0,0)”

and n =(0,1,0)T. Condition (iii) of the Theorem becomes
e12k + €21 = 0. (4.29)
Equation (4.29) implies that
€16 = —€21,€12 = —€a6, €14 = —€a5. (4.30)
Use of the conditions given by (4.30) in (4.28) leads to
el =exp =0

and matrix in (4.28) becomes

0 0 0 €14 €15 0
0 0 0 €15 —€14 0 3

es1 e31 esz O 0 0

which is precisely the matrix representation of the piezoelectric tensor possessing tetragonal

or hexagonal symmetry [46]. Hence p is a 4-fold or a 6-fold axis of symmetry. O

4.3.1 Generalization to a tensor of arbitrary rank

The results developed in Sections 4.1 and 4.2 are capable of immediate generalization to a
tensor of arbitrary rank. In some applications tensors of rank higher than 4 are required
to adequately model the physical phenomena. For example, Ozarslan and Mareci [52] have
noted that the diffusion tensor of rank 2 has limited application in the modeling of diffusion

imaging and have proposed the use of the diffusion tensors of rank going up to 8. Taking
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a cue from this observation, let us consider a tensor T of rank 6 which describes some
physical property of a material possessing a plane of symmetry with normal n. Then the

following necessary conditions must hold.

1. n is an eigenvector of each of the tensors of rank 2 obtained from T by letting any
pair of indices free and contracting others in pairs. For example Tj;xxu, Thiirji, are

two such tensors.

2. n is an eigenvector of the tensor obtained by contracting any three pairs of indices

of Tijkimnnpng or any four pairs of Tjjximnnpngn,ns.

Similarly, if the same tensor T describes some physical property of a material having

an axis of symmetry about a unit vectorp, the following results will also hold.

3. p is an eigenvector of each of the tensors of rank 2 obtained from T by letting any
pair of indices free and contracting others in pairs. For example Tj;pri, Thiirji are

two such tensors.

4. p is an eigenvector of the tensor obtained by contracting any three pairs of indices

of ﬂjklmnpqpr or any four pairs of T’ijklmnpqprpspt-



Chapter 5

Young’s modulus in hexagonal

materials

In this chapter we shall apply the representation derived for a hexagonal material in chapter
3 to find an expression for E(n) and consider its optimum values.

Our motivation comes from Norris [35] who considered Poisson’s ratio in cubic materi-
als. He found evidence for Poisson’s ratio less than —1 in a certain direction and greater
than 2 in some other direction. Norris has expressed the Young’s modulus in term of in-
variant quantities, i.e. in terms of eigenvalues. On the other hand, Cazzani and Rovati [53]
(also see [54]) have expressed the young’s modulus in terms of the elastic compliances and
the parameters which are also dependent on these elastic constants. Ting [49] has also
obtained the explicit expressions of Young’s modulus for hexagonal materials in terms of
elastic compliances and discussed its direction surfaces. We shall also give an alternate
way for finding the extreme values of Young’s modulus in hexagonal materials.

This chapter consists of two sections. The first section is about Young’s modulus
in cubic materials, we have discussed the problem considered by Norris [35] in detail and
reformulated it in six dimensions by applying the representation derived for a cubic material
in chapter 3 to find an expression for E(n). In section two, Young’s modulus in hexagonal
materials is explained and the extreme values of Young’s modulus are discussed. The

results obtained in this section are illustrated by some examples of real materials.

89
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5.1 Cubic materials

Norris used a result of Walpole [32] to express the compliance tensor s for a cubic material

in the form
1 1 1
=—J+—{I-D)+—(D-1J) (5.1)

5T 3k 21 )

where

1
Lijiy = (03051 + 6:1051)

2
1
Jijki = §5ij5kz
Dijri = 6:10510k1011 + 0i2020k2012 + 043030,30;3. (5.2)

The parameters k, u1, uo are related to the Voigt notation for the stiffness tensor as follows

c11 + 2cy2
k= ——=
3
H1 = C44
C11 — C12
o = 12 5 ! (5.3)

ie. 3k, 2u; and 2uy are eigenvalues of the elasticity tensor in the Cowin-Mehrabadi
formalism. Young’s modulus in the direction specified by a unit vector n = (nq, nQ,ng)T

is defined by (2.80) or (2.81), that is as

1
Em)=———
SijkITiNNETY
or
1
m = SigklTi N NETY .

Norris [35] has simplified the formula in (2.85) as follows:
Let

n3n3 + nint + nn3 = F(n), (5.4)

Substituting (5.3) and (5.4) into (2.85) and using n} + n3 + n3 = 1, we have

E(ln) = s11 — 2s11F(n) + (:1 +2512) F(n)

1
= S11 — 2(811 — Sn)F(II) + EF(H)
1

1
=311 — —F(n)+ —F(n).
H H2 () M1 ()
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The value of sj; in terms of k£ and uo can be find as

oL, 1
7ok T 30,
Thus ﬁ has the following form
1 1 1 1 1
——=—+-———F(n)+ —F(n),
Em) 9k  3uz o (=) p (=)
1 1 1 1
= ot 3-— (= -)F(m) (55)

9k = 3pe  p2
which is the result derived by Norris [35].

It is easy to show that

LW =

A simple proof is as follows.
Let

f(n1,n2,n3) = nin3 + n3ng + n3ni — A(ni + n3 + n3) (5.7)

where A is a lagrange multiplier. Equating the derivatives of f with respect to ni, no and

n3 to zero we find

2(n3 +n3) —2mA =0
2(n? +n3) — 2naA =0
2(n? +n3) — 2n3A =0 (5.8)
If ny =0, ng # 0, ng # 0, then A = n3 =nj = % Hence F(n) = %. If two of nq, no
and ng vanish then F'(n) = 0. If none of them vanishes then
)\:n%—&—n?)) :n%%—n% = n? 4 n’

which implies n? = n3 = n} = } and F(n) = ;. Thus 0 < F < }. It shows that F(n)

attains its optimum value when it is aligned parallel to a body diagonal.

From (5.5) it is clear that, if i > % then
1 1 n 1
max — = — + —
E 9k 3/11 ’
.1 1 1
mn-— = — + —.

E 9k 3#2
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Also if i < % then
1 1 1
maxE—g—k 3—,@,
A R |
mmE A 3T01

Cazzani and Rovati [53] have also obtained the above results but they have expressed
% in terms of components of the compliance tensor rather than the invariant expressions
used above. Now we shall obtain (5.5) by using our representation of ¢ in chapter 3. In

chapter 3, we have shown that the elasticity tensor may be represented as
¢=MF1+ MoFy+ MFs.

Hence the compliance tensor becomes

1 1 1
6— —F 4+ —F,+ —F
S " 1+)\2 2+/\4 3

where Fi, F5 and Fj are given in chapter 3.
Now if n =(n,n2,n3)7 then N :(n%, n%, ng, V2nans, V2nsni, \/§n1n2)T. To calculate

Sijkimin;ngng, we simply need to find NTsN. That is

—  =NTsN. .
5 NTsN (5.9)
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Since

N

we find that

Also

W =

o o O
o o O
o o O
o o o o o o
o o o o o o

n3 +n3 +n3
nf +nj +nj
n3 +n3 +nj3
0
0

3
2 -1 -1 0
-1 2 -1 0
-1 -1 2 0
0 0 0 0
0 0 0 O
0O 0 0 O

2n? —n3 —n3
—n? +2n3 —n3

2 _ 2 2
—ni —nj + 2n3

o o o o o o
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thus
- -~ 1
NTRN = §(3n% + 3n2 + 3n3 —n? —n2 —nd)
1
1
= 5 (B3[1 - 2F ()] - 1)
1
= §(3 —6F(n) —1)
2
Finally
000O0O0O n?
000O0O0O n3
. 000O0O0O n3
F3N =
000100 V2n9ns
000O0T10 V2nsng
00 0 0 0 1 \/inlng
0
0
0
V2nan;3
ﬂmn:a
\/5712713
therefore

NTEN = 2(n?n3 4 n3n3 + n3n?)

= 2F(n).

Hence (5.9) becomes

E(n) )\1
1 2 1 1
-_ - o F
3 | 3 ()\4 W (n)

94

(5.10)
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This is identical to (5.5) if we identify A\; = 3k, A = 2u2 and Ay = 2p;. Thus our
formulation gives the same results as those of Norris [35] and Cazzani and Rovati [53]. Next
we shall use our results of chapter 3 to express Young’s modulus in terms of eigenvalues of

the elasticity tensor and an arbitrary parameter.

5.2 Transversely isotropic (hexagonal) materials

In chapter 3, we have shown that the elasticity tensor for transversely isotropic (hexagonal)

materials may be represented as
¢ = ME1+ AoEs +)\3(E3 +E4) +)\5(E5 +E6). (5.11)

Hence the compliance tensor becomes

1 1 1 1
s=—F; +fE2+f(E3+E4)+*(E5+E6) (5.12)
)\1 )\2 )\3 )\5

where F1, Fa, F3 + E4 and E5 4+ Eg are given in chapter 3.

1
The value of )

NT3N can be calculated as follows:

1 1 a 000 n?
11 a 000 n3
EIN:% a a a®> 0 0 0 n3
24”1 900 0 0 0 0 V2nans
00 0 00O V2n3ng
00 0 000 V2n1no
n%+n%+n§a
n? +nj +n3a
1 a(n? 4+ n3) + a?n}
(24 a?) 0 ’
0
0
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so that

- - 1
NUEN = 5 [ni(n} + n3 + n3a) + n(ni +n3 +nja) + nja(ni +n3) +a’nj)

2 2
= 5ozt + 3+ nja) + ny(nt + 3+ nja) + nja(ni + ng + ang]

(n? + n3 + nja)?

T 21 a2
1

Next we calculate

000 n?
a? a2 —2a 0 0 0 n3
EQN:# —2a —2a 4 0 0 0 n3
A2 0 0 0 00 0 || Vanams
0 0 0 000 V2n3ny
0 0 0 0 0O V2n1ns
a?(n? +n2) — 2an§
a*(n} +n3) — 2an3
1 —2a(n? + n3) + 4n3
pEEET: . ’
0
0
thus
NTE,N = [a*ni(n] + n3) — 2anin3 + a®n3(ni + n3) — 2an3nj — 2an3(ni + n3) + 4n3)

4 + 2a2

= m[a(n% + n%)(an% + an% — 2n§) — 2n§(an% + an% — 2n§)]

= m[a(n% +n3) — 2n3)?

= m [(a+2)n§—a]2
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Similarly
i -2 0000 n}
-3 3 0000 n3
g . 0 0 0000 n3
N (E3+E4)N:
0 0 0000 V2nans3
0 0 0000 V2n3n,
0 0 0001 V2n1ns
= 5 (nf +n3)?
= =(1-n3)’
and
00 0O0O0O n?
000O0O0O n3
o . 000000 n3
N'(E5 + Eg)N =
000100 V2nan3
000O0T1O0 V2n3ng
00 00O 0O V2n1ns

= Qn%ng + 2n§n%
= 2n5(ni +n3)

= 2n3(1 — n3).

Thus we have

1 ~ ~
—— =N"sN
Em) °

-5
11+ @—-Dn2? 1 [(a+2)ni—d

1oeqp oo 1 oog o 1 o« 1. .
= —NTE N+ )\—NTEQN + )\—NT(Eg + E)N + )\—NT(Eg, + Eg)N
2 3 5

1 2
— L 122 4 Zn2(1 — n2),
)\1 2+CL2 2)\2 2+a2 2)\3( 713) + )\5713( 'I’L3)

(5.13)

We note that if ng = 1, the Young’s modulus depends only on A; and A2. In this

direction
11 a L2
Em) M2+a?2 X2+a?

(5.14)
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For a cubic material, %, in a direction parallel to one of the coordinate axes, given

by Eq. (5.10) becomes
1 1 2

E@) 3\ 3h
We shall get the same result in the present case if we let @ = 1 in (5.14). Thus there exists

a transversely isotropic material closest to a cubic material in this sense.

Equation (5.13) is a function of nz only, that is == = =2

Bn) = E(na)" For convenience, we let

By~ f(ns). (5.15)

To find the extremal direction, the derivative of f(ns) with respect to ng must be equal to

zero. This gives

f(ng) = dng(a = D[L+ (o= D] | 2n5(a+2)[(a+2)nf —af? 2ng(1—nF) dng(1—2n5) _

A (24 a?) A2(2 4 a?) A3 A5
From this we find

n3 =0 (5.16)
or

1 2 2a-1  ala+2)

A3 A5 )\1(2 + a2) + )\2(2 + a2)

2 _
3=

1 4 2a—1)? (a+2)2
</\3 N nEra) >\2(2+a2)> !

which gives us

ng = :l:pa say,
where,
1 2 2(a-1) + a(a+2)
A3 A5 )\1(2+a2) )\2(2+a2)

uithe (5.17)

1 _ 4 - (at+2)? -
Az As + AL(2+

2
FEN R W Gy

In order that n3 be real we require the following pairs of inequalities
1 1 2 2a-1) (1 1
-+t +t—=—"(+~——+]>0 (5.18a)

and

2 1 1 4 22+l (1 1
I s 18b
SVIAED VLIS WS Wi s g (AQ /\1>>0 (5-18b)
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or
112 a1 1Y 5.190
Ao A3 A5 2+ a? Ao A1 .
and
2 1 1 4 22 +1) (1 1
B e e S et S L [ ) .19b
)\1+)\2+)\3 >\5+ 2"‘@2 <)\2 )\l><0 (5 9)

On the other hand, if (5.18a,b) or (5.19a,b) are not satisfied, the Young’s modulus will
attains its extreme values in the symmetry plane. But if (5.18a,b) or (5.19a,b) are satisfied,
then we find the extreme values of Young’s modulus as follows:

The second derivative of f(ng) with respect to ns has the following expression

4(—=1+ a+ 3n% — 6an3 + 3a*n3) n 2(2 + a)[6n3 + a(3n — 1)]

" _
f (ns) = A (2 + a?) Ao (2 + a2)
2 _ 2 2y 2
4dng — 2(1 — ng) N 4(1 — n3) — 20n3 (5.20)
A3 A5
Now we substitute the value of n3 = £p, 0 into (5.20), respectively, we have
8(a—1) 4a(2 + a) 4 8
1 :|: I -
f( p) (2+a2))\1+(2+a2))\2+>\3 /\5
1 1 2 a—1 (1 1
=4\ —+——— 2—— [ — — — 5.21
[()\2+/\3 )\5>+ 2+ a? ()\2 )\1>:| ( )

Note that the right hand side of (5.21) is identical, except for a factor of 4, to the left

hand side of (5.18a).

nin  Ala—1) 2a(24+a) 2 4
PO =y T erdn

Lf(2_ 1 1y ya-1l/1 1
- )\5 )\2 )\3 2+ a? >\1 )\2

1 1 2 a—1 1 1
SN (- I R (. 22
KAQ * A3 >\5> Tara <)\2 )\1>] (5.22)

£0) =~ ().

We note that

From the above equations, we conclude the following.

(i) If conditions (5.18) are satisfied then there is a minimum of ﬁ in the direction

n3 = +p and a maximum when n3 = 0 i.e. in the plane of isotropy.
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(ii) If conditions (5.19) are satisfied then there is a maximum of ﬁ in the direction

n3 = +p and a minimum when n3 = 0 i.e. in the plane of isotropy.

(iii) When neither (5.18) nor (5.19) are satisfied, there is no maximum or minimum in

any direction not lying in the plane of isotropy.

5.3 Applications to some real materials

Hexagonal materials, in Cowin-Mehrabadi formalism, are represented by the following 6 x 6

matrix
11 Ci2 ¢3 0

0
Cl2 Co2 ¢13 0 0
13 Ci13 ¢33 0 0

(5.23)
0 0 0 2¢44 0

0 0 0 0 2Cu

0 0 0 0 0 ¢11— ¢

We want to apply the results of section 5.2 to some real materials.

Example 1.

Consider Beryllium (Be) as an example of the hexagonal materials, belong to the class
6/mmm for which the elastic stiffness constants are as reported in [46] as ¢1; = 29.23,
c1o = 2.67, c13 = 1.4, c33 = 33.64 and ¢4y = 16.25. These constants are in units of
10'°N/m?. We wish to find the extreme values of Young’s modulus for this data. The

matrix in (5.23), in this case, becomes

20.23 2.67 14 0 0 0
2.67 2923 14 0 0 0
1.4 14 3364 0 0 0

Cap = (5.24)
0 0 0 325 0 0
0 0 0 0 325 0
0 0 0 0 0  26.56
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The eigenvalues and the corresponding eigenvectors of this matrix are

A1 = 34.9326, v; = (0.386558, 0.386558, 0.837344, 0, 0,0)T
A2 = 30.6074, vy = (—0.592092, —0.592092, 0.546676, 0,0, 0)T
A3 = \g = 26.56, v = (0,0,0,0,0,1)7, vy = (0.707107, —0.707107,0,0,0,0)”

s = \g = 32.5, v5 = (0,0,0,1,0,0)T vg = (0,0,0,0,1,0)7. (5.25)

To find the value of the parameter a, we compare the first two eigenvectors in (5.25) to the

corresponding eigenvectors of hexagonal materials obtained in (3.35) of chapter 3, that is

1

v = ——(1,1,a,0,0,0)T,
1= ara )
1
vy = ——(a,a,—2,0,0,0)". 5.26
2= e ) (5.26)

As the first two eigenvectors in (5.25) are proportional to (1,1,2.16615,0,0,0)7 and
(2.16615,2.16615, —2,0,0,0)7, respectively, therefore a = 2.16615. Substituting the values

of A1, A2, A3, A5 and a into the left hand sides of (5.18), we have

1 n 1 2 +2(a—1) 1 1
Ao A3 A5 2+ a2

— — — ] =0.0101938 > 0
A2 )\1>

and

2,01, 1 4 2+(1 1
Al A2 A3 X5 2 + a2

— — — ] =0.0109452 > 0.
A2 /\1>

That is conditions (5.18) are satisfied and the value of p is 0.965067, which is a real number.
Thus we have f”(£0.965067) > 0 and f”(0) < 0. Which means that there is a minimum
of ﬁ in the direction ng = £0.965067 and a maximum when ng = 0 i.e. in the plane of
isotropy. As a result the Young’s modulus F(n) has a maximum at n3 = +0.965067 and a
minimum at nz = 0. By using (5.13), the explicit values of maximum and minimum values

of Young’s modulus E(n) can be found as follows:

max E(n) = E(n)|at ny=+p = 33.5461

min E(n) = E(n)|at ng=0 = 28.9379.
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Example 2

Consider another example of Titanium (7%) which is a hexagonal material of class 6/mmm.
The elastic stiffness constants for Ti [46] are ¢1; = 16.24, ¢12 = 9.20, ¢13 = 6.90, ¢33 = 18.07

and c¢qq = 4.67. The matrix in (5.23), for this data, becomes

16.24 9.20 6.90 O 0 0
920 16.24 14 0 0 0
6.90 690 18.07 0 0 0
Cup = (5.27)
0 0 0 934 0 0
0 0 0 0 934 0
0 0 0 0 0 7.04
The eigenvalues and the corresponding eigenvectors of this matrix are
A1 = 32.1857, v; = (—0.581654, —0.581654, —0.568646, 0, 0,0)T
Ao = 11.3243, vy = (—0.402093, —0.402093,0.822583, 0,0, 0)”
A3 =\ = 7.04, v3 = (0,0,0,0,0,1)", vy = (0.707107, —0.707107,0, 0,0, 0)
s = X = 9.34, v5 = (0,0,0,1,0,0)7, v = (0,0,0,0,1,0)T. (5.28)

As the the first two eigenvectors in (5.28) are proportional to (1,1,0.977636,0, 0, O)T
and (0.977636,0.977636, —2,0,0,0)7 respectively. Therefore a = 0.977636. Substituting

the values of A1, A2, A3, A5 and a into the left hand sides of (5.18), we have

1 1 2 2(a—1)<1 1

— — — | =0.0153521 > 0
A2 A3 As + 2+a2 \ )\ )\1)

and

2011 4 204D (1 1
Al A2 A3 X5 2 4 a2

— — — ) =—-0.0213227 < 0.
A2 )\1>

As neither (5.18) nor (5.19) are satisfied, therefore the real value of p does not exist. Thus
for Titanium (T1i), there is no maximum or minimum of Young’s modulus in any direction
not lying in the plane of isotropy.

Also equation (5.22) gives

£7(0) = —0.0307044 < 0.
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Therefore ﬁ |lat ng=0 = 0.958114 is a maximum in any direction in the plane of symmetry.
It has no maximum in any direction. Finally, we conclude that the minimum value of

Young’s modulus E(n) in any direction of the plane of isotropy, i.e. ng =0 is
min E(n) = E(n)|at ny=0 = 10.4372

and the Young’s modulus has no maximum in any direction.



Chapter 6

Summary

In this thesis we studied the symmetries of elasticity tensor and some problems concerning
with this theory. Some results developed here are also extended to tensors of arbitrary
rank that describe various physical quantities. Topics in this thesis provide an important
tool for further study in material science, seismology, mathematical modeling and other
fields of science which deal with these quantities. In this chapter we give the summary of
this thesis which clearly shows that which results are obtained in this thesis and what is
taken from other sources.

In the first two chapters, an overview of the literature and concerned research work
is given in detail. The more important topics discussed here are commuting matrices
(Theorem 2.1), Cowin-Mehrabadi formalism [11], Cowin-Mehrabadi Theorem [28] and its
modified versions by many authors [21,29-31] (Theorem 2.2-2.12), piezoelectricity and
Young’s modulus.

In chapter 3, we utilized the well-known results of linear algebra which play important
role in enriching the theory of elasticity tensors. For this purpose we used Theorem 2.1
and Cowin-Mehrabadi formalism [11] in this chapter.

If a tensor is invariant under rotation about a fixed axis, the matrices representing the
tensor and the rotation commute with each other. The two matrices have common eigen-
vectors. Since the eigenvectors of rotation matrix are found easily, therefore a knowledge
of eigenvectors of the rotation matrix provides us with a fair amount of information about

eigenvectors of the elasticity tensor. This result is first applied to a transversely isotropic

104
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tensor T of rank 2. Eigenvectors of T" are found without any appeal to its components
and it is also shown that due to the choice of symmetry axis as rz-axis, the matrix rep-
resenting 7' is diagonal with two components equal. Then it is also applied to elasticity
tensor ¢ possessing tetragonal symmetry to find its eigenvectors easily and also derive its
classical matrix representations. The eigenvalues of ¢ are also found such that eigenvalues
and eigenvectors are in agreement with [33] and [11] respectively. The representation of
the elasticity tensor ¢ belonging to a particular symmetry, that is cubic, isotropic, tetrag-
onal, hexagonal, trigonal is also derived in an elegant manner. For the cubic symmetry
the representation of ¢ contains three parameters which, being eigenvalues of the tensor,
are invariant under a coordinate transformation. Similarly for a hexagonal symmetry, it
has five parameters out of which four are eigenvalues, for tetragonal symmetry, there are
seven parameters, five of them are eigenvalues and for trigonal symmetry, again there are
seven parameters among which four are eigenvalues.

Chapter 4 is devoted to the identification of symmetry of an elastic materials. For
the identification of plane of symmetry, Cowin and Mehrabadi [28] have proved Theorem
2.2, which is also known as Cowin-Mehrabadi Theorem. The conditions (2.52)-(2.55) of
theorem 2.2 were modified by Cowin [29] and has reduced to only two conditions (2.54) and
(2.55). Ting [30] has further generalized Cowin-Mehrabadi Theorem and has provided its
several cases. Ahmad [31] has proved Cowin-Mehrabadi Theorem for an axis of symmetry.
He has also proved Cowin-Mehrabadi Theorem in six dimensions [21]. The work done in
this chapter extends the ideas of Cowin-Mehrabadi Theorem as discussed above.

In this chapter, we provide simple proofs of the necessary and sufficient conditions
Cowin-Mehrabadi Theorem its special case for an axis of symmetry given in Theorem
2.2 and Theorem 2.10 respectively. This approach is generalized to a cartesian tensor of
arbitrary rank and apply this treatment to find the necessary and sufficient conditions for
the existence of a plane of symmetry or an axis of symmetry for a piezoelectric material. We
also obtain the conditions for the identification of an n-fold axis of symmetry with n > 3.
The necessary and sufficient conditions for the plane and axes of symmetry of elastic as
well as piezoelectric tensor. These results are presented in Theorems 4.1 to Theorem 4.8.

The necessary conditions for tensor of arbitrary rank is also presented at the end of the



CHAPTER 6. SUMMARY 106

chapter.

In chapter 5, we discussed the extrema of Young’s modulus for aubic and hexagonal
materials. Our motivation comes from Norris [35] who has expressed the Young’s modulus
in term of invariant quantities, i.e. in terms of eigenvalues. On the other hand, Cazzani
and Rovati [53] (also see [54], [49]) have expressed the Young’s modulus in terms of the
elastic compliances and the parameters which are not invariant quantities.

For extrema of Young’s modulus in cubic materials, we have discussed the problem
considered by Norris [35] in detail and reformulated it in six dimensions by applying the
representation derived for a cubic material in chapter 3 to find an expression for E(n).
In a similar way, the expression of Young’s modulus for a hexagonal material is written
in terms of one variable only and hence the problem of finding extreme values is solved
by a straightforward manner. The results are finally illustrated by some examples of real

materials.
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