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Abstract

Physical properties of elastic and piezoelectric materials are studied by using tensors. It is

usual to represent a tensor by a matrix. If a tensor is invariant under rotation about a fixed

axis, the matrix representing the tensor commutes with rotation matrix. Therefore these

two matrices have common eigenvectors, consequently a knowledge of eigenvectors of the

rotation matrix provides us with a fair amount of information about eigenvectors of the

tensor. This result is utilized to derive familiar representations of a transversely isotropic

tensor of rank 2 and the elasticity tensor possessing tetragonal symmetry. Representation

of the elasticity tensor belonging to a particular symmetry class can be achieved in an

elegant manner.

In an arbitrary coordinate system, it is not obvious to identify the symmetry class

of the elastic materials under debate. In such circumstances Cowin-Mehrabadi Theorem

plays a vital role. Simple proofs are obtained for the Cowin-Mehrabadi Theorem for

the identification of a plane of symmetry or an axis of symmetry in an elastic material.

Necessary and sufficient Conditions are obtained for the identification of an n-fold axis

of symmetry with n ≥ 3. The treatment is then generalized to a Cartesian tensor of

arbitrary rank and consequently the necessary and sufficient conditions are also found for

the existence of a plane of symmetry or an axis of symmetry for a piezoelectric material.

Young’s modulus is a material property that describes the stiffness of an elastic mate-

rial. It is therefore one of the most important properties in engineering design. The familiar

representation derived for a transversely isotropic (or hexagonal) material in this thesis is

applied to find an expression for Young’s modulus and consider its optimum values.

The expression of Young’s modulus for a hexagonal material is written in terms of one

variable only and hence the problem is solved by a straightforward manner.
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Chapter 1

Introduction

Material symmetry of an anisotropic elastic material plays an important role in the theory

of linear anisotropic elasticity. The constitutive relation for linear anisotropic elasticity is

the generalized Hooke’s law which describes the most general linear relationship between

stress and strain tensors. The fourth rank elasticity tensor emerges from Hooke’s law.

Elasticity tensor, in three dimensions, has 81 components. Due to symmetries of stress and

strain and the thermodynamic requirement that no work be done by the elastic material

in a closed loading cycle, the number of independent components reduces to 21 only.

Further reduction of independent components was classically based on the crystallographic

considerations [1–4]. It was shown by Huo and Del Piero [5] and S. Forte [6] that symmetry

in classical anisotropic elasticity are self contained and are independent of crystallography.

P. Chadwick et al. [7] have shown that elastic materials can be divided into eight classes

and each class being uniquely characterized by a precise set of planes of mirror symmetry

for the given elasticity tensor, see also [2, 8].

Lord Kelvin first described the properties of an elastic material in terms of eigenval-

ues and eigenvectors of the elasticity tensor in the middle of the nineteenth century [9].

However, his description was independently discovered again by Rychlewski [10] and by

Mehrabadi and Cowin [11] (also see [12, 13]). The main idea of [10, 11] is to represent the

elasticity tensor c of rank 4 in three dimensions, by a tensor ĉ of rank 2 in six dimensions.

The formulation of interpreting the eigenvectors of ĉ, which are 6 × 1 column vectors, as

tensors of rank 2 in three dimensions has several advantages. One advantage is that the

1
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coordinate transformations of elasticity tensor can be achieved using matrix multiplica-

tions. This means that standard results of linear algebra become applicable. For example,

if a coordinate transform is applied to the elasticity tensor such that the elasticity tensor

is invariant under the transformation, then the transformation matrix Q̂ must commute

with the tensor represented by the 6 × 6 matrix ĉ. Ahmad and Khan have [14] used this

fact to create matrix representations for ĉ belonging to different symmetry classes. There

are many applications of the six dimensional representation of the elasticity tensor (see,

for example, [15, 16] and references therein). Blinowski and Ostrowska-Maciejewska have

found expressions for the Youngs modulus and Poissons ratio in terms of eigenvalues and

eigenvectors of the elasticity tensor in case of orthotropic material [17]. In [18], Mehrabadi

et al. have discovered six-dimensional representation of the rotation in terms of the axis of

rotation n and the angle of rotation θ. Norris [19] has derived the coaxiality condition for

the strain energy to be a minimum under a state of uniform stress using this representation.

If the trace and determinant of a second rank tensor in three dimensions both vanish,

then it is called pure shear. Whereas, an isochoric tensor is a second rank traceless tensor.

A pure shear is also isochoric but the converse is not necessarily true. The properties of

pure shear have been discussed by Blinowski and Rychlewski in [20]. They have proved

the following result

Theorem 1.1. (Blinowski-Rychlewski Theorem). An elastic material is a symmetric one

only if at least two of its proper states are pure shears belonging to some subspace of shears

with common direction PA.

In [21], Ahmad has used the six-dimensional formulation of the elasticity tensor to

illuminate the following two interesting properties of elastic materials:

(1) An eigenvector of the elasticity tensor represents a state of stress tensor which is

proportional to a strain tensor. The top three components of these tensors represent

the normal stresses and strains. Vanishing of the sum of normal strains implies that

the rate of change of volume is zero i.e. the strain tensor represents an isochoric or

an equivoluminal state. Ahmad has shown that, for all materials which possess a

plane of symmetry, at least two such states of strain exist. This result is less general

than Theorem 1.1. However, his method is provides a simple proof of this Theorem.
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(2) A geometrical argument using the ‘law of rational indices’ establishes the result that

if a crystal possesses an n-fold axis of symmetry, An, then n must be such that

cos(2π/n) is a rational number [22]. This allows n = 2, 3, 4 and 6 but forbids n = 5.

However, this argument does not imply that an arbitrary rotation about the A6 axis

should leave the system invariant. On the other hand, Hermann’s Theorem [23] states

that if a tensor of rank r possesses an axis of symmetry Ap with p > r, then Ap is

an axis of isotropy for that tensor. Hermann’s proof uses sophisticated mathematics

to prove his Theorem. Ahmad gives an elementary proof of the result: ĉ can have at

most four distinct coaxial planes of symmetry and an n-fold axis of symmetry, An,

with n > 4, must be an axis of isotropy. Also see Slawinski ( [24], chapter 5).

Physical properties of anisotropic elastic materials are described by means of tensors

such as the dielectric tensor, ε, of rank two, the piezoelectric tensor, e, of rank three and

the elasticity tensor, c, of rank four. Tensors may be represented by matrices [26], for

instance, the elastic constants of anisotropic materials are written as 6 × 6 matrix c [27].

An advantage of representing a symmetric tensor by a symmetric matrix is that classical

results of linear algebra become readily available which play a significant role in enriching

the theory of tensors. For example, the elastic energy of the material is positive if the

6 × 6 matrix c is positive definite. Similarly eigenvectors play an important role in the

necessary and sufficient conditions for the identification of plane of symmetry or an axis

of symmetry of an elastic material. Components of these tensors which describes the

physical properties of anisotropic elastic materials, depend on the system of coordinate

axes and the tensors are usually represented in matrix form. If the crystal possesses a

plane of symmetry or an axis of symmetry, and an axis of a rectangular coordinate system

is chosen to be parallel to the normal to the plane of symmetry or the axis of symmetry, the

matrix representing the tensor acquires a simple form in which several components vanish

and relations among others become apparent. However with reference to an arbitrary

coordinate system, the components exhibit none of these features and it is not obvious

whether or not the crystal belongs to any of the symmetry classes characterizing elastic

materials. The origin of this discussion go back to the problem considered by Cowin and

Mehrabadi for identifying the elastic symmetry. For a plane of symmetry, they addressed
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this problem in [28]. They formulated a simple eigenvalue problem for the determination of

normals to the plane of symmetry of an elastic material. Let cijkl, i, j, k, l = 1, 2, 3 denote

components of the elasticity tensor. Cowin and Mehrabadi [28] have proved a theorem

called Cowin-Mehrabadi Theorem which is stated as follows:

“A set of necessary and sufficient conditions for a unit vector n to be a normal to a

plane of symmetry is that it should be a common eigenvector of the tensors Uij = cijkk,

Vij = cikjk, Wik(n) = cijksnjns and Wik(m) = cijksmjms, where m is any vector lying in

the symmetry plane, summation on the repeated indices is understood and free indices take

the values 1, 2, 3”.

The four conditions of the Cowin-Mehrabadi Theorem were then modified by Cowin [29]

to reduce the conditions to last two conditions only. Ting has provided some generaliza-

tions of the Cowin-Mehrabadi Theorem in [30]. Ahmad [31] has proved Cowin-Mehrabadi

Theorem for an axis of symmetry. He proved a Theorem having the following statement:

“For a unit vector p to be an axis of symmetry of an elastic material, it is necessary that

it is an eigenvector of U,V and Wik(p) = cijkspjps ”.

Ahmad [21] has also provided a six dimensional formulation of the Cowin-Mehrabadi The-

orem.

As a practical example of the identification of elastic symmetry, Cowin and Mehrabadi

considered bone as an elastic material in [29]. They applied their methods and numerical

algorithm to bone tissues to identify the elastic symmetries of bone. But these methods

can be applied to all materials.

This thesis is divided into six chapters. In chapter 2, we have reviewed basics of the

theory to be covered in the remainder of this thesis. This chapter contains a brief dis-

cussion on tensors, generalized Hooke’s law, the elasticity tensor and compliance tensor.

The reduction of the number of elastic constants due to material symmetry is explained

for isotropic and anisotropic materials clearly. Cowin-Mehrabadi formalism [11] defines a

tensor in six dimensions, it has been explained in detail and illustrated by an example too.

Cowin-Mehrabadi Theorem has been proved with detailed explanations and the modifica-

tions by several researchers is also mentioned in different cases. A suitable explanation of

piezoelectric tensor is given and the reduction of its components due to symmetry is dis-
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cussed. We also discuss the Young’s modulus, which is a material property that describes

its stiffness and is therefore one of the most important properties in engineering design.

In chapter 3, we shall make use of a well-known result of linear algebra which states

that if two Hermitian matrices commute then they can be simultaneously diagonalized.

This means that a set of orthonormal vectors exists, every member of which, is a common

eigenvector of both matrices. If a tensor is invariant under rotation about a fixed axis

and the rotation matrix and the matrix representing the tensor commute then these two

matrices have common eigenvectors. Therefore by investigating the eigenvectors of the

rotation matrix, we can find the eigenvectors of elasticity tensor too and hence apply this

result to derive representations of the elasticity tensors in the form

ĉ =
6∑
i=1

λiEi (1.1)

where Ei are 6× 6 matrices with properties

EiEj = 0, i 6= j,

E2
i = Ei,

6∑
i=1

Ei = I.

The above representation reduces calculations of powers and inverse of ĉ to trivial changes

in (1.1). Also it is very useful in finding invariant expressions for engineering constants

such as Young’s modulus, Poisson’s ratio etc.

The above representation has in effect partitioned the elasticity tensor into sets which

constitute an associative algebra [32]. Our work also reproduces eigenspaces found by Bona

et al. in their characterization of the symmetry classes of elasticity tensors [33,34]. These

examples are an indication of the power of Mehrabadi-Cowin formalism [11] to approach

classical results from a new perspective.

In chapter 4, we provide simple proofs of the necessary and sufficient conditions for the

identification of a plane of symmetry or an axis of symmetry given in Cowin-Mehrabadi

Theorem and its special case for axis of symmetry [31] by searching for invariant directions

associated with the elasticity tensor. In case of plane of symmetry, such a direction must
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be orthogonal to the normal n whereas in case of axis of symmetry, it must be parallel

to the vector p. We generalize this approach to tensors of arbitrary rank and apply it

to the third rank piezoelectric tensor to identify the plane of symmetry and do the same

for an axis of symmetry of piezoelectric material. We also obtain the conditions for the

identification of an n-fold axis of symmetry with n > 3. Some of these results are also

illustrated by means of explicit examples. These results are developed and generalized to

a tensor of arbitrary rank.

Chapter 5 is devoted to the application of familiar matrix representations obtained for

the elasticity tensors in chapter 3. The special case of hexagonal materials is discussed

there. By using the representation derived in chapter 3, we compute an expression for the

Young’s modulus and consider its extreme values. This approach extends to hexagonal

materials the results of Norris [35] who considered Poisson’s ratio in cubic materials.

In chapter 6, the results developed in this thesis are summarized explicitly.



Chapter 2

Preliminaries

2.1 A short review of tensors

Consider a real vector space V and its elements u, v, w, ... are vectors if they satisfy all

the axioms of a vector space. An n-dimensional vector space is denoted by Vn. Assume

that {ei}ni=1 and {e′j}nj=1 are two orthonormal bases in Vn. These bases are related by the

following equations

e
′
j = Qijei and ei = Qjie

′
j (2.1)

where, the matrix Q = [Qij ] is the transformation matrix. Since this matrix represents

the change of an orthonormal basis and hence it is an orthogonal matrix [36]. So that we

can write

QQT = I, det Q = ±1 and Q−1 = QT

where

I =



1 0 . . . 0

0 1 . . . 0

...
...

. . .
...

0 0 . . . 1


,

therefore we have Q−1 = QT = [Qji].

Thus a vector u can be expressed in two ways

u = uiei and u = u
′
jej .

7
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Now using (2.1), we can write the following relations

u
′
j = Qijui and ui = Qjiu

′
j . (2.2)

These relations are called the transformation law of components of a vector. The matrix

form of (2.2) is

u
′

= Qu and u = QTu
′

where, u = [u1, u2, ..., un]T and u
′

= [u
′
1, u

′
2, ..., u

′
n]T . This change of basis plays an impor-

tant role in the theory of material symmetry.

2.1.1 Second order tensor

Let V be a real vector space. A linear function T defined on V and having values in V is

called a second order tensor [36]. That is we can write

u = T(v) = Tv, u, v ∈ V and

T(αu+βv) = αTu + βTv, ∀ u, v ∈ V , ∀ α, β ∈ R

The second order tensors play a fundamental role in the mechanics of deformable bodies

because deformation and internal forces characterizing the behaviour of deformable bodies

are described mathematically by second order tensors such as strain and stress tensors.

The second order tensor satisfy all the axioms of a vector space. We denote the vector

space of all second order tensors by L.

The product u ⊗ v = uv of two vectors u, v ∈ V , defined on V and having values in V

such that it is a linear function is called tensor product or dyadic product. That is we can

write

(u⊗ v)(w)= uv(w) = u(v.w) , for all w ∈ V

and

uv(αx + βy) = αuv(x) + βuv(y), for all x,y ∈ V.

We note that the tensor product of two vectors u, v is also a second order tensor.

Let {ek}nk=1 be an orthonormal basis in Vn. Consider T ∈ L an arbitrary tensor. Thus

Tem ∈ Vn can be written as

Tem = Tkmek, for all T ∈ L
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which implies that

T = Tkmekem, ∀ T ∈ L. (2.3)

This shows that {ekem}nk,m=1 is a basis in the vector space L with dimension n2. By using

(2.3), the components of the tensor T in this basis can be written as

Tkm = ek.Tem. (2.4)

These components can also be represented by n× n matrix

T = [Tkm] =



T11 T12 . . . T1n

T21 T22 . . . T2n
...

...
. . .

...

Tn1 Tn2 . . . T1n


.

Assume that {ekem}nk,m=1 and {e′re
′
s}nr,s=1 are the two bases in L correspond the two

orthonormal bases {ek}nk=1 and {e′k}nk=1 in Vn. We can write the components of the tensor

T in these bases as

T = Tkmekem = T
′
rse
′
re
′
s. (2.5)

Thus with the help of equations (2.1), (2.4) and (2.5), we have

Tkm = ek.Tem = (Qkje
′
j).T(Qmle

′
l)

= QkjQmlTe
′
je
′
l

= QkjQmlT
′
jl.

This describes the transformation law of the components of a tensor corresponding the

change of basis in L which can also be written in matrix form as

T = QT′QT .

The above result is equivalent to

T′ = QTTQ,

which, in component form, becomes

T ′rs = QkrQmle
′
jTkm.
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2.1.2 Tensor of higher order

A general tensor of rank r in n dimensions, is an entity that contains nr components

denoted as Ti1i2i3...ir (i1, i2, ..., ir = 1, 2, ..., n). Consider a vector space of all tensors of

rank r , say, Lr and assume that {ei1ei2 ...eir}ni1,i2,...,ir=1 and {e′s1e
′
s2 ...e

′
sr}

n
s1,s2,...,sr=1 are

the basis in Lr. The components of above tensor can be expressed as a linear combination

of members of these bases. The transformation law of the components of such a tensor

corresponding the change of basis in the vector space Lr can be written as

T
′
s1s2s3...sr = Qi1s1Qi2s2Qi3s3 ...QirsrTi1i2i3...ir (s1, s2, ..., sr = 1, 2, ..., n).

We note that a vector is a tensor of rank one while a scalar is a tensor of rank zero.

2.1.3 Symmetric and antisymmetric tensors

A tensor Ti1i2i3...ir is said to be symmetric with respect to the indices (any two) i1 and i3

if

Ti1i2i3...ir = Ti3i2i1...ir

and it is said to be antisymmetric with respect to the indices (any two) i1and i3 if

Ti1i2i3...ir = −Ti3i2i1...ir .

Any tensor can be written as a sum of symmetric and antisymmetric tensors. For instance,

Tij =
1

2
(Tij + Tji) +

1

2
(Tij − Tji), Tji is the transpose of tensor Tij .

2.1.4 Principal values and principal directions of a symmetric tensor

Let T be a second order symmetric tensor. If u is a unit vector and λ is a scalar such that

Tu = λu

or in components form

Tijui = λuj ,

then u is called principal direction or principal axis for the tensor Tij and λ is called its

principal value. We can write the above equation as

(Tij − λδij)ui = 0,



CHAPTER 2. PRELIMINARIES 11

in matrix form 
T11 − λ T12 T13

T12 T22 − λ T23

T13 T23 T33 − λ




u1

u2

u3

 =


0

0

0

 .

Since ui is a unit vector(a nonzero vector), the determinant of Tij −λδij must vanish. The

three roots of the following characteristic equation∣∣∣∣∣∣∣∣∣∣
T11 − λ T12 T13

T12 T22 − λ T23

T13 T23 T33 − λ

∣∣∣∣∣∣∣∣∣∣
= 0

are called principal values of the tensor.

It is easily shown that for a symmetric tensor all the principal values are real, then there

are three principal directions or principal axes. If principal values are distinct, then three

principal directions are mutually orthogonal. If any two of the principal values are equal,

then the tensor has the diagonal form and it is independent of the choice of corresponding

axis. And if all the principal values are equal, then any direction is a principal direction. A

set of mutually orthogonal directions exist for a symmetric tensor of order 2. This defines

a Cartesian coordinate system.

2.2 Generalized Hooke’s Law

A medium is said to be elastic if it returns to its original state after the external forces

are removed. This return to the original state is due to the internal stress. There is a one

to one correspondence between stress and strain. Let us denote stress and strain tensors

by Tij and Sij , respectively. We assume that Tij is a function of Sij , that is Tij(Sij). It

is known from experiments that the elastic behaviour of most substances is adequately

described (for small deformations) by the first order term in the Taylor expansion of the

equation:

Tij(Skl) = Tij(0) +
∂Tij
∂Skl

|Skl=0Skl +
∂2Tij

∂Skl∂Smn
| Skl=0
Smn=0

SklSmn + ...

or, since Tij(0) = 0, therefore

Tij = cijklSkl, (2.6)
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where

cijkl =
∂Tij
∂Skl

|Skl=0. (2.7)

Equation (2.6) is called generalized Hook’s Law. This law of proportionality between stress

and strain was first stated in the 17th century by Hooke, for the case of a stretched elastic

string.

2.2.1 Elasticity tensor

The coefficients cijkl in the generalized Hook’s Law describes the most general linear rela-

tionship between the two second rank tensors Tij and Skl, are the components of a fourth

rank tensor called the elastic stiffness tensor or elasticity tensor.

A tensor of rank four, in three dimensions, has 34 = 81 components. Since the tensors

Tij and Skl are symmetric, the elastic constants defined by Hooke’s Law are unaffected

when either the first two or the last two indices are interchanged, so that

cijkl = cjikl and cijkl = cijlk.

In terms of displacements, Hooke’s law in (2.6) becomes

Tij =
1

2
cijkl

∂uk
∂ul

+
1

2
cijkl

∂ul
∂uk

and since cijkl = cijlk the two summations on the right are equal, so that

Tij = cijkl
∂ul
∂uk

.

Due to the above symmetry relations the number of independent elastic constants reduces

from 81 to 36. Indeed, a pair of unordered indices (i, j) can give only six independent

values. These are numbered 1 to 6 according to the following convention

(11)←→ 1 (22)←→ 2 (33)←→ 3

(23) = (32)←→ 4 (13) = (31)←→ 5 (12) = (21)←→ 6
(2.8)

The independent elastic moduli can thus be represented in terms of only two indices α and

β, with values 1 to 6, corresponding to a 6× 6 square matrix with 36 entries, such that

cαβ = cijkl,
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where α is related to (ij) and β to (kl). For example, c14 = c1123 = c1132, c56 = c1312 =

c1321 = c1312 = c3112. This notation was introduced by Voigt [37] and is called the matrix

notation to distinguish it from the tensor notation cijkl, can be extended to the stresses

and strains. Thus Hooke’s law, given by (2.6), can be written

Tα = cαβSβ (α, β = 1, 2, ..., 6.), (2.9)

where, Tα are defined as follows

T1 = T11, T2 = T22, T3 = T33, T4 = T23, T5 = T13, T6 = T12.

In order to to show that (2.9) gives Hooke’s law correctly, we must define Sβ as

S1 = S11, S2 = S22, S3 = S33, S4 = 2S23, S5 = 2S13, S6 = 2S12.

For instance, if α = 2, we have

T2 = c2βSβ

= c21S1 + c22S2 + c23S3 + c24S4 + c25S5 + c26S6,

and

T22 = c22klSkl

= c2211S11 + c2222S22 + c2233S33 + 2c2223S23 + 2c2213S13 + 2c2212S12.

From this, we can easily identify T2 and T22.

Elastic energy and symmetry of elasticity tensor

The existence of elastic potential energy defines an elastic continuum [24]. This implies

that cijkl is invariant under permutations of pairs of subscripts ij and kl. This can be

derived as follows.

The expression of elastic potential energy is [24]

W =
1

2
cijklSkl.

Differentiating both sides of these equations with respect to Sij , Skl, respectively, we get

∂2W

∂SijSkl
= cijkl, i, j, k, l = {1, 2, 3}.
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If W has continuous first and second order derivatives, then we can write [25]

∂2W

∂SijSkl
=

∂2W

∂SklSij

which implies that

cijkl = cklij .

2.2.2 Compliance tensor

If we write strain in terms of stress, that is to invert Hooke’s law as

Sij = sijklTkl, (2.10)

where sijkl represents the compliance coefficients and form a fourth rank tensor called the

compliance tensor. This tensor also has the same properties as the elasticity tensor has,

so that

sijkl = sjikl and sijkl = sijlk.

Similarly, we can write (2.9), in terms of Sα as

Sα = sαβTβ,

where the matrix sαβ called compliance matrix is the inverse of the matrix cαβ, that is

sαβcβγ = δαγ ,

where δαγ is the six-dimensional Kronecker delta. The relation between sαβ and sijkl is

given by

sαβ = 2psijkl,

where p is the number of indices greater than 3 in the pair (α, β). For example,

s41 = 2s2311, s42 = 2s2322, s43 = 2s2333, s44 = 4s2323, s45 = 4s2313, s46 = 4s2312, etc.

2.3 Mehrabadi and Cowin Formalism

The fourth rank elasticity tensor cijkl is defined through the generalized Hooke’s law

Tij = cijklSkl (2.11)



CHAPTER 2. PRELIMINARIES 15

where Tij and Skl respectively denote the stress tensor and the strain tensor.

In this formalism, Mehrabadi and Cowin [11] have introduced a cartesian basis in

three dimensions to construct a cartesian basis in six dimensions. Let us denote the three

dimensional cartesian basis vectors by ei (i = 1, 2, 3) and those in six dimensions by êα

(α = 1, ..., 6). These two bases are related by the following equations

ê1 = e1 ⊗ e1, ê4 =
1√
2

(e2 ⊗ e3 + e3 ⊗ e2),

ê2 = e2 ⊗ e2, ê5 =
1√
2

(e1 ⊗ e3 + e3 ⊗ e1),

ê3 = e3 ⊗ e3, ê6 =
1√
2

(e1 ⊗ e2 + e2 ⊗ e1), (2.12)

where ⊗ denotes the tensor product. The six-dimensional base vectors ê1, ..., ê6 may have

two meanings. That is, they behaves as vectors in six dimensional space (1, 0, 0, 0, 0, 0), ...(0, 0, 0, 0, 0, 1)

as well as they can be considered as special second rank tensors in three dimensional space
1 0 0

0 0 0

0 0 0

 , ...,
1√
2


0 1 0

1 0 0

0 0 0

 .

We define six dimensional stress and strain vectors,

T̂ =



T11

T22

T33
√

2T23
√

2T13
√

2T12


, Ŝ =



S11

S22

S33
√

2S23
√

2S13
√

2S12


The components of stress, strain and elasticity tensor with respect to the three and six

dimensional bases are respectively related by the following equations

Tijei ⊗ ej = T̂αêα,

Sklek ⊗ el = Ŝβ êβ,

cijklei ⊗ ej ⊗ ek ⊗ el = ĉαβ êα ⊗ êβ.
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If we write the relation between three and six dimensional bases in a concise manner, that

is if

êα(i,j) = 2
− 1

2−δij (êi ⊗ êj + êj ⊗ êi),

where α(i, j) = iδij + (9 − i − j). Also define T̂α(i,j) = 2
1

2−δij Tij and Ŝβ(i,j) = 2
1

2−δij Sij ,

where, i, j = 1, 2, 3 and α = 1, ..., 6. Thus in second rank tensor notations, we can write

(2.9) as

T̂α = ĉαβŜβ, T̂ = ĉŜ, (2.13)

where T̂ and Ŝ are 1× 6 column matrices and ĉ is the 6× 6 matrix. The matrix ĉ has the

following representation

ĉαβ =



c11 c12 c13
√

2c14
√

2c15
√

2c16

c12 c22 c23
√

2c24
√

2c25
√

2c26

c13 c23 c33
√

2c34
√

2c35
√

2c36
√

2c14
√

2c24
√

2c34 2c44 2c45 2c46
√

2c15
√

2c25
√

2c35 2c45 2c55 2c56
√

2c16
√

2c26
√

2c36 2c46 2c56 2c66


.

Where ˆcαβ is a symmetric matrix as discussed in section 2.2.1, that is cijkl = cklij .

Mehrabadi and Cowin [11] have constructed a six dimensional rotation matrix Q̂ from

a given three dimensional rotation matrix Q as follows.

By the transformation law, the bases ei and e
′
i are related by

e
′
i = Qijej , i, j = 1, 2, 3, (2.14)

where Q is an orthogonal tensor in three dimensions. The bases êi and ê
′
i are related by

ê
′
i = Q̂αβ êβ, α, β = 1, ..., 6, (2.15)

where Q̂ is an orthogonal tensor in six dimensions. From (2.14) and (2.15), it can be

written that

ê
′
i ⊗ ê

′
j = QikQjmekem (2.16)

and

1

2
(ê
′
i ⊗ ê

′
j + ê

′
j ⊗ ê

′
i) =

1

2
(QikQjm +QimQjk)ek ⊗ em. (2.17)
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Then from equation (2.15) and (2.12), it follows that

1

2
(QikQjm +QimQjk)ei ⊗ ej ⊗ ek ⊗ em = Q̂αβ êαêβ. (2.18)

From this formula, the relationship between the components of Q and Q̂ can be constructed

in the form of the following matrix

Q̂ =



Q̂11 Q̂12 Q̂13 Q̂14 Q̂15 Q̂16

Q̂21 Q̂22 Q̂23 Q̂24 Q̂25 Q̂26

Q̂31 Q̂32 Q̂33 Q̂34 Q̂35 Q̂36

Q̂41 Q̂42 Q̂43 Q̂44 Q̂45 Q̂46

Q̂51 Q̂52 Q̂53 Q̂54 Q̂55 Q̂56

Q̂61 Q̂62 Q̂63 Q̂64 Q̂65 Q̂66


, (2.19)
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where

Q̂11 = Q2
11, Q̂12 = Q2

12, Q̂21 = Q2
21, Q̂13 = Q2

13, Q̂31 = Q2
31

Q̂14 =
√

2Q12Q13, Q̂41 =
√

2Q21Q31,

Q̂15 =
√

2Q11Q13, Q̂51 =
√

2Q11Q31,

Q̂16 =
√

2Q11Q12, Q̂61 =
√

2Q11Q21,

Q̂22 = Q2
22, Q̂23 = Q2

23, Q̂32 = Q2
32,

Q̂24 =
√

2Q22Q23, Q̂42 =
√

2Q22Q32,

Q̂25 =
√

2Q21Q23, Q̂52 =
√

2Q12Q32,

Q̂26 =
√

2Q22Q21, Q̂62 =
√

2Q12Q22,

Q̂33 = Q2
33, Q̂34 =

√
2Q33Q32, Q̂43 =

√
2Q23Q33,

Q̂35 =
√

2Q33Q31, Q̂53 =
√

2Q13Q33,

Q̂36 =
√

2Q31Q32, Q̂63 =
√

2Q13Q23,

Q̂44 = Q22Q33 +Q23Q32,

Q̂45 = Q21Q33 +Q31Q23, Q̂54 = Q21Q33 +Q31Q23,

Q̂46 = Q21Q32 +Q31Q22, Q̂64 = Q12Q23 +Q22Q13,

Q̂55 = Q11Q33 +Q13Q31,

Q̂56 = Q11Q32 +Q31Q12, Q̂65 = Q11Q23 +Q21Q13,

Q̂66 = Q11Q22 +Q21Q12.

With Q̂ defined by above, equation (2.14) becomes a tensor equation in six dimension.

It can be shown that orthogonality of Q implies the orthogonality of Q̂, that is,

QQT = QTQ = I (2.20)

implies that

Q̂Q̂T = Q̂T Q̂ = I (2.21)

in order to prove (2.21), consider

Q =


Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33

 , QT =


Q11 Q21 Q31

Q12 Q22 Q32

Q13 Q23 Q33

 ,
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which gives

QQT =


Q2

11 +Q2
12 +Q2

13 Q11Q21 +Q12Q22 +Q13Q23 Q11Q31 +Q12Q32 +Q13Q33

Q11Q21 +Q12Q22 +Q13Q23 Q2
21 +Q2

22 +Q2
23 Q21Q31 +Q22Q32 +Q23Q33

Q11Q31 +Q12Q32 +Q13Q33 Q21Q31 +Q22Q32 +Q23Q33 Q2
31 +Q2

32 +Q2
33

 .

(2.22)

Using (2.22) in (2.20), we have the following relations

Q2
11 +Q2

12 +Q2
13 = 1, (2.23a)

Q2
21 +Q2

22 +Q2
23 = 1, (2.23b)

Q2
31 +Q2

32 +Q2
33 = 1, (2.23c)

Q11Q21 +Q12Q22 +Q13Q23 = 0, (2.23d)

Q11Q31 +Q12Q32 +Q13Q33 = 0, (2.23e)

Q21Q31 +Q22Q32 +Q23Q33 = 0. (2.23f)

For orthogonality of Q̂, we need to check each element of the product matrix Q̂Q̂
T

. Let

us denote these elements by
[
Q̂Q̂

T
]
ij
, i, j = 1, 2, ..., 6. We can compute these components

as follows [
Q̂Q̂

T
]
11

= Q4
11 +Q4

12 +Q4
13 + 2Q2

11Q
2
12 + 2Q2

11Q
2
13 + 2Q2

12Q
2
13

= (Q2
11 +Q2

12 +Q2
13)

2

= 1, using (2.23a).

Similarly[
Q̂Q̂

T
]
22

= (Q2
21 +Q2

22 +Q2
23)

2 = 1,[
Q̂Q̂

T
]
33

= (Q2
31 +Q2

32 +Q2
33)

2 = 1,[
Q̂Q̂

T
]
12

=
[
Q̂Q̂

T
]
21

= (Q11Q21 +Q12Q22 +Q13Q23)
2 = 0,[

Q̂Q̂
T
]
13

=
[
Q̂Q̂

T
]
31

= (Q11Q31 +Q12Q32 +Q13Q33)
2 = 0,[

Q̂Q̂
T
]
23

=
[
Q̂Q̂

T
]
32

= (Q21Q31 +Q22Q32 +Q23Q33)
2 = 0, and so on.

Thus we have Q̂Q̂
T

= I, similarly we can show that Q̂T Q̂ = I. This proves equation

(2.21).
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In a special case when Q is rotation about x1-axis through an angle θ, that is,

Q =


1 0 0

0 cos θ sin θ

0 − sin θ cos θ

 ,

the corresponding matrix Q̂ becomes

Q̂ = Q̂(θ) =



1 0 0 0 0 0

0 cos2 θ sin2 θ
√

2 sin θ cos θ 0 0

0 sin2 θ cos2 θ −
√

2 sin θ cos θ 0 0

0 −
√

2 sin θ cos θ
√

2 sin θ cos θ cos2 θ − sin2 θ 0 0

0 0 0 0 cos θ − sin θ

0 0 0 0 sin θ cos θ


(2.24)

2.4 Commuting Operators

We state a result in the following theorem about commuting operators which is well known

if the two operators (matrices) are Hermitian. In quantum mechanics, this result has

great significance. If the two operators representing observables commute, the associated

observables can be measured at the same time [38]. Two operators A and B are said to

commute if AB = BA or [A,B] = AB−BA = 0.

Theorem 2.1. If the operators A and B commute and if one of the operators has an

eigenvalue of finite geometric multiplicity, both operators have a common eigenvector; that

is, there exists a vector v such that

Av = λv, Bv = µv,

where λ and µ are scalars.

Proof. Since Ay = λy implies that (A− λI)y = 0, the eigenvectors of A corresponding to

a given eigenvalue λ are elements of the null space for the operator A− λI. Now if

AB = BA⇒ (A− λI)B = B(A− λI).

Since, the null space of one of the commuting operators is an invariant subspace for the

other; consequently, the null space of A− λI is invariant subspace for B. It is known that
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if a finite dimensional subspace is invariant under an operator, the effect of that operator

may be represented by a matrix [26]. Since by hypothesis,the null space of A − λI is

finite dimensional, therefore B can be represented by a matrix in this space. If a finite

dimensional subspace is invariant under an operator, then there exists an eigenvector of

that operator in the corresponding subspace. It follows that B has an eigenvector v in the

null space of L− λI; consequently, we have

Bv = µv, (A− λI)v = 0⇒ Av = λv,

which proves the theorem.

As an application of theorem 2.1, we consider the classical orbital angular momentum

L = r×P,

where r = (x, y, z) is the position vector and P = (px, py, pz) is the (linear) momentum

vector for a particle [39]. The components of L are

Lx = ypz − zpy

Ly = zpx − xpz

Lz = xpy − ypx

and the square magnitude of the total angular momentum vector L is

L2 = L2
x + L2

y + L2
z.

The quantum mechanical operators corresponding to these observables are given by

L̂x = −i~(y
∂

∂z
− z ∂

∂y
)

L̂y = −i~(z
∂

∂x
− x ∂

∂z
)

L̂z = −i~(x
∂

∂y
− y ∂

∂x
)

L̂2 = L̂2
x + L̂2

y + L̂2
z.
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We can show that

[L̂x, L̂y] = i~L̂z

[L̂y, L̂z] = i~L̂x

[L̂z, L̂x] = i~L̂y. (2.25)

and

[L̂2, L̂x] = [L̂2, L̂y] = [L̂2, L̂z] = 0. (2.26)

It is clear from (2.25) that the individual components of L̂ don’t have common eigenstates

with one another (except for a special case of zero angular momentum). But (2.26) shows

that the components of L̂ have simultaneous eigenfunctions with L̂2. For example, we can

say that L̂2 and L̂z have simultaneous eigenfunctions. That is, there are states that are

eigenfunctions of both L̂2 and L̂z. Let us call these eigenfunctions ϕlm such that

L̂2ϕlm = ~2l(l + 1)ϕlm, (l = 0, 1, 2, ...)

L̂zϕlm = ~mϕlm(m = −l, ....,+l).

2.5 Material Symmetry

The set of all those transformations which preserve the distances between all pairs of points

of the body and bring the body into coincidence with itself, describe the symmetry of the

body. Such a transformation is said to be a symmetry transformation. This set forms

a group, which is called the symmetry group of the body. There are three fundamental

transformations; rotation, reflection and translation. The set of distance preserving sym-

metry transformations can be built up from these fundamental transformations. Rotation

through an angle about some axis and a mirror reflection in a plane are possible for a body

of finite extension, a molecule or a macroscopic form of a mineral. Translation (parallel

displacement), can occur only when the body is infinite in extent, for example, an infinite

crystal lattice.

Let us write the elastic stiffnesses cijkl, as the components of fourth rank elasticity

tensor. Under an orthogonal transformation

x∗i = Qijxj or x∗ = Qx (2.27)
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where Q is an orthogonal transformation (section 2.1). The elastic stiffnesses c∗ijkl and

elastic compliances s∗ijkl referred to x∗i coordinate system are, respectively,

c∗ijkl = QipQjqQkrQlscpqrs (2.28)

and

s∗ijkl = QipQjqQkrQlsspqrs. (2.29)

When c∗ijkl = cijkl and s∗ijkl = sijkl, that is

cijkl = QipQjqQkrQlscpqrs (2.30)

and

sijkl = QipQjqQkrQlsspqrs, (2.31)

the material is said to possess a symmetry with respect to Q. If (2.30) and (2.31) are

satisfied for

Q =


−1 0 0

0 −1 0

0 0 −1

 , (2.32)

we say that the anisotropic material possess the symmetry of central inversion. Equa-

tions (2.30) and (2.31) are obviously satisfied for Q given in (2.32) for any cijkl and sijkl,

respectively. Hence all anisotropic elastic materials have the symmetry of central inversion.

The transformation (2.27) represents a rigid body rotation if Q is a proper orthogonal

matrix, i.e., if detQ = +1. When (2.30) and (2.31) are satisfied for a proper orthogonal

matrix Q, the material possesses a rotational symmetry. For example,

Q(θ)=


1 0 0

0 cos θ sin θ

0 − sin θ cos θ

 (2.33)

represents a rotation about x1-axis through an angle θ. An orthogonal transformation Q

is called a mirror reflection in a plane if

Q = I− 2nnT (2.34)

in which n is a unit vector normal to the plane of reflection. The matrix form of (2.28) is
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Q =


1− 2n21 −2n1n2 −2n1n3

−2n1n2 1− 2n22 −2n2n3

−2n1n3 −2n2n3 1− 2n23

 .

If m is any vector on the plane, i.e., m⊥n,

Qn = −n, Qm = m. (2.35)

Thus a vector normal to the plane of reflection reverses its direction due to transformation

but a vector on the plane of reflection is unaltered. When (2.30) and (2.31) are satisfied

for the matrix Q of (2.34), the material possesses a plane of symmetry. For example, let

nT = [0, cos θ, sin θ].

The plane of symmetry contains the x1-axis. The matrix Q of (2.34) has the following

expression

Q(θ)=


1 0 0

0 − cos 2θ − sin 2θ

0 − sin 2θ cos 2θ

 , − π

2
< θ ≤ π

2
. (2.36)

The matrix in (2.36) is an improper orthogonal matrix because detQ = −1. Since θ and

θ + π represents the same plane, where, −π
2 < θ ≤ π

2 . At θ = 0,

Q(0) =


1 0 0

0 1 0

0 0 −1

 . (2.37)

This represents a reflection about the plane x3 = 0. When (2.30) and (2.31) are satisfied

for the matrix Q(0) of (2.35), the material has a plane of symmetry at x3 = 0. If (2.30)

and (2.31) are satisfied for the matrix Q(θ) of (2.36), the material is transversely isotropic.

The x1-axis is the axis of symmetry.

2.5.1 Effect of material symmetry on elastic constants

The elastic stiffness matrix c and compliance matrix s are 6 × 6 matrices contain 21

independent elastic constants. The number of independent constants is reduced when the

material possesses a certain material symmetry. We will discuss reduction in the number of

these components of the tensors describing isotropic and anisotropic materials as follows.
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Isotropic materials

A material is said to be isotropic if its properties are same in all directions (e.g. many

structural metals such as steel and aluminium). This will happen if the tensor cijkl is

an isotropic tensor (i.e. a tensor whose components remains invariant in all choices of

reference frames). An isotropic material possesses infinitely many rotational symmetries

and planes of reflection symmetry. A scalar and the Identity tensor δij are the quantities

which are unaffected by the coordinate transformations. As δij is symmetric, i.e. δij = δji,

therefore the only distinct combinations containing the four indices i, j, k, l are δijδkl, δikδjl

and δilδjk. Therefore cijkl can be written as:

cijkl = λδijδkl + µ(δikδjl + δilδjk) (2.38)

where λ and µ are Lamé constants. The tensor cijkl given in (2.27) satisfies (2.30) for any

orthogonal matrix Q. From this we have

cαβ =



λ+ 2µ λ λ 0 0 0

λ λ+ 2µ λ 0 0 0

λ λ λ+ 2µ 0 0 0

0 0 0 µ 0 0

0 0 0 0 µ 0

0 0 0 0 0 µ


(2.39)

Thus instead of 21, it has only 2 independent components.

Triclinic materials

These are the most general anisotropic materials having no planes of symmetry. They

have only a center of symmetry which impose no condition, so all these materials have 21

independent constants and this number will not be reduced further. These constants can
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be arranged in the following matrix form

cαβ =



c11 c12 c13 c14 c15 c16

c12 c22 c23 c24 c25 c26

c13 c23 c33 c34 c35 c36

c14 c24 c34 c44 c45 c46

c15 c25 c35 c45 c55 c56

c16 c26 c36 c46 c56 c66


. (2.40)

Monoclinic materials

Monoclinic materials possesses a plane of symmetry. Taking the dyad axis or axis of

symmetry along x3-axis. The symmetry plane will be at x1 = 0. The transformation of

coordinates is given by x
′
1 = −x1, x

′
2 = −x2, x

′
3 = x3. Therefore the transformation matrix

will be

Q =


−1 0 0

0 −1 0

0 0 1

 . (2.41)

By using (2.41) into (2.30), the elastic constants in which the index 1 occurs once or three

times become zero. We have the following matrix form

cαβ =



c11 c12 c13 0 0 c16

c12 c22 c23 0 0 c26

c13 c23 c33 0 0 c36

0 0 0 c44 c45 0

0 0 0 c45 c55 0

c16 c26 c36 0 0 c66


. (2.42)

Orthotropic materials

There are three symmetry planes for these materials. Taking three dyad axes along the

coordinate axis and apply the same argument to each coordinate axis as above, where the
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only non zero components are those having indices 2 or 4 times. The matrix is

cαβ =



c11 c12 c13 0 0 0

c12 c22 c23 0 0 0

c13 c23 c33 0 0 0

0 0 0 c44 0 0

0 0 0 0 c55 0

0 0 0 0 0 c66


. (2.43)

Cubic materials

Cubic materials have at least four triad axes and three dyad axes. Taking the dyad axes

along the coordinate axes. A rotation by 2π
3 about the triad axis directed along the diagonal

gives a cyclic permutation of the axes. The elastic constants cijkl are unchanged for the

cyclic permutation of the indices 123→ 231→ 312. This implies that

c1111 = c2222, c2222 = c3333, etc.

The matrix (2.43) for cubic materials becomes

cαβ =



c11 c12 c12 0 0 0

c12 c11 c12 0 0 0

c12 c12 c11 0 0 0

0 0 0 c44 0 0

0 0 0 0 c44 0

0 0 0 0 0 c44


. (2.44)

Materials with principal axis of order greater than two

If a material remains unchanged after rotating through an angle 2π
n , the material has

principal axis An, an n-fold axis of rotation. For materials of trigonal, tetragonal and

hexagonal systems, the value of n is greater than 2. That is n = 3, 4 and 6 respectively.

The rotation matrix Q about this principal axis is not diagonal now. For instance, taking
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An along x3-axis, we have

Q =


cos θ sin θ 0

− sin θ cos θ 0

0 0 1

 , where θ =
2π

n
6= π, (2.45)

which is not a diagonal matrix. In this case, the invariance condition (2.30) becomes

more complex. Therefore we diagonalize the matrix in (2.45) and get the orthonormal

basis ξ(1) = ( 1√
2
, i√

2
, 0)T , ξ(2) = ( i√

2
, 1√

2
, 0)T and ξ(2) = (0, 0, 1)T . The resulting diagonal

matrix is

Q =


1√
2

i√
2

0

i√
2

1√
2

0

0 0 1

 . (2.46)

let us denote the elastic constants by γijkl in this orthonormal basis. The relation (2.30)

becomes

γijkl = λ(i)λ(j)λ(k)λ(l)γijkl (2.47)

By converting back to the constants cijkl, we can write

cijkl = QipQjqQkrQlsγpqrs (2.48)

Use of relation (2.37) leads us to the following matrix form for the trigonal materials [40]

cαβ =



c11 c12 c13 c14 −c25 0

c12 c11 c13 −c14 c25 0

c13 c13 c33 c34 c35 0

c14 −c14 0 c44 c45 c25

−c25 c25 0 c45 c44 c14

0 0 0 c25 c14
c11−c12

2


. (2.49)

Similarly, for tetragonal materials, we have

cαβ =



c11 c12 c13 0 0 c16

c12 c11 c13 0 0 −c16

c13 c13 c33 0 0 0

0 0 0 c44 0 0

0 0 0 0 c44 0

c16 −c16 0 0 0 c66


(2.50)
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and for hexagonal materials, the matrix form becomes

cαβ =



c11 c12 c13 0 0 0

c12 c11 c13 0 0 0

c13 c13 c33 0 0 0

0 0 0 c44 0 0

0 0 0 0 c44 0

0 0 0 0 0 c11−c12
2


. (2.51)

2.6 Cowin-Mehrabadi Theorem

At a point in an elastic material, a plane with respect to which the material has reflective

symmetry is said to be a plane of symmetry. This section is devoted to the identification

of material symmetry for an anisotropic elastic material. That is, given form of cijkl for

an elastic material relative to an arbitrary coordinate system, which of the traditional

elastic symmetries it belongs. To solve this problem, we need to find the orientation of the

traditional symmetry elements. Mehrabadi and Cowin [28] have proved a Theorem which

determines the orientations of the plane of symmetry of a given cijkl relative to arbitrary

coordinate system.

Theorem 2.2. A set of necessary and sufficient conditions for a unit vector n to be a

normal to a plane of symmetry is that it should be a common eigenvector of the following

tensors

Uij = cijkk,

Vij = cikjk,

Wik(n) = cijklnjnl,

Wik(m) = cijklmjml;

where m is any vector perpendicular to n.

Proof. For necessity of these conditions we have to show that n is a common eigenvector



CHAPTER 2. PRELIMINARIES 30

of above four tensors satisfying the following equations

cijkknj = (cpqrrnpnq)ni; (2.52)

cilklnk = (cpqrqnpnr)ni (2.53)

cijklnjnlnk = (cpqrsnpnqnrns)ni (2.54)

cijklmjmlnk = (cpqrsnpmqnrms)ni. (2.55)

To prove (2.52) we multiply both sides of (2.30) by nj

cijklnj = QipQjqQkrQlscpqrsnj

= Qip(Qjqnj)QkrQlscpqrs.

Using (2.35)

cijklnj = −QipQkrQlscpqrsnq,

when l = k,

cijkknj = −QipQkrQkscpqrsnq,

Since Q is orthogonal, so we have

QkrQks = δrs

and

cijkknj = −Qipδrscpqrsnq

= −Qipcpqrrnq

= −(δip − 2ninp)cpqrrnq

= −ciqrrnq + 2cpqrrninpnq.

As q and r re dummy indices, so we can write

cijkknj = −ciqrrnq + 2cpqrrninpnq.

This implies that

cijkknj = (cpqrrnpnq)ni.

Which proves (2.52). Similarly (2.53)-(2.55) can be proved by applying the same procedure

as above [28]. In chapter 4, we shall present a simpler argument to prove the above result.
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To prove sufficiency of the conditions, let x1 = 0 is a plane of symmetry so that

ni = δi1, (2.56)

mi = δi2 cos θ + δi3 sin θ, (2.57)

where, θ is an arbitrary constant. As the equations (2.52)-(2.55) are satisfied, using (2.56)

into (2.52)-(2.54), we have

cijkkδi1 = (cpqrrδp1δq1)δi1,

this implies that

ci1kk = c11rrδi1.

For i = 1, equations (2.52)-(2.55) are trivially satisfied. For i = 2, 3, we have

c21kk = 0 = c31kk

or

c2111 + c2122 + c2133 = 0 = c3111 + c3122 + c3133

or

c16 + c26 + c36 = 0 = c15 + c25 + c35 (2.58)

and

cilklδi1 = cpqrqδp1δr1δi1

this implies that

cil1lδi1 = c1q1qδi1.

For i = 2, 3, we have

c2l1l = 0 = c3l1l

or

c2111 + c2212 + c213 = 0 = c3111 + c3212 + c3313

or

c16 + c26 + c45 = 0 = c15 + c46 + c35. (2.59)

Also we have

cijklδj1δl1δk1 = cpqrqδp1δr1δs1δi1
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this implies that

ci111 = c1111δi1.

Fori = 2, 3, we have

c2111 = 0 = c3111

or

c16 = 0 = c15. (2.60)

Now substitute (2.57) into (2.55), we have

cijkl(δi2 cos θ+δi3 sin θ)(δj2 cos θ+δj3 sin θ)δk1 = cpqrsδp1(δq2 cos θ+δq3 sin θ)δr1(δs2 cos θ+δs3 sin θ)δi1

this implies that

ci212 cos2 θ + ci213 cos θ sin θ + ci312 cos θ sin θ + ci312 sin θ cos θ + ci313 sin2 θ

= (c1212 cos2 θ + c1213 cos θ sin θ + c1312 cos θ sin θ + c1312 sin θ cos θ + c1313 sin2 θ)δi1.

For θ = 0, π2 and for arbitrary value, respectively, we have

ci212 = c1212δi1

ci313 = c1313δi1

(ci213 + ci312) cos θ sin θ = (c1213 + ci312) cos θ sin θδi1.

For θ 6= 0, π2 the above equation becomes

ci212 + ci312 = c1213 + ci312.

Fori = 1, the above equations are satisfied. For i = 2, 3, we have

c2212 = 0 = c3212

or

c26 = 0 = c46

and

c2213 + c2312 = 0 = c3213 + c3312
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or

c25 + c46 = 0 = c45 + c36. (2.61)

From (2.58)-(2.61), we have

c26 = c46 = c45 = c35 = c25 = c36=0. (2.62)

As the equations (2.56)-(2.60) are the special cases of (2.52)-(2.55) if unit normal vector

n is along x1-axis, hence n is normal to the plane of symmetry. If x1 = 0 is a plane of

symmetry, we have

c15 = c16 = c25 = c26 = c35 = c36 = c45 = c46 = 0,

which shows that there is a plane of symmetry.

2.6.1 Modified Cowin-Mehrabadi Theorems

Mehrabadi and Cowin [29] have shown that only the last two conditions, that is, (2.54)

and (2.55) are necessary and sufficient for n to be a plane of symmetry. Though conditions

(2.52) and (2.55) or (2.53) and (2.55) are also necessary and sufficient conditions for n to

be a plane of symmetry. Ting [41] has therefore modified the Cowin-Mehrabadi Theorem

2.2, whose statement is given as

Theorem 2.3. An anisotropic elastic material with given elastic stiffnesses cijkl has a

plane of symmetry if and only if n is an eigenvector of (i) Q(n) and Q(m), (ii) U and

Q(m), or (iii) V and Q(m). The vector n is normal to the plane of symmetry while m is

any vector on the plane of symmetry.

But it is not suitable to determine n by Theorem 2.3, because the matrix Q(m) depends

on m which, in turns, depends on n. Therefore Ting [41] has stated another Theorem which

is more useful for determining n.

Theorem 2.4. An anisotropic elastic material has a plane of symmetry if and only if the

normal n to the plane of symmetry is a common eigenvector of U and V and satisfies

cijklminjnknl = 0 (2.63)

cijklmimjmknl = 0 (2.64)
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for any two independent vectors m(α)(α = 1, 2) on the plane of symmetry that don’t form

an angle a multiple of π
3 .

2.6.2 Generalized Cowin-Mehrabadi Theorems

Ting [30] has generalized Cowin-Mehrabadi Theorem 2.2 in the form of several simplified

versions. He has shown that there is no need to satisfy (2.55) for any m. In the following

consecutive Theorems we will see the different cases of Ting’s generalization of Cowin-

Mehrabadi Theorem 2.2 :

Theorem 2.5. A necessary and sufficient condition for n to be normal to a symmetry

plane is that n be an eigenvector of U, V, Q(n) and Q(m) for any one m.

Theorem 2.6. A necessary and sufficient condition for n to be normal to a symmetry

plane is that n be an eigenvector of U, V, and Q(m) for any two distinct m.

Theorem 2.7. A necessary and sufficient condition for n to be normal to a symmetry

plane is that n be an eigenvector of U, Q(n), and Q(m) for any two distinct m.

Theorem 2.8. A necessary and sufficient condition for n to be normal to a symmetry plane

is that n be an eigenvector of V, Q(n), and Q(m) for any two distinct nonorthogonal m.

Theorem 2.9. A necessary and sufficient condition for n to be normal to a symmetry

plane is that n be an eigenvector of U, V or Q(n) and any eigenvector of Q(m) for any

three distinct m.

2.6.3 Cowin-Mehrabadi Theorem for an axis of symmetry

A vector, p, is called an n-fold axis of rotation or an axis of symmetry, An if a crystal

is invariant with respect to rotation through an angle 2π
n . The tensor Q associated with

rotation of a rigid body about an axis p by an angle θ is given by

Q = I + sin θ P + (1− cos θ) P2, (2.65)

where the tensor P = (Pij) is defined as Pij = −εijkpk and I denotes the unit tensor

δij [42, 43]. Ahmad [31] has used the above properties to show that a vector parallel to
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an axis of symmetry must also satisfy the four conditions, (2.52)-(2.55) of the Cowin-

Mehrabadi Theorem. In the following Theorem, he has shown that p shares with n three

conditions, (2.52)-(2.55) out of four given in Theorem 2.2.

Theorem 2.10. A necessary condition for a vector p to be an axis of symmetry is that it

is a common eigenvector of U, V and W(p) as defined in theorem 2.2.

Ahmad [31] has also shown that an axis of rotational symmetry is normal to the plane of

symmetry except in the case of trigonal materials. This result can be seen in the following

Theorem

Theorem 2.11. A necessary and sufficient condition for an axis of symmetry An to be a

normal to a plane of symmetry is that n be an even integer i.e n = 2, 4 or 6. Thus A3 is

the only axis of symmetry which is not normal to the plane of symmetry.

If we want to verify whether or not a vector is normal to a plane of symmetry, we need

to satisfy the four conditions (see Theorems 2.2-2.9). On the other hand if we want to

verify whether or not a vector is an axis of symmetry, is relatively simple. We can observe

this in the following Theorem [31].

Theorem 2.12. A sufficient condition for a vector p to be an axis of symmetry is that it

is a common eigenvector of U and V corresponding to a nondegenerate eigenvalue.

2.7 Piezoelectricity

Piezoelectricity is a property of materials which converts mechanical energy and electrical

energy into one another. If a mechanical force is applied to a solid material and it becomes

electrically polarized and if an electric field is applied, it becomes mechanically deformed,

the solid is said to be piezoelectric. The former effect is called direct effect and the later

one is called inverse effect. The third order piezoelectric tensor can be emerged from the

following relation (see [44,45])

D = eS + εE → Di = eijkSjk + εijEj , (2.66)

where D is the electric displacement, E is the electric field vector, e is the third order tensor

of piezoelectricity or piezoelectric tensor and ε is the second order dielectric permittivity
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tensor at null strain field. The piezoelectric constants eijk relate changes of displacement

Di to strain Sjk in the solid provided the electric field held constant, so that

eijk =
∂Di

∂Sjk
|E . (2.67)

piezoelectric constants eijk can be expressed in units of C/m2. As we know that the strain

tensor is symmetric, i.e., Sjk = Skj , therefore the piezoelectric tensor eijk is symmetric

with respect to the last two indices j and k, so that

eijk = eikj , (2.68)

which reduces the number of independent components from 27 to 18. Indeed the last two

indices j and k, form a pair which can only take six distinct values represented by the

number α. These are numbered 1 to 6 as follows:

(11)↔ 1, (22)↔ 2, (33)↔ 3, (23)↔ 4, (13)↔ 5, (12)↔ 6.

Thus

eiα = eijk, i = 1, 2, 3, α = (j, k) = 1, 2, ..., 6. (2.69)

Then the matrix form of the piezoelectric tensor is

(eiα) =


e11 e12 e13 e14 e15 e16

e21 e22 e23 e24 e25 e26

e31 e32 e33 e34 e35 e36

 . (2.70)

2.7.1 Effect of material symmetry on piezoelectric constants

The number of independent components of piezoelectric tensor (piezoelectric constants)

can be further reduced if the crystal possesses one or more symmetry elements. The trans-

formation associated with inversion in a center of symmetry has the matrix representation

(Qij) =


−1 0 0

0 −1 0

0 0 −1

 . (2.71)

Invariance under this transformation leads to the vanishing of every component of a third

rank tensor, because

eijk = QilQjmQknelmn
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or

eijk = (−1)3eijk

or

eijk = 0.

Thus there is no piezoelectricity in any of the centrosymmetric crystals.

A material is said to have point symmetry group m if it possesses a single plane of symmetry

M . We choose the coordinate axes so that the x3-axis is normal to M . The transformation

matrix associated with the reflection in M is

(Qij) =


1 0 0

0 1 0

0 0 −1

 . (2.72)

A tensor, Tij of rank 2, associated with the material will satisfy the equation

Tij = QipQjqTpq,

with the result that any component with the subscript 3 appearing once will vanish. Thus

(Tij) =


T11 T12 0

T21 T22 0

0 0 T33

 (2.73)

Same reasoning applied to the piezoelectric tensor eijk indicates that any component having

one or three indices equal to 3 must vanish. Making use of the symmetry in the last two

indices i.e. eijk = eikj , we can use the two index notation to write the matrix representation

for the tensor as follows

(eiα) =


e11 e12 e13 0 0 e16

e21 e22 e23 0 0 e26

0 0 0 e34 e35 0

 (2.74)

where e13 = e133, e34 = e323 = e332 etc. In (2.74) we follow the usual convention that

Latin indices take values 1, 2, 3 and Greek indices take values 1, .., 6.

A crystal which is symmetric with respect to rotation through an angle π is said to have
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the point symmetry group 2. With the x3-axis chosen parallel to the axis of symmetry,

the piezoelectric tensor for this crystal has the following representation [46,47]

(eiα) =


0 0 0 e14 e15 0

0 0 0 e24 e25 0

e31 e32 e33 0 0 e36

 . (2.75)

Similarly, for class 222, we have

(eiα) =


0 0 0 e14 0 0

0 0 0 0 e25 0

0 0 0 0 0 e36

 , (2.76)

for class 2mm,

(eiα) =


0 0 0 0 e15 0

0 0 0 e24 0 0

e31 e32 e33 0 0 0

 (2.77)

and for classes 4 and 6,

(eiα) =


0 0 0 e14 e15 0

0 0 0 e15 −e14 0

e31 e32 e33 0 0 0

 . (2.78)

The matrix forms of piezoelectric tensor for the remaining crystal classes (out of 32) can

be found in [47].

2.8 Young’s modulus

Young’s modulus E(n) for an elastic material is the ratio of the uniaxial stress applied

along the direction of a unit vector n to the longitudinal strain in the direction n.

If σ11 6= 0 and all other components vanish. For this Generalized Hooke’s law gives us

ε11 = s1111σ11

= s11σ11

This implies that

Young’s modulus =
σ11
ε11

=
1

s11
(2.79)
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If we apply uniaxial stress σninj in an arbitrary direction specified by a unit vector n then

we can write

σij = σninj

This will create a strain in the material. The component of strain tensor εij in the direction

n is

εijninj

Young’s modulus = E(n) =
σ

εijninj
=

σ

σsijklninjnknl

E(n) =
1

sijklninjnknl
. (2.80)

For convenience, we usually take the reciprocal of E(n) as

1

E(n)
= sijklninjnknl. (2.81)

2.8.1 Expression of Young’s modulus for general anisotropic (triclinic)

materials

Using sαβ as the contracted notation of sijkl the 6× 6 matrix sαβ is symmetric. The 6× 6

matrix for elastic compliances, sαβ for general anisotropic (triclinic) materials has the form

s =



s11 s12 s13 s14 s15 s16

s12 s22 s23 s24 s25 s26

s13 s23 s33 s34 s35 s36

s14 s24 s34 s44 s45 s46

s15 s25 s35 s45 s55 s56

s16 s26 s36 s46 s56 s66


. (2.82)

The full expression of Eq.(2.81) becomes

1

E(n)
=s11n

4
1 + s22n

4
2 + s33n

4
3 + (s44 + 2s23)n

2
2n

2
3

+ (s55 + 2s13)n
2
3n

2
1 + (s66 + 2s12)n

2
1n

2
2

+ 2n2n3[(s14 + s56)n
2
1 + s24n

2
2 + s34n

2
3]

+ 2n3n1[s15n
2
1 + (s25 + s46)n

2
2 + s35n

2
3]

+ 2n1n2[s16n
2
1 + s26n

2
2 + (s36 + s45)n

2
3] (2.83)
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This expression is same to that obtained by Ting [48–50]. The expressions of 1
E(n) for

a particular class of anisotropic materials can be obtained from this expression by using

corresponding matrix of compliances in each case. The following is an example for cubic

materials.

2.8.2 Expression of Young’s modulus for cubic materials

The 6× 6 matrix of elastic compliances, sαβ for cubic elastic materials has the form

s =



s11 s12 s12 0 0 0

s12 s11 s12 0 0 0

s12 s12 s11 0 0 0

0 0 0 s44 0 0

0 0 0 0 s44 0

0 0 0 0 0 s44


(2.84)

therefore for cubic materials Eq.(2.83) reduces to

1

E(n)
= s11n

4
1 + s11n

4
2 + s11n

4
3 + (s44 + 2s12)n

2
2n

2
3 + (s44 + 2s12)n

2
3n

2
1 + (s44 + 2s12)n

2
1n

2
2

= s11(n
4
1 + n42 + n43) + (s44 + 2s12)(n

2
2n

2
3 + n23n

2
1 + n21n

2
2)

= s11(n
2
1 + n22 + n23)

2 − 2s11(n
2
2n

2
3 + n23n

2
1 + n21n

2
2)

+ (s44 + 2s12)(n
2
2n

2
3 + n23n

2
1 + n21n

2
2) (2.85)



Chapter 3

Eigenvectors of a rotation matrix

If a tensor is invariant under rotation about a fixed axis, the matrices representing the

tensor and the rotation commute with each other. The two matrices have common eigen-

vectors, therefore a knowledge of eigenvectors of the rotation matrix provides us with a

fair amount of information about eigenvectors of the tensor. In this chapter, we apply this

result to derive familiar representations of a transversely isotropic tensor of rank 2 and the

elasticity tensor possessing tetragonal symmetry. The assumption of transverse isotropy

immediately leads to the conclusion that the tensor must be diagonal with two elements

equal. Then, we apply this result to the elasticity tensor possessing an axis of tetragonal

symmetry and obtain the classical matrix representation of the tensor. Representation

of the elasticity tensor belonging to a particular symmetry class can be achieved in an

elegant manner. We use this theory to obtain a partitioning of the elasticity tensor into

sets which constitute an associative algebra [32]. This work also reproduces eigenspaces

found by Bona et al. [33,34] in their characterization of the symmetry classes of elasticity

tensors. These examples are an indication of the power of Mehrabadi-Cowin formalism [11]

to approach classical results from a new perspective.

In this chapter, we shall make use of a well-known result of linear algebra which states

that if two Hermitian matrices commute then they can be simultaneously diagonalized.

This means that a set of orthonormal vectors exists, every member of which, is a common

eigenvector of both matrices.

41
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3.1 Eigenvectors of commuting matrices

We first apply Theorem 2.1 to find the eigenvectors of a transversely isotropic tensor of

rank 2 and then apply it to find the same to fourth rank elasticity tensors of isotropic

materials and anisotropic materials of different classes.

3.1.1 Transversely isotropic tensor of rank 2

As an application of Theorem 2.1, consider a symmetric tensor Tij which can be represented

by the matrix

T =


T11 T12 T13

T12 T22 T23

T13 T23 T33

 (3.1)

The rotation matrix representing a rotation through an angle θ, about x3-axis is

Q =


cos θ sin θ 0

− sin θ cos θ 0

0 0 1

 (3.2)

Eigenvalues of the matrix Q are

1, eiθ, e−iθ

and the corresponding eigenvectors of Q are

1√
2

(1, i, 0)T ,
1√
2

(1,−i, 0)T and (0, 0, 1)T ,

where, T denotes the transpose. Suppose the tensor Tij possesses transverse isotropy

about x3-axis i.e. it is invariant with respect to arbitrary rotations about the x3-axis.

This implies T = QTQ−1 or TQ = QT , hence the matrix (3.1) has eigenvectors given in

(3.2). Since (1, i, 0)T = (1, 0, 0)T +i(0, 1, 0)T , it follows that both (1, 0, 0)T and (0, 1, 0)T are

eigenvectors of the matrix T belonging to the same eigenvalue while the third eigenvector

is (0, 0, 1)T . Thus all eigenvectors of T are found without any appeal to its components.

Let the three eigenvectors of the tensor T along with their eigenvalues, be of the following
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form

λ1, v1 = (1, 0, 0)T ,

λ2 = λ1, v2 = (0, 1, 0)T ,

λ3, v3 = (0, 0, 1)T .

Since v1and v2 are eigenvectors belonging to an eigenvalue, λ1, say, that is, we have

T v1 = λ1v1 and T v2 = λ1v2,

that is, 
T11 T12 T13

T12 T22 T23

T13 T23 T33




1

0

0

 = λ1


1

0

0


and 

T11 T12 T13

T12 T22 T23

T13 T23 T33




0

1

0

 = λ1


0

1

0

 .

This implies that

T11 = λ1, T12 = T13 = 0 and T12 = T13 = 0, T22 = λ.

Hence T11 = T22.

Similarly,

T v3 = λ3v3

that is, 
T11 T12 T13

T12 T22 T23

T13 T23 T33




0

0

1

 = λ3


0

0

1


implies that

T13 = T23 = 0 and T33 = λ3.
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We have recovered the well-known matrix representation for a transversely isotropic tensor

of rank 2 [40], 
T11 0 0

0 T11 0

0 0 T33

 .

3.1.2 Tetragonal symmetry

We apply Theorem 2.1 to the elasticity tensor corresponding to a material possessing

tetragonal symmetry. For this we consider the rotation about x3-axis through an angle θ,

which is represented by the following matrix

Q =


cos θ sin θ 0

− sin θ cos θ 0

0 0 1

 ,

the corresponding 6D matrix (see section 2.3)

Q̂ = Q̂(θ) =



cos2 θ sin2 θ 0 0 0 −
√

2 sin θ cos θ

sin2 θ cos2 θ 0 0 0
√

2 sin θ cos θ

0 0 1 0 0 0

0 0 0 cos θ − sin θ 0

0 0 0 sin θ cos θ 0

−
√

2 sin θ cos θ
√

2 sin θ cos θ 0 0 0 cos2 θ − sin2 θ


For tetragonal materials, we have θ = 2π

4 , so that the above matrix becomes

Q̂(
2π

4
) =



0 1 0 0 0 0

1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 −1 0

0 0 0 1 0 0

0 0 0 0 0 −1


.

The matrix ĉαβ for tetragonal material commutes with the matrix Q̂(2π4 ). Eigenvalues γi

of the matrix Q̂(2π4 ) are

γ1 = γ2 = 1, γ3 = γ4 = −1,γ5 = i, γ6 = −i
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and the corresponding eigenvectors ui, i = 1, .., 6, of Q̂(2π4 ) are

u1 = (0, 0, 1, 0, 0, 0)T ,

u2 = (1, 1, 0, 0, 0, 0)T ,

u3 = (0, 0, 0, 0, 0, 1)T ,

u4 = (−1, 1, 0, 0, 0, 0)T ,

u5 = (0, 0, 0, i, 1, 0)T ,

u6 = (0, 0, 0,−i, 1, 0)T .

From the pair of eigenvectors u1 and u2, we deduce the existence of an eigenvector of ĉαβ,

of the form

a1u1 + a2u2 = (a2, a2, a1, 0, 0, 0)T = a2(1, 1,
a1
a2
, 0, 0, 0)T .

Thus we can take v1 = (1, 1, a, 0, 0, 0)T . An orthogonal vector belonging to the same

eigenvalue can be taken as v2 = (a, a,−2, 0, 0, 0)T . Similarly from the pair of eigenvectors

u3 and u4, we can write

a3u3 + a4u4 = (−a4, a4, 0, 0, 0, a3)T = −a4(1,−1, 0, 0, 0,
−a3
a4

)T .

We may take v3 = (1,−1, 0, 0, 0, b)T and as an orthogonal vector belonging to the same

eigenvalue we can take v4 = (b,−b, 0, 0, 0,−2)T . The eigenvectors u5 and u6 can be written

as

u5 = (0, 0, 0, 0, 1, 0)T + i (0, 0, 0, 1, 0, 0)T and

u6 = (0, 0, 0, 0, 1, 0)T − i(0, 0, 0, 1, 0, 0)T ,

respectively. From this we conclude that ĉαβ will have a degenerate eigenvalue with eigen-

vectors v5 = (0, 0, 0, 0, 1, 0)T and v6 = (0, 0, 0, 1, 0, 0)T . Thus the six eigenvectors of an

arbitrary tensor possessing tetragonal symmetry, along with their eigenvalues, are of the
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following form

λ1, v1 = (1, 1, a, 0, 0, 0)T ,

λ2, v2 = (a, a,−2, 0, 0, 0)T ,

λ3, v3 = (1,−1, 0, 0, 0, b)T ,

λ4, v4 = (b,−b, 0, 0, 0,−2)T ,

λ5, v5 = (0, 0, 0, 0, 1, 0)T ,

λ6 = λ5, v6 = (0, 0, 0, 1, 0, 0)T . (3.3)

Bona et al. [33, Eq. 39] found the above representation by a different method. The vectors

vi, i = 1, .., 6 are mutually orthogonal. The reason for the first four eigenvalues being

distinct will be given later. Multiply the vectors by suitable constants in order to normalize

them. Denote the orthonormal vectors by wi, i = 1, .., 6. The spectral decomposition of

the matrix is given by

ĉ =

6∑
i=1

λiwiw
T
i (3.4)

The above representation contains two parameters a, b and five eigenvalues. These are the

seven parameters required to completely specify a tensor possessing tetragonal symmetry.

However in a coordinate transformation the eigenvalues remain invariant and only a and

b will change.

We shall now use the eigenvectors v1, .., v6 to deduce the classical 6×6 matrix representation

for an elasticity tensor having tetragonal symmetry. Since v5 and v6 are both eigenvectors

of ĉαβ belonging to the same eigenvalue, it follows that

ĉ v5 = λ5v5



ĉ11 ĉ12 ĉ13 ĉ14 ĉ15 ĉ16

ĉ12 ĉ22 ĉ23 ĉ24 ĉ25 ĉ26

ĉ13 ĉ23 ĉ33 ĉ34 ĉ35 ĉ36

ĉ14 ĉ24 ĉ34 ĉ44 ĉ45 ĉ46

ĉ15 ĉ25 ĉ35 ĉ45 ĉ55 ĉ56

ĉ16 ĉ26 ĉ36 ĉ46 ĉ56 ĉ66





0

0

0

0

1

0


= λ5



0

0

0

0

1

0


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ĉ15 = ĉ25 = ĉ25 = ĉ25 = ĉ56 = 0, ĉ55 = λ5

and

ĉ v6 = λ5v6

ĉ11 ĉ12 ĉ13 ĉ14 ĉ15 ĉ16

ĉ12 ĉ22 ĉ23 ĉ24 ĉ25 ĉ26

ĉ13 ĉ23 ĉ33 ĉ34 ĉ35 ĉ36

ĉ14 ĉ24 ĉ34 ĉ44 ĉ45 ĉ46

ĉ15 ĉ25 ĉ35 ĉ45 ĉ55 ĉ56

ĉ16 ĉ26 ĉ36 ĉ46 ĉ56 ĉ66





0

0

0

1

0

0


= λ5



0

0

0

1

0

0


ĉ14 = ĉ24 = ĉ34 = ĉ45 = ĉ46 = 0, ĉ44 = λ5.

Which implies that ĉ44 = ĉ55. Since v1 is an eigenvector belonging to an eigenvalue, λ1,

say, that is, we have

ĉ v1 = λ1v1

ĉ11 ĉ12 ĉ13 ĉ14 ĉ15 ĉ16

ĉ12 ĉ22 ĉ23 ĉ24 ĉ25 ĉ26

ĉ13 ĉ23 ĉ33 ĉ34 ĉ35 ĉ36

ĉ14 ĉ24 ĉ34 ĉ44 ĉ45 ĉ46

ĉ15 ĉ25 ĉ35 ĉ45 ĉ55 ĉ56

ĉ16 ĉ26 ĉ36 ĉ46 ĉ56 ĉ66





1

1

a

0

0

0


= λ1



1

1

a

0

0

0



ĉ11 + ĉ12 + ĉ13 a = λ1,

ĉ12 + ĉ22 + ĉ23 a = λ1,

ĉ13 + ĉ23 + ĉ33 a = λ1a,

ĉ14 + ĉ24 + ĉ34 a = 0,

ĉ15 + ĉ25 + ĉ35 a = 0,

ĉ16 + ĉ26 + ĉ36 a = 0. (3.5)

The fourth and fifth equations of (3.5) are trivially satisfied. The first two equations imply

(ĉ11 − ĉ22) + (ĉ13 − ĉ23) a = 0 (3.6)
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Similarly, for v2, we can write

ĉ v2 = λ2v2



ĉ11 ĉ12 ĉ13 ĉ14 ĉ15 ĉ16

ĉ12 ĉ22 ĉ23 ĉ24 ĉ25 ĉ26

ĉ13 ĉ23 ĉ33 ĉ34 ĉ35 ĉ36

ĉ14 ĉ24 ĉ34 ĉ44 ĉ45 ĉ46

ĉ15 ĉ25 ĉ35 ĉ45 ĉ55 ĉ56

ĉ16 ĉ26 ĉ36 ĉ46 ĉ56 ĉ66





a

a

−2

0

0

0


= λ2



a

a

−2

0

0

0



ĉ11a+ ĉ12a− 2ĉ13 = λ2a,

ĉ12a+ ĉ22a− 2ĉ23 = λ2a,

ĉ13a+ ĉ23a− 2ĉ33 = −2λ2,

ĉ14a+ ĉ24a− 2ĉ34 = 0,

ĉ15a+ ĉ25a− 2ĉ35 = 0,

ĉ16a+ ĉ26a− 2ĉ36 = 0. (3.7)

Again the fourth and fifth equations of (3.7) are trivially satisfied. The first two equations

imply

a(ĉ11 − ĉ22)− 2(ĉ13 − ĉ23) = 0 (3.8)

The determinant of the system of equations (3.6) and (3.8) is∣∣∣∣∣∣ 1 a

a −2

∣∣∣∣∣∣ = −(2 + a2) 6= 0,

therefore ĉ11 = ĉ22 and ĉ23 = ĉ13. The last equation of (3.5) combined with the corre-

sponding equation (3.7) yields the system

(ĉ16 + ĉ26) + ĉ36 a = 0, (3.9)

a(ĉ16 + ĉ26)− 2ĉ36 = 0. (3.10)
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Again the determinant of the system of equations (3.9) and (3.10) is∣∣∣∣∣∣ 1 a

a −2

∣∣∣∣∣∣ = −(2 + a2) 6= 0,

therefore ĉ16 = −ĉ26 and ĉ36 = 0. We have recovered the well-known matrix representation

for an elasticity tensor which possesses an axis of tetragonal symmetry

ĉ =



ĉ11 ĉ12 ĉ13 0 0 ĉ16

ĉ12 ĉ11 ĉ13 0 0 −ĉ16

ĉ13 ĉ13 ĉ33 0 0 0

0 0 0 ĉ44 0 0

0 0 0 0 ĉ44 0

ĉ16 −ĉ16 0 0 0 ĉ66


. (3.11)

Eigenvalues of ĉαβ

Since we know the eigenvectors of the matrix (3.11), finding eigenvalues is an easy task.

In order to find the eigenvalues corresponding to the eigenvectors v1and v2, divide the first

equation of (3.5) by the third one, we get

ĉ11 + ĉ12 + ĉ13a

2ĉ13 + ĉ33a
=

1

a
(3.12)

where we have made use of the fact ĉ13 = ĉ23. The parameter a is found by solving the

quadratic equation

ĉ13a
2 + (ĉ11 + ĉ12 − ĉ33)a− 2ĉ13 = 0, (3.13)

That is

a =
−(ĉ11 + ĉ12 − ĉ33)±

√
(ĉ11 + ĉ12 − ĉ33)2 + 8ĉ213

2ĉ13
.

Note that

1

2ĉ13

{
−(ĉ11 + ĉ12 − ĉ33) +

√
(ĉ11 + ĉ12 − ĉ33)2 + 8ĉ213

}
.

1

2ĉ13

{
−(ĉ11 + ĉ12 − ĉ33)−

√
(ĉ11 + ĉ12 − ĉ33)2 + 8ĉ213

}
=

1

4ĉ213
((ĉ11 + ĉ12 − ĉ33)2 − (

√
(ĉ11 + ĉ12 − ĉ33)2 + 8ĉ213)

2

=
1

4ĉ213
((ĉ11 + ĉ12 − ĉ33)2 − (ĉ11 + ĉ12 − ĉ33)2 − 8ĉ213)

= −2,
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that is, the product of the two roots of (3.13) is −2, independent of the material constants.

Now the first pair of equations (3.5) now yields

λ1,2 =
ĉ11 + ĉ12 + ĉ33 ±

√
(ĉ11 + ĉ12 − ĉ33)2 + 8ĉ213

2
(3.14)

To simplify it, we define tanα by means of

ĉ11 + ĉ12 − ĉ33 =
√

8ĉ13 tanα

then (3.14) simplifies to

λ1,2 = ĉ33 +
√

2ĉ13(tanα± secα) (3.15)

The above expression differs slightly from the one reported in [11, Eq. (5.10)] which reads

λ1,2 = ĉ33 ±
√

2ĉ13(tanα+ secα)

The vectors v1 and v2 belong to the eigenvalues obtained from (3.14) by choosing the

upper and the lower sign respectively. Similarly, to find the eigenvalues corresponding to

the eigenvectors v3 and v4, we can write

ĉ v3 = λ3v3



ĉ11 ĉ12 ĉ13 ĉ14 ĉ15 ĉ16

ĉ12 ĉ22 ĉ23 ĉ24 ĉ25 ĉ26

ĉ13 ĉ23 ĉ33 ĉ34 ĉ35 ĉ36

ĉ14 ĉ24 ĉ34 ĉ44 ĉ45 ĉ46

ĉ15 ĉ25 ĉ35 ĉ45 ĉ55 ĉ56

ĉ16 ĉ26 ĉ36 ĉ46 ĉ56 ĉ66





1

−1

0

0

0

b


= λ3



1

−1

0

0

0

b


ĉ11 − ĉ12 + ĉ16b = λ3,

ĉ12 − ĉ22 + ĉ26b = −λ3,

ĉ13 − ĉ23 + ĉ36b = 0,

ĉ14 − ĉ24 + ĉ46b = 0,

ĉ15 − ĉ25 + ĉ56b = 0,

ĉ16 − ĉ26 + ĉ66b = bλ3. (3.16)
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Making use of first and last equation of (3.16), we get

ĉ11 − ĉ12 + ĉ16b

2ĉ16 + ĉ66b
=

1

b
(3.17)

where we have made use of the fact ĉ26 = −ĉ16. The parameter b is found by solving the

quadratic equation

ĉ16b
2 + (ĉ11 − ĉ12 − ĉ66)b− 2ĉ16 = 0, (3.18)

That is

b =
−(ĉ11 − ĉ12 − ĉ66)±

√
(ĉ11 − ĉ12 − ĉ66)2 + 8ĉ216

2ĉ16
.

Again the product of the two roots of (3.18) is −2, independent of material constants. The

first pair of equations (3.16) now yields

λ3,4 = ĉ66 +
√

2ĉ16(tanβ ± secβ)

where ĉ11 − ĉ12 − ĉ66 =
√

8ĉ16 tanβ, in agreement with eigenvalues reported in [11]. And

the eigenvalues correponding to the eigenvectors v5 and v6 are ĉ44 and ĉ44, are exactly the

same to those reported in [11].

Degeneracy

Since v1 = (1, 1, a, 0, 0, 0) and v2 = (1, 1,− 2
a , 0, 0, 0) are both eigenvectors of the matrix

(3.11). Assume that both of these eigenvectors have the same corresponding eigenvalue,

λ, say. That is,

ĉ v1 = λv1 and ĉ v2 = λv2.

This implies that

ĉ11 + ĉ12 + ĉ13 a = λ,

ĉ12 + ĉ22 + ĉ23 a = λ,

ĉ13 + ĉ23 + ĉ33 a = λa, (3.19)

and

ĉ11 + ĉ12 −
2

a
ĉ13 = λ,

ĉ12 + ĉ22 −
2

a
ĉ23 = λ,

ĉ13 + ĉ23 −
2

a
ĉ33 = −2

a
λ. (3.20)
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Using the first equations of (3.19) and (3.20),

ĉ13a+
2

a
ĉ13 = 0,

ĉ13(a
2 + 2) = 0,

Which holds only if ĉ13 = 0. But this condition fails to hold. Therefore the two eigenvalues

will be distinct. A similar argument applied to v3 and v4 shows that since ĉ66 6= 0, the

corresponding eigenvalues will be distinct. A similar situation prevails in other classes of

crystal symmetry. Thus a degenerate real eigenvalue of the rotation matrix implies non-

degenerate eigenvalues of the elasticity tensor. On the other hand we have already observed

that a non-degenerate complex eigenvalue of the rotation matrix leads to degeneracy in

the elasticity tensor.

3.2 Representation of elasticity tensors

Let the matrix ĉ satisfy the following eigenvalue equation

ĉvi = λivi, i = 1, ..., 6.

Since ĉ is a positive definite symmetric matrix, a set of orthonormal vectors {vi}6i=1 exists

and λi > 0, i = 1, ..., 6. Define

Ei = viv
T
i , no summation on i, (3.21)

where ĉ has the representation

ĉ =

6∑
i=1

λiEi (3.22)

It is easy to see that Ei satisfy

EiEj = 0, i 6= j (3.23)

E2
i = Ei, i = 1, ..., 6 (3.24)

I = E1 + ...+ E6 (3.25)

where I denotes the unit matrix of order 6. The representation (3.22) has the merit of

reducing the calculation of powers and products of ĉ to trivial calculations. For example

(ĉ)k =

6∑
i=1

λkiEi (3.26)
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(ĉ)−k =

6∑
i=1

λ−ki Ei (3.27)

and if

ĉ1 =
6∑
i=1

µiEi, (3.28)

then

ĉĉ1 =
6∑
i=1

λiµiEi (3.29)

Representation (3.22) of a matrix is also useful in defining the logarithm of a matrix,

Log ĉ=

6∑
i=1

lnλiviv
T
i (3.30)

which in turn, may be employed to endow a metric space structure to a class of matrices

[56].

Walpole [32] has defined an algebra of fourth-rank tensors and has defined fourth-rank

tensors Ei in terms of components of mutually perpendicular unit vectors a, b and c. These

tensors, for various crystal classes, are designed in such a manner as to satisfy counterparts

of equations (3.23)-(3.25), hence they yield a representation in the form of (3.22). The

task is made much easier in the Mehrabadi-Cowin formalism. We utilize the theory of

previous section and construct matrices Ei from our knowledge of eigenvectors of the

matrix associated with the elasticity tensors pertaining to a particular crystal symmetry.

3.2.1 Cubic materials

The matrix representation ĉ of the elasticity tensor for cubic materials has the following

form

ĉ =



ĉ11 ĉ12 ĉ12 0 0 0

ĉ12 ĉ11 ĉ12 0 0 0

ĉ12 ĉ12 ĉ11 0 0 0

0 0 0 ĉ44 0 0

0 0 0 0 ĉ44 0

0 0 0 0 0 ĉ44


.
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Let λ1, λ2, ..., λ6 be the eigenvalues of ĉ. These eigenvalues and the corresponding eigen-

vectors of ĉ can be find as follows

λ1 = ĉ11 + 2ĉ12,v1 =
1√
3

(1, 1, 1, 0, 0, 0)T ,

λ2 = ĉ11 − ĉ12,v2 =
1√
6

(1, 1,−2, 0, 0, 0)T ,

λ3 = λ2,v3 =
1√
2

(1,−1, 0, 0, 0, 0)T ,

λ4 = λ5 = λ6 = ĉ44,

v4 = (0, 0, 0, 1, 0, 0)T ,

v5 = (0, 0, 0, 0, 1, 0)T ,

v6 = (0, 0, 0, 0, 0, 1)T (3.31)

Equation (3.22) becomes

ĉ = λ1E1 + λ2(E2 + E3) + λ4(E4 + E5 + E6)

= λ1F1 + λ2F2 + λ4F3 (3.32)

where

F1 = E1 = v1v
T
1 =

1

3



1

1

1

0

0

0



(
1 1 1 0 0 0

)
=

1

3



1 1 1 0 0 0

1 1 1 0 0 0

1 1 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


,
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F2 = E2 + E3 = v2v
T
2 + v3v

T
3

=
1

6



1

1

−2

0

0

0



(
1 1 −2 0 0 0

)
+

1

2



1

−1

0

0

0

0



(
1 −1 0 0 0 0

)

=
1

3



2 −1 −1 0 0 0

−1 2 −1 0 0 0

−1 −1 2 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


and

F3 = E4 + E5 + E6 = v4v
T
4 + v5v

T
5 + v6v

T
6

=



0

0

0

1

0

0



(
0 0 0 1 0 0

)
+



0

0

0

0

1

0



(
0 0 0 0 1 0

)
+



0

0

0

0

0

1



(
0 0 0 0 0 1

)

=



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


.

The matrices F1, F2 and F3 are the same as the matrices Ĵ , K̂ and L̂ which are the

notations of Norris [57] and Walpole [32]. We note that the representation (3.32) of the
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tensor ĉ, is an invariant representation which characterize the cubic materials.

3.2.2 Isotropic materials

For isotropic materials the matrix ĉ has the form

ĉ =



ĉ11 ĉ12 ĉ12 0 0 0

ĉ12 ĉ11 ĉ12 0 0 0

ĉ12 ĉ12 ĉ11 0 0 0

0 0 0 ĉ11 − ĉ12 0 0

0 0 0 0 ĉ11 − ĉ12 0

0 0 0 0 0 ĉ11 − ĉ12


which is easily seen to have the following eigenvalues

λ1 = ĉ11 + 2ĉ12

λ2 = λ3 = λ4 = λ5 = λ6 = ĉ11 − ĉ12,

and the corresponding eigenvectors vi, i = 1, ..., 6, are the same as given by (3.31). But

the eigenvectors v2,...,v6 belong to the eigenvalue ĉ44 which becomes five fold degenerate.

Now the matrix ĉ has the representation

ĉ = λ1F1 + λ2F4 (3.33)

where

F4 = E2 + E3 + E4 + E5 + E6 = v2v
T
2 + v3v

T
3 v4v

T
4 + v5v

T
5 + v6v

T
6

=
1

3



2 −1 −1 0 0 0

−1 2 −1 0 0 0

−1 −1 2 0 0 0

0 0 0 3 0 0

0 0 0 0 3 0

0 0 0 0 0 3


.

It can be easily shown that F1F4 = 0, F 2
1 = E1 and F 2

4 = F4. Also E1 + F4 = I.
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3.2.3 Transversely isotropic materials or hexagonal materials

The elasticity tensor which is invariant under rotation about x3-axis, through an arbitrary

angle is said to possess transverse isotropy with respect to x3-axis. If θ is arbitrary, the

matrix Q̂ has the following eigenvalues and eigenvectors

1, (0, 0, 1, 0, 0, 0)T ,

1,
1√
2

(1, 1, 0, 0, 0, 0)T ,

e−iθ,
1√
2

(0, 0, 0,−i, 1, 0)T ,

eiθ,
1√
2

(0, 0, 0, i, 1, 0)T ,

e−2iθ,
1√
3

(i,−i, 0, 0, 0, 1)T ,

e2iθ,
1√
3

(−i, i, 0, 0, 0, 1)T (3.34)

It is clear that the matrix ĉ for transversely isotropic materials or hexagonal materials has

the following eigenvectors

λ1, v1 =
1√

2 + a2
(1, 1, a, 0, 0, 0)T ,

λ2, v2 =
1√

4 + 2a2
(a, a,−2, 0, 0, 0)T ,

λ3, v3 =
1√
2

(1,−1, 0, 0, 0, 0)T ,

λ4 = λ3, v4 = (0, 0, 0, 0, 0, 1)T ,

λ5, v5 = (0, 0, 0, 1, 0, 0)T ,

λ6 = λ5, v6 = (0, 0, 0, 0, 1, 0)T , (3.35)

The above representation is equivalent to Eq. (19) in [33]. Matrix ĉ for a transversely

isotropic materials or hexagonal materials has the following representation

ĉ=λ1E1 + λ2E2 + λ3(E3 + E4) + λ5(E5 + E6) (3.36)

where Ei, i = 1, ..., 6 have been defined in (3.21). Expressions for these matrices can be
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written as

E1 = v1v
T
1 =

1

2 + a2



1

1

a

0

0

0



(
1 1 a 0 0 0

)
=

1

2 + a2



1 1 a 0 0 0

1 1 a 0 0 0

a a a2 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


,

(3.37)

E2 = v2v
T
2 =

1

4 + 2a2



a

a

−2

0

0

0



(
a a −2 0 0 0

)
=

1

4 + 2a2



a2 a2 −2a 0 0 0

a2 a2 −2a 0 0 0

−2a −2a 4 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


,

(3.38)

E3 + E4 = v3v
T
3 + v4v

T
4 =

1√
2



1

−1

0

0

0

0



(
1 −1 0 0 0 0

)
+



0

0

0

0

0

1



(
0 0 0 0 0 1

)

=



1
2 −1

2 0 0 0 0

−1
2

1
2 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 1


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and

E5 + E6 = v5v
T
5 + v6v

T
6 =



0

0

0

1

0

0



(
0 0 0 1 0 0

)
+



0

0

0

0

1

0



(
0 0 0 0 1 0

)

=



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 0


.

From (3.36) it is easy to verify familiar relations between the components of a transversely

isotropic tensor or hexagonal tensor. For example, any component cijkl with an odd number

of 1, 2 or 3 vanishes. Moreover

ĉ11 = ĉ22 =
λ1

2 + a2
+

λ2a
2

4 + 2a2
+

1

2
λ3,

ĉ66 = λ3 = ĉ11 − ĉ12,

ĉ44 = ĉ55 = λ5,

ĉ13 = ĉ23 =
λ1a

2 + a2
− 2λ2a

4 + 2a2
.

Thus we can write the following familiar matrix representation of the elasticity tensor for

transversely isotropic materials or hexagonal materials

ĉ =



ĉ11 ĉ12 ĉ13 0 0 0

ĉ12 ĉ11 ĉ13 0 0 0

ĉ13 ĉ13 ĉ33 0 0 0

0 0 0 ĉ44 0 0

0 0 0 0 ĉ44 0

0 0 0 0 0 ĉ11 − ĉ12


.
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3.2.4 Tetragonal materials

We try to find the familiar matrix representation ĉ of the elasticity tensor for tetragonal

materials, alternatively. For this, let λi, i = 1, 2, ...6, be its eigenvalues. For tetragonal ma-

terials θ = π
2 , therefore the matrix Q(π2 ) and ĉ have common eigenvectors. The eigenvectors

corresponding to λi are as given in (3.3). The tensor ĉ has the following representation

ĉ=λ1E1 + λ2E2 + λ3E3 + λ4E4 + λ5(E5 + E6) (3.39)

where E1 and E2 are the same as given respectively by (3.37) and (3.38), while rest of the

matrices are as follows

E3 = v3v
T
3 =

1

2 + b2



1

−1

0

0

0

b



(
1 −1 0 0 0 b

)
=

1

2 + b2



1 −1 0 0 0 b

−1 1 0 0 0 −b

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

b −b 0 0 0 b2


,

E4 = v4v
T
4 =

1

4 + 2b2



b

−b

0

0

0

−2



(
b −b 0 0 0 −2

)
=

1

4 + 2b2



b2 −b2 0 0 0 −2b

−b2 b2 0 0 0 2b

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

−2b 2b 0 0 0 4


,

E5 = v5v
T
5 =



0

0

0

0

1

0



(
0 0 0 0 1 0

)
=



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 0


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and

E6 = v6v
T
6 =



0

0

0

1

0

0



(
0 0 0 1 0 0

)
=



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 0


.

It is easily verified that E1 + ... + E6 = I and EiEj = 0, i 6= j and E2
i = Ei. Also the

familiar relations between the components of a tensor with tetragonal symmetry (see 3.1.2)

are easily verified. For example

ĉ11 = ĉ22 =
λ1

2 + a2
+

λ2a
2

4 + 2a2
+

λ3
2 + b2

+
λ4b

2

4 + 2b2
,

ĉ16 =
λ3b

2 + b2
− λ4b

2 + b2
= −ĉ26,

ĉ44 = ĉ55 = λ5

Also

ĉ66 =
λ3b

2

2 + b2
+

2λ4
2 + b2

Thus the element ĉ66 is a weighted average of the eigenvalues λ3 and λ4 and will lie between

them. Thus we can write the following familiar matrix representation of the elasticity tensor

for tetragonal materials

ĉ =



ĉ11 ĉ12 ĉ13 0 0 ĉ16

ĉ12 ĉ11 ĉ13 0 0 −ĉ16

ĉ13 ĉ13 ĉ33 0 0 0

0 0 0 ĉ44 0 0

0 0 0 0 ĉ44 0

ĉ16 −ĉ16 0 0 0 ĉ66


.

3.2.5 Trigonal materials

The matrix ĉ representing the elasticity tensor for trigonal materials and the rotation

matrix Q̂ (2π3 ) commute with each other. Therefore both of these matrices have common

eigenvectors. The eigenvalues of Q̂(2π3 ) are 1, 1, e±iθ, e±2iθ. Among these eigenvalues e±iθ =
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−1±i
√
3

2 and e±2iθ = −1∓i
√
3

2 become degenerate. The pairs of eigenvalues and corresponding

eigenvectors of the matrix Q̂(2π3 ) are as follow

1, (0, 0, 1, 0, 0, 0)T ,

1,
1√
2

(1, 1, 0, 0, 0, 0)T ,

−1 + i
√

3

2
,

1

2
(i,−i, 0, 0, 0,

√
2)T ,

−1 + i
√

3

2
,

1√
2

(0, 0, 0, i, 1, 0)T ,

−1− i
√

3

2
,

1

2
(−i, i, 0, 0, 0,

√
2)T ,

−1− i
√

3

2
,

1√
2

(0, 0, 0,−i, 1, 0)T (3.40)

Let λi, i = 1, 2, ..., 6, be the eigenvalues of ĉ and vi, i = 1, 2, ..., 6, be its eigenvectors

corresponding to λi. The first two eigenvectors of ĉ are the same as these in (3.35) i.e.

λ1,v1 =
1√

2 + a2
(1, 1, a, 0, 0, 0)T (3.41a)

λ2,v2 =
1√

4 + 2a2
(a, a,−2, 0, 0, 0)T (3.41b)

To obtain v3 and v4 we form a linear combination of the third and fourth vectors of (3.40)

i.e. 

i

−i

0

0

0
√

2


+ (c+ id)



0

0

0

i

1

0


=



0

0

0

−d

c
√

2


+ i



1

−1

0

c

d

0


Thus, we can take

λ3, v3 =
1√

2 + c2 + d2
(1,−1, 0, c, d, 0)T (3.41c)

λ4 = λ3, v4 =
1√

2 + c2 + d2
(0, 0, 0,−d, c,

√
2)T (3.41d)
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as a pair of degenerate eigenvectors of ĉ. To obtain v5 and v6 we form the following linear

combination of the last two vectors of (3.40) i.e.

−i

i

0

0

0
√

2


− (e− if)



0

0

0

−i

1

0


=



0

0

0

f

−e
√

2


+ i



−1

1

0

e

f

0


,

provided that it should yield eigenvectors which are orthogonal to the vectors v3 as well

as v4. These vectors will be orthogonal if it satisfy

ce+ df = 2 and cf = de.

This implies that

e =
2c

c2 + d2
and f =

2d

c2 + d2
.

Thus the pair of eigenvectors v5 and v6 can be written as

λ5, v5 =

√
c2 + d2√

2c2 + 2d2 + 4
(−1, 1, 0,

2c

c2 + d2
,

2d

c2 + d2
, 0)T (3.41e)

λ6 = λ5, v6 =

√
c2 + d2√

2c2 + 2d2 + 4
(0, 0, 0,

2d

c2 + d2
,− 2c

c2 + d2
,
√

2)T (3.41f)

Thus all eigenvectors of ĉ can be expressed in terms of three parameters. The matrix

representation of ĉ is as follows

ĉ=λ1E1 + λ2E2 + λ3(E3 + E4) + λ5(E5 + E6) (3.42)
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where E1 and E2 are given respectively by (3.37) and (3.38) and

E3 = v3v
T
3 =

1

2 + c2 + d2



1

−1

0

c

d

0



(
1 −1 0 c d 0

)

=
1

2 + c2 + d2



1 −1 0 c d 0

−1 1 0 −c −d 0

0 0 0 0 0 0

c −c 0 c2 cd 0

d −d 0 cd d2 0

0 0 0 0 0 0


,

E4 = v4v
T
4 =

1

2 + c2 + d2



0

0

0

−d

c
√

2



(
0 0 0 −d c

√
2

)

=
1

2 + c2 + d2



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 d2 −cd −
√

2d

0 0 0 −cd c2
√

2c

0 0 0 −
√

2d
√

2c 2


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E5 = v5v
T
5 =

c2 + d2

2c2 + 2d2 + 4



−1

1

0

2c
c2+d2

2d
c2+d2

0



(
−1 1 0 2c

c2+d2
2d

c2+d2
0

)

=
1

2c2 + 2d2 + 4



c2 + d2 −(c2 + d2) 0 −2c −2d 0

−(c2 + d2) c2 + d2 0 2c 2d 0

0 0 0 0 0 0

−2c 2c 0 4c2

c2+d2
4cd
c2+d2

0

−2d 2d 0 4cd
c2+d2

4d2

c2+d2
0

0 0 0 0 0 0



E6 = v5v
T
5 =

c2 + d2

2c2 + 2d2 + 4



0

0

0

2d
c2+d2

− 2c
c2+d2

√
2



(
0 0 0 2d

c2+d2
− 2c
c2+d2

√
2

)

=
1

2c2 + 2d2 + 4



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 4d2

c2+d2
−4cd
c2+d2

2
√

2d

0 0 0 −4cd
c2+d2

4c2

c2+d2
−2
√

2c

0 0 0 2
√

2d −2
√

2c 2(c2 + d2)


Advantages of new decomposition of elasticity tensor

Throughout this chapter we decomposed matrix representation the elasticity tensor for

isotropic and anisotropic materials in a new form. In the following lines, we give some

reasons which will show that these new decompositions are convenient:
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(i). For the cubic system, the representation (3.33) of the elasticity tensor ĉ contains

three parameters, λ1, λ2 and λ4. These parameters are eigenvalues of the tensor and

these are invariant under a coordinate transformation.

(ii). For a transversely isotropic system, the representation (3.36) of the elasticity tensor ĉ

contains five parameters, λ1, λ2, λ3, λ5 and a. The first four parameters are invariant

under a coordinate transformation.

(iii). For a tetragonal system, the representation (3.39) of the elasticity tensor ĉ contains

seven parameters, λ1, λ2, λ3, λ5, a and b. The first five parameters are invariant under

a coordinate transformation.

(iv). Similarly for a trigonal system, the representation (3.42) of the elasticity tensor ĉ

contains seven parameters, λ1, λ2, λ3, λ5, a, c and d. The first four parameters are

invariant under a coordinate transformation.

The strain energy is defined as

W =
1

2

6∑
i=1

Λi

∣∣∣Ê.N̂i

∣∣∣2 where(i = 1, 2..., 6), (3.43)

where the vectors N̂ represent the normalized eigenvectors of the six-dimensional matrix ĉ,

the six eigentensors of strain are denoted by Ê and Λi are the eigenvalues of ĉ. Cowin and

Yang [16] have shown that this strain energy can be minimized with respect to single strain

state, by finding the elastic symmetry with the set of eigenvectors for fixed eigenvalues.

They have constructed the matrix representation for elasticity tensor corresponding to

the basis {Ni}6i=1 that minimized the strain energy with respect to a single strain state.

Instead of this basis, we use the basis {vi}6i=1 as derived in previous two sections. we will

show that the later basis is more general than the previous one. Hence these results of the

work done by Cowin and Yang can be treated in a more general manner.
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First we consider the tetragonal symmetry, where the two principal strains of the strain

states are equal [16]. The basis {Ni}6i=1 is

N̂1 = (
sinβ√

2
,
sinβ√

2
, cosβ, 0, 0, 0)T ,

N̂2 = (
cosβ√

2
,
cosβ√

2
,− sinβ, 0, 0, 0)T ,

N̂3 = (
1√
2
,
−1√

2
, 0, 0, 0, 0)T ,

N̂4 = (0, 0, 0, 1, 0, 0)T ,

N̂5 = (0, 0, 0, 0, 1, 0)T ,

N̂6 = (0, 0, 0, 0, 0, 1)T , (3.44)

where β is a parameter. But the basis {vi}6i=1 for tetragonal symmetry, as derived in

section 3.2, can be written as follows

v1 = (
1√

2 + a2
,

1√
2 + a2

,
a√

2 + a2
, 0, 0, 0)T ,

v2 = (
a√

4 + 2a2
,

a√
4 + 2a2

,− 2√
4 + 2a2

, 0, 0, 0)T ,

v3 = (
1√

2 + b2
,− 1√

2 + b2
, 0, 0, 0,

b√
2 + b2

)T ,

v4 = (
b√

4 + 2b2
,− b√

4 + 2b2
, 0, 0, 0,− 2√

4 + 2b2
)T ,

v5 = (0, 0, 0, 1, 0, 0)T ,

v6 = (0, 0, 0, 0, 1, 0)T . (3.45)

where a and b are the parameters. If we compare the two bases in (3.44) and (3.45), we

can easily see that

N̂1 = v1, N̂2 = v2, N̂4 = v6, N̂5 = v5, if a =
√

2 cotβ,

while

N̂3 = v3 and N̂6 = v4 only if b = 0.

But if b 6= 0, then these two bases are not the same and therefore the basis {vi}6i=1 is

more general than {Ni}6i=1. By using these basis, the matrix ĉ can be expressed in terms

of the strain parameters a, b and the eigenvalues λi, i = 1, ..., 6 as in equation (3.39).

Next, we consider hexagonal (transverse isotropy) symmetry that admits a basis {vi}6i=1
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containing eigenvectors with two equal principal strains states. The eigenvectors for this

symmetry and tetragonal symmetry are the same [16]. They are distinguished only by

different eigenvalues. On the other hand, the basis {vi}6i=1 for hexagonal symmetry can

be seen in (3.35), which contains only one parameter a. We can easily see that all the

eigenvectors of (3.44) and (3.35) are the same if a =
√

2 cotβ. The matrix ĉ for this case

is given by (3.36).

Now for Trigonal symmetry, the basis {Ni}6i=1 used by Cowin and Yang [16] contains

the eigenvectors which are not all orthogonal. But if we write it in the following correct

form, then the vectors become orthogonal, that is

N̂1 = (
sinβ√

2
,
sinβ√

2
, cosβ, 0, 0, 0)T ,

N̂2 = (
cosβ√

2
,
cosβ√

2
,− sinβ, 0, 0, 0)T ,

N̂3 = (
cos γ√

2
,−cos γ√

2
, 0, sin γ, 0, 0)T

N̂4 = (−sin γ√
2
,
sin γ√

2
, 0, cos γ, 0, 0)T ,

N̂5 = (0, 0, 0, 0,− cos γ, sin γ)T ,

N̂6 = (0, 0, 0, 0, sin γ, cos γ)T , (3.46)

where β and γ are the parameters. The vectors of the basis {vi}6i=1, for trigonal symmetry

are given by (3.41a)-(3.41f), where the parameters are a, c and d. The comparison of

(3.46) with (3.41a)-(3.41f) gives the following results

N̂1 = v1 and N̂2 = v2, if a =
√

2 cotβ,

while

N̂3 = v3, N̂4 = v5, N̂5 = v6 and N̂6 = v4 only if d = 0 and c =
√

2 tan γ.

But again if d 6= 0, the the basis vectors in {vi}6i=1 are more general than those in the

basis {Ni}6i=1. Thus we can get more general form of the problem as discussed above.



Chapter 4

Planes and axes of symmetry

To study the physical properties of anisotropic materials, we use tensors. For instance, the

dielectric tensor, ε, of rank two, the piezoelectric tensor, e, of rank three and the elasticity

tensor, c, of rank four. The components of these tensors can be arranged and it is usual

to represent it by a matrix. Due to the effect of symmetry with the choice of an axis of

rectangular coordinate system, taken to be parallel to the normal of symmetry plane or

an axis of symmetry, some of these components vanish and the matrix form consisting

of the remaining nonzero components becomes simpler. But if we consider an arbitrary

coordinate system, then these components may not vanish and it is not obvious to identify

the symmetry class of the elastic materials under consideration. For the identification

of plane of symmetry, Cowin and Mehrabadi [28] have proved Theorem 2.2, which is

also known as Cowin-Mehrabadi Theorem. The conditions (2.52)-(2.55) of theorem 2.2

were modified by Cowin [29] and has reduced to only two conditions (2.54) and (2.55).

Ting [30] has further generalized Cowin-Mehrabadi Theorem and has provided its several

cases. Ahmad [31] has proved Cowin-Mehrabadi Theorem for an axis of symmetry. He has

also proved Cowin-Mehrabadi Theorem in six dimensions [21]. In this chapter, we provide

simple proofs of the necessary and sufficient conditions for the identification of a plane of

symmetry or an axis of symmetry in an elastic material. This approach is generalized to

a cartesian tensor of arbitrary rank and apply this treatment to find the necessary and

sufficient conditions for the existence of a symmetry plane or an axis of symmetry for a

piezoelectric material. We also obtain the conditions for the identification of an n-fold axis

69



CHAPTER 4. PLANES AND AXES OF SYMMETRY 70

of symmetry with n > 3.

This chapter consists of four sections. In section 4.1 we provide simple and short proofs

of necessary and sufficient conditions of Theorems 2.2 and 2.10 by searching for invariant

directions associated with the elasticity tensor. In case of plane of symmetry, such a

direction must be orthogonal to the normal n whereas in case of axis of symmetry, it must

be parallel to the vector p. In section 4.2, we generalize the approach of section 4.1 to

tensors of arbitrary rank and apply it to the third rank piezoelectric tensor to identify the

plane of symmetry and do the same in section 4.3 for an axis of symmetry of piezoelectric

material. In each of the previous sections the results are illustrated by explicit examples.

In section 4.4, we develop the results in the first two sections and generalize them to a

tenor of arbitrary rank.

4.1 Simple proofs of necessary conditions

4.1.1 Normal to the plane of symmetry

In an elastic material, suppose a plane of symmetry exists with n as normal. From (2.34)

and (2.35), it is clear that with respect to the transformation associated with the plane of

symmetry, every vector parallel to n reverses its direction but any vector orthogonal to n

is transformed into itself. Let us apply transformation (2.34) to n and m and denote the

transformed vectors with a prime then, (2.35) can be written as

n
′

= −n and m
′

= m (4.1)

where m is any vector on the plane such that m⊥n. Conversely, if a vector reverses its

direction, it can’t have a component in the plane orthogonal to n, hence it must be parallel

to n. Now consider the vectors Uijnj = cijkknj , Vijnj = cikjknj , Wik(n)nk = cijklnjnknl

and Wik(m)nk = cijklmjnkml. By using (4.1), these vectors will, respectively, transform
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as follows

(Uijnj)
′

= (cijkknj)
′

= c
′
ijkkn

′
j ,= cijkk(−nj) = −cikjjnj , (4.2)

(Vijnj)
′

= (cikjknj)
′

= c
′
ikjkn

′
j = cikjk(−nj) = −cikjknj , (4.3)

(Wik(n)nk)
′

= (cijklnjnknl)
′

= c
′
ijkln

′
jn
′
kn
′
l

= cijkl(−nj)(−nk)(−nl) = −cijklnjnknl, (4.4)

(Wik(m)nk)
′

= (cijklmjnkml)
′

= c
′
ijklm

′
jn
′
km

′
l

= cijkl(mj)(−nk)(ml) = −cijklmjnkml. (4.5)

From (4.2)-(4.5), we can easily see that each of the vectors Uijnj = cijkknj , Vijnj =

cikjknj ,Wik(n)nk = cijklnjnknl and Wik(m)nk = cijklmjnkml reverses its direction hence

each of these vectors must be parallel to ni, which implies that n is an eigenvector of

each of the tensors U = Uij = cijkk, V = Vij = cikjk, W (n) = Wik(n) = cijklnjnl and

W (m) = Wik(m) = cijklmjml.

4.1.2 Axis of symmetry

With respect to the transformation associated with an axis of symmetry, p, a vector

transforms into itself if and only if it is parallel to p.

Consider the vectors Uijpj = cijkkpj , Vijpj = cikjkpj , and cijklpjpkpl. These vectors will,

respectively, transform as follows

(Uijpj)
′

= (cijkkpj)
′

= c
′
ijkkp

′
j = cijkkpj , (4.6)

(Vijnj)
′

= (cikjkpj)
′

= c
′
ikjkp

′
j = cikjkpj , (4.7)

(cijklpjpkpl)
′

= c
′
ijklp

′
jp
′
kp
′
l = cijklpjpkpl. (4.8)

From(4.6)-(4.8), it is clear that each of the vectors Uijpj = cijkkpj , Vijpj = cikjkpj , and

cijklpjpkpl are parallel to pi leading to the result that p is an eigenvector of each of the

tensors U = Uij = cijkk, V = Vij = cikjk, Wil(p) = cijklpjpk and Wik(p) = cijklpjpl.
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4.1.3 Necessary and sufficient conditions for an An-axis, n > 3.

If a tensor A of rank two is invariant with respect to rotation through an angle 2π/n,

n = 3, 4, 6 about x3-axis, then its matrix representation is of the form [46]

(A) =


a11 a12 0

−a12 a11 0

0 0 a33

 . (4.9)

Thus any tensor of rank 2 associated with the elasticity tensor will have the above repre-

sentation. The following Theorem uses this fact to characterize an axis of symmetry of a

tensor of order higher than 2. The Theorem enumerates a set of necessary conditions for

a vector p to be an axis of symmetry An, n = 3, 4 or 6. We recall a result of Ahmad [31]

that if p is an axis of symmetry An, n ≥ 3, it must be an eigenvector of both U and V

belonging, in each case, to a nondegenerate eigenvalue.

Theorem 4.1. A set of necessary conditions for a unit vector p to be an n-fold axis of

symmetry, An, n ≥ 3, is the following.

(i) p is a common eigenvector of U and V, belonging to a nondegenerate eigenvalue.

(ii) With coordinate axes chosen so that x3-axis is along p, matrices representing the

tensors U = ciikl, V = cijkj, W1(p) = cijklpkpl and W2(p) = cijklpjpl are of the

form (4.9).

Proof. Proof of the first condition being necessary is contained in the observations following

(4.2)-(4.5). Since each of the four second rank tensors U = ciikl,V = cijkj ,W1(p) =

cijklpkpl and W2(p) = cijklpjpl, is invariant with respect to a transformation associated

with a three fold, four fold or a six fold axis of symmetry, the matrix representation must

be of the form (4.9). Note that, if we compare a symmetric matrix, M = (mij), with

(4.9), it implies the matrix must be diagonal with m11 = m22. However the corresponding

necessary and sufficient conditions for the piezoelectric tensor require comparison with a

non-symmetric matrix (see W3 in Theorem 4.7).

The conditions given above are necessary but not sufficient for the existence of an An

axis, n > 3, to be an axis of symmetry. In order to find necessary and sufficient conditions,
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we have to consider each case of n = 3, 4 and 6, separately. One or more extra conditions

from the following set are required in each case.

(a) c16 = 0, c66 = c11−c12
2 ,

(b) p is an eigenvector of cijklmjml, where m is a unit vector perpendicular to p.

Now we are able to formulate necessary and sufficient conditions for the existence of

an An axis, for each case of n = 3, 4 and 6.

Theorem 4.2. Necessary and sufficient conditions for a unit vector p to be a 3-fold axis

of symmetry are conditions (i), (ii) of Theorem 4.1 and condition (a).

Proof. We choose x3-axis along p and consider the matrix representation of the tensor

cijklpkpl = cij33. Its matrix representation, in the two index notation, is
c13 c36 c35

c36 c23 c34

c35 c34 c33

 .

A comparison with (4.9) gives

c34 = c35 = c36 = 0, c13 = c23. (4.10)

Matrix representation of the tensor cijklpjpl = ci3k3 is
c55 c45 c35

c45 c44 c34

c35 c34 c33

 ,

which leads to

c45 = 0, c44 = c55. (4.11)

The tensor cijkj has the representation
c11 + c66 + c55 c16 + c26 + c45 c15 + c46 + c35

c16 + c26 + c45 c66 + c22 + c44 c56 + c24 + c34

c15 + c46 + c35 c56 + c24 + c34 c55 + c44 + c33

 .
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Comparison with (4.9) and use of (4.10) and (4.11) leads to

c16 + c26 = 0, c15 + c46 = 0, c24 + c56 = 0, c11 = c22. (4.12)

Similarly, the tensor ciikl has the representation
c11 + c12 + c13 c16 + c26 + c36 c15 + c25 + c35

c16 + c26 + c36 c12 + c22 + c23 c14 + c24 + c34

c15 + c25 + c35 c14 + c24 + c34 c13 + c23 + c33

 .

Comparison with (4.9) and use of (4.10) and (4.11) leads to

c15 + c25 = 0, c14 + c24 = 0. (4.13)

The 6 × 6 matrix representation of the elasticity tensor, with the use of (4.10)-(4.13),

becomes 

c11 c12 c13 c14 c15 c16

c12 c11 c13 −c14 −c15 −c16

c13 c13 c33 0 0 0

c14 −c14 0 c44 0 −c15

c15 −c15 0 0 c44 c14

c16 −c16 0 −c15 c14 c66


. (4.14)

If condition (a) also holds, the above matrix will become

c11 c12 c13 c14 c15 0

c12 c11 c13 −c14 −c15 0

c13 c13 c33 0 0 0

c14 −c14 0 c44 0 −c15

c15 −c15 0 0 c44 c14

0 0 0 −c15 c14
c11−c12

2


,

which shows the material possesses trigonal symmetry. This proves the Theorem.

Theorem 4.3. Necessary and sufficient conditions for a unit vector p to be a 4-fold axis

of symmetry are conditions (i), (ii) of Theorem 4.1 and condition (b).
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Proof. Let us choose x1 axis along m, that is m = (1, 0, 0)T . The tensor cijklmjml becomes

ci1k1, which has the matrix representation
c11 c16 c15

c61 c66 c65

c51 c56 c55

 .

Since p = (0, 0, 1)T is an eigenvector of the above matrix, we can write
c11 c16 c15

c61 c66 c65

c51 c56 c55




0

0

1

 = λ


0

0

1


or 

c15

c65

c55

 =


0

0

λ


where λ is an eigenvalue corresponding to the eigenvector p = (0, 0, 1)T . We must have

c15 = c65 = 0. But c65 = c56 = c14. Therefore we have c14 = c15 = 0. The matrix (4.14)

becomes 

c11 c12 c13 0 0 c16

c12 c11 c13 0 0 −c16

c13 c13 c33 0 0 0

0 0 0 c44 0 0

0 0 0 0 c44 0

c16 −c16 0 0 0 c66


,

which is the matrix representation of the elasticity tensor with an A4 axis of symmetry [46].

This proves the Theorem.

Theorem 4.4. Necessary and sufficient conditions for a unit vector p to be a 6-fold axis

of symmetry are conditions (i), (ii) of Theorem 4.1 and conditions (a) and (b)

Proof. To prove this Theorem, we follow on the same lines as those for the proof of Theo-
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rems 4.2 and 4.3. Additionally, if both (a) and (b) hold, the matrix (4.14) will become

c11 c12 c13 0 0 0

c12 c11 c13 0 0 0

c13 c13 c33 0 0 0

0 0 0 c44 0 0

0 0 0 0 c44 0

0 0 0 0 0 c11−c12
2


,

which characterizes hexagonal symmetry. This proves Theorem 4.4.

Let q = (cosα sinβ, sinα sinβ, cosβ)T . The transformation

R =


cosβ 0 − sinβ

0 1 0

sinβ 0 cosβ




cosα sinα 0

− sinα cosα 0

0 0 1



=


cosα cosβ sinα cosβ − sinβ

− sinα cosα 0

cosα sinβ sinα sinβ cosβ

 (4.15)

is such that

Rq =


cosα cosβ sinα cosβ − sinβ

− sinα cosα 0

cosα sinβ sinα sinβ cosβ




cosα sinβ

sinα sinβ

cosβ



=


0

0

1

 .

Thus R orients an arbitrary vector specified by its Euler angles α and β along x3-axis.

4.2 Plane of symmetry of a piezoelectric material

The argument leading to and following (4.2)-(4.5) will now be applied to the piezoelectric

tensor e to find necessary and sufficient conditions for the existence of a plane of symmetry.
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Theorem 4.5. Let n and m be unit vectors orthogonal to each other. It is necessary and

sufficient for n to be a normal to a plane of symmetry of a piezoelectric material that

(a) it is orthogonal to each of the vectors v1 = ekjj , v2 = ejjk, v3(n) = eijkninj ,

(a) it is parallel to each of the vectors w1(n,m) = eijknimj ,w2(n,m) = eijkminj ,w3(n,m) =

ekijminj .

Proof. First suppose a plane of symmetry exists with normal n. The vectors v1 =

ekjj , v2 = ejjk, v3(n) = eijkninj can be expressed as v1 = δijekij ,v2 = δijeijk and

v3 = eijkninj , respectively. Under the transformation associated with the plane, men-

tioned above, these vectors transform as

v′1 = (δijekij)
′ = δijekij = ekjj = v1,

v′2 = (δijeijk)
′ = δijeijk = ejjk = v2

and

v′3 = (eijkninj)
′ = eijk(−ni)(−nj) = eijkninj = v3.

Thus each of the vectors v1, v2 and v3 transforms into itself hence each of these vectors

must be orthogonal to n.

Next consider the transformations of w1(n,m),w2(n,m) and w3(n,m). We have

w1(n,m)′ = (eijknimj)
′ = eijk(−ni)mj = −eijknimj ,

w2(n,m)′ = (eijkminj)
′ = eijkmi(−nj) = −eijkminj

and

w3(n,m)′ = (ekijminj)
′ = ekijmi(−nj) = −ekijminj .

Thus w1(n,m)′ = −w1(n,m),w2(n,m)′ = −w2(n,m) and w3(n,m)′ = −w3(n,m)

leading to the conclusion that each of the vectors w1(n,m),w2(n,m) and w3(n,m) must

be parallel to n.

To show that the conditions (a) and (b) of this theorem are sufficient, choose coordinate

axes so that x1 and x3 axes are respectively aligned with m and n i.e. m =(1, 0, 0)T and
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n =(0, 0, 1)T . Vectors v1,v2 and v3, in components form, can be written as

v1 = (e11 + e12 + e13, e21 + e22 + e23, e31 + e32 + e33)
T ,

v2 = (e11 + e26 + e35, e16 + e22 + e34, e15 + e24 + e33)
T ,

v3 = (e31, e32, e33)
T .

The condition that n be orthogonal to each of these vectors, leads to the following

e31 + e32 + e33 = 0,

e15 + e24 + e33 = 0,

e33 = 0. (4.16)

Vectors w1(n,m),w2(n,m) and w3(n,m) respectively become (e31, e36, e35)
T , (e15, e14, e13)

T

and (e15, e25, e35)
T . Since n is parallel to each of them, therefore

n×w1(n,m) = (−e36, e31, 0)T = (0, 0, 0),

n×w2(n,m) = (−e14, e15, 0)T = (0, 0, 0),

n×w3(n,m) = (−e25, e15, 0)T = (0, 0, 0),

imply that

e31 = e36 = e14 = e15 = e25 = 0. (4.17)

Equations (4.16) and (4.17) together imply

e14 = e15 = e24 = e25 = e31 = e32 = e33 = e36 = 0,

which reduces the matrix (2.70) to the form

e =


e11 e12 e13 0 0 e16

e21 e22 e23 0 0 e26

0 0 0 e34 e35 0

 ,

so that the tensor e has x3-axis as a normal to a plane of symmetry [46].
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Example 1. Consider the following 3× 6 matrix representing a piezoelectric tensor d.

d =


4. 775 4 −1. 617 7 −2. 600 7 −1. 942 7 −0.135 72 −4. 224 8

−1. 718 6 0.345 62 −0.497 44 5. 3860 3. 446 8 0.757 76

−0.104 42 −0.779 98 1. 102 3 −7. 746 8 −3. 067 3 −0.605 62

 (4.18)

where components are in units of C/m2. Note that diα = dijk, if α ≤ 3 and diα = 2dijk,

if α > 3 [46].

We wish to determine wether or not a plane of symmetry exists. Vectors v1 and v2 can

be readily obtained from (4.18) as

v1 = (0.557023,−1.87039, 0.217873)T and

v2 = (3.62065,−5.64022, 3.72743)T .

If there is a plane of symmetry, then its normal n must be given by

n =
v1 × v2

|v1 × v2|
= (−.830497,−0.186178, 0.524988)T . (4.19)

We can take m a unit vector along v1,

m =
v1

|v1|
= (0.28366,−0.952485, 0.11095)T . (4.20)

We use (4.19) and compute the vector v3 as

v3 = (2.22809,−2.33557, 2.69643)T ,

which is orthogonal to n, because

n.v3 = 0.

Similarly, by using (4.20) we can compute unit vectors along w1, w2 and w3, each of which

is found to be

(−0.830497,−0.186178, 0.524988)T ,

a vector identical to n. We conclude that a plane of symmetry exists, with normal

n = (−0.830497,−0.186178, 0.524988)T . If we choose α = 3.36212 and β = 1.0181 then
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n = (cosα sinβ, sinα sinβ, cosβ)T = (−0.8305,−0.186176, 0.524984)T . Application of the

transformation (4.15) to n transforms it to (0, 0, 1)T . That is

Rn =


−0.51227 −0.114837 −0.851112

0.218744 −0.975782 0

−0.8305 −0.186176 0.524984



−0.8305

−0.186176

0.524984



=


0

0

1

 .

Same transformation applied to the tensor represented by (4.18) leads to the standard form

of the tensor for a monoclinic material with the normal to the plane of symmetry parallel

to x3-axis.

d′ =


1.60894 0.72657 −2.59149 0 0 3.70196

−1.48785 −0.17272 3.60752 0 0 −2.82030

0 0 0 2.76639 −3.16813 0

 ,

With coordinate axes so that x2-axis is along n, the tensor (4.18) transforms to

d′′=


1.4 3.8 −4.2 0 −7.2 0

0 0 0 −2.6 0 8

−0.22 −2.3 0.83 0 2.2 0


which is the tensor representing the YCOB crystal reported in [51].

4.3 Axis of symmetry of a piezoelectric material

The following Theorem provides necessary and sufficient conditions for a vector p to be

at least a 2-fold axis of symmetry. However, since a four fold or a six fold axis is also a

dyad axis, conditions of the Theorem will be satisfied in case of an A4 or an A6 axis as

well. Necessary and sufficient conditions for an axis An, n ≥ 3 will be given in Theorems

4.7 and 4.8.

Theorem 4.6. Let p and m be unit vectors orthogonal to each other. It is necessary and

sufficient for p to be a 2-fold axis of symmetry of a piezoelectric material that it is parallel
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to each of the vectors v1 = eijj , v2 = ejjk, v3(p) = eijkpipj , v4(p) = eijkpjpk,v5(m) =

eijkmimj , v6(m) = eijkmjmk.

Proof. The transformation associated with rotation about an axis p is represented by the

operator Q = −I + 2p⊗ p, where I is the identity operator, (see [31]). Unlike the trans-

formation defined by (2.28), used in the proof of Theorem 4.5, this transformation leaves

every vector parallel to p unchanged but reverses the direction of any vector orthogonal

to p. That is, Qp = p and Qm = −m, where m ⊥ p. The vectors v1 = eijj , v2 = ejjk

can be expressed as v1 = δjkeijk, v2 = δijeijk, respectively. Under the transformation

associated with rotation about an axis p, mentioned above, these vectors transform as

v′1 = (δjkeijk)
′ = δjkeijk = eijj = v1,

v′2 = (δijeijk)
′ = δijeijk = ejjk = v2,

similarly

v′3(p) = (eijkpipj)
′ = e′ijkp

′
ip
′
j = eijkpipj = v3(p),

v′4(p) = (eijkpjpk)
′ = e′ijkp

′
jp
′
k = eijkpjpk = v4(p),

v′5(m) = (eijkmimj)
′ = eijk(−mi)(−mj) = eijkmimj = v5(m)

and

v′6(m) = (eijkmjmk)
′ = eijk(−mj)(−mk) = eijkmjmk = v6(m).

Thus each of the vectors v1, v2, v3(p), v4(p), v5(m) and v6(m) transforms into itself

hence each of these vectors must be parallel to p.

To show that the given condition is sufficient, choose coordinate axes so that x1 and x3

axes are respectively aligned with m and p i.e. m =(1, 0, 0)T and p =(0, 0, 1)T . Vectors
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v1, v2, v3(p), v4(p), v5(m) and v6(m), in components form, can be written as

v1 = (e11 + e12 + e13, e21 + e22 + e23, e31 + e32 + e33)
T ,

v2 = (e11 + e26 + e35, e16 + e22 + e34,e15 + e24 + e33)
T ,

v3 = (e35, e34, e33)
T ,

v4 = (e13, e23, e33)
T ,

v5 = (e11, e16, e15)
T

v6 = (e11, e21, e31)
T ,

respectively. The condition that p be parallel to each of these vectors, leads to the following

p× v1 = (−e21 − e22 − e23, e11 + e12 + e13, 0)T = (0, 0, 0),

p× v2 = (−e16 − e22 − e34, e11 + e26 + e35, 0)T = (0, 0, 0),

p× v3(p) = (−e34, e35, 0)T = (0, 0, 0),

p× v4(p) = (−e23, e13, 0)T = (0, 0, 0),

p× v5(m) = (−e16, e11, 0)T = (0, 0, 0),

p× v6(m) = (−e21, e11, 0)T = (0, 0, 0).

That is

e21 + e22 + e23 = 0,

e11 + e12 + e13 = 0,

e16 + e22 + e34 = 0,

e11 + e26 + e35 = 0 (4.21)

and

e11 = e13 = e16 = e21 = e23 = e34 = e35 = 0. (4.22)

Equations (4.21) and (4.22) together imply that

e11 = e12 = e13 = e16 = e21 = e22 = e23 = e26 = e34 = e35 = 0,
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which reduces the matrix (2.70) to the form

e =


0 0 0 e14 e15 0

0 0 0 e24 e25 0

e31 e32 e33 0 0 e36

 ,

so that the tensor e has x3-axis as a 2-fold axis of symmetry of a piezoelectric material

[46].

Example 2. Consider the following 3 × 6 matrix representation of the piezoelectric

tensor e corresponding to a hypothetical material.

e =


−0.756897 1.55523 −1.59723 0.0815332 −0.299296 0.138140

1.52488 −0.699927 −1.65214 0.296613 −0.0961851 0.222583

−1.79313 1.78259 0.007407 1.80617 1.73614 −0.068369

 ,

(4.23)

where the components are in units of C/m2. Note that, unlike the tensor d used in Example

2, for e, eiα = eijk, i = 1, .., 3, α = 1, .., 6.

We wish to determine wether or not an axis of symmetry exists. Vectors v1 and v2 can

be obtained from (4.23) as

v1 = (−0.798903,−0.827191,−0.0031403)T ,

v2 = (1.20183, 1.24438, 0.0047241)T .

If p is a unit vector along v2 then

p =
v2

|v2|
= (0.694698, 0.719296, 0.002731)T .

We take m a unit vector orthogonal to p

m =(0.719299,−0.694701, 0)T .

Vectors v3, v4, v5 and v6 are computed as
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v3 = (0.576599, 0.597016, 0.0022665)T ,

v4 = v3,

v5 = (−1.1152,−1.15469,−0.0043836)T ,

v6 = (0.220898, 0.22872, 0.0008683)T .

It is easily verified that

−v1

|v1|
=

v2

|v2|
=

v3

|v3|
=
−v5

|v5|
=

v6

|v6|
= p.

This shows that p = (0.694698, 0.719296, 0.002731)T is indeed an axis of symmetry. Angles

α and β pertaining to p are respectively 0.802793 and 1.56807 and the transformation

matrix (4.15) becomes

R =


0.0018970 0.0019642 −0.999996

−0.719299 0.694701 0

0.694698 0.719296 0.002731

 . (4.24)

The above transformation aligns p along x3-axis, that is

Rp =


0.0018970 0.0019642 −0.999996

−0.719299 0.694701 0

0.694698 0.719296 0.002731




0.694698

0.719296

0.002731



=


0

0

1

 ,

and, with respect to the new coordinate axes, the piezoelectric tensor has the following

matrix representation
0 0 0 −1.78917 2.5053 0

0 0 0 −1.6053 −0.20917 0

−2.29798 0.317977 0.83 0 0 −0.386904

 ,
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which shows that the material has an A2-axis parallel to x3-axis.

The following Theorem concerning the piezoelectric tensor is the counterpart of Theo-

rems 4.2-4.4 for the elasticity tensor.

Theorem 4.7. A set of necessary and sufficient conditions for a unit vector p to be a

three fold axis of symmetry for a piezoelectric material described by the tensor e = (eijk),

is the following.

(i) p is parallel to v1 = eijj as well as v2 = ejji.

(ii) With coordinate axes chosen so that x3-axis is along p, the matrices representing

second rank tensors W3 = eijkpk and W4 = eijkpi are of the form (4.9).

Proof. Suppose an axis of symmetry exists. The vectors v1 = eijj and v2 = ejji can

be expressed as v1 = δjkeijk and v2 = δjkejki, respectively. Under the transformation

associated with rotation about an axis p, that is, Q = −I + 2 p⊗ p [31], these vectors

transform as

v′1 = (δjkeijk)
′ = δjkeijk = eijj = v1,

v′2 = (δjkejki)
′ = δjkejki = ejji = v2.

This shows that p is parallel to each of the vectors v1 = eijj and v2 = ejji. Similarly we

have

W′
3 = (eijkpk)

′ = eijkpk = W3,

W′
4 = (eijkpi)

′ = eijkpi = W4.

Thus each of the W3 = eijkpk and W4 = eijkpi is invariant with respect to a transformation

associated with a three fold axis of symmetry, the matrix representation must be of the

form (4.9).

To show that the conditions are sufficient, we choose x3-axis parallel to p i.e. p =

(0, 0, 1)T . Vectors v1,v2, in components form, can be written as

v1 = (e11 + e12 + e13, e21 + e22 + e23, e31 + e32 + e33)
T ,

v2 = (e11 + e26 + e35, e16 + e22 + e34,e15 + e24 + e33)
T ,
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respectively. Since p is parallel to each of these vectors, therefore, we have

p× v1 = (−e21 − e22 − e23, e11 + e12 + e13, 0)T = (0, 0, 0),

p× v2 = (−e16 − e22 − e34, e11 + e26 + e35, 0)T = (0, 0, 0).

Or

e11 + e12 + e13 = 0,

e21 + e22 + e23 = 0,

e11 + e26 + e35 = 0,

e16 + e22 + e34 = 0. (4.25)

Matrix representation of the tensor W3 = eijkpk = eij3 is

W3 =


e15 e14 e13

e25 e24 e23

e35 e34 e33

 ,

A comparison with (4.9) gives

e15 = e24, e14 = −e25, e13 = e23 = e34 = e35 = 0. (4.26)

Similarly, the matrix representation of the tensor W4 = eijkpi = e3jk is

W4 =


e31 e36 e35

e36 e32 e34

e35 e34 e33

 ,

which, on comparison with (4.9), leads to

e31 = e32, e36 = −e36 = 0. (4.27)

Equations (4.25)-(4.27) imply that there are only six independent components of the tensor

e and it will have the representation
e11 −e11 0 e14 e15 −e22

−e22 e22 0 e15 −e14 −e11

e31 e31 e33 0 0 0

 , (4.28)

which is the form of a tensor belonging to a trigonal material [46]. Thus the material has

trigonal symmetry.
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Finally we have the following Theorem:

Theorem 4.8. Let m and n be mutually perpendicular unit vectors in the plane normal

to p. If, in addition to conditions (i) and (ii) of Theorem 4.7, the tensor eijk satisfies the

condition

(iii) eijkminj + eijkmjni = 0,

then p is a 4-fold or a 6-fold axis of symmetry.

Proof. We can choose x1 and x2 axes respectively along m and n, that is m =(1, 0, 0)T

and n =(0, 1, 0)T . Condition (iii) of the Theorem becomes

e12k + e21k = 0. (4.29)

Equation (4.29) implies that

e16 = −e21, e12 = −e26, e14 = −e25. (4.30)

Use of the conditions given by (4.30) in (4.28) leads to

e11 = e22 = 0

and matrix in (4.28) becomes
0 0 0 e14 e15 0

0 0 0 e15 −e14 0

e31 e31 e33 0 0 0

 ,

which is precisely the matrix representation of the piezoelectric tensor possessing tetragonal

or hexagonal symmetry [46]. Hence p is a 4-fold or a 6-fold axis of symmetry.

4.3.1 Generalization to a tensor of arbitrary rank

The results developed in Sections 4.1 and 4.2 are capable of immediate generalization to a

tensor of arbitrary rank. In some applications tensors of rank higher than 4 are required

to adequately model the physical phenomena. For example, Özarslan and Mareci [52] have

noted that the diffusion tensor of rank 2 has limited application in the modeling of diffusion

imaging and have proposed the use of the diffusion tensors of rank going up to 8. Taking
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a cue from this observation, let us consider a tensor T of rank 6 which describes some

physical property of a material possessing a plane of symmetry with normal n. Then the

following necessary conditions must hold.

1. n is an eigenvector of each of the tensors of rank 2 obtained from T by letting any

pair of indices free and contracting others in pairs. For example Tijkkll, Tklikjl, are

two such tensors.

2. n is an eigenvector of the tensor obtained by contracting any three pairs of indices

of Tijklmnnpnq or any four pairs of Tijklmnnpnqnrns.

Similarly, if the same tensor T describes some physical property of a material having

an axis of symmetry about a unit vectorp, the following results will also hold.

3. p is an eigenvector of each of the tensors of rank 2 obtained from T by letting any

pair of indices free and contracting others in pairs. For example Tijkkll, Tklikjl are

two such tensors.

4. p is an eigenvector of the tensor obtained by contracting any three pairs of indices

of Tijklmnpqpr or any four pairs of Tijklmnpqprpspt.



Chapter 5

Young’s modulus in hexagonal

materials

In this chapter we shall apply the representation derived for a hexagonal material in chapter

3 to find an expression for E(n) and consider its optimum values.

Our motivation comes from Norris [35] who considered Poisson’s ratio in cubic materi-

als. He found evidence for Poisson’s ratio less than −1 in a certain direction and greater

than 2 in some other direction. Norris has expressed the Young’s modulus in term of in-

variant quantities, i.e. in terms of eigenvalues. On the other hand, Cazzani and Rovati [53]

(also see [54]) have expressed the young’s modulus in terms of the elastic compliances and

the parameters which are also dependent on these elastic constants. Ting [49] has also

obtained the explicit expressions of Young’s modulus for hexagonal materials in terms of

elastic compliances and discussed its direction surfaces. We shall also give an alternate

way for finding the extreme values of Young’s modulus in hexagonal materials.

This chapter consists of two sections. The first section is about Young’s modulus

in cubic materials, we have discussed the problem considered by Norris [35] in detail and

reformulated it in six dimensions by applying the representation derived for a cubic material

in chapter 3 to find an expression for E(n). In section two, Young’s modulus in hexagonal

materials is explained and the extreme values of Young’s modulus are discussed. The

results obtained in this section are illustrated by some examples of real materials.

89
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5.1 Cubic materials

Norris used a result of Walpole [32] to express the compliance tensor s for a cubic material

in the form

s =
1

3k
J +

1

2µ1
(I −D) +

1

2µ2
(D − J) (5.1)

where

Iijkl =
1

2
(δikδjl + δilδjk)

Jijkl =
1

3
δijδkl

Dijkl = δi1δj1δk1δl1 + δi2δj2δk2δl2 + δi3δj3δk3δl3. (5.2)

The parameters k, µ1, µ2 are related to the Voigt notation for the stiffness tensor as follows

k =
c11 + 2c12

3

µ1 = c44

µ2 =
c11 − c12

2
(5.3)

i.e. 3k, 2µ1 and 2µ2 are eigenvalues of the elasticity tensor in the Cowin-Mehrabadi

formalism. Young’s modulus in the direction specified by a unit vector n = (n1, n2, n3)
T

is defined by (2.80) or (2.81), that is as

E(n) =
1

sijklninjnknl

or

1

E(n)
= sijklninjnknl.

Norris [35] has simplified the formula in (2.85) as follows:

Let

n22n
2
3 + n23n

2
1 + n21n

2
2 = F (n), (5.4)

Substituting (5.3) and (5.4) into (2.85) and using n21 + n22 + n23 = 1, we have

1

E(n)
= s11 − 2s11F (n) + (

1

µ1
+ 2s12)F (n)

= s11 − 2(s11 − s12)F (n) +
1

µ1
F (n)

= s11 −
1

µ2
F (n) +

1

µ1
F (n).
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The value of s11 in terms of k and µ2 can be find as

s11 =
1

9k
+

1

3µ2

Thus 1
E(n) has the following form

1

E(n)
=

1

9k
+

1

3µ2
− 1

µ2
F (n) +

1

µ1
F (n),

=
1

9k
+

1

3µ2
− (

1

µ2
− 1

µ1
)F (n), (5.5)

which is the result derived by Norris [35].

It is easy to show that

0 6 F 6
1

3
(5.6)

A simple proof is as follows.

Let

f(n1, n2, n3) = n21n
2
2 + n22n

2
3 + n23n

2
1 − λ(n21 + n22 + n23) (5.7)

where λ is a lagrange multiplier. Equating the derivatives of f with respect to n1, n2 and

n3 to zero we find

2(n22 + n23)− 2n1λ = 0

2(n21 + n23)− 2n2λ = 0

2(n21 + n22)− 2n3λ = 0 (5.8)

If n1 = 0, n2 6= 0, n3 6= 0, then λ = n23 = n22 = 1
2 . Hence F (n) = 1

4 . If two of n1, n2

and n3 vanish then F (n) = 0. If none of them vanishes then

λ = n22 + n23 = n21 + n23 = n21 + n22

which implies n21 = n22 = n23 = 1
3 and F (n) = 1

3 . Thus 0 6 F 6 1
3 . It shows that F (n)

attains its optimum value when it is aligned parallel to a body diagonal.

From (5.5) it is clear that, if 1
µ1

> 1
µ2

then

max
1

E
=

1

9k
+

1

3µ1
,

min
1

E
=

1

9k
+

1

3µ2
.
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Also if 1
µ1

6 1
µ2

then

max
1

E
=

1

9k
+

1

3µ2
,

min
1

E
=

1

9k
+

1

3µ1
.

Cazzani and Rovati [53] have also obtained the above results but they have expressed

1
E in terms of components of the compliance tensor rather than the invariant expressions

used above. Now we shall obtain (5.5) by using our representation of ĉ in chapter 3. In

chapter 3, we have shown that the elasticity tensor may be represented as

ĉ = λ1F1 + λ2F2 + λ4F3.

Hence the compliance tensor becomes

ŝ =
1

λ1
F1 +

1

λ2
F2 +

1

λ4
F3

where F1, F2 and F3 are given in chapter 3.

Now if n =(n1, n2, n3)
T then N̂ =(n21, n

2
2, n

2
3,
√

2n2n3,
√

2n3n1,
√

2n1n2)
T . To calculate

sijklninjnknl, we simply need to find N̂T ŝN̂. That is

1

E(n)
= N̂T ŝN̂. (5.9)
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Since

F1N̂ =
1

3



1 1 1 0 0 0

1 1 1 0 0 0

1 1 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0





n21

n22

n23
√

2n2n3
√

2n3n1
√

2n1n2



=
1

3



n21 + n22 + n23

n21 + n22 + n23

n21 + n22 + n23

0

0

0


=

1

3



1

1

1

0

0

0


,

we find that

N̂TF1N̂ =
1

3
(n21 + n22 + n23) =

1

3
.

Also

F2N̂ =
1

3



2 −1 −1 0 0 0

−1 2 −1 0 0 0

−1 −1 2 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0





n21

n22

n23
√

2n2n3
√

2n3n1
√

2n1n2



=
1

3



2n21 − n22 − n23

−n21 + 2n22 − n23

−n21 − n22 + 2n23

0

0

0


=

1

3



3n21 − 1

3n22 − 1

3n23 − 1

0

0

0


,
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thus

N̂TF2N̂ =
1

3
(3n41 + 3n42 + 3n43 − n21 − n22 − n23)

=
1

3
(3[(n21 + n22 + n23)

2 − 2n21n
2
2 − 2n22n

2
3 − 2n23n

2
1]− 1)

=
1

3
(3[1− 2F (n)]− 1)

=
1

3
(3− 6F (n)− 1)

=
2

3
− 2F (n).

Finally

F3N̂ =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1





n21

n22

n23
√

2n2n3
√

2n3n1
√

2n1n2



=



0

0

0
√

2n2n3
√

2n2n3
√

2n2n3


therefore

N̂TF3N̂ = 2(n21n
2
2 + n22n

2
3 + n23n

2
1)

= 2F (n).

Hence (5.9) becomes

1

E(n)
=

1

λ1
N̂TF1N̂ +

1

λ2
N̂TF2N̂ +

1

λ4
N̂TF3N̂

=
1

3λ1
+

2

3λ2
+ 2(

1

λ4
− 1

λ2
)F (n). (5.10)
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This is identical to (5.5) if we identify λ1 = 3k, λ2 = 2µ2 and λ4 = 2µ1. Thus our

formulation gives the same results as those of Norris [35] and Cazzani and Rovati [53]. Next

we shall use our results of chapter 3 to express Young’s modulus in terms of eigenvalues of

the elasticity tensor and an arbitrary parameter.

5.2 Transversely isotropic (hexagonal) materials

In chapter 3, we have shown that the elasticity tensor for transversely isotropic (hexagonal)

materials may be represented as

ĉ = λ1E1 + λ2E2 + λ3(E3 + E4) + λ5(E5 + E6). (5.11)

Hence the compliance tensor becomes

ŝ =
1

λ1
E1 +

1

λ2
E2 +

1

λ3
(E3 + E4) +

1

λ5
(E5 + E6) (5.12)

where E1, E2, E3 + E4 and E5 + E6 are given in chapter 3.

The value of 1
E(n) = N̂T ŝN̂ can be calculated as follows:

E1N̂ =
1

2 + a2



1 1 a 0 0 0

1 1 a 0 0 0

a a a2 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0





n21

n22

n23
√

2n2n3
√

2n3n1
√

2n1n2



=
1

(2 + a2)



n21 + n22 + n23a

n21 + n22 + n23a

a(n21 + n22) + a2n23

0

0

0


,
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so that

N̂TE1N̂ =
1

2 + a2
[n21(n

2
1 + n22 + n23a) + n22(n

2
1 + n22 + n23a) + n23a(n21 + n22) + a2n43]

=
1

2 + a2
[n21(n

2
1 + n22 + n23a) + n22(n

2
1 + n22 + n23a) + n23a(n21 + n22 + an23]

=
1

2 + a2
(n21 + n22 + n23a)2

=
1

2 + a2
[1 + (a− 1)n23]

2.

Next we calculate

E2N̂ =
1

4 + 2a2



a2 a2 −2a 0 0 0

a2 a2 −2a 0 0 0

−2a −2a 4 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0





n21

n22

n23
√

2n2n3
√

2n3n1
√

2n1n2



=
1

4 + 2a2



a2(n21 + n22)− 2an23

a2(n21 + n22)− 2an23

−2a(n21 + n22) + 4n23

0

0

0


,

thus

N̂TE2N̂ =
1

4 + 2a2
[a2n21(n

2
1 + n22)− 2an21n

2
3 + a2n22(n

2
1 + n22)− 2an22n

2
3 − 2an23(n

2
1 + n22) + 4n43]

=
1

4 + 2a2
[a(n21 + n22)(an

2
1 + an22 − 2n23)− 2n23(an

2
1 + an22 − 2n23)]

=
1

4 + 2a2
[a(n21 + n22)− 2n23]

2

=
1

4 + 2a2
[
(a+ 2)n23 − a

]2
.
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Similarly

N̂T (E3 + E4)N̂ =



1
2 −1

2 0 0 0 0

−1
2

1
2 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 1





n21

n22

n23
√

2n2n3
√

2n3n1
√

2n1n2


=

1

2
(n21 + n22)

2

=
1

2
(1− n23)2

and

N̂T (E5 + E6)N̂ =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 0





n21

n22

n23
√

2n2n3
√

2n3n1
√

2n1n2


= 2n22n

2
3 + 2n23n

2
1

= 2n23(n
2
1 + n22)

= 2n23(1− n23).

Thus we have

1

E(n)
= N̂T ŝN̂

=
1

λ1
N̂TE1N̂ +

1

λ2
N̂TE2N̂ +

1

λ3
N̂T (E3 + E4)N̂ +

1

λ5
N̂T (E5 + E6)N̂

=
1

λ1

[1 + (a− 1)n23]
2

2 + a2
+

1

2λ2

[
(a+ 2)n23 − a

]2
2 + a2

+
1

2λ3
(1− n23)2 +

2

λ5
n23(1− n23).

(5.13)

We note that if n3 = 1, the Young’s modulus depends only on λ1 and λ2. In this

direction

1

E(n)
=

1

λ1

a2

2 + a2
+

1

λ2

2

2 + a2
(5.14)
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For a cubic material, 1
E(n) , in a direction parallel to one of the coordinate axes, given

by Eq. (5.10) becomes

1

E(n)
=

1

3λ1
+

2

3λ2
.

We shall get the same result in the present case if we let a = 1 in (5.14). Thus there exists

a transversely isotropic material closest to a cubic material in this sense.

Equation (5.13) is a function of n3 only, that is 1
E(n) = 1

E(n3)
. For convenience, we let

1

E(n3)
= f(n3). (5.15)

To find the extremal direction, the derivative of f(n3) with respect to n3 must be equal to

zero. This gives

f ′(n3) =
4n3(a− 1)[1 + (a− 1)n23]

λ1(2 + a2)
+

2n3(a+ 2)[(a+ 2)n23 − a]2

λ2(2 + a2)
−2n3(1− n23)

λ3
+

4n3(1− 2n23)

λ5
= 0.

From this we find

n3 = 0 (5.16)

or (
1

λ3
− 4

λ5
+

2(a− 1)2

λ1(2 + a2)
+

(a+ 2)2

λ2(2 + a2)

)
n23 =

1

λ3
− 2

λ5
− 2(a− 1)

λ1(2 + a2)
+

a(a+ 2)

λ2(2 + a2)

which gives us

n3 = ±p, say,

where,

p =

√√√√√ 1
λ3
− 2

λ5
− 2(a−1)

λ1(2+a2)
+ a(a+2)

λ2(2+a2)

1
λ3
− 4

λ5
+ 2(a−1)2

λ1(2+a2)
+ (a+2)2

λ2(2+a2)

. (5.17)

In order that n3 be real we require the following pairs of inequalities

1

λ2
+

1

λ3
− 2

λ5
+

2(a− 1)

2 + a2

(
1

λ2
− 1

λ1

)
> 0 (5.18a)

and

2

λ1
+

1

λ2
+

1

λ3
− 4

λ5
+

2(2a+ 1)

2 + a2

(
1

λ2
− 1

λ1

)
> 0 (5.18b)
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or

1

λ2
+

1

λ3
− 2

λ5
+

2(a− 1)

2 + a2

(
1

λ2
− 1

λ1

)
< 0 (5.19a)

and

2

λ1
+

1

λ2
+

1

λ3
− 4

λ5
+

2(2a+ 1)

2 + a2

(
1

λ2
− 1

λ1

)
< 0. (5.19b)

On the other hand, if (5.18a,b) or (5.19a,b) are not satisfied, the Young’s modulus will

attains its extreme values in the symmetry plane. But if (5.18a,b) or (5.19a,b) are satisfied,

then we find the extreme values of Young’s modulus as follows:

The second derivative of f(n3) with respect to n3 has the following expression

f ′′(n3) =
4(−1 + a+ 3n23 − 6an23 + 3a2n23)

λ1(2 + a2)
+

2(2 + a)[6n23 + a(3n23 − 1)]

λ2(2 + a2)
+

4n23 − 2(1− n23)
λ3

+
4(1− n23)− 20n23

λ5
(5.20)

Now we substitute the value of n3 = ±p, 0 into (5.20), respectively, we have

f ′′(±p) = − 8(a− 1)

(2 + a2)λ1
+

4a(2 + a)

(2 + a2)λ2
+

4

λ3
− 8

λ5

= 4

[(
1

λ2
+

1

λ3
− 2

λ5

)
+ 2

a− 1

2 + a2

(
1

λ2
− 1

λ1

)]
(5.21)

Note that the right hand side of (5.21) is identical, except for a factor of 4, to the left

hand side of (5.18a).

f ′′(0) =
4(a− 1)

(2 + a2)λ1
+

2a(2 + a)

(2 + a2)λ2
− 2

λ3
+

4

λ5

= 2

[(
2

λ5
− 1

λ2
− 1

λ3

)
+ 2

a− 1

2 + a2

(
1

λ1
− 1

λ2

)]
= −2

[(
1

λ2
+

1

λ3
− 2

λ5

)
+ 2

a− 1

2 + a2

(
1

λ2
− 1

λ1

)]
(5.22)

We note that

f ′′(0) = −1

2
f ′′(±p).

From the above equations, we conclude the following.

(i) If conditions (5.18) are satisfied then there is a minimum of 1
E(n) in the direction

n3 = ±p and a maximum when n3 = 0 i.e. in the plane of isotropy.
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(ii) If conditions (5.19) are satisfied then there is a maximum of 1
E(n) in the direction

n3 = ±p and a minimum when n3 = 0 i.e. in the plane of isotropy.

(iii) When neither (5.18) nor (5.19) are satisfied, there is no maximum or minimum in

any direction not lying in the plane of isotropy.

5.3 Applications to some real materials

Hexagonal materials, in Cowin-Mehrabadi formalism, are represented by the following 6×6

matrix

ĉαβ =



ĉ11 ĉ12 ĉ13 0 0 0

ĉ12 ĉ22 ĉ13 0 0 0

ĉ13 ĉ13 ĉ33 0 0 0

0 0 0 2ĉ44 0 0

0 0 0 0 2ĉ44 0

0 0 0 0 0 ĉ11 − ĉ12


(5.23)

We want to apply the results of section 5.2 to some real materials.

Example 1.

Consider Beryllium (Be) as an example of the hexagonal materials, belong to the class

6/mmm for which the elastic stiffness constants are as reported in [46] as c11 = 29.23,

c12 = 2.67, c13 = 1.4, c33 = 33.64 and c44 = 16.25. These constants are in units of

1010N/m2. We wish to find the extreme values of Young’s modulus for this data. The

matrix in (5.23), in this case, becomes

ĉαβ =



29.23 2.67 1.4 0 0 0

2.67 29.23 1.4 0 0 0

1.4 1.4 33.64 0 0 0

0 0 0 32.5 0 0

0 0 0 0 32.5 0

0 0 0 0 0 26.56


. (5.24)
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The eigenvalues and the corresponding eigenvectors of this matrix are

λ1 = 34.9326, v1 = (0.386558, 0.386558, 0.837344, 0, 0, 0)T

λ2 = 30.6074, v2 = (−0.592092,−0.592092, 0.546676, 0, 0, 0)T

λ3 = λ4 = 26.56, v3 = (0, 0, 0, 0, 0, 1)T , v4 = (0.707107,−0.707107, 0, 0, 0, 0)T

λ5 = λ6 = 32.5, v5 = (0, 0, 0, 1, 0, 0)T v6 = (0, 0, 0, 0, 1, 0)T . (5.25)

To find the value of the parameter a, we compare the first two eigenvectors in (5.25) to the

corresponding eigenvectors of hexagonal materials obtained in (3.35) of chapter 3, that is

v1 =
1√

2 + a2
(1, 1, a, 0, 0, 0)T ,

v2 =
1√

4 + 2a2
(a, a,−2, 0, 0, 0)T . (5.26)

As the first two eigenvectors in (5.25) are proportional to (1, 1, 2.16615, 0, 0, 0)T and

(2.16615, 2.16615,−2, 0, 0, 0)T , respectively, therefore a = 2.16615. Substituting the values

of λ1, λ2, λ3, λ5 and a into the left hand sides of (5.18), we have

1

λ2
+

1

λ3
− 2

λ5
+

2(a− 1)

2 + a2

(
1

λ2
− 1

λ1

)
= 0.0101938 > 0

and

2

λ1
+

1

λ2
+

1

λ3
− 4

λ5
+

2(2a+ 1)

2 + a2

(
1

λ2
− 1

λ1

)
= 0.0109452 > 0.

That is conditions (5.18) are satisfied and the value of p is 0.965067, which is a real number.

Thus we have f ′′(±0.965067) > 0 and f ′′(0) < 0. Which means that there is a minimum

of 1
E(n) in the direction n3 = ±0.965067 and a maximum when n3 = 0 i.e. in the plane of

isotropy. As a result the Young’s modulus E(n) has a maximum at n3 = ±0.965067 and a

minimum at n3 = 0. By using (5.13), the explicit values of maximum and minimum values

of Young’s modulus E(n) can be found as follows:

maxE(n) = E(n)|at n3=±p = 33.5461

minE(n) = E(n)|at n3=0 = 28.9379.
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Example 2

Consider another example of Titanium (Ti) which is a hexagonal material of class 6/mmm.

The elastic stiffness constants for Ti [46] are c11 = 16.24, c12 = 9.20, c13 = 6.90, c33 = 18.07

and c44 = 4.67. The matrix in (5.23), for this data, becomes

ĉαβ =



16.24 9.20 6.90 0 0 0

9.20 16.24 1.4 0 0 0

6.90 6.90 18.07 0 0 0

0 0 0 9.34 0 0

0 0 0 0 9.34 0

0 0 0 0 0 7.04


. (5.27)

The eigenvalues and the corresponding eigenvectors of this matrix are

λ1 = 32.1857, v1 = (−0.581654,−0.581654,−0.568646, 0, 0, 0)T

λ2 = 11.3243, v2 = (−0.402093,−0.402093, 0.822583, 0, 0, 0)T

λ3 = λ4 = 7.04, v3 = (0, 0, 0, 0, 0, 1)T , v4 = (0.707107,−0.707107, 0, 0, 0, 0)T

λ5 = λ6 = 9.34, v5 = (0, 0, 0, 1, 0, 0)T , v6 = (0, 0, 0, 0, 1, 0)T . (5.28)

As the the first two eigenvectors in (5.28) are proportional to (1, 1, 0.977636, 0, 0, 0)T

and (0.977636, 0.977636,−2, 0, 0, 0)T respectively. Therefore a = 0.977636. Substituting

the values of λ1, λ2, λ3, λ5 and a into the left hand sides of (5.18), we have

1

λ2
+

1

λ3
− 2

λ5
+

2(a− 1)

2 + a2

(
1

λ2
− 1

λ1

)
= 0.0153521 > 0

and

2

λ1
+

1

λ2
+

1

λ3
− 4

λ5
+

2(2a+ 1)

2 + a2

(
1

λ2
− 1

λ1

)
= −0.0213227 < 0.

As neither (5.18) nor (5.19) are satisfied, therefore the real value of p does not exist. Thus

for Titanium (Ti), there is no maximum or minimum of Young’s modulus in any direction

not lying in the plane of isotropy.

Also equation (5.22) gives

f ′′(0) = −0.0307044 < 0.
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Therefore 1
E(n) |at n3=0 = 0.958114 is a maximum in any direction in the plane of symmetry.

It has no maximum in any direction. Finally, we conclude that the minimum value of

Young’s modulus E(n) in any direction of the plane of isotropy, i.e. n3 = 0 is

minE(n) = E(n)|at n3=0 = 10.4372

and the Young’s modulus has no maximum in any direction.



Chapter 6

Summary

In this thesis we studied the symmetries of elasticity tensor and some problems concerning

with this theory. Some results developed here are also extended to tensors of arbitrary

rank that describe various physical quantities. Topics in this thesis provide an important

tool for further study in material science, seismology, mathematical modeling and other

fields of science which deal with these quantities. In this chapter we give the summary of

this thesis which clearly shows that which results are obtained in this thesis and what is

taken from other sources.

In the first two chapters, an overview of the literature and concerned research work

is given in detail. The more important topics discussed here are commuting matrices

(Theorem 2.1), Cowin-Mehrabadi formalism [11], Cowin-Mehrabadi Theorem [28] and its

modified versions by many authors [21, 29–31] (Theorem 2.2-2.12), piezoelectricity and

Young’s modulus.

In chapter 3, we utilized the well-known results of linear algebra which play important

role in enriching the theory of elasticity tensors. For this purpose we used Theorem 2.1

and Cowin-Mehrabadi formalism [11] in this chapter.

If a tensor is invariant under rotation about a fixed axis, the matrices representing the

tensor and the rotation commute with each other. The two matrices have common eigen-

vectors. Since the eigenvectors of rotation matrix are found easily, therefore a knowledge

of eigenvectors of the rotation matrix provides us with a fair amount of information about

eigenvectors of the elasticity tensor. This result is first applied to a transversely isotropic

104
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tensor T of rank 2. Eigenvectors of T are found without any appeal to its components

and it is also shown that due to the choice of symmetry axis as x3-axis, the matrix rep-

resenting T is diagonal with two components equal. Then it is also applied to elasticity

tensor ĉ possessing tetragonal symmetry to find its eigenvectors easily and also derive its

classical matrix representations. The eigenvalues of ĉ are also found such that eigenvalues

and eigenvectors are in agreement with [33] and [11] respectively. The representation of

the elasticity tensor ĉ belonging to a particular symmetry, that is cubic, isotropic, tetrag-

onal, hexagonal, trigonal is also derived in an elegant manner. For the cubic symmetry

the representation of ĉ contains three parameters which, being eigenvalues of the tensor,

are invariant under a coordinate transformation. Similarly for a hexagonal symmetry, it

has five parameters out of which four are eigenvalues, for tetragonal symmetry, there are

seven parameters, five of them are eigenvalues and for trigonal symmetry, again there are

seven parameters among which four are eigenvalues.

Chapter 4 is devoted to the identification of symmetry of an elastic materials. For

the identification of plane of symmetry, Cowin and Mehrabadi [28] have proved Theorem

2.2, which is also known as Cowin-Mehrabadi Theorem. The conditions (2.52)-(2.55) of

theorem 2.2 were modified by Cowin [29] and has reduced to only two conditions (2.54) and

(2.55). Ting [30] has further generalized Cowin-Mehrabadi Theorem and has provided its

several cases. Ahmad [31] has proved Cowin-Mehrabadi Theorem for an axis of symmetry.

He has also proved Cowin-Mehrabadi Theorem in six dimensions [21]. The work done in

this chapter extends the ideas of Cowin-Mehrabadi Theorem as discussed above.

In this chapter, we provide simple proofs of the necessary and sufficient conditions

Cowin-Mehrabadi Theorem its special case for an axis of symmetry given in Theorem

2.2 and Theorem 2.10 respectively. This approach is generalized to a cartesian tensor of

arbitrary rank and apply this treatment to find the necessary and sufficient conditions for

the existence of a plane of symmetry or an axis of symmetry for a piezoelectric material. We

also obtain the conditions for the identification of an n-fold axis of symmetry with n > 3.

The necessary and sufficient conditions for the plane and axes of symmetry of elastic as

well as piezoelectric tensor. These results are presented in Theorems 4.1 to Theorem 4.8.

The necessary conditions for tensor of arbitrary rank is also presented at the end of the
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chapter.

In chapter 5, we discussed the extrema of Young’s modulus for aubic and hexagonal

materials. Our motivation comes from Norris [35] who has expressed the Young’s modulus

in term of invariant quantities, i.e. in terms of eigenvalues. On the other hand, Cazzani

and Rovati [53] (also see [54], [49]) have expressed the Young’s modulus in terms of the

elastic compliances and the parameters which are not invariant quantities.

For extrema of Young’s modulus in cubic materials, we have discussed the problem

considered by Norris [35] in detail and reformulated it in six dimensions by applying the

representation derived for a cubic material in chapter 3 to find an expression for E(n).

In a similar way, the expression of Young’s modulus for a hexagonal material is written

in terms of one variable only and hence the problem of finding extreme values is solved

by a straightforward manner. The results are finally illustrated by some examples of real

materials.
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