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Abstract 
 

The research introduces an innovative approach for the early detection of crypto-ransomware, 

a form of malware that encrypts a victim's data and demands ransom for decryption. Various 

detection techniques, including behavior-based analysis, API calls, system calls, network 

communication patterns, static and dynamic analysis, are commonly employed to detect 

ransomware. However, these techniques consist of various challenges such as adversarial 

attacks, classification errors, difficulties in detecting zero-day attacks, performance and 

scalability limitations, and limited efficiency of machine learning models for detection. The 

major challenges consist of larger number of (read/write) APIs calls that are employed for 

detection of ransomware. Further, it indirectly increases the complexity of the detection system.  

In this study, we developed an efficient ransomware detection method that utilizes a lower 

number of attributes. The proposed scheme adopts a two-level detection approach, combining 

a signature-based technique and sandbox analysis using machine learning (ML) algorithms and 

an application program interface (API) generated by Cuckoo Sandbox. The signature-based 

technique compares ransomware signatures with a database of known ransomware, utilizing 

hashing techniques such as SHA. The sandbox analysis, complemented by ML algorithms and 

the API, aims to identify ransomware prior to the encryption process. The scheme is evaluated 

using various ML classifiers, including Random Forest (RF), Support Vector Machine (SVM), 

and K-Nearest Neighbour (KNN), with an 80:20 training and testing ratio. In addition, the 

proposed scheme was assessed through 10-fold cross-verification. Experimental results 

demonstrate the proposed approach accurately identify 26 contributing read/write ransomware 

attributes with 98% accuracy. It also surpassing the existing detection techniques while 

employing a minimal number of attributes. Early detection of ransomware is vital in preventing 

data encryption, potentially saving victims from paying ransoms.  

 

Keywords: APIs, Crypto-ransomware, Machine Learning, Malware, Cuckoo Sandbox. 
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1.  Introduction 
 

The first chapter of the thesis introduces the research, outlining its objectives, methods, and 

significance. It discusses the need for effective ransomware detection mechanisms and 

provides an overview of the subsequent chapters. 

 

1.1 Overview 

Ransomware locks digital data and modifies system logins to lock victims' resources. the 

attacker claims ransom from the target for acquiring access to its resources. In 2017, the 

WannaCry cyberattack infected over 200,000 systems across 150 countries [1]. Ransomware 

is playing a vital role in malware categories.  Ransomware is still recognized as one of the top 

malwares that cyber security experts have placed on high alert. Despite decreased infection 

rates, the cost-effectiveness of ransomware has increased, as hackers target specific internal 

communication, demanding larger ransoms. Cybercriminals are drawn to ransomware for its 

cost-effectiveness. 

Internet Usage: The widespread use of the internet has enabled global connections [2], making 

communication more convenient. However, this also increases the risk of international cyber-

attacks. For instance, a cybercriminal can launch an offensive operation against a specific 

corporation from any location. Since there are geographical distances and varying regulations, 

authorities will be hindered in responding to such attacks that are made on a global scale. 

Crypto-Currencies Popularity: The second reason is the widespread adoption of 

cryptocurrencies. The anonymity of the owner of this digital currency makes it hard for the 
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authorities to identify them, thus providing cybercriminals with an untraceable and safe route 

to extort ransom money [29]. 

Digitization: The third reason for the trend toward digital data storage is the cost-effectiveness 

of this method. As time progresses, the costs of digital storage are decreasing, and it has several 

advantages over physical data, including being searchable, occupying less space, and the ability 

to create backups or replicas. 

Encryption Algorithms: Encryption, a critical security measure, can be employed to meet the 

security requirements of an information system, such as confidentiality, integrity, availability, 

authenticity, and accountability. Apart from availability, encryption helps achieve all of these 

objectives; however, ransomware can exploit encryption to take control of user data and 

demand a ransom. 

Easy Accessibility of Ransomware: The accessibility of ransomware is a benefit for those 

engaged in cybercrime, as ransomware development kits are available on the Dark Web and 

can be downloaded without cost or bought for a reasonable price [5]. Moreover, a ransomware-

as-a-service profit-sharing system exists between hackers, where one party creates the source 

code for the ransomware and disseminates it to potential targets. These aspects contribute to 

the growth and continued development of ransomware by cyber criminals. 

 

1.2 Attack Vector 

Most significant source of a ransomware infection is email [3]. Cybercriminals sends phishing 

emails containing ransomware and attachments or links to fake documents or legitimate-

looking websites [2]. On clicking the attachment, the ransomware will launch on the victim's 

machine and automatically start to spread throughout the system. Advanced ransomware will 
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then perform reconnaissance on the victim's computer before contacting its developer, often 

known as the Command and Control (CC) Centre in cyber security. Once the ransomware has 

established a connection with the CC, it will share the gathered information regarding the victim 

and request the cryptographic keys depicted in Figure 1. 

 

 

Using these keys, the ransomware will encrypt the victim's crucial files, such as Microsoft 

Documents, images, media files, metadata, and more, only exposing itself to the victim once 

all vital files/ data have been encrypted [3]. According to Humayun at el. [3], 63.3% of 

ransomware infections are attributable to emails, with 35.7% relating to opening an attachment 

and 28.6% to clicking on a link, as illustrated in Figure 2. Moreover, 21.4% of victims report 

being unaware of how they became infected with ransomware [3]. Additionally, ransomware 

typically provides its victims with a limited timeframe to pay the ransom before the amount 

 
Figure 1 Types of Ransomwares. 
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increases.

 

 

Another common vector of a ransomware attack is when the victim visits a malicious or 

infected website, either intentionally or inadvertently. This attack is known as malvertising, 

where a redirection strategy is employed when a person unknowingly uses an exploit kit to 

navigate from a secure to a dangerous website. Attackers insert an exploit kit into an inline 

frame, also referred to as an iframe, on a legitimate website, leading to this situation [4]. 

Windows OS is the most widely used operating system and has been the primary target of 

ransomware attacks. In terms of ransomware detection, the primary point to consider is the 

Application Program Interface (API) of Windows. Generally, APIs are the main interface with 

the operating system; every program utilizes API for execution. Thus, the analysis of API 

becomes an effective tool for ransomware detection. This study focuses on crypto-ransomware, 

which uses an encryption technique to encrypt the data and files of its victims. The chosen form 

of ransomware is crypto-ransomware, as the damage it causes is usually severe and irreversible 

Figure 2 Ransomware Attack Vectors [3] 
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[5]. This is particularly true if the user's data is protected by a strong encryption technique, such 

as hybrid encryption. In general, the pre-encryption stage of a crypto-ransomware outbreak is 

crucial since recovery is challenging after encryption. Consequently, an early detection model 

for ransomware is necessary to protect against a ransomware attempt or reduce the harm of a 

ransomware attack. 

 

1.3 Thesis Motivation  

The focus of this research is on the detection of ransomware through the use of APIs, with a 

particular emphasis on pre-encryption detection in Windows platforms. There have been 

various approaches to ransomware detection using API calls and existing machine learning 

models, each with their own advantages and disadvantages. However, the identification of 

effective API calls and ensuring security can present challenges. Drawing inspiration from a 

previous study by Kok S. H. et al. [27], which also employed API-based ransomware detection 

at the pre-encryption stage, our research seeks to build upon this work and address major 

limitations and challenges associated with API-based ransomware detection. 

This research is driven by the desire to enhance the performance of ransomware detection and 

minimize the number of features required for classification. Kok S. H. et al. [27] benchmark 

study, which utilized Random Forest classifiers, relied on 232 unique features. This study 

proposes two key objectives. Firstly, to detect ransomware at the pre-encryption stage through 

the usage of API. Secondly, to store the signature of newly identified ransomware in a database 

to facilitate early detection in the future. 

1.4 Research Objectives 

This study has the following objectives to detecting ransomware attacks. 
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1. Analyze the API behavior associated with crypto-ransomware attacks to identify key 

patterns and behaviors indicative of such attacks. 

2. Develop a pre-encryption technique capable of detecting crypto-ransomware at an early 

stage, before it progresses to the encryption phase. 

3. Enhance existing datasets for machine learning-based research, specifically focusing on 

ransomware detection. This dataset will be available online and can be utilized in future 

studies to improve detection models and algorithms. 

4. Improve the signature-matching process by creating an enhanced repository of SHA-

256 ransomware signatures. This repository will aid in the identification and 

categorization of ransomware strains, facilitating more accurate and efficient detection 

methods. 

By achieving these objectives, the study aims to advance the field of ransomware detection by 

providing insights into API behavior, developing novel detection techniques, improving 

datasets for research purposes, and enhancing the signature-matching process for more 

effective identification of ransomware attacks. 

 

1.5 Research Questions  

This section describes the following research questions which are devised to perform this study: 

• Why is this research required? 

Windows ecosystem is continuously being threatened by malware which poses many security 

risks to the user's data. Since this data is usually of great value to the users, therefore, the users 

want some kind of protection in this regard.  
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There already exists a large set of detection methodologies, each providing its own benefits to 

the community. There is a need to see if those mechanisms can be modified to provide lighter 

detection approaches in terms of computational costs. 

• What is the significance of the study? And what steps are involved in the research? 

This study is about analyzing the importance of static malware analysis. The purpose of the 

study is to classify the malicious ransomware files/applications using the least number of static 

features. It will help malware analysts and the research community to quickly identify 

malicious ransomware applications. The study performs qualitative as well as quantitative static 

analysis of ransomware. To perform the study, we have broadly divided our approach into the 

following four steps: 

- Samples collection and environmental setup 

- Feature Extraction 

- Classification results generation 

- Report Writing 

• What are the aims of this study? 

The study mainly focuses on the following aspects: 

a) Discovering the set of minimum static features that can correctly classify a malicious 

ransomware application. 

b) Identifying the best classifying model among those considered for this study i.e., 

Random Forest SVM, Decision Tree, KNN and Naïve Bayes. 
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1.6 Problem Statement 

Windows is a widely used operating system in homes and organizations worldwide, making it 

a common target for malicious actors seeking to exploit its vulnerabilities. With a vast number 

of applications available online, it can be challenging for users to distinguish between 

legitimate and malicious software. Malware authors often disguise their harmful software as 

benign applications or offer them for download alongside popular software, making it easy for 

users to unintentionally install them. Once installed, these malicious programs can steal 

sensitive information, damage data, or take control of the affected system.  

Therefore, the problem statement of our study is as follows; “To determine significant static 

features set for windows-based applications to build a light-weight and efficient ransomware 

detection mechanism using supervised ML algorithms”. 

 

1.7 Solution Description 

The research provides a low-cost malware detection approach using the API-based static 

analysis of Windows applications and files. In this research, for the APIs extraction process, 

we have first analyzed ransomware files in Cuckoo Sandbox [10] to extract the APIs which are 

used for encryption functionality, from the dataset collected from VirusShare, VirusTotal, and 

TheZoo repository [11-13]. Following the extraction of APIs, they are filtered using the feature 

importance technique. Once the feature set is generated, a variety of machine-learning models 

are utilized to detect malicious applications. 
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1.8 Thesis Contribution 

Our research strategy, titled "Ransomware on the Run: A Detection Approach using Effective 

API and Machine Learning Models," has successfully investigated and enhanced detection 

accuracies by incorporating established classifiers such as Random Forest and SVM. The 

proposed scheme offers the following contributions: 

• The proposed approach achieves a high detection accuracy of approximately 98% 

while reducing the API feature set by approximately 88%. 

• This significant improvement in accuracy demonstrates the effectiveness of the 

proposed approach in accurately identifying ransomware attacks while 

simultaneously minimizing the computational burden associated with analyzing a 

large number of API features. 

• Introducing a lightweight malicious ransomware detection framework that offers an 

efficient and streamlined approach to detecting ransomware. This framework is 

designed to be lightweight in terms of computational resources required, making it 

suitable for deployment in resource-constrained environments while maintaining a 

high level of accuracy. 

• The proposed approach is equally applicable with other existing machine learning 

classifiers, enabling its usage in various contexts. This flexibility and adaptability 

make it possible to integrate the framework into existing systems and workflows, 

ensuring its usability and effectiveness across different scenarios and environments. 

 

1.9 Thesis Organization 

The organization of the thesis is presented as follows. Chapter 2 throws light on previous work 

done related to static analysis and detection of ransomware applications. The Pre- Encryption 
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detection method concept for detecting crypto-ransomware is detailed in the chapter 3. The 

experimental setup is discussed in Chapter 4. Chapter 5 showcases the result of the experiment. 

This section also discusses the activities/events performed during the results collection. Chapter 

6 is dedicated to the discussion and analysis of the experiment results. Lastly, chapter 7 sheds 

light on the conclusion with possible directions for the future. 

 

1.10 Summary 

In this chapter, basic concepts are discussed regarding ransomware analysis such as static and 

dynamic analysis implied in the detection of malicious applications. It provides an overview 

with the aim and scope of the thesis. Further, it presents the main objectives of the research 

work with the overall thesis organization. In the next chapter, we will look at the literature 

review that has been conducted for this thesis.  
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2.  Literature Review 

The second chapter of the thesis explores the topic of related research and terminology. This 

includes studies and investigations conducted by scholars in the field that are relevant to the 

present study and have contributed to the development of a novel solution. 

 

2.1 Overview 

In literature various studies and technical reports have highlighted the threat of malware and its 

impact on different organizations. With the advancement of technology, such as IoT and cloud 

computing, which enable global connectivity, there has been an increase in malware attacks 

[6]. This can be a potential problem if end-users are unaware of the threats posed by these 

cutting-edge technologies [7]. Ransomware is the most prevalent malware family targeting 

organizations and end-users on a large scale [8]. This increase is due to a direct connection 

between the victim and attacker, with the latter demanding a ransom from the victim. Data 

reveals that 37% of victimized organizations did not get their data back even after paying the 

ransom [9]. Once ransomware is executed in a system, it encrypts all data using encrypted 

algorithms and keeps the decryption key secret, thus making the data inaccessible to the victim 

[14]. Encryption can be used for both beneficial and malicious purposes; it can be used to 

preserve confidentiality and protect important data, but attackers can also use it as crypto-

ransomware to prevent access to data [15]. 

The current anti-malware solution like anti-virus, IDS, etc., which works on signature-based 

detection, are not able to detect any zero-day attacks because the new malware signature is not 

being updated to the signature database [16]. Cybercriminals show a keen interest in 

ransomware, a new variant of ransomware being created that bypasses the anti-virus software 
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[17]. Ransomware as a service (RaaS) allows reaching out to non-technical users with 

malicious intentions [18]. A severe countermeasure is needed to address this dangerous level 

of threat to the organization and end user. Extensive work is being done to detect ransomware 

at an initial level; some techniques are based on static and dynamic analysis [19]. 

 

2.2 Machine Learning 

Machine learning is defined as: “a technology that focuses on developing computer algorithms 

that are capable of emulating human intelligence by incorporating ideas from neuroscience, 

psychology, computer science, control theory, probability and statistics, information theory, 

and philosophy” [38]. 

Machine learning has successful applications in many fields such as robotics, computer vision, 

entertainment, and medicine. The aim of this technology is to humanize computers by 

educating themselves about the surrounding environment and previous experiences, with or 

without any supervised learning [38]. 

 

2.2.1 Machine Learning Algorithms 

This section presents various machine learning algorithms including Support Vector Machines 

(SVM), Random Forest (RF), Decision Tree (DT), K-Nearest Neighbour (KNN), Naïve Bayes 

(NB), and Voting Classifiers (VC). 

a) Support Vector Machine (SVM) 

Support Vector Machines (SVM) is a machine learning algorithm that aims to classify data 

points into two or more categories. It does so by finding a boundary plane that separates these 

categories based on the variables included in the model [38]. 
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b) Random Forest (RF) 

Random Forest (RF) is an algorithm that uses a combination of decision trees to construct 

models that represent complex and nonlinear functions. It builds a collection of decision trees, 

each one using a random subset of features and data to create an ensemble with low bias and 

low variance [39]. 

c) Decision Tree (DT) 

The Decision Tree (DT) algorithm is a flowchart-like structure used for making predictions 

based on feature values. It consists of decision nodes and leaf nodes, where each branch 

represents a possible decision or outcome. DT is useful for classification and regression tasks, 

but it may lead to overfitting if not pruned correctly. 

d) K-Nearest Neighbour (KNN) 

K-Nearest Neighbour (KNN) is an effective algorithm used for classification and regression. It 

classifies new cases based on similarity to existing data, without explicitly building a model. It 

is suitable for tasks with many features and limited data. However, it can be computationally 

expensive. 

e) Naïve Bayes (NB) 

Naïve Bayes (NB) is a simplified derivative Bayesian network that uses an assumption of 

feature variable independence for classification. This method is useful in high-dimensional 

spaces, but it can result in inaccurate probability estimates due to the unrealistic independence 

assumption [38].  

f) Voting Classifier (VC) 



CHAPTER 2: LITERATURE REVIEW  

14 
 

Voting Classifier (VC) is an ensemble method that combines multiple models to make 

predictions. It can be used for classification and regression tasks and is believed to be more 

accurate and robust than individual models. However, it may be computationally expensive.  

 

2.3 Related Work 

The static analysis includes source code analysis in which ransomware will not be activated. 

Several techniques are available, and analysis is performed by obtaining the opcode from the 

source code. The opcode will be used to generate an n-gram code. These n-gram codes will 

undergo machine learning training to create a prediction model for ransomware detection [20]. 

Recently, another approach that based on the search for ransom messages; indirectly leaving 

the victim with one ransomware execution [21]. Similarly, another static analysis approach 

examined the executable file headers for ransomware detection. Moreover, researchers also 

proposed a ransomware detection solution by analyzing the source code and deriving rules [22]. 

The fundamental issue with static analysis is that the examined source code may be flawed due 

to obfuscation techniques.  

The ransomware dynamic analysis requires the execution of the malware in a protected 

environment such as a sandbox. This analysis is very effective due to direct interaction. Further, 

intelligent malware can also predict the execution environments whether it is real-time or in a 

sandbox, and tuned to be inactive for the sandbox. Recently, in [23] authors proposed the 

detection methodology by analyzing the encryption process. As encryption process involves 

repetitive activities/patterns that can further be analyzed at file system levels to predict the 

ransomware patterns. Tracking the encryption frequency is also a technique to distinguish 

between attack and legitimate encryption. Another approach based on dynamic analysis is using 

system API calls to track ransomware interactions with the operating system [24]. A multi-
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layer detection technique called ransomWall combines two types of analysis [25]. Recently, 

other detection solutions included authentication-based access to essential files [26], tap-using 

honey files, and sustainable awareness. 

In [27] author studies crypto ransomware behaviors through function calls or APIs (Application 

Program Interface). They provided a two-level ransomware detection model; Level one detects 

ransomware through signature-based and the second level through machine learning algorithms 

using APIs calls. They used the RISS [41] dataset as a reference which has 30,967 apps, 

including both benign and malicious applications. After analyzing this dataset, the author 

extracted only ransomware features and created a new dataset with 232 APIs features and 1800 

entries. The RISS dataset comprised multiple features, while the new dataset focused on the 

pre-encryption function. The author uses a machine learning model to detect the ransomware 

using APIs features and achieved 100% detection accuracy on the Random Forest classifier. 

Further, after the detection of ransomware, its signature is stored in a database for future 

detection. For experiments, Cuckoo Sandbox, Windows 10 Pro, and Ubuntu 18.04 platforms 

are used. However, a number of features can further be optimized by reducing the insignificant 

features while maintaining similar detection accuracy. Recently, another approach [28] 

presented a similar model [27] on APIs-based detection while reducing the number of features 

from 232 to 206. However, the detection accuracy was reduced by 1% as compared to [27] on 

the K-NN classifier. Meanwhile, the proposed model is only applicable to detect known 

ransomware. In contrast, our proposed model employs only 26 features that can detect both 

known and unknown ransomware. 

Zakaria et al. [29], produced a similar framework for the detection of crypto-ransomware called 

RENTAKA. The author created a crypto-ransomware dataset using the RISS dataset as a 

reference. They successfully reduced the feature to 80 and dropped the 3% (97.03%) detection 

accuracy as compared to [27] using Support Vector Machine (SVM). They also employed 
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various classification models: SVM, Random Forest, Naive Bayes, KNN, and J48. However, 

this study has not provided any detail about the proposed model and even did not discuss what 

type of encryption APIs were actually targeted. 

Another study on the APIs-based ransomware detection method proposed by Anand et al. [30] 

uses the feature importance technique. The author performs API call analysis on ransomware 

behavior to look for a specific pattern. This study collected 653 executable files, including both 

benign and malicious applications. After analysis of APIs, they perform feature ranking and 

create a dataset. The collected dataset was given to the machine learning model by applying 

four classifiers: Random Forest, C 5.0, AdaBoost, and SVM. The highest obtained detection 

accuracy was reported at around 95.38% using the AdaBoost classifier. However, the 

contribution consists only of employing feature ranking. The CRED Alqahtani et al. [31] also 

used the same detection approach using machine and deep learning. Furthermore, RMOC [32], 

MELCOR [33], RANSID [34], ROPsight [35], RaFS [36], and RaRE [37], are the recent 

techniques to decrease ransomware attacks.  Table 1 shows the general techniques that are 

proposed by the researchers to detect ransomware. 

Table 1 Crypto-Ransomware Techniques and Detection Methods. 

Framework Pre-Encryption Methods Identification Features Dataset 

Elderan [47],  

2016 

Dynamic analysis of 

Ransomware by executing an 

application for only 20 seconds 

30,967 functions 

named (system 

operations, system 

calls, APIs, 

performance) 

 

RISS 
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PEDA [27], 

2020 

Identification of CRYPTO 

APIs at the start 

232 APIs RISS 

CRED [31], 

2020 

APIs and IRP-based 

correlation and detection 

IRP and APIs features Centric-

Process 

Centric-Data 

RMOC [32], 

2021 

Machine learning-based 

classification and clustering of 

ransomware attacks 

Malware samples and 

ransomware attack 

data 

Not specified 

MELCOR [33], 

2021 

Machine learning-based 

network traffic analysis 

Specific ransomware 

families (e.g., Ryuk, 

Maze) 

Not specified 

RANSID [34], 

2021 

Behavioral analysis and 

machine learning-based 

detection of ransomware 

attacks 

Network and endpoint 

behavior 

Not specified 

ROPsight [35], 

2021 

Detection of ransomware 

attacks using Return-Oriented 

Programming (ROP) 

ROP-based techniques Not specified 

RaFS [36], 

2022 

File system monitoring and 

analysis using machine 

learning and rule-based 

techniques 

Suspicious file access 

patterns 

Not specified 

RaRE [37], 

2022 

Machine learning-based 

detection of ransomware 

attacks 

System call sequences Not specified 



CHAPTER 2: LITERATURE REVIEW  

18 
 

RENTAKA 

[29], 2022 

Dynamic analysis of crypto-

ransomware 

80 APIs RISS 

 

The table presents different ransomware detection approaches and their merits and demerits. 

Elderan relies on dynamic analysis but missed sophisticated attacks. PEDA identifies CRYPTO 

APIs but overlook non-API-based ransomware. CRED combines APIs and IRP correlation but 

limited to specific features. RMOC uses ML for classification and clustering but relies on 

training dataset quality. MELCOR analyzes network traffic but didn’t discussed about offline 

ransomware. RANSID applies behavioral analysis and ML but faces false positives and 

emerging pattern challenges. Similarly, ROPsight detects ROP-based attacks but is limited to 

techniques. RaFS monitors file system access but may struggle with distinguishing legitimate 

and malicious patterns. RaRE uses ML on system call sequences but requires significant 

computational resources. RENTAKA analyzes APIs but missed complex ransomware 

behavior. Consider these trade-offs when choosing a detection approach. 

While the existing techniques for detecting and identifying ransomware attacks have made 

significant advancements, there are still some limitations and research gaps that need to be 

addressed. Many of the current approaches focus on specific aspects of ransomware detection, 

such as dynamic analysis, machine learning, or behavior analysis. However, they lacks of 

comprehensive coverage or fail to consider evolving ransomware techniques. Additionally, the 

lack of standardized datasets and evaluation methodologies makes it challenging to compare 

and validate the effectiveness of different techniques. Furthermore, some approaches may 

suffer from false positives or false negatives, impacting the accuracy and reliability of 

detection. To improve the effectiveness of ransomware detection, future research should strive 

to develop integrated frameworks that consider multiple detection dimensions and leverage 

diverse datasets. Additionally, efforts should be made to enhance the evaluation process by 
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establishing standardized benchmarks and metrics for assessing the performance of different 

detection techniques. Addressing these limitations and research gaps will contribute to the 

development of more robust and reliable ransomware detection methods. 

Generally, the optimal approach to detect ransomware before it is executed and thus, minimize 

the damage to the organization. In this study, a dynamic solution is proposed to ensure early 

detection, by providing signature matching with a maintained database, and the use of API calls 

and machine learning. Once files are encrypted, the data cannot be recovered, even upon the 

removal of ransomware from the system. 

 

2.4 Summary 

The chapter covers the background and related work of the thesis. It includes a critical analysis 

of existing research and schemes used in the literature, which aids in formulating a solution to 

the identified problem. The next chapter will discuss the research methodology followed during 

the thesis. 
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3. Research Methodology 

Chapter 3 outlines the research methodology used in this thesis, which involves collecting 

malware samples, constructing a feature set, and using machine learning classifiers for malware 

detection. The methodology follows a structured approach and utilizes methods such as data 

collection, preprocessing, feature extraction and selection, and machine learning model 

selection and evaluation. 

 

3.1 Introduction  

Research refers to a systematic and organized approach aimed at investigating a particular issue 

or field of interest to generate new knowledge and insights [40]. It involves defining and 

redefining a known problem, formulating a hypothesis, collecting and analyzing data, making 

assumptions, deriving conclusions, and testing the conclusion to verify the hypothesis [42]. In 

essence, research is conducted to answer a specific problem and identify appropriate solutions 

[41]. Its ultimate objective is to contribute to the advancement of knowledge in a particular 

field or discipline, whether through the development of new theories, testing of existing 

theories, or discovery of new facts and information. Overall, research is a rigorous and 

structured process that requires a disciplined and methodical approach to obtain reliable and 

valid results. 

 

3.2 Research Methodology  

This section presents the research methodology. The proposed approach revolves around a pre-

encryption ransomware detection system that focuses on extracting encryption APIs usage from 
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ransomware applications. The emphasis lies in analyzing a specific set of features that have 

demonstrated effectiveness in distinguishing and improving the detection rate of ransomware. 

To enable classification, the system utilizes various models, including Random Forest (RF), 

Support Vector Machine (SVM), Decision Tree, K-Nearest Neighbour, Naïve Bayes, and 

Voting classifiers. In this approach, features are manually selected based on their significant 

influence on the effectiveness of ransomware detection. The study encompasses the following 

key components: 

A. The first component involves the collection of both malicious and benign samples, 

which is a crucial step in developing an effective ransomware detection system. 

B. The second component involves identifying and constructing a feature set that can 

distinguish ransomware from benign applications. 

C. The third component involves filtering, finalizing, and extracting the most effective 

features from the dataset. 

D. The fourth component involves utilizing supervised machine learning methods to 

classify potential Windows malware by training the models on the filtered features 

dataset. 

E. After performing the aforementioned stages, a report of the malware analysis summary 

is generated which can be used to carry out further evaluations. 
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3.3 Detection at the Pre-Encryption Stage 

In this section, we will discuss the pre-encryption stage of ransomware detection which is 

comprised of two levels. The first level is the analysis of system call or Application Program 

Interface (API) to identify ransomware behavior with the assistance of a trained machine 

learning algorithm. This level allows for the detection of previously unknown ransomware. The 

second detection level is the identification of known ransomware with the help of a signature 

database. The data flow of the pre-encryption framework for machine learning is depicted in 

Figure 3. Subsequent sections will provide a detailed explanation of how the pre-encryption 

model functions in real-world scenarios. It has been observed that the primary vector of a 

ransomware infection is an email attachment. The pre-encryption model enables users to 

inspect a file before opening it to detect whether it contains ransomware. 

 

 
Figure 3 Machine Learning Algorithm Model Analysis. 
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Before sending the file to the pre-encryption model for analysis, the user must first select the 

file. Following file submission, this model will use SHA-256 to create the file’s hash signature. 

Any file that can be hashed into a single character with a set length and unique to its contents. 

SHA-256 specifies that 256 or 64 characters of signature data will be generated (4 bits of space 

fulfills 1 character). The hashes of known ransomware that are stored in the Signature Archive 

will be compared to generated signature for matching. Comparing the entire file’s content is a 

slower process than verifying the hash fingerprint. 

Furthermore, a hash value requires significantly less storage space. If a match is found, the pre-

encryption approach would alert the user of the discovery and store the file separately. 

However, this technique is limited and can only detect known ransomware. In the context of 

an unmatched file, it will be sent to the Cuckoo Sandbox for unidentified malware. The file will 

then be read by Cuckoo Sandbox in a secure virtual setting to monitor its behavior. Upon 

completion of processing, Cuckoo will generate an analysis report of the file. In this study, we 

will discuss APIs that are employed to open a file. The pre-encryption model identifies APIs 

before the encryption function call. The model locates these APIs by searching for the word 

"crypt." If the keyword is present, the API is stored in a file and the process will proceed to the 

next step; otherwise, the process will continue until the end. After being converted into data 

format, the retrieved APIs are stored in a comma-separated value (CSV) format. The ML model 

will employ the extracted API features for classification purposes. The pseudocode can be 

found in Algorithm 1. 

The study employed the Random Forest (RF), Support Vector Machine (SVM), Decision Tree 

(DT), K-Nearest Neighbour (KNN), and Naive Bayes (NB) models to detect the presence of 

ransomware in files after discretizing the data. In case ransomware is detected, the file's 

signature is stored in the Signature Repository. On the other hand, if the pre-encryption model 

determines that the file is not ransomware, the user will receive a notification indicating that 



CHAPTER 3: RESEARCH METHODOLOGY  

24 
 

the file can be considered safe. The Random Forest (RF), Support Vector Machine (SVM), 

Decision Tree (DT), K-Nearest Neighbour (KNN), and Naive Bayes (NB) models were 

utilized, following the discretization of the data, to detect the presence of ransomware in files. 

If ransomware is identified, the pre-store the file's signature in the Signature Repository. If the 

pre-encryption model determines that the outcome is not ransomware, the user will be notified 

that the file is safe to consider. 

Algorithm 1: Pseudocode of Applying of Machine Learning Classifiers. 

--------------------------------------------------------------------------------------------------------------------------------------

// Adding Trained Dataset to Machine Learning models 

i. Upload trained dataset model in CSV format. 

            Function: upload_trained_dataset_model(file_path) 

          ========================================= 

           dataset = read_csv(file_path) 

           Return dataset 

ii. Debug for missing conditions. 

            Function: check_missing_conditions() 

            ========================================= 

            If trained_dataset is None Then 

                   display_error("Trained dataset model not found.") 

                   Return False 

            Else 

                 Return True 

iii. If the model is not found, display the error. 

            Function: display_error(message) 

           ========================================= 

            Print message 

iv. Search signature in the database. 

            Function: search_signature_in_database() 

            ========================================= 
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           signature = search_database() 

           Return signature 

v. Else use a trained model for the prediction of new data. 

            Function: predict_using_trained_model(trained_dataset, new_data) 

               ========================================= 

               model = train_model(trained_dataset) 

               prediction = model.predict(new_data) 

               Return prediction 

vi. Print the outcome and analysis. 

            Function: print_outcome_and_analysis(prediction) 

            ========================================= 

           Print "Prediction:", prediction 

           analysis = perform_analysis(prediction) 

           Print "Analysis:", analysis  

----------------------------------------------------------------------------------------------------------------- 

3.3.1 Discretization  

Discretization is an essential pre-processing phase aimed at converting continuous information 

into discrete values to enhance the predictive accuracy of machine learning algorithms [43]. 

This process involves the utilization of rules-based and tree-based algorithms. While there are 

numerous techniques available for discretizing continuous variables, the ideal approach should 

result in a meaningful division of the variable, aligning with the desired allocation of classes. 

The goal is to find an optimal discretization strategy that appropriately represents the 

underlying data distribution and facilitates effective classification. 

3.3.2  Ransomware Signature 

 Hashing is a form of encryption with a one-way function [46]. It can only produce digest codes 

and cannot reverse the process to acquire plaintext. Even a tiny change in the content could 

result in an entirely different digest code. The comparing of generated digest code is usual 
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practice to verify the message's integrity. Therefore, in this study, we employed hashing to 

create distinctive ransomware signatures. Calculating the message length is necessary for SHA-

256 to work properly. Extra bits are appended once the message size increases or decreases 

from 64 bits to keep the message a multiple of 512. In this case, the first bit will be zero of the 

appended bits.  The modulo of the initial message with 232 will be used to fill these final 64 

bits. The compression algorithm is applied to the resulting 512 bits. On the generation of the 

last digest code, the hashing operation is repeated 64 times to generate the hash. 

3.3.3 Malware Detection by Employing Machine Learning 

Models 

Random Forest contains Decision Trees that are combined in the bagging process [44]. The 

DT’s prediction has an architecture similar to a tree growing from the root, moving towards 

branches, and ending up in the leaves. Features are randomly selected to form multiple DTs, 

and the final prediction is made by taking an average of all DT results. [45]. The research 

discovered that the RF method produced good results in identifying malware [45]. In addition, 

this study also used the Support Vector Machine (SVM), K-Nearest Neighbour (KNN), Naive 

Bayes (NB), and Voting Classifier. Additionally, we discovered that these classifiers could 

perform well, particularly for discrete-type datasets. Due to this reason, we suggested the 

discretization of data in our pre-processing stage. 

 

3.4 Research Methodology 

This section presents the methodology for ransomware detection proposed in this study, which 

is illustrated in Figure 4. The proposed approach is divided into five groups: Sample 

Collections, Cuckoo Sandbox, Data, Machine Learning, and Database. Each group is discussed 

in further detail below 
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3.4.1 Ransomware Samples 

The section will discuss the collection of ransomware data. It was initially started with the 

Sgandurra et al. [47] dataset that consisted of 582 ransomware from eleven different categories, 

along with 942 benign applications (or Goodware). This dataset covers Locky- ransomware, 

and crypto-ransomware, which have different file operations, strings, directory activities, 

deleted file extensions, registry key actions, and API metrics that are reported. There are 

approximately 30,967 elements in the dataset that can be classified into seven main categories. 

Analyzing each application for 30 seconds in cuckoo sandbox allows its features to be recorded. 

An important component is an API, which shows how an application interacts with the 

operating system.  

Figure 4 Proposed Model Flow Diagram. 
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In literature, various approaches have been used with the above dataset for analysis, where the 

API-based attributes have had a significant impact on detection rates [5]. Therefore, API-based 

features were also utilized. Dataset samples from Sgandurra et al. (2016) [47] were downloaded 

from VirusShare (VS). To further enhance the dataset with novel ransomware samples, updated 

samples were acquired from both VirusShare and theZoo (TZ) repository. VS was available to 

security experts, incident investigators, forensic investigators, and curious individuals, and 

contained 34,235,166 samples, which required registration and verification by the website 

administrator. Additionally, 357 fresh crypto-ransomware samples were obtained from 

different websites, with an additional 56 crypto-ransomware samples collected from TZ. As a 

result, 995 software samples were executed on Cuckoo Sandbox, with only 904 of them 

providing relevant reports. We employed the Cuckoo Sandbox to execute the collected samples 

to choose the pre-encryption samples, these general steps are mentioned in Figure 5. As a result, 

the Sandbox report lists the order in which the sample called each API in different iterations.  

 
Figure 5 Machine Learning Algorithm Code. 
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For example, an API sequence with the keyword "crypt" was chosen. It was discovered that 

APIs with the keyword "crypt" execute encryption functions, as indicated in Table 2. There 

were 205 samples for encryption. 

3.4.2 Cuckoo Sandbox 

The malware analysis Cuckoo sandbox can monitor a program’s execution activities. Each API 

call made by the sample once it has been entered into the sandbox is recorded by Cuckoo 

Sandbox its interface is shown in figure 6. Following that, Cuckoo will produce a report with a 

list of all API calls. The Cuckoo was installed on the Haier (Intel(R) Core (TM) m3- 7Y30 CPU 

@ 1.00GHz 1.61GHz, 8GB RAM, Ubuntu 20.04, and Windows 10 Professional), however 

configuring Cuckoo was quite complex. It requires several prerequisite programs for the 

complete installation process. It was necessary to have Python 2.7, Python 3, MongoDB, 

Postgresql, XenAPI, TCPdump, and VirtualBox. After that, Ubuntu 20.04 was able to 

successfully install Cuckoo Sandbox 2.0.7.  

 

 

Figure 6 Cuckoo Sandbox Interface. 
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To ensure that the analysis could be done securely, we had to build up the virtual system using 

Virtualization before using Cuckoo Sandbox. Windows 7 was installed on the guest machine 

set up in VirtualBox (Win7).  

Windows 7 was the most widely used operating system before Windows 10 Pro (Jan 2020-Jan 

2021) [48], and Windows is the target of the majority of targeted ransomware. 

Table 2 APIs with “CRYPT” Keywords. 

     

     No.  

 

API 

 

Description 

1.  CryptAcquireContextA A specific cryptographic service provides (CSP) was 

requested by CryptoAPI to supply a key container. 

2.  CryptAcquireContextW  

3.  CryptExportKey 

 

To securely export one symmetric encryption key or 

two asymmetric cryptographic keys out of a specific 

CSP 

4.  CryptDecodeObjectEx To decode using the lpszStructType parameter's 

definition of the structure type 

5.  CryptEncrypt 

 

Using the hkey option to conduct the encryption 

function with the encryption key supplied by CSP. 

6.  CryptCreateHash 

 

The information flow enabled secure session 

communication to be hashed to start. 

7.  CryptGenKey 

 

Create a public or private key pair for asymmetrical 

cryptography or a random encryption key for 

symmetric encryption. 
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We set up a Windows 7 guest machine in VirtualBox and followed the network configuration 

requirements in Table 3 to connect the guest machine to the Cuckoo Sandbox host machine. 

We then took a screenshot of the guest's computer to ensure that each time we analyzed a 

sample, we could restart the guest's PC without any issues. The default settings for Cuckoo 

Sandbox were altered as detailed in Table 4. The guest machine had to be initialized in 

VirtualBox before a sample analysis could be conducted in Cuckoo Sandbox, after which the 

Cuckoo Web service could be initiated. On average, it took 3 minutes to process each sample. 

Table 3 Machine Configuration. 

Steps   Description 

i.             Network Address Translation (NAT) configuration. 

ii.             Enable DHCP. 

iii.             Disable adaptor (Host-Only). 

iv.             Win7 machine firewall also is disabled.  

iv.             Create User Account Control (UAC). 

v.             Enabled IPv4 on the guest machine. 

vi.             Install Python on both machines. 

vii.             Install other libraries i.e., Pillow. 

ix.             Copy Cuckoo Sandbox agent.py to Win7. 

x.             Runs OS agent.py in desired OS. 

 

8.  CryptHashData To include details in a hash item that supported long 

or continuous transmissions. 
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By executing the program, we identify all API calls made by the sample which has been 

inputted into the Cuckoo Sandbox and recorded. We then obtain a complete report from Cuckoo 

listing all API calls, which can be done in two ways; either by downloading it directly from the 

browser or by copying the report file from the address 

“/.cuckoo/STORAGE/ANALYSIS/2/REPORTS/report.json.” 

For this investigation, the latter method was chosen as it creates a single “rar” file which is 

compressed and contains multiple files, with the sample calling all APIs listed in a single 

“JSON” file. 

Table 4 Cuckoo Sandbox Setting. 

Steps   Description 

i.          Start and enable the DB database in DB report.conf file. 

ii.          The guest machine will be the same name as “Win7” in storage.conf file. 

iii.           Configure the IP statically in both VirtualBox.conf and WIN/ Snapshot. 

 

3.4.3 Extraction of Data 

It is necessary to retrieve only pertinent data from the Cuckoo Sandbox report, as the 

information provided was extensive and unrelated to our investigation. All pre-encryption 

Application Program Interfaces (APIs) were monitored for their behavior prior to calling any 

encryption functions. To ensure that our script was able to extract the required data 

successfully, we developed a script to extract each API and compared the result against the 

“apistats” found in the Cuckoo report as shown in figure 7. After confirming that our code was 

generating the same outcome, “crypt” was established as the extraction stop point. The 

pseudocode for extracting the “crypt” call is shown in Algorithm 2.  
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Algorithm 2: Extraction of Data from Cuckoo Report. 

-------------------------------------------------------------------------------------------------------------------------------------- 

// Data Extraction 

i. Open and read the desired file. 

 Procedure data_extraction(file_path) 

            keywords = ["crypt"]  // Add more keywords as needed 

     extracted_words = [] 

    file = open(file_path, 'r') 

    lines = file.readlines() 

========================================= 

ii. Skip the first line and Move to the subsequent line. 

            for line in lines[1:]: 

Figure 7 Extraction of API Calls. 
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                  line = line.strip() 

========================================= 

iii. Identify and look for “API” functions. 

 if "API" is found in line then 

========================================= 

iv. When API is found, go to the subsequent line. 

                  next_line = lines[lines.index(line) + 1].strip() 

========================================= 

v. API has the keyword “crypt,” string or function then halt. 

                  if any keyword in keywords is found in next_line then 

                  exit loop 

                     else 

========================================= 

vi. Else words will be stored. 

   Extracted_words.append(line.split()) 

========================================= 

vii. Else go to the subsequent section. 

 Continue 

========================================= 

viii. Stop loop. 

 Break 

========================================= 

ix. Exit. 

 return extracted_words 

========================================= 
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// Example usage: 

file_path = "path/to/your/file.txt" 

extracted_data = data_extraction(file_path) 

print(extracted_data) 

 

The data processing outlined above resulted in a "txt" format and converted into a "CSV" file 

format to enable the ML algorithms to utilize it. This "CSV" had 235 entries, with the sample 

name appearing in the first column, the second column indicating whether the sample was 

benign (zero) or ransomware (one), and the third column containing a source indication for the 

sample. After the APIs from all the samples had been extracted, 232 APIs were visible in the 

fourth column and beyond. Consequently, three datasets were created based on the retrieved 

data. The first dataset included the APIs for all samples; the second dataset, containing only the 

malware with encryption functionality, was only used to extract the pre-encryption APIs; and 

the third dataset was a subset of Sgandura et al. (2016), with the addition of some new benign 

and ransomware applications, which was used to extract the necessary API dataset focusing 

only on encryption methods. 

3.4.4 Machine Learning Algorithm 

The ML algorithm is an essential element that may distinguish between known and unidentified 

ransomware assaults. The method was broken down into two steps: first, the data was 

discretized; next, Random Forest (RF), Support Vector Machine (SVM), Decision Tree (DT), 

K-Nearest Neighbour (KNN), Naive Bayes (NB), and Voting Ensemble were used to train the 

prediction models. We used all three datasets to evaluate the ML model’s efficacy in two 

different training-to-testing ratios. The data for both training and testing were divided by the 

ratio’s original setting of 80:20. The second ratio, 70:30, allocated 30% 70% training, and 30% 

testing. Additionally, 10-fold verification tests were also run. 
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Accuracy, True Positive Rate (TP Rate), False Positive Rate (FP Rate), Precision, Recall, F-

measure, and Cross-Validation were the evaluation measures employed. The TP Rate measures 

how effectively the machine learning algorithm model can estimate the positive accurately, 

whereas the FP Rate measures how well it predicts the positive wrong. Accuracy measures how 

effectively our model identified ransomware. The Accuracy of the affirmative prediction is 

measured by precision. Recall measures how accurately a favorable forecast was made. The 

balance of precision and recall is determined by the F-measure. The area under the curve for 

TP rate vs. FP rate is known as ROC, while the area under the curve for precision versus recall 

is known as PRC. To visually demonstrate the performance of our SVM model, we present 

figure 8, which showcases the confusion matrix. This matrix allows us to identify the True 

Positives (TP) and False Positives (FP) in terms of distinguishing between malicious and benign 

applications.  

Figure 8 Confusion Matrix of Malicious and Benign Samples. 
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3.4.5 Signature Database 

Once a sample has been identified as ransomware by the ML model described earlier, the file's 

hash in the form of a signature, and other essential details, will be maintained in a DB server 

(MySQL). The signature hash was generated via SHA- 256, hashing the malware file containing 

64 characters. The file's content might be quickly and easily matched with this technique; 

ransomware can be found immediately and without Cuckoo Sandbox analysis. On average, 

Cuckoo Sandbox takes 2-4 minutes to inspect the file. 

This method was substantially more efficient, quicker, and more accurate. Nevertheless, a 

signature repository had to be utilized for it to function initially; an ML technique could be used 

to create it. This process is very meticulous and tailored to the particular malicious software 

sample; even the slightest changes will make it useless. The design of the Signature 

Repository’s MySQL database is presented in Figure 6. When the ML model identifies a file 

as ransomware, it isolates it and places crucial information into the two database tables, Sample 

and Repeats. If ML identified the ransomware, it implied that this was the user’s primary attack 

from the ransomware. 

The Sample table consists of eight fields, the first of which is Hash-Value, which contains the 

file's hash code. The FileName field stores the initial file name. The Attack field holds the 

number of times the user has been targeted by the ransomware. The Date and Time attribute 

records the date and time of the first ransomware attack, while the Size field stores the file's 

size in megabytes and the created field keeps track of the file's creator. The Location column 

records the file's quarantined location after its extension is removed to deactivate it. The 

signature matching method will detect the same ransomware if it strikes again. In such a 

situation, the information of the second attack will be inserted into the table as Repeat, and the 
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file will be deleted with one value added to the Attack field in the Sample table as shown in 

Figure 9. 

 

3.5 Pre-Encryption Model Verification 

Similarly, the equation that determines how to calculate API pattern identification using the 

trained ML algorithm of the pre-encryption model is shown in Figure 7. When the test file has 

been tagged as “Un-match,” the pre-encryption APIs will be retrieved for pattern recognition 

[49,50]. This procedure will reveal whether the file was “Goodware” or “Ransomware.” 

The mathematical expression for the process signatures updates to the model’s Signature 

Repository is also shown in Figure 10. When a file is flagged as “Ransomware,” the signature 

repository is checked to see if it already contains the signature; if not, the signature repository 

is updated with the new signature [51,52]. 

 

Figure 9 Data Structure of Signature Database Repository. 
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3.6 Summary 

In this chapter, we highlight the methodologies used in this research to obtain the results and 

offers guidance to achieve similar outcomes. The approach involves collecting datasets from 

reliable sources, identifying the feature set by filtering the data, and utilizing Machine 

Learning techniques for classification. The following chapter will delve into the experimental 

setup designed for this specific analysis. 

  

Figure 10 Flow Diagram of Ransomware Detection. 
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4.  Experimental Setup 

Chapter 4 presents a detailed description of the experimental setup that has been carefully 

designed to support the research objectives. The chapter justifies the methods and techniques 

used and provides comprehensive information about the system configurations that were 

implemented during the research. 

 

4.1 Overview 

The experimental setup comprises several crucial components that facilitate the execution of 

the research process with a focus on Windows Pre-encryption scenarios. The first component 

is the Windows Pre-encryption Dataset. This dataset serves as the primary input for conducting 

the analysis and evaluation of pre-encryption scenarios. It encompasses a comprehensive 

collection of both malicious and benign applications/files. Careful curation ensures that the 

dataset represents a diverse range of samples encountered in real-world scenarios, capturing 

potential threats and legitimate files accurately. Another vital component is the dedicated PC 

allocated for running the Python-based code. This PC serves as the computational platform, 

equipped with the necessary hardware and software resources to handle the experimental 

workload efficiently. The specifications of the PC, including its processing power, memory 

capacity, and storage capabilities, are carefully selected to meet the requirements of the 

experimentation process. This ensures smooth execution and accurate results. 

The Python-based code forms the core of the experimental setup. It is meticulously designed 

to generate a comprehensive feature set and conduct the evaluation process effectively. 

Leveraging the Windows Pre-encryption dataset, the code extracts relevant features, performs 

advanced analysis techniques, and executes classification or evaluation algorithms. The 
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codebase adheres to best practices in software development, ensuring readability, modularity, 

and reproducibility. Integrating these components into the experimental setup enables 

researchers to systematically analyze and evaluate the behavior of malicious and benign 

applications/files in Windows Pre-encryption scenarios. The dataset provides a reliable and 

representative sample pool, enabling robust experimentation. The dedicated PC, optimized for 

computational efficiency, ensures that the Python-based code operates seamlessly and delivers 

accurate results. The well-crafted code encapsulates the required algorithms and techniques, 

facilitating feature extraction, classification, and evaluation processes. 

Overall, this professional and systematic experimental setup allows researchers to gain valuable 

insights into the characteristics and behavior of applications/files in the context of Windows 

Pre-encryption. The findings derived from this experimentation contribute to advancing 

knowledge in the field of cybersecurity and aid in the development of effective 

countermeasures against potential threats. 

4.2 Setting up the Environment 

For carrying out experimentation, a windows-based machine has been used. The specifications of the 

system have been shown in below Table 5. 

Table 5 System Specifications. 

Property Description 

Manufacturer HAIER 

Model Y11C 

Architecture x64 based 

Operating System Windows 10 Pro 

Processor Intel Core m3-7Y30 CPU@ 1.00GHz 

RAM 8 GB 
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Storage 1 TB 

 

Windows-based machine manufactured by Haier, model Y11C. It operates on a 64-bit 

architecture, allowing it to efficiently utilize the capabilities of modern computing systems. The 

chosen operating system is Windows 10 Pro, which provides a robust and secure environment 

for conducting various tasks and experiments. At the core of the system lies an Intel Core m3-

7Y30 CPU. This processor belongs to the Intel Core series, known for its performance and 

power efficiency. The specific model, m3-7Y30, operates at a base clock speed of 1.00GHz. 

While the base clock speed may seem relatively low, it is important to note that modern 

processors often utilize dynamic clocking mechanisms to adjust their speed based on workload 

demands. This enables efficient power management and optimal performance for various 

computational tasks. 

To support the processing capabilities, the system is equipped with 8 GB of RAM. Random 

Access Memory (RAM) plays a crucial role in determining the system's ability to handle and 

process data effectively. With 8 GB of RAM, the system can accommodate a significant amount 

of data and ensure smooth multitasking during experimentation. For data storage purposes, the 

system offers a spacious 1 TB storage capacity. This storage capacity allows for the efficient 

retention and retrieval of experimental data, software tools, and other necessary files. The 

sizable storage ensures that researchers have ample space to store and analyze experimental 

results without concerns of running out of storage capacity. By considering these specifications, 

the system demonstrates a suitable configuration for carrying out experiments and conducting 

various computational tasks. The combination of a 64-bit architecture, Windows 10 Pro 

operating system, Intel Core m3-7Y30 CPU, 8 GB of RAM, and 1 TB of storage capacity 
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provides a balanced and capable platform for experimental research, ensuring smooth 

performance and efficient data handling throughout the experimentation process. 

4.3 Model Implementation 

The implementation of pre-encryption detection for Windows platforms utilizing the Python 

programming language posed a challenge due to the primary design of Cuckoo Sandbox for Linux 

platforms, which operate on different operating systems. To address this requirement, an extensive 

research effort was undertaken, leading to the discovery that Linux can be installed as a subsystem on 

the Windows platform. This realization proved to be a viable solution, enabling the seamless integration 

of Linux functionalities within the Windows environment. As a result, the pre-encryption detection 

methodology can be effectively applied, leveraging the Linux subsystem to enhance the detection 

capabilities on Windows-based systems. 

Cuckoo Sandbox, a powerful open-source tool for dynamic malware analysis, primarily designed for 

Linux, was identified as a key component for pre-encryption detection. To overcome the platform 

compatibility limitations, the Windows Subsystem for Linux (WSL) feature was identified as a valuable 

resource. By installing a Linux-based operating system, specifically Ubuntu 20, as a subsystem, Cuckoo 

Sandbox was successfully deployed within this Linux environment on the Windows platform. This 

integration allowed the utilization of Cuckoo Sandbox's advanced analysis capabilities for pre-

encryption detection. In conjunction with Cuckoo Sandbox, the MySQL relational database system 

Figure 11 Proposed Model Execution in Operating System. 
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played a crucial role in supporting the pre-encryption detection process. Once the ML algorithm within 

Cuckoo Sandbox identifies ransomware, the signature of the malicious file is recorded in the MySQL 

repository. This repository, managed by the Apache server, serves as a centralized storage for all 

recognized ransomware signatures. Through the comparison of file data hashes, the system can 

accurately identify ransomware and initiate appropriate actions to mitigate the threat. 

The Windows 10 Professional system, known for its robust security features, implements the pre-

encryption principle within its framework as seen in Figure 11. This provides a solid foundation for the 

integration of Cuckoo Sandbox and the utilization of the Linux subsystem for pre-encryption detection. 

With the ML algorithm's pre-encryption API developed within Cuckoo Sandbox, the system gains the 

ability to detect and analyze potential threats before they undergo encryption, significantly improving 

the effectiveness of the detection process. The pre-encryption detection system's operation involves a 

well-defined workflow. Once ransomware is identified by the ML algorithm within Cuckoo Sandbox, 

its signature is stored in the MySQL repository, providing a comprehensive reference for future 

detection instances. The Apache server, which runs MySQL, ensures efficient storage and retrieval of 

the recognized ransomware signatures. The system's front-end module, typically implemented as a 

graphical user interface (GUI), facilitates seamless interaction with the user and promptly notifies them 

about the presence of ransomware, enabling swift response and mitigation measures. The successful 

integration of Cuckoo Sandbox with the Linux subsystem on the Windows platform exemplifies the 

adaptability and versatility of the Windows ecosystem. This innovative approach expands the 

capabilities of pre-encryption detection, empowering researchers and security practitioners to 

effectively combat the evolving landscape of cybersecurity threats. By leveraging the combined power 

of Cuckoo Sandbox, the MySQL relational database system, and the Linux subsystem, the pre-

encryption detection system provides an advanced and proactive defense mechanism against 

ransomware attacks on Windows-based systems. 

In conclusion, the integration of Cuckoo Sandbox and the Linux subsystem within the Windows 

environment represents a significant breakthrough in pre-encryption detection. This professional and 

meticulously engineered solution showcases the interdisciplinary nature of cybersecurity research, 
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where innovative approaches are devised to address complex challenges in protecting critical systems 

and data from malicious threats. 

 

4.4 Installing Pre-requisite Software 

Following Software needs to be installed before the experimentation process can be followed: 

1. Archiving Tool (WinRAR): An archiving tool such as WinRAR is required for extracting 

application samples. You can download WinRAR from the following link:  

https://www.win-rar.com/download.html?&L=0 

2. Visual Studio Code: Visual Studio Code is a code editor that can be used to test and run code 

locally. You can download Visual Studio Code from the following link: 

https://code.visualstudio.com/download#  

3. Python Interpreter: A Python interpreter, preferably version 3.8 or higher, is needed for 

extracting applications, generating feature sets, and performing classifications. You can 

download the Python interpreter from the official Python website: 

https://www.python.org/downloads/release/python-380/ 

4. Machine Learning Libraries: Install the necessary machine learning libraries to run machine 

learning code. You can refer to the documentation or installation instructions specific to the 

libraries you require. One resource for installing Python packages is ApmMonitor. 

https://apmonitor.com/pds/index.php/Main/InstallPythonPackages 

5. MySQL Database: Install the MySQL Database, which will be used for storing application 

metadata such as name, signatures, size, package name, etc. This will speed up the process 

and help keep track of already de-compiled applications. You can download MySQL from the 

official website: https://dev.mysql.com/downloads/mysql/ 

6. Database Viewer for MySQL: Install a database viewer for MySQL, such as MySQL 

Workbench. This tool will allow you to import and view datasets available in the form of a 

database. You can download MySQL Workbench from the following link: 

https://www.win-rar.com/download.html?&L=0
https://code.visualstudio.com/download
https://www.python.org/downloads/release/python-380/
https://apmonitor.com/pds/index.php/Main/InstallPythonPackages
https://dev.mysql.com/downloads/mysql/
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https://dev.mysql.com/downloads/workbench/ 

7. XAMPP: Install XAMPP, which includes the Apache server, to locally set up a MySQL server 

for storing signatures. XAMPP provides an easy way to set up a development environment. 

You can download XAMPP from the official website:  

https://www.apachefriends.org/download.html 

 

4.5 Summary 

In this chapter, we explain the experimental setup proposed for the analysis. The chapter covers the 

process of collecting the necessary dataset, setting up the required environment, and the related 

codebase. Additionally, it provides information on the installation of the necessary software for the 

analysis process and their source

https://dev.mysql.com/downloads/workbench/
https://www.apachefriends.org/download.html
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5. Experimental Results 

Chapter 5 presents the results obtained from the research in the form of classification results 

and provides an analysis of these results. The chapter compares the results with the original 

benchmark approach [27] and discusses the achievements of the proposed approach. 

 

5.1 Overview 

Windows applications use API and system calls to provide functionality to the users, which are 

exploited by malware developers for conducting cybercrimes. In this study, extensive analysis 

has been carried out on a windows dataset representing benign and malicious applications. We 

will discuss different evaluation metrics employed while performing the analysis to measure 

the effectiveness of the approach. 

 

5.2 Evaluation Measures 

For evaluation, the following metrics are employed: Sensitivity, Precision, Accuracy, Area 

Under Curve (AUC), and the Receiver Operating Characteristic (ROC). Correspondingly, the 

following formulas represent their definitions: 

1) 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇 𝑃 + 𝑇 𝑁

𝑇 𝑃 + 𝐹 𝑃 + 𝑇 𝑁 + 𝐹 𝑁
   

2) 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇 𝑃

𝑇 𝑃 + 𝐹 𝑁
  

3) 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇 𝑃

𝑇 𝑃 + 𝐹 𝑃
 

4) 𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
𝑇𝑃

𝑇𝑃+
1

2
(𝐹𝑃+𝐹𝑁)
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True positive (TP), false positive (FP), true negative (TN), and false negative (FN) are crucial 

metrics utilized in assessing the effectiveness of a classification model. TP represents the 

number of positive samples correctly classified as positive by the model. FP refers to the 

number of negative samples erroneously classified as positive. TN denotes the number of 

negative samples correctly classified as negative. FN signifies the number of positive samples 

incorrectly classified as negative. These metrics play a vital role in evaluating the accuracy and 

performance of a classification model. 

 

5.3 Performance Evaluation of Proposed Model  

To assess the effectiveness of our research, we utilized various classification models to 

demonstrate the generalizability of our approach. To prevent overfitting and ensure stability, 

we employed cross-validation techniques during the experiments. Specifically, we used 10-fold 

cross-validation where the samples were randomly divided into ten separate sets, with one set 

used for testing and the remaining nine sets used for training the model. The results of the 10-

fold classification are presented in Tables 6-9, with corresponding ROC curves shown in 

Figures 12-15. 

Table 6 Performance of Proposed Scheme using Random Forest Classifier with 10-Fold Cross-Validation. 

Features Model Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

Cross Validation 

(%) 

26 RF 99.45 99.46 99.46 99.46 99.76 

 

The results presented in Table 6 highlight the exceptional performance of the proposed 

methodology when utilizing the Random Forest classifier. The achieved accuracy of 99.45%, 

precision of 99.46%, and f1-score of 99.46% indicate the high effectiveness of the classifier in 
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accurately identifying pre-encryption threats. The corresponding Receiver Operating 

Characteristic (ROC) curve, shown in Figure 12, further demonstrates the classifier's ability to 

strike a balance between sensitivity and specificity, with the curve being closer to the top-left 

corner, indicating superior performance. 

Table 7 Performance of Proposed Scheme using SVM Classifier with 10-Fold Cross-Validation. 

Features Model Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

Validation 

(%) 

26 SVM 99.27 99.28 99.29 99.28 99.53 

 

Additionally, Table 7 showcases the performance of the proposed feature set when combined 

with the Support Vector Machine (SVM) classifier. The results indicate an accuracy of 

99.27%, precision of 99.28%, and an f1-score of 99.28%. These metrics further confirm the 

efficacy of the SVM classifier in accurately classifying pre-encryption threats. 

Figure 12 The Receiver Operating Characteristic (ROC) curve obtained from the proposed method using the Random 
Forest classifier. 
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The proposed methodology for pre-encryption threat detection achieves remarkable results with 

an accuracy of 99.45%, precision of 99.46%, and an f1-score of 99.46% when utilizing the 

Decision Tree classifier, as demonstrated in Table 8.  

Table 8 Performance of Proposed Scheme using Decision Tree Classifier with 10-Fold Cross-Validation. 

Features Model Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

Validation 

(%) 

26 DT 99.45 99.46 99.46 99.46 99.53 

 

Additionally, Figure 13 displays the corresponding Receiver Operating Characteristic (ROC) 

curve, which showcases the methodology's ability to balance sensitivity and specificity 

effectively. These exceptional performance metrics and the visualization support the efficacy 

and reliability of the proposed methodology, highlighting its potential as a robust tool for 

detecting pre-encryption threats and strengthening cybersecurity measures. 

Figure 13 ROC Curve Obtained by Proposed Method for Decision Tree Classifier. 
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Table 9 provides an overview of the accuracy achieved by the KNN (K-Nearest Neighbour) 

and Naive Bayes classifiers, showcasing their performance in pre-encryption threat detection. 

The KNN classifier achieves an accuracy rate of 99.27%, accompanied by a precision and f1-

score of 99.28%. The Naive Bayes classifier demonstrates a higher accuracy rate of 99.47%, 

with a precision of 97.57% and an f1-score of 99.47%. These results highlight the effectiveness 

of both classifiers in accurately classifying pre-encryption threats. 

 

Table 9 Performance of Proposed Scheme using KNN & Naive Bayes e Classifier with 10-Fold Cross-Validation. 

No. of 

Features 

Model Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

Validation 

(%) 

 

26 

KNN 99.27 99.28 99.29 99.28 99.38 

NB 97.47 97.57 97.50 97.47 97.91 

 

To further assess their performance, ROC graphs are presented for the KNN and Naive Bayes 

classifiers in Figures 14 and 15, respectively. The ROC curves visually depict the trade-off 

between true positive rate (sensitivity) and false positive rate (1 - specificity). The proximity of 

the curves to the top-left corner indicates a higher performance in correctly identifying positive 

instances while minimizing false positives. The ROC graphs further validate the classification 

capabilities of both the KNN and Naive Bayes classifiers in pre-encryption threat detection. 
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Overall, the results from Table 9 and the ROC graphs in Figures 14 and 15 demonstrate the 

efficacy of the KNN and Naive Bayes classifiers in accurately detecting pre-encryption threats. 

These findings contribute to the comprehensive evaluation of the proposed methodology and 

Figure 14 ROC Obtained by the proposed method on the KNN classifier. 

Figure 15 ROC Analysis of the Proposed Method on Naïve Bayes Classifier. 
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provide valuable insights for selecting the most suitable classifier for pre-encryption threat 

detection applications. 

 

5.4 Summary 

In this chapter we present an in-depth analysis of the results obtained from the research. The 

chapter discusses the outcomes of the proposed approach and evaluates its effectiveness. In the 

subsequent chapter, the validation and verification of the results achieved will be provided
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6. Discussion and Analysis 

In this chapter, we will focus on the validation and verification of the analysis and results 

obtained during the experimentation, specifically in relation to the proposed feature set. The 

chapter compares the results obtained from the classifiers discussed in the previous chapter 

(Random Forest, SVM, Decision Tree, KNN, and Naive Bayes) with a benchmark approach. 

Additionally, the results obtained are evaluated against a benchmark for verification purposes.  

 

6.1 Overview 

In this section, we will evaluate and compare the performance of proposed and existing 

techniques. For evaluation, we have employed metrics such as Accuracy, precision, recall, 

TRP, FPR, etc. 

From Table 10, it is shown that [27] employed the 232 APIs features while achieving 100% 

accuracy on the random forest model. However, from experiments, we realized that only 46 

APIs calls are sufficient instead of 232 APIs to detect the ransomware. For this, we employed 

the random forest feature importance technique and successfully identified the most relevant 

46 features while achieving 99% detection accuracy. 

In Figure 16, the features utilized by Kok S.H et al. for the detection of ransomwares are 

categorized. It is evident from Figure 16 that certain features demonstrate a higher degree of 

influence. Consequently, by employing a feature ranking approach, we have selected only those 

features that exhibit significant impact in the detection of crypto ransomwares, as depicted in 

the figure. Furthermore, we also categorized the 46 APIs in terms of reading and writing 

functions/APIs to identify the significant contribution of APIs.  Tables 11 and 12 show that the 

proposed model consists of 20 read functions and 26 write functions. The identified read-and-
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write API can be seen in Table 11 and Table 12. After analyzing read-write functions, we 

employ these features separately in our machine-learning models to evaluate the accuracies. 

 

Table 10 Kok. at el. Achieved Accuracy [27]. 

Features 

(APIs) 

Model Accuracy Precision Recall F1-Score Cross Validation 

232 Random 

Forest 

100% 100% 100% 100% 99.93% 

 

Table 11 Read Functions [53] of Ranking Features 46. 

S. No Function Purpose Description 

1. NtReadVirtualMe

mory 

Read Read the memory and analyze its structure. 

 Figure 16 Features Importance. 
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2. LookupPrivilegeV

alueW 

Read Using a specified system’s locally unique 

identity (LUID), the LookupPrivilegeValue 

function locates the privilege name’s local 

representation. 

 

3. 

 

GetDiskFreeSpac

eExW 

 

Read 

The amount of space available on a disk 

volume is fetched is composed of the total 

amount of space, the total amount of free 

space, and the total amount of free space that 

is available to the user that is associated with 

the calling thread. 

4. OpenServiceA Read Opens an existing service. 

5. NtOpenKey Read  

6. GetSystemTimeA

sFileTime 

Read Obtains the time and date for the current 

system. Coordinated Universal Time (UTC) 

has been used to format the data. 

7. NtDelayExecution Read A pointer to the delay interval value is 

provided as the NtDelayExecution function’s 

second argument. 

8. GetVolumePathN

ameW 

Read Discovers the volume mount point where the 

mounted path is located. 

9. NtQueryValueKe

y 

Read For a registry key, the ZwQueryValueKey 

procedure returns a value entry. 
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10. FindResourceExA Read Identifies the location of a resource in the 

provided module with the specified type and 

name. 

11. GetFileAttributes

W 

Read For a specific file or directory, retrieves file 

system attributes. 

12. FindResourceEx

W 

Read Identifies the location of the resource in the 

supplied module with the specified type, 

name, and language. 

13. NtGetContextThr

ead 

Read Obtains the context of the chosen thread. 

14. GetCursorPos Read The location of the mouse cursor in screen 

coordinates can be retrieved. 

15. NtOpenDirectory

Object 

Read Reveals a current directory object. 

16. Getaddrinfo Read The getaddrinfo function converts an ANSI 

hostname to an address without regard to 

protocol. 

17. NtReadFile Read Reads data from an open file. 

18. SearchPathW Read Looks for a particular file in a given path. 

19. GetSystemMetrics Read The requested system metric or system 

configuration setting is retrieved. 
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20. GetSystemDirecto

ry 

Read Reveals the system directory’s path. System files 

like drivers and dynamic-link 

libraries can be found in the system directory. 

 

Table 12 Write Functions [53] Of Ranking Features 46. 

S.NO Function Purpose Description 

1. VirtualProtectEx Write Changes the security on a subset of committed 

pages in the address space of a 

certain process. 

2. HttpSendRequest

W 

Write HttpSendRequest allows the client to specify 

additional headers to send along 

with the request while sending the given request 

to the HTTP server. 

3. NtFreeVirtualMem

ory 

Write The NtFreeVirtualMemory operation releases, 

decommits, or both a group of 

pages in a specific process’ virtual address 

space. 

4. CreateThread Write A new thread is created for a process by the 

CreateThread function. The starting 

address of the code that the new thread will 

execute must be specified by the generating 

thread. 
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5. LdrLoadDll Write Using the low-level function LdrLoadDll, a 

DLL can be loaded into a 

process. 

6. SetEndOfFile Write To shrink or enlarge a file, the SetEndOfFile 

function can be used. If the file is 

expanded, the contents of the region between 

both the old end as well as the new ends are not 

defined. 

7. UuidCreate Write The UUID created by the UuidCreate function 

cannot be linked to the computer’s 

ethernet address where it was created. 

Additionally, it cannot be linked to other UUIDs 

produced on the same computer. 

8. SetFilePointer Write This method stores the file pointer in two 

LONG values. To deal with file pointers 

that are larger than a single LONG value, use 

the SetFilePointerEx function. 

9. NtProtectVirtualM

emory 

Write The EAF-generated guard pages are removed by 

the NtProtectVirtualMemory 

function. Windows shellcode is compatible with 

Windows version 7 and later with the proof-of-

concept code. 
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10. CryptAcquireCont

extW 

Write Use the CryptAcquireContext function to get a 

handle on a certain key container 

within a particular cryptographic service 

provider (CSP). The resulting handle is used in 

calls to CryptoAPI methods using the selected 

CSP. 

11. MessageBoxTimeo

utW 

Write The MsgBoxWithTimeout function creates a 

new thread to allow the message 

box to be closed. 

12. NtWriteVirtualMe

mory 

Write This function copies the address range of the 

currently running process into 

the address space of the specified process. 

13. CreateDirectoryW Write It creates a brand-new directory. If the 

underlying file system permits security on 

files and directories, the function attaches a 

specified security descriptor to the new 

directory. 

14. NtCreateKey Write The ZwCreateKey routine opens an existing 

registry key or generates a new one. 

15. WriteProcessMem

ory 

Write Writes information to a specific process’s 

memory location. If any portion of the 
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location to be written to is not accessible, the 

operation will fail. 

16. LdrUnloadDll Write Using the low-level function LdrLoadDll, a 

DLL can be loaded into a process. 

 

17. 

 

ReadProcessMemo

ry 

 

Write 

ReadProcessMemory copies information in the 

given address range from the 

target process’s address space into the target 

buffer in the current process. Any process with a 

handle that has PROCESS VM READ access 

can call the function. 

18. NtSetInformationF

ile 

Write NtSetInformationFile modifies a file’s 

information. Any FILE XXX INFORMATION 

structure member that is not supported by a 

specific device or file system is ignored. 

19. NtTerminateProces

s 

Write Puts an end to the specified process and all of 

its threads. 

20. NtWriteFile Write Data is written to an open file by the 

ZwWriteFile function. 

21. VirtualFreeEx Write The specified process releases, decommits, or 

releases and decommits a 

the portion of memory located within its virtual 

address space. 
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22. NtSetContextThrea

d 

Write  

23. CoInitializeSecurit

y 

Write Sets the process’s default security values and 

registers security. 

24. NtResumeThread Write Increases a thread’s suspensions per minute. As 

soon as the suspend 

count drops to zero, the thread restarts its 

operation. 

25. InternetCloseHandl

e 

Write The function discards any unfinished data and 

ends any pending activities 

on the handle. 

26. NtClose Write To close an object handle, use the NtClose 

procedure. 

 

Table 13 shows the accuracies of proposed machine learning models with precision, recall, F1 

score, and their cross-validation check. We got 100% accuracy using the Random Forest model, 

99.81% using SVM, 99.63% using the Decision Tree, 98.09 using K-NN, 97.29% using Naive 

Bayes, and 99.18% of the Voting Classifier for 46 features. Further, digging into reading 

functions we get 96.20% using RF, SVM 96.38% DT 95.84% K-NN 96.38% NB 92.23%, and 

VC 96.48% accuracy. 

We focused our efforts on the write function, as it contributes the most to ransomware 

compared to reading functions. After all, ransomware encrypts files at the first stage. We get 
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99.45% accuracy using Random Forest, SVM 99.27% DT 99.45% K- NN 99.27% NB 97.47%, 

and the Voting classifier, which takes an average of all classifiers have an accuracy of 99.72%. 

This means that we can achieve the similar accuracy as presented in [27], using only 26 features 

of write function APIs. Our efficient dataset was verified using four other machine learning 

models, i.e., support vector machine, decision tree, k-nearest neighbour, naive bayes, and 

voting classifier with random forest. It presents a better result with fewer API functions. 

Table 13 Accuracies of Machine Learning Models. 

S. 

No 

Features 

(APIs) 

Model Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

Cross Validation 

(%) 

1.   

Read & 

Write 

Combine 

(46) 

RF 100 100 100 100 99.76 

SVM 99.81 99.82 99.82 99.82 99.61 

DT 99.63 99.64 99.64 99.64 99.45 

KNN 99.09 99.10 99.10 99.10 99.37 

NB 97.29 97.40 97.29 97.29 97.75 

VC 99.18 99.19 99.19 99.19 99.93 

2.  

 

Read 

(20) 

RF 96.20 96.22 96.20 96.21 97.44 

SVM 96.38 96.40 96.39 96.39 96.51 

DT 95.84 95.86 95.84 95.85 97.21 

KNN 96.38 96.47 96.37 96.39 96.67 

NB 92.23 92.87 92.31 92.22 91.71 

VC 96.48 96.48 96.49 96.48 97.69 

3.  

 

Write 

(26) 

RF 99.45 99.46 99.46 99.46 99.76 

SVM 99.27 99.28 99.29 99.28 99.53 

DT 99.45 99.46 99.46 99.46 99.53 

KNN 99.27 99.28 99.29 99.28 99.38 

NB 97.4 97.57 97.50 97.47 97.91 

VC 99.72 99.72 99.74 99.73 99.45 
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Similarly, for evaluating the matrices of our model, Accuracy, Precision, Recall, F-Measure, 

Cross-Validation, and ROC curves (Receiver Operating Characteristics Curve) were used to 

measure the probability of classification models at different levels. The curve has a true positive 

rate along the x-axis and a false positive rate along the y-axis. Figure 17-A, 17-B, 17-C, and 

17-D represent ROC curves of different Machine learning models. 

 

 

6.2 Comparison with Reference Approach 

Table 14 provides a comprehensive performance comparison between the proposed approach 

and Kok S. H. et al.'s method [27]. The corresponding visual representation can be observed in 

Figure 18. The findings indicate that the Random Forest classifier exhibits the best detection 

performance. It's worth noting that the proposed approach achieves similar detection rates on 

SVM, Decision Tree, KNN, and Naive Bayes models, using a smaller feature set, compared to 

Kok S. H. et al.'s method [27]. Consequently, the Random Forest-based ensemble classifier, 

 Figure 17 ROC Curves of ML Models 
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using the proposed feature set, achieves an accuracy rating of 99 ± 0.5%. Moreover, Table 14 

reveals that the proposed approach reduces the feature set by 88.79% while still maintaining 

comparable detection rates. Overall, the proposed approach outperforms Kok S. H. et al.'s 

method [27] in terms of accuracy, and the Random Forest classifier proves to be the best-

performing model. 

Table 14 Performance Comparison of Proposed Scheme and Kok S. H. [27] on 10-Fold Validations. 

Classifier Kok et al [23] Approach Proposed Approach 

# of 

feat

ures 

Precisi

on 

(%) 

Accur

acy 

(%) 

Cross-

Validati

on (%) 

# of 

featur

es 

Preci
sion 
(%) 

Accuracy 
(%) 

Cross-
Validation 

(%) 

Random 

Forest 

232 

100 100 99.93 

26 

99.46 99.45 99.76 

SVM 100 100 99.66 99.28 99.27 99.53 

Decision 

Tree 

99.74 99.72 99.32 99.46 99.45 99.53 

KNN 98.39 98.37 99.39 99.28 99.27 99.38 

Naïve 

Bayes 

98.11 98.10 97.36 97.57 97.4 97.91 

Average  99.24 99.23 99.13  99.01 98.96 99.22 

Reduce 

% of 

features 

0% 88.79% 
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During the experiments, Table 15 presents the initial results of the proposed Cuckoo-based 

dangerous APIs set on various classifiers, which include Random Forest, SVM, Decision Tree, 

KNN, and Naïve Bayes. The proposed feature set demonstrated similar detection accuracies 

while utilizing a significantly smaller number of features, 26 times smaller, compared to the 

feature set of the existing method, which was 232 times larger. This reduction in the number 

of features amounts to an 88.79% decrease.  Figure 19 provides a comprehensive and insightful 

performance comparison between the proposed method and several existing approaches, 

shedding light on the number of features employed and the corresponding detection accuracies. 

Notably, the study by S.H. Kok [27] achieved an impressive accuracy of 100% by leveraging 

a rich feature set of 232, encompassing a complete set of read and write APIs. Similarly, M. 

Anwar [28] attained an accuracy of 87% utilizing 206 API features, demonstrating the efficacy 

of their approach. 

Figure 18 The Detection Accuracy of The Suggested and Chart of S. H. Kok [27] Methodologies In Diverse Machine Learning 
Classifiers. 
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Furthermore, Wira Z.A [29] demonstrated a noteworthy accuracy of 97.07% by effectively 

utilizing a reduced feature set of 80. P. Mohan Anand [30] achieved a commendable accuracy 

of 95.38% with the aid of 135 carefully selected features. Anshika Sharma [54], focusing 

specifically on ransomware detection in IoT environments, achieved an accuracy of 96.62% 

by leveraging a concise set of 32 features that primarily encompassed network attributes such 

as IP address, SSL State, and ports. It is important to emphasize that Anshika Sharma's model 

is designed exclusively for IoT networks and may not be directly applicable to other 

environments such as Windows, Linux, Android, and iOS. 

In contrast to the aforementioned approaches, the proposed method in this study stands out by 

achieving an exceptional accuracy of approximately 98% while employing an impressively 

minimal feature set of just 26. This surpasses the performance of the existing methods, 

underscoring the effectiveness and efficiency of the proposed approach. By focusing primarily 

on write function APIs, the model showcases a more streamlined and targeted approach, 

resulting in enhanced accuracy and efficiency compared to other existing methods. 

The findings from Figure 19 highlight the significant advancements in detecting ransomware 

and the increasing effectiveness of different feature sets and methodologies. The proposed 

method, with its superior accuracy and efficiency, holds promise for improving ransomware 

detection in various environments, making it a noteworthy contribution to the field. 

Table 15 Results of Detecting Dangerous APIs Using Cuckoo-Based API Calls with Random Forest, SVM, Decision Tree, 

KNN, And Naïve Bayes Classifiers, Utilizing 10-Fold Cross-Validation. 

Approach Precision (%) Recall 

(%) 

F1 - Score 

(%) 

Accuracy 

(%)  

Cross  

Validation 

Random Forest 99.46 99.46 99.46 99.45 99.76 

SVM 99.28 99.29 99.28 99.27 99.53 
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Decision Tree 99.46 99.46 99.46 99.45 99.53 

KNN 99.28 99.29 99.28 99.27 99.38 

Naïve Bayes 97.57 97.50 97.47 97.47 97.91 

Voting Classifier 99.72 99.74 99.73 99.72 99.45 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 

6.3 Applicability of the Approach 

The below use cases are presented to better understand the application of the proposed 

approach. To support the ransomware detection analysis early detection patterns could help in 

minimizing and in the ideal case preventing the damages. Thus, based on the above analysis we 

can utilize the effectiveness of the research in many cases, such as those in the following: 

Figure 19 Comparison of Number of Features and Detection Accuracy between Proposed and Existing Approaches. 
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A. The proposed approach can distinguish between malicious and benign applications 

based on the requested API calls during the execution process. 

B. The approach can be integrated as a lightweight anti-ransomware module on end 

devices. Upon installation of new apps, the module extracts the API features and sends 

them to a trained classifier for classification. Based on the results, the module allows 

the app to run or Figure reports a detection to the end user. 

C. The approach can be deployed on Windows application stores to categorize apps before 

they are available to the general public. 

D. Host-based and market-based implementations of the approach can be utilized to 

provide additional security measures. This implementation can help verify apps that are 

not available on official app stores. 

 

6.4 Summary 

Chapter 7 provides a summary of the important results obtained from the research and discusses 

the validations that were performed to verify these findings. The chapter also compares the 

results obtained from the benchmark approach to those achieved through the proposed 

approach. Additionally, some potential applications of the proposed approach are discussed. In 

the subsequent chapter, the conclusion and future work will be presented.
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7. Conclusion & Future Work 

In this chapter, we will summarize the main findings and suggests future research directions, 

highlighting unresolved research problems that require attention from the research 

community.  

7.1 Conclusion 

The use of strong encryption by crypto-ransomware, a dangerous type of malware, can render 

a victim's digital files worthless and may even be irrecoverable, even after the ransom is paid. 

The creation of a pre-encryption model for crypto-ransomware offering two degrees of pre-

encryption detection is the strongest aspect of this research. The signature of the file is 

compared to known ransomware signatures using SHA-256 hashing, permitting a quick and 

accurate identification without launching the file and allowing for early detection. In the 

second detection level, an ML model that has been trained is utilized to identify both known 

and unknown ransomware by examining the API created during the pre-encryption stage. Once 

the ML algorithm identifies new or unique malware, the ransomware signature will be stored 

in the signature repository for future use in the first detection level. 

 

This research has yielded a dataset of newly available ransomware for supervised machine 

learning and the signature repository, both of which could be advantageous for future research 

on ransomware. However, it is important to note that the use of pre-encryption detection 

models has some limitations. For example, ransomware that relies on the Windows API for 

encryption is not detectable by pre-encryption models. As such, pre-encryption models should 

be used as an additional measure of 
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protection, rather than as the sole source of ransomware detection. Additionally, it is important 

to acknowledge that while malware appears in various forms worldwide, the pre-encryption 

model is only capable of detecting one variant of ransomware. 

 

7.2 Limitation & Future Work 

The results obtained from the pre-encryption model show promise, but further improvements 

are necessary before integrating it into the product. One of the challenges faced in this process 

is the need for a complete installation and configuration of auxiliary applications like Cuckoo 

Sandbox and MySQL. To address this, it is worth exploring the development of a stand-alone 

pre-encryption model that does not require different configurations of supporting applications. 

Creating a stand-alone tool would simplify the implementation process and make it more 

convenient for users. By packaging all the necessary components and dependencies into a 

single executable or containerized application, users can easily run the tool without having to 

deal with complex installations or additional software requirements. 

In addition to making the pre-encryption model stand-alone, employing deep learning 

techniques can enhance its effectiveness in detecting unknown ransomware. Deep learning 

algorithms, such as convolutional neural networks (CNNs) and recurrent neural networks 

(RNNs), have demonstrated success in various domains, including image recognition and 

natural language processing. By training a deep learning model on a diverse dataset containing 

known ransomware samples as well as benign software, the model can learn to recognize 

patterns and features that indicate ransomware attacks. Furthermore, techniques like transfer 

learning can be explored, where a pre-trained model on a large dataset, such as ImageNet, is 

fine-tuned for the specific task of ransomware detection. This approach can save 

computational resources and training time while still achieving high performance. 
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To improve the model's accuracy, it is crucial to ensure a comprehensive and up-to-date 

training dataset consisting of diverse ransomware samples. Regular updates and inclusion of 

emerging threats will help the model stay robust against evolving ransomware attack 

techniques. 

In summary, the pre-encryption model's promising results call for further improvement before 

integration into the product. Developing it as a stand-alone tool and leveraging deep learning 

techniques can enhance its usability and effectiveness in detecting unknown ransomware. 

Continuous updates to the training dataset and exploration of transfer learning techniques will 

contribute to the model's accuracy and adaptability.
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