
i

Ransomware on the Run: A Detection Approach using

Effective API and Machine Learning Models

By

Asad Iqbal

2020-NUST-MS-IS-330557

Supervisor

Dr. Mehdi Hussain

Department of Computing

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science in Information Security (MS IS)

I n

School of Electrical Engineering and Computer Science,

National University of Sciences and Technology (NUST),

Islamabad, Pakistan.

(July 2023)

i

ii

Asad Khan
Typewriter
Dr. Mehdi Hussain

Asad Khan
Typewriter
25-Aug-2023

iii

Dedication

Dedicated to my parents for their unconditional love, prayers and support throughout my life;

my siblings, especially my brother whose support and help in everything makes life easier.

iv

v

Acknowledgement

First of all, I would like to thank Allah, the Almighty for giving me the ability and strength to

carry out this research. My deepest gratitude to my supervisor Dr. Mehdi Hussain for his

continuous support and guidance during my thesis. I could not have imagined having a better

supervisor and mentor for my master’s degree. I am also thankful to my teachers for providing

me with an academic base, which enabled me to complete this thesis.

I am thankful to all my fellows and friends for their support and motivation. Last but not the

least, I would like to thank my parents for their endless prayers and support throughout.

ix

Table of contents

Approval .. Error! Bookmark not defined.

THESIS ACCEPTANCE CERTIFICATE Error! Bookmark not

defined.

Dedication ... iii

Certificate of Originality Error! Bookmark not defined.

Acknowledgement ... v

Table of contents .. ix

List of Abbreviations ... xii

List of tables ... xii

List of figures .. xiii

Abstract ... xiv

1. Introduction .. 1

1.1 Overview ...1

1.2 Attack Vector ...2

1.3 Thesis Motivation ...5

1.4 Research Objectives ...5

1.5 Research Questions ..6

1.6 Problem Statement ...8

1.7 Solution Description ...8

1.8 Thesis Contribution ...9

1.9 Thesis Organization ...9

1.10 Summary ...10

2. Literature Review... 11

2.1 Overview ...11

2.2 Machine Learning ..12

2.2.1 Machine Learning Algorithms ...12

2.3 Related Work ...14

2.4 Summary ...19

x

3. Research Methodology .. 20

3.1 Introduction/Overview: ...20

3.2 Research Methodology: ...20

3.3 Detection at the Pre-Encryption Stage ...22

3.3.1 Discretization ... 25

3.3.2 Ransomware Signature ... 25

3.3.3 Malware Detection by Employing Machine Learning Models 26

3.4 Research Methodology ..26

3.4.1 Ransomware Samples ... 27

3.4.2 Cuckoo Sandbox .. 29

3.4.3 Extraction of Data ... 32

3.4.4 Machine Learning Algorithm ... 35

3.4.5 Signature Database ... 37

3.5 Pre-Encryption Model Verification ..38

3.6 Summary ...39

4. Experimental Setup .. 40

4.1 Overview ...40

4.2 Setting up the Environment ..41

4.3 Model Implementation ..43

4.4 Installing Pre-requisite Software ..45

4.5 Summary ...46

5. Experimental Results ... 47

5.1 Overview ...47

5.2 Evaluation Measures ...47

5.3 Performance Evaluation of Proposed Model ...48

5.4 Summary ...53

6. Discussion and Analysis .. 54

6.1 Overview ...54

6.2 Comparison with Reference Approach ..64

6.3 Applicability of the Approach ...68

6.4 Summary ...69

7. Conclusion & Future Work ... 70

7.1 Conclusion ..70

7.2 Limitation & Future Work ...71

Bibliography .. 73

xi

Appendices .. a

Appendix-A ... a

xii

List of Abbreviations

API – Application Programming Interface

RF – Random Forest

SVM – Support Vector Machine

DT – Decision Tree

KNN – K-Nearest Neighbour

NB – Naïve Bayes

VC – Voting Classifier

ROC – Receiver Operating Characteristics

TP – True Positive

FP – False Positive

xii

List of tables

Table 1 Crypto-Ransomware Techniques and Detection Methods. .. 16

Table 2 APIs with “CRYPT” Keywords. .. 30

Table 3 Machine Configuration. .. 31

Table 4 Cuckoo Sandbox Setting. .. 32

Table 5 System Specifications. .. 41

Table 6 Performance of Proposed Scheme using Random Forest Classifier with 10-Fold

Cross-Validation. ... 48

Table 7 Performance of Proposed Scheme using SVM Classifier with 10-Fold Cross-

Validation. .. 49

Table 8 Performance of Proposed Scheme using Decision Tree Classifier with 10-Fold Cross-

Validation. .. 50

Table 9 Performance of Proposed Scheme using KNN & Naive Bayes e Classifier with 10-

Fold Cross-Validation. ... 51

Table 10 Kok. at el. Achieved Accuracy [27]. .. 55

Table 11 Read Functions [53] of Ranking Features 46. .. 55

Table 12 Write Functions [53] Of Ranking Features 46. ... 58

Table 13 Accuracies of Machine Learning Models. .. 63

Table 14 Performance Comparison of Proposed Scheme and Kok S. H. [27] on 10-Fold

Validations. .. 65

Table 15 Results of Detecting Dangerous APIs Using Cuckoo-Based API Calls with Random

Forest, SVM, Decision Tree, KNN, And Naïve Bayes Classifiers, Utilizing 10-Fold Cross-

Validation. .. 67

xiii

List of figures

Figure 1 Types of Ransomwares.. 3

Figure 2 Ransomware Attack Vectors [3] ... 4

Figure 3 Machine Learning Algorithm Model Analysis. ... 22

Figure 4 Proposed Model Flow Diagram... 27

Figure 5 Machine Learning Algorithm Code... 28

Figure 6 Cuckoo Sandbox Interface. ... 29

Figure 7 Extraction of API Calls. .. 33

Figure 8 Confusion Matrix of Malicious and Benign Samples. .. 36

Figure 9 Data Structure of Signature Database Repository. .. 38

Figure 10 Flow Diagram of Ransomware Detection. .. 39

Figure 11 Proposed Model Execution in Operating System. ... 43

Figure 12 The Receiver Operating Characteristic (ROC) curve obtained from the proposed

method using the Random Forest classifier. .. 49

Figure 13 ROC Curve Obtained by Proposed Method for Decision Tree Classifier............... 50

Figure 14 ROC Obtained by the proposed method on the KNN classifier. 52

Figure 15 ROC Analysis of the Proposed Method on Naïve Bayes Classifier. 52

Figure 16 Features Importance. ... 55

Figure 17 ROC Curves of ML Models .. 64

Figure 18 The Detection Accuracy of The Suggested and Chart of S. H. Kok [27]

Methodologies In Diverse Machine Learning Classifiers. .. 66

Figure 19 Comparison of Number of Features and Detection Accuracy between Proposed and

Existing Approaches. ... 68

file:///D:/Asad/Thesis/Dataset%20samples/Sir%20Mehdi%20Iterations/Ver3.8.2%20Thesisi-Asad%20Iqbal(330557)%20-%20Copy.docx%23_Toc138590368
file:///D:/Asad/Thesis/Dataset%20samples/Sir%20Mehdi%20Iterations/Ver3.8.2%20Thesisi-Asad%20Iqbal(330557)%20-%20Copy.docx%23_Toc138590369
file:///D:/Asad/Thesis/Dataset%20samples/Sir%20Mehdi%20Iterations/Ver3.8.2%20Thesisi-Asad%20Iqbal(330557)%20-%20Copy.docx%23_Toc138590370
file:///D:/Asad/Thesis/Dataset%20samples/Sir%20Mehdi%20Iterations/Ver3.8.2%20Thesisi-Asad%20Iqbal(330557)%20-%20Copy.docx%23_Toc138590371
file:///D:/Asad/Thesis/Dataset%20samples/Sir%20Mehdi%20Iterations/Ver3.8.2%20Thesisi-Asad%20Iqbal(330557)%20-%20Copy.docx%23_Toc138590372
file:///D:/Asad/Thesis/Dataset%20samples/Sir%20Mehdi%20Iterations/Ver3.8.2%20Thesisi-Asad%20Iqbal(330557)%20-%20Copy.docx%23_Toc138590373
file:///D:/Asad/Thesis/Dataset%20samples/Sir%20Mehdi%20Iterations/Ver3.8.2%20Thesisi-Asad%20Iqbal(330557)%20-%20Copy.docx%23_Toc138590374
file:///D:/Asad/Thesis/Dataset%20samples/Sir%20Mehdi%20Iterations/Ver3.8.2%20Thesisi-Asad%20Iqbal(330557)%20-%20Copy.docx%23_Toc138590375
file:///D:/Asad/Thesis/Dataset%20samples/Sir%20Mehdi%20Iterations/Ver3.8.2%20Thesisi-Asad%20Iqbal(330557)%20-%20Copy.docx%23_Toc138590376
file:///D:/Asad/Thesis/Dataset%20samples/Sir%20Mehdi%20Iterations/Ver3.8.2%20Thesisi-Asad%20Iqbal(330557)%20-%20Copy.docx%23_Toc138590377
file:///D:/Asad/Thesis/Dataset%20samples/Sir%20Mehdi%20Iterations/Ver3.8.2%20Thesisi-Asad%20Iqbal(330557)%20-%20Copy.docx%23_Toc138590378
file:///D:/Asad/Thesis/Dataset%20samples/Sir%20Mehdi%20Iterations/Ver3.8.2%20Thesisi-Asad%20Iqbal(330557)%20-%20Copy.docx%23_Toc138590379
file:///D:/Asad/Thesis/Dataset%20samples/Sir%20Mehdi%20Iterations/Ver3.8.2%20Thesisi-Asad%20Iqbal(330557)%20-%20Copy.docx%23_Toc138590379
file:///D:/Asad/Thesis/Dataset%20samples/Sir%20Mehdi%20Iterations/Ver3.8.2%20Thesisi-Asad%20Iqbal(330557)%20-%20Copy.docx%23_Toc138590380
file:///D:/Asad/Thesis/Dataset%20samples/Sir%20Mehdi%20Iterations/Ver3.8.2%20Thesisi-Asad%20Iqbal(330557)%20-%20Copy.docx%23_Toc138590381
file:///D:/Asad/Thesis/Dataset%20samples/Sir%20Mehdi%20Iterations/Ver3.8.2%20Thesisi-Asad%20Iqbal(330557)%20-%20Copy.docx%23_Toc138590382
file:///D:/Asad/Thesis/Dataset%20samples/Sir%20Mehdi%20Iterations/Ver3.8.2%20Thesisi-Asad%20Iqbal(330557)%20-%20Copy.docx%23_Toc138590383
file:///D:/Asad/Thesis/Dataset%20samples/Sir%20Mehdi%20Iterations/Ver3.8.2%20Thesisi-Asad%20Iqbal(330557)%20-%20Copy.docx%23_Toc138590384
file:///D:/Asad/Thesis/Dataset%20samples/Sir%20Mehdi%20Iterations/Ver3.8.2%20Thesisi-Asad%20Iqbal(330557)%20-%20Copy.docx%23_Toc138590385
file:///D:/Asad/Thesis/Dataset%20samples/Sir%20Mehdi%20Iterations/Ver3.8.2%20Thesisi-Asad%20Iqbal(330557)%20-%20Copy.docx%23_Toc138590385
file:///D:/Asad/Thesis/Dataset%20samples/Sir%20Mehdi%20Iterations/Ver3.8.2%20Thesisi-Asad%20Iqbal(330557)%20-%20Copy.docx%23_Toc138590386
file:///D:/Asad/Thesis/Dataset%20samples/Sir%20Mehdi%20Iterations/Ver3.8.2%20Thesisi-Asad%20Iqbal(330557)%20-%20Copy.docx%23_Toc138590386

xiv

Abstract

The research introduces an innovative approach for the early detection of crypto-ransomware,

a form of malware that encrypts a victim's data and demands ransom for decryption. Various

detection techniques, including behavior-based analysis, API calls, system calls, network

communication patterns, static and dynamic analysis, are commonly employed to detect

ransomware. However, these techniques consist of various challenges such as adversarial

attacks, classification errors, difficulties in detecting zero-day attacks, performance and

scalability limitations, and limited efficiency of machine learning models for detection. The

major challenges consist of larger number of (read/write) APIs calls that are employed for

detection of ransomware. Further, it indirectly increases the complexity of the detection system.

In this study, we developed an efficient ransomware detection method that utilizes a lower

number of attributes. The proposed scheme adopts a two-level detection approach, combining

a signature-based technique and sandbox analysis using machine learning (ML) algorithms and

an application program interface (API) generated by Cuckoo Sandbox. The signature-based

technique compares ransomware signatures with a database of known ransomware, utilizing

hashing techniques such as SHA. The sandbox analysis, complemented by ML algorithms and

the API, aims to identify ransomware prior to the encryption process. The scheme is evaluated

using various ML classifiers, including Random Forest (RF), Support Vector Machine (SVM),

and K-Nearest Neighbour (KNN), with an 80:20 training and testing ratio. In addition, the

proposed scheme was assessed through 10-fold cross-verification. Experimental results

demonstrate the proposed approach accurately identify 26 contributing read/write ransomware

attributes with 98% accuracy. It also surpassing the existing detection techniques while

employing a minimal number of attributes. Early detection of ransomware is vital in preventing

data encryption, potentially saving victims from paying ransoms.

Keywords: APIs, Crypto-ransomware, Machine Learning, Malware, Cuckoo Sandbox.

1

1. Introduction

The first chapter of the thesis introduces the research, outlining its objectives, methods, and

significance. It discusses the need for effective ransomware detection mechanisms and

provides an overview of the subsequent chapters.

1.1 Overview

Ransomware locks digital data and modifies system logins to lock victims' resources. the

attacker claims ransom from the target for acquiring access to its resources. In 2017, the

WannaCry cyberattack infected over 200,000 systems across 150 countries [1]. Ransomware

is playing a vital role in malware categories. Ransomware is still recognized as one of the top

malwares that cyber security experts have placed on high alert. Despite decreased infection

rates, the cost-effectiveness of ransomware has increased, as hackers target specific internal

communication, demanding larger ransoms. Cybercriminals are drawn to ransomware for its

cost-effectiveness.

Internet Usage: The widespread use of the internet has enabled global connections [2], making

communication more convenient. However, this also increases the risk of international cyber-

attacks. For instance, a cybercriminal can launch an offensive operation against a specific

corporation from any location. Since there are geographical distances and varying regulations,

authorities will be hindered in responding to such attacks that are made on a global scale.

Crypto-Currencies Popularity: The second reason is the widespread adoption of

cryptocurrencies. The anonymity of the owner of this digital currency makes it hard for the

CHAPTER 1: INTRODUCTION

2

authorities to identify them, thus providing cybercriminals with an untraceable and safe route

to extort ransom money [29].

Digitization: The third reason for the trend toward digital data storage is the cost-effectiveness

of this method. As time progresses, the costs of digital storage are decreasing, and it has several

advantages over physical data, including being searchable, occupying less space, and the ability

to create backups or replicas.

Encryption Algorithms: Encryption, a critical security measure, can be employed to meet the

security requirements of an information system, such as confidentiality, integrity, availability,

authenticity, and accountability. Apart from availability, encryption helps achieve all of these

objectives; however, ransomware can exploit encryption to take control of user data and

demand a ransom.

Easy Accessibility of Ransomware: The accessibility of ransomware is a benefit for those

engaged in cybercrime, as ransomware development kits are available on the Dark Web and

can be downloaded without cost or bought for a reasonable price [5]. Moreover, a ransomware-

as-a-service profit-sharing system exists between hackers, where one party creates the source

code for the ransomware and disseminates it to potential targets. These aspects contribute to

the growth and continued development of ransomware by cyber criminals.

1.2 Attack Vector

Most significant source of a ransomware infection is email [3]. Cybercriminals sends phishing

emails containing ransomware and attachments or links to fake documents or legitimate-

looking websites [2]. On clicking the attachment, the ransomware will launch on the victim's

machine and automatically start to spread throughout the system. Advanced ransomware will

CHAPTER 1: INTRODUCTION

3

then perform reconnaissance on the victim's computer before contacting its developer, often

known as the Command and Control (CC) Centre in cyber security. Once the ransomware has

established a connection with the CC, it will share the gathered information regarding the victim

and request the cryptographic keys depicted in Figure 1.

Using these keys, the ransomware will encrypt the victim's crucial files, such as Microsoft

Documents, images, media files, metadata, and more, only exposing itself to the victim once

all vital files/ data have been encrypted [3]. According to Humayun at el. [3], 63.3% of

ransomware infections are attributable to emails, with 35.7% relating to opening an attachment

and 28.6% to clicking on a link, as illustrated in Figure 2. Moreover, 21.4% of victims report

being unaware of how they became infected with ransomware [3]. Additionally, ransomware

typically provides its victims with a limited timeframe to pay the ransom before the amount

Figure 1 Types of Ransomwares.

CHAPTER 1: INTRODUCTION

4

increases.

Another common vector of a ransomware attack is when the victim visits a malicious or

infected website, either intentionally or inadvertently. This attack is known as malvertising,

where a redirection strategy is employed when a person unknowingly uses an exploit kit to

navigate from a secure to a dangerous website. Attackers insert an exploit kit into an inline

frame, also referred to as an iframe, on a legitimate website, leading to this situation [4].

Windows OS is the most widely used operating system and has been the primary target of

ransomware attacks. In terms of ransomware detection, the primary point to consider is the

Application Program Interface (API) of Windows. Generally, APIs are the main interface with

the operating system; every program utilizes API for execution. Thus, the analysis of API

becomes an effective tool for ransomware detection. This study focuses on crypto-ransomware,

which uses an encryption technique to encrypt the data and files of its victims. The chosen form

of ransomware is crypto-ransomware, as the damage it causes is usually severe and irreversible

Figure 2 Ransomware Attack Vectors [3]

CHAPTER 1: INTRODUCTION

5

[5]. This is particularly true if the user's data is protected by a strong encryption technique, such

as hybrid encryption. In general, the pre-encryption stage of a crypto-ransomware outbreak is

crucial since recovery is challenging after encryption. Consequently, an early detection model

for ransomware is necessary to protect against a ransomware attempt or reduce the harm of a

ransomware attack.

1.3 Thesis Motivation

The focus of this research is on the detection of ransomware through the use of APIs, with a

particular emphasis on pre-encryption detection in Windows platforms. There have been

various approaches to ransomware detection using API calls and existing machine learning

models, each with their own advantages and disadvantages. However, the identification of

effective API calls and ensuring security can present challenges. Drawing inspiration from a

previous study by Kok S. H. et al. [27], which also employed API-based ransomware detection

at the pre-encryption stage, our research seeks to build upon this work and address major

limitations and challenges associated with API-based ransomware detection.

This research is driven by the desire to enhance the performance of ransomware detection and

minimize the number of features required for classification. Kok S. H. et al. [27] benchmark

study, which utilized Random Forest classifiers, relied on 232 unique features. This study

proposes two key objectives. Firstly, to detect ransomware at the pre-encryption stage through

the usage of API. Secondly, to store the signature of newly identified ransomware in a database

to facilitate early detection in the future.

1.4 Research Objectives

This study has the following objectives to detecting ransomware attacks.

CHAPTER 1: INTRODUCTION

6

1. Analyze the API behavior associated with crypto-ransomware attacks to identify key

patterns and behaviors indicative of such attacks.

2. Develop a pre-encryption technique capable of detecting crypto-ransomware at an early

stage, before it progresses to the encryption phase.

3. Enhance existing datasets for machine learning-based research, specifically focusing on

ransomware detection. This dataset will be available online and can be utilized in future

studies to improve detection models and algorithms.

4. Improve the signature-matching process by creating an enhanced repository of SHA-

256 ransomware signatures. This repository will aid in the identification and

categorization of ransomware strains, facilitating more accurate and efficient detection

methods.

By achieving these objectives, the study aims to advance the field of ransomware detection by

providing insights into API behavior, developing novel detection techniques, improving

datasets for research purposes, and enhancing the signature-matching process for more

effective identification of ransomware attacks.

1.5 Research Questions

This section describes the following research questions which are devised to perform this study:

• Why is this research required?

Windows ecosystem is continuously being threatened by malware which poses many security

risks to the user's data. Since this data is usually of great value to the users, therefore, the users

want some kind of protection in this regard.

CHAPTER 1: INTRODUCTION

7

There already exists a large set of detection methodologies, each providing its own benefits to

the community. There is a need to see if those mechanisms can be modified to provide lighter

detection approaches in terms of computational costs.

• What is the significance of the study? And what steps are involved in the research?

This study is about analyzing the importance of static malware analysis. The purpose of the

study is to classify the malicious ransomware files/applications using the least number of static

features. It will help malware analysts and the research community to quickly identify

malicious ransomware applications. The study performs qualitative as well as quantitative static

analysis of ransomware. To perform the study, we have broadly divided our approach into the

following four steps:

- Samples collection and environmental setup

- Feature Extraction

- Classification results generation

- Report Writing

• What are the aims of this study?

The study mainly focuses on the following aspects:

a) Discovering the set of minimum static features that can correctly classify a malicious

ransomware application.

b) Identifying the best classifying model among those considered for this study i.e.,

Random Forest SVM, Decision Tree, KNN and Naïve Bayes.

CHAPTER 1: INTRODUCTION

8

1.6 Problem Statement

Windows is a widely used operating system in homes and organizations worldwide, making it

a common target for malicious actors seeking to exploit its vulnerabilities. With a vast number

of applications available online, it can be challenging for users to distinguish between

legitimate and malicious software. Malware authors often disguise their harmful software as

benign applications or offer them for download alongside popular software, making it easy for

users to unintentionally install them. Once installed, these malicious programs can steal

sensitive information, damage data, or take control of the affected system.

Therefore, the problem statement of our study is as follows; “To determine significant static

features set for windows-based applications to build a light-weight and efficient ransomware

detection mechanism using supervised ML algorithms”.

1.7 Solution Description

The research provides a low-cost malware detection approach using the API-based static

analysis of Windows applications and files. In this research, for the APIs extraction process,

we have first analyzed ransomware files in Cuckoo Sandbox [10] to extract the APIs which are

used for encryption functionality, from the dataset collected from VirusShare, VirusTotal, and

TheZoo repository [11-13]. Following the extraction of APIs, they are filtered using the feature

importance technique. Once the feature set is generated, a variety of machine-learning models

are utilized to detect malicious applications.

CHAPTER 1: INTRODUCTION

9

1.8 Thesis Contribution

Our research strategy, titled "Ransomware on the Run: A Detection Approach using Effective

API and Machine Learning Models," has successfully investigated and enhanced detection

accuracies by incorporating established classifiers such as Random Forest and SVM. The

proposed scheme offers the following contributions:

• The proposed approach achieves a high detection accuracy of approximately 98%

while reducing the API feature set by approximately 88%.

• This significant improvement in accuracy demonstrates the effectiveness of the

proposed approach in accurately identifying ransomware attacks while

simultaneously minimizing the computational burden associated with analyzing a

large number of API features.

• Introducing a lightweight malicious ransomware detection framework that offers an

efficient and streamlined approach to detecting ransomware. This framework is

designed to be lightweight in terms of computational resources required, making it

suitable for deployment in resource-constrained environments while maintaining a

high level of accuracy.

• The proposed approach is equally applicable with other existing machine learning

classifiers, enabling its usage in various contexts. This flexibility and adaptability

make it possible to integrate the framework into existing systems and workflows,

ensuring its usability and effectiveness across different scenarios and environments.

1.9 Thesis Organization

The organization of the thesis is presented as follows. Chapter 2 throws light on previous work

done related to static analysis and detection of ransomware applications. The Pre- Encryption

CHAPTER 1: INTRODUCTION

10

detection method concept for detecting crypto-ransomware is detailed in the chapter 3. The

experimental setup is discussed in Chapter 4. Chapter 5 showcases the result of the experiment.

This section also discusses the activities/events performed during the results collection. Chapter

6 is dedicated to the discussion and analysis of the experiment results. Lastly, chapter 7 sheds

light on the conclusion with possible directions for the future.

1.10 Summary

In this chapter, basic concepts are discussed regarding ransomware analysis such as static and

dynamic analysis implied in the detection of malicious applications. It provides an overview

with the aim and scope of the thesis. Further, it presents the main objectives of the research

work with the overall thesis organization. In the next chapter, we will look at the literature

review that has been conducted for this thesis.

11

2. Literature Review

The second chapter of the thesis explores the topic of related research and terminology. This

includes studies and investigations conducted by scholars in the field that are relevant to the

present study and have contributed to the development of a novel solution.

2.1 Overview

In literature various studies and technical reports have highlighted the threat of malware and its

impact on different organizations. With the advancement of technology, such as IoT and cloud

computing, which enable global connectivity, there has been an increase in malware attacks

[6]. This can be a potential problem if end-users are unaware of the threats posed by these

cutting-edge technologies [7]. Ransomware is the most prevalent malware family targeting

organizations and end-users on a large scale [8]. This increase is due to a direct connection

between the victim and attacker, with the latter demanding a ransom from the victim. Data

reveals that 37% of victimized organizations did not get their data back even after paying the

ransom [9]. Once ransomware is executed in a system, it encrypts all data using encrypted

algorithms and keeps the decryption key secret, thus making the data inaccessible to the victim

[14]. Encryption can be used for both beneficial and malicious purposes; it can be used to

preserve confidentiality and protect important data, but attackers can also use it as crypto-

ransomware to prevent access to data [15].

The current anti-malware solution like anti-virus, IDS, etc., which works on signature-based

detection, are not able to detect any zero-day attacks because the new malware signature is not

being updated to the signature database [16]. Cybercriminals show a keen interest in

ransomware, a new variant of ransomware being created that bypasses the anti-virus software

CHAPTER 2: LITERATURE REVIEW

12

[17]. Ransomware as a service (RaaS) allows reaching out to non-technical users with

malicious intentions [18]. A severe countermeasure is needed to address this dangerous level

of threat to the organization and end user. Extensive work is being done to detect ransomware

at an initial level; some techniques are based on static and dynamic analysis [19].

2.2 Machine Learning

Machine learning is defined as: “a technology that focuses on developing computer algorithms

that are capable of emulating human intelligence by incorporating ideas from neuroscience,

psychology, computer science, control theory, probability and statistics, information theory,

and philosophy” [38].

Machine learning has successful applications in many fields such as robotics, computer vision,

entertainment, and medicine. The aim of this technology is to humanize computers by

educating themselves about the surrounding environment and previous experiences, with or

without any supervised learning [38].

2.2.1 Machine Learning Algorithms

This section presents various machine learning algorithms including Support Vector Machines

(SVM), Random Forest (RF), Decision Tree (DT), K-Nearest Neighbour (KNN), Naïve Bayes

(NB), and Voting Classifiers (VC).

a) Support Vector Machine (SVM)

Support Vector Machines (SVM) is a machine learning algorithm that aims to classify data

points into two or more categories. It does so by finding a boundary plane that separates these

categories based on the variables included in the model [38].

CHAPTER 2: LITERATURE REVIEW

13

b) Random Forest (RF)

Random Forest (RF) is an algorithm that uses a combination of decision trees to construct

models that represent complex and nonlinear functions. It builds a collection of decision trees,

each one using a random subset of features and data to create an ensemble with low bias and

low variance [39].

c) Decision Tree (DT)

The Decision Tree (DT) algorithm is a flowchart-like structure used for making predictions

based on feature values. It consists of decision nodes and leaf nodes, where each branch

represents a possible decision or outcome. DT is useful for classification and regression tasks,

but it may lead to overfitting if not pruned correctly.

d) K-Nearest Neighbour (KNN)

K-Nearest Neighbour (KNN) is an effective algorithm used for classification and regression. It

classifies new cases based on similarity to existing data, without explicitly building a model. It

is suitable for tasks with many features and limited data. However, it can be computationally

expensive.

e) Naïve Bayes (NB)

Naïve Bayes (NB) is a simplified derivative Bayesian network that uses an assumption of

feature variable independence for classification. This method is useful in high-dimensional

spaces, but it can result in inaccurate probability estimates due to the unrealistic independence

assumption [38].

f) Voting Classifier (VC)

CHAPTER 2: LITERATURE REVIEW

14

Voting Classifier (VC) is an ensemble method that combines multiple models to make

predictions. It can be used for classification and regression tasks and is believed to be more

accurate and robust than individual models. However, it may be computationally expensive.

2.3 Related Work

The static analysis includes source code analysis in which ransomware will not be activated.

Several techniques are available, and analysis is performed by obtaining the opcode from the

source code. The opcode will be used to generate an n-gram code. These n-gram codes will

undergo machine learning training to create a prediction model for ransomware detection [20].

Recently, another approach that based on the search for ransom messages; indirectly leaving

the victim with one ransomware execution [21]. Similarly, another static analysis approach

examined the executable file headers for ransomware detection. Moreover, researchers also

proposed a ransomware detection solution by analyzing the source code and deriving rules [22].

The fundamental issue with static analysis is that the examined source code may be flawed due

to obfuscation techniques.

The ransomware dynamic analysis requires the execution of the malware in a protected

environment such as a sandbox. This analysis is very effective due to direct interaction. Further,

intelligent malware can also predict the execution environments whether it is real-time or in a

sandbox, and tuned to be inactive for the sandbox. Recently, in [23] authors proposed the

detection methodology by analyzing the encryption process. As encryption process involves

repetitive activities/patterns that can further be analyzed at file system levels to predict the

ransomware patterns. Tracking the encryption frequency is also a technique to distinguish

between attack and legitimate encryption. Another approach based on dynamic analysis is using

system API calls to track ransomware interactions with the operating system [24]. A multi-

CHAPTER 2: LITERATURE REVIEW

15

layer detection technique called ransomWall combines two types of analysis [25]. Recently,

other detection solutions included authentication-based access to essential files [26], tap-using

honey files, and sustainable awareness.

In [27] author studies crypto ransomware behaviors through function calls or APIs (Application

Program Interface). They provided a two-level ransomware detection model; Level one detects

ransomware through signature-based and the second level through machine learning algorithms

using APIs calls. They used the RISS [41] dataset as a reference which has 30,967 apps,

including both benign and malicious applications. After analyzing this dataset, the author

extracted only ransomware features and created a new dataset with 232 APIs features and 1800

entries. The RISS dataset comprised multiple features, while the new dataset focused on the

pre-encryption function. The author uses a machine learning model to detect the ransomware

using APIs features and achieved 100% detection accuracy on the Random Forest classifier.

Further, after the detection of ransomware, its signature is stored in a database for future

detection. For experiments, Cuckoo Sandbox, Windows 10 Pro, and Ubuntu 18.04 platforms

are used. However, a number of features can further be optimized by reducing the insignificant

features while maintaining similar detection accuracy. Recently, another approach [28]

presented a similar model [27] on APIs-based detection while reducing the number of features

from 232 to 206. However, the detection accuracy was reduced by 1% as compared to [27] on

the K-NN classifier. Meanwhile, the proposed model is only applicable to detect known

ransomware. In contrast, our proposed model employs only 26 features that can detect both

known and unknown ransomware.

Zakaria et al. [29], produced a similar framework for the detection of crypto-ransomware called

RENTAKA. The author created a crypto-ransomware dataset using the RISS dataset as a

reference. They successfully reduced the feature to 80 and dropped the 3% (97.03%) detection

accuracy as compared to [27] using Support Vector Machine (SVM). They also employed

CHAPTER 2: LITERATURE REVIEW

16

various classification models: SVM, Random Forest, Naive Bayes, KNN, and J48. However,

this study has not provided any detail about the proposed model and even did not discuss what

type of encryption APIs were actually targeted.

Another study on the APIs-based ransomware detection method proposed by Anand et al. [30]

uses the feature importance technique. The author performs API call analysis on ransomware

behavior to look for a specific pattern. This study collected 653 executable files, including both

benign and malicious applications. After analysis of APIs, they perform feature ranking and

create a dataset. The collected dataset was given to the machine learning model by applying

four classifiers: Random Forest, C 5.0, AdaBoost, and SVM. The highest obtained detection

accuracy was reported at around 95.38% using the AdaBoost classifier. However, the

contribution consists only of employing feature ranking. The CRED Alqahtani et al. [31] also

used the same detection approach using machine and deep learning. Furthermore, RMOC [32],

MELCOR [33], RANSID [34], ROPsight [35], RaFS [36], and RaRE [37], are the recent

techniques to decrease ransomware attacks. Table 1 shows the general techniques that are

proposed by the researchers to detect ransomware.

Table 1 Crypto-Ransomware Techniques and Detection Methods.

Framework Pre-Encryption Methods Identification Features Dataset

Elderan [47],

2016

Dynamic analysis of

Ransomware by executing an

application for only 20 seconds

30,967 functions

named (system

operations, system

calls, APIs,

performance)

RISS

CHAPTER 2: LITERATURE REVIEW

17

PEDA [27],

2020

Identification of CRYPTO

APIs at the start

232 APIs RISS

CRED [31],

2020

APIs and IRP-based

correlation and detection

IRP and APIs features Centric-

Process

Centric-Data

RMOC [32],

2021

Machine learning-based

classification and clustering of

ransomware attacks

Malware samples and

ransomware attack

data

Not specified

MELCOR [33],

2021

Machine learning-based

network traffic analysis

Specific ransomware

families (e.g., Ryuk,

Maze)

Not specified

RANSID [34],

2021

Behavioral analysis and

machine learning-based

detection of ransomware

attacks

Network and endpoint

behavior

Not specified

ROPsight [35],

2021

Detection of ransomware

attacks using Return-Oriented

Programming (ROP)

ROP-based techniques Not specified

RaFS [36],

2022

File system monitoring and

analysis using machine

learning and rule-based

techniques

Suspicious file access

patterns

Not specified

RaRE [37],

2022

Machine learning-based

detection of ransomware

attacks

System call sequences Not specified

CHAPTER 2: LITERATURE REVIEW

18

RENTAKA

[29], 2022

Dynamic analysis of crypto-

ransomware

80 APIs RISS

The table presents different ransomware detection approaches and their merits and demerits.

Elderan relies on dynamic analysis but missed sophisticated attacks. PEDA identifies CRYPTO

APIs but overlook non-API-based ransomware. CRED combines APIs and IRP correlation but

limited to specific features. RMOC uses ML for classification and clustering but relies on

training dataset quality. MELCOR analyzes network traffic but didn’t discussed about offline

ransomware. RANSID applies behavioral analysis and ML but faces false positives and

emerging pattern challenges. Similarly, ROPsight detects ROP-based attacks but is limited to

techniques. RaFS monitors file system access but may struggle with distinguishing legitimate

and malicious patterns. RaRE uses ML on system call sequences but requires significant

computational resources. RENTAKA analyzes APIs but missed complex ransomware

behavior. Consider these trade-offs when choosing a detection approach.

While the existing techniques for detecting and identifying ransomware attacks have made

significant advancements, there are still some limitations and research gaps that need to be

addressed. Many of the current approaches focus on specific aspects of ransomware detection,

such as dynamic analysis, machine learning, or behavior analysis. However, they lacks of

comprehensive coverage or fail to consider evolving ransomware techniques. Additionally, the

lack of standardized datasets and evaluation methodologies makes it challenging to compare

and validate the effectiveness of different techniques. Furthermore, some approaches may

suffer from false positives or false negatives, impacting the accuracy and reliability of

detection. To improve the effectiveness of ransomware detection, future research should strive

to develop integrated frameworks that consider multiple detection dimensions and leverage

diverse datasets. Additionally, efforts should be made to enhance the evaluation process by

CHAPTER 2: LITERATURE REVIEW

19

establishing standardized benchmarks and metrics for assessing the performance of different

detection techniques. Addressing these limitations and research gaps will contribute to the

development of more robust and reliable ransomware detection methods.

Generally, the optimal approach to detect ransomware before it is executed and thus, minimize

the damage to the organization. In this study, a dynamic solution is proposed to ensure early

detection, by providing signature matching with a maintained database, and the use of API calls

and machine learning. Once files are encrypted, the data cannot be recovered, even upon the

removal of ransomware from the system.

2.4 Summary

The chapter covers the background and related work of the thesis. It includes a critical analysis

of existing research and schemes used in the literature, which aids in formulating a solution to

the identified problem. The next chapter will discuss the research methodology followed during

the thesis.

20

3. Research Methodology

Chapter 3 outlines the research methodology used in this thesis, which involves collecting

malware samples, constructing a feature set, and using machine learning classifiers for malware

detection. The methodology follows a structured approach and utilizes methods such as data

collection, preprocessing, feature extraction and selection, and machine learning model

selection and evaluation.

3.1 Introduction

Research refers to a systematic and organized approach aimed at investigating a particular issue

or field of interest to generate new knowledge and insights [40]. It involves defining and

redefining a known problem, formulating a hypothesis, collecting and analyzing data, making

assumptions, deriving conclusions, and testing the conclusion to verify the hypothesis [42]. In

essence, research is conducted to answer a specific problem and identify appropriate solutions

[41]. Its ultimate objective is to contribute to the advancement of knowledge in a particular

field or discipline, whether through the development of new theories, testing of existing

theories, or discovery of new facts and information. Overall, research is a rigorous and

structured process that requires a disciplined and methodical approach to obtain reliable and

valid results.

3.2 Research Methodology

This section presents the research methodology. The proposed approach revolves around a pre-

encryption ransomware detection system that focuses on extracting encryption APIs usage from

CHAPTER 3: RESEARCH METHODOLOGY

21

ransomware applications. The emphasis lies in analyzing a specific set of features that have

demonstrated effectiveness in distinguishing and improving the detection rate of ransomware.

To enable classification, the system utilizes various models, including Random Forest (RF),

Support Vector Machine (SVM), Decision Tree, K-Nearest Neighbour, Naïve Bayes, and

Voting classifiers. In this approach, features are manually selected based on their significant

influence on the effectiveness of ransomware detection. The study encompasses the following

key components:

A. The first component involves the collection of both malicious and benign samples,

which is a crucial step in developing an effective ransomware detection system.

B. The second component involves identifying and constructing a feature set that can

distinguish ransomware from benign applications.

C. The third component involves filtering, finalizing, and extracting the most effective

features from the dataset.

D. The fourth component involves utilizing supervised machine learning methods to

classify potential Windows malware by training the models on the filtered features

dataset.

E. After performing the aforementioned stages, a report of the malware analysis summary

is generated which can be used to carry out further evaluations.

CHAPTER 3: RESEARCH METHODOLOGY

22

3.3 Detection at the Pre-Encryption Stage

In this section, we will discuss the pre-encryption stage of ransomware detection which is

comprised of two levels. The first level is the analysis of system call or Application Program

Interface (API) to identify ransomware behavior with the assistance of a trained machine

learning algorithm. This level allows for the detection of previously unknown ransomware. The

second detection level is the identification of known ransomware with the help of a signature

database. The data flow of the pre-encryption framework for machine learning is depicted in

Figure 3. Subsequent sections will provide a detailed explanation of how the pre-encryption

model functions in real-world scenarios. It has been observed that the primary vector of a

ransomware infection is an email attachment. The pre-encryption model enables users to

inspect a file before opening it to detect whether it contains ransomware.

Figure 3 Machine Learning Algorithm Model Analysis.

CHAPTER 3: RESEARCH METHODOLOGY

23

Before sending the file to the pre-encryption model for analysis, the user must first select the

file. Following file submission, this model will use SHA-256 to create the file’s hash signature.

Any file that can be hashed into a single character with a set length and unique to its contents.

SHA-256 specifies that 256 or 64 characters of signature data will be generated (4 bits of space

fulfills 1 character). The hashes of known ransomware that are stored in the Signature Archive

will be compared to generated signature for matching. Comparing the entire file’s content is a

slower process than verifying the hash fingerprint.

Furthermore, a hash value requires significantly less storage space. If a match is found, the pre-

encryption approach would alert the user of the discovery and store the file separately.

However, this technique is limited and can only detect known ransomware. In the context of

an unmatched file, it will be sent to the Cuckoo Sandbox for unidentified malware. The file will

then be read by Cuckoo Sandbox in a secure virtual setting to monitor its behavior. Upon

completion of processing, Cuckoo will generate an analysis report of the file. In this study, we

will discuss APIs that are employed to open a file. The pre-encryption model identifies APIs

before the encryption function call. The model locates these APIs by searching for the word

"crypt." If the keyword is present, the API is stored in a file and the process will proceed to the

next step; otherwise, the process will continue until the end. After being converted into data

format, the retrieved APIs are stored in a comma-separated value (CSV) format. The ML model

will employ the extracted API features for classification purposes. The pseudocode can be

found in Algorithm 1.

The study employed the Random Forest (RF), Support Vector Machine (SVM), Decision Tree

(DT), K-Nearest Neighbour (KNN), and Naive Bayes (NB) models to detect the presence of

ransomware in files after discretizing the data. In case ransomware is detected, the file's

signature is stored in the Signature Repository. On the other hand, if the pre-encryption model

determines that the file is not ransomware, the user will receive a notification indicating that

CHAPTER 3: RESEARCH METHODOLOGY

24

the file can be considered safe. The Random Forest (RF), Support Vector Machine (SVM),

Decision Tree (DT), K-Nearest Neighbour (KNN), and Naive Bayes (NB) models were

utilized, following the discretization of the data, to detect the presence of ransomware in files.

If ransomware is identified, the pre-store the file's signature in the Signature Repository. If the

pre-encryption model determines that the outcome is not ransomware, the user will be notified

that the file is safe to consider.

Algorithm 1: Pseudocode of Applying of Machine Learning Classifiers.

--

// Adding Trained Dataset to Machine Learning models

i. Upload trained dataset model in CSV format.

 Function: upload_trained_dataset_model(file_path)

 ===

 dataset = read_csv(file_path)

 Return dataset

ii. Debug for missing conditions.

 Function: check_missing_conditions()

 ===

 If trained_dataset is None Then

 display_error("Trained dataset model not found.")

 Return False

 Else

 Return True

iii. If the model is not found, display the error.

 Function: display_error(message)

 ===

 Print message

iv. Search signature in the database.

 Function: search_signature_in_database()

 ===

CHAPTER 3: RESEARCH METHODOLOGY

25

 signature = search_database()

 Return signature

v. Else use a trained model for the prediction of new data.

 Function: predict_using_trained_model(trained_dataset, new_data)

 ===

 model = train_model(trained_dataset)

 prediction = model.predict(new_data)

 Return prediction

vi. Print the outcome and analysis.

 Function: print_outcome_and_analysis(prediction)

 ===

 Print "Prediction:", prediction

 analysis = perform_analysis(prediction)

 Print "Analysis:", analysis

3.3.1 Discretization

Discretization is an essential pre-processing phase aimed at converting continuous information

into discrete values to enhance the predictive accuracy of machine learning algorithms [43].

This process involves the utilization of rules-based and tree-based algorithms. While there are

numerous techniques available for discretizing continuous variables, the ideal approach should

result in a meaningful division of the variable, aligning with the desired allocation of classes.

The goal is to find an optimal discretization strategy that appropriately represents the

underlying data distribution and facilitates effective classification.

3.3.2 Ransomware Signature

 Hashing is a form of encryption with a one-way function [46]. It can only produce digest codes

and cannot reverse the process to acquire plaintext. Even a tiny change in the content could

result in an entirely different digest code. The comparing of generated digest code is usual

CHAPTER 3: RESEARCH METHODOLOGY

26

practice to verify the message's integrity. Therefore, in this study, we employed hashing to

create distinctive ransomware signatures. Calculating the message length is necessary for SHA-

256 to work properly. Extra bits are appended once the message size increases or decreases

from 64 bits to keep the message a multiple of 512. In this case, the first bit will be zero of the

appended bits. The modulo of the initial message with 232 will be used to fill these final 64

bits. The compression algorithm is applied to the resulting 512 bits. On the generation of the

last digest code, the hashing operation is repeated 64 times to generate the hash.

3.3.3 Malware Detection by Employing Machine Learning

Models

Random Forest contains Decision Trees that are combined in the bagging process [44]. The

DT’s prediction has an architecture similar to a tree growing from the root, moving towards

branches, and ending up in the leaves. Features are randomly selected to form multiple DTs,

and the final prediction is made by taking an average of all DT results. [45]. The research

discovered that the RF method produced good results in identifying malware [45]. In addition,

this study also used the Support Vector Machine (SVM), K-Nearest Neighbour (KNN), Naive

Bayes (NB), and Voting Classifier. Additionally, we discovered that these classifiers could

perform well, particularly for discrete-type datasets. Due to this reason, we suggested the

discretization of data in our pre-processing stage.

3.4 Research Methodology

This section presents the methodology for ransomware detection proposed in this study, which

is illustrated in Figure 4. The proposed approach is divided into five groups: Sample

Collections, Cuckoo Sandbox, Data, Machine Learning, and Database. Each group is discussed

in further detail below

CHAPTER 3: RESEARCH METHODOLOGY

27

3.4.1 Ransomware Samples

The section will discuss the collection of ransomware data. It was initially started with the

Sgandurra et al. [47] dataset that consisted of 582 ransomware from eleven different categories,

along with 942 benign applications (or Goodware). This dataset covers Locky- ransomware,

and crypto-ransomware, which have different file operations, strings, directory activities,

deleted file extensions, registry key actions, and API metrics that are reported. There are

approximately 30,967 elements in the dataset that can be classified into seven main categories.

Analyzing each application for 30 seconds in cuckoo sandbox allows its features to be recorded.

An important component is an API, which shows how an application interacts with the

operating system.

Figure 4 Proposed Model Flow Diagram.

CHAPTER 3: RESEARCH METHODOLOGY

28

In literature, various approaches have been used with the above dataset for analysis, where the

API-based attributes have had a significant impact on detection rates [5]. Therefore, API-based

features were also utilized. Dataset samples from Sgandurra et al. (2016) [47] were downloaded

from VirusShare (VS). To further enhance the dataset with novel ransomware samples, updated

samples were acquired from both VirusShare and theZoo (TZ) repository. VS was available to

security experts, incident investigators, forensic investigators, and curious individuals, and

contained 34,235,166 samples, which required registration and verification by the website

administrator. Additionally, 357 fresh crypto-ransomware samples were obtained from

different websites, with an additional 56 crypto-ransomware samples collected from TZ. As a

result, 995 software samples were executed on Cuckoo Sandbox, with only 904 of them

providing relevant reports. We employed the Cuckoo Sandbox to execute the collected samples

to choose the pre-encryption samples, these general steps are mentioned in Figure 5. As a result,

the Sandbox report lists the order in which the sample called each API in different iterations.

Figure 5 Machine Learning Algorithm Code.

CHAPTER 3: RESEARCH METHODOLOGY

29

For example, an API sequence with the keyword "crypt" was chosen. It was discovered that

APIs with the keyword "crypt" execute encryption functions, as indicated in Table 2. There

were 205 samples for encryption.

3.4.2 Cuckoo Sandbox

The malware analysis Cuckoo sandbox can monitor a program’s execution activities. Each API

call made by the sample once it has been entered into the sandbox is recorded by Cuckoo

Sandbox its interface is shown in figure 6. Following that, Cuckoo will produce a report with a

list of all API calls. The Cuckoo was installed on the Haier (Intel(R) Core (TM) m3- 7Y30 CPU

@ 1.00GHz 1.61GHz, 8GB RAM, Ubuntu 20.04, and Windows 10 Professional), however

configuring Cuckoo was quite complex. It requires several prerequisite programs for the

complete installation process. It was necessary to have Python 2.7, Python 3, MongoDB,

Postgresql, XenAPI, TCPdump, and VirtualBox. After that, Ubuntu 20.04 was able to

successfully install Cuckoo Sandbox 2.0.7.

Figure 6 Cuckoo Sandbox Interface.

CHAPTER 3: RESEARCH METHODOLOGY

30

To ensure that the analysis could be done securely, we had to build up the virtual system using

Virtualization before using Cuckoo Sandbox. Windows 7 was installed on the guest machine

set up in VirtualBox (Win7).

Windows 7 was the most widely used operating system before Windows 10 Pro (Jan 2020-Jan

2021) [48], and Windows is the target of the majority of targeted ransomware.

Table 2 APIs with “CRYPT” Keywords.

 No.

API

Description

1. CryptAcquireContextA A specific cryptographic service provides (CSP) was

requested by CryptoAPI to supply a key container.

2. CryptAcquireContextW

3. CryptExportKey

To securely export one symmetric encryption key or

two asymmetric cryptographic keys out of a specific

CSP

4. CryptDecodeObjectEx To decode using the lpszStructType parameter's

definition of the structure type

5. CryptEncrypt

Using the hkey option to conduct the encryption

function with the encryption key supplied by CSP.

6. CryptCreateHash

The information flow enabled secure session

communication to be hashed to start.

7. CryptGenKey

Create a public or private key pair for asymmetrical

cryptography or a random encryption key for

symmetric encryption.

CHAPTER 3: RESEARCH METHODOLOGY

31

We set up a Windows 7 guest machine in VirtualBox and followed the network configuration

requirements in Table 3 to connect the guest machine to the Cuckoo Sandbox host machine.

We then took a screenshot of the guest's computer to ensure that each time we analyzed a

sample, we could restart the guest's PC without any issues. The default settings for Cuckoo

Sandbox were altered as detailed in Table 4. The guest machine had to be initialized in

VirtualBox before a sample analysis could be conducted in Cuckoo Sandbox, after which the

Cuckoo Web service could be initiated. On average, it took 3 minutes to process each sample.

Table 3 Machine Configuration.

Steps Description

i. Network Address Translation (NAT) configuration.

ii. Enable DHCP.

iii. Disable adaptor (Host-Only).

iv. Win7 machine firewall also is disabled.

iv. Create User Account Control (UAC).

v. Enabled IPv4 on the guest machine.

vi. Install Python on both machines.

vii. Install other libraries i.e., Pillow.

ix. Copy Cuckoo Sandbox agent.py to Win7.

x. Runs OS agent.py in desired OS.

8. CryptHashData To include details in a hash item that supported long

or continuous transmissions.

CHAPTER 3: RESEARCH METHODOLOGY

32

By executing the program, we identify all API calls made by the sample which has been

inputted into the Cuckoo Sandbox and recorded. We then obtain a complete report from Cuckoo

listing all API calls, which can be done in two ways; either by downloading it directly from the

browser or by copying the report file from the address

“/.cuckoo/STORAGE/ANALYSIS/2/REPORTS/report.json.”

For this investigation, the latter method was chosen as it creates a single “rar” file which is

compressed and contains multiple files, with the sample calling all APIs listed in a single

“JSON” file.

Table 4 Cuckoo Sandbox Setting.

Steps Description

i. Start and enable the DB database in DB report.conf file.

ii. The guest machine will be the same name as “Win7” in storage.conf file.

iii. Configure the IP statically in both VirtualBox.conf and WIN/ Snapshot.

3.4.3 Extraction of Data

It is necessary to retrieve only pertinent data from the Cuckoo Sandbox report, as the

information provided was extensive and unrelated to our investigation. All pre-encryption

Application Program Interfaces (APIs) were monitored for their behavior prior to calling any

encryption functions. To ensure that our script was able to extract the required data

successfully, we developed a script to extract each API and compared the result against the

“apistats” found in the Cuckoo report as shown in figure 7. After confirming that our code was

generating the same outcome, “crypt” was established as the extraction stop point. The

pseudocode for extracting the “crypt” call is shown in Algorithm 2.

CHAPTER 3: RESEARCH METHODOLOGY

33

Algorithm 2: Extraction of Data from Cuckoo Report.

--

// Data Extraction

i. Open and read the desired file.

 Procedure data_extraction(file_path)

 keywords = ["crypt"] // Add more keywords as needed

 extracted_words = []

 file = open(file_path, 'r')

 lines = file.readlines()

===

ii. Skip the first line and Move to the subsequent line.

 for line in lines[1:]:

Figure 7 Extraction of API Calls.

CHAPTER 3: RESEARCH METHODOLOGY

34

 line = line.strip()

===

iii. Identify and look for “API” functions.

 if "API" is found in line then

===

iv. When API is found, go to the subsequent line.

 next_line = lines[lines.index(line) + 1].strip()

===

v. API has the keyword “crypt,” string or function then halt.

 if any keyword in keywords is found in next_line then

 exit loop

 else

===

vi. Else words will be stored.

 Extracted_words.append(line.split())

===

vii. Else go to the subsequent section.

 Continue

===

viii. Stop loop.

 Break

===

ix. Exit.

 return extracted_words

===

CHAPTER 3: RESEARCH METHODOLOGY

35

// Example usage:

file_path = "path/to/your/file.txt"

extracted_data = data_extraction(file_path)

print(extracted_data)

The data processing outlined above resulted in a "txt" format and converted into a "CSV" file

format to enable the ML algorithms to utilize it. This "CSV" had 235 entries, with the sample

name appearing in the first column, the second column indicating whether the sample was

benign (zero) or ransomware (one), and the third column containing a source indication for the

sample. After the APIs from all the samples had been extracted, 232 APIs were visible in the

fourth column and beyond. Consequently, three datasets were created based on the retrieved

data. The first dataset included the APIs for all samples; the second dataset, containing only the

malware with encryption functionality, was only used to extract the pre-encryption APIs; and

the third dataset was a subset of Sgandura et al. (2016), with the addition of some new benign

and ransomware applications, which was used to extract the necessary API dataset focusing

only on encryption methods.

3.4.4 Machine Learning Algorithm

The ML algorithm is an essential element that may distinguish between known and unidentified

ransomware assaults. The method was broken down into two steps: first, the data was

discretized; next, Random Forest (RF), Support Vector Machine (SVM), Decision Tree (DT),

K-Nearest Neighbour (KNN), Naive Bayes (NB), and Voting Ensemble were used to train the

prediction models. We used all three datasets to evaluate the ML model’s efficacy in two

different training-to-testing ratios. The data for both training and testing were divided by the

ratio’s original setting of 80:20. The second ratio, 70:30, allocated 30% 70% training, and 30%

testing. Additionally, 10-fold verification tests were also run.

CHAPTER 3: RESEARCH METHODOLOGY

36

Accuracy, True Positive Rate (TP Rate), False Positive Rate (FP Rate), Precision, Recall, F-

measure, and Cross-Validation were the evaluation measures employed. The TP Rate measures

how effectively the machine learning algorithm model can estimate the positive accurately,

whereas the FP Rate measures how well it predicts the positive wrong. Accuracy measures how

effectively our model identified ransomware. The Accuracy of the affirmative prediction is

measured by precision. Recall measures how accurately a favorable forecast was made. The

balance of precision and recall is determined by the F-measure. The area under the curve for

TP rate vs. FP rate is known as ROC, while the area under the curve for precision versus recall

is known as PRC. To visually demonstrate the performance of our SVM model, we present

figure 8, which showcases the confusion matrix. This matrix allows us to identify the True

Positives (TP) and False Positives (FP) in terms of distinguishing between malicious and benign

applications.

Figure 8 Confusion Matrix of Malicious and Benign Samples.

CHAPTER 3: RESEARCH METHODOLOGY

37

3.4.5 Signature Database

Once a sample has been identified as ransomware by the ML model described earlier, the file's

hash in the form of a signature, and other essential details, will be maintained in a DB server

(MySQL). The signature hash was generated via SHA- 256, hashing the malware file containing

64 characters. The file's content might be quickly and easily matched with this technique;

ransomware can be found immediately and without Cuckoo Sandbox analysis. On average,

Cuckoo Sandbox takes 2-4 minutes to inspect the file.

This method was substantially more efficient, quicker, and more accurate. Nevertheless, a

signature repository had to be utilized for it to function initially; an ML technique could be used

to create it. This process is very meticulous and tailored to the particular malicious software

sample; even the slightest changes will make it useless. The design of the Signature

Repository’s MySQL database is presented in Figure 6. When the ML model identifies a file

as ransomware, it isolates it and places crucial information into the two database tables, Sample

and Repeats. If ML identified the ransomware, it implied that this was the user’s primary attack

from the ransomware.

The Sample table consists of eight fields, the first of which is Hash-Value, which contains the

file's hash code. The FileName field stores the initial file name. The Attack field holds the

number of times the user has been targeted by the ransomware. The Date and Time attribute

records the date and time of the first ransomware attack, while the Size field stores the file's

size in megabytes and the created field keeps track of the file's creator. The Location column

records the file's quarantined location after its extension is removed to deactivate it. The

signature matching method will detect the same ransomware if it strikes again. In such a

situation, the information of the second attack will be inserted into the table as Repeat, and the

CHAPTER 3: RESEARCH METHODOLOGY

38

file will be deleted with one value added to the Attack field in the Sample table as shown in

Figure 9.

3.5 Pre-Encryption Model Verification

Similarly, the equation that determines how to calculate API pattern identification using the

trained ML algorithm of the pre-encryption model is shown in Figure 7. When the test file has

been tagged as “Un-match,” the pre-encryption APIs will be retrieved for pattern recognition

[49,50]. This procedure will reveal whether the file was “Goodware” or “Ransomware.”

The mathematical expression for the process signatures updates to the model’s Signature

Repository is also shown in Figure 10. When a file is flagged as “Ransomware,” the signature

repository is checked to see if it already contains the signature; if not, the signature repository

is updated with the new signature [51,52].

Figure 9 Data Structure of Signature Database Repository.

CHAPTER 3: RESEARCH METHODOLOGY

39

3.6 Summary

In this chapter, we highlight the methodologies used in this research to obtain the results and

offers guidance to achieve similar outcomes. The approach involves collecting datasets from

reliable sources, identifying the feature set by filtering the data, and utilizing Machine

Learning techniques for classification. The following chapter will delve into the experimental

setup designed for this specific analysis.

Figure 10 Flow Diagram of Ransomware Detection.

40

4. Experimental Setup

Chapter 4 presents a detailed description of the experimental setup that has been carefully

designed to support the research objectives. The chapter justifies the methods and techniques

used and provides comprehensive information about the system configurations that were

implemented during the research.

4.1 Overview

The experimental setup comprises several crucial components that facilitate the execution of

the research process with a focus on Windows Pre-encryption scenarios. The first component

is the Windows Pre-encryption Dataset. This dataset serves as the primary input for conducting

the analysis and evaluation of pre-encryption scenarios. It encompasses a comprehensive

collection of both malicious and benign applications/files. Careful curation ensures that the

dataset represents a diverse range of samples encountered in real-world scenarios, capturing

potential threats and legitimate files accurately. Another vital component is the dedicated PC

allocated for running the Python-based code. This PC serves as the computational platform,

equipped with the necessary hardware and software resources to handle the experimental

workload efficiently. The specifications of the PC, including its processing power, memory

capacity, and storage capabilities, are carefully selected to meet the requirements of the

experimentation process. This ensures smooth execution and accurate results.

The Python-based code forms the core of the experimental setup. It is meticulously designed

to generate a comprehensive feature set and conduct the evaluation process effectively.

Leveraging the Windows Pre-encryption dataset, the code extracts relevant features, performs

advanced analysis techniques, and executes classification or evaluation algorithms. The

CHAPTER 4: EXPERIMENTAL SETUP

41

codebase adheres to best practices in software development, ensuring readability, modularity,

and reproducibility. Integrating these components into the experimental setup enables

researchers to systematically analyze and evaluate the behavior of malicious and benign

applications/files in Windows Pre-encryption scenarios. The dataset provides a reliable and

representative sample pool, enabling robust experimentation. The dedicated PC, optimized for

computational efficiency, ensures that the Python-based code operates seamlessly and delivers

accurate results. The well-crafted code encapsulates the required algorithms and techniques,

facilitating feature extraction, classification, and evaluation processes.

Overall, this professional and systematic experimental setup allows researchers to gain valuable

insights into the characteristics and behavior of applications/files in the context of Windows

Pre-encryption. The findings derived from this experimentation contribute to advancing

knowledge in the field of cybersecurity and aid in the development of effective

countermeasures against potential threats.

4.2 Setting up the Environment

For carrying out experimentation, a windows-based machine has been used. The specifications of the

system have been shown in below Table 5.

Table 5 System Specifications.

Property Description

Manufacturer HAIER

Model Y11C

Architecture x64 based

Operating System Windows 10 Pro

Processor Intel Core m3-7Y30 CPU@ 1.00GHz

RAM 8 GB

CHAPTER 4: EXPERIMENTAL SETUP

42

Storage 1 TB

Windows-based machine manufactured by Haier, model Y11C. It operates on a 64-bit

architecture, allowing it to efficiently utilize the capabilities of modern computing systems. The

chosen operating system is Windows 10 Pro, which provides a robust and secure environment

for conducting various tasks and experiments. At the core of the system lies an Intel Core m3-

7Y30 CPU. This processor belongs to the Intel Core series, known for its performance and

power efficiency. The specific model, m3-7Y30, operates at a base clock speed of 1.00GHz.

While the base clock speed may seem relatively low, it is important to note that modern

processors often utilize dynamic clocking mechanisms to adjust their speed based on workload

demands. This enables efficient power management and optimal performance for various

computational tasks.

To support the processing capabilities, the system is equipped with 8 GB of RAM. Random

Access Memory (RAM) plays a crucial role in determining the system's ability to handle and

process data effectively. With 8 GB of RAM, the system can accommodate a significant amount

of data and ensure smooth multitasking during experimentation. For data storage purposes, the

system offers a spacious 1 TB storage capacity. This storage capacity allows for the efficient

retention and retrieval of experimental data, software tools, and other necessary files. The

sizable storage ensures that researchers have ample space to store and analyze experimental

results without concerns of running out of storage capacity. By considering these specifications,

the system demonstrates a suitable configuration for carrying out experiments and conducting

various computational tasks. The combination of a 64-bit architecture, Windows 10 Pro

operating system, Intel Core m3-7Y30 CPU, 8 GB of RAM, and 1 TB of storage capacity

CHAPTER 4: EXPERIMENTAL SETUP

43

provides a balanced and capable platform for experimental research, ensuring smooth

performance and efficient data handling throughout the experimentation process.

4.3 Model Implementation

The implementation of pre-encryption detection for Windows platforms utilizing the Python

programming language posed a challenge due to the primary design of Cuckoo Sandbox for Linux

platforms, which operate on different operating systems. To address this requirement, an extensive

research effort was undertaken, leading to the discovery that Linux can be installed as a subsystem on

the Windows platform. This realization proved to be a viable solution, enabling the seamless integration

of Linux functionalities within the Windows environment. As a result, the pre-encryption detection

methodology can be effectively applied, leveraging the Linux subsystem to enhance the detection

capabilities on Windows-based systems.

Cuckoo Sandbox, a powerful open-source tool for dynamic malware analysis, primarily designed for

Linux, was identified as a key component for pre-encryption detection. To overcome the platform

compatibility limitations, the Windows Subsystem for Linux (WSL) feature was identified as a valuable

resource. By installing a Linux-based operating system, specifically Ubuntu 20, as a subsystem, Cuckoo

Sandbox was successfully deployed within this Linux environment on the Windows platform. This

integration allowed the utilization of Cuckoo Sandbox's advanced analysis capabilities for pre-

encryption detection. In conjunction with Cuckoo Sandbox, the MySQL relational database system

Figure 11 Proposed Model Execution in Operating System.

CHAPTER 4: EXPERIMENTAL SETUP

44

played a crucial role in supporting the pre-encryption detection process. Once the ML algorithm within

Cuckoo Sandbox identifies ransomware, the signature of the malicious file is recorded in the MySQL

repository. This repository, managed by the Apache server, serves as a centralized storage for all

recognized ransomware signatures. Through the comparison of file data hashes, the system can

accurately identify ransomware and initiate appropriate actions to mitigate the threat.

The Windows 10 Professional system, known for its robust security features, implements the pre-

encryption principle within its framework as seen in Figure 11. This provides a solid foundation for the

integration of Cuckoo Sandbox and the utilization of the Linux subsystem for pre-encryption detection.

With the ML algorithm's pre-encryption API developed within Cuckoo Sandbox, the system gains the

ability to detect and analyze potential threats before they undergo encryption, significantly improving

the effectiveness of the detection process. The pre-encryption detection system's operation involves a

well-defined workflow. Once ransomware is identified by the ML algorithm within Cuckoo Sandbox,

its signature is stored in the MySQL repository, providing a comprehensive reference for future

detection instances. The Apache server, which runs MySQL, ensures efficient storage and retrieval of

the recognized ransomware signatures. The system's front-end module, typically implemented as a

graphical user interface (GUI), facilitates seamless interaction with the user and promptly notifies them

about the presence of ransomware, enabling swift response and mitigation measures. The successful

integration of Cuckoo Sandbox with the Linux subsystem on the Windows platform exemplifies the

adaptability and versatility of the Windows ecosystem. This innovative approach expands the

capabilities of pre-encryption detection, empowering researchers and security practitioners to

effectively combat the evolving landscape of cybersecurity threats. By leveraging the combined power

of Cuckoo Sandbox, the MySQL relational database system, and the Linux subsystem, the pre-

encryption detection system provides an advanced and proactive defense mechanism against

ransomware attacks on Windows-based systems.

In conclusion, the integration of Cuckoo Sandbox and the Linux subsystem within the Windows

environment represents a significant breakthrough in pre-encryption detection. This professional and

meticulously engineered solution showcases the interdisciplinary nature of cybersecurity research,

CHAPTER 4: EXPERIMENTAL SETUP

45

where innovative approaches are devised to address complex challenges in protecting critical systems

and data from malicious threats.

4.4 Installing Pre-requisite Software

Following Software needs to be installed before the experimentation process can be followed:

1. Archiving Tool (WinRAR): An archiving tool such as WinRAR is required for extracting

application samples. You can download WinRAR from the following link:

https://www.win-rar.com/download.html?&L=0

2. Visual Studio Code: Visual Studio Code is a code editor that can be used to test and run code

locally. You can download Visual Studio Code from the following link:

https://code.visualstudio.com/download#

3. Python Interpreter: A Python interpreter, preferably version 3.8 or higher, is needed for

extracting applications, generating feature sets, and performing classifications. You can

download the Python interpreter from the official Python website:

https://www.python.org/downloads/release/python-380/

4. Machine Learning Libraries: Install the necessary machine learning libraries to run machine

learning code. You can refer to the documentation or installation instructions specific to the

libraries you require. One resource for installing Python packages is ApmMonitor.

https://apmonitor.com/pds/index.php/Main/InstallPythonPackages

5. MySQL Database: Install the MySQL Database, which will be used for storing application

metadata such as name, signatures, size, package name, etc. This will speed up the process

and help keep track of already de-compiled applications. You can download MySQL from the

official website: https://dev.mysql.com/downloads/mysql/

6. Database Viewer for MySQL: Install a database viewer for MySQL, such as MySQL

Workbench. This tool will allow you to import and view datasets available in the form of a

database. You can download MySQL Workbench from the following link:

https://www.win-rar.com/download.html?&L=0
https://code.visualstudio.com/download
https://www.python.org/downloads/release/python-380/
https://apmonitor.com/pds/index.php/Main/InstallPythonPackages
https://dev.mysql.com/downloads/mysql/

CHAPTER 4: EXPERIMENTAL SETUP

46

https://dev.mysql.com/downloads/workbench/

7. XAMPP: Install XAMPP, which includes the Apache server, to locally set up a MySQL server

for storing signatures. XAMPP provides an easy way to set up a development environment.

You can download XAMPP from the official website:

https://www.apachefriends.org/download.html

4.5 Summary

In this chapter, we explain the experimental setup proposed for the analysis. The chapter covers the

process of collecting the necessary dataset, setting up the required environment, and the related

codebase. Additionally, it provides information on the installation of the necessary software for the

analysis process and their source

https://dev.mysql.com/downloads/workbench/
https://www.apachefriends.org/download.html

47

5. Experimental Results

Chapter 5 presents the results obtained from the research in the form of classification results

and provides an analysis of these results. The chapter compares the results with the original

benchmark approach [27] and discusses the achievements of the proposed approach.

5.1 Overview

Windows applications use API and system calls to provide functionality to the users, which are

exploited by malware developers for conducting cybercrimes. In this study, extensive analysis

has been carried out on a windows dataset representing benign and malicious applications. We

will discuss different evaluation metrics employed while performing the analysis to measure

the effectiveness of the approach.

5.2 Evaluation Measures

For evaluation, the following metrics are employed: Sensitivity, Precision, Accuracy, Area

Under Curve (AUC), and the Receiver Operating Characteristic (ROC). Correspondingly, the

following formulas represent their definitions:

1) 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇 𝑃 + 𝑇 𝑁

𝑇 𝑃 + 𝐹 𝑃 + 𝑇 𝑁 + 𝐹 𝑁

2) 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇 𝑃

𝑇 𝑃 + 𝐹 𝑁

3) 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇 𝑃

𝑇 𝑃 + 𝐹 𝑃

4) 𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
𝑇𝑃

𝑇𝑃+
1

2
(𝐹𝑃+𝐹𝑁)

CHAPTER 5: EXPERIMENTAL RESULTS

48

True positive (TP), false positive (FP), true negative (TN), and false negative (FN) are crucial

metrics utilized in assessing the effectiveness of a classification model. TP represents the

number of positive samples correctly classified as positive by the model. FP refers to the

number of negative samples erroneously classified as positive. TN denotes the number of

negative samples correctly classified as negative. FN signifies the number of positive samples

incorrectly classified as negative. These metrics play a vital role in evaluating the accuracy and

performance of a classification model.

5.3 Performance Evaluation of Proposed Model

To assess the effectiveness of our research, we utilized various classification models to

demonstrate the generalizability of our approach. To prevent overfitting and ensure stability,

we employed cross-validation techniques during the experiments. Specifically, we used 10-fold

cross-validation where the samples were randomly divided into ten separate sets, with one set

used for testing and the remaining nine sets used for training the model. The results of the 10-

fold classification are presented in Tables 6-9, with corresponding ROC curves shown in

Figures 12-15.

Table 6 Performance of Proposed Scheme using Random Forest Classifier with 10-Fold Cross-Validation.

Features Model Accuracy

(%)

Precision

(%)

Recall

(%)

F1-Score

(%)

Cross Validation

(%)

26 RF 99.45 99.46 99.46 99.46 99.76

The results presented in Table 6 highlight the exceptional performance of the proposed

methodology when utilizing the Random Forest classifier. The achieved accuracy of 99.45%,

precision of 99.46%, and f1-score of 99.46% indicate the high effectiveness of the classifier in

CHAPTER 5: EXPERIMENTAL RESULTS

49

accurately identifying pre-encryption threats. The corresponding Receiver Operating

Characteristic (ROC) curve, shown in Figure 12, further demonstrates the classifier's ability to

strike a balance between sensitivity and specificity, with the curve being closer to the top-left

corner, indicating superior performance.

Table 7 Performance of Proposed Scheme using SVM Classifier with 10-Fold Cross-Validation.

Features Model Accuracy

(%)

Precision

(%)

Recall

(%)

F1-Score

(%)

Validation

(%)

26 SVM 99.27 99.28 99.29 99.28 99.53

Additionally, Table 7 showcases the performance of the proposed feature set when combined

with the Support Vector Machine (SVM) classifier. The results indicate an accuracy of

99.27%, precision of 99.28%, and an f1-score of 99.28%. These metrics further confirm the

efficacy of the SVM classifier in accurately classifying pre-encryption threats.

Figure 12 The Receiver Operating Characteristic (ROC) curve obtained from the proposed method using the Random
Forest classifier.

CHAPTER 5: EXPERIMENTAL RESULTS

50

The proposed methodology for pre-encryption threat detection achieves remarkable results with

an accuracy of 99.45%, precision of 99.46%, and an f1-score of 99.46% when utilizing the

Decision Tree classifier, as demonstrated in Table 8.

Table 8 Performance of Proposed Scheme using Decision Tree Classifier with 10-Fold Cross-Validation.

Features Model Accuracy

(%)

Precision

(%)

Recall

(%)

F1-Score

(%)

Validation

(%)

26 DT 99.45 99.46 99.46 99.46 99.53

Additionally, Figure 13 displays the corresponding Receiver Operating Characteristic (ROC)

curve, which showcases the methodology's ability to balance sensitivity and specificity

effectively. These exceptional performance metrics and the visualization support the efficacy

and reliability of the proposed methodology, highlighting its potential as a robust tool for

detecting pre-encryption threats and strengthening cybersecurity measures.

Figure 13 ROC Curve Obtained by Proposed Method for Decision Tree Classifier.

CHAPTER 5: EXPERIMENTAL RESULTS

51

Table 9 provides an overview of the accuracy achieved by the KNN (K-Nearest Neighbour)

and Naive Bayes classifiers, showcasing their performance in pre-encryption threat detection.

The KNN classifier achieves an accuracy rate of 99.27%, accompanied by a precision and f1-

score of 99.28%. The Naive Bayes classifier demonstrates a higher accuracy rate of 99.47%,

with a precision of 97.57% and an f1-score of 99.47%. These results highlight the effectiveness

of both classifiers in accurately classifying pre-encryption threats.

Table 9 Performance of Proposed Scheme using KNN & Naive Bayes e Classifier with 10-Fold Cross-Validation.

No. of

Features

Model Accuracy

(%)

Precision

(%)

Recall

(%)

F1-Score

(%)

Validation

(%)

26

KNN 99.27 99.28 99.29 99.28 99.38

NB 97.47 97.57 97.50 97.47 97.91

To further assess their performance, ROC graphs are presented for the KNN and Naive Bayes

classifiers in Figures 14 and 15, respectively. The ROC curves visually depict the trade-off

between true positive rate (sensitivity) and false positive rate (1 - specificity). The proximity of

the curves to the top-left corner indicates a higher performance in correctly identifying positive

instances while minimizing false positives. The ROC graphs further validate the classification

capabilities of both the KNN and Naive Bayes classifiers in pre-encryption threat detection.

CHAPTER 5: EXPERIMENTAL RESULTS

52

Overall, the results from Table 9 and the ROC graphs in Figures 14 and 15 demonstrate the

efficacy of the KNN and Naive Bayes classifiers in accurately detecting pre-encryption threats.

These findings contribute to the comprehensive evaluation of the proposed methodology and

Figure 14 ROC Obtained by the proposed method on the KNN classifier.

Figure 15 ROC Analysis of the Proposed Method on Naïve Bayes Classifier.

CHAPTER 5: EXPERIMENTAL RESULTS

53

provide valuable insights for selecting the most suitable classifier for pre-encryption threat

detection applications.

5.4 Summary

In this chapter we present an in-depth analysis of the results obtained from the research. The

chapter discusses the outcomes of the proposed approach and evaluates its effectiveness. In the

subsequent chapter, the validation and verification of the results achieved will be provided

54

6. Discussion and Analysis

In this chapter, we will focus on the validation and verification of the analysis and results

obtained during the experimentation, specifically in relation to the proposed feature set. The

chapter compares the results obtained from the classifiers discussed in the previous chapter

(Random Forest, SVM, Decision Tree, KNN, and Naive Bayes) with a benchmark approach.

Additionally, the results obtained are evaluated against a benchmark for verification purposes.

6.1 Overview

In this section, we will evaluate and compare the performance of proposed and existing

techniques. For evaluation, we have employed metrics such as Accuracy, precision, recall,

TRP, FPR, etc.

From Table 10, it is shown that [27] employed the 232 APIs features while achieving 100%

accuracy on the random forest model. However, from experiments, we realized that only 46

APIs calls are sufficient instead of 232 APIs to detect the ransomware. For this, we employed

the random forest feature importance technique and successfully identified the most relevant

46 features while achieving 99% detection accuracy.

In Figure 16, the features utilized by Kok S.H et al. for the detection of ransomwares are

categorized. It is evident from Figure 16 that certain features demonstrate a higher degree of

influence. Consequently, by employing a feature ranking approach, we have selected only those

features that exhibit significant impact in the detection of crypto ransomwares, as depicted in

the figure. Furthermore, we also categorized the 46 APIs in terms of reading and writing

functions/APIs to identify the significant contribution of APIs. Tables 11 and 12 show that the

proposed model consists of 20 read functions and 26 write functions. The identified read-and-

CHAPTER 6: DISCUSSION AND ANALYSIS

55

write API can be seen in Table 11 and Table 12. After analyzing read-write functions, we

employ these features separately in our machine-learning models to evaluate the accuracies.

Table 10 Kok. at el. Achieved Accuracy [27].

Features

(APIs)

Model Accuracy Precision Recall F1-Score Cross Validation

232 Random

Forest

100% 100% 100% 100% 99.93%

Table 11 Read Functions [53] of Ranking Features 46.

S. No Function Purpose Description

1. NtReadVirtualMe

mory

Read Read the memory and analyze its structure.

 Figure 16 Features Importance.

CHAPTER 6: DISCUSSION AND ANALYSIS

56

2. LookupPrivilegeV

alueW

Read Using a specified system’s locally unique

identity (LUID), the LookupPrivilegeValue

function locates the privilege name’s local

representation.

3.

GetDiskFreeSpac

eExW

Read

The amount of space available on a disk

volume is fetched is composed of the total

amount of space, the total amount of free

space, and the total amount of free space that

is available to the user that is associated with

the calling thread.

4. OpenServiceA Read Opens an existing service.

5. NtOpenKey Read

6. GetSystemTimeA

sFileTime

Read Obtains the time and date for the current

system. Coordinated Universal Time (UTC)

has been used to format the data.

7. NtDelayExecution Read A pointer to the delay interval value is

provided as the NtDelayExecution function’s

second argument.

8. GetVolumePathN

ameW

Read Discovers the volume mount point where the

mounted path is located.

9. NtQueryValueKe

y

Read For a registry key, the ZwQueryValueKey

procedure returns a value entry.

CHAPTER 6: DISCUSSION AND ANALYSIS

57

10. FindResourceExA Read Identifies the location of a resource in the

provided module with the specified type and

name.

11. GetFileAttributes

W

Read For a specific file or directory, retrieves file

system attributes.

12. FindResourceEx

W

Read Identifies the location of the resource in the

supplied module with the specified type,

name, and language.

13. NtGetContextThr

ead

Read Obtains the context of the chosen thread.

14. GetCursorPos Read The location of the mouse cursor in screen

coordinates can be retrieved.

15. NtOpenDirectory

Object

Read Reveals a current directory object.

16. Getaddrinfo Read The getaddrinfo function converts an ANSI

hostname to an address without regard to

protocol.

17. NtReadFile Read Reads data from an open file.

18. SearchPathW Read Looks for a particular file in a given path.

19. GetSystemMetrics Read The requested system metric or system

configuration setting is retrieved.

CHAPTER 6: DISCUSSION AND ANALYSIS

58

20. GetSystemDirecto

ry

Read Reveals the system directory’s path. System files

like drivers and dynamic-link

libraries can be found in the system directory.

Table 12 Write Functions [53] Of Ranking Features 46.

S.NO Function Purpose Description

1. VirtualProtectEx Write Changes the security on a subset of committed

pages in the address space of a

certain process.

2. HttpSendRequest

W

Write HttpSendRequest allows the client to specify

additional headers to send along

with the request while sending the given request

to the HTTP server.

3. NtFreeVirtualMem

ory

Write The NtFreeVirtualMemory operation releases,

decommits, or both a group of

pages in a specific process’ virtual address

space.

4. CreateThread Write A new thread is created for a process by the

CreateThread function. The starting

address of the code that the new thread will

execute must be specified by the generating

thread.

CHAPTER 6: DISCUSSION AND ANALYSIS

59

5. LdrLoadDll Write Using the low-level function LdrLoadDll, a

DLL can be loaded into a

process.

6. SetEndOfFile Write To shrink or enlarge a file, the SetEndOfFile

function can be used. If the file is

expanded, the contents of the region between

both the old end as well as the new ends are not

defined.

7. UuidCreate Write The UUID created by the UuidCreate function

cannot be linked to the computer’s

ethernet address where it was created.

Additionally, it cannot be linked to other UUIDs

produced on the same computer.

8. SetFilePointer Write This method stores the file pointer in two

LONG values. To deal with file pointers

that are larger than a single LONG value, use

the SetFilePointerEx function.

9. NtProtectVirtualM

emory

Write The EAF-generated guard pages are removed by

the NtProtectVirtualMemory

function. Windows shellcode is compatible with

Windows version 7 and later with the proof-of-

concept code.

CHAPTER 6: DISCUSSION AND ANALYSIS

60

10. CryptAcquireCont

extW

Write Use the CryptAcquireContext function to get a

handle on a certain key container

within a particular cryptographic service

provider (CSP). The resulting handle is used in

calls to CryptoAPI methods using the selected

CSP.

11. MessageBoxTimeo

utW

Write The MsgBoxWithTimeout function creates a

new thread to allow the message

box to be closed.

12. NtWriteVirtualMe

mory

Write This function copies the address range of the

currently running process into

the address space of the specified process.

13. CreateDirectoryW Write It creates a brand-new directory. If the

underlying file system permits security on

files and directories, the function attaches a

specified security descriptor to the new

directory.

14. NtCreateKey Write The ZwCreateKey routine opens an existing

registry key or generates a new one.

15. WriteProcessMem

ory

Write Writes information to a specific process’s

memory location. If any portion of the

CHAPTER 6: DISCUSSION AND ANALYSIS

61

location to be written to is not accessible, the

operation will fail.

16. LdrUnloadDll Write Using the low-level function LdrLoadDll, a

DLL can be loaded into a process.

17.

ReadProcessMemo

ry

Write

ReadProcessMemory copies information in the

given address range from the

target process’s address space into the target

buffer in the current process. Any process with a

handle that has PROCESS VM READ access

can call the function.

18. NtSetInformationF

ile

Write NtSetInformationFile modifies a file’s

information. Any FILE XXX INFORMATION

structure member that is not supported by a

specific device or file system is ignored.

19. NtTerminateProces

s

Write Puts an end to the specified process and all of

its threads.

20. NtWriteFile Write Data is written to an open file by the

ZwWriteFile function.

21. VirtualFreeEx Write The specified process releases, decommits, or

releases and decommits a

the portion of memory located within its virtual

address space.

CHAPTER 6: DISCUSSION AND ANALYSIS

62

22. NtSetContextThrea

d

Write

23. CoInitializeSecurit

y

Write Sets the process’s default security values and

registers security.

24. NtResumeThread Write Increases a thread’s suspensions per minute. As

soon as the suspend

count drops to zero, the thread restarts its

operation.

25. InternetCloseHandl

e

Write The function discards any unfinished data and

ends any pending activities

on the handle.

26. NtClose Write To close an object handle, use the NtClose

procedure.

Table 13 shows the accuracies of proposed machine learning models with precision, recall, F1

score, and their cross-validation check. We got 100% accuracy using the Random Forest model,

99.81% using SVM, 99.63% using the Decision Tree, 98.09 using K-NN, 97.29% using Naive

Bayes, and 99.18% of the Voting Classifier for 46 features. Further, digging into reading

functions we get 96.20% using RF, SVM 96.38% DT 95.84% K-NN 96.38% NB 92.23%, and

VC 96.48% accuracy.

We focused our efforts on the write function, as it contributes the most to ransomware

compared to reading functions. After all, ransomware encrypts files at the first stage. We get

CHAPTER 6: DISCUSSION AND ANALYSIS

63

99.45% accuracy using Random Forest, SVM 99.27% DT 99.45% K- NN 99.27% NB 97.47%,

and the Voting classifier, which takes an average of all classifiers have an accuracy of 99.72%.

This means that we can achieve the similar accuracy as presented in [27], using only 26 features

of write function APIs. Our efficient dataset was verified using four other machine learning

models, i.e., support vector machine, decision tree, k-nearest neighbour, naive bayes, and

voting classifier with random forest. It presents a better result with fewer API functions.

Table 13 Accuracies of Machine Learning Models.

S.

No

Features

(APIs)

Model Accuracy

(%)

Precision

(%)

Recall

(%)

F1-Score

(%)

Cross Validation

(%)

1.

Read &

Write

Combine

(46)

RF 100 100 100 100 99.76

SVM 99.81 99.82 99.82 99.82 99.61

DT 99.63 99.64 99.64 99.64 99.45

KNN 99.09 99.10 99.10 99.10 99.37

NB 97.29 97.40 97.29 97.29 97.75

VC 99.18 99.19 99.19 99.19 99.93

2.

Read

(20)

RF 96.20 96.22 96.20 96.21 97.44

SVM 96.38 96.40 96.39 96.39 96.51

DT 95.84 95.86 95.84 95.85 97.21

KNN 96.38 96.47 96.37 96.39 96.67

NB 92.23 92.87 92.31 92.22 91.71

VC 96.48 96.48 96.49 96.48 97.69

3.

Write

(26)

RF 99.45 99.46 99.46 99.46 99.76

SVM 99.27 99.28 99.29 99.28 99.53

DT 99.45 99.46 99.46 99.46 99.53

KNN 99.27 99.28 99.29 99.28 99.38

NB 97.4 97.57 97.50 97.47 97.91

VC 99.72 99.72 99.74 99.73 99.45

CHAPTER 6: DISCUSSION AND ANALYSIS

64

Similarly, for evaluating the matrices of our model, Accuracy, Precision, Recall, F-Measure,

Cross-Validation, and ROC curves (Receiver Operating Characteristics Curve) were used to

measure the probability of classification models at different levels. The curve has a true positive

rate along the x-axis and a false positive rate along the y-axis. Figure 17-A, 17-B, 17-C, and

17-D represent ROC curves of different Machine learning models.

6.2 Comparison with Reference Approach

Table 14 provides a comprehensive performance comparison between the proposed approach

and Kok S. H. et al.'s method [27]. The corresponding visual representation can be observed in

Figure 18. The findings indicate that the Random Forest classifier exhibits the best detection

performance. It's worth noting that the proposed approach achieves similar detection rates on

SVM, Decision Tree, KNN, and Naive Bayes models, using a smaller feature set, compared to

Kok S. H. et al.'s method [27]. Consequently, the Random Forest-based ensemble classifier,

 Figure 17 ROC Curves of ML Models

CHAPTER 6: DISCUSSION AND ANALYSIS

65

using the proposed feature set, achieves an accuracy rating of 99 ± 0.5%. Moreover, Table 14

reveals that the proposed approach reduces the feature set by 88.79% while still maintaining

comparable detection rates. Overall, the proposed approach outperforms Kok S. H. et al.'s

method [27] in terms of accuracy, and the Random Forest classifier proves to be the best-

performing model.

Table 14 Performance Comparison of Proposed Scheme and Kok S. H. [27] on 10-Fold Validations.

Classifier Kok et al [23] Approach Proposed Approach

of

feat

ures

Precisi

on

(%)

Accur

acy

(%)

Cross-

Validati

on (%)

of

featur

es

Preci
sion
(%)

Accuracy
(%)

Cross-
Validation

(%)

Random

Forest

232

100 100 99.93

26

99.46 99.45 99.76

SVM 100 100 99.66 99.28 99.27 99.53

Decision

Tree

99.74 99.72 99.32 99.46 99.45 99.53

KNN 98.39 98.37 99.39 99.28 99.27 99.38

Naïve

Bayes

98.11 98.10 97.36 97.57 97.4 97.91

Average 99.24 99.23 99.13 99.01 98.96 99.22

Reduce

% of

features

0% 88.79%

CHAPTER 6: DISCUSSION AND ANALYSIS

66

During the experiments, Table 15 presents the initial results of the proposed Cuckoo-based

dangerous APIs set on various classifiers, which include Random Forest, SVM, Decision Tree,

KNN, and Naïve Bayes. The proposed feature set demonstrated similar detection accuracies

while utilizing a significantly smaller number of features, 26 times smaller, compared to the

feature set of the existing method, which was 232 times larger. This reduction in the number

of features amounts to an 88.79% decrease. Figure 19 provides a comprehensive and insightful

performance comparison between the proposed method and several existing approaches,

shedding light on the number of features employed and the corresponding detection accuracies.

Notably, the study by S.H. Kok [27] achieved an impressive accuracy of 100% by leveraging

a rich feature set of 232, encompassing a complete set of read and write APIs. Similarly, M.

Anwar [28] attained an accuracy of 87% utilizing 206 API features, demonstrating the efficacy

of their approach.

Figure 18 The Detection Accuracy of The Suggested and Chart of S. H. Kok [27] Methodologies In Diverse Machine Learning
Classifiers.

CHAPTER 6: DISCUSSION AND ANALYSIS

67

Furthermore, Wira Z.A [29] demonstrated a noteworthy accuracy of 97.07% by effectively

utilizing a reduced feature set of 80. P. Mohan Anand [30] achieved a commendable accuracy

of 95.38% with the aid of 135 carefully selected features. Anshika Sharma [54], focusing

specifically on ransomware detection in IoT environments, achieved an accuracy of 96.62%

by leveraging a concise set of 32 features that primarily encompassed network attributes such

as IP address, SSL State, and ports. It is important to emphasize that Anshika Sharma's model

is designed exclusively for IoT networks and may not be directly applicable to other

environments such as Windows, Linux, Android, and iOS.

In contrast to the aforementioned approaches, the proposed method in this study stands out by

achieving an exceptional accuracy of approximately 98% while employing an impressively

minimal feature set of just 26. This surpasses the performance of the existing methods,

underscoring the effectiveness and efficiency of the proposed approach. By focusing primarily

on write function APIs, the model showcases a more streamlined and targeted approach,

resulting in enhanced accuracy and efficiency compared to other existing methods.

The findings from Figure 19 highlight the significant advancements in detecting ransomware

and the increasing effectiveness of different feature sets and methodologies. The proposed

method, with its superior accuracy and efficiency, holds promise for improving ransomware

detection in various environments, making it a noteworthy contribution to the field.

Table 15 Results of Detecting Dangerous APIs Using Cuckoo-Based API Calls with Random Forest, SVM, Decision Tree,

KNN, And Naïve Bayes Classifiers, Utilizing 10-Fold Cross-Validation.

Approach Precision (%) Recall

(%)

F1 - Score

(%)

Accuracy

(%)

Cross

Validation

Random Forest 99.46 99.46 99.46 99.45 99.76

SVM 99.28 99.29 99.28 99.27 99.53

CHAPTER 6: DISCUSSION AND ANALYSIS

68

Decision Tree 99.46 99.46 99.46 99.45 99.53

KNN 99.28 99.29 99.28 99.27 99.38

Naïve Bayes 97.57 97.50 97.47 97.47 97.91

Voting Classifier 99.72 99.74 99.73 99.72 99.45

6.3 Applicability of the Approach

The below use cases are presented to better understand the application of the proposed

approach. To support the ransomware detection analysis early detection patterns could help in

minimizing and in the ideal case preventing the damages. Thus, based on the above analysis we

can utilize the effectiveness of the research in many cases, such as those in the following:

Figure 19 Comparison of Number of Features and Detection Accuracy between Proposed and Existing Approaches.

CHAPTER 6: DISCUSSION AND ANALYSIS

69

A. The proposed approach can distinguish between malicious and benign applications

based on the requested API calls during the execution process.

B. The approach can be integrated as a lightweight anti-ransomware module on end

devices. Upon installation of new apps, the module extracts the API features and sends

them to a trained classifier for classification. Based on the results, the module allows

the app to run or Figure reports a detection to the end user.

C. The approach can be deployed on Windows application stores to categorize apps before

they are available to the general public.

D. Host-based and market-based implementations of the approach can be utilized to

provide additional security measures. This implementation can help verify apps that are

not available on official app stores.

6.4 Summary

Chapter 7 provides a summary of the important results obtained from the research and discusses

the validations that were performed to verify these findings. The chapter also compares the

results obtained from the benchmark approach to those achieved through the proposed

approach. Additionally, some potential applications of the proposed approach are discussed. In

the subsequent chapter, the conclusion and future work will be presented.

70

7. Conclusion & Future Work

In this chapter, we will summarize the main findings and suggests future research directions,

highlighting unresolved research problems that require attention from the research

community.

7.1 Conclusion

The use of strong encryption by crypto-ransomware, a dangerous type of malware, can render

a victim's digital files worthless and may even be irrecoverable, even after the ransom is paid.

The creation of a pre-encryption model for crypto-ransomware offering two degrees of pre-

encryption detection is the strongest aspect of this research. The signature of the file is

compared to known ransomware signatures using SHA-256 hashing, permitting a quick and

accurate identification without launching the file and allowing for early detection. In the

second detection level, an ML model that has been trained is utilized to identify both known

and unknown ransomware by examining the API created during the pre-encryption stage. Once

the ML algorithm identifies new or unique malware, the ransomware signature will be stored

in the signature repository for future use in the first detection level.

This research has yielded a dataset of newly available ransomware for supervised machine

learning and the signature repository, both of which could be advantageous for future research

on ransomware. However, it is important to note that the use of pre-encryption detection

models has some limitations. For example, ransomware that relies on the Windows API for

encryption is not detectable by pre-encryption models. As such, pre-encryption models should

be used as an additional measure of

CHAPTER 7: CONCLUSION & FUTURE WORK

71

protection, rather than as the sole source of ransomware detection. Additionally, it is important

to acknowledge that while malware appears in various forms worldwide, the pre-encryption

model is only capable of detecting one variant of ransomware.

7.2 Limitation & Future Work

The results obtained from the pre-encryption model show promise, but further improvements

are necessary before integrating it into the product. One of the challenges faced in this process

is the need for a complete installation and configuration of auxiliary applications like Cuckoo

Sandbox and MySQL. To address this, it is worth exploring the development of a stand-alone

pre-encryption model that does not require different configurations of supporting applications.

Creating a stand-alone tool would simplify the implementation process and make it more

convenient for users. By packaging all the necessary components and dependencies into a

single executable or containerized application, users can easily run the tool without having to

deal with complex installations or additional software requirements.

In addition to making the pre-encryption model stand-alone, employing deep learning

techniques can enhance its effectiveness in detecting unknown ransomware. Deep learning

algorithms, such as convolutional neural networks (CNNs) and recurrent neural networks

(RNNs), have demonstrated success in various domains, including image recognition and

natural language processing. By training a deep learning model on a diverse dataset containing

known ransomware samples as well as benign software, the model can learn to recognize

patterns and features that indicate ransomware attacks. Furthermore, techniques like transfer

learning can be explored, where a pre-trained model on a large dataset, such as ImageNet, is

fine-tuned for the specific task of ransomware detection. This approach can save

computational resources and training time while still achieving high performance.

CHAPTER 7: CONCLUSION & FUTURE WORK

72

To improve the model's accuracy, it is crucial to ensure a comprehensive and up-to-date

training dataset consisting of diverse ransomware samples. Regular updates and inclusion of

emerging threats will help the model stay robust against evolving ransomware attack

techniques.

In summary, the pre-encryption model's promising results call for further improvement before

integration into the product. Developing it as a stand-alone tool and leveraging deep learning

techniques can enhance its usability and effectiveness in detecting unknown ransomware.

Continuous updates to the training dataset and exploration of transfer learning techniques will

contribute to the model's accuracy and adaptability.

BIBLIOGRAPHY

73

Bibliography

[1] Ransomware attack report. [Online]. Available:

https://en.wikipedia.org/wiki/WannaCry ransomware attack.

[2] Diro, A., Reda, H., Chilamkurti, N., Mahmood, A., Zaman, N., Nam, Y., 2020.

Lightweight authenticated encryption scheme for the internet of things based on publish-

subscribe communication. IEEE Access 8, 60539–60551.

[3] Humayun, M., Niazi, M., Jhanjhi, N., Alshayeb, M., Mahmood, S., 2020. Cyber security

threats and vulnerabilities: a systematic mapping study. Arab. J. Sci. Eng. no,

0123456789.

[4] Hull, G., John, H., Arief, B., 2019. Ransomware deployment methods and analysis: views

from a predictive model and human responses. Crime Sci. 8 (1), 2. Kok, S.H., Abdullah,

A., Jhanjhi, N.Z., Supramaniam, M., 2019. Ransomware, threat and detection

techniques: a review. Int. J. Comput. Sci. Netw. Secur. 19 (2), 136–146.

[5] Kok, S.H., Abdullah, A., Jhanjhi, N.Z., Supramaniam, M., 2019. Pre- vention of

cryptoransomware using a pre-encryption detection algorithm. Computers 8 (4), 1–15.

[6] Homayoun, S. et al., 2019. DRTHIS: Deep ransomware threat hunting and intelligence

system at the fog layer. Future Gener. Comput. Syst. 90, 94–104.

[7] Mathur, A., Idika, N., 2007. A Survey of Malware Detection Techniques. Dep. Comput.

Sci. Purdue Univ., no. March 2007.

[8] Cabaj, K., Gregorczyk, M., Mazurczyk, W., 2018. Software-defined networking-based

crypto ransomware detection using HTTP traffic char- acteristics. Comput. Electr. Eng.

66, 353–368.

[9] Lee, S., Kim, H.K., Kim, K., 2019. Ransomware protection using the moving target

defense perspective. Comput. Electr. Eng. 78, 288–299.

[10] Cuckoo Sandbox for malware analysis. [Online]. Available:

https://cuckoosandbox.org/download.

[11] Virus Share for ransomware samples. [Online]. Available: https://virusshare.com/.

[12] VirusTotal for ransomware samples. [Online]. Available: https://www.virustotal.com/.

[13] VirusTotal for ransomware samples. [Online]. Available:

https://github.com/ytisf/theZoo.

[14] Al-rimy, B.A.S., Maarof, M.A., Shaid, S.Z.M., 2019. Crypto- ransomware early

https://en.wikipedia.org/wiki/WannaCry%20ransomware%20attack
https://cuckoosandbox.org/download
https://virusshare.com/
https://www.virustotal.com/
https://github.com/ytisf/theZoo

BIBLIOGRAPHY

74

detection model using novel incremental bagging with enhanced semirandom subspace

selection. Future Gener. Comput. Syst. 101, 476–491.

[15] Yu, Z., Gao, C.Z., Jing, Z., Gupta, B.B., Cai, Q., 2018. A practical public key encryption

scheme based on learning parity with noise. IEEE Access 6, 31918–31923.

[16] Celiktas, B., Karacuha, E., 2018. The Ransomware Detection and Prevention Tool

Design by Using Signature and Anomaly Based Detection Methods. Istanbul Technical

University.

[17] Ren, A.L.Y., Liang, C.T., Hyug, I.J., Brohi, S.N., Jhanjhi, N.Z., 2020. A three-level

ransomware detection and prevention mechanism. EAI Endorsed Trans. Energy Web 7

(26), 1–7.

[18] Alhawi, O.M.K., Baldwin, J., Dehghantanha, A., 2018. Leveraging machine learning

techniques for windows ransomware network traffic detection. Adv. Inf. Secur. 70, 1–

11.

[19] E. P. Torres P. and S. G. Yoo, 2017. Detecting and neutralizing encrypting Ransomware

attacks by using machine-learning techniques: a literature review. Int. J. Appl. Eng.

Res. 12 (18), 7902–7911.

[20] Hussain, K., Hussain, S.J., Jhanjhi, N.Z., Humayun, M., 2019. SYN flood attack

detection based on bayes estimator (SFADBE) for MANET. In: 2019 Int. Conf. Comput.

Inf. Sci. ICCIS 2019, pp. 1–4.

[21] Alzahrani, A., et al., 2018. RanDroid: Structural Similarity Approach for Detecting

Ransomware Applications in Android Platform, pp. 892–897.

[22] Cimitile, A., Mercaldo, F., Nardone, V., Santone, A., Visaggio, C.A., 2018. Talos: no

more ransomware victims with formal methods. Int. J. Inf. Secur. 17 (6), 719–738.

[23] Kardile, A.B., 2017. Crypto Ransomware Analysis and Detection Using Process

Monitor.

[24] Techniques, D., Analysis, M., 2019. A comparative assessment of obfuscated

ransomware detection methods 23(2), 45–63.

[25] Shaukat, S.K., Ribeiro, V.J., 2018. RansomWall: a layered defense sys- tem against

cryptographic ransomware attacks using machine learning. IEEE.

[26] Ami, O., Elovici, Y., Hendler, D., 2-18. Ransomware Prevention using Application

Authentication-Based File Access Control.

[27] Kok, S. H., Azween Abdullah, and N. Z. Jhanjhi. ”Early detection of crypto-ransomware

using pre-encryption detection algorithm.” Journal of King Saud University-Computer

BIBLIOGRAPHY

75

and Information Sciences (2020).

[28] Almousa, May, Sai Basavaraju, and Mohd Anwar. ”API-Based Ran- somware Detection

Using Machine Learning-Based Threat Detection Models.” 2021 18th International

Conference on Privacy, Security and Trust (PST). IEEE, 2021.

[29] Zakaria, Wira ZA, et al. ”RENTAKA: A Novel Machine Learning Framework for

Crypto-Ransomware Pre-encryption Detection.” Inter- national Journal of Advanced

Computer Science and Applications 13.5 (2022).

[30] Anand, P. Mohan, PV Sai Charan, and Sandeep K. Shukla. ”A Compre- hensive API Call

Analysis for Detecting Windows-Based Ransomware.” 2022 IEEE International

Conference on Cyber Security and Resilience (CSR). IEEE, 2022.

[31] Alqahtani, Abdullah, Mazen Gazzan, and Frederick T. Sheldon. "A proposed Crypto-

Ransomware Early Detection (CRED) Model using an Integrated Deep Learning and

Vector Space Model Approach." 2020 10th Annual Computing and Communication

Workshop and Conference (CCWC). IEEE, 2020.

[32] Kim, Y., Kim, S., & Shin, S. Y. (2021). RMOC: A Ransomware Classification System

Using a Restricted Boltzmann Machine and an Online Clustering Algorithm. IEEE

Access, 9, 35846-35860.

[33] Park, J., Jung, I., Kim, K., & Kim, J. (2021). MELCOR: Machine Learning Based

Ransomware Classification for Smart Grid. IEEE Transactions on Smart Grid, 12(3),

2193-2203.

[34] Rashid, T. A., Azab, M., & Ali, M. H. (2021). RANSID: Ransomware Detection

Framework Using Behavioral Analysis and Machine Learning. IEEE Access, 9, 109963-

109980.

[35] Nguyen, T. D., Nguyen, D. T., Nguyen, D. D., Nguyen, D. D., & Le, N. T. (2021).

ROPsight: Detection of Ransomware Attacks Using Return-Oriented Programming.

IEEE Access, 9, 107169-107183.

[36] Jung, I., Lee, S., Kim, K., & Kim, J. (2022). RaFS: A Rule- and Machine Learning-Based

Ransomware File System Detection Framework. IEEE Access, 10, 55571-55582.

[37] Jang, J., & Kim, J. (2022). RaRE: Ransomware Attack Recognition Engine Based on

Sequence Modeling. IEEE Access, 10, 5645-5657.

[38] El, I., Li, N. R., & Murphy, M. J. (n.d.). Theory and Applications Machine Learning in

Radiation Oncology.

[39] Ellis, K., Kerr, J., Godbole, S., Lanckriet, G., Wing, D., & Marshall, S. (2014). A random

forest classifier for the prediction of energy expenditure and type of physical activity

BIBLIOGRAPHY

76

from wrist and hip accelerometers. Physiological Measurement, 35(11).

https://doi.org/10.1088/0967-3334/35/11/219.

[40] S. Rajasekar, P. Philominathan, and V. Chinnathambi, “Research Methodology”, 2013.

Available: http://arxiv.org/pdf/physics/ 0601009.pdf.

[41] W. C. Booth, G. G. Colomb, and J. M. Williams, “The Craft of

Research.”[Online].Available:http://sir.spbu.ru/en/programs/master/master_program_i

n_international_ relations/digital_library/Book Research seminar by Booth.pdf

[42] C. Woody, “Chapter 3: Research Methodology,” 2001. Available:

https://shodhganga.inflibnet.ac.in/bitstream/10603/2026/16/16_chapter 3.pdf

[43] Ahmad-Azani, N.I., Yusoff, N., Ku-Mahamud, K.R., 2018. Fuzzy dis- cretization

technique for bayesian flood disaster model. J. Inf. Commun. Technol. 17 (2), 167–189.

[44] Fawagreh, K., Gaber, M.M., Elyan, E., 2014. Random forests: From early

developments to recent advancements. Syst. Sci. Control Eng. 2 (1), 602–609.

[45] Kok, S., Abdullah, A., Supramaniam, M., Pillai, T.R., Hashem, I.A.T., 2019. A

comparison of various machine learning algorithms in a distributed denial of service

intrusion. Int. J. Eng. Res. Technol. 12 (1), 1–7.

[46] Gowthaman, A., Sumathi, M., 2015. Performance study of enhanced SHA-256

algorithm. Int. J. Appl. Eng. Res. 10 (4), 10921–10932.

[47] Sgandurra, D., Munoz-gonz ˜ alez, L., Mohsen, R., Lupu, E.C., 3026.

´ Automated dynamic analysis of ransomware: benefits, limitations and use for

detection.

[48] Desktop Windows Version Market Share World- wide (Mar 2019–

Mar 2020). StatCounter, 2020. [Online]. Available:

https://gs.statcounter.com/osversionmarketshare/windows/desktop/worldwide.

[49] Rehman, A., Latif, S., Zafar, N.A., 2019a. Automata based railway gate control system

at level crossing. In: 2019 Int. Conf. Commun. Technol. ComTech 2019, no. ComTech,

pp. 30–35.

[50] Rehman, A., Latif, S., Zafar, N.A., 2019b. Formal modeling of smart office using

activity diagram and non deterministic finite automata. In: 2019 Int. Conf. Inf. Sci.

Commun. Technol. ICISCT 2019, pp. 1–5.

[51] VDMTools User Manual. Kyushu University, 2016.

[52] Larsen, P.G., Lausdahl, K., Coleman, J., Wolff, S., 2015. Overture VDM- 10 Tool

Support: User Guide, no. September. Aarhus University.

https://doi.org/10.1088/0967-3334/35/11/219
http://arxiv.org/pdf/physics/%200601009.pdf
http://sir.spbu.ru/en/programs/master/master_program_in_international_%20relations/digital_library/Book%20Research%20seminar%20by%20Booth.pdf
http://sir.spbu.ru/en/programs/master/master_program_in_international_%20relations/digital_library/Book%20Research%20seminar%20by%20Booth.pdf
https://shodhganga.inflibnet.ac.in/bitstream/10603/2026/16/16_chapter%203.pdf
https://gs.statcounter.com/osversionmarketshare/windows/desktop/worldwide

BIBLIOGRAPHY

77

[53] Read and Write function APIs. [Online]. Available: https://docs.microsoft.com/.

[54] Sharma, Anshika, Himanshi Babbar, and Amit Kumar Vats. "Ransomware Attack

Detection in the Internet of Things using Machine Learning Approaches." 2023 2nd

International Conference on Applied Artificial Intelligence and Computing

(ICAAIC). IEEE, 2023.

https://docs.microsoft.com/

APPENDICES

a

Appendices

Appendix-A

Code for Machine Learning

APPENDICES

b

