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ABSTRACT  

One of the biggest natural disasters is flooding, frequently occurring in Pakistan, due to the 

excessive rainfall in monsoon and the climate change. These floods cause severe damage to 

physical and anthropogenic resources. Identification and mapping of flood susceptible areas is 

essential for rescue, relief, rehabilitation, and timely management related informed decision-

making. Creating flood susceptibility maps and conducting assessments are essential elements 

of flood prevention and mitigation strategies. Geographic Information System (GIS) and 

remote sensing data are valuable resources for mapping flood susceptibility at different spatial 

scales. This study focused on utilizing remote sensing data and GIS to evaluate Frequency 

Ratio Model (FR), Shannon’s Entropy (SE) and Analytical Hierarchy Process (AHP) for the 

identification and mapping of flood susceptible areas in District Khairpur of Sindh Province. 

Eleven flood causative parameters were considered for flood susceptibility mapping. The 

results validation was based on the comparison of the historical flood susceptible zones using 

Area Under Curve (AUC) Method. The results reveal that precipitation, distance to stream, and 

soil are the most significant factors in flood generation and elevation is the least. The AUC 

values were 90.7%, 87.6%, and 79.5% for the FR, SE, and AHP models, respectively. These 

values indicate that FR model provides the highest accuracy and better results compared to SE 

and AHP. The results highlight the potential of remote sensing data for generating flood 

susceptibility maps and their use to devise effective mitigation and formulate efficient flood 

management plans. 
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Chapter 1  

INTRODUCTION 

1.1 Background 

Flood refers to the overflow of water bodies beyond their regular boundaries, or the 

buildup of water over land that is otherwise not typically inundated (Kundzewicz, 2014). 

Floods are a natural hazard that could be destructive for both the humans and the natural 

environment. It affects developed and underdeveloped countries. Floods are approximately 

40% of all the natural disasters (Molla, 2011).  

Because of global climate change, natural catastrophes such as storms, droughts, 

tornadoes, tsunamis, and floods occur more frequently (Samu and Kentel, 2018). The effects 

of climate change have only recently begun to be understood as a hazard to the entire globe. 

This event might lead to changes in climatic zones, sea level rise, and rainfall patterns, among 

other things (Khan et al, 2021). One of the most expensive and pervasive climate-related 

natural disasters is flooding. It was projected that floods killed 539,000 people between 1980 

and 2009 and negatively impacted the lives of 2.8 billion people (Eccles et al, 2019). In South 

Asia, a warmer climate is very likely to lead to an increase in flooding's frequency, extent, and 

magnitude (Mirza, 2010). The areas most impacted by climate change, including Pakistan, are 

the developing economies, more susceptible to climatic hazards (Khan et al, 2021). 

The combination of several physical processes results in flooding. These include 

meteorological factors such as the amount, intensity, and distribution of rainfall, hydrological 

preconditions such as soil saturation and snow cover, runoff generating process such as 

infiltration and runoff on hillslopes, and river routing such as the superposition of flood waves 

(Nied et al, 2014). 
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There are different types of floods caused by different factors. including 1) Flash Floods 

caused by heavy rainfalls. These floods occur when the high rainfall cannot be dispersed by 

soil absorption, runoff, and drainage. These floods occur in a very short period, generally 2 to 

6 hours (Marchi et al, 2010). 2) Riverine (Fluvial) floods occur when a river exceeds its 

capacity due to intense rainfall over an extended period. More and more water is added into a 

river and at a specific time the river exceeds its capacity and water starts flowing out of the 

river. Glacial melting also contributes to riverine floods (Weissmann et al, 2010). 3) Reservoir 

flooding occurs due to structural failure. However, such events are very rare. In one such event 

when the Shadi Kor dam in Pasni burst on February 11, 2005, more than 135 people perished 

(Danso-Amaoko et al, 2012). 4) Storm surges take place when tidal waves are elevated above 

their normal height in the coastal region due to severe force of wind caused by low pressure in 

the open ocean (Wahl et al, 2015). 

According to (Tariq and Giesen, 2012), three different meteorological systems have an 

impact on the precipitation in catchments that cause floods in Pakistan. The most significant of 

these meteorological systems are 1) the monsoon depression, which originates in the Bay of 

Bengal. 2) Mediterranean Sea waves originating from the west (winter rains). 3) Seasonal lows 

(cyclones) from the Arabian Sea. 

Pakistan has experienced terrible floods since its creation. Both economic and human 

losses from the flood had been significant. Millions of people become homeless, and thousands 

lost their lives. In Pakistan, heavy monsoon rains and glacier melting are the main causes of 

floods. Due to Pakistan's location inside the most active monsoon belt, this region experiences 

tremendous rainfall intensity. The July 2010 flood is regarded as the worst in Pakistan history. 

Nearly 2000 individuals lost their lives and affected more than 20 million people (Deen, 2015). 

A disastrous heat wave in May 2022 and flood in August 2022 in Pakistan had a 

disproportionately negative impact in the southern areas. This flood had an impact on a 
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population equivalent to one-third of the world's fifth-most populous country, which displaced 

32,000000 and killed 1,486 people, including 530 children (NDMA, 2022). 

1.2 Climate Change and Flooding 

South Asia is most prone to floods. Flooding in the area is due to heavy monsoon rain, 

which seriously harms people, crops, property, and infrastructure. Extreme floods are 

happening more frequently in Bangladesh, India, and Pakistan. However, while past extreme 

flooding is within the range, future flooding in South Asia may increase in frequency, 

magnitude, and extent due to climate variability. In many parts of the world, increased 

precipitation intensity is anticipated to increase the frequency and size of flood events. Most of 

the world's extreme precipitation events are expected to become more intense because of 

climate change (Eccles et al, 2019). Because the air over land would warm more than the air 

over oceans in the summer, producing an intense monsoon. Most climate models predict that 

precipitation will increase during the summer (Mirza, 2010). 

The structure and operation of aquatic ecosystems, including wetlands, lakes, rivers, 

and coastal systems, are seriously threatened by human-induced climate change, altering the 

predominant precipitation patterns and runoff. To upset the equilibrium of water and sediment 

flux in river channels, humans have significantly altered the landscape. Due to alterations in 

the utilization of land (agricultural, urbanization), waterways receive more water (Poff, 2002). 

Three different meteorological systems have an impact on the precipitation in 

catchments that cause floods in Pakistan. Typically, the monsoon season starts in June, reaches 

its peak in August, and ends in September. The monsoon rainy season gives an average rainfall 

of roughly 600 mm to 1,000 mm annually. While the daily maximum temperature during June 

exceeds 40°C, the average day time temperature in December and January is quite  
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Table 1.1. The record of floods in Pakistan from 1950 to 2022 (Khan et al, 2021; NDMA, 

2022). 

Period 

Flood 

frequency 

Economic loss US 

(Million $) 

Total affected 

population 

Total deaths 

1950-1959 6 1719 36,954 3691 

1960-1969 2 33 224,427 32 

1970-1979 5 116.5 13,637,200 2066 

1980-1989 7 1367 1,304,900 519 

1990-1999 14 1092.2 18,148,606 4180 

2000-2009 33 706.14 9,574,150 2265 

2010-2019 30 18.113 36,495,066 4712 

2022 N/A 30000 33,046,329 1486 

 

 

Figure 1.1. An aerial view of Khairpur, Pakistan under flooding on August 30, 2022 (daily 

Dawn) 
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near to 0 °C. Between July and September, humidity keeps the temperature only a little bit 

moderate (Ahmad et al, 2010). 

The economy, cultures, aquatic and terrestrial ecosystems could all face significant 

consequences because of extreme precipitation amplification (Tabari, 2020). 

1.3 Economic impacts of the floods in Pakistan 

Natural climate related risks may quickly affect economic growth and market 

performance because they interact directly with key macroeconomic factors. As evidenced by 

the recent floods and their severe effects on Pakistan, one of the most catastrophic natural 

calamities is floods. It adversely impacts public health, causes unemployment, destroys the 

ecosystem, and has an adverse impact on socioeconomic conditions (Manzoor et al, 2022). 

In Pakistan, the monsoon season of 2010 (July and August) caused the largest floods 

ever reported. In the country's north and northwest, flash floods were a result of heavy rains. 

The ensuing runoff created a mass of water heading south was about the size of the United 

Kingdom. The Munda and Amandara Headworks, the two prominent irrigation infrastructures, 

were extensively damaged by the record flood peaks in the Swat River, caused by the torrential 

rainfall in Khyber Pakhtunkhwa. After passing through Punjab and Kotri Barrage Sindh, the 

floodwaters continued downstream till they reached the Arabian Sea. Several important 

irrigation canals that use the Indus River to irrigate agricultural regions were affected. Heavy 

rains added to the problem, and water was diverted to agricultural land to avert flooding of the 

cities. (Asian Development Bank, 2010). Around 20 million people were forced to leave their 

homes, and about 50,000 square km of land was flooded. Standing crops, infrastructure, and 

land were all severely damaged (Robert Looney, 2012). 

Since the middle of June 2022, Pakistan has seen numerous periods of intense 

monsoonal precipitation, which was mostly intensified by the intense-low pressure system. In 
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Pakistan, heavy rains are also linked to the presence of La Nina. Over $30 billion is the 

projected economic losses. Famine is impending because of widespread agriculture losses and 

likely disease outbreaks in makeshift shelters (Nanditha, 2023).  

According to (Mirza, 2010), most diseases that are common during the flood season, 

such as diarrhea, dysentery, and dengue are water related. The pathogens can infect people by 

contact or drinking contaminated water. Large coastal communities are being displaced, which 

affects public health by increasing the dispersion of infections, mortality, and bad health. 

From years 1972 to 2013, (Sardar et al, 2016) evaluated how disasters affected 

Pakistan's Gross Domestic Product (GDP) growth and discussed three hazards associated with 

floods including: property devastation, death, and non-fatal communal outcomes. Their 

findings demonstrated that disaster preparedness and per capita GDP growth lessen the severity 

of the associated flood hazards. 

Conceptually, the costs to the nation's economy can be divided into several categories, 

mostly based on the types of expenses (direct and indirect) and the time periods under 

consideration (immediate, short-run, medium-term, and long-run). Better infrastructure, 

warning systems, and preventative and protective measures in flood-prone areas could be made 

available to citizens with increased GDP growth (Manzoor et al, 2022). 

1.4 Flood Management in Pakistan 

In Pakistan, flooding happens frequently. However, the floods in Pakistan in 2010, 

2011, 2012, 2014, and 2022 are typical examples, which have a significant impact on the 

livelihood of the population and the nation's GDP. Gilgit-Baltistan and some areas of the Sindh 

and Punjab provinces are highly flood prone (Khan et al, 2021). 

Pakistan confronts the threat of rising irrigation water scarcity and is prone to flood 

hazards despite significant expenditures in its water sector over the past 50 years (World Bank, 
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1994). The country's primary source of irrigation water and flood risk is the Indus River and 

its five tributaries (Mustafa, 2002). (Rahmati, Flood susceptibility mapping using frequency 

ratio and weights-of-evidence models in the Golastan Province, Iran, 2015) (Rahmati, Flood 

susceptibility mapping using frequency ratio and weights-of-evidence models in the Golastan 

Province, Iran, 2015) 

Flood management strategies, preparedness, and pre-flood measures are currently the 

three main strategies that the nation uses to manage (Ayaz et al, 2014). As a result of the 

frequent flood events, the government created a variety of flood protection programmes (Sayers 

et al, 2013). Following the creation of the “Federal Flood Council” in 1977, flood executives 

have been creating flood management strategies while using lessons from prior experiences at 

the local and federal levels. A strategy for long-term flood protection was developed in 1978. 

The "10-year National Flood Protection Plan" (NFFP), was implemented in several stages. 

Both the structural and non-structural flood management and planning strategies are being 

changed by the government. While non-structural methods include the use of meteorological 

and flood forecasting technologies to improve the rainfall data collection and monitoring 

watershed flows. Whereas structural interventions focus on the channelization of rivers and the 

construction of minor dams. To minimize losses during floods, non-structural methods also 

include the design of flood warning systems. In order to create flood forecasts and alerts, the 

Flood Forecasting Division of the “Pakistan Meteorological Department (PMD)” gathers 

hydro-meteorological data from numerous local, regional, and global sources. To prevent 

rumors and false information regarding floods, the chief meteorologist is solely responsible for 

the distribution of flood warnings (Tariq and Giesen, 2012). 

 

1.5 Literature Review 
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Natural catastrophes including floods, droughts, tsunamis, hurricanes, and tornadoes 

are becoming more frequent due to climate change (Samu and Kentel, 2018). According to 

(Khan et al, 2021), climate change has gained attention as a worldwide danger in recent decades 

as its slow-moving effects have become apparent. These effects take many different forms, 

such as changing rainfall patterns, increasing sea levels, and changes in climatic zones. 

According to a study conducted by (Vojtek et al, 2019), Floods are complicated 

occurrences that involve several dimensions, including geographical and temporal. Geographic 

Information Systems (GIS) have been shown to be useful tools for combining various data and 

factors, for producing flood vulnerability maps of by using logical and mathematical 

correlations. Different methods have been developed and used in various geographic locations 

to detect and assess areas that are vulnerable to floods. These techniques seek to efficiently 

identify and evaluate a location's susceptibility to flooding, supporting efforts at preparedness 

and mitigation. 

In their study, (Liuzzo et al, 2019) focused on evaluating flood susceptibility, which 

refers to the degree of vulnerability to potential damage caused by water-related hazards. For 

successful land planning and management as well as quick and effective emergency responses, 

it is essential to identify regions that are vulnerable to floods. Researchers have greatly 

improved the ability to identify flood-prone areas by adding GIS into hydrologic research. This 

has made it easier to create precise flood susceptibility maps. 

Hammami et al, (2019) commented that Multi Criteria Decision Analysis (MCDA) 

methodology has established itself as a useful tool for examining complex choice issues across 

diverse research fields. To enable well-informed decision-making, MCDA integrates a variety 

of criteria, including technological, environmental, and socioeconomic variables. MCDA was 

used in conjunction with GIS to precisely identify and map areas vulnerable to floods, utilizing 
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a thorough strategy that incorporates multiple elements. Study performed by (Das, 2020) 

mentions that many environmental factors, including topography, land use, geology, climate, 

and hydrological parameters, might affect the likelihood of a flood. Due to the intricacy of the 

decision-making process, these considerations are essential in the creation of flood 

susceptibility maps. To examine and address the complex decision processes incorporating 

numerous criteria, the study emphasizes the need of using a MCDA. 

Balogun et al, (2022) investigated the effectiveness of Remote Sensing (RS) and GIS 

as potent tools for managing natural disasters. Many researchers have successfully used RS 

and GIS to assess flood catastrophe, flood susceptibility, produced flood risk maps, and 

effectively manage post-disaster scenarios. Flood susceptibility mapping has been further 

improved by the integration of Multi-Criteria Decision-Making (MCDM) models with GIS, 

allowing thorough analyses and well-informed decision-making in flood-prone regions. 

Wang et al, (2021) states that large amount of rainfall is often brought in by climate 

change and global warming, which causes devastating floods. They used two distinct models 

and four hybrid models to analyze the geographical distribution of flood vulnerability in a 

specific area. Bivariate statistical models based on the Frequency Ratio (FR) and Index of 

Entropy were used as independent models. On the other hand, hybrid models merged statistical 

methods with the categorization and regression trees (CART) and multi-layer perception 

(MLP) models. The MLP-PD hybrid model had the greatest values for numerous specificity 

and accuracy metrics, as well as for success rates (AUC = 0.954), prediction rates (AUC = 

0.949) and delivered the most effective performance. 

Islam et al, (2021) conducted a study in the Lower Bagmati basin, “Shannon's Entropy”, 

a well-known model in landslide and groundwater mapping, which has emerged as a potential 

strategy in flood susceptibility mapping. The identification of flood-prone regions and high-
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risk flood zones is made feasible by the efficient use of this approach. This information can 

help develop an early warning and emergency response system, facilitate early planning, and 

lessen the negative impacts of floods in the area. 

Khosravi et al, (2016) performed a study on Bivariate statistical models, in particular 

the “FR” model, which was shown to be particularly well suited for vast study regions with 

sparse data and too simple to apply in a GIS. This model assumption of equal weights for 

various affecting elements is a drawback. The researchers suggested using Shannon's entropy 

technique, which solves the equal weighting problem, to deal with this issue. By using this 

method, all the models' outputs were rated outstanding, indicating their potential for usage in 

the Haraz Watershed, Mazandaran Province, in land use planning and flood control. Another 

research by (Liuzzo et al, 2019) emphasized the extensive usage of the FR model for a variety 

of tasks, including groundwater potential mapping, flood and landslide susceptibility mapping, 

and risk assessment for forest fires. 

Msabi et al, (2021) said that a qualitative tool used in MCDM to aid in decision-making 

is the “Analytical Hierarchy Process” (AHP). The ability to prioritize and give weights to 

various criteria depends on expert knowledge. The identification of viable locations for 

residential, public, and industrial growth depends critically on flood susceptibility mapping in 

urban planning. Additionally, identifying flood-prone areas in the Dodoma region is required 

for efficient flood management strategies, mitigation, and prevention. In a study by (Swain et 

al, 2020), the AHP technique was identified as the most preferred approach, as it provided a 

specialized decision-making framework specifically tailored for flood susceptibility mapping. 

In AHP, flood vulnerability factors are ranked based on their importance to support informed 

decision-making processes. 
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In the study conducted by (Rahmati et al, 2015), the primary objective of flood 

susceptibility analysis was to identify regions that could be affected by impending floods. 

Therefore, it was decided to validate the resultant flood susceptibility maps by comparing them 

against flood events that were not used during the creation or training of the model, independent 

of the specific technique used for integrating the data. These abandoned flood zones were 

utilized to evaluate and confirm the veracity and correctness of the flood susceptibility maps. 

1.6 Problem Statement 

Due to the recent year floods in Pakistan, vast area was flooded yielding heavy losses 

both physically and anthropogenically. As Pakistan is going through an economic crisis the 

traditional methods of flood monitoring require a lot of financial resources and time. In such a 

case, RS technology is a cost effective and a viable resource and alternative. Identification of 

the flood susceptible areas using latest technologies can help improve mitigation reform, 

applied to minimize the damages in case of re-occurrence, and with least manual efforts and 

financial requirement. 

This research explored and analyzed the areas that are susceptible to flooding in District 

Khairpur of Sindh and tried to suggest viable solutions that can help minimize or even negate 

the losses in the foreseeable future. 

1.7 Objectives 

a) To assess, map and model flood susceptibility using remote sensing data using 

Frequency Ratio, Shannon’s Entropy and Analytic Hierarchy Process. 

b) Performance evaluation of the applied models using Area Under Curve method for 

flood susceptibility mapping. 
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Chapter 2  

MATERIALS AND METHODS 

The aim of flood susceptibility mapping is to identify regions that are at risk of flooding 

and to provide information that can be used to develop strategies for managing and mitigating 

the impact of floods. Flood susceptibility maps can be used for informed land-use planning 

decisions, including zoning, building codes, and infrastructure development. 

2.1  Study Area 

Khairpur District is in the northern part of province of Sindh and has spatial extent 

between 26° 09′ and 27° 42′ North latitudes and 68° 10′ and 70° 10′ East longitudes with an 

area of about 15,910 Km2. Despite being a part of the Thar Desert, the land is irrigated by the 

River Indus, Rohri and Mir Wah canal, the main water channels passing through the district.  

Due to availability of the largest irrigation system, district Khairpur heavily depends upon the 

agriculture with wheat, cotton, dates, and sugarcane as major agriculture produce. Not only 

that the district Khairpur is surrounded by the irrigation network, but it also has an abundance 

of rainfall averaging about 87.6 mm in the monsoon season, it is also very much likely a flood 

prone area. In the 2010 and 2020 floods, it was one of the severely damaged areas in the Sindh 

province causing exponential damages. 

2.2 Datasets 

Flood modeling requires a mix of attribute and geo spatial data collected from different 

sources including ground/field survey. The details of datasets used to achieve the objectives 

are given below and are summarized in Table 2.1. 
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Figure 2.1. Map of study area map of district Khairpur Sindh. 
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Table 2.1. Summary of the data used. 

 

  

Data Source Specification 

Satellite 

ImageryLandsat-9 
USGS 

30 meters 

Spatial Resolution 

SRTM DEM USGS 
30 meters 

Spatial Resolution 

Precipitation 
Pakistan Meteorological Department 

(PMD) 

Millimeter 

Average annual 

River Network 
DIVA-GIS 

https://www.diva-gis.org/gdata 
N/A 

Geology Data 

USGS 

https://certmapper.cr.usgs.gov/data/apps/

world-maps/ 

Resolution 

329*329 meter 

Soil Data 

FAO SOILS PORTAL 

https://www.fao.org/soils-portal/data-

hub/soil-maps- 

and-databases/faounesco 

Resolution 

250*250 meter 

Depth: 30cm 

https://www.fao.org/soils-portal/data-hub/soil-maps-
https://www.fao.org/soils-portal/data-hub/soil-maps-
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2.3  Landsat Data 

Landsat series has been providing continuous collection of moderate resolution 

multispectral data of the Earth’s surface for over 40 years (USGS, 2014). The consistency of 

Landsat mission in provision of the free satellite imagery on a global scale makes it valuable, 

suitable, and economic source for mapping global changes and managing world’s natural 

resources (Chander et al, 2009). Landsat updated its archive and now Level 1 Collection-2 

Surface reflectance product is available for free of cost and on demand download. Landsat 8 

has Operational Land Manager (OLI), Landsat Surface Reflectance Code (LaSRC) is used. 

LaSRC uses coastal aerosol band. https://espa.cr.usgs.gov/.  

Landsat 9 continuous the Landsat program’s critical role of repeating global 

observations for monitoring, understanding, and managing Earth’s natural resources. Landsat 

9 carries the Opera-tional Land Imager 2 (OLI–2), and the Thermal Infrared Sensor 2 (TIRS–

2). https://www.usgs.gov/landsat-missions/landsat-9. For this study, Landsat 9 satellite images 

of 30 meters spatial resolution were used for land use and land cover mapping. NDVI and 

NDWI indices were also calculated using said data. 

2.4  Digital Elevation Model 

Flood modeling requires the digital representation of landscape. Digital Elevation 

Models (DEMs) are important for flood modeling because they provide information about the 

topography and elevation of the land surface, a critical factor in determining how water will 

flow and where it will accumulate during a flood event. For this purpose, 30 meters of SRTM 

DEM was used for calculating Topographic Wetness Index, Slope, Curvature and Elevation 

map. 

 

https://espa.cr.usgs.gov/
https://www.usgs.gov/landsat-missions/landsat-9
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Figure 2.3. Landsat 9 image of October 2022. 

Figure 2.2. Shuttle radar topography mission 30m digital elevation model of study 

area. 
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2.5 Meteorological Data 

The meteorological data were acquired from the Pakistan Meteorological Department 

(PMD). The assessment of data indicated that no weather station was within the premises of 

the study area, so all the adjacent stations were used in making the precipitation map. The 

lowest mean average rainfall recorded was 0.6 mm and similarly the highest was 30.1 mm. The 

details of ground stations used in the study are given in Table 2.2. 

2.6 River Network 

River network data are crucial for flood modeling because it provides information about 

the river channels, the direction of water flow, the shape of the river channels, and the elevation 

of the surrounding terrain. This information is necessary for predicting the extent and severity 

of flooding in each area. River/Stream network data can also be used for identifying regions 

that are prone to flooding, which can help for disaster preparedness and planning process. By 

analyzing the river network data, one can identify areas where flooding is likely to occur and 

develop strategies to mitigate the impacts, such as building flood protected structures, 

improving drainage systems, or relocating homes and businesses out of flood-prone areas. The 

data were obtained from the third-party source DIVAGIS (https://www.diva-gis.org/gdata). The 

platform is considered authentic and also used worldwide. 

2.7  Geology data 

Geology data are important for flood modeling because it provides information about 

the physical characteristics of the ground surface, the underlying geologic formations, and the 

potential pathways for water movement. By incorporating geology data into flood models, one 

can better understand the behavior of water during floods and develop more accurate 

predictions of flood susceptible areas. Lithological units with greater permeability facilitate 

faster infiltration, while the presence of an impermeable layer intensifies surface runoff and 

https://www.diva-gis.org/gdata
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causes flooding. The infiltration rate and the permeability of rocks are significantly correlated 

(Msabi and Makonyo, 2020). The data were downloaded from the USGS website. 

2.8  Soil data 

Soil data are important for flood modeling because it plays a critical role in determining 

how water moves through the ground and interacts with the surface. Flood modeling typically 

involves simulating the movement of water across a landscape, which requires an 

understanding of how the soil absorbs, stores, and releases water. The different types of soil in 

a region may have a significant impact on the likelihood of flooding, and each type of soil has 

a unique permeability that affects how much water can be trapped in the soil particles (Msabi 

and Makonyo, 2020). Soils with a high percentage of sand tend to have higher infiltration rates 

and lower water holding capacities, which means they can absorb and store less water before 

becoming saturated and generating runoff. In contrast, soil containing a high percentage of clay 

tend to have lower infiltration rates and higher water holding capacities, which means they can 

absorb and store more water before generating runoff. For this purpose, Soil data were obtained 

from the Food and Agriculture Organization Soils Portal. 

2.9 Flood Inventory 

A flood inventory is crucial for mathematical modelling process and the validation of 

the results. Information on the flood's location, area, etc. are included in flood inventories. 

Depending on the needs of the research, a flood inventory might range from simple to 

sophisticated. It is created based on past research, Google Earth, flood peak imagery and field 

survey (Panchal and Shirivastava, 2021). Flood inventory is essential in flood susceptibility 

mapping as it provides critical historical data that enables the identification of flood prone 

areas, validates flood models, supports risk assessment and management, and facilitates 

effective emergency response planning. Over 125 flood events are included in the  
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Table 2.2. Meteorological Ground Stations information. 

Sr. No 

Station Name Time Period 

Latitude Longitude 

Source 

 (dd) (dd) 

1 Chorr 2000-2022 25.3389 69.1303 PMD 

2 Nawabshah 2000-2022 26.0884 68.3094 PMD 

3 Padidan 2000-2022 26.6893 68.0595 PMD 

4 Rohri 2000-2022 27.5756 68.8328 PMD 

 

 

Table 2.3. Brief description of all the land use landcover types. 

Sr. No LULC Description 

1 Built-up All the settlements. 

2 Water Water bodies of all kinds (rivers, canals, and lakes). 

3 Vegetation 
A general class that consists of shrub’s, grassland, and agriculture 

area. 

4 
Barren 

land 
A general class that consists of bare areas and desert. 
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inventory of floods in the study site. Polygons are used to show the flood extents. Figure 2.5 

represents the flood inventory map. 

2.10  Methodology 

The study followed a systematic methodology (Figure 2.4). Moreover, this section also 

covers all the processing steps that were performed to obtain the final results. 

2.10.1 Geospatial layers for flood susceptibility mapping 

As per the methodology flow diagram the datasets have been utilized to generate 

numerous thematic maps in the ESRI ArcMap software. Contributing topographical parameters 

such as Curvature, Elevation, Topographic Wetness Index, and Slope were obtained from 

SRTM-DEM whereas, NDVI, NDWI, LULC was derived from Landsat 9 images. These 

thematic layers were then transformed to a spatial resolution of 30 m to “WGS 1984 UTM 

Zone 42N” coordinate system because the pixel size and coordinate system must be same of 

all causative factors to run the models (FR, SE, AHP). All the causative factors were prepared 

in ArcGIS software. Finally, Frequency Ratio, Shannon’s Entropy and Analytical Hierarchy 

Process were applied in decision making to produce flood susceptibility maps of the study area. 

2.10.2 Flood causative factors 

The delineation of flood-prone areas is a crucial concern for water resources and land use 

planning and management (Liuzzo et al, 2019). Several causative factors and their relationship 
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Figure 2.4. Flow chart of methodology. 
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   Table 2.4. Classification of area under curve range. 

AUC Values Test Quality 

0.5-0.6 Unsatisfactory  

0.6-0.7 Satisfactory  

0.7-0.8 Good 

0.8-0.9 Very good 

0.9-1.0 Excellent 

  

Figure 2.5. Flood inventory map. 
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to floods must be looked in order to determine flood vulnerable areas (Tehrany et al, 2013). 

The selecting of the flood causative factors, often referred to as contributing factors/parameters 

to flooding across a region, is of utmost significance in impacting the accuracy of the results. 

However, there isn't a framework that is generally accepted for choosing the flood causative 

factors, even though this would imply their important significance in flood susceptibility 

mapping (Msabi and Makonyo, 2020). 

In this study, eleven parameters that can influence floods were incorporated, which 

include Elevation, Slope, Curvature, Topographic Wetness Index, NDVI, NDWI, LULC, 

Distance to stream, Average annual rainfall, Soil, Geological map.  The natural breaks 

classification algorithm was used to classify each flood causative factor. 

2.10.3  Accuracy Assessment 

It is important to have a clear and accurate record of the previous flood events to create 

flood susceptibility maps (Merz et al, 2007). An important part in every modelling process is 

accuracy assessment (Bui et al, 2011). The “Area Under Curve (AUC)” method is commonly 

employed in natural hazard studies because of its thorough, rational, and easily understandable 

validation technique (Nefeslioglu et al, 2010). The flood probability index is first arranged in 

descending order. Then, using cumulative 1% breaks on the x-axis, the ordered flood 

probability index is divided into 100 groups on the y-axis. The flood inventory is then imposed 

on the flood probability index. Prediction and success rates are calculated once the existence 

of the flood points (training and testing) in each class is assessed (Pourghasemi et al, 2012). 

The AUC technique generates two key outputs i.e., success rates and prediction rates. The flood 

training dataset is utilized to calculate the success rate, while the flood testing dataset is 

employed to determine the prediction rate. AUC generates a range from 0 to 1. If the AUC 

value is 1, the method is 100% effective. Therefore, the more accurate the method, the closer 

the AUC value is to one (Tehrany et al, 2018). The formula for AUC calculations is as follows. 
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  (1) 

   

In the validation and training datasets, TN and TP are true negative and true positive 

values respectively and these are the number of samples correctly classified as flood and no-

flood class. FN and FP are false negative and false positive values which are the number of 

samples not accurately classified. 

The effectiveness and performance of the three models Frequency Ratio, Shannon’s 

Entropy and Analytic Hierarchy Process were assessed in this study using the AUC method. 

2.11  Modelling Approach 

2.11.1  Analytic Hierarchy Process (AHP) 

This method has received the most attention and was used to develop a unique 

framework for making decisions on flood susceptibility mapping (Swain et al, 2020). It is a 

decision-making tool that assists in resolving complicated issues using simple criteria. The 

three guiding concepts of AHP are problem decomposition, comparative evaluation, and 

rankings. The issue/problem is divided into hierarchical criteria in AHP. Flood causative factors 

are compared with one another. i.e., Pair-wise comparison (Panchal and Shrivastava, 2021). 

The significance of the chosen flood causative factors was determined by considering expert 

knowledge and information from existing literature. It ranges from 7 (highest significance) to 

1 (lowest significance) (Vojtek and Vojteková, 2019). (Saaty, 1980) said that the consistency of 

the AHP method is represented by the relation.  

 
𝐶𝑅 =

𝐶𝐼

𝑅𝐼
 

(2) 
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In the context of the given information, CR stands for the consistency ratio, CI denotes 

the consistency index, RI denotes the random index, λmax corresponds to the principal 

eigenvalue of the matrix, and n signifies the total number of parameters within the matrix. The 

CR is computed using RI values, which are dependent on the number of parameters present in 

the comparison matrix (Saaty, 1980). In this study, eleven parameters were utilized, resulting 

in an RI value of 1.51. A CR value below 0.10 is considered acceptable and indicates good 

accuracy for the pairwise comparison matrix. However, if the CR value exceeds 0.10, it 

signifies inconsistency in the comparison matrix, necessitating adjustments to be made (Saaty, 

1977). The flood susceptibility (FS) is determined by considering the weights (wi) assigned to 

each parameter (i) and the corresponding flood susceptibility classes (xi) for each factor. 

 𝐹𝑆 =  ∑ 𝑊𝑖 𝑋𝑖 (4) 

 

2.11.2  Frequency Ratio 

The FR is a productive bivariate statistical analysis technique used in studies of natural 

hazards, such as landslide susceptibility mapping (Chen et al, 2021), flood susceptibility 

mapping (Jothibasu and Anbazhagan, 2016), ground water potential zone mapping (Manap et 

al, 2014), soil erosion mapping (Khosrokhani and Pradhan, 2014) and mineral potential 

mapping (Yusoff et al, 2015). Its widespread use is due to its quick and easy computation 

method (Choi et al, 2011). FR serves as a straightforward and convenient geospatial assessment 

tool to comprehend the probabilistic connection between dependent and independent variables, 

encompassing multi-classified maps (Rahmati et al, 2015). 

The FR, a measurement, is the ratio of an event's likelihood of occurring to its 

probability of not occurring. Flood occurrence and the causative parameter are strongly 

 
𝐶𝐼 =  

λmax − n
𝑛 − 1

 
(3) 
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correlated when FR is greater than one and weakly correlated when FR is less than one. Flood 

parameter raster maps are categorized using the natural break approach in a GIS context to 

produce flood susceptibility maps. (Liuzzo et al, 2019). The equation 5 show how the FR values 

computed for each class of the parameter: 

 
𝐹𝑅 =

𝐴/𝐵

𝑀/𝑁
 

 

(5) 

A refers to the number of flood pixels for each class of causative factor, while B 

represents the total number of flood pixels within the study area. M denotes the count of pixels 

for each class of the causative factor, and N stands for the total number of pixels in the study 

area. 

Once the FR values are computed for each class of causative factors, the flood 

susceptibility index (FSI) is evaluated for each pixel within the study area using the following 

equation: 

 
𝐹𝑆𝐼 =  ∑ 𝐹𝑅𝑖

𝑛

𝑖=1

 
(6) 

where FRi is the FR value for the class of factor i and n is the total number of causative 

factors. 

2.11.3  Shannon’s Entropy 

Entropy serves as a metric to assess disparities between causes and outcomes or 

decisions across various debated subjects (Khosravi et al, 2016). The entropy index quantifies 

abnormality, unstable behavior, and uncertainty within each system, reflecting the extent of 

irregularity between causes and outcomes in different issues. The Shannon's entropy 

information model was derived by enhancing the Boltzmann principle, which establishes a 

connection between quantity and entropy (Islam et al, 2021). The equation to calculate the 
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information coefficient Vj, which represents the weight value for the causative factors, is 

provided by the approach presented by (Naghibi et al, 2015). 

   

(7) 

   

(8) 

  (9) 

   

(10) 

  (11) 

 

In the given context, FR represents the frequency ratio, Eij stands for the probability 

density, Hj and Hjmax denote entropy values, Ij refers to the information coefficient, Mj 

represents the number of classes, and Vj is the achieved weight value for the parameters.
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Chapter 3  

RESULTS AND DISCUSSION 

3.1  Flood Causative Factors 

Hydro-geomorphological and geological data can be used in flood susceptibility 

modelling in line with the physiological features of a specific place. There are no set guidelines 

or procedures for determining how many floods causative factors are sufficient and what kinds 

of factors should be considered (Islam et al, 2021). Several causative factors and their 

relationship to floods must be investigated to determine flood vulnerable areas (Tehrany et al, 

2013). 

The most important and relevant flood causative factors from recent studies have been 

incorporated into this study for flood susceptibility mapping. Eleven flood causative factors 

were selected, and thematic maps were prepared. Their influence on floods is explained below 

in detail. 

3.1.1 Elevation 

Elevation maps play a crucial role in flood susceptibility mapping due to their ability 

to provide valuable information about the topography and terrain of an area. The surface run-

off always flows swiftly from areas of high to low elevations, respectively. Low land areas 

flood more easily and faster than highly elevated areas (Msabi and Makonyo, 2021). The 

elevation map was prepared by utilizing 30 meters SRTM DEM for the study area and divided 

into five classes based on elevation: (1) 0-23 m, (2) 23-68 m, (3) 68-111 m, (4) 111-152 m, (5) 

152-180 m as shown in Figure 3.1. 

3.1.2 Slope 

Surface runoff and water accumulation process in any geomorphic setting relies upon 

its surface slope appropriation. Water velocity and flood power are commonly constrained by 
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the topographic slope (Das, 2020). The slope map was prepared by utilizing 30 meters SRTM 

DEM for the study area and divided into five classes based on slope: (1) 0-3.9 degree, (2) 3.9-

7.8 degree (3) 7.8-12.9 degree, (4) 12.9-20.7 degree, (5) 20.7-99.9 degree as shown in Figure 

3.2. 

3.1.3 Curvature 

Curvature maps are important in flood susceptibility mapping due to their ability to 

provide insights into the shape and characteristics of the terrain. Curvature maps help to 

identify concave, convex and flat regions on the landscape. The curvature map was prepared 

by utilizing 30 meters SRTM DEM for the study area and divided into five classes: (1) -152 - 

-8004, (2) -8004 - -3024, (3) -3024 - 7115, (4) 7115-5692, (5) 5692-1451 as shown in Figure 

3.3. 

3.1.4 Topographic Wetness Index 

TWI as an index can predict areas susceptible to wetted land surfaces and areas that 

have strong potential to produce overland flow and this parameter as a physical depiction of 

areas that are highly prone to flood inundation (Das, 2020). The TWI map was prepared by 

utilizing 30 meters SRTM DEM for the study area and divided into five classes: (1) -8.1 - -4.1, 

(2) -4.1 - -1.6 (3) -1.6-0.9, (4) 0.9-4.0, (5) 4.0-13.8 degree as shown in Figure 3.4. 

3.1.5 Normalized Difference Vegetation Index 

NDVI is an index representing the vegetation density over an area, and it is one of the 

factors used for determining flood susceptibility. Higher vegetation density decreases the speed 

of the runoff and flood inundation (Tehrany et al, 2018). The NDVI map was prepared by 

Landsat 9 imagery for the study area and divided into five classes: (1) -0.1 - 0, (2) 0- 0.06 (3) 

0.06-0.12, (4) 0.12-0.2, (5) 0.2-0.4 as shown in Figure 3.5. 
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   Figure 3.1. Elevation map of the study area.  

 

   Figure 3.2. Slope map of the study area.  
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   Figure 3.3. Curvature map of the study area.  

 

 

  Figure 3.4. Topographic wetness index map of the study area. 
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3.1.6 Normalized Difference Water Index 

NDWI is another important index used in flood susceptibility mapping. It focuses on 

the presence and distribution of water bodies, such as rivers, lakes, and wetlands, and can 

provide valuable information for assessing flood susceptibility. The NDWI map was prepared 

by Landsat 9 imagery for the study area and divided into five classes: (1) -0.4 - -0.1, (2) -0.1- 

-0.13 (3) -0.13 - -0.10, (4) 0.10 - -0.03, (5) -0.03 - 0.16 as shown in Figure 3.6. 

3.1.7 Land Use Land Cover 

The LULC plays a vital role in identifying zones that show high susceptibility to 

flooding. The occurrence of flooding in the area can be greatly influenced by the surface cover 

or land-use patterns and change of an area over time (Msabi and Makonyo, 2021).  LULC map 

is derived from Landsat 9 imagery, supervised classification was done and a total of four LULC 

classes were generated: (1) Built up, (2) Water, (iii) Vegetation, (iv) Barren land as shown in 

Figure 3.7. 

3.1.8 Distance to stream 

Areas that are close to streams/rivers have a higher probability of flood inundation than 

areas located far away from the rivers since surplus water from the rivers initially reaches 

alongside stream/riverbanks and adjoining lowland areas. This is because as the distance 

increases, the slope and elevation become higher (Negese et al, 2022). The distance to stream 

map was prepared in Arc Map and divided into five classes based on distance: (1) 0-15.8 km, 

(2) 15.8-39.7 km (3) 39.7-66.1 km, (4) 66.1-96.1 km, (5) 96.1-129.6 km as shown in Figure 

3.8. 

3.1.9 Average Annual Rainfall 

Rainfall is the most crucial triggering factor for the occurrence of floods because flood 

inundation is due to a huge volume of runoff flows because of excessive heavy rainfall or 
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   Figure 3.5. Normalized difference vegetation index of the study area.  

 

  Figure 3.6. Normalized difference water index of the study area.  

  



34 

 

 

   Figure 3.7. Land Use Land Cover of the study area.  

 

    Figure 3.8. Distance to stream map of the study area.  
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 prolonged rainfall (Nagese et al, 2022). The rainfall data were acquired from the Pakistan 

Meteorological Department (PMD). The lowest mean average rainfall recorded was 0.6 mm 

and similarly the highest was 30.1 mm. The rainfall map was classified into five classes: (1) 

0.6-5.7 mm, (2) 5.7-11.2 mm, (3) 11.2-17.7 mm, (4) 17.7-23.8 mm, (5) 23.8-30.1 mm as shown 

in figure 3.9. 

3.1.10  Soil 

Soil texture has great control over the infiltration mechanism. In general, soil composed 

of a large proportion of fine particles (clay and silt) has higher runoff generation as water can’t 

infiltrate through the fine pores. By contrast, a large proportion of coarse particles (sand) 

increase infiltration and leads to reduced runoff. (Das, 2020). Major soil textures in the study 

area are (1) Loam, (2) loamy sand (3) Clay loam, (iv) Sandy loam. 

3.1.11  Geology 

Geology plays a dominant role in flood susceptibility studies because of different 

susceptibilities of lithological units to active hydrological processes. Areas with high resistant 

rocks or highly permeable subsoil material have low drainage density and it influences the way 

water flows and interacts with the landscape (Rahmati et al, 2015). 

3.2 Frequency Ratio Model 

The FR is a bivariate statistical analysis method used in flood modeling and defined as 

the ratio of the probability of occurrence to the probability of non-occurrence for a given event. 

FR is used to evaluate the influence of the classes of each flood causative factor on flood 

occurrence (Liuzzo et al, 2019). FR value for each class of flood causative factor was calculated 

by dividing the flood occurrence ratio with the total area ratio, as shown in Table 3.1. A higher 

FR weight indicates a stronger correlation between a class and the likelihood of flooding, which 

translates to a higher likelihood of flooding in that class. 
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Figure 3.9. Average annual rainfall map of the study area.  

 

Figure 3.10. Soil texture map of the study area. 
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Figure 3.11. Geological map of the study area.  
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Table 3.1 shows that Rainfall, soil, and distance to stream were the most contributing and 

elevation contributed the least because the study area is mostly plain. 

The largest FR value is seen at slopes less than 3.9 degrees, suggesting that the risk of 

flooding is greatest on these moderate slopes. The FR values for the other slope classes, 

however, are noticeably lower. It is clear from Table 3.1, that the flood risks associated with 

various soil types, clay loam regions are the most vulnerable. Soils with a high percentage of 

sand tend to have higher infiltration rates and lower water holding capacities, which means 

they can absorb and store less water before becoming saturated and generating runoff. In 

contrast, soil with a high percentage of clay content tends to have lower infiltration rates and 

higher water holding capacities, which means they can generate immediate runoff. The findings 

of the flood susceptibility study show a significant correlation between LULC and the 

likelihood of flooding. Areas around water bodies have the greatest flood risk ratings. 

Furthermore, flood occurrences and the hydrological component TWI indicate a strong 

association, with the third and fifth TWI classes because they are displaying the highest 

FR values. According to the FR values analysis for the NDWI map, areas around the streams 

are more prone to flooding. 

The distance from a stream is a critical element that considerably influences floods 

(Tehrany et al, 2013). The highest FR values are found in areas that are less than 15.8 km from 

the stream network, with the flood risk being almost zero (or very close to it) for all other 

distance classes. In layman's words, the interpretation implies that the risk of flooding reduces 

with distance from the river.  

The first class, which corresponds to rainfall less than 5.7 mm, has the greatest FR 

value. The risk of floods is unaltered despite an increase in rainfall. This is probably because 



39 

 

areas with sandy soil in the desert receive rain. However, floods are less likely to occur there 

since the sand's high imperviousness effectively absorbs much of the precipitation. 

The “Flood Susceptibility Index (FSI)” values are calculated for each cell of the grid 

using the FSI equation of Frequency Ratio. The results are shown in the map in Figure 3.12. 

FSI ranges between 292.806 and 17059.1. Low FR values, which imply a reduced risk of 

floods, show a site's sensitivity to flooding. On the other hand, places where floods are more 

likely are associated with higher FR values. There are five main classifications based on the 

Flood Susceptibility Index values. Very low (292–2791), low (2791–6078), moderate (6078–

9432), high (6078–12522) and very high susceptibility (12522–17059). Figure 3.12 represents 

the flood susceptibility map acquired using the frequency ratio model. 

 Figure 3.13 describes the spatial distribution of the flood susceptibility identified using 

Frequency Ratio Model. According to the chart 8% of the area is very high, 23% is high, 10% 

is moderate, 14% is low, and 45% is very low for flood susceptibility. A careful inspection 

indicates that the very high areas are the ones adjacent to the river Indus and similarly the high 

areas are the ones that contain the stream channels and zone showing very low flood 

susceptibility are the area of the Thar Desert. 

3.3 Shannon’s Entropy Model 

Entropy serves as a metric to assess disparities between causes and outcomes or 

decisions across various debated subjects. Entropy index is the measure of changeability, 

unstable behavior, and uncertainty in each system. (Khosravi et al, 2016). The FR output values 

are used to calculate the Shannon's Entropy Index in accordance with the approach described 

in the paper by (Liuzzo et al, 2019). Table 3.2 shows the results of SE model. Rainfall has the 

highest weight (0.163), followed by distance to stream (0.158 km), and soil (0.152), among the   
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Figure 3.13. The calculated area of flood susceptibility zones. 

Figure 3.12. Flood susceptible zones using frequency ratio.  



41 

 

Table 3.1. Frequency Ratio for each class of each parameter. 

Parameter Class 

Class 

Pixels 

Flood 

Pixels 

Frequency 

Ratio 

Prediction 

Ratio (FR) 

Slope(Degree) 

0-3.9 7552791 29210 0.0039 

 

18.9 

3.9-7.8 5570704 8225 0.0015 

7.8-12.9 2813628 1530 0.0005 

12.9-20.7 1170372 288 0.0002 

>20.7 281648 47 0.0002 

Elevation (m) 

0-23 9512968 20347 0.0021 

 

1 

23-68 1141200 2680 0.0023 

68-111 1291277 2947 0.0023 

111-152 1980443 4660 0.0024 

152-180 3456505 8661 0.0025 

Rainfall (mm) 

0.6-5.7 6395704 37236 0.0058 

29.2 

5.7-11.2 3696680 1168 0.0003 

11.2-17.7 2353488 662 0.0003 

17.7-23.8 2557277 0 0.0000 

23.8-30.1 2316184 0 0.0000 

Soil 

Loam 640906 347 0.0005 

28.8 

Loamy Sand 12952076 5649 0.0004 

Clay Loam 897347 27011 0.0301 

Sandy Loam 2916078 6296 0.0022 

LULC 

Built-up 591939 3519 0.0059 

24.9 

Water 281524 11575 0.0411 
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Vegetation 3963621 23122 0.0058 

Barren Land 12573466 1088 0.0001 

Geology 

Quaternary 

Sediments 

6081808 34615 0.0057 

22.5 

Quaternary Sand 

and Dune 

10458334 3199 0.0003 

Paleagene 

Sedimentary Rock 

870508 1490 0.0017 

TWI 

"-8.1 - -4.1" 6968666 10068 0.0014 

3.7 

"-4.1 - -1.6" 3626614 10145 0.0028 

"-1.6 - 0.9" 3038143 8820 0.0029 

"0.9 - 4.0" 3293623 8910 0.0027 

"4.0 - 13.8" 462213 1360 0.0029 

NDWI 

"-0.40 - -0.19" 1092174 181 0.0002 

26.4 

"-0.19 - -0.13" 3160641 3629 0.0011 

"-0.13 - -0.10" 7815858 7537 0.0010 

"-0.10 - -0.03" 4675414 12408 0.0027 

"-0.03 - 0.1" 666463 15549 0.0233 

NDVI 

"-0.155 - 0.0" 534759 15094 0.0282 

27.1 

"0.0 - 0.06" 6682280 9112 0.0014 

"0.06 - 0.1" 7348072 10641 0.0014 

"0.1 - 0.2" 2142970 4315 0.0020 

"0.2 - 0.4" 702469 142 0.0002 

0-15.8 9338262 39098 0.0042 27.1 
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Distance to 

Stream (km) 

15.8-39.7 2943230 204 0.0007 

39.7-66.1 1968780 0 0.0000 

66.1-96.1 1590039 0 0.0000 

96.1-129.6 1570197 0 0.0000 

Curvature 

-172,368,003,100 - 

-108,864,002,500 

135704 144 0.0011 

6.4 

-108,864,002,400 - 

-45,360,001,840 

5020069 9513 0.0019 

-45,360,001,830 - 

18,143,998,770 

7159844 20182 0.0028 

18,143,998,780 - 

81,647,999,390 

4878194 9211 0.0019 

81,647,999,400 - 

145,152,000,000 

216739 253 0.0012 
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causative factors. Elevation, on the other hand, carries the lowest weight (0.0001). As a result, 

compared to the other components, elevation has a negligible contribution to flood incidence. 

The soil texture of the study area consists of Loam, Loamy Sand, Clay Loam and Sandy 

Loam weighted 0.01, 0.01, 0.9 and 0.06, respectively. According to this notion, the clay loam 

is the major factor affecting flooding due to significant positive weight and loam and loamy 

sand are the least. Soils containing a significant proportion of clay typically exhibit slower 

infiltration rates and increased water holding capacities. As a result, they can absorb and retain 

a greater amount of water before producing runoff. 

The literature analysis revealed that distance to stream had a significant impact on the 

likelihood of floods. Only the first class of distance to the stream (0 to 15.8 km) had a positive 

weight, according to the analysis, whereas the remaining classes had negative weights. This 

implies that as the distance from the river increases, the weight reduces, indicating that the 

farthest away from the river, the likelihood of flooding lowers. In other words, the farthest the 

areas from the streams (water bodies) the lower the risk of flooding. 

The pattern of the influence of rainfall factor revealed that as rainfall increased, weights 

decreased, indicating a decreased risk of flooding with increased precipitation. In sandy desert 

regions, there is a probability where the areas with the highest average annual rainfall often 

experience reduced flood risks. This phenomenon can be attributed to the high impermeability 

of the sand, which efficiently absorbs a significant portion of the precipitation. 

A flood susceptibility map is created by applying the FR and SE models. This map is 

created using the equation in raster calculator: 

FSI = 0.0706*SLOPEFR + 0.0001*ELEVATIONFR + 0.1630*RAINFALLFR + 

0.1523*SOILFR + 0.1057*LULCFR + 0.0797*GEOLOGYFR + 0.0036*TWIFR + 

0.1257*NDWIFR + 0.1321*NDVIFR + 0.1584*STREAM DISTANCEFR + 

0.0082*CURVATUREFR 
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Each raster cell's "flood susceptibility index" was assessed, and the results are shown 

on the map in Figure 3.14. The natural break approach was employed to create the flood 

susceptibility classifications, which are following: very low (2.6–24.7), low (24.7 – 51.7), 

moderate (51.7–79.2), high (79.2– 106.1) and very high susceptibility (106.1–140.1). 

Figure 3.15 describes the spatial distribution of the flood susceptibility identified using 

SE Model. According to the chart 7% of the area is very high, 27% is high, 6% is moderate, 

15% is low, and 45% is very low for flood susceptibility. A careful inspection indicates that the 

very high areas are the ones adjacent to the river Indus and similarly the high areas are the ones 

that contain the stream channels and zone showing very low flood susceptibility are the area of 

the Thar Desert. 

The coarse source of flood was the rainfall which causes the rivers to overflow which 

intern then enables the stream channels in the study area to show the tendency of flash floods. 

3.4 Analytical Hierarchy Process 

The AHP is well known for being a very efficient approach to the MCDM process. It is 

frequently used to assess the relative importance of each criterion or element considered in the 

investigation. This strategy has been effectively used in several earlier research to weight flood 

causative elements, which finally led to the identification and mapping of flood-prone locations 

(Nagese et al, 2022). 

3.5 Weight Linear Combination Approach 

The relative importance of each causative factor and its associated weights were 

determined as part of the weighted linear combination approach's main steps. Based on actual 

information and contemporary research, the relative relevance of the chosen causative 

factors was determined, with a scale ranging from 7 (highest important) to 1 (lowest 

importance). Pairwise comparisons of the causative factors were evaluated based on   
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Figure 3.15. Flood susceptible zones using shannon’s entropy. 

Figure 3.14. The calculated area of flood susceptibility zones. 
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Table 3.2. Shannon’s entropy weights for each parameter.  

Parameter Classes FR Eij Ij 1-Ij Vj 

Slope  

(Degree) 

0-3.9 0.0039 0.6138 -0.1301 

0.3328 0.0707 

3.9-7.8 0.0015 0.2343 -0.1477 

7.8-12.9 0.0005 0.0863 -0.0918 

12.9-20.7 0.0002 0.0391 -0.0550 

>20.7 0.0002 0.0265 -0.0418 

Elevation 

 (m) 

0-23 0.0021 0.1839 -0.1353 

0.0008 0.0002 

23-68 0.0023 0.2020 -0.1403 

68-111 0.0023 0.1963 -0.1388 

111-152 0.0024 0.2024 -0.1404 

152-180 0.0025 0.2155 -0.1436 

Rainfall  

(mm) 

0.6-5.7 0.0058 0.9070 -0.0385 

0.7677 0.1630 

5.7-11.2 0.0003 0.0492 -0.0644 

11.2-17.7 0.0003 0.0438 -0.0595 

17.7-23.8 0 0 0 

23.8-30.1 0 0 0 

Soil 

Loam 0.0005 0.0163 -0.02913 

0.7177 0.1524 
Loamy Sand 0.0004 0.0131 -0.02470 

Clay Loam 0.0301 0.9056 -0.03899 

Sandy Loam 0.0022 0.0650 -0.07713 

LULC 

Built-up 0.0059 0.1122 -0.1066 

0.4982 0.1058 
Water 0.0411 0.7761 -0.0855 

Vegetation 0.0058 0.1101 -0.1055 

Barren Land 0.0001 0.0016 -0.0046 

Geology 

Quaternary 

Sediments 
0.0057 0.7383 -0.0973 

0.3754 0.0797 
Quaternary Sand 

and Dune 
0.0003 0.0397 -0.0556 

Paleagene 

Sedimentary Rock 
0.0017 0.2220 -0.1451 

TWI 

"-8.1 - -4.1" 0.0014 0.1129 -0.1070 

0.0171 0.0036 

"-4.1 - -1.6" 0.0028 0.2187 -0.1444 

"-1.6 - 0.9" 0.0029 0.2269 -0.1462 

"0.9 - 4.0" 0.0027 0.2115 -0.1427 

"4.0 - 13.8" 0.0029 0.2300 -0.1468 

NDWI 

"-0.40 - -0.19" 0.0002 0.0059 -0.0131 

0.5924 0.1258 

"-0.19 - -0.13" 0.0011 0.0406 -0.0565 

"-0.13 - -0.10" 0.0010 0.0341 -0.0501 

"-0.10 - -0.03" 0.0027 0.0939 -0.0965 

"-0.03 - 0.1" 0.0233 0.8255 -0.0688 

NDVI 
"-0.155 - 0.0" 0.0282 0.8488 -0.0604 

0.6226 0.1322 
"0.0 - 0.06" 0.0014 0.0410 -0.0569 
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"0.06 - 0.1" 0.0014 0.0435 -0.0593 

"0.1 - 0.2" 0.0020 0.0606 -0.0737 

"0.2 - 0.4" 0.0002 0.0061 -0.0135 

Distance to 

River (km) 

0-15.8 0.0042 0.8580 -0.0571 

0.7461 0.1584 

15.8-39.7 0.0007 0.1420 -0.1204 

39.7-66.1 0 0 0 

66.1-96.1 0 0 0 

96.1-129.6 0 0 0 

Curvature 

-172,368,003,100 - 

-108,864,002,500 
0.0011 0.1202 -0.1106 

0.0390 0.0083 

-108,864,002,400 - 

-45,360,001,840 
0.0019 0.2146 -0.1434 

-45,360,001,830 - 

18,143,998,770 
0.0028 0.3192 -0.1583 

18,143,998,780 - 

81,647,999,390 
0.0019 0.2138 -0.1433 

81,647,999,400 - 

145,152,000,000 
0.0012 0.1322 -0.1162 
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professional judgement and information from the literature to determine the weights for 

each parameter. The approximation approach was then used to determine the normalized 

pairwise comparison matrix and the final weights, as shown in Table 3.5. 

The final criterion weights given to each flood parameter are shown in Table 3.5, 

reflecting their relative impact on the likelihood of flooding in the study area.  

The results reveal that distance to stream, precipitation and slope are the most significant 

factors in flood generation and curvature is the least.  

The final flood susceptibility map was generated after applying the weighting total of 

all parameters. The natural break approach was employed to classify the final flood 

susceptibility map, as shown in Figure 3.16. Distance to Stream, Rainfall and Slope were 

observed as the most contributing factors in the derived map, and curvature the least. Figure 

3.17 shows the flood susceptibility identified using AHP. According to the chart 23% of the 

area is very high, 15% is high, 16% is moderate, 19% is low, and 27% is very low for flood 

susceptibility. A careful inspection indicates that the very high areas are the ones adjacent to 

the river Indus and similarly the high areas are the ones that contain the stream channels, and 

the Thar Desert falls in very low flood susceptibility. 

It is clear from the data in Table 3.6 that the FR map (45.2%) and the SE map (45.3%) 

have the highest proportions of the region designated as very low flood susceptibility. The AHP 

approach, on the other hand, produces the largest proportion of the region with a very high 

susceptibility (23.2%). The results indicate that, in comparison to the AHP map, the FR map 

and SE map show greater correspondence with each other. The three models flood 

susceptibility maps show a generally similar pattern, though some differences exist. 
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Table 3.3. Shows pair wise comparison matrix. 

 

Factors Elevation Slope NDWI Rainfall 
Distance to 

stream 
Geology TWI LULC 

Soil 

type 
NDVI Curvature 

Elevation 1 1 1 1 1 2 3 2 3 2 2 

Slope 1 1 3 3 1 3 3 1 3 3 5 

NDWI 1 1 1 1 1 3 1 1 3 1 3 

Rainfall 1 1/3 1 1 3 2 3 2 3 4 5 

Distance to 

stream 
1 1 1 1/3 1 7 7 7 7 7 7 

Geology 1/2 1/3 1/3 1/2 1/7 1 1 1 1 1 1 

TWI 1/3 1/3 1 1/3 1/7 1 1 1 2 3 4 

LULC 1/2 1 1 1/2 1/7 1 1 1 2 3 4 

Soil type 1/3 1/3 1/3 1/3 1/7 1 1/2 1/2 1 2 3 

NDVI 1/2 1/3 1 1/4 1/7 1 1/3 1/3 1/2 1 2 

Curvature 1/2 1/5 1/3 1/5 1/7 1 1/4 1/4 1/3 1/2 1 

Sum 7.67 6.87 11.00 8.45 7.86 23.00 21.08 17.08 25.83 27.50 37.00 
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Table 3.4. Shows weightages of normalized factors. 

Factors Elevation Slope NDWI Rainfall 
Distance 

to stream 
Geology TWI LULC 

Soil 

type 
NDVI Curvature 

Criteria 

Weights 

Elevation 0.1304 0.1456 0.0909 0.1183 0.1273 0.0870 0.1423 0.1171 0.1161 0.0727 0.0541 0.1093 

Slope 0.1304 0.1456 0.2727 0.3550 0.1273 0.1304 0.1423 0.0585 0.1161 0.1091 0.1351 0.1566 

NDWI 0.1304 0.1456 0.0909 0.1183 0.1273 0.1304 0.0474 0.0585 0.1161 0.0364 0.0811 0.0984 

Rainfall 0.1304 0.0485 0.0909 0.1183 0.3818 0.0870 0.1423 0.1171 0.1161 0.1455 0.1351 0.1376 

Distance to 

stream 
0.1304 0.1456 0.0909 0.0394 0.1273 0.3043 0.3320 0.4098 0.2710 0.2545 0.1892 0.2086 

Geology 0.0652 0.0485 0.0303 0.0592 0.0182 0.0435 0.0474 0.0585 0.0387 0.0364 0.0270 0.0430 

TWI 0.0435 0.0485 0.0909 0.0394 0.0182 0.0435 0.0474 0.0585 0.0774 0.1091 0.1081 0.0622 

LULC 0.0652 0.1456 0.0909 0.0592 0.0182 0.0435 0.0474 0.0585 0.0774 0.1091 0.1081 0.0748 

Soil type 0.0435 0.0485 0.0303 0.0394 0.0182 0.0435 0.0237 0.0293 0.0387 0.0727 0.0811 0.0426 

NDVI 0.0652 0.0485 0.0909 0.0296 0.0182 0.0435 0.0158 0.0195 0.0194 0.0364 0.0541 0.0401 

Curvature 0.0652 0.0291 0.0303 0.0237 0.0182 0.0435 0.0119 0.0146 0.0129 0.0182 0.0270 0.0268 
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3.6 Validation of The Flood Susceptibility Maps 

It is important to have a clear and accurate record of the previous flood events to create 

flood susceptibility maps (Merz et al, 2007). An important part in every modelling process is 

accuracy assessment. The “AUC (Area Under Curve)” method is commonly employed in 

natural hazard studies because of its thorough, rational, and easily understandable validation 

technique (Nefeslioglu et al, 2010). AUC generates a range of values from 0 to 1. The AUC 

value increases toward 1, the methods accuracy increases, AUC value is 1 indicates the method 

is 100% effective (Tehrany et al, 2018). 

The AUC has been computed based on true positive rates indicate flood points and false 

positive rate indicate the output of the model that is being tested. The black line in graph is 

reference line and defines true positive rate is equal to false positive rate and the red line is 

AUC curve. The effectiveness and performance of the three models FR, SE, and AHP were 

assessed in this study using the AUC method.  

The AUC value for the FR, SE and AHP methods are shown in Fig.3.18, 3.19 and 3.20. 

AUC area results from the computation of each model are summarized in Table 3.6. The AUC 

values were 90.7%, 87.6%, and 79.5% for the FR, SE, and AHP models, respectively.  The 

results show that the FR model provides the highest accuracy (90.7%). The flood susceptibility 

maps generated using the other models also exhibit considerable accuracy. 
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Figure 3.17. Flood susceptible zones using analytical hierarchy process model. 

Figure 3.16. Distribution of flood susceptibility areas. 
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Figure 3.18. Area under curve representing quality of Shannon Entropy model. 

Figure 3.19. Area under curve representing quality of frequency ratio model. 
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Table 3.5. Area under curve values of models. 

Model AUC value (%) 

Frequency Ratio 90.7 

Shannon’s Entropy 87.6 

Analytic Hierarchy Process 79.5 

 

 

 

Figure 3.20. Area under curve representing quality of Analytical Hierarchy Process model. 
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Chapter 4  

CONCLUSION AND RECOMMENDATIONS 

4.1 Conclusion 

The delineation of flood-prone regions is a significant concern for water resources and 

land use planning and management. Over the past few years, various GIS based methods for 

mapping flood susceptibility have been developed and evaluated at different spatial extents. 

Flood susceptible maps play an important role in flood prevention and management. They 

provide valuable information about areas that are at risk of flooding and are used in several 

ways to enhance flood prevention efforts. 

This study focused on the use of (FR), (SE) and (AHP) for the identification and 

mapping of flood susceptible areas in the study area. District Khairpur was selected due to 

major devastating floods occurrences in 2010 and 2022. These models are employed to 

examine the relationships between the spatial distributions of floods and certain independent 

variables (referred to as flood causative parameters) that determine the topography and 

hydrological features of the study area. For flood susceptibility mapping, eleven flood 

causative parameters were taken into consideration, including Elevation, Slope, Curvature, 

Topographic wetness index, NDVI, NDWI, LULC, Distance to stream, Average annual rainfall, 

Soil, and Geological map. Grid maps are created for each of these factors and then processed 

using GIS tools. The flood dataset consists of 125 flood events. For model, 70% of this data 

were utilized for model training, while 30% for model validation. The results reveal that 

distance to stream, precipitation and soil are the most important components in the generation 

of floods, and elevation the least significant for flood susceptibility in the study area. 

Comparing the results, in both the FR map and SE map, the highest proportion of the area is 

identified as having very low flood susceptibility, with percentages of 45.2% and 45.3%, 
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respectively. However, with the AHP method, the highest proportion of the area shows a very 

high susceptibility to flooding, with a value of 23.2%. The results reveal that FR map and SE 

map are correlated to each other as compared to AHP map. The flood susceptibility maps 

generated by the three models exhibit a comparable pattern, yet certain differences can be 

observed. 

The validation procedure of the applied models is conducted by comparing the 

historical flood locations of the different flood susceptible zones on the final maps using “AUC 

(Area Under Curve)” Method. The AUC values were 90.7%, 87.6%, and 79.5% for the FR, SE, 

and AHP models, respectively. The results show that the FR model provides the highest 

accuracy (90.7%). The flood susceptibility maps produced by the other models also 

demonstrate a considerable level of accuracy. 

The suggested maps can serve as valuable aids for water resource planners and 

decision-makers in land use management and planning. Particularly, flood susceptibility maps 

can play a crucial role to delineate flood prone areas where urbanization growth should be 

closely monitored or restricted to mitigate potential damage and losses from future floods. 

4.2 Recommendations 

To drive the maximum results from applied models, the models are usually calibrated 

using flood maps or historical flood events but unfortunately the imagery of the peak events 

was not available, nor it was possible to setup a field survey due to devastation of floods. 

Therefore, it is recommended to use the spatial extent of the extreme flood events for future 

disaster and risk management. 

In this study the use of 30m SRTM DEM resolution was a limitation that can be 

overcome in future studies for planning a management using high resolution DEM imagery. 

Since the study area contains narrow rivers and stream channels the coarse resolution DEM 
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was bit of a challenge which limits the flood modelling process. Furthermore, the terrain is flat 

thus 30m DEM is not recommended for small rivers through plane area. 
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