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Abstract 

As human life expectancy continues to rise, the senior population is expanding, leading to a 

notable surge in degenerative conditions such as dementia. Dementia arises from the gradual 

decline of cognitive capacities and spotting its early stages, particularly Mild Cognitive 

Impairment (MCI), presents a challenge due to its transitional nature, distinct from a complete 

cognitive breakdown. Therefore, there's a critical need to control the progression of this 

condition through timely detection and initial intervention. Recent research has underscored 

the significance of analyzing postural balance as valuable indicator for predicting dementia in 

the elderly. For this study, data was acquired using wearable inertial sensor, attached to lower 

back of participants, while standing in four different conditions in the subsequent order: (1) 

eyes-open EO, (2) eyes-close EC, (3) right-leg lift RL, and (4) left leg lift LL. The results 

indicated that significant balance biomarkers were found for detection of MCI patients wherein 

four features were found in EO condition, three features in EC, one feature in RL condition 

and six features in LL condition. Hence, static balance assessment based using wearable inertial 

sensors in home settings provides significant balance markers which can be utilized for early 

detection of Mild Cognitive Impairment. Static eyes-open and left leg lift balance assessment 

features are significantly different than eyes closed and right leg lift conditions. 

Keywords: Static, Balance, Accelerometer, Sensor, Dementia, Alzheimer’s disease, MCI  
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CHAPTER 1: INTRODUCTION 

Dementia is a progressive and debilitating neurological disorder that profoundly affects 

cognition, memory, and daily functioning. Its global prevalence is on the rise, particularly as 

the aging population grows. On a global scale, around 50 million individuals are affected by 

dementia, and this figure is anticipated to rise to 152 million by the year 2050 [1]. Alzheimer's 

disease is a gradual neurological condition primarily impacting memory function, cognition, 

and behavior, and it ranks as the most prevalent cause of dementia worldwide. It typically 

begins with subtle memory issues and worsens over time, significantly impairing daily 

activities. The disease is driven by complex factors, including the buildup of abnormal proteins 

like amyloid plaques and tau tangles, disrupting communication between brain cells and 

leading to cell death. While there is no cure, available treatments focus on symptom 

management and slowing progression. Early diagnosis and intervention are vital. Both patients 

and caregivers face immense challenges as the disease advances, from personality changes to 

emotional and financial strains [41]. Alzheimer’s disease (AD) is the most common type of 

dementia constituting 60-80% of the cases [2]; progression of AD is called AD continuum 

which includes 3 phases: preclinical AD, mild cognitive impairment (MCI), and dementia due 

to AD [42]. MCI stands as a neurological disorder that acts as an intermediary phase between 

the ordinary declines in cognitive function linked to aging and more pronounced impairments 

like dementia. Individuals with Mild Cognitive Impairment (MCI) observe significant 

alterations in their cognitive capacities that exceed what is typical for their age but do not fulfill 

the criteria for a dementia diagnosis. These changes can impact memory, language skills, 

reasoning capabilities, and other cognitive functions. The significance of studying MCI lies in 

its potential as a precursor to conditions like Alzheimer's disease. Timely screening and 

detection of MCI can decelerate the progression of cognitive deficits; certain individuals 

diagnosed with MCI experience a return to normal cognitive function or maintain stability 

through suitable management and treatment. Given that mild symptoms often go unnoticed as 

part of the natural aging process, MCI becomes a crucial signal for intervening in dementia 

prevention. "Cognitively normal" pertains to individuals who demonstrate regular or typical 

cognitive abilities, devoid of substantial impairments or irregularities. These individuals 

usually perform within the anticipated spectrum on cognitive evaluations and tests. 

Balance, also referred to as postural balance, refers to the ability to maintain a stable and 

upright position while standing, sitting, or moving. This complex skill relies on the interaction 
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of various factors, including sensory input from visual cues, the inner ear's vestibular function, 

and the body's proprioceptive feedback. It also involves precise motor control that coordinates 

muscle and joint actions. Scientific research has shown a strong link between cognitive 

function and motor performance. In cases of Mild Cognitive Impairment (MCI), individuals 

often exhibit challenges in balance, which can be attributed to deficits in cognitive abilities, 

particularly executive function. These deficits can hinder the ability to make proactive postural 

adjustments, leading to difficulties in planning and shifting positions during activities like 

standing. This is particularly relevant in neurodegenerative conditions for instance MCI.  

The diagnosis of MCI necessitates thorough assessments conducted by proficient medical 

professionals, a process that can consume a considerable amount of time and incur substantial 

costs. However, advancements in technology have introduced practical alternatives. Wearable 

inertial sensors and force platforms have emerged as valuable tools for assessing and 

identifying issues with postural balance. Inertial sensors are often integrated into wearable 

devices, enabling real-time capture of movement and acceleration data. This data can be used 

to analyze posture and balance during dynamic movements. Conversely, force platforms gauge 

the forces exerted by a person's body while standing or performing specific tasks. These 

technologies provide researchers and healthcare practitioners with in-depth insights into an 

individual's postural balance. By detecting irregularities, tracking rehabilitation progress, and 

devising targeted interventions, these tools are instrumental in enhancing balance and 

mitigating fall risks among vulnerable populations. 

1.1 Motivation 

While minor shifts in postural sway, such as static balance, might not significantly disrupt daily 

activities, they could signify a trajectory toward more pronounced decline. Detecting MCI in 

its early stages can help mitigate the pace of cognitive deterioration. It's worth noting that some 

individuals with MCI either return to normal cognitive function or remain steady through 

effective intervention and care [1]. Mild symptoms often go unchecked since they are 

considered as normal aging process. Therefore, MCI is considered an important intervention 

indicator of dementia prevention. Use of Wearable Inertial sensors will help in measuring 

postural steadiness because quick motor assessments diagnostic tool that is feasible, easy to 

use, portable, and inexpensive [12]. It takes minimal time for balance assessments in everyday 

life without clinical intervention. 
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1.2 Problem Statement 

Extensive research is being conducted to identify individuals with MCI and healthy controls. 

To propose assessment of static balance biomarkers using wearable inertial sensors for early 

screening of Mild Cognitive Impairment (MCI). 

1.3 Goals of Research 

The main objectives of this research are outlined below: 

 The principal goals of this study involve extracting and assessing a diverse set of static 

balance indicators to identify important markers for detecting Mild Cognitive Impairment 

(MCI) in comparison to Cognitive Normal (CN) individuals. This will be achieved through 

the utilization of wearable inertial sensors. 

 Additionally, the study aims to determine which conditions yield the most precise 

differentiation during static postural sway across four distinct scenarios. 

1.4 Organization of Thesis 

This research work is planned as follows: 

Chapter 1 briefly describes the scope, motivation, and problem statement of this dissertation, 

along with the research objectives. 

Chapter 2 provides the works review and the major related literature done in the field of static 

balance assessment and MCI diagnosis. Posture stability features cohort from literature in vast 

fields of falls risk in aging and neurodegenerative diseases. It also comprehends research 

contributions. 

Chapter 3 consists of the experimental protocol in detail. Subjects demography of participants 

used in this study. Mainly, features selected for evaluating balance biomarkers for 

discriminating MCI patients from CNs are explained in detail. 

Chapter 4 presents detailed discussions of methodology used in this paper. All the statistical 

analysis, performance metrics and details of machine learning models and feature selection 

methods are explained. 

Chapter 5 presents experimental results along with relevant figures and tables. A detailed 

discussion in comprehending results and insights are given. 

Chapter 6 serves as the conclusion of the paper and outlines future prospects and potential 
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avenues for further research. 
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CHAPTER 2: LITERATURE REVIEW 

There is substantial research going on in detecting MCI patients from cognitive normal people 

using static balance biomarkers through scoring tests and force platforms but not much has 

been done in this area using inertial sensors.  

According to [14], Elevated postural sway has been documented in both mild cognitive 

impairment and dementia cases, underscoring the potential of standing balance as a valuable 

biomarker for mild cognitive disorders and the advancement of neurodegenerative conditions. 

A meta-analysis has highlighted noteworthy distinctions in static balance performance between 

MCI groups and the aging population under eyes-open conditions. This implies that these 

groups rely on visual cues to uphold their postural stability, and any imbalance-related 

impairment contributes to slower information processing. 

In [43], researchers did one leg standing balance test on AD, MCI and normal cognitive using 

inertial sensors. They found significant differences in AD vs. normal but not in MCI. Another 

study [44], used force platforms to assess and found significant differences in MCI patients 

from healthy controls. They assessed quiet stance with open and closed eyes conditions.  

A study [15] found the correlations between cognitive deficiencies and balance impairments 

were particularly conspicuous within the group affected by Alzheimer's disease (AD). It did 

not find any significant balance biomarker between controls and AD cohort. However, have 

only assessed eyes-open condition and checked very limited number of balance characteristics 

in their study i.e. jerk (combined, ML, AP), RMS (combined, ML, AP) and ellipsis. Two more 

studies [45] and [46] used force platforms to evaluate and had found significant differences 

mainly in velocity static balance biomarker in MCI patients from healthy controls by assessing 

quiet standing activity conducted under conditions of both eyes open and eyes closed. 

A recent study [3], developed new balance stability indicator with AUC=0.806, using 

stabilometer. Wearable Inertial sensors are quick motor assessments diagnostic tool that is 

feasible, easy to use, portable, and inexpensive [12]. It takes minimal time for balance 

assessments in everyday life without clinical intervention. 

2.1 Static Balance Features 

We have evaluated substantial amount of features from literature in vast fields of falls risk in 

aging and neurodegenerative diseases and most common features are presented in Table 1. 
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Table 1: Features for Measuring Postural Sway 

Sr.no Domain Features name References 

1 Time Mean distance [12], [13], [22], [23], [24], [25], [26], [30] 

2 Time 
Average absolute acceleration 

magnitude (AAM) variation 
[12] 

3 Time 
Summed Axis Acceleration 

(SAA) 
[12] 

4 Time 
Summed Magnitude Area 

(SMA) 
[12] 

5 Time Path length/ total excursion [13], [23], [25], [26], [29], [31] 

6 Time Mean sway velocity 
[10], [13], [22], [24], [25], [26], [27], [29], 

[32] 

7 Time Range of acceleration [12], [13], [23], [24], [26], [29] 

8 Time RMS acc/ RDIST 

[10], [12], [13], [22], [23], [24], [25], [26], 

[27], [29], [32], [33], [34], [35], [36], [37], 

[38] 

 

9 Time RMS ang velocity [10], [12], [13], 

10 Time 
95% confidence circle sway 

area 
[13], [23], [29] 

11 Time 95% confidence ellipse area [10], [13], [23], [24], [25], [26], [35] 

12 Time Sway area 
[10], [13], [22], [23], [24], [29], [32], [38], 

[39], [40] 

13 Time Jerk 
[12], [13], [22], [24], [25], [26], [29], [32], 

[34], [36] 

14 Frequency Total spectral power [12], [13], [23], [29] 

15 Frequency 
Centroidal frequency/Spectral 

centroid 
[12], [24], [25], [26], [27] 

16 Frequency SEF/95% frequency (F95) [10], [12], [22], [23], [25], [28] 

17 Frequency SEF ang. Vel. [10], [12], [13], [28] 

18 Frequency Frequency median / F50 [10], [12], [13], [25] 

19 Frequency Frequency dispersion [12], [13], [22], [24], [26], [27] 

Continued on next page 
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2.2 Research Gaps 

It is necessary to extract and assess an extensive spectrum of static balance biomarkers to 

identify meaningful indicators for detecting Mild Cognitive Impairment (MCI) in comparison 

to cognitively normal (CN) individuals. This exploration involves the utilization of wearable 

inertial sensors during periods of quiet standing. Balance parameters that were found to be 

meaningful differentiators included anterior-posterior (AP) sway (p < 0.01) and medio-lateral 

(ML) sway position (p = 0.04) in the context of eyes-open conditions, but not in eyes-closed 

conditions. These parameters contribute to the early differentiation between individuals with 

Mild Cognitive Impairment (MCI) and those with normal cognitive function (CN) [14]. 

A recent study [3], developed new balance stability indicator with AUC=0.806 using 

stabilometer but not in this field using inertial sensors. Wearable inertial sensors represent a 

swift and practical diagnostic tool for motor assessments. They offer portability, affordability, 

and require minimal time for conducting balance evaluations in daily routines without the need 

for clinical involvement. Consequently, the search for effective balance markers that 

demonstrate favorable AUC scores becomes imperative. 

2.3 Research Contributions 

This study aims to extract and assess an extensive array of static balance biomarkers with the 

goal of identifying significant markers for the detection of Mild Cognitive Impairment (MCI) 

as opposed to individuals with normal cognitive function. In this research, wearable inertial 

sensors are employed as the preferred technological tool. The study examines alterations in 

static postural sway across four distinct conditions and endeavors to identify the condition that 

yields more favorable outcomes.  

20 Frequency Peak freq [12] 

21 Frequency Entropy acceleration [10], [12], [13] 

22 Frequency Entropy ang. vel [10], [12], [13] 
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CHAPTER 3: EXPERIMENTAL PROTOCOL 

This section contains information about subjects’ demographics and data acquisition protocol 

from sensors during quiet standing experiment. Additionally, it contains information about 

extracted features. 

3.1 Subjects 

Between October 2016 and February 2018, a total of 60 participants were selected from the 

registry of the National Research Center for Dementia in Gwangju, South Korea, for inclusion 

in this study. Among these participants, 30 were categorized as cognitively normal (CN), while 

the remaining 30 were diagnosed with Mild Cognitive Impairment (MCI) based on assessments 

conducted by medical professionals at Chosun University Hospital and Chonnam National 

University Hospital in Gwangju, South Korea. All experimental protocols adhered to the 

study's approved plan by the Institutional Review Board of Gwangju Institute of Science and 

Technology (GIST), South Korea, and informed written consent was obtained from all 

participants or their legal guardians prior to the experiments. 

Each participant underwent clinical interviews, imaging procedures, and neuropsychological 

evaluations. Brain structure was assessed through magnetic resonance imaging (MRI), while 

positron emission tomography (PET) scans were employed to detect Beta-amyloid (βA) 

plaques. Cognitive abilities were gauged using the Mini-Mental State Examination (MMSE), 

with MCI classification applying to subjects scoring above 1.5 standard deviations from the 

norm, as outlined in references [16] and [17]. The participant pool consisted predominantly of 

CN individuals, including those with and without βA deposits, along with MCI cases primarily 

attributed to Alzheimer's disease (AD), encompassing both positive-amyloid and a few 

negative-amyloid instances. 

Participants exhibiting focal brain lesions, dementia unrelated to Alzheimer's disease, and any 

other significant medical, neurological, or mental conditions that could influence cognitive 

functions and balance were excluded from the study. 

One-way analysis of variance (ANOVA) was utilized to scrutinize disparities in demographic 

and cognitive factors between the two groups. The demographic and neuropsychological 

outcomes for all participants, along with their corresponding p-values, are presented in Table 

2. Data is reported as means and standard deviations (Mean ± Std.) for continuous variables, 
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while categorical variables are summarized as total counts. No noteworthy differences in age, 

gender, height, weight, or education level were found between the two groups. 

 

Table 2: Demographics of Mild Cognitive Impairment (MCI) and Cognitively Normal 

(CN) Subjects 

 CN 

(Mean ± Std.) 

MCI p-value 

Subjects 30 30 - 

Age (yr) 74.77 ± 4.797 76.53± 3.45 0.10696 

Height(cm) 160.35± 7.06 162.76± 8.72 0.24279 

Weight (kg) 61.64 ±7.21 63.26±8.24 0.42204 

Gender (M/F) 16/14 20/10 0.29985 

Education (yr) 9.97±4.498 10.70±4.55 0.53263 

MMSE 27.53±2.029 25.87±3.36 0.02357 

 

3.2 Data Acquisition Protocol 

The experimental protocol involved participants wearing a Shimmer 3 inertial sensor [18], 

which comprised a triaxial accelerometer and a triaxial gyroscope. This wearable sensor was 

positioned on the lower back of the subjects (L3-L5 vertebrae) using an adjustable belt and was 

supervised by an observer. The sensor's x-, y-, and z-axes corresponded to the medio-lateral 

(ML), vertical (V), and antero-posterior (AP) orientations of the participant, respectively. 

Participants were instructed to stand upright with their arms at their sides in four different 

conditions: eyes-open, eyes-closed, right leg lift, and left leg lift. Refer to Figure 1 for an 

illustrative representation of these conditions. 

Before data collection, the sensor underwent pre-calibration following the procedure outlined 

in reference [19]. It was set to measure within a range of ±4g, and the sampling rate was set to 

64 Hz. The sensor's data was transmitted via Bluetooth to a nearby laptop and synchronized in 

time using the ConsensysPRO software [20]. During signal processing, the data underwent 

filtration by employing an 8th-order zero-phase low-pass Butterworth filter with a cutoff 

frequency of 5Hz, applied using the "filtfilt" function in MATLAB. 
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Figure 1: Orientation of Axes along Subject’s Axis 

 

The inertial sensor was composed of accelerometer and gyroscope. Acceleration data and 

angular velocity were extracted from it for our experiments for each condition. The 

visualization of acceleration data across data samples is provided in Figure 2. The Angular 

velocity signals across data samples visualization is presented in Figure 3. The amplitude of 

acceleration signal is low since it is providing information regarding static postural balance 

sway. 

 

Figure 2: Acceleration Signal from Accelerometer along Data Samples 
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Figure 3: Angular Velocity Signals from Gyroscope along Data Samples 

3.3 Feature Extraction 

Some of the most common standard measures in the quantitative balance parameters in the 

time and frequency domains were calculated to measure postural balance in this study. These 

features are collected from vast domains assessing postural balance studies for static and gait 

balance in young and elderly people. These features gave valuable results for assessment of 

falls risk and diagnosis of neurodegenerative diseases such as Parkinson, dementia etc. using 

postural balance. 

A total of 69 postural sway measures have been used; among these, 36 are time related features 

and 33 are frequency related features. Several parameters {6,..,8,37,..,57} are computed for all 

axis. Moreover, various parameters {1,..,4,10,..,17,22,..,33,58,..,69} are computed for each axis 

(ML, V and AP) and for SVM as well; few parameters {18,..,21,35,36} are calculated for some 

of these planes (AP-ML, ML-V, AP-V), and rest of the parameters {5,9,34} are calculated just 

for SVM. The magnitude of the acceleration signal vector is derived through (1). 

 

𝑆𝑉𝑀[𝑛] =  √(𝐴_𝑥[𝑛]2) + (𝐴_𝑦[𝑛]2) + (𝐴_𝑧[𝑛]2)                               (1) 

 

A full list of features along with their units and directions are presented in Table 3 and 4. For 

each participant, all features were computed across the four distinct standing balance scenarios. 

A succinct explanation of these features is provided below, where N represents the quantity of 

time samples, and T signifies the chosen time interval for analysis. 
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3.3.1 Time Domain Features 

In this section, a total of 36 time related features are explained along with definitions and 

formulas. These time domain features belong to distance, area and hybrid domain. 

Mean Distance/Average Acceleration Magnitude (MDIST/AAM) {1,..,4} [10] [13] is the mean 

of the average acceleration magnitude. Average Absolute Acceleration Magnitude Variation 

(AAMV) {5} [12] is variation in average magnitude from mean. AAMV is calculated using 

(2). 

 

𝐴𝐴𝑀𝑉 =
1

𝑁
∑ |𝑆𝑉𝑀𝑛+1

𝑁−1
𝑛=1 − 𝑆𝑉𝑀𝑛|.                                                (2) 

 

Summed axis acceleration (SAA) {6,..,8} [12] is sum of all samples of individual acceleration 

signal and summed magnitude area (SMA) {9} [12] is sum of absolute of all acceleration 

signals. The path length (TOTEX) {10,..,13} [10], [13] is the total length of the acceleration 

path is estimated by summing the distances between consecutive points along the acceleration 

path. TOTEX for combined acceleration is calculated using (3) and for each axis by (4). 

 

𝑇𝑂𝑇𝐸𝑋 = ∑ √(𝑀𝐿𝑛+1 −  𝑀𝐿𝑛)2 + (𝑉𝑛+1 − 𝑉𝑛)2 + (𝐴𝑃𝑛+1 −  𝐴𝑃𝑛)2.𝑁−1
𝑁            (3) 

 

𝑇𝑂𝑇𝐸𝑋𝐴𝑃 = ∑ |𝐴𝑃𝑛+1
𝑁−1
𝑛=1 − 𝐴𝑃𝑛|.                                                                     (4) 

 

Where APn is the acceleration data at time sample n in each direction. 

Mean Sway Velocity (MVELO) {14,..,17} [10], [13] is average velocity of acceleration path. 

The Range (R) {18,..,21} [13] and Jerk {22,..,25} [12] are computed as range of changes in 

amplitude and slope of acceleration, respectively. RMS {26,..,33} [10], [13] is root mean 

square of acceleration. RMS acceleration (RMS_A) and RMS Angular Velocity (RMS_G) for 

combine and for each acceleration signal is calculated using (5). 

 

𝑅𝑀𝑆 = √
∑ 𝐴 [𝑛]2

𝑁
.                                       (5) 

 

95% Confidence Circle Sway Area (AREA-CC) {34} [10], [13] is the area in circle which 

encloses all points in path of acceleration with confidence of 95%. AREA-CC is calculated 

using (6) by substituting (7) in it. 
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𝐴𝑅𝐸𝐴 − 𝐶𝐶 =  𝜋(𝑀𝐷𝐼𝑆𝑇 + 𝑧0.5𝑠)2.                           (6) 

 

𝑠 = √𝑅𝑀𝑆2 − 𝑀𝐷𝐼𝑆𝑇2.                                            (7) 

 

Where z0.5 value is 1.645. 

Ellipse Area (AREA-CE) {35} [11] is the area in ellipses which encompasses all the points in 

ML-AP axis acceleration path with 95% confidence and is computed by the MATLAB 

implementation provided by [11]. Sway area (AREA-SW) {36} [10], [13] evaluates the area 

bounded by the acceleration path over time. AREA-SW is calculated using (8). 

 

𝐴𝑅𝐸𝐴 − 𝑆𝑊 =
1

2𝑇
∑ |𝐴𝑃𝑛+1𝑀𝐿𝑛

𝑁−1
𝑛=1 − 𝐴𝑃𝑛𝑀𝐿𝑛+1                (8) 

 

Summary of time domain features along with names, units and directions are illustrated in 

Table 3. 

 

Table 3: Summary of Time Domain Features 

Features no. Features name Unit Direction 

1-4 Mean Distance/Average 

Acceleration Magnitude 

(MDIST/AAM) 

m/s2 SVM, ML,V and AP 

5 Average Absolute 

Acceleration Magnitude 

Variation (AAMV) 

m/s2 SVM 

6-8 Summed Axis Acceleration 

(SAA) 

m/s2 ML,V and AP 

9 Summed Magnitude Area 

(SMA) 

m/s2 SVM 

10-13 Path Length (TOTEX) m/s2 SVM, ML,V and AP 

14-17 Mean Sway Velocity 

(MVELO) 

m/s SVM, ML,V and AP 

18-21 Range of Acceleration (R) m/s2 SVM, ML–AP, ML–V and AP–V 

22-25 Jerk m/s3 SVM, ML,V and AP 

26-29 RMS Acceleration (RDIST/ 

RMS_A) 

m/s2 SVM, ML,V and AP 

30-33 RMS Angular Velocity 

(RMS_G) 

deg/s SVM, ML,V and AP 

34 95% Confidence Circle 

Sway Area (AREA-CC) 

m2/s4 SVM 

35 95% Confidence Ellipse 

Area (AREA-CE) 

m2/s4 AP-ML 

36 Sway Area (AREA-SW) m2/s5 AP-ML 
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3.3.2 Frequency Domain Features 

This section encompasses various frequency/spectral domain measures, which are commonly 

utilized to assess postural steadiness. These measures within the frequency domain characterize 

aspects such as the shape or area of the power spectral density. 

Total power spectrum (TP) {37,..,39} [12] represents the cumulative power of the power 

spectrum, calculated using the "pspectrum" function in MATLAB, derived from the 

acceleration signal. Centroidal frequency or spectral centroid (CFREQ) {40,..,42} [12] serves 

as an indicator for the center of mass of a spectrum, denoting the frequency at which spectral 

mass is concentrated. The spectral edge frequencies (SEF_A and SEF_G) {43,..,48} [12] 

signify the frequency below which 95% of the power spectrum is encompassed. Similarly, 

median frequency (FMED) {49,..,51} [12] signifies the frequency below which 50% of the 

power spectrum resides. 

Frequency dispersion (FREQD) {52,..,54} [12] is a dimensionless parameter that quantifies the 

variability in the content of the power spectrum. Peak frequency (PFREQ) {55,..,57} [12] 

corresponds to the frequency with the highest value and is computed across all axes. Another 

feature, Mean frequency (MFREQ) {58,..,61} [10], [13], can be envisioned as the frequency 

an acceleration signal would have traversed if it had traced the total sway around a circle with 

a radius equal to the mean distance. This measure is proportional to the ratio of mean velocity 

to the mean distance. The combined calculation of MFREQ is obtained through equation (9), 

while the per-axis calculation is achieved using equation (10). 

𝑀𝐹𝑅𝐸𝑄 =
𝑀𝑉𝐸𝐿𝑂

2𝜋𝑀𝐷𝑆𝐼𝑇
.                                                   (9) 

 

𝑀𝐹𝑅𝐸𝑄𝐴𝑃 =
𝑀𝑉𝐸𝐿𝑂𝐴𝑃

4√2𝑀𝐷𝐼𝑆𝑇𝐴𝑃
.                                            (10) 

 

Lastly, Entropy Acceleration (ENT_A) and Entropy Angular Velocity (ENT_G) {65,..,69} 

[12] denote the power spectrum entropy of the acceleration and angular velocity signals, 

respectively. 

These features are selected because they are easy to compute and give substantial information 

regarding postural steadiness. A summary of frequency domain features along with unit and 

directions are mentioned in Table 4. 
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Table 4: Summary of Frequency Domain Features 

Features no. Features name Unit Direction 

37-39 Total Spectral Power (TP) μ ML,V and AP 

40-42 Centroidal Frequency/Spectral Centroid (CFREQ) Hz ML,V and AP 

43-45 SEF/95% Frequency/F95 (SEF_A) Hz ML,V and AP 

46-48 SEF Ang. Vel. (SEF_G) Hz ML,V and AP 

49-51 Frequency Median/F50 (FMED) Hz ML,V and AP 

52-54 Frequency Dispersion (FREQD) - ML,V and AP 

55-57 Peak Frequency (PFREQ) Hz ML,V and AP 

58-61 Mean frequency (MFREQ) Hz SVM, ML,V and AP 

62-65 Entropy Acceleration (ENT_A) - SVM, ML,V and AP 

66-69 Entropy Angular Velocity (ENT_G) - SVM, ML,V and AP 
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CHAPTER 4: METHODOLOGY 

For signal processing, the Butterworth filter finds utility. This filter is adept at conserving the 

amplitude of a signal within a specific frequency range, simultaneously suppressing undesired 

frequencies. The hallmark of Butterworth filters lies in their "order," which dictates the rate of 

decline in attenuation, and their "cutoff frequency," which denotes the juncture at which high-

frequency elements are dampened, permitting lower-frequency components to pass through. 

This mechanism proves effective in eradicating noise and undesirable frequencies from signals 

while upholding the integrity of desired information in the passband. 

In our context, we employed an 8th order low-pass Butterworth filter with zero-phase 

characteristics. The designation "8th order" signifies that it possesses a filter order of 8, 

resulting in a more pronounced attenuation of high-frequency noise and a steeper roll-off, in 

contrast to lower-order filters. The attribute "zero-phase" indicates that this filter introduces no 

phase alteration, ensuring that the phase of the filtered signal remains unaltered. Lastly, the 

label "low-pass" signifies that this filter grants passage to low-frequency components while 

diminishing the presence of high-frequency components. 

This variety of filter finds commonplace application in domains like audio processing and the 

analysis of biomedical signals, where safeguarding phase consistency and excluding high-

frequency disturbances hold paramount importance. 

4.1 Statistical Analysis 

Assessment of data normality was conducted using the Shapiro-Wilk test, alongside the 

examination of histograms and boxplots. Given that a majority of balance characteristics did 

not exhibit a normal distribution, the Mann-Whitney U test was employed to identify 

significant disparities in each biomarker between individuals with MCI and those with normal 

cognitive function (CN).   

4.1.1 Shapiro-Wilk Test 

The Shapiro-Wilk test is engaged to determine the degree of conformity of a dataset to the 

attributes of a normal distribution. This evaluation yields both a test statistic and a 

corresponding p-value, where a lower p-value signifies a departure from normal distribution 

characteristics. Researchers typically utilize a predetermined significance level, like 0.05, to 

make a determination regarding the null hypothesis, which posits that the data adheres to a 
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normal distribution. In cases where the test generates a p-value below the selected significance 

threshold, it signifies a substantial departure of the data from normality. 

4.1.2 Mann-Whitney U Test 

The Mann-Whitney U test, is a statistical analysis which is non-parametric and it is applied to 

compare two distinct independent groups or samples. This test investigates whether there exists 

a notable distinction in the distributions of these two groups, all while sidestepping the 

requirement for a predetermined data distribution assumption. The examination aims to 

determine if one group consistently exhibits higher or lower values compared to the other, 

rendering it valuable for ordinal or continuous data when conventional parametric assumptions 

are not satisfied. 

4.1.3 One-Way ANOVA 

The One-Way ANOVA is a statistical examination employed to contrast the means of three or 

more groups, aiming to identify significant distinctions among them. Its purpose is to ascertain 

whether the variance in the data predominantly arises from disparities between groups or from 

chance fluctuations within each group. If the obtained p-value falls below a selected 

significance threshold, it indicates that at least one group possesses a distinct mean compared 

to the rest. 

4.2 Performance Metrics 

For assessing the scores of discrete balance characteristics, the receiver operating 

characteristics (ROC) curve and the corresponding area under the curve (AUC) were utilized, 

accompanied by 95% confidence intervals (95% CI) [21] were calculated. To evaluate 

classification models, accuracy, sensitivity and specificity is used. The details of all these 

performance metrics are provided in this section. 

4.2.1 Accuracy 

Accuracy, a metric in classification, assesses the ratio of accurate predictions made by a model 

compared to the entire set of predictions. It's computed as the fraction of correct predictions 

relative to the total predictions. Although a widely utilized measure, accuracy might not be 

suitable for imbalanced datasets. 
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4.2.2 Sensitivity 

Sensitivity, alternatively referred to as the True Positive Rate or Recall, is a metric in binary 

classification that quantifies the ratio of true positives (TP) accurately identified by a model in 

relation to all genuine positives (TP + False Negatives, FN). It evaluates the model's 

effectiveness in accurately categorizing positive instances, a critical consideration in fields 

such as medical assessments or anomaly identification. Elevated sensitivity values signify 

superior competence in recognizing positive cases. 

4.2.3 Specificity 

Specificity, a measure within binary classification, gauges the fraction of true negatives (TN) 

that a model accurately detects from all real negatives (TN + False Positives, FP). It signifies 

the model's proficiency in accurately categorizing negative instances, particularly pertinent in 

domains like medical diagnoses. Elevated specificity values indicate enhanced capability in 

minimizing incorrect identifications of negative cases. 

4.2.4 AUC 

AUC, an acronym for Area under the Curve, functions as a metric utilized in binary 

classification to assess a model's ability to distinguish between positive and negative instances. 

It computes the area under the ROC (Receiver Operating Characteristic) curve, where higher 

values indicate enhanced classification performance (with a perfect model attaining an AUC 

of 1 and a random model yielding an AUC of 0.5). 

4.2.5 95% Confidence Interval (lower and upper) 

Within a 95% Confidence Interval (CI), a range of values is encompassed, providing a level of 

confidence that a population parameter, like a mean or proportion, resides within this interval. 

The lower limit marks the minimum extent of this range, whereas the upper limit represents its 

maximum extent. In a 95% CI, there is a strong 95% probability that the true parameter value 

falls between these two boundaries, established based on sample data and statistical techniques. 

4.3. Cross validation technique 

Leave one out cross validation technique is explained in this section. 
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4.3.1 Leave One Out Cross Validation 

Leave-One-Out Cross-Validation (LOOCV) is a cross-validation strategy utilized to evaluate 

the effectiveness of a machine learning model. This technique requires training the model on 

all but a single data point within the dataset and consequently evaluating it on the excluded 

data point. This iterative process is conducted for each data point in the dataset. LOOCV 

furnishes a reliable gauge of the model's performance, particularly advantageous with limited 

datasets, although it may incur substantial computational costs when dealing with larger 

datasets. 

4.4 Feature Selection Methods 

Since data is not normally distributed, Two were used in this study are mutual information and 

Wilcoxon rank-sum test. 

4.4.1 Mutual Information 

Mutual information functions as a metric quantifying the statistical interrelation of two random 

variables, Mutual Information gauges the extent to which information about one variable can 

be inferred by observing the other. This concept finds extensive use in fields such as machine 

learning and information theory, facilitating the assessment of relationships among variables 

or characteristics. Enhanced mutual information values correspond to stronger dependencies 

between the variables. 

4.4.2 Wilcoxon Rank-Sum Test 

The test of Wilcoxon rank-sum is a statistical technique that operates independently of specific 

assumptions about data distribution. It focuses on assessing the level of significant variation 

between two distinct groups or samples. This non-parametric method is particularly 

advantageous in situations where data does not conform to the assumptions of parametric tests, 

offering a reliable avenue for comparing independent groups. 

4.5 Machine Learning Models 

The working and use of machine learning models used in this study are explained in this 

section. 
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4.5.1 Decision Tree 

A decision tree, an essential algorithm in machine learning, serves purposes in both 

classification and regression tasks. This algorithm constructs a representation of decisions or 

predictions resembling a tree structure. In this structure, each internal node stands for a specific 

feature, each branch corresponds to an assessment rule, and every leaf node encapsulates an 

ultimate result. The popularity of decision trees stems from their capacity to be interpreted and 

their adaptability, rendering them well-liked for various applications including data analysis 

and predictive modeling. 

4.5.2 Naive Bayes 

Naive Bayes stands as a machine learning algorithm employing probabilities for task 

classification, grounded in Bayes' theorem. It operates under the presumption of feature 

independence when conditioned on the class label, a simplification that remains effective in 

generating results. This approach is notably fitting for assignments such as text categorization 

and identifying spam, mainly due to its efficiency and capacity to provide meaningful outcomes 

even with a restricted volume of training data. 

4.5.3 KNN 

In the realm of supervised machine learning, the K-Nearest Neighbors (KNN) model finds its 

application in classification and prediction tasks. This algorithm determines the classification 

or value assigned to a specific data point by evaluating the prevailing majority class or average 

value among its k nearest neighbors within the training dataset. While KNN's strength lies in 

its adaptability and straightforwardness, making it valuable across a range of applications, it 

necessitates a thoughtful choice of the parameter k and can be susceptible to fluctuations in the 

scales of features. 

4.5.4 SVM 

The Support Vector Machine (SVM) emerges as a powerful algorithm within supervised 

machine learning, adept at addressing classification and regression assignments. Central to its 

purpose is the identification of an optimal hyper plane that adeptly separates data points into 

distinct classes, all while maximizing the gap between them. SVM demonstrates notable 

effectiveness when confronted with high-dimensional datasets, and it also provides the 
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flexibility to utilize diverse kernel functions for capturing complex relationships inherent in the 

data. 

4.5.5 MKL-SVM 

The Multi-Kernel Learning Support Vector Machine represents an enhanced iteration of the 

traditional SVM, designed to improve classification performance by amalgamating multiple 

kernels. Through the automated selection and weighting of diverse kernels, this approach 

excels at capturing a wide array of patterns present in data, particularly advantageous for 

complex problems characterized by varied data representations. The MKL-SVM holds 

relevance across diverse domains like image analysis, bioinformatics, and natural language 

processing, playing a pivotal role in enhancing both model accuracy and robustness. 
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CHAPTER 5 EXPERIMENTAL RESULTS  

In this section, AUC results, classification results using significant features are presented in 

detail. Furthermore, classification outcomes were assessed utilizing feature selection 

techniques, namely Mutual Information and Wilcoxon rank-sum test, applied to the complete 

feature set is illustrated. Lastly, comparison of significant features with MMSE score of 

subjects are explained. 

5.1 Mann-Whitney U Test Results 

Since data is non normal, we used Mann-Whitney U test for significant feature analysis and 

got following results presented in Table 5 presents results of Mann-Whitney U test. Significant 

values of p is less than 0.05. 

Table 5: Significant Features 

Conditions Sr.no Features Name p-values (p<0.05) 

Eyes-Open 

1 MDIST 0.0111 

2 RMS_A 0.0111 

3 AREA-CC 0.0177 

4 SEF_G V 0.0097 

Eyes-Close 

1 MDIST 0.0126 

2 RMS_A 0.0126 

3 AREA-CC 0.0177 

Right Leg Lift 1 MDIST 0.0414 

Left Leg Lift 

1 MDIST 0.0462 

2 CFREQ AP 0.0319 

3 FREQD AP 0.0263 

4 ENT_A AP 0.0307 

5 ENT_G 0.0319 

6 MFREQ ML 0.0332 

Mean of Conditions 

1 MDIST 0.0163 

2 RMS_A 0.0234 

3 SEF_A ML 0.0111 

4 SEF_G V 0.0307 

5 CFREQ ML 0.0082 

6 FREQD ML 0.0132 

7 ENT_A ML 0.0137 

8 Jerk AP 0.0285 

9 MFREQ ML 0.0137 
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four features in eyes open condition, three features in eyes close condition, one feature in right 

leg lift condition, six features in left leg lift condition and nine features in mean condition 

generates significant results according to Mann-Whitney U test. 

5.2 AUC Results  

This study marks the initial investigation into disparities in standing balance attributes derived 

from accelerometers between individuals with normal cognitive function and those with Mild 

Cognitive Impairment (MCI). Mean of conditions is the mean value taken across all standing 

balance conditions (EO, EC, RL, and LL) of each feature per subject. 

The key results suggest that balance characteristics exists across all assessed conditions which 

could demonstrate significant dissimilarities where value of p<0.05 between MCI and CNs. P-

values and AUC with 95% confidence lower and upper intervals of significantly different 

features are illustrated in Table 6.  

Within a 95% confidence interval, there is a strong assurance of 95% probability that the true 

parameter value is encompassed by the range defined by these two limits, which is established 

based on sample data and statistical techniques. 

 

Table 6: Results of Significant Balance Biomarkers to Discriminate MCI and CN 

Conditions Sr.no Features name AUC CI lower CI upper 

Eyes-Open 

1 MDIST 0.6899 0.5319 0.8058 

2 RMS_A 0.6899 0.5319 0.8058 

3 AREA-CC 0.6572 0.5189 0.7956 

4 SEF_G V 0.6922 0.5584 0.826 

Eyes-Close 

1 MDIST 0.6678 0.5307 0.8049 

2 RMS_A 0.6672 0.5301 0.8044 

3 AREA-CC 0.6583 0.5201 0.7965 

Right Leg Lift 1 MDIST 0.6411 0.501 0.7812 

Left Leg Lift 

1 MDIST 0.6333 0.4924 0.7742 

2 CFREQ AP 0.6806 0.5451 0.816 

3 FREQD AP 0.6811 0.5458 0.8165 

4 ENT_A AP 0.6733 0.537 0.8097 

5 ENT_G 0.66 0.522 0.798 

6 MFREQ ML 0.6711 0.5345 0.8078 

Continued on next page 
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Mean of 

Conditions 

1 MDIST 0.6589 0.5207 0.797 

2 RMS_A 0.6494 0.5102 0.7887 

3 SEF_A ML 0.7156 0.5853 0.8458 

4 SEF_G V 0.6472 0.5078 0.7867 

5 CFREQ ML 0.7067 0.575 0.8383 

6 FREQD ML 0.7078 0.5763 0.8392 

7 ENT_A ML 0.6978 0.5648 0.8308 

8 Jerk AP 0.6794 0.5439 0.815 

9 MFREQ ML 0.7011 0.5686 0.8336 

 

5.3 Classification using Significant Features 

We employed several fundamental machine learning models, including support vector machine 

(SVM), decision tree (DT), Naïve Bayes (NB), K-nearest neighbors (KNN), and MKL-SVM. 

These models were applied exclusively to the significant features identified within each 

condition, as well as the mean of conditions.  

Figure 4 illustrates the methodology used for classification of models using significant features 

in each condition. Significant features calculated through Mann-Whitney U test in above 

section. Then data is split through 10 fold cross validation to maximize the training because 

data set is small. After that, testing of model is checked and results are produced. 

 

 

Figure 4: Methodology of Classification using Significant Features 

 

The classification performance was measured through classification accuracy (Acc.), 

sensitivity (Sens.), and specificity (Spec.). The specific outcomes achieved by each 

classification model are outlined in Table 7. The SVM technique resulted in an accuracy of 

70%, coupled with a sensitivity of 80%, under the eyes-open condition. Most significant 

features are present in mean of conditions. Therefore, it is better to take mean of all quiet 

standing stance and then do analysis. MKL-SVM is yielding 68.3333% accuracy in left leg lift 
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condition. The other models are not providing good results with significant features. Advance 

machine learning models need to be applied. 

Table 7: Performance Comparison of Various ML Models yielding Results using only 

Significant Features 

Model Conditions Hyper parameter Acc. (%) Sens. (%) Spec. (%) 

SVM 

Eyes-Open C=60 70 80 60 

Eyes-Close C=20 60 73.3333 46.6667 

Right Leg Lift C=300 60 80 40 

Left Leg Lift C=20 58.3333 60 56.6667 

Mean of Conditions C=20 61.6667 70 53.3333 

DT 

Eyes-Open Max_depth=2 65 93.3333 36.6667 

Eyes-Close Max_depth=3 65 86.6667 43.3333 

Right Leg Lift Max_depth=2 66.6667 93.3333 43.3333 

Left Leg Lift Max_depth=2 60 76.6667 43.3333 

Mean of Conditions Max_depth=3 66.6667 53.3333 80 

NB 

Eyes-Open - 65 73.3333 56.6667 

Eyes-Close - 63.3333 76.6667 50 

Right Leg Lift - 56.6667 73.3333 40 

Left Leg Lift - 65 60 70 

Mean of Conditions - 63.3333 60 66.6667 

KNN 

Eyes-Open K=3 56.6667 63.3333 50 

Eyes-Close K=3 51.6667 60 43.3333 

Right Leg Lift K=3 53.3333 56.6667 50 

Left Leg Lift K=3 51.6667 46.6667 56.6667 

Mean of Conditions K=3 63.3333 70 56.6667 

MKL-

SVM 

Eyes-Open C=250 66.6667 76.6667 56.6667 

 Eyes-Close C=80 61.6667 73.3333 50 

 Right Leg Lift C=80 60 70 50 

 Left Leg Lift C=60 68.3333 86.6667 50 

 Mean of Conditions C=40 65 86.6667 43.3333 

 

5.4 Classification using all Features 

Figure 5 illustrates the methodology used for classification of models using significant features 

in each condition. Significant features calculated through Mann-Whitney U test in above 
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section. Then 2 feature selection methods are applied namely, Mutual Information and 

Wilxocon Ranksum test. Both of these are wrapper methods. We did not apply SFFS feature 

selection methods because they may lead to over fitting and affect the results. 

 

 

Figure 5: Classification Methodology using all Features with Feature Selection Methods 

 

Results of multiple machine learning models along with best combination of features are 

presented in following tables. No of features is presented by nbf and it provides the information 

that best accuracy of models is achieved at specific combination of number of features. 

 

Table 8: Performance Results of Decision Tree Model 

 Max_depth 

depth 

nbf Acc. (%) Sens. (%) Spec. (%) FSM 

Eyes-Open 3 4 65 90 40 

M
u
tu

al
 

in
fo

rm
at

io
n

 

Eyes-Close 3,4,5 6 65 83.3333 46.6667 

Right Leg Lift 2 5 61.6667 83.3333 40 

Left Leg Lift 3 3 66.6667 73.3333 60 

Mean of Conditions 2 4 70 83.3333 56.6667 

 Max_depth nbf Acc. (%) Sens. (%) Spec. (%) FSM 

Eyes-Open 2,3 8 66.6667 70 63.3333 

W
il

co
x
o
n

 

Eyes-Close 3 1,2,3 70 96.6667 43.3333 

Right Leg Lift 2,3 1,2,3 66.6667 93.3333 40 

Left Leg Lift 3,4 1 61.6667 80 43.3333 

Mean of Conditions 4 2,3 70 90 50 

 

In Table 8, results of decision tree model is illustrated with optimized max_depth hyper 

parameter. Decision tree is yielding 70% accuracy with high sensitivity in mean of conditions 

using Wilcoxon feature selection method. 
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Table 9: Performance Results of Naïve Bayes Model 

 nbf Acc. (%) Sens. (%) Spec. (%) FSM 

Eyes-Open 6 60 56.6667 63.3333 

M
u
tu

al
 

in
fo

rm
at

io
n

 

Eyes-Close 12 50 70 30 

Right Leg Lift 2 56.6667 30 83.3333 

Left Leg Lift 5 55 40 70 

Mean of Conditions 5 51.6667 40 63.3333 

 nbf Acc. (%) Sens. (%) Spec. (%) FSM 

Eyes-Open 7 65 70 60 

W
il

co
x
o
n

 

Eyes-Close 6 63.3333 73.3333 53.3333 

Right Leg Lift 1 56.6667 73.3333 40 

Left Leg Lift 1 65 80 50 

Mean of Conditions 2 61.6667 76.6667 46.6667 

 

In Table 9, results of naïve bayes model is illustrated with no hyper parameter. This model is 

yielding 65% accuracy with high sensitivity in left leg lift conditions using Wilcoxon feature 

selection method. 

 

Table 10: Performance Results of KNN Model 

 k nbf Acc. (%) Sens. (%) Spec. (%) FSM 

Eyes-Open 3 1 56.6667 63.3333 50 

M
u
tu

al
 

in
fo

rm
at

io
n

 

Eyes-Close 2 4 51.6667 23.3333 80 

Right Leg Lift 3 4 66.6667 63.3333 70 

Left Leg Lift 3 12 53.3333 40 66.6667 

Mean of Conditions 3 12 56.6667 56.6667 56.6667 

 k nbf Acc. (%) Sens. (%) Spec. (%) FSM 

Eyes-Open 3 8 63.3333 63.3333 63.3333 

W
il

co
x
o
n

 
Eyes-Close 3 5 58.3333 63.3333 53.3333 

Right Leg Lift 3 2 55 56.6667 53.3333 

Left Leg Lift 3 5 60 66.6667 53.3333 

Mean of Conditions 3 8 70 80 60 

 

In Table 10, results of KNN model is illustrated with optimized k hyper parameter. This model 

is yielding 70% accuracy with high sensitivity in mean of conditions using Wilcoxon feature 

selection method. 

In Table 11, results of SVM model is illustrated with optimized c hyper parameter which is 

cost maximizing accuracy. This model is yielding 75% accuracy with high sensitivity in eyes 

open conditions using Wilcoxon feature selection method. 
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Table 11: Performance Results of SVM Model 

 c nbf Acc. (%) Sens. (%) Spec. (%) FSM 

Eyes-Open 20 5 68.3333 76.6667 60 

M
u
tu

al
 

in
fo

rm
at

io
n

 

Eyes-Close 20 5 51.6667 66.6667 36.6667 

Right Leg Lift 20 4 65 66.6667 63.3333 

Left Leg Lift 20 12 53.3333 70 36.6667 

Mean of Conditions 20 7 56.6667 60 53.3333 

 c nbf Acc. (%) Sens. (%) Spec. (%) FSM 

Eyes-Open 60 7 75 83.3333 66.6667 

W
il

co
x
o
n

 

Eyes-Close 20 5 61.6667 80 43.3333 

Right Leg Lift 40 2 61.6667 83.3333 40 

Left Leg Lift 40 1 65 83.3333 46.6667 

Mean of Conditions 20 4 66.6667 70 63.3333 

 

In Table 12, an advancement of SVM model is applied to get better results but since we used 

a total of 9 kernels of Gaussian and polynomials, it has given us over fitted results. The same 

hyper parameter c is used in MKL-SVM model i.e. cost. 

 

Table 12: Performance Results of MKL-SVM Model 

 c nbf Acc. (%) Sens. (%) Spec. (%) FSM 

Eyes-Open 160 5 71.6667 86.6667 56.6667 

M
u
tu

al
 

in
fo

rm
at

io
n

 

Eyes-Close 60 3 56.6667 26.6667 86.6667 

Right Leg Lift 80 5 63.3333 63.3333 63.3333 

Left Leg Lift 500 3 56.6667 40 73.3333 

Mean of Conditions 60 4 61.6667 66.6667 56.6667 

 c nbf Acc. (%) Sens. (%) Spec. (%) FSM 

Eyes-Open 120 7 68.3333 80 56.6667 
W

il
co

x
o
n

 
Eyes-Close 60 1 61.6667 70 53.3333 

Right Leg Lift 80 1 60 70 50 

Left Leg Lift 60 1 68.3333 86.6667 50 

Mean of Conditions 40 9 65 86.6667 43.3333 

 

SVM and MKL-SVM gives best results among all models with accuracy range upto 75 for 

underlying conditions. We suggest using Wilcoxon rank sum feature selection method as it 

yields better results with all machine learning models. The superiority of MKL-SVM over 

traditional SVM can be attributed to its capability to harness multiple kernels simultaneously. 

While SVM employs a single kernel function to transform data into a higher-dimensional space 

for linear separation, this approach may not effectively capture the intricate patterns present in 

real-world data, which tends to be complex and diverse. 

MKL-SVM overcomes this limitation by amalgamating multiple kernels, each tailored to 

capture specific nuances of the data's complexity. This fusion of kernels empowers MKL-SVM 
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to more accurately model intricate relationships within the data, resulting in enhanced 

classification accuracy. 

Moreover, MKL-SVM's automated weighting and kernel selection mechanism adapts to the 

unique attributes of the data, enhancing its ability to discern between classes in a more refined 

manner. This adaptability contributes to superior generalization and improved performance 

across a broader spectrum of datasets. 

To summarize, MKL-SVM's capacity to encapsulate diverse patterns through multiple kernels 

and its flexible nature make it a more robust and adept choice, surpassing the traditional SVM, 

especially in situations where the data's complexity and diversity significantly impact 

classification outcomes. 

Overall, we analyzed that eyes-open, left leg lift and mean of conditions are giving better results 

because significant features are present in these conditions. Wilcoxon rank sum feature 

selection method is giving better results than mutual information. Since the nature of our data 

was not normal, it is evident to say that Wilcoxon will give good results because it is utilized 

for such type of data. 

5.5 Comparison of the Features with MMSE 

The score of MMSE is a prevalent mental and cognitive assessment measure. It is employed to 

assess diverse cognitive aspects like memory, attention, and language, aiming to understand an 

individual's cognitive capabilities and detect possible cognitive deficiencies. With a score 

range typically spanning from 0 to 30, greater scores correspond to stronger cognitive tasks. 

MMSE is frequently administered in clinical contexts to evaluate cognitive deterioration and 

is frequently referenced in studies involving cognitive disorders and neurodegenerative 

conditions.  

On our dataset, MMSE achieved area score of AUC=0.6694 (95% CI: [0.5326-0.8063) with 

95% confidence lower and upper intervals, respectively. According to our results, several 

parameters achieved greater AUC score than AUC score of MMSE. Details of comparison 

among different conditions is given below. 

In eyes open condition, the parameters: MDIST AUC=0.6899 (95% CI: [0.5319-0.8058]), 

RMS_A AUC=0.6899 (95% CI: [0.5319-0.8058]) and SEF_G V AUC=0.6922 (95% CI: 

[0.5584-0.826]) could discriminate MCI and CNs more acceptable than MMSE AUC=0.6694 

(95% CI: [0.5326-0.8063]).  
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Moreover, in Left-leg lift condition, the parameters: CFREQ AP AUC=0.6806 (95% CI: 

[0.5451-0.816]), FREQD AP AUC=0.6811 (95% CI: [0.5458-0.8165]), ENT_A AP 

AUC=0.6733 (95% CI: [0.537-0.8097]) in AP direction and MFREQ ML AUC=0.6711 (95% 

CI: [0.5345-0.8078]) in ML direction could discriminate MCI and CNs more acceptable than 

MMSE.  

In mean of all scenarios, SEF_A ML AUC=0.7156 (95% CI: [0.5853-0.8458]), CFREQ ML 

AUC=0.7067 (95% CI: [0.575-0.8383]), FREQD ML AUC=0.7078 (95% CI: [0.5763-

0.8392]), ENT_A ML AUC=0.6978 (95% CI: [0.5648-0.8308]), MFREQ ML AUC=0.7011 

(95% CI: [0.5686-0.8336]) in ML direction and jerk AP AUC=0.6794 (95% CI: [0.5439-

0.815]) in AP direction could discriminate MCI and CNs more acceptable than MMSE. By 

taking mean of all conditions, the ROC analysis demonstrated the best feature to discriminate 

MCI from CNs is SEF_A ML AUC=0.7156 (95% CI: [0.5853-0.8458]). 

The area under the curve ROC for significant features along with MMSE are illustrated for 

eyes open condition, left leg lift condition and mean conditions in Figure 6,7 and 8. 

 

 

 

Figure 6: ROC Curve of Significant Features and MMSE along EO Condition 
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Figure 7: ROC Curve of Significant Features and MMSE along LL Condition 

 

 

Figure 8: ROC Curve of Significant Features and MMSE along MEAN Condition 
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CHAPTER 6: CONCLUSION AND FUTURE WORK 

Early identification of MCI patients is crucial to prevent or delay dementia progression. Our 

research endeavors to pioneer a comprehensive assessment of diverse balance biomarkers for 

the early detection of MCI patients compared to normal individuals. The scope of our study 

encompasses balance biomarkers that serve to identify impairments not only in MCI but those 

conditions associated with various cognitive disorders. 

A total of 36 time related features and 33 frequency/spectral related features were extracted 

and evaluated in our study. This is the first study which evaluates such a wide range of balance 

and posture stability features. Our findings underscore the presence of significant biomarkers 

across all four conditions, with particular prominence observed in the eyes-open and left leg 

lift standing positions. Employing the mean of all conditions for each feature per subject 

yielded the highest count of significant biomarkers. Given the non-normal distribution of the 

majority of balance characteristics, test of Mann-Whitney U was engaged to pinpoint 

noteworthy distinctions in each biomarker's values between individuals with MCI diagnosis 

and those classified as healthy controls. 

Notably, some static balance biomarkers exhibited superior AUC scores for MCI detection 

compared to the widely used MMSE whose full form is Mini-Mental State Examination. This 

underscores the potential of static balance assessment via wearable inertial sensors in supplying 

crucial biomarkers that facilitate the early recognition of MCI. 

We observed noteworthy distinctions in static balance assessment features, particularly 

between eyes-open and left leg lift conditions in contrast to eyes closed and right leg lift 

conditions. Most prominent features in time domain are mean distance(MDIST), 95% 

confidence circle sway area(AREA_CC), jerk and RMS, whereas in frequency/spectral 

domain, SEF, mean (MFREQ), centroidal frequency(CFREQ), frequency dispersion 

(FREQD), and entropy (ENT) are significant balance biomarkers. 

Importantly, our study pioneers the use of wearable sensor data to uncover balance biomarkers 

for diagnosing MCI patients and individuals without cognitive impairment. This approach 

offers robustness in gauging postural stability among MCI patients through prolonged, 

unsupervised monitoring, concurrently curbing the healthcare expenses linked to clinical 

assessments. 

In forthcoming research, we intend to explore the optimal combination of measures from the 

complete feature set required for accurate MCI patient detection. Additionally, we plan to 
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employ advanced machine learning models that effectively classify MCI and normal 

individuals using static balance metrics. We will further examine additional static balance 

biomarkers to enhance our understanding and diagnostic capabilities. Lastly, we will use data 

from total of 7 sensors: waist and both sides of thighs, shin, and toe. We will evaluate whether 

using all sensors generates better results and more number of significant biomarkers. 
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