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Abstract

The wide bandwidth available at the millimeter wave (mmWave) frequencies

is expected to offer high data rates in the fifth generation (5G) of cellular

networks. The technology implements directional transmission to overcome

increased path loss at high frequencies. The dependence on directionality

urges to establish new control layer protocols because the algorithms imple-

mented in omnidirectional long term evolution (LTE) systems are not suit-

able for these networks. The mmWave base station (BS) and user equipment

(UE) need to be properly aligned for directional communication constituting

long-lasting initial access (IA) phase. Recently, several research works have

been done to devise smart IA procedures for mmWave systems. Some of

these schemes periodically sweep across the cell area while others make use

of the contextual information regarding BS and UE profiles and propagation

environment to establish the link. This paper proposes a smart machine

learning-based context-aware sequential algorithm for IA in 5G mmWave

systems and analyzes its performance in comparison to the conventional ex-

haustive and iterative search algorithms. The algorithm is shown to provide

a comparatively lower misdetection probability and a smaller discovery delay.
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Chapter 1

Introduction

1.1 Motivation

The advent of the Internet has uplifted the standard of living, reforming this

world as a Global Village. With the passage of time, a soaring increase in the

Internet population has been seen due to the emergence of smart devices and

the fact that the basic routine and work tasks are, now, strongly dependent

and associated with the Internet [5–7]. The Telecommunications community

is positively looking forward towards the coming era of the Internet of Things

(IoT) where everyday devices will communicate and operate via the Inter-

net [8]. The ongoing subscribers growth also imposes crucial limitations on

the performance of traditional microwave (µWave) systems in terms of pro-

viding low latency for real-time communications as well as to support high

throughput for applications including ultra-high definition video streaming

or virtual reality. Fig. 1.1 depicts the two slices of United States Federal

Communications Commission (FCC) spectrum chart where the upper slice

1
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Figure 1.1: FCC Spectrum Chart [1]

is comprised of low carrier frequencies and lower slice belongs to the high

frequency spectrum. The current sub-6 GHz band for conventional mobile

cellular networks utilize the upper frequency slice that is heavily crunched

and has also nearly approached the Shannon limit thus, inducing the interest

of researchers to push the radio spectrum up to the 30-300 GHz mmWave

frequency band for 5G communication systems [9–26].

The widely available and unutilized bandwidth in the mmWave spec-

trum is potentially expected to cater for the high data rate requirements

of 5G access networks. Additionally, small wavelengths at mmWave fre-

quencies enable to build miniaturized antenna arrays with abundant antenna

elements, thereby, offering extra gains through spatial multiplexing and iso-

lation. Moreover, mmWaves provide narrow beamwidths to allow antenna

configurations that reduce the co-channel interference to provide spatial ef-
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Figure 1.2: Frequency vs. Sea Level Attenuation [2]

ficiency. Alongside several benefits, the mmWave frequency band imposes

significant challenges in the way to exploit its potential features. High car-

rier frequencies experience extreme molecular and atmospheric absorption

losses alongside serious rain attenuation [27–29]. Fig. 1.2 illustrates the

attenuation experienced at various operating frequencies. The blue circles

mark the frequency bands having high attenuation, i.e., 60 GHz spctrum,

and thus are suitable for short range indoor communications while green cir-

cles depict the frequency bands whose free space isotropic propagation loss

is comparable to that of the legacy mobile communication systems, i.e., 70

GHz spectrum, and white circles correspond to the frequency bands exhibit-

ing low attenuation, i.e, 28 GHz and 38 GHz spectrum. Studies show that a

careful and appropriate link design can compensate for these losses [29].

Additionally, high carrier frequencies resulting in short wavelengths make
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Figure 1.3: HetNet and SDN-supported Architecture for mmWave Commu-
nications [3]

mmWave signal susceptible to get around and penetrate through the block-

age of solid obstacles causing severe signal attenuation [30]. Higher mmWave

carrier frequencies also offer higher path loss as compared to that of tradi-

tional lower frequency communication systems thus compelling to deploy

dense spatial layouts of mmWave systems with small cell radius and high

gain directional transmissions for compensation [2, 31–39].

The demanding propagation impairments in mmWave channel suggest to

uphold the existing µWave communication network in order to ensure per-

sistent service and coverage [40], thus paving the way for the heterogeneous

network (HetNet) model in which wide connectivity will be provided by the

conventional µWave BS and mmWave BS will offer the on-demand service

to the UE [41]. Also, the diverse HetNet devices propose a functional split

between the control (C-) plane and user (U-) plane to deal with the signaling
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Figure 1.4: Range Mismatch Problem [4]

information and data transmission, respectively. Fig. 1.3 shows the basic

HetNet and SDN supported architecture for mmWave 5G communication

systems.

Furthermore, the mmWave BS and UE must be spatially aligned in order

to carry out the directional transmission of signals even during the prelim-

inary task of Initial Access (IA), the process of establishing a physical link

between the BS and UE to transfer the data. Thus, the IA process of con-

ventional LTE networks is not suitable for the mmWave systems because in

LTE, initially the pilot signal is broadcasted on the omnidirectional chan-

nel. Implementing the IA process of LTE in mmWave systems will cause

the range mismatch problem, i.e., difference between the range covered by

directional data transfer and omnidirectional cell search [42–44]. Fig. 1.4
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represents the range mismatch problem where white circle denotes the range

covered by omnidirectional cell search while blue circle marks the range that

is covered by using directional beam steering. The mentioned perspective

urges to discover new cell search schemes for IA in mmWave communication

systems.

1.2 Contribution

A tremendous amount of work is being carried out to develop efficient mmWave

IA strategies, focused on improving the probability of misdetection (PMD)

caused due to blockage and deafness, i.e., the beams of UE and the mmWave

BS do not direct towards each other in the IA phase [45, 46], and discovery

delay (DD) due to long-lasting directional sweep across the cell area to detect

the UE. This work is also dedicated to designing a smart IA algorithm for

5G mmWave communication systems and analyzes its performance in com-

parison to the conventional algorithms. The eminent research contribution

is organized in this dissertation as follows:

1. We provide a shallow insight into the various 5G mmWave IA schemes

by categorizing them in two major divisions of sequential cell search

and context aware cell search strategies (Chap. 2).

2. Stepping forward, we develop the conceptual and mathematical founda-

tions to our proposed machine learning-based context aware sequential

algorithm, which smartly utilizes the strengths of machine learning and

context awareness alongside sequential cell search to successfully estab-
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lish a connection between the mmWave base station and user equipment

(Chap. 3).

3. We evaluate the performance of our devised initial access algorithm for

mmWave communications via conducting comparative analysis, through

numerical simulations, with the well-reputed exhaustive and iterative

search algorithms. The index performance metrics are discovery delay

and probability of misdetection where the prior is estimated on the

number of cell sectors being searched while later is analyzed on the

basis of signal-to-noise ratio threshold and the cell radius (Chap. 4).

4. Finally, we briefly elaborate the findings of our research work and iden-

tify the future open research problems related to the proposed algo-

rithm (Chap. 5).



Chapter 2

Groundwork on IA in mmWave

Systems

Communications community is diligently working on various standardization

technologies for mmWave wireless local area networks (WLAN) and wire-

less personal area networks (WPAN), given as IEEE 802.11ad [47], IEEE

802.15.3c [48] and ECMA-387 [49,50], to name a few.

Researchers are particularly working on devising suitable strategies for

the initial access phase in 5G mmWave systems. The main focus of research

studies is on reducing the discovery delay, imposed due to the long duration

of directional cell search, alongside providing the minimum probability of

misdetection. In this scenario, the work done so far can be categorized into

two major groups, i.e., sequential cell search and context-aware (CA) cell

search schemes. The key works related to these categories are detailed in the

subsequent sections. Moreover, this research work is focused on analyzing

IA procedure for downlink transmission thus the related work cited is also in

8
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Figure 2.1: Exhaustive Search

accordance with the scope of the dissertation.

2.1 Sequential Cell Search

Sequential cell search schemes, as the name suggests, refer to the strategies

that sequentially span the 360o cell area, following a predefined codebook

based directional beamforming. Codebook is a matrix such that each col-

umn defines the weight vector of antennas associated to a particular beam

pattern. The prominent algorithms under this category are summarized in

the adjacent subsections.
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2.1.1 Exhaustive Search

One of the preliminary sequential cell search procedures is the exhaustive

search in which the mmWave BS has predefined beam directions to period-

ically scan across the cell area [51]. Exhaustive search starts scanning the

360° cell area from 0° with a narrow beamwidth, commonly 10°. It points

the beam in a particular sector for a certain time duration and if UE is not

detected, algorithm will wait a while and then steer the beam towards the

adjacent sector in anticlockwise direction. The process repeats until UE is

connected or BS has searched the entire cell area till 360°. As, exhaustive

search spans the cell area with a narrow beamwidth providing larger gain

and range to establish the link hence causing a lower probability of misde-

tection. Meanwhile, algorithm needs to span across 36 cell sectors with a

beamwidth of 10° in 360° cell area thus causing a larger discovery delay. Fig.

2.1 illustrates the sector sweep in exhaustive search.

2.1.2 Iterative Search

In [52], iterative cell search scheme is analyzed in which mmWave BS firstly

spans the cell area in two sectors with a wide beamwidth of 180° where first

sector corresponds to 0° to 180° and second sector is associated with 180° to

360°. If UE is connected in a sector, the process eventually terminates oth-

erwise algorithm further divides the particular search region and beamwidth

based on a loose signal-to-noise ratio (SNR) threshold that specifies the prob-

ability of a UE to be present within that sector, i.e., if loose SNR threshold

suggests that UE could potentially be located in search region of 0° to 180°,
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Figure 2.2: Iterative Search

iterative search splits and searches the given area in further two sectors of

0° to 90° and 90° to 180° respectively with a beamwidth of 90°. The process

continues until UE establishes a link with BS or beamwidth approaches to

its minimum predefined limit. Iterative search systematically spans the cell

area and offers lower discovery delay on the expense of higher probability

of misdetection. Initially the wider beamwidth spans across the large cell

area providing lower gain and range to detect the UE while on later stages

beamwidth is narrower but the cell sectors being searched are smaller in area.

Fig. 2.2 depicts the sector level search in iterative algorithm.
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Figure 2.3: Hybrid Search

2.1.3 Hybrid Search

Comparative analysis of exhaustive and iterative search schemes reveals that

the prior offers the lower probability of misdetection with narrow beamwidth

and high gain to provide connectivity to a larger range of cell area with

longer search duration whereas the later is capable of providing much lower

discovery delay on the expense of high probability of misdetection [53].

Hence, a hybrid algorithm is proposed in [20] that merges the strengths

of exhaustive and iterative algorithms to provide a balanced tradeoff between

discovery delay and probability of misdetection. Hybrid search firstly per-

forms iterative search on broad cell sectors with wide beamwidths to reduce

discovery delay as compared to that of exhaustive search, and if the UE is

not connected until the last pair of sectors is reached then the algorithm
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implements the exhaustive search within these sectors to provide a lower

probability of misdetection than that of iterative search. Fig. 2.3 shows the

search sequence of hybrid algorithm.

2.2 CA Cell Search

CA cell search schemes are expected to exploit the available contextual infor-

mation regarding the BS and UE location profiles, network quality require-

ments and the propagation environment, to establish the connection. As

mmWave systems exploit higher range of frequencies as compared to the ex-

isting conventional networks, it is comparatively more prone to high isotropic

path loss as suggested by the Friis free space path loss equation (FSPL) [54],

i.e., isotropic propagation loss is proportional to the square of the frequency

(f)

FSPL = (4 × π ×R× f)2 (2.1)

where R is the distance between transmitting and receiving antennas. High

path loss causes coverage issues in mmWave systems thus emphasizing on

retaining the available µWave communication systems in order to provide

better UE connectivity, which is termed as the HetNet scenario. The diverse

nature of communication devices operating and interacting at different fre-

quencies paves the way to deploy SDN architecture that enables a functional

split between signalling information and data transmission and permits to

assign bulk of signalling tasks to the legacy base stations, which resultantly

assists to gather the UE contextual information and opens the doors to a
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new dimension of mmWave cell search schemes [55].

The concept of designing mmWave IA algorithms utilizing contextual in-

formation is comparatively new in literature but various related studies have

been conducted in recent years that suggest to implement the algorithms

that make use of BS and UE position information [56], environmental char-

acteristics [57], past access attempts [58], power levels received after initial

scan [59] and time of arrival (ToA)/angle of arrival (AoA) information to

propose a pair of best possible beamwidth and search direction to form the

connection [59].

Incorporation of artificial intelligence in contemporary systems is gain-

ing momentum these days [60]. Recently, the trending domain of ML is

also being deployed alongside CA algorithms to impose significant perfor-

mance improvements as compared to that of conventional algorithms. Ma-

chine learning is implemented in [3] that utilizes the context information

regarding UE's past access attempts, in a HetNet and SDN supported sce-

nario, to learn the best possible pair of beam candidates to establish the

link.



Chapter 3

ML-based CA Sequential Initial

Access

3.1 System Model

The ML-based CA sequential algorithm for IA in 5G mmWave systems aims

to incorporate the strengths of artificial intelligence with the availability of

contextual information, which, in our case, is the location information of BS

and UE, in devising a suitable beamwidth to establish the connection.

Consider an environment with the presence of both stationary and mobile

UEs, making requests for connection with the mmWave BS. Also, the system

is GPS coordinated in order to extract the respective locations of UE and

BSs. The global positioning system (GPS) coordinates initially gathered

are referred as the estimated coordinates because UE could potentially has

deviated from its original position. Conventional algorithms, i.e., exhaustive

and iterative searches, do not concern for the scenarios of mobile UE whereas

15



CHAPTER 3. ML-BASED CA SEQUENTIAL INITIAL ACCESS 16

Figure 3.1: Fetching UE Coordinates

the proposed algorithm has the ability to deal with such cases by utilizing

the ML model. Moreover, we are assuming a software defined networking

scenario, i.e., a centralized C-plane is responsible for transferring signaling

information and a U-plane is designated to handle the data transmission.

Additionally, a HetNet environment is considered such that we have a µWave

BS and several associated mmWave BSs.

Holistically the suggested process of IA works as follows. Firstly, the

UE initiates a connection request via C-plane and network determines an

appropriate mmWave BS for that particular UE keeping minimum distance

as a parameter. Afterward, the µWave BS transfers the GPS coordinates

of linked mmWave BS to the associated UE and the UE directs its beam

towards the linked mmWave BS. Meanwhile, as the linked mmWave BS is

aware of the UE coordinates, it determines the optimal beamwidth according

to the proposed scheme, described in the sequel, to establish a successful

connection. The setup pocess is shown in Fig. 3.1. For ease of analysis, we

are examining the process of IA only on the BS side.
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3.2 IA Phase-1

Figure 3.2: Probabilstic Neural Network

mmWave BS obtains and feeds the estimated GPS coordinates of UE

to the input layer of the ML model, which is a probabilistic neural network

(PNN), as shown in Fig. 3.2. PNN is a feed-forward neural network, generally

utilized in classification and pattern recognition scenarios. PNN architecture

is comprised of four layers. The first layer, which is stated as the input layer,

holds the training set of already classified data points, i.e., x-coordinates

and y-coordinates of UEs that established a successful connection with the

mmWave BS, in the past. When the input layer gets the estimated x and

y coordinates of the new UE, it will form a data point corresponding to a

pattern unit in the second layer, just like other trained data points. Pattern
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unit is basically a Gaussian function with a peak centered on the estimated

UE location. For example, if the UE's estimated coordinates are represented

as xo and yo, then the value associated to each pattern unit can be computed

by considering the distance between the UE 's coordinates (xo, yo) and the

center of pattern unit, associated to trained data points (x, y). Thus, the

corresponding Gaussian function is given as

f(x, y) = exp−
{

(x− xo)
2 + (y − yo)

2

2δ2

}
, (3.1)

where δ is the constant that controls the width of the function. Conceptu-

ally, δ accounts for the variance of UE's mobility, i.e., if δ has large value,

algorithm is suitable to perform for highly mobile UE, else if δ is small, the

Gaussian function is narrower in width around its center that is appropriate

for stationary or slightly mobile UE. δ can be predefined by keeping in view

the environment in which BS is deployed and the precision of the estimated

GPS location.

Moving forward, the pattern units for each category are summed to create

a category unit in the third layer of the neural network. In our case, a

category unit corresponds to the cardinality (N) of I, where I is a set of

natural numbers whose elements, i ε I, represent the number of cell search

sectors. Training the network is automatic, i.e., adding new data points to

the appropriate category set.

After obtaining the suggested number of cell sectors for search (N), the

optimal beamwidth (BWop
o
t ) for the process of IA in a 360o cell area is given

as
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BWop
o
t =

360o

N
. (3.2)

3.3 IA Phase-2

Figure 3.3: Cell Search

Once the algorithm acquires the BWop
o
t , it starts performing the cell

search as depicted in Fig. 3.3. Firstly, it points the beam towards the sector,

n, having estimated UE location at θn degrees, for Tsig seconds to establish

the connection. If UE is not discovered at sector n for i = 1 (first step), then

after a period of Tper seconds, the algorithm will steer the beam by increasing

a sector in positive direction, i.e., n+ 1 for i = 2 followed by n− 1 for i = 3,

n+ 2 for i = 4, n− 2 for i = 5, and so on. The search region for even values

of i is given as

θoS = (i+ 1) ×BWop
o
t + θn, (3.3)
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θoE = i×BWop
o
t + θn, (3.4)

whereas the search region corresponding to odd values of i is determined as

θoS = (i− 1) ×BWop
o
t + θn, (3.5)

θoE = i×BWop
o
t + θn, (3.6)

where θoS identifies the start of the beam and θoE indicates the end of the

beam. The algorithm terminates the IA if UE is not found until i reaches N .

Moving forward towards the other parameters for establishing the con-

nection. Consider G(θ) be the total antenna gain, given as

G(θ) = Gtx ×Grx ×BFGaintx ×BFGainrx, (3.7)

where Gtx and Grx are the gains at transmitter and receiver antennas, respec-

tively. It should be noted that we are considering sectored approximation,

i.e., the search beam provides a constant gain in a sector while ignoring the

influence of side lobes. Also, BFGaintx and BFGainrx are transmitter and

receiver analog beamforming gains, respectively. BFGain is given as

BFGain = E ×D, (3.8)

where E stands for antenna efficiency and D corresponds to antenna

directivity, which is defined as

D =
4π

BWop
o
t

. (3.9)
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The beam will encounter either a line-of-sight (LoS) or non-line-of-sight

(NLoS) channel while searching a sector. In reality, the gain provided by

the mmWave link is affected by channel inaccuracies caused by diffraction,

fading, scattering, etc., but these factors are ignored for the simplicity of our

analysis. Thus, consider the channel path loss to be

L(r) =


ρ+ 10αLlog(r) + χL if the link is LoS,

ρ+ 10αN log(r) + χN otherwise,

(3.10)

where ρ is the fixed path loss factor, αL and αN are LoS and NLoS path loss

exponents, respectively, r is the mmWave link distance, while χL and χN cor-

respond to LoS and NLoS zero mean lognormal random variable, respectively

that accounts for shadowing.

In our analysis, we have considered the same blockage model as utilized

by Bai and Heath [61], given by

Ξ = e−βr, (3.11)

where β parameter is evaluated by considering the statistics of buildings and

r corresponds to the mmWave link distance. Utilizing the analysis for real

world environment conducted in [14], we have concluded that if 1 > Ξ(r)

> 0.5, the link is LoS and if Ξ(r) < 0.5, the link will be NLoS. The LoS

and NLoS scenarios define whether the envelope follows a Rician or Rayleigh

distribution, respectively.

Moving forward, if UE gets a signal from the mmWave BS, then the

received power, Pr is calculated as
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Figure 3.4: Proposed Algorithm Flow

Pr =
PtG(θ)µ

L(r)
, (3.12)

where Pt denotes the transmit power of the BS and µ is the squared envelope

of multipath fading. Interference due to other UEs will be ignored as we are

analyzing one mmWave BS and one UE scenario. Hence, the received signal-

to-noise ratio (SNR), τ , is defined as

τ =
Pr
σ2
, (3.13)

where σ2 accounts for the noise power. The UE is connected with the asso-

ciated mmWave BS if
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τ > αth, (3.14)

otherwise, the link will not be established where αth represents the SNR

threshold. The proposed algorithm flow is illustrated in Fig. 3.4.

Considering that the UE has been successfully detected, we calculate the

discovery delay, DD, i.e., the time spent for discovering the UE. DD for a

particular sector i ε I is given as

DD(i) = i× Tsig + (i− 1) × Tper. (3.15)

The total discovery delay for a given UE is the sum of discovery delay for

each sector searched until the UE is connected.



Chapter 4

Performance Evaluation

4.1 Simulation Playground

The efficiency of the proposed IA search scheme is analyzed by taking into

consideration the number of input nodes used to train the PNN and the

variance factor (δ2). Moreover, the performance of exhaustive, iterative and

proposed ML-based CA sequential algorithm is evaluated by means of com-

parative analysis executed by numerical simulations. For simplicity, it is con-

sidered that the mmWave BS performs analog beamforming where the effect

of atmospheric losses, rain attenuation, and molecular absorption losses is

ignored in a cell radius of 100 meters. The simulation parameters are listed

in Table 4.1.

The algorithms are assessed in terms of two key performance indicators,

i.e., discovery delay and the probability of misdetection. Once a UE is con-

nected to the mmWave BS, the discovery delay is measured over the sectors

being searched until UE detection. Probability of misdetection depends on

24
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Parameter Value Parameter Value
fc 73 GHz Average UE Requets 20000
Pt 30 dBm Bandwidth 2 GHz
αL 2 Tsig 10µsec.
αN 2.45 Tper 200 µsec.

Std(χL) 5.2 dB Std(χL) 7.2 dB
αs 20 dB αth 40 dB
Gtx 24.5 dBi Grx 24.5 dBi

Noise Figure 10 dB BFGainrx 4 dBi

Table 4.1: Simulation Parameters

several factors but most importantly on cell radius, i.e., UE-BS distance,

and received SNR, thus PMD is analyzed with respect to these parameters.

Moreover, simulations are approximated over 105 Monte Carlo iterations.

4.2 Impact of Variance

4.2.1 Discovery Delay

Conceptually, variance (δ2) of Gaussian function in the pattern layer of PNN

accounts for the sensitivity of the network towards the UE mobility. We are

working within a cell radius of 100 meters and UE follows a uniform distri-

bution, U [1, 100] ms−1 in case of mobility. We can approximately categorize

the UE mobility as slow mobile (1−40 ms−1), medium mobile (40−80 ms−1)

and high mobile (80 − 100 ms−1). It is evident from the graphs in Fig. 4.1

that discovery delay is the highest for the value of δ2 corresponding to the

set of slow mobile UE. Whereas, when the network is trained for medium to

high mobile UE scenarios, the discovery delay is significantly reduced.
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Figure 4.1: Impact of Variance on Discovery Delay

Figure 4.2: Impact of Variance on Probability of Misdetection

4.2.2 Probability of Misdetection

Analyzing the probability of misdetection on various values of variance in

Fig. 4.2 reveals that the PMD is highest if we choose δ2 corresponding to

the set of slow mobile UE, i.e. 20ms−1. The second high curve is obtained

on considering the δ2 for the scenario of highly mobile UE, i.e., 100ms−1.
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Figure 4.3: Training set vs. DD PMD (δ2 = 40ms−1, initial # of input
nodes = 50)

The overall analysis suggests to take the value of variance from the set of

medium mobile UE (40 − 80 ms−1) so, in our analysis, we are considering

δ2 = 40ms−1.

4.3 Impact of PNN Training Set

Fig. 2.3 shows that as the training set increases from 100 (50 new data points)

to 1000 (950 new data points), the discovery delay decreases from 0.9 ms to

0.5 ms. The significant decrease happens when training set is comprised of

200 input nodes, the discovery delay is approximately sustained for further

increase in data points. Basically, increase in number of training nodes will

result in more accurate classification of the UE location in associated cate-

gory, i.e., the optimum number of search sectors that will eventually cause

an improvement in the time taken to sweep across the cell area thus de-
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creasing discovery delay. On the contrary, the probability of misdetection

is continuously increasing with an increase in the number of training nodes.

It goes from 0.01 to 0.18 for an increase of 100 to 1000 in the number

of training data points. This might be due to the fact that as the num-

ber of input nodes representing estimated UE coordinates is increased the

network becomes more trained for devising a beamwidth in accordance to

the particular UE location whereas there are several other factors, i.e., path

loss exponent, LOS and NLOS fading, blockage environment etc. that also

have significant impact towards the UE detection but PNN being unaware of

these features results in an increase in the PMD. Nevertheless, this limitation

serves as a motivation for conducting future work that could incorporate the

information of these factors in the PNN for improved performance.

4.4 Cell Search Sectors

The only system parameter directly related to DD is the number of cell

sectors being searched during the IA phase. More the sectors, longer is the

time taken by an algorithm to span the area, thus increasing the DD. Bar

graphs in Fig. 4.4 analyze the performance of the algorithms in terms of

DD. It is evident that the exhaustive search scheme provides the highest

DD, because it searches the 360o cell area with fixed beamwidth of 10o in

counterclockwise direction starting from 0o until I reaches its cardinality.

On the contrary, iterative search, in the first stage, spans the 360o region

with 180o beamwidth, if the UE is connected, the process of searching stops

automatically, otherwise based on a loose SNR threshold, which suggests that
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Figure 4.4: Stages vs. Discovery Delay

UE could potentially be located in the particular sector, algorithm further

divides the sector and the beamwidth into half and search till maximum of

five stages (2 sectors in each stage) stopping at a beamwidth of 11.25o. As

iterative search spans the 360o area by smartly reducing the number of sectors

as compared to the consecutive sector sweeps of exhaustive search, the DD of

iterative search in contrast to that of exhaustive search is significantly lower.

Lastly, the ML-based CA sequential search utilizes the availability of UE's

location information to predict the most appropriate beamwidth, responsible

for connection, and then directly points the beam towards that location. If

the connection does not establish, the algorithm searches the area nearby to

UE's given location in a way that if the UE is supposed to be at sector n,

and does not connect, it searches the sector n−1, then n+1, n−2, n+2 and

so on till N . As, context aware algorithm, based on UE's location smartly

designs the beamwidth and also the sequence of sectors to be searched as

opposed to the arbitrary search of exhaustive and iterative methods, the DD

of context aware search is lowest of them all.
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Figure 4.5: SNR Threshold (αth) vs. Misdetection Probability

4.5 Signal-to-Noise Ratio Threshold

Exhaustive search always spans the 360o area with 10o beamwidth providing

a larger range and gain to meet the SNR requirements even to the farthest

premises of the cell, resultantly providing lower PMD as depicted by the bar

graphs in Fig. 4.5. Iterative search spans the 360o area in 5 stages, where

beamwidth for stage 1 is 180o, for stage 2 is 90o, for stage 3 is 45o, for stage

4 is 22.5o and for stage 5 is 11.25o. In each stage, algorithm spans only two

sectors of the cell area. PMD is high for iterative search because firstly it

searches the cell with larger sector area and beamwidth, i.e., shorter range

thus missing the UEs on distant ends of the cell and also providing lower

gains to meet the SNR requirements. Afterward, moving towards narrower

bandwidths, although the gain and range are high but the sector area being

searched is small.

Finally, the proposed algorithm makes use of available UE location to get
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Figure 4.6: Cell Radius vs. Misdetection Probability

the most suitable beamwidth for connection and then directly points it to the

given location. If due to certain factors, UE is not detected it searches the

adjacent sectors to that location. Well, as ML-based CA sequential search

devises the beamwidth and also the search sectors smartly, it offers lower

PMD as compared to that of conventional algorithms.

4.6 Cell Radius

Small cell radius implies that UEs are in close vicinity of BS, hence small

distance will result in high received power, meeting the SNR threshold criteria

most of the time and giving low PMD. On the other hand, large cell radius

allows UEs to spread on the area far from BS causing a low level of received

power to satisfy the SNR requirements to the UEs located on distant premises

and thus resulting in higher PMD.

Bar graphs in Fig. 4.6 analyze the effect of cell radius on exhaustive,
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iterative and ML-based CA sequential algorithms. As described, a smaller

radius means lower PMD while larger radius causes an increase in PMD.

Holistically, the proposed algorithm, owing to its smart design, provides a

comparatively lower PMD.



Chapter 5

Conclusion and Future Work

In this dissertation, we familiarize the readers with the circumstances that

lead to focus research in the mmWave frequency spectrum for 5G cellular

communications. We overview the potential advantages that are gained by

utilizing mmWave frquency band alongside discussing the hurdles in its de-

ployment that suggest to devise new protocols and algorithms, especially

the initial access in 5G mmWave communication systems, i.e., establishing

the physical link between BS and UE to start formal communication, is a

major concern and researchers are diligently working on developing efficient

procedures for smart cell search. These studies can be categorized into se-

quential cell search and context aware cell search strategies and we have

briefly discussed some search schemes related to the mentioned categories.

We have developed a machine learning-based context aware sequential initial

access algorithm for 5G mmWave communication systems that implements

ML alongside CA to smartly search the cell area in order to connect to the

UE. The algorithm's flow and performance analysis is summarized as follows:

33
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1. In phase-1, the algorithm obtains contextual information in terms of

UE and BS geo-locations, exploits ML using a probabilistic neural net-

work (PNN) to suggest the best possible number of cell search sectors

and beamwidth to establish the connection, keeping in view the UE

mobility.

2. In phase-2, it sequentially searches the cell area to and forth the given

location, to a certain limit, indicated by the probabilistic neural net-

work output, to establish the connection.

3. Numerical simulations show that the proposed ML-based CA sequential

algorithm has managed to offer a lower probability of misdetection

alongside lower discovery delay during the IA phase as compared to

those of traditional cell search algorithms, i.e., exhaustive and iterative

schemes.

The proposed algorithm provides a perspective that can be considered in the

future research studies. Currently, the algorithm utilizes only the BS and

UE GPS coordinates to suggest suitable number of cell sectors and appro-

priate beamwidth for connection. We can enhance the availability and usage

of contextual information in form of propagation environment alongside net-

work, BS and UE characteristics to further improve the search duration and

successful detection. Moreover, we can analyze the algorithm in terms of

energy efficiency.
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