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Manuscript delineation

The concept of convex function was first introduced by Jensen in [25]. He said

that the chord’s midst of the curve, whether continuous or not, lies above or on

the curve. This notion has been extended to its familiar form for the continuous

case when any point of the chord lie above or on the curve. In present days, the

study of convexity excogitate into more valuable theory of functions which can be

very helpful in deriving numerous important inequalities of analysis, see [18, 39,

43, 52]. The most significant convex function inequality which is widely known as

king is the Jensen’s inequality. Young’s, Levinson’s, the harmonic mean-geometric

mean-arithmetic mean inequality, and many other eminent inequalities are particular

cases of this known result. Important books on inequalities are: ”Inequalities” by

Hardy et al. [18], Beckenbach et al. [3] and ”Analytical inequalities” by Mitrinović

[36]. From 1988-1993, four comprehensive books were published comprising of the

application and development of inequalities [6, 37–39]. Fink in [17] gave a brief but

comprehensive note on historical background of inequalities, where the progress and

growth of mathematical inequalities is given in form of sequences.

The theory of exponentially convex functions was introduced by S. N. Bernstein

in [5]; the representation of these functions over the given interval (a, b) as a genre of

convex functions was given by D. V. Widder [63]. These functions can be constructed

by well known method given in [24]. J. Jakšetić and J. Pečarić in [24] also analysed

that linear functionals defined on a family of m-convex functions lead to means

of Stolarsky type. This guide to a generalized method of producing exponentially

convex functions. J. Pečarić and J. Perić [53] gave the concept of m-exponentially

convex functions. Some useful results of m-exponential convexity and logarithmic

convexity are given in [2, 7, 8, 19,23,27,32,33,50,51,55].

In Chapter 1, we give some definitions and notions of convexity, then generalize

it to the higher order. It also recalls some basic concepts of m-exponential convexity
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and logarithmic convexity. In addition, some Jessen and Jensen type functionals and

inequalities are also given.

In Chapter 2, the positive functional has been used to investigate the log-

convexity and the m-exponential convexity. This positive functional is defined in

the form of the difference of the two sides of the inequality given in [49]. We discuss

Cauchy and Lagrange type mean value theorems which lead us to Stolarsky type

means.

In Chapter 3, we give a refinement of the Jessen inequality. We opt an elegant

method of constructing m-exponential convex functions by applying the positive

functionals associated with the weighted integral Jensen’s inequality and weighted

Jessen inequality. Cauchy and Lagrange mean value theorems are also given which

enable us to construct means with Stolarsky property.

In Chapter 4, some interesting results have been shown. These results are asso-

ciated with the refined Jessen’s inequality for m(M)-ψ-convex functions.

Chapter 5 is the extension of Jessen functional. We also explore logarithmic and

exponential convexity. We also give mean value theorems of Cauchy and Lagrange

type. Several families of functions are also presented related to our main results.

In Chapter 6, the m-exponential convexity and the log-convexity have been in-

vestigated. For this investigation, positive functionals are applied which associate

with the refinement of Hermite Hadamard inequality (cited from [45]). With the

results that are obtained, some families of functions related to them are presented.

Lagrange and Cauchy type mean value theorems have also been given to construct

means with Stolarsky property.

In Chapter 7, we report an idea of logarithmic and m-exponentially concave

functions and apply this concept on the linear functional related with the Jensen’s

inequality for generalized Choquet integral. The consequence of these results provide

us an interesting application in the probability. We discuss Cauchy and Lagrange
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type mean value theorems which lead us to Stolarsky type means. We also deduce

an interesting result of information theory.
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Abstract

A real valued function Ψ on S (S is a set that is convex) is called convex if epigraph

of Ψ is a convex set. Alternatively, for any two points x, y ∈ S the line segment

µx + (1 − µ)y (µ ∈ [0, 1]) joining these two points on the graph of the function

Ψ lies above or on the graph. The well known king of inequalities, that is, the

Jensen’s inequality is the generalization of the above result. Integral, functional,

probabilistic and many other indispensable forms of this fundamental result can be

found in literature.

In the dissertation, we introduce some advancements in Jensen’s type inequal-

ities. The m-exponential convexity and the log-convexity have been investigated.

Positive functionals are used to investigate them. The positive functionals are de-

fined in the form of the difference of two sides of the refined and some known

inequalities. We also give an idea of logarithmic and m-exponentially concave func-

tions and apply this concept on the linear functional associated with the Jensen’s

inequality for generalized Choquet integral. The consequences of obtained results

provide us interesting applications in the probability. We also deduce an interesting

result of information theory. We discuss Cauchy and Lagrange type mean value

theorems which lead us to Stolarsky type means. We also draw some interesting

results associated with the refined Jessen’s inequality and Lupaş-Beesack-Pečarić

(LBP) type inequality for m(M)-ψ-convex functions.
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Chapter 1

Introduction and preliminaries

This chapter presents some definitions and notions of convexity, then generalizes it

to the higher order. It also recalls some basic concepts of m-exponential convexity

(concavity) and logarithmic convexity (concavity). In addition, some Jessen and

Jensen type functionals and inequalities are also given.

1.1 Functions of convex type

Convexity arises naturally in the study of functions and hence plays a very im-

portant role in many fields of applied and pure mathematics. Different concepts

from topology, algebra, geometry and analysis are unified by it. It is considered

as an important tool in numerous branches of engineering, in management science

and operation research, in mathematical economics, in optimization theory and in

statistics. Convexity is the basic concept behind the theory of graphical analysis.

Second derivative test in calculus is very useful in recognizing convexity. We recall

the definitions and notions about convexity from [52].

Definition 1.1.1. A set S is convex if for any two points s1, s2 ∈ S and µ ∈ [0, 1]
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the line segment µs1 + (1− µ)s2 ∈ S.

The following structural objects are the examples of convex and nonconvex sets.

The first solid body is a convex set. The middle set is not convex because the line

segment between two given points is not contained in the set. The right most set is

a hollow structural shape which dose not contain the line segment between any two

points of the boundary. So it is not a convex set.

Figure 1.1: Convex and nonconvex sets

Definition 1.1.2. Let Ψ : [η, ζ](⊆ R) → R. The function Ψ is called J -convex or

convex in the Jensen sense on [η, ζ] if the inequality

Ψ

(
s1 + s2

2

)
≤ Ψ(s1) + ψ(s2)

2
(1.1.1)

is true for all s1, s2 ∈ [η, ζ].

Definition 1.1.3. Suppose S be a convex set, a function Ψ : S(⊆ R)→ R is convex

if

Ψ(µs1 + (1− µ)s2) ≤ µΨ(s1) + (1− µ)Ψ(s2) (1.1.2)

for all s1, s2 ∈ S and µ ∈ [0, 1]. If (1.1.2) is strict for µ ∈ (0, 1) and s1 6= s2, then Ψ

is strictly convex.

Remark 1.1.1. (i) If we reverse the inequality (1.1.2), then the function Ψ is

concave. Moreover, if it is strict for µ ∈ (0, 1) and for all distinct s1, s2, then

the function Ψ is strictly concave.
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(ii) If s1, s2, s3 ∈ S such that s1 < s2 < s3, then (1.1.2) is equivalent with∣∣∣∣∣∣∣∣
s1 Ψ(s1) 1

s2 Ψ(s2) 1

s3 Ψ(s3) 1

∣∣∣∣∣∣∣∣ ≥ 0. (1.1.3)

Theorem 1.1.1. If the second order derivative of Ψ : [η, ζ] → R exists on (η, ζ),

then Ψ is convex if and only if Ψ′′(s) ≥ 0. Strict convexity holds if Ψ′′(s) > 0.

The convex and J -convex functions are interrelated in the context of continuity.

Remark 1.1.2. A J -convex function is convex if it is continuous as well.

Definition 1.1.4. Suppose S ⊆ R and Ψ,Φ : S → R, where Ψ is convex function

on S and m is an element of R. If Φ − mΨ is a convex mapping on S then Φ is

called m-Ψ-lower convex function.

Consider the following classes of functions [11] (see also [44]):

L(S,m,Ψ) := {Φ : S → R : Φ−mΨ is convex on S}. (1.1.4)

Analogously, for a real number M , M -Ψ-upper convex functions’ class is defined as

U(S,M,Ψ) := {Φ : S → R : MΨ− Φ is convex on S}. (1.1.5)

(m,M)-Ψ-convex functions form another class B(S,m,M,Ψ) which is the intersec-

tion of the above two classes.

Remark 1.1.3. The concept of h-convex dominated mappings was introduced in

[12]: Let h, k : S(⊆ R)→ R, where h is a convex function on S. The mapping k is

said to be h-convex dominated on set S if the inequality below is true

µk(s1)+(1−µ)k(s2)−k(µs1 +(1−µ)s2) ≤ µh(s1)+(1−µ)h(s2)−h(µs1 +(1−µ)s2)

for all s1, s2 in S and µ ∈ [0, 1].

Note that for M = 1, m = −1 and Ψ = h, (m,M)-Ψ-convex functions are

h-convex dominated functions.
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1.2 Higher order convex functions

This section generalizes the notion of convexity to the higher order (see for reference

[52]).

Definition 1.2.1. For a real valued function Ψ : [η, ζ] → R, the divided difference

of m-th order for the function Ψ at distinct points s0, . . . , sm ∈ [η, ζ] is recursively

defined as:

[si; Ψ] = Ψ(si), 0 ≤ i ≤ m

and

[s0, . . . , sm; Ψ] =
[s1, . . . , sm; Ψ]− [s0, . . . , sm−1; Ψ]

sm − s0

. (1.2.1)

For instance, the divided difference of order m = 2 for distinct points s0, s1, s2 ∈
[η, ζ] is

[si; Ψ] = Ψ(si), (0 ≤ i ≤ 2), (1.2.2)

[s0, s1; Ψ] =
Ψ(s1)−Ψ(s0)

s1 − s0

, (1.2.3)

[s0, s1, s2; Ψ] =
[s1, s2; Ψ]− [s0, s1; Ψ]

s2 − s0

. (1.2.4)

Remark 1.2.1. The order of elements s0, . . . , sm has no effect on the value [s0, . . . , sm;

Ψ], that is, its value is independent of the order of si
′
s (0 ≤ i ≤ m). We may ob-

tained an extension of the above definition by choosing coinciding points. That is,

under the assumption that Ψ′|s0 exists if we take the limiting case s1 → s0 of (1.2.3)

yields:

lim
s1→s0

[s0, s1; Ψ] = Ψ′(s0).

Now, taking the limiting case s1 → s0 of (1.2.4), we get

lim
s1→s0

[s0, s1, s2; Ψ] =
Ψ(s2)−Ψ(s0)−Ψ′(s0)(s2 − s0)

(s2 − s0)2
, s2 6= s0
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assuming that Ψ′|s0 exists. Further, taking the limits si → s0 for i = 1, 2 in (1.2.4),

yields

lim
s2→s0

lim
s1→s0

[s0, s1, s2; Ψ] =
Ψ′′(s0)

2
assuming that Ψ′′|s0 exists.

Generally, the extended form for m+ 1 points is

lim
sm→s0

. . . lim
s2→s0

lim
s1→s0

[s0, . . . , sm; Ψ] =
Ψ(m)(s0)

m!

assuming that Ψ(m)|s0 exists.

It can be easily seen that [s0, . . . , sm; Ψ] defined in (1.2.1) is equivalent with

[s0, . . . , sm; Ψ] =
m∑
i=0

Ψ(si)
m∏

j=0,i 6=j
(si − sj)

.

Definition 1.2.2. For m ≥ 0, a function Ψ : [η, ζ]→ R is referred as m-convex on

[η, ζ] if and only if for all choices of (m+1) distinct points s0, . . . , sm ∈ [η, ζ], we get

[s0, . . . , sm; Ψ] ≥ 0.

The following theorem exhibits a relationship between convexity and differentia-

bility.

Theorem 1.2.1. If m-th order derivative of a function Ψ on S exists, then Ψ is

called m-convex if and only if Ψ(m)(s) ≥ 0 for s ∈ S.

1.3 Logarithmic and m-exponential convexity

The advance study of convexity holds gigantic theory of functions, for instance,

logarithmic convex functions that follow the laws of comparison of means and are

an important instrument in mathematical statistics and special functions (see for

example [52]).
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Definition 1.3.1. Let S be an interval in R, a positive function Ψ : S → R is said

to be log-convex if

Ψ(µs1 + (1− µ)s2) ≤ (Ψ(s1))µ (Ψ(s2))1−µ (1.3.1)

for µ ∈ [0, 1] and for all s1, s2 ∈ S.

Alternatively, Ψ is log-convex if log Ψ is convex.

Definition 1.3.2. A function Ψ : S ⊆ R→ R+ is called log-J -convex or log-convex

in the Jensen sense if

Ψ2

(
s1 + s2

2

)
≤ Ψ(s1)Ψ(s2)

is true for each s1, s2 ∈ S.

Remark 1.3.1. A log-J -convex function is log-convex if it is continuous also.

S. N. Bernstein gave the the concept of exponential convexity in 1929 [5] and

later on these functions were introduced by D. V. Widder [63] as a sub class of

convex functions on a specified interval. The concept of m-exponential convexity

has been given in [53] which was presented by J. Pečarić and J. Perić.

The forthcoming discussion focuses on some notions and definitions about m-

exponentially convex functions (for example, read [53]).

Definition 1.3.3. A real valued function Ψ : S → R on an open interval S ⊂ R is

called m-exponentially J -convex or m-exponentially convex in the Jensen sense if

m∑
j,k=1

bjbkΨ

(
sj + sk

2

)
≥ 0

is true for all bj ∈ R and sj ∈ S, j = 1, ...,m.

Remark 1.3.2. It has been observed that 1-exponentially J -convex functions are

nonnegative functions. Furthermore, m-exponentially J -convex functions are p-

exponentially J -convex for every p ∈ N with p ≤ m.
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The notion of positive semi-definite matrices and some basic rule of linear algebra

are used to obtain the proposition below.

Proposition 1.3.1. If a function Ψ : S → R is an m-exponentially J -convex, then

for every p ∈ N with p ≤ m and s1, . . . , sm ∈ S the matrix
[
Ψ
( si+sj

2

)]p
i,j=1

is a

positive semi-definite matrix.

In particular, det
[
Ψ
( si+sj

2

)]p
i,j=1
≥ 0 for every p ∈ N with p ≤ m and s1, . . . , sm ∈

S.

Definition 1.3.4. A real valued function Ψ : S → R is exponentially J -convex, if

it is m-exponentially J -convex for all m ∈ N.

The (m-exponential) exponentially convex function is defined below.

Definition 1.3.5. A real valued function Ψ : S → R is (m-exponential) expo-

nentially convex if it is (m-exponentially J -convex) exponentially J -convex and

continuous.

We can draw the following points from the above definition:

Remark 1.3.3.

(i) The above mentioned definition makes it clear that set of all m-exponentially

convex functions on S form convex cone.

(ii) Less obvious is that if we take any two m-exponentially convex functions on S

then their product is also an m-exponentially convex function on S (one may

read [24]).

(iii) m-exponentially convex functions are invariant on taking admissible shifts and

translations inside argument of the function. In other words, if s 7→ Ψ(s) is

m-exponentially convex, then s 7→ Ψ(s − c) and s 7→ Ψ(s/λ) are also m-

exponentially convex functions.

7



Below are some fundamental examples of exponentially convex functions, (one

may read [24] for details).

Example 1.3.1.

(i) Ψ(s) = k is exponentially convex on R, for any k ≥ 0.

(ii) Ψ(s) = eβs is exponentially convex on R, for any β ∈ R.

(iii) Ψ(s) = s−β is exponentially convex on (0,∞), for any β > 0.

Remark 1.3.4. We may note that a positive real valued function Ψ : S → R is

log-J -convex if and only if it is 2-exponentially J -convex, that is:

b2
1Ψ(s1) + 2b1b2Ψ

(
s1 + s2

2

)
+ b2

2Ψ(s2) ≥ 0

for all b1, b2 ∈ R and s1, s2 ∈ S.
If Ψ is 2-exponentially convex, then Ψ is log-convex. Converse is true if provided

that Ψ is continuous also. m-exponentially convex functions are not, in general,

exponentially convex. (For details, go through the reference [24]).

Now we write a valuable lemma.

Lemma 1.3.2. If Ψ : S → R is log-convex then for r, s, t ∈ S with r < s < t

(Ψ(s))t−r ≤ (Ψ(r))t−s(Ψ(t))s−r. (1.3.2)

Proof. See [52], pp. 4.

Now we present different families of functions to investigate exponential convex-

ity. The following lemma is useful to construct new exponentially convex functions.

Since the below mentioned result is the simple consequence of some basic examples

and remarks given in [24], so we omit the proof.
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Lemma 1.3.3. (i) Define a real valued function fl on S = R by

fl(s) =
1

l2
exp(ls), (l > 0).

It implies the exponential convexity on (0,∞) of l 7→ d2

ds2
fl(s) for each s ∈ S.

(ii) Let gl be a real valued function defined on S = R+ by

gl(s) =
sl

l(l − 1)
, (l > 1).

It implies the exponential convexity on (1,∞) of the function l 7→ d2

ds2
gl(s) for

each s ∈ S.

(iii) Consider a positive real valued function defined on S = R+ by

hl(s) =
l−s

(log l)2 , (l > 1).

It implies the exponential convexity on (1,∞) of the function l 7→ d2

ds2
hl(s) for

each s ∈ S.

(iv) Define a positive real valued function kl on S = R+ by

kl(s) =
1

l
exp(−s

√
l), (l > 0).

It implies the exponential convexity on (0,∞) of the function l 7→ d2

ds2
kl(s) for

each s ∈ S.

1.4 Jensen type inequalities and their functional

approach

The well known king of inequalities, that is, the Jensen inequality is the generaliza-

tion of (1.1.2) (see [15], [39]). In the theory of inequalities, it is very important due

9



to its various applications in mathematics and statistics. Hölder’s, Cauchy’s, and

arithmetic-geometric-harmonic mean inequalities are some of its special cases.

Theorem 1.4.1. If S ⊆ R and Ψ : S → R is convex then for all xi ∈ S, (1 ≤ i ≤ n)

and pi(1 ≤ i ≤ n) non negative real such that p1 + · · ·+ pn = 1 we have

Ψ

(
n∑
i=1

pixi

)
≤

n∑
i=1

piΨ(xi). (1.4.1)

Jensen functional is the difference of the above inequality, written as

Λ(Ψ) =
n∑
i=1

piΨ(xi)−Ψ

(
n∑
i=1

pixi

)
.

The reverse form of Jensen’s inequality from [39] stated as:

Theorem 1.4.2. If S ⊆ R and Ψ : S → R is convex then for all xi ∈ S, (1 ≤ i ≤ n)

and if p be a real n-tuple with p1 > 0, pi ≤ 0 (i = 2, . . . , n) Pn = p1 + · · · + pn > 0

and 1
Pn

∑n
i=1 pixi ∈ S, then

Ψ

(
1

Pn

n∑
i=1

pixi

)
≥ 1

Pn

n∑
i=1

piΨ(xi). (1.4.2)

The theorem below is the classical integral form of Jensen’s inequality stated as

(see for example [52] or [58]):

Theorem 1.4.3. If λ is a positive measure on a σ-algebra A in a set X, so that

λ(X) = 1. If h ∈ L1(λ), h(x) ∈ S ⊆ R for all x ∈ X and Ψ : S → R is convex ,

then

Ψ

(∫
X

hdλ

)
≤
∫
X

(Ψ ◦ h)dλ. (1.4.3)
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Let (X,A, λ1) and (Y,B, λ2) are two probability measure spaces. A (separately)

weight function ς is defined as a product-measurable mapping ς : X × Y → [0,∞),

(see for example [58]), such that∫
X

ς(x, y)dλ1(x) = 1 (for every y ∈ Y ),∫
Y

ς(x, y)dλ2(y) = 1 (for everyx ∈ X).

(1.4.4)

J. Rooin in [57] uses weight function ς and two probability measure spaces to intro-

duce weighted integral Jensen’s inequality.

Theorem 1.4.4. [57] Assume that (X,A, λ1) and (Y,B, λ2) are two probability

measure spaces and ς is a weight function (defined in (1.4.4)). If S ⊆ R, h ∈
L1(λ1), h(x) ∈ S for all x ∈ X and Ψ : S → R is a real convex function, then∫

Y

Ψ

(∫
X

h(x)ς(x, y)dλ1(x)

)
dλ2(y)

has meaning and

Ψ

(∫
X

hdλ1

)
≤
∫
Y

Ψ

(∫
X

h(x)ς(x, y)dλ1(x)

)
dλ2(y) ≤

∫
X

(Ψ ◦ h)dλ1. (1.4.5)

Theorem given below is written in [49] which was stated by J. Pečarić and R.

Janić.

Theorem 1.4.5. Assume Ψ : [0,∞) → R ba a nondecreasing convex function, let

(X, ‖ · ‖) be a normed space. Then for every xi ∈ V, pi ≥ 0 (1 ≤ i ≤ n) such that

Pn =
n∑
i=1

pi > 0, we have

Ψ

(
1

Pn

∥∥∥∥∥
n∑
i=1

pixi

∥∥∥∥∥
)
≤ 1

Pn

n∑
i=1

piΨ(‖xi‖). (1.4.6)

11



(1.4.6) gives the following functional acting on nondecreasing convex function Ψ:

Ω(Ψ) =
1

Pn

n∑
i=1

piΨ(‖xi‖)−Ψ

(
1

Pn

∥∥∥∥∥
n∑
i=1

pixi

∥∥∥∥∥
)
. (1.4.7)

The reverse Jensen’s inequality and the integral form stated in (1.4.2) and (1.4.3),

respectively can also be written in the above given form.

The existing literature considers Hadamard inequality as important and useful

inequality. It is as under:

Theorem 1.4.6. Assume Ψ : S = [α, β]→ R be a convex function, then

Ψ

(
α + β

2

)
≤ 1

β − α

∫ β

α

Ψ(r)dr ≤ Ψ(α) + Ψ(β)

2
. (1.4.8)

By considering r = α+β
2

with its two convex combinations, the refinement of

Hadamard inequality is obtained in [45] is as follows:

Theorem 1.4.7. Consider a closed real interval S = [α, β] ⊆ R with α < β and

γ, δ ∈ S. Let Ψ : S → R is a convex function. Suppose

a =
γ − α
β − α

, b =
β − γ
β − α

, c =
δ − α
β − α

, d =
β − δ
β − α

. (1.4.9)

Then

Ψ

(
α + β

2

)
≤ aΨ

(
α + γ

2

)
+ bΨ

(
γ + β

2

)
≤ 1

β − α

∫ β

α

Ψ(r)dr

≤ cΨ(α) + dΨ(β) + Ψ(δ)

2
≤ Ψ(α) + Ψ(β)

2
.

(1.4.10)

In the field of potential theory and statistical mechanics, Gustave Choquet in

1953 introduced the notion of Choquet integral with respect to capacity. It has
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wide applications in machine learning particularly in recognition of patterns, eco-

nomics, imaging science, and in information fusion. In [61], the Jensen’s inequality

is established for the Choquet integral that paly a crucial part in the risk aversion

theory.

Theorem 1.4.8. [61] Suppose g : S → R is an increasing and concave function and

g(0) ≥ 0. Then the Jensen inequality holds for all X ∈ L1
µν

Cµν(g(X)) ≤ g(Cµν(X)), (1.4.11)

where

Cµν(X) =

∫ ∞
0

µ(X > t)dt−
∫ 0

−∞
ν(X < t)dt

if and only if µ(A) ≤ ν̄(A) for all A.

For other notable literature about Jensen’s inequality and the results related to

it, see [15,28–31,34,35,55].

1.5 Jessen type functionals

Let E(6= ∅) and L be a linear class of real valued functions h : E → R possessing

the properties:

L1: h, k ∈ L ⇒ (γh+ δk) ∈ L for all γ, δ ∈ R,

L2: 1 ∈ L, that is, if h(l) = 1 for some l ∈ E, then h ∈ L.

Take a positive linear functional B : L→ R possesses the properties:

A1: B(γh+ δk) = γB(h) + δB(k) for h, k ∈ L, γ, δ ∈ R,

A2: h ∈ L, h(l) ≥ 0 on E ⇒ B(h) ≥ 0 (B is positive).

13



B is said to be normalized if

A3: B(1) = 1.

By a weight function, we mean a mapping ς : E × E → R+ such that

B (ς(x, y)) = 1 (for each y in E),

Z (ς(x, y)) = 1 (for each x in E),
(1.5.1)

where B and Z satisfy the properties A1, A2 and A3.

For some notable results about isotonic linear functionals and convex functions,

these references [4, 13, 46–48] can be seen. Next theorem is the generalized form

of Jensen’s inequality given by B. Jessen in [26] (see also [52]) for positive linear

functionals.

Theorem 1.5.1. Let E 6= ∅, S ⊆ R and L possess properties L1, L2 on E. Consider

a real valued continuous convex function Ψ on the interval S. If B with the property

B(1) = 1 be a positive linear functional on L. Then for all h ∈ L such that Ψ(h) ∈ L
we have B(h) ∈ S and

Ψ(B(h)) ≤ B(Ψ(h)).

Here Υ(Ψ) = B(Ψ(h))−Ψ(B(h)) is associated positive linear functionals.

The converse of Jessen’s inequality [4] (see also [52]) is stated as:

Theorem 1.5.2. Assume a convex function Ψ on S = [η, ζ](−∞ < η < ζ < ∞)

and let L satisfy properties L1, L2 on a nonempty set E. If B with the property

B(1) = 1 be a positive linear functional on L, then for all h ∈ L with Ψ(h) ∈ L (so

that η ≤ h(l) ≤ ζ for all l ∈ E), we have

B(Ψ(h)) ≤ ζ −B(h)

ζ − η
·Ψ(η) +

B(h)− η
ζ − η

·Ψ(ζ). (1.5.2)
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Its functional form is given as:

(Ψ)ג =
ζ −B(h)

ζ − η
·Ψ(η) +

B(h)− η
ζ − η

·Ψ(ζ)−B(Ψ(h)).

Various remarkable results related to Jessen are given in [1, 4, 9–11,14,54,62].

1.6 m-exponential and logarithmic concavity

This part consists of some useful notions and definitions of m-exponentially concave

functions in the same manner as given for exponentially convex function in [53].

Definition 1.6.1. Suppose S be an open interval of R and g : S → R be a real

valued function, then

• g is called m-exponentially J -concave (where J represents Jensen sense) if

m∑
j,k=1

ajakg

(
yj + yk

2

)
≤ 0

is true for all ai ∈ R and all yi ∈ S, 1 ≤ i ≤ m.

• If g is continuous and m-exponentially J -concave on S, then it is said to be

m-exponentially concave on S.

Definition 1.6.2. Let g : S → R be a real valued function, then

• g is called exponentially J -concave, if for all natural numbers m it is m-

exponentially J -concave.

• If g is exponentially J -concave and continuous then it is said to be exponen-

tially concave.

15



Remark 1.6.1. An interesting fact about a positive real valued function g : S → R+

is; it is log-J -concave if and only if it is 2-exponentially J -concave, that is, for all

a1, a2 ∈ R and x, y ∈ S the following holds

a2
1g(x) + 2a1a2g

(
x+ y

2

)
+ a2

2g(y) ≤ 0.

If g is 2-exponentially concave, then g is log-concave. Converse is true if provided

that g is continuous also.

A fundamental inequality of log-concave functions stated as follows:

Lemma 1.6.1. Suppose that g : S → R is log-concave then for l,m, n ∈ S with

l < m < n

(g(m))n−l ≥ (g(l))n−m(g(n))m−l. (1.6.1)

Proof. We can easily prove this lemma by [52], pp. 4.

1.7 Means and its Stolarsky types

In this section, we define mean and discuss its different kinds. Stolarsky type means

are also given.

Definition 1.7.1. A function M : S × S × . . .× S → R (S ⊆ R) is called a mean

if for all m-tuples (s1, . . . , sm) of elements of S the following holds

inf{s1, . . . , sm} ≤ M(s1, . . . , sm) ≤ sup{s1, . . . , sm}.

For example, if we consider the Lagrange mean value theorem stated as: Assume

a real valued continuous function Ψ which is defined on a closed interval S and

differentiable on the interior points of S and let s1, s2 ∈ S with s1 < s2, there exists

at least one $ belongs to open interval (s1, s2) such that

Ψ′($) =
Ψ(s2)−Ψ(s1)

s2 − s1

.
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From the above equation, the number

$ = (Ψ′)−1

(
Ψ(s2)−Ψ(s1)

s2 − s1

)
is called a mean provided that Ψ′ is invertible.

In a similar manner we can define Cauchy’s mean from Cauchy’s type mean value

theorem which states that: Assume Ψ and Φ are real valued continuous functions

on [s1, s2] and differentiable on (s1, s2) with Φ(s2)− Φ(s1) 6= 0, there exists at least

one $ ∈ (s1, s2) such that

Ψ′($)

Φ′($)
=

Ψ(s2)−Ψ(s1)

Φ(s2)−Ψ(s1)
.

From the above equation, the number

$ =

(
Ψ′

Φ′

)−1(
Ψ(s2)−Ψ(s1)

Φ(s2)−Ψ(s1)

)
is called a mean provided that Ψ′/Φ′ is invertible.

There exist some other important means in the literature. One of the well known

mean is the arithmetic mean (A.M) defined as A(γ, δ) = γ+δ
2

. For an integrable

function Ψ with γ ≤ s ≤ δ it is written as

A(Ψ; γ, δ) =
1

δ − γ

∫ δ

γ

Ψ(s)ds.

For positive γ, δ there are geometric mean (G.M) written as G(γ, δ) =
√
γδ, identric

mean (I.M) defined as

I(γ, δ) =


γ, γ = δ;

1
e

(
δδ

γγ

) 1
δ−γ

, otherwise,

(1.7.1)
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and m-logarithmic mean

Lm(γ, δ) =


γ, γ = δ;

[
δm+1−γm+1

(m+1)(δ−γ)

] 1
m
, otherwise.

(1.7.2)

Logarithmic mean (L.M) is the limit case ofm-logarithmic mean, that is, lim
m→−1

Lm(γ, δ) =

L(γ, δ) stated as

L(γ, δ) =


γ, γ = δ;

δ−γ
ln δ−ln γ

, otherwise.

(1.7.3)

Now we use (1.4.8) to obtain elementary inequalities based on the above mentioned

means.

If we substitute Ψ(x) = exp(x) in (1.4.8), we may obtain an elementary inequality

based on geometric, logarithmic and arithmetic mean. That is,√
γδ ≤ δ − γ

log δ − log γ
≤ γ + δ

2
.

Now if we substitute Ψ(x) = − log x in (1.4.8), we deduce geometric, identric and

arithmetic mean inequality:

√
γδ ≤ 1

e

(
δδ

γγ

) 1
δ−γ

≤ γ + δ

2
.

The following chain of inequalities is given in [20]:

G.M ≤ L.M ≤ I.M ≤ A.M.

Now we give Stolarsky type means which were introduced by Stolarsky in [60] (see
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also [22,55]). Let s, t ∈ R and γ, δ be positive numbers further γ < δ then

M(γ, δ; s, t) =

(
t(δs − γs)
s(δt − γt)

) 1
s−t

,

M(γ, δ; s, 0) =

(
δs − γs

s(ln δ − ln γ)

) 1
s

,

M(γ, δ; s, s) = exp

(
−1

s

)(
γγ

s

δδs

) 1
γs−δs

,

M(γ, δ; 0, 0) =
√
γδ

are means. He further proved that this function is increasing in s and t.
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Chapter 2

Exponential convexity for Jensen’s

type functionals for norms

In this chapter, we discuss m-exponential convexity of the functional

f → Ω(f) =
1

Pn

n∑
i=1

pif(‖xi‖)− f

(
1

Pn

∥∥∥∥∥
n∑
i=1

pixi

∥∥∥∥∥
)
. (2.0.1)

This positive functional is defined in the form of the difference of the two sides of the

inequality (1.4.6). We deduce results about log-convexity and exponential convexity.

We also discuss Cauchy and Lagrange type mean value theorems which lead us to

Stolarsky type means.

2.1 m-Exponential convexity

The new exponentially convex functions can be formed by the following lemma.

Lemma 2.1.1.
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(i) For p > 0 let ϕp : [0,∞)→ R be defined with

ϕp(l) =
epl

2

p2
.

Then p 7→ ϕp(l), p 7→ d
dl
ϕp(l) and p 7→ d2

dl2
ϕp(l) are exponentially convex on

(0,∞), for each l ∈ [0,∞).

(ii) For p > 1 let φp : [0,∞)→ R be defined with

φp(l) =
lp

p(p− 1)
.

Then p 7→ φp(l), p 7→ d
dl
φp(l) and p 7→ d2

dl2
φp(l) are exponentially convex on

(1,∞), for each l ∈ [0,∞).

Proof. (i) is true from second and third part of Example 1.3.1 and Remark 1.3.3.

We get (ii) by similar reasons that used to prove (i) and by observing lp = ep ln l.

Now we write a valuable lemma.

Lemma 2.1.2. Assume f : [0,∞)→ R is a convex function with f ′(0) = 0, then f

is an increasing convex function.

Proof. Assume the function f is convex, then f ′ is nondecreasing. Since f ′(0) = 0,

we get f ′(x) ≥ 0. This yields f is an increasing convex function.

We use an effective technique from [24] to construct exponentially andm-exponentially

convex functions.

Consider the functional (2.0.1). From Theorem 1.4.5 it follows Ω(f) ≥ 0..

Theorem 2.1.3. Assume f 7→ Ω(f) is a linear functional defined with (7.1.2) and

define Φ1 : (0,∞)→ R and Φ2 : (1,∞)→ R with

Φ1(p) = Ω(ϕp), Φ2(p) = Ω(φp)

where ϕp and φp are defined in Lemma 2.1.1. Then we get the following statements.
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(i) The functions Φ1 and Φ2 are continuous on (0,∞) and (1,∞), respectively.

(ii) Let m ∈ N and p1, . . . , pm ∈ (0,∞), q1, . . . , qm ∈ (1,∞) are arbitrary, then

the matrices [
Φ1

(
pj + pk

2

)]m
j,k=1

,

[
Φ2

(
qj + qk

2

)]m
j,k=1

are positive semidefinite.

(iii) The functions Φ1 and Φ2 are exponentially convex on (0,∞) and (1,∞), re-

spectively.

(iv) If p, q, r ∈ (0,∞) are such that p < q < r, then


n∑
i=1

pi exp(q‖xi‖2)− Pn exp

 q‖
n∑

i=1
pixi‖

2

P2
n


q2Pn



r−p

≤



n∑
i=1

pi exp(p‖xi‖2)− Pn exp

 p‖
n∑

i=1
pixi‖

2

P2
n


p2Pn



r−q 

n∑
i=1

pi exp(r‖xi‖2)− Pn exp

 r‖
n∑

i=1
pixi‖

2

P2
n


r2Pn



q−p

;

if s, t, u ∈ (1,∞) are such that s < t < u, then
n∑
i=1

pi‖xi‖t

t(t− 1)Pn
− (‖

∑n
i=1 pixi‖)

t

t(t− 1)P t
n


u−s

≤


n∑
i=1

pi‖xi‖s

s(s− 1)Pn
− (‖

∑n
i=1 pixi‖)

s

s(s− 1)P s
n


u−t

n∑
i=1

pi‖xi‖u

u(u− 1)Pn
− (‖

∑n
i=1 pixi‖)

u

u(u− 1)P u
n


t−s
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Proof. (i) The continuity of the functions p 7→ Φi(p), i = 1, 2 is obvious.

(ii) Let m ∈ N, ξj, pj ∈ R (j = 1, . . . ,m) be arbitrary and define auxiliary

function Ψ1 : [0,∞)→ R by

Ψ1(l) =
m∑

j,k=1

ξjξkϕ pj+pk
2

(l).

Now Ψ′1(0) = 0, since d
dl
ϕt(0) = 0, and

Ψ′′1(l) =
m∑

j,k=1

ξjξk
d2

dl2
ϕ pj+pk

2

(l) ≥ 0,

for l ≥ 0, by Lemma 2.1.1 which means, by Lemma 2.1.2, that Ψ1 is increasing

convex function. Now, Theorem 1.4.5 implies Ω(Ψ1) ≥ 0. It means[
Φ1

(
pj + pk

2

)]m
j,k=1

is positive semi-definite matrix.

In the similar way, we may define auxiliary function Ψ2. We conclude[
Φ2

(
qj + qk

2

)]m
j,k=1

is positive semi-definite matrix.

We easily get (iii) and (iv) from (i), (ii) and Lemma 1.3.2.

From above theorem, we have obtained a valuable corollary. This provides us an

exciting link between moments of discrete random variables. It is stated as:

Corollary 2.1.4. Assume (V, ‖·‖) be a normed space and let X be a discrete random

variable defined with P (X = xi) = pi, xi ∈ V, pi > 0, i = 1, . . . , n,
∑n

i=1 pi = 1.

Then, for 1 < j < k < m,

{E[‖X‖k]−(‖E[X]‖)k}m−j ≤ C(j, k,m){E[‖X‖j ]−(‖E[X]‖)j}m−k{E[‖X‖m]−(‖E[X]‖)m}k−j ,
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where

C(j, k,m) =

(
k

2

)m−j

(
j

2

)m−k(
m

2

)k−j . (2.1.1)

Theorem 7.1.3 also sets the following model:

Theorem 2.1.5. Suppose that C ⊂ R be an open interval, and Γ = {ηt|t ∈ C}
be a family of continuous function defined on S ⊆ [0,∞), such that the function
d
dl
ηt(0) = 0, t ∈ C, and t 7→ d2

dl2
ηt(l) is m-exponentially convex on C for any l ∈ S.

Consider the functional f 7→ Ω(f) as given in (7.1.2). Then t 7→ Ω(ηt) is an m-

exponentially convex function on C.

Remark 2.1.1. In the above theorem, we can add the other features of Theorem

7.1.3.

2.2 Mean value theorems

The lemma given below will be very helpful.

Lemma 2.2.1. Let f ∈ C2([0, a]), with f ′(0) = 0. Denote d = inf l∈[0,a] f
′′(l), D =

supl∈[0,a] f
′′(l). Then the functions f1, f2 : I → R+ defined by

f1(l) =
D

2
l2 − f(l)

f2(l) = f(l)− d

2
l2

(2.2.1)

are convex and nondecreasing.

Proof. The functions f1, f2 satisfy the conditions of Lemma 2.1.2 and the result

follows.
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Theorem 2.2.2. Let xi ∈ X, pi ≥ 0 (i = 1, 2, . . . n) such that Pn =
n∑
i=1

pi > 0. Let

f ∈ C2([0, a]) with f ′(0) = 0, where maxi ‖xi‖ < a. Then there exists $ ∈ [0, a] such

that
1

Pn

n∑
i=1

pif(‖xi‖)− f

(
1

Pn

∥∥∥∥∥
n∑
i=1

pixi

∥∥∥∥∥
)

= %f ′′($), (2.2.2)

where

% =
1

2

 1

Pn

n∑
i=1

pi‖xi‖2 −

(
1

Pn

∥∥∥∥∥
n∑
i=1

pixi

∥∥∥∥∥
)2
 .

Proof. Denote D = maxt∈[0,a] f
′′(t) and d = mint∈[0,a] f

′′(t). Then the functions

f1, f2 : [0, a] → R as in Lemma 6.2.1, are convex and nondecreasing. This means

that Ω(f1), Ω(f2) ≥ 0, that is,

%d ≤ 1

Pn

n∑
i=1

pif(‖xi‖)− f

(
1

Pn

∥∥∥∥∥
n∑
i=1

pixi

∥∥∥∥∥
)
≤ %D, (2.2.3)

Now by (2.2.2) the Bolzano intermediate theorem ensures that $ ∈ [0, a].

Corollary 2.2.3. Let xi ∈ X, pi ≥ 0 (i = 1, 2, . . . n) such that Pn =
n∑
i=1

pi > 0.

Let f, g ∈ C2([0, a]), f ′(0) = g′(0) = 0, where maxi ‖xi‖ < a. Then there exists
$ ∈ [0, a] such that the following holds

g′′($)

[
1

Pn

n∑
i=1

pif(‖xi‖)− f
(

1

Pn

∥∥∥∥∥
n∑
i=1

pixi

∥∥∥∥∥
)]

= f ′′($)

[
1

Pn

n∑
i=1

pig(‖xi‖)− g
(

1

Pn

∥∥∥∥∥
n∑
i=1

pixi

∥∥∥∥∥
)]

. (2.2.4)

Proof. Consider the auxiliary function k ∈ C2([0, a]) defined with k(l) = c1f(l) −
c2g(l), where c1 and c2 are defined by

c1 =
1

Pn

n∑
i=1

pig(‖xi‖)− g

(
1

Pn

∥∥∥∥∥
n∑
i=1

pixi

∥∥∥∥∥
)
, (2.2.5)

and

c2 =
1

Pn

n∑
i=1

pif(‖xi‖)− f

(
1

Pn

∥∥∥∥∥
n∑
i=1

pixi

∥∥∥∥∥
)
. (2.2.6)
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It is obvious Ω(k) = 0. Further, since k′(0) = 0, from Theorem 2.2.2 it follows that

there exists some $ ∈ [0, a] such that the following holds

1

Pn

n∑
i=1

pik(‖xi‖)− k

(
1

Pn

∥∥∥∥∥
n∑
i=1

pixi

∥∥∥∥∥
)

= %k′′($). (2.2.7)

The left-hand side of this equation equals to zero, whereas % 6= 0. It yields k′′($) =

0.

Remark 2.2.1. From (2.2.4) we can define various kinds of means provided that

f ′′/g′′ has an inverse. Mathematically, we can write it as:

$ =

(
f ′′

g′′

)−1(
Ω(f)

Ω(g)

)
. (2.2.8)

Particularly, if we substitute f(l) = φp(l), g(l) = φq(l) in (2.2.4) (the functions φp

are defined in Lemma 2.1.1), then we get

µ(p, q; Ω) =



1
Pn

 q(q−1)
p(p−1)

P p−1
n

n∑
i=1

pi‖xi‖p−(‖∑n
i=1 pixi‖)

p

P q−1
n

n∑
i=1

pi‖xi‖q−(‖∑n
i=1 pixi‖)

q


1
p−q

, p 6= q;

exp

1−2p
p(p−1) +

P p−1
n

n∑
i=1

pi‖xi‖p ln ‖xi‖−‖
n∑
i=1

pixi‖p ln(
n∑
i=1
‖pixi‖/Pn)

P p−1
n

n∑
i=1

pi‖xi‖p−‖
n∑
i=1

pixi‖p

 , p = q 6= 1.
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Chapter 3

Weighted Jessen and Jensen

inequality and exponential

convexity

In this chapter, m-exponential convexity of the positive functionals associated with

the weigted integral Jensen’s inequality (1.4.5) is examined. The respective positive

functional are:

Ω(Ψ) =

∫
Y

Ψ

(∫
X

h(x)ς(x, y)dλ1(x)

)
dλ2(y)−Ψ

(∫
X

hdλ1

)
, (3.0.1)

z(Ψ) =

∫
X

(Ψ ◦ h)dλ1 −
∫
Y

Ψ

(∫
X

h(x)ς(x, y)dλ1(x)

)
dλ2(y). (3.0.2)

To construct means with Stolarsky property, Cauchy and Lagrange type mean value

theorems are also given. The next section will introduce a refinement in Jessen’s

inequality via weight function and m-exponential convexity of such functions is

discussed that is associated with these linear functionals. Numerous families of

functions have been given related to obtained results and mean value theorems are

also given.
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3.1 m-exponential convexity of weighted integral

Jensen’s inequality and Stolarsky type means

Here we establish (m-exponential) exponentially convex functions by applying an

elegant method from [24].

In the following theorem and its corollaries we use notations as: C is a real open

interval, S is any real interval, Γ = {gl | l ∈ C} is a family of functions defined on S.

Ω(Ψ) is as given in (3.0.1). Then we have the following useful results which produce

new m-exponentially convex functions.

Theorem 3.1.1. Assume the function l 7→ [s1, s2, s3; gl] is m-exponentially J -

convex on C, where s1, s2, s3 are distinct points of S. Then l 7→ Ω(gl) is an m-

exponentially J -convex function on C. In addition, the continuity of this function

implies the m-exponential convexity on C.

Proof. Assume li, lj ∈ C, lij =
li+lj

2
and ai, aj ∈ R for i, j ∈ {1, . . . ,m}. Consider

the function ∆ on S defined as

∆(s) =
m∑

i,j=1

aiajglij(s).

The hypothesis of m-exponential J -convexity of l 7→ [s1, s2, s3; gl] yields

[s1, s2, s3; ∆] =
m∑

i,j=1

aiaj[s1, s2, s3; glij ] ≥ 0,

implying the convexity of ∆ on S. Hence Ω(∆) ≥ 0. Further the linearity of Ω, gives

m∑
i,j=1

aiajΩ(glij) ≥ 0.

We conclude that the function l 7→ Ω(gl) is an m-exponentially J -convex function

on C.
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We have obtained the corollaries below from above theorem.

Corollary 3.1.2. Suppose that the function l 7→ [s1, s2, s3; gl] is exponentially J -

convex on C, where s1, s2, s3 are distinct points of S. Then l 7→ Ω(gl) is an exponen-

tially J -convex function on C. In addition, the continuity of this function implies

the exponential convexity on C.

Corollary 3.1.3. Suppose that the function l 7→ [s1, s2, s3; gl] is 2-exponentially J -

convex on C, where s1, s2, s3 are distinct points of S. Then the following statements

hold

i) The continuity of the function l 7→ Ω(gl) implies the 2-exponential convexity

of l 7→ Ω(gl) on C, and hence the function is log-convex. That is, for l, r, s ∈ C such

that r < s < l the following holds

Ωl−r(gs) ≤ Ωl−s(gr)Ω
s−r(gl).

ii) Assume that the function l 7→ Ω(gl) on C is strictly positive and differentiable.

Then for l ≤ u and r ≤ v, (l, r, u, v ∈ C) yields

τ(l, r,Ω) ≤ τ(u, v; Ω),

where

τ(l, r; Ω) =


(

Ω(gl)
Ω(gr)

) 1
l−r

, l 6= r;

e
d
dl

(Ω(gl))

Ω(gl) , otherwise.

(3.1.1)

Proof. i) This is a simple consequence of Theorem 3.1.1 and Remark 1.3.4.

ii) The log-convexity of l 7→ Ω(gl) on C follows from (i). It implies the convexity of

l 7→ log Ω(gl) on C. By applying [53, Proposition 3.2] with l ≤ u, r ≤ v, we get

log Ω(gl)− log Ω(gr)

l − r
≤ log Ω(gu)− log Ω(gv)

u− v
, (3.1.2)
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thus we have

τ(l, r,Ω) ≤ τ(u, v; Ω).

The cases l = r and u = v follow from (6.1.2) as limiting cases.

Remark 3.1.1. The following positive functionals are useful in defining the basic

inequality of log-convex functions.

Ω(fl) =
1

l2

(∫
Y

exp

(
l

∫
X

h(x)ς(x, y)dλ1(x)

)
dλ2(y)− exp

(
l

∫
X

hdλ1

))
.

Ω(gl) =
1

l(l − 1)

(∫
Y

(∫
X

h(x)ς(x, y)dλ1(x)

)l
dλ2(y)−

(∫
X

hdλ1

)l)
.

Ω(hl) =
1

(log l)2

(∫
Y

l−(
∫
X h(x)ς(x,y)dλ1(x))dλ2(y)− l−(

∫
X hdλ1)

)
.

Ω(kl) =
1

l

(∫
Y

exp

(
−
√
l

∫
X

h(x)ς(x, y)dλ1(x)

)
dλ2(y)− exp

(
−
√
l

∫
X

hdλ1

))
.

Theorem 3.1.4. Suppose Ω(Ψ) be the linear functional defined by (3.0.1) and con-

sider the function φi : (0,∞) → R for i = 1, 4 and φi : (1,∞) → R for i = 2, 3

defined as

φ1(l) = Ω(fl), φ2(l) = Ω(gl), φ3(l) = Ω(hl), φ4(l) = Ω(kl), where fl, gl, hl and

kl are defined in Lemma 1.3.3. Then

(i) The functions φi are continuous on (0,∞) for i = 1, 4 and continuous on

(1,∞) for i = 2, 3.

(ii) If m ∈ N, l1, . . . , lm ∈ (0,∞) for i = 1, 4 and l1, . . . , lm ∈ (1,∞) for i = 2, 3.

Then [
φi

(
lj + lk

2

)]m
j,k=1

are positive semidefinite matrices.
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(iii) φi are exponentially convex on (0,∞) when i = 1, 4 and on (1,∞) for i = 2, 3.

(iv) Let l, r, s ∈ (0,∞) for i = 1, 4 and r, s, l ∈ (1,∞) for i = 2, 3 with l < r < s,

then

(φi(r))
s−l ≤ (φi(l))

s−r (φi(s))
r−l ,

where φi(l) for i = 1, 2, 3, 4 are defined in Remark 3.1.1.

(v) If the functions φi are differentiable and strictly positive on (0,∞) for i = 1, 4

and on (1,∞) for i = 2, 3. Then for every l, r, u, v ∈ (0,∞) for i = 1, 4 and

l, r, u, v ∈ (1,∞) for i = 2, 3 such that l ≤ u and r ≤ v, we have

τ(l, r, φi) ≤ τ(u, v;φi),

where

τ(l, r;φi) =


(
φi(l))
φi(r)

) 1
l−r

, l 6= r;

exp
(

d
dl

(φi(l))

φi(l)

)
, otherwise.

(3.1.3)

Proof. (i) The continuity of these functions is obvious.

(ii) Let dj, lj ∈ R, where j = 1, . . . ,m (m is any natural number). Define the

auxiliary function ∆1 on S = R by

∆1(s) =
m∑

j,k=1

djdkf lj+lk
2

(s).

Since

∆′′1(s) =
m∑

j,k=1

djdk
d2

ds2
f lj+lk

2

(s) ≥ 0

for s ∈ S by Lemma 1.3.3. This implies ∆1 is convex. Now Theorem 1.4.4 implies

that Ω(∆1) ≥ 0. This means that[
φ1

(
lj + lk

2

)]m
j,k=1
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is a positive semidefinite matrix.

To prove the remaining positive semidefinite matrices, we can define the auxiliary

functions ∆i for i = 2, 3, 4 in the similar manner.

(iii) and (iv) are simple consequence of (i), (ii) and Lemma 1.3.2. We can easily

prove (v) by using basic inequality of log-convex functions given in part (iv).

In the following lemma we assume S = [µ, ν] ⊆ R and in the next theorems we

further assume S is a compact real interval.

Lemma 3.1.5. [52] Suppose Ψ ∈ C2(S) and Ψ : S → R, Ψ′′ is bounded. Assume

d = inf l∈S Ψ′′(l), D = supl∈S Ψ′′(l). Then the functions Ψ1,Ψ2 : S → R defined by

Ψ1(l) =
D

2
l2 −Ψ(l)

Ψ2(l) = Ψ(l)− d

2
l2

(3.1.4)

are convex.

Theorem 3.1.6. Assume Ψ : S → R,Ψ ∈ C2(S). If (X,A, λ1) and (Y,B, λ2) are

two probability measure spaces and ς is a weight function (defined in (1.4.4)) such

that h ∈ L1(λ1), h(x) ∈ S for all x ∈ X. Then there exists $ ∈ S such that∫
Y

Ψ

(∫
X

h(x)ς(x, y)dλ1(x)

)
dλ2(y)−Ψ

(∫
X

hdλ1

)
= ζΨ′′($), (3.1.5)

where

ζ =
1

2

[∫
Y

(∫
X

h(x)ς(x, y)dλ1(x)

)2

dλ2(y)−
(∫

X

hdλ1

)2
]
.

Proof. Suppose D = maxl∈S Ψ′′(l) and d = minl∈S Ψ′′(l). Then the convexity of the

functions Ψ1,Ψ2 : S → R follows from Lemma 3.1.5. Since they are also continuous.

Apply left-hand side of the inequality (1.4.5), we get∫
Y

Ψ

(∫
X

h(x)ς(x, y)dλ1(x)

)
dλ2(y)−Ψ

(∫
X

hdλ1

)
≤ ζD,
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and ∫
Y

Ψ

(∫
X

h(x)ς(x, y)dλ1(x)

)
dλ2(y)−Ψ

(∫
X

hdλ1

)
≥ ζd.

Now combining these two inequalities and since Ψ′′ is continuous, there exists $ ∈
S (d ≤ Ψ′′($) ≤ D) such that (3.1.5) holds.

Theorem 3.1.7. Assume Φ,Ψ : S → R and Φ,Ψ ∈ C2(S). If (X,A, λ1) and

(Y,B, λ2) are two probability measure spaces and ς is a weight function (defined in

(1.4.4)) such that h ∈ L1(λ1), h(x) ∈ S for all x ∈ X. Then $ ∈ S exists that

ensures

Ψ′′($)

[∫
Y

Φ

(∫
X

h(x)ς(x, y)dλ1(x)

)
dλ2(y)− Φ

(∫
X

hdλ1

)]
= Φ′′($)

[∫
Y

Ψ

(∫
X

h(x)ς(x, y)dλ1(x)

)
dλ2(y)−Ψ

(∫
X

hdλ1

)]
.

(3.1.6)

Proof. Suppose a function k ∈ C2(S) defined as k = c1Φ− c2Ψ, where c1 and c2 are

defined by

c1 =

∫
Y

Ψ

(∫
X

h(x)ς(x, y)dλ1(x)

)
dλ2(y)−Ψ

(∫
X

hdλ1

)
, (3.1.7)

and

c2 =

∫
Y

Φ

(∫
X

h(x)ς(x, y)dλ1(x)

)
dλ2(y)− Φ

(∫
X

hdλ1

)
. (3.1.8)

As k ∈ C2(S), applying Theorem 3.1.6 on k ensures that there exists some $ ∈ S
such that the following holds∫

Y

k

(∫
X

h(x)ς(x, y)dλ1(x)

)
dλ2(y)− k

(∫
X

hdλ1

)
= ζk′′($). (3.1.9)

The left-hand side of this equation equals to zero, the term ζ on the right-hand

side is non zero, so we have that k′′($) = 0. Thus the assertion of our theorem

follows directly.
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Remark 3.1.2. If Φ′′/Ψ′′ is invertible, then means of various kinds can be defined

by (3.1.6). That is,

$ =

(
Φ′′

Ψ′′

)−1(
Ω(Φ)

Ω(Ψ)

)
. (3.1.10)

If we apply Cauchy type mean value Theorem 3.1.7 on functions Φ = fl and

Ψ = fr (defined in Lemma 1.3.3), it yields

M(l, r; Ω) = log τ(l, r; Ω)

satisfy

µ ≤M(l, r; Ω) ≤ ν,

where

τ(l, r; Ω) =


(

Ω(fl)
Ω(fr)

) 1
l−r

, l 6= r;

exp
(

Ω(id.fl)
Ω(fl)

)
· exp

(
−2

l

)
, l = r 6= 0.

If we set µ = minl∈[µ,ν]{f(l)} and ν = maxl∈[µ,ν]{f(l)}, then

min
l∈[µ,ν]

{f(l)} ≤M(l, r; Ω) ≤ max
l∈[µ,ν]

{f(l)},

which shows that M(l, r; Ω) are means of f(l), l ∈ [µ, ν]. If l ≤ u, r ≤ v where

l, r, u, v ∈ R, then it yields by Theorem 3.1.4 that these means are monotonic.

Now, if we apply Cauchy type mean value Theorem 3.1.7 on functions Φ = gl

and Ψ = gr (defined in Lemma 1.3.3), this yields that there exists $ ∈ [µ, ν] such

that

$l−r =
Ω(gl)

Ω(gr)
.

Since the function $ 7→ $l−r is invertible for l 6= r, we get

µ ≤
(

Ω(gl)

Ω(gr)

) 1
l−r

≤ ν.
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If we set µ = minl∈[µ,ν]{f(l)} and ν = maxl∈[µ,ν]{f(l)}, then in this case τ(l, r; Ω)

are means of f(l), l ∈ [µ, ν], where

τ(l, r; Ω) =


(

Ω(gl)
Ω(gr)

) 1
l−r

, l 6= r;

exp
(

1−2l
l(l−1)

)
· exp

(
−Ω(g0gl)

Ω(gl)

)
, l = r 6= 1.

Note that in this case, the monotonicity property also holds for τ(l, r; Ω).

Remark 3.1.3. We can construct similar results for the positive functional z(Ψ)

defined in (3.0.2). Moreover, by introducing suitable weight functions, J. Rooin

gave the refinement of the discrete Jensen’s inequality and few of its applications

[see [56]]. We can prove similar results for the positive functionals associated with

this refined form of discrete Jensen’s inequality.

3.2 Weighted reverse Jensen’s inequality and its

applications

Throughout section, we assume a convex set S ⊂ V , where V is a real vector space,

x1, x2, . . . , xn ∈ S. Let µ1, λ1 > 0, µi, λi ≤ 0 (i = 2, . . . , n) and Um =
∑m

i=1 µi,Λn =∑n
j=1 λj > 0. Also, we suppose that ς : {(i, j) : 1 ≤ i ≤ m, 1 ≤ j ≤ n} → [0,∞) is

a weight function such that

1

Um

m∑
i=1

ς(i, j)µi = 1 (j = 1, . . . , n),

and
1

Λn

n∑
j=1

ς(i, j)λj = 1 (i = 1, . . . ,m).

Now we refine converse Jensen’s inequality via weight functions.
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Lemma 3.2.1. If ς is a weight function, then

Ψ

(
1

Um

m∑
i=1

µixi

)
≥ 1

Λn

n∑
j=1

λjΨ

(
1

Um

m∑
i=1

ς(i, j)µixi

)
≥ 1

Um

m∑
i=1

µiΨ(xi). (3.2.1)

Proof. By using reversed Jensen’s inequality

1

Λn

n∑
j=1

λjΨ

(
1

Um

m∑
i=1

ς(i, j)µixi

)
≥ 1

Λn

n∑
j=1

λj
1

Um

m∑
i=1

ς(i, j)µiΨ(xi)

=
1

Um

m∑
i=1

 1

Λn

n∑
j=1

ς(i, j)λj

µiΨ(xi) =
1

Um

m∑
i=1

µiΨ(xi),

and

1

Λn

n∑
j=1

λjΨ

(
1

Um

m∑
i=1

ς(i, j)µixi

)
≤ Ψ

(
1

Λn

n∑
j=1

λj
1

Um

m∑
i=1

ς(i, j)µixi

)

= Ψ

(
1

Um

m∑
i=1

(
1

Λn

n∑
j=1

ς(i, j)λj

)
µixi

)

= Ψ

(
1

Um

m∑
i=1

µixi

)
.

Now, we refine the reversed Jensen’s inequality by using weight functions as

follows:

Theorem 3.2.2. Suppose that ς1 and ς2 are two weight functions, then

(i)

Ψ

(
1

Um

m∑
i=1

µixi

)
≥ ψς1,ς2(l) ≥ 1

Um

m∑
i=1

µiΨ(xi), (3.2.2)
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where

ψς1,ς2(l) =
1

Λn

n∑
j=1

λjΨ

(
1

Um

m∑
i=1

[(1− l)ς1(i, j) + lς2(i, j)]µixi

)
(0 ≤ l ≤ 1).

(3.2.3)

(ii) For each 1 ≤ j ≤ n, the function l→ Ψ
(

1
Um

∑m
i=1[(1− l)ς1(i, j) + lς2(i, j)]µixi

)
(0 ≤ l ≤ 1) and thus, ψς1,ς2 is convex.

(iii)

Ψ

(
1

Um

m∑
i=1

µixi

)
≥
∫ 1

0

ψς1,ς2(l)dl ≥ 1

Um

m∑
i=1

µiΨ(xi). (3.2.4)

Particularly, assume S ⊆ R. Then

Ψ

(
1

Um

m∑
i=1

µixi

)
≥ 1

Λn

n∑
j=1

λjA

(
Ψ;

1

Um

m∑
i=1

ς1(i, j)µixi,
1

Um

m∑
i=1

ς2(i, j)µixi

)

≥ 1

Um

m∑
i=1

µiΨ(xi),

(3.2.5)

where A(Ψ; γ, δ) is the arithmetic mean for an integrable function Ψ on the

interval [γ, δ].

Proof. (i) The mapping (i, j) → (1 − l)ς1(i, j) + lς2(i, j), where 1 ≤ i ≤ m, 1 ≤
j ≤ n is a weight function for each 0 ≤ l ≤ 1. So (3.2.2) follows from (3.2.1).

(ii) Let a and b are two nonnegative real numbers with a+b = 1 and 0 ≤ l1, l2 ≤ 1.

Then for each 1 ≤ j ≤ n yields the convexity of ψς1,ς2 .
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(iii) The function ψς1,ς2 is Riemann integrable on [0, 1] because it is bounded and

convex on this interval. Hence by integrating (3.2.2) yields (3.2.4).

Particularly, assume S ⊆ R. Then by applying change of variables u =
1
Um

∑m
i=1[(1− l)ς1(i, j) + lς2(i, j)]µixi, we get the desired result.

Now we give some applications of our results.

Theorem 3.2.3. For positive numbers x1, . . . , xn, we have

(
m∏
i=1

xµii

) 1
Um

≥

 n∏
j=1

[
I

(
1

Um

m∑
i=1

ς1(i, j)µixi,
1

Um

m∑
i=1

ς2(i, j)µixi

)]λi 1
Λn

≥ 1

Um

m∑
i=1

µixi,

(3.2.6)

where I is the identric mean.

Proof. Consider a real valued function Ψ on (0,∞) defined as Ψ(t) = − ln t. Clearly

Ψ is convex and for positive real numbers γ, δ, A(Ψ; γ, δ) = − ln I(γ, δ). Then

1

Λn

n∑
j=1

A (Ψ; γ, δ) = − ln

(
n∏
j=1

[I (γ, δ)]λj

) 1
Λn

,

where γ = 1
Um

∑m
i=1 ς1(i, j)µixi , δ = 1

Um

∑m
i=1 ς2(i, j)µixi. It can be seen that

Ψ

(
1

Um

m∑
i=1

µixi

)
= − ln

(
1

Um

m∑
i=1

µixi

)
,

1

Um

m∑
i=1

µiΨ(xi) = − ln

(
m∏
i=1

xµii

) 1
Um

.

Substituting the above values in (3.2.5) provides the required result.

Theorem 3.2.4. For xi ∈ (0, 1
2
] (1 ≤ i ≤ m) and Am =

∑m
i=1 µixi, Gm =

∏m
i=1 x

µi
i

and A′m =
∑m

i=1 µi(1 − xi), G′m =
∏m

i=1(1 − xi)µi are the arithmetic and geometric

38



means of xi and 1− xi, respectively. Then

A′m
Am
≥

 n∏
j=1

I
(

1
Um

∑m
i=1 ς1(i, j)µi(1− xi), 1

Um

∑m
i=1 ς2(i, j)µi(1− xi)

)
I
(

1
Um

∑m
i=1 ς1(i, j)µixi,

1
Um

∑m
i=1 ς2(i, j)µixi

)


1
Λn

≥
(
G′m
Gm

) 1
Um

,

(3.2.7)

where the identric mean is defined in (1.7.1).

Proof. Consider a convex mapping Ψ(t) = ln 1−t
t

on (0, 1
2
], andA(Ψ; γ, δ) = ln I(1−γ,1−δ)

I(γ,δ)

γ, δ ∈ (0, 1). We then have

1

Λn

n∑
j=1

A (Ψ; γ, δ) = ln

 n∏
j=1

[
I

(
1

Um

m∑
i=1

ς1(i, j)µi[1− xi],
1

Um

m∑
i=1

ς2(i, j)µi[1− xi]

)]λi 1
Λn

,

where γ = 1
Um

∑m
i=1 ς1(i, j)µixi , δ = 1

Um

∑m
i=1 ς2(i, j)µixi. We substitute the above

equation in (3.2.5), and by considering

Ψ

(
1

Um

m∑
i=1

µixi

)
= ln

A′m
Am

,
1

Um

m∑
i=1

µiΨ(xi) = ln

(
G′m
Gm

) 1
Um

,

the desired result is obtained.

Theorem 3.2.5. Assume (X,A, λ) is a measure space, p ≥ 1, and h1, . . . , hm ∈
Lp(λ), then∥∥∥∥∥ 1

Um

m∑
i=1

µihi

∥∥∥∥∥
p

p

≥ 1

Λn

n∑
j=1

λj

∥∥∥∥∥Lpp
(

1

Um

m∑
i=1

ς1(i, j)µi|hi|,
1

Um

m∑
i=1

ς2(i, j)µi|hi|

)∥∥∥∥∥
1

≥ 1

Um

m∑
i=1

µi ‖hi‖pp ,

(3.2.8)

where Lp is the p-logarithmic mean.
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Proof. Consider the convex function Ψ : Lp → R defined as: Ψ(h) = ‖h‖pp. We

observe that the mapping X × [0, 1] → R with (x, l) → 1
Um

∑m
i=1[(1 − l)ς1(i, j) +

lς2(i, j)]µihi(x) is product measurable. Since
∣∣∣ 1
Um

∑m
i=1 µihi

∣∣∣ ≤ 1
Um

∑m
i=1 µi |hi| and

for 1 ≤ i ≤ m, the Lp-norm of hi and |hi| are equal. It is sufficient to consider

hi ≥ 0 (1 ≤ i ≤ m). By applying the change of variable u = 1
Um

∑m
i=1[(1 −

l)ς1(i, j) + lς2(i, j)]µihi and using Fubini’s theorem yield∫ 1

0

ψς1,ς2(l)dl =
1

Λn

n∑
j=1

λj

∫ 1

0

∫
X

(
1

Um

m∑
i=1

[(1− l)ς1(i, j) + lς2(i, j)]µihi

)p

dµdl

=
1

Λn

n∑
j=1

λj

∫
X

Lpp

(
1

Um

m∑
i=1

[(1− l)ς1(i, j) + lς2(i, j)]µihi

)
dµ

=
1

Λn

n∑
j=1

λj

∥∥∥∥∥Lpp
(

1

Um

m∑
i=1

[(1− l)ς1(i, j) + lς2(i, j)]µihi

)∥∥∥∥∥
1

,

which by substituting in (3.2.5), we get the required result.

Remark 3.2.1. [56] Assume (X,A, λ) is a finite measure space and let Z be the

vector space of all measurable functions on X with point-wise operations. Let S ⊆ Z

contains all non negative measurable functions on X, then S is convex. Since the

function l→ l
l+1

(l ≥ 0) is concave, the mapping Ψ : S → R with

Ψ(h) =

∫
X

h

1 + h
dλ (h ∈ S) (3.2.9)

is concave.

Theorem 3.2.6. Under the notation of Remark 3.2.1, let h1, . . . , hm ∈ S, and Ψ is
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defined in (3.2.9), then

1

Um

m∑
i=1

µiΨ(hi) ≥ λ(X)− 1

Λn

n∑
j=1

λj

∥∥∥∥∥L−1

(
1 +

1

Um

m∑
i=1

ς1(i, j)µihi, 1 +
1

Um

m∑
i=1

ς2(i, j)µihi

)∥∥∥∥∥
1

≥ Ψ

(
1

Um

m∑
i=1

µihi

)
,

(3.2.10)

where L is the logarithmic mean.

Proof. It is obvious X×[0, 1]→ R with (x, l)→ 1
Um

∑m
i=1[(1−l)ς1(i, j)+lς2(i, j)]µixi

is product measurable. Since Ψ is concave, so −Ψ is convex. Thus from (3.2.5),

yields

Ψ

(
1

Um

m∑
i=1

µihi

)
≥
∫ 1

0

ψς1,ς2(l)dl ≥ 1

Um

m∑
i=1

µiΨ (hi) ,

where∫ 1

0
ψς1,ς2(l)dl =

1

Λn

n∑
j=1

λj

∫
X

∫ 1

0

1
Um

∑m
i=1[(1− l)ς1(i, j) + lς2(i, j)]µihi

1 + 1
Um

∑m
i=1[(1− l)ς1(i, j) + lς2(i, j)]µihi

dldλ

=
1

Λn

n∑
j=1

λj

∫
X

1

δ − γ

∫ δ

γ

(
1− 1

1 + l

)
dldλ(x)

= λ(X)− 1

Λn

n∑
j=1

λj

∫
X

1

δ − γ
ln

1 + δ

1 + γ
dλ

= λ(X)− 1

Λn

n∑
j=1

λj

∥∥∥∥∥L−1

(
1 +

1

Um

m∑
i=1

ς1(i, j)µihi, 1 +
1

Um

m∑
i=1

ς2(i, j)µihi

)∥∥∥∥∥
1

,

where γ = 1
Um

∑m
i=1 ς1(i, j)µihi(x) and δ = 1

Um

∑m
i=1 ς2(i, j)µihi(x).
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3.3 m-exponential convexity of weighted Jessen’s

functionals and mean value theorems

The following theorem is the refinement of Jessen’s inequality.

Theorem 3.3.1. Assume L satisfies properties L1 and L2 on a nonempty set E,

and suppose that Ψ is a continuous convex function on an interval S ⊆ R. If B and

Z are positive linear functionals with B(1) = Z(1) = 1 and ς is a weight function

(defined in (1.5.1)) then for all h, h · ς ∈ L such that Ψ(B(h · ς)),Ψ(h) ∈ L we have

B(h · ς), B(h) ∈ S and

Ψ(B(h)) ≤ Z(Ψ(B(h · ς))) ≤ B(Ψ(h)). (3.3.1)

Proof.

Z(Ψ(B(h · ς))) ≥ Ψ(Z(B(h · ς))) ≥ Ψ(Z(B(h))) = Ψ(B(h)).

Suppose S = [c, d]. Since c ≤ h(l) ≤ d for every l ∈ E, it yields c ≤ B(h) ≤ d and

c ≤ B(h · ς) ≤ d. For arbitrary but a positive fixed ε there exist µ, ν ∈ R such that

for % = µ%0 + ν%1 (%j(l) = lj for j = 0, 1) we then have

(a) % ≤ Ψ, it yields %(B(h)) ≤ Ψ(B(h · ς)).

(b) %(B(h)) ≥ Ψ(B(h · ς))− ε which implies Z(%(B(h))) ≥ Z(Ψ(B(h · ς)))− ε.

(If c < B(h) < d and c < B(h · ς) < d or if h, h · ς have finite derivatives in [c, d], we

can replace (b) by %(B(h)) = Ψ(B(h · ς))). Now (a) implies % ◦ h ≤ Ψ ◦ h; hence

B(Ψ ◦ h) ≥ B(% ◦ h) = µ+ νB(h)

= Z(%(B(h))) ≥ Z(Ψ(B(h · ς)))− ε.

Since ε is arbitrary, hence we complete the proof.
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If ς = 1, then we deduce the following result.

Corollary 3.3.2. Assume L satisfies properties L1 and L2 on a nonempty set E,

and assume that Ψ is a continuous convex function on an interval S ⊆ R. If B and

Z are positive linear functionals with B(1) = Z(1) = 1, then for all h ∈ L such that

Ψ(B(h)),Ψ(h) ∈ L we have B(h) ∈ S and

Ψ(B(h)) ≤ Z(Ψ(B(h))) ≤ B(Ψ(h)). (3.3.2)

Remark 3.3.1. We consider the following functionals under the assumption of

Theorem 3.3.1

Λ(Ψ) = Z(Ψ(B(h · ς)))−Ψ(B(h)). (3.3.3)

k(Ψ) = B(Ψ(h))− Z(Ψ(B(h · ς))). (3.3.4)

Then Λ(Ψ) and Λ′(Ψ) are positive.

In the following theorem and its corollaries we use notations as: C is a real open

interval, S is any interval, Θ = {gl | l ∈ C} is a family of continuous functions

defined on S. Λ(Ψ) is as given in Remark 3.3.1. Then the following results produce

new m-exponentially convex functions. Since the proofs are analogous to those in

the continuous case given in the previous section, so we omit the proofs.

Theorem 3.3.3. Suppose the function l 7→ [s1, s2, s3; gl] is m-exponentially J -

convex on C, where s1, s2, s3 are distinct points of S. Then l 7→ Λ(gl) is an m-

exponentially J -convex function on C. In addition, the continuity of this function

implies m-exponential convexity on C.

Corollaries stated below have been obtained from the above theorem.

Corollary 3.3.4. Suppose the function l 7→ [s1, s2, s3; gl] is exponentially J -convex

on C, where s1, s2, s3 are distinct points of S. Then l 7→ Λ(gl) is an exponentially
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J -convex function on C. In addition, the continuity of this function implies the

exponential convexity on C.

Corollary 3.3.5. Suppose the function l 7→ [s1, s2, s3; gl] is 2-exponentially J -

convex on C, where s1, s2, s3 are distinct points of S. Then l 7→ Λ(gl) is 2-exponentially

J -convex function on C. In addition, the continuity of this function implies the ex-

ponential convexity on C and thus the function is log-convex. That is, for l, r, s ∈ C
such that r < s < l. the following holds

Λl−r(gs) ≤ Λl−s(gr)Λ
s−r(gl).

Now we present different families of functions to investigate exponential convex-

ity.

Remark 3.3.2. The following positive functionals are useful in defining the basic

inequality of log-convex functions.

Λ(fl) =
1

l2
(Z (exp (lB(h · ς)))− exp(lB(h))) .

Λ(gl) =
1

l(l − 1)

(
Z
(
(B(h · ς))l

)
− (B(h))l

)
.

Λ(hl) =
1

(log l)2

(
Z
(
l−B(h·ς))− l−B(h)

)
.

Λ(kl) =
1

l

(
Z
(

exp
(
−B(h · ς)

√
l
))
− exp

(
−B(h)

√
l
))

.

Theorem 3.3.6. Let Λ(Ψ) be the linear functional defined by (3.3.3) and consider

the function φi : (0,∞)→ R for i = 1, 4 and φi : (1,∞)→ R for i = 2, 3 defined by

φ1(l) = Λ(fl), φ2(l) = Λ(gl), φ3(l) = Λ(hl), φ4(l) = Λ(kl), where fl, gl, hl and kl

are defined in Lemma 1.3.3. Then

(i) The functions φi are continuous on (0,∞) for i = 1, 4 and continuous on

(1,∞) for i = 2, 3.
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(ii) If m ∈ N, l1, . . . , lm ∈ (0,∞) for i = 1, 4 and l1, . . . , lm ∈ (1,∞) for i = 2, 3,

then the matrices [
φi

(
lj + lk

2

)]m
j,k=1

are positive semidefinite.

(iii) The functions φi are exponentially convex on (0,∞) for i = 1, 4 and exponen-

tially convex on (1,∞) for i = 2, 3.

(iv) Let l, r, s ∈ (0,∞) for i = 1, 4 and r, s, l ∈ (1,∞) for i = 2, 3 with l < r < s,

then

(φi(r))
s−l ≤ (φi(l))

s−r (φi(s))
r−l ,

where φi(l) for i = 1, 2, 3, 4 are defined in Remark 3.3.2.

The Cauchy and Lagrange type mean value theorems are stated below.

Theorem 3.3.7. Assume L satisfies properties L1 and L2 on a nonempty set E, and

let Ψ : S = [a, b]→ R,Ψ ∈ C2(S), where S ⊆ R is a compact real interval. If B and

Z are positive linear functionals with B(1) = Z(1) = 1, and ς is a weight function

(defined in (1.5.1)) then for all h, h · ς ∈ L such that Ψ(B(h · ς)), (B(h · ς))2 ∈ L

there exists some $ ∈ S such that the following holds

Z(Ψ(B(h · ς)))−Ψ(B(h)) =
Ψ′′($)

2

[
Z((B(h · ς))2)− (B(h))2

]
. (3.3.5)

Theorem 3.3.8. Assume L satisfies properties L1 and L2 on a nonempty set E,

and let Φ,Ψ : S = [a, b] → R,Φ,Ψ ∈ C2(S), where S ⊆ R is a compact real

interval. If B and Z are positive linear functionals with B(1) = 1 and Z(1) = 1,

and ς is a weight function (defined in (1.5.1)) then for all h, h · ς ∈ L such that
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Φ(B(h · ς)),Ψ(B(h · ς)), (B(h · ς))2 ∈ L and Z((B(h · ς))2)− (B(h))2 6= 0 there exists

some $ ∈ S such that the following holds

Ψ′′($) [Z(Φ(B(h · ς)))− Φ(B(h))] = Φ′′($) [Z(Ψ(B(h · ς)))−Ψ(B(h))] . (3.3.6)

Remark 3.3.3. We can construct similar results for the positive functional k(Ψ)

defined in (3.3.4).
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Chapter 4

Weighted Jessen’s inequality for

m(M)-ψ-convex functions and

related results

In analysis, positive linear functionals are very useful as they are natural objects.

By introducing weight function, an important functional form of Jensen’s inequality,

that is, the Jessen inequality is given in the previous chapter.

This chapter discusses few interesting results related with weighted Jessen in-

equality (3.3.1) for m(M)-ψ-convex functions. Throughout chapter, we assume ς is

a weight function which satisfies (1.5.1) and use the following notations:

F1 = Z(ψ(B(h · ς)))− ψ(B(h)),

F2 = Z(Φ(B(h · ς)))− Φ(B(h)),

F3 = B(ψ(h))− Z(ψ(B(h · ς))),

F4 = B(Φ(h))− Z(Φ(B(h · ς))).
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4.1 Refined Jessen’s inequality

Theorem 4.1.1. Suppose that ψ : S ⊆ R→ R is a convex function and h : E → S

such that ψ(B(h · ς)), ψ(h), h · ς, h ∈ L, ς is weight function and B,Z : L → R are

isotonic linear and normalised functionals.

(i) Assume Φ ∈ L(S,m, ψ) and Φ(B(h · ς)),Φ(h) ∈ L, then

mF1 ≤ F2, (4.1.1)

mF3 ≤ F4. (4.1.2)

(ii) Assume Φ ∈ U(S,M,ψ) and Φ(B(h · ς)),Φ(h) ∈ L, then

F2 ≤MF1, (4.1.3)

F4 ≤MF3. (4.1.4)

(iii) Assume Φ ∈ B(S,m,M,ψ) and Φ(B(h · ς)),Φ(h) ∈ L, then above inequalities

(4.1.1)-(4.1.4) hold.

Proof. (i) Since Φ ∈ L(S,m, ψ) and Φ(B(h · ς)) ∈ L, this yield Φ −mψ is convex

and (Φ−mψ) ◦B(h · ς) ∈ L. For the convex function Φ−mψ, the refined Jessen’s

inequality (3.3.1) is applied to obtain the required results.

(ii) Similarly, we observe Φ(B(h · ς)) ∈ L and Φ ∈ U(S,M,ψ). It yields Mψ − Φ is

convex and (Mψ − Φ) ◦B(h · ς) ∈ L.

(iii) It can be easily observed that this is true from (i) and (ii).

We have obtained the below corollary from above theorem.

Corollary 4.1.2. Assume the second order derivative of convex function ψ : S ⊆
R → R exists on

◦
S (interior of S) and h : E → S such that ψ(B(h · ς)), ψ(h), h ·

ς, h ∈ L, ς is weight function and B,Z : L → R are isotonic linear and normalised

functionals.
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(i) If second order derivative of Φ : S → R exists and for given real number

m, Φ′′(l) ≥ mψ′′(l), l ∈
◦
S. Then (4.1.1) and (4.1.2) are satisfied under the

assumption that Φ(B(h · ς)),Φ(h) ∈ L.

(ii) If second order derivative of Φ : S → R exists and for given real number

m, Φ′′(l) ≤ Mψ′′(l), l ∈
◦
S. Then (4.1.3) and (4.1.4) are satisfied under the

assumption that Φ(B(h · ς)),Φ(h) ∈ L.

(iii) If second order derivative of Φ : S → R exists and for given real number m,

mψ′′(l) ≤ Φ′′(l) ≤ Mψ′′(l), l ∈
◦
S. Then (4.1.1)-(4.1.4) are satisfied under the

assumption that Φ(B(h · ς)),Φ(h) ∈ L.

The following propositions are some particular cases of the above corollary.

Proposition 4.1.3. Let the second order derivative of Φ : S → R exists on
◦
S.

(i) For inf
l∈
◦
S

Φ′′(l) = s > −∞, we have

s

2

[
Z
(
[B(h · ς)]2

)
− [B(h)]2

]
≤ F2,

s

2

[
B(h2)− Z([B(h · ς)]2)

]
≤ F4,

(4.1.5)

under the assumption that Φ(B(h · ς)), [B(h · ς)]2 , h2,Φ ◦ h, h · ς, h ∈ L.

(ii) For sup
l∈
◦
S

Φ′′(l) = S <∞, we have

F2 ≤
S

2

[
Z
(
[B(h · ς)]2

)
− [B(h)]2

]
,

F4 ≤
S

2

[
B(h2)− Z([B(h · ς)]2)

]
,

(4.1.6)

under the assumption that Φ(B(h · ς)), [B(h · ς)]2 , h2,Φ ◦ h, h · ς, h ∈ L.

(iii) For −∞ < s ≤ Φ′′(l) ≤ S <∞, l ∈
◦
S, both (4.1.5) and (4.1.6) hold, under the

assumption that Φ(B(h · ς)), [B(h · ς)]2 , h2,Φ ◦ h, h · ς, h ∈ L.
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The proof is followed by applying the Corollary 4.1.2 for ψ(l) = 1
2
l2 and m =

s,M = S.

Proposition 4.1.4. Suppose that the the second order derivative of Φ : S ⊆ R+ → R
exists on

◦
S. Let hq : S → R defined by hq(l) = Φ′′(l)l2−q, where q ∈ (−∞, 0)∪(1,∞).

(i) For inf
l∈
◦
S
hq(l) = k > −∞, we get

k

q(q − 1)
[Z ([B(h · ς)]q)− [B(h)]q] ≤ F2,

k

q(q − 1)
[B(hq)− Z([B(h · ς)]q)] ≤ F4,

(4.1.7)

assuming that φ(B(h · ς)), [B(h · ς)]q , f q,Φ ◦ h, h · ς, h ∈ L.

(ii) For sup
l∈
◦
S
hq(l) = K <∞, we have

F2 ≤
K

q(q − 1)
[Z ([B(h · ς)]q)− [B(h)]q] ,

F4 ≤
K

q(q − 1)
[B(hq)− Z([B(h · ς)]q)] ,

(4.1.8)

assuming that Φ(B(h · ς)), [B(h · ς)]q , f q,Φ ◦ h, h · ς, h ∈ L.

(iii) For −∞ < k ≤ hq(l) ≤ K < ∞, l ∈
◦
S, both (4.1.7) and (4.1.8) hold, under

the assumption that Φ(B(h · ς)), [B(h · ς)]q , hq,Φ ◦ h, h · ς, h ∈ L.

Proof. (i) Define the auxiliary function gq(l) = Φ(l)− k
q(q−1)

lq. Then

g′′q (l) = Φ′′(l)− klq−2 = lq−2(l2−qΦ′′(l)− k)

= lq−2(hq(l)− k) ≥ 0.

which implies gq is convex, that is, Φ ∈ L(S, k
q(q−1)

, (·)q). We deduce (4.1.7) by

applying Corollary 4.1.2. Analogously, we can prove (ii), and (iii) follows by (i) and

(ii).
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We state another result.

Proposition 4.1.5. Assume that the second order derivative of mapping Φ : S ⊆
R+ → R exists on

◦
S. Define z(l) = l2Φ′′(l), l ∈ S.

(i) For inf
l∈
◦
S
z(l) = γ > −∞, we then have

γ [ln[B(h)]− Z (ln [B(h · ς)])] ≤ F2,

γ [Z (ln [B(h · ς)])−B(lnh)] ≤ F4,
(4.1.9)

assuming that Φ(B(h·ς)), ln [B(h · ς)] , lnh,Φ◦h, h·ς, h ∈ L and B(h·ς), B(h) >

0.

(ii) For sup
l∈
◦
S
z(l) = Γ <∞, we get

F2 ≤ Γ [ln[B(h)]− Z (ln [B(h · ς)])] ,

F4 ≤ Γ [Z (ln [B(h · ς)])−B(lnh)] ,
(4.1.10)

assuming that Φ(B(h·ς)), ln [B(h · ς)] , lnh,Φ◦h, h·ς, h ∈ L and B(h·ς), B(h) >

0.

(iii) For −∞ < γ ≤ z(l) ≤ Γ < ∞ with l ∈
◦
S, both (4.1.11) and (4.1.12) hold,

under the assumption that Φ(B(h · ς)), ln [B(h · ς)] , lnh,Φ ◦ h, h · ς, h ∈ L and

B(h · ς), B(h) > 0.

Define the auxiliary function g(l) = Φ(l) + γ ln l. Analogously as in the proof of

Proposition 4.1.4, we get the required results.

Proposition 4.1.6. Assume that the second order derivative of Φ : S ⊆ R+ → R
exists on

◦
S. Define σ(l) = lΦ′′(l), l ∈ S.
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(i) For inf
l∈
◦
S
σ(l) = ξ > −∞, we have

ξ [B(h · ς)Z (ln [B(h · ς)])−B(h) lnB(h)] ≤ F2,

ξ [B(h lnh)−B(h · ς)Z (ln [B(h · ς)])] ≤ F4,
(4.1.11)

assuming that Φ(B(h · ς)), ln [B(h · ς)] , h lnh,Φ ◦ h, h · ς, h ∈ L and B(h ·
ς), B(h) > 0.

(ii) For sup
l∈
◦
S
σ(l) = Ξ <∞, we get

F2 ≤ Ξ [B(h · ς)Z (ln [B(h · ς)])−B(h) lnB(h)] ,

F4 ≤ Ξ [B(h lnh)−B(h · ς)Z (ln [B(h · ς)])] ,
(4.1.12)

assuming that Φ(B(h · ς)), ln [B(h · ς)] , h lnh,Φ ◦ h, h · ς, h ∈ L and B(h ·
ς), B(h) > 0.

(iii) For −∞ < ξ ≤ σ(l) ≤ Ξ < ∞ with l ∈
◦
S, both (4.1.11) and (4.1.12) hold,

under the assumption that Φ(B(h · ς)), ln [B(h · ς)] , h lnh,Φ◦h, h · ς, h ∈ L and

B(h · ς), B(h) > 0.

Define the auxiliary mapping g(l) = Φ(l) − ξl ln l. Analogously as in the proof

of Proposition 4.1.4, we get the desired results.

4.2 Some applications

From Proposition 4.1.3, we know that

s

2

[
Z
(
[B(h · ς)]2

)
− [B(h)]2

]
≤ F2 ≤

S

2

[
Z
(
[B(h · ς)]2

)
− [B(h)]2

]
. (4.2.1)

and

s

2

[
B(h2)− Z([B(h · ς)]2)

]
≤ F4 ≤

S

2

[
B(h2)− Z([B(h · ς)]2)

]
, (4.2.2)
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by assuming that the second order derivative of Φ : S ⊆ R→ R exists on
◦
S,−∞ <

s ≤ Φ′′(l) ≤ S <∞, l ∈
◦
S, h : E → S,Φ(B(h·ς)), [B(h · ς)]2 , h2,Φ◦h, h·ς, h ∈ L and

ς is a weight function B,Z : L→ R are isotonic linear and normalised functionals.

Now, we use (4.2.1) and (4.2.2) and various functions to give some useful appli-

cations.

Proposition 4.2.1. Suppose that m,M ∈ R, 0 < α ≤ h ≤ β < ∞ and 0 < α ≤
h · ς ≤ β <∞. Then from (4.2.1) and (4.2.2) with Φ : [α, β]→ R,Φ(l) = − ln l, we

then have

1

2β2

[
Z
(
[B(h · ς)]2

)
− [B(h)]2

]
≤ ln[B(h)]− Z (ln[B(h · ς)])

≤ 1

2α2

[
Z
(
[B(h · ς)]2

)
− [B(h)]2

]
,

(4.2.3)

and

1

2β2

[
B(h2)− Z([B(h · ς)]2)

]
≤ Z (ln[B(h · ς)])−B[ln(h)]

≤ 1

2α2

[
B(h2)− Z([B(h · ς)]2)

]
,

(4.2.4)

assuming that ln[B(h · ς)], [B(h · ς)]2 , h2, lnh, h · ς, h ∈ L and B(h), B(h · ς) > 0.

We observe inequality (4.2.3) is equivalent to

exp

[
1

2β2

(
Z
(
[B(h · ς)]2

)
− [B(h)]2

)]
≤ B(h)

exp [Z (ln[B(h · ς)])]

≤ exp

[
1

2α2

(
Z
(
[B(h · ς)]2

)
− [B(h)]2

)]
,

(4.2.5)

Proposition 4.2.2. For q ∈ (−∞, 0) ∪ (1,∞), if we apply (4.2.1) and (4.2.2) with

Φ : [α, β]→ R,Φ(l) = lq. Then for q > 2 we have

q(q − 1)

2
αq−2

[
Z
(
[B(h · ς)]2

)
− [B(h)]2

]
≤ Z ([B(h · ς)]q)− [(B(h))]q

≤ q(q − 1)

2
βq−2

[
Z
(
[B(h · ς)]2

)
− [B(h)]2

]
,

(4.2.6)
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and

q(q − 1)

2
αq−2

[
B(h2)− Z([B(h · ς)]2)

]
≤ B(hq)− Z ([(B(h · ς)]q)

≤ q(q − 1)

2
βq−2

[
B(h2)− Z([B(h · ς)]2)

]
.

(4.2.7)

Now, for q ∈ (−∞, 0) ∪ (1, 2) we have

q(q − 1)

2
βq−2

[
Z
(
[B(h · ς)]2

)
− [B(h)]2

]
≤ Z ([B(h · ς)]q)− [(B(h))]q

≤ q(q − 1)

2
αq−2

[
Z
(
[B(h · ς)]2

)
− [B(h)]2

]
,

(4.2.8)

and

q(q − 1)

2
βq−2

[
B(h2)− Z([B(h · ς)]2)

]
≤ B(hq)− Z ([(B(h · ς)]q)

≤ q(q − 1)

2
αq−2

[
B(h2)− Z([B(h · ς)]2)

]
,

(4.2.9)

under the assumption that [B(h · ς)]q, [B(h · ς)]2 , h2, hq, h · ς, h ∈ L.

Proposition 4.2.3. For Φ : [α, β] → R,Φ(l) = l ln l, (4.2.1) and (4.2.2) imply the

following results:

1

2β

[
Z
(
[B(h · ς)]2

)
− [B(h)]2

]
≤ B(h · ς)Z (ln[B(h · ς)])−B(h) ln[B(h)]

≤ 1

2α

[
Z
(
[B(h · ς)]2

)
− [B(h)]2

]
,

(4.2.10)

and

1

2β

[
B(h2)− Z([B(h · ς)]2)

]
≤ B(h lnh)−B(h · ς)Z (ln[B(h · ς)])

≤ 1

2α

[
B(h2)− Z([B(h · ς)]2)

]
,

(4.2.11)

assuming that ln[B(h · ς)], [B(h · ς)]2 , h2, h lnh, h · ς, h ∈ L and B(h), B(h · ς) > 0.
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It can be noted that (4.2.10) is equivalent to

exp

[
1

2β

(
Z
(
[B(h · ς)]2

)
− [B(h)]2

)]
≤ exp[B(h · ς)Z (ln[B(h · ς)])]

[B(h)]B(h)

≤ exp

[
1

2α

(
Z
(
[B(h · ς)]2

)
− [B(h)]2

)]
.

(4.2.12)

Proposition 4.2.4. Assume −∞ < α ≤ h ≤ β <∞ and −∞ < α ≤ h·ς ≤ β <∞.

The inequalities (4.2.1) and (4.2.2) for Φ(l) = el, l ∈ R imply the following

1

2
exp(α)

[
Z
(
[B(h · ς)]2

)
− [B(h)]2

]
≤ Z (exp(B(h · ς)))− exp(B(h))

≤ 1

2
exp(β)

[
Z
(
[B(h · ς)]2

)
− [B(h)]2

]
,

(4.2.13)

and

1

2
exp(α)

[
B(h2)− Z([B(h · ς)]2)

]
≤ B(exp(h))− Z (exp(B(h · ς)))

≤ 1

2
exp(β)

[
B(h2)− Z([B(h · ς)]2)

]
,

(4.2.14)

assuming that exp(B(h · ς)), [B(h · ς)]2 , h2, exp(h), h · ς, h ∈ L.

From Proposition 4.1.4, we have

k

q(q − 1)
[Z ([B(h · ς)]q)− [B(h)]q] ≤ F2 ≤

K

q(q − 1)
[Z ([B(h · ς)]q)− [B(h)]q] ,

(4.2.15)

and

k

q(q − 1)
[B(hq)− Z([B(h · ς)]q)] ≤ F4 ≤

K

q(q − 1)
[B(hq)− Z([B(h · ς)]q)] (4.2.16)

by assuming that the second order derivative of Φ : S ⊆ R+ → R exists on
◦
S, k ≤

Φ′′(l)l2−q ≤ K, l ∈
◦
S, h : E → S,Φ(B(h · ς)), [B(h · ς)]q , hq,Φ ◦ h, h · ς, h ∈ L and ς

is a weight function B,Z : L→ R are isotonic linear and normalised functionals.
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Proposition 4.2.5. If 0 < α ≤ h ≤ β < ∞ and 0 < α ≤ h · ς ≤ β < ∞ and we

assume that Φ(l) = − ln l. Then for q ∈ (−∞, 0) we get

α−q

q(q − 1)
[Z ([B(h · ς)]q)− [B(h)]q] ≤ ln[B(h)]− Z (ln[B(h · ς)])

≤ β−q

q(q − 1)
[Z ([B(h · ς)]q)− [B(h)]q] ,

(4.2.17)

and

α−q

q(q − 1)
[B(hq)− Z([B(h · ς)]q)] ≤ Z (ln[B(h · ς)])−B(ln(h))

≤ β−q

q(q − 1)
[B(hq)− Z([B(h · ς)]q)] .

(4.2.18)

Now for q ∈ (1,∞), we obtain

β−q

q(q − 1)
[Z ([B(h · ς)]q)− [B(h)]q] ≤ ln[B(h)]− Z (ln[B(h · ς)])

≤ α−q

q(q − 1)
[Z ([B(h · ς)]q)− [B(h)]q] ,

(4.2.19)

and

β−q

q(q − 1)
[B(hq)− Z([B(h · ς)]q)] ≤ Z (ln[B(h · ς)])−B(ln(h))

≤ α−q

q(q − 1)
[B(hq)− Z([B(h · ς)]q)]

(4.2.20)

by assuming that ln[B(h · ς)], [B(h · ς)]q , hq, lnh, h · ς, h ∈ L and B(h), B(h · ς) > 0.

Proposition 4.2.6. If 0 < α ≤ h ≤ β < ∞ and 0 < α ≤ h · ς ≤ β < ∞ and we

suppose Φ(l) = l ln l. Then for q ∈ (−∞, 0) we get

α1−q

q(q − 1)
[Z ([B(h · ς)]q)− [B(h)]q] ≤ B(h · ς)Z (ln[B(h · ς)])−B(h) ln[B(h)]

≤ β1−q

q(q − 1)
[Z ([B(h · ς)]q)− [B(h)]q] ,

(4.2.21)
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and

α1−q

q(q − 1)
[B(hq)− Z([B(h · ς)]q)] ≤ B(h lnh)−B(h · ς)Z (ln[B(h · ς)])

≤ β1−q

q(q − 1)
[B(hq)− Z([B(h · ς)]q)] .

(4.2.22)

Now for q ∈ (1,∞), we obtain

β1−q

q(q − 1)
[Z ([B(h · ς)]q)− [B(h)]q] ≤ B(h · ς)Z (ln[B(h · ς)])−B(h) ln[B(h)]

≤ α1−q

q(q − 1)
[Z ([B(h · ς)]q)− [B(h)]q] ,

(4.2.23)

and

β1−q

q(q − 1)
[B(hq)− Z([B(h · ς)]q)] ≤ B(h lnh)−B(h · ς)Z (ln[B(h · ς)])

≤ α1−q

q(q − 1)
[B(hq)− Z([B(h · ς)]q)] .

(4.2.24)

under the assumption that ln[B(h·ς)], [B(h · ς)]q , hq, h lnh, h·ς, h ∈ L and B(h), B(h·
ς) > 0.

Finally, we derive the following results by using Proposition 4.1.5.

γ [ln[B(h)]− Z (ln [B(h · ς)])] ≤ F2 ≤ Γ [ln[B(h)]− Z (ln [B(h · ς)])] , (4.2.25)

and

γ [Z (ln [B(h · ς)])−B(lnh)] ≤ F4 ≤ Γ [Z (ln [B(h · ς)])−B(lnh)] (4.2.26)

by assuming that the second order derivative Φ : S ⊆ R+ → R exists on
◦
S,−∞ <

γ ≤ l2Φ′′(l) ≤ Γ < ∞,Φ(B(h · ς)), ln [B(h · ς)] , lnh,Φ ◦ h, h · ς, h ∈ L and B(h ·
ς), B(h) > 0.
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Proposition 4.2.7. Let 0 < α ≤ h ≤ β < ∞ and 0 < α ≤ h · ς ≤ β < ∞ and

consider Φ(l) = l ln l, the inequalities (4.2.25) and (4.2.26) yield

α [ln[B(h)]− Z (ln [B(h · ς)])] ≤ B(h · ς)Z (ln[B(h · ς)])−B(h) ln[B(h)]

≤ β [ln[B(h)]− Z (ln [B(h · ς)])] ,
(4.2.27)

and

α [Z (ln [B(h · ς)])−B(lnh)] ≤ B(h ln(h))−B(h · ς)Z (ln[B(h · ς)])

≤ β [Z (ln [B(h · ς)])−B(lnh)]
(4.2.28)

under the assumption that ln [B(h · ς)] , lnh, h lnh, h ·ς, h ∈ L and B(h ·ς), B(h) > 0.

It can be observed that the inequality (4.2.27) is equivalent to

[
[B(h)]

exp [Z (ln [B(h · ς)])]

]α
≤

exp
[
Z (ln[B(h · ς)])B(h·ς)

]
[B(h)]B(h)

≤
[

B(h)

exp [Z (ln [B(h · ς)])]

]β
.

(4.2.29)
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Chapter 5

Generalized form of Jessen type

functionals and exponential

convexity

In this paper, we introduce an extension of Jessen functional and investigate loga-

rithmic and exponential convexity. We also present mean value theorems of Cauchy

and Lagrange type. Several families of functions are also presented related to our

main results.

Throughout chapter, we assume ς is a weight function which satisfies (1.5.1).

5.1 Extension of the Jessen’s functional

Now we prove the counterpart of the inequality Ψ(B(h)) ≤ Z(Ψ(B(h · ς))) (see

Theorem 3.3.1) for compact interval S = [η, ζ].

Theorem 5.1.1. Assume Ψ be a convex function on S = [η, ζ] (−∞ < η < ζ <∞).

Let L satisfies properties L1, L2 on a nonempty set E, ς is weight function and
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B,Z are isotonic linear normalized functional on L, then for all h · ς ∈ L such that

Ψ(B(h · ς)) ∈ L (so that η ≤ B(h · ς) ≤ ζ), we have

Z(Ψ(B(h · ς))) ≤ ζ −B(h · ς)
ζ − η

Ψ(η) +
B(h · ς)− η

ζ − η
Ψ(ζ). (5.1.1)

Proof. The definition of convex function implies

Ψ(b) ≤ c− b
c− a

Ψ(a) +
b− a
c− a

Ψ(c) (a ≤ b ≤ c, a < c).

Now set a = η, b = B(h · ς), c = ζ give

Ψ(B(h · ς)) ≤ ζ −B(h · ς)
ζ − η

Ψ(η) +
B(h · ς)− η

ζ − η
Ψ(ζ).

Since Z is isotonic linear and normalized functional, (5.1.1) holds.

The next theorems are our main findings.

Theorem 5.1.2. Assume Ψ be a convex function on S = [η, ζ] (−∞ < η < ζ <∞).

Suppose L satisfies properties L1, L2 on a nonempty set E, ς is weight function and

B,Z are isotonic linear normalized functional on L, then for all h, h · ς ∈ L such

that Ψ(B(h · ς)),Ψ(η + ζ −B(h · ς)) ∈ L (so that η ≤ B(h · ς) ≤ ζ), we have

Ψ(η + ζ −B(h)) ≤ Ψ(η) + Ψ(ζ)− Z(Ψ(B(h · ς))). (5.1.2)

Proof. The function Φ : [η, ζ]→ R defined as Φ(t) = Ψ(η + ζ − t), t ∈ [η, ζ] and the

function Ψ are convex and continuous. Then by the left hand side of the inequality

of (3.3.1), we have

ψ(B(h)) ≤ Z(ψ(B(h · ς))).

That is,

Ψ(η + ζ +B(h)) ≤ Z(Ψ(η + ζ −B(h · ς))).
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Applying Theorem 5.1.1, we obtain

Z(Ψ(η + ζ −B(h · ς))) ≤ ζ −B(h · ς)
ζ − η

Φ(η) +
B(h · ς)− η

ζ − η
Φ(ζ)

≤ ζ −B(h · ς)
ζ − η

Ψ(ζ) +
B(h · ς)− η

ζ − η
Ψ(η)

= Ψ(η) + Ψ(ζ)−
[
ζ −B(h · ς)

ζ − η
Ψ(η) +

B(h · ς)− η
ζ − η

Ψ(ζ)

]
≤ Ψ(η) + Ψ(ζ)− Z(Ψ(B(h · ς))).

The last statement is obtained by observing that if Ψ is concave then −Ψ is convex

and B,Z are linear on L.

Theorem 5.1.3. Assume Ψ be a convex function on S = [η, ζ] (−∞ < η < ζ <∞).

Suppose that L satisfies properties L1, L2 on a nonempty set E, ς is weight function

and B,Z are isotonic linear normalised functional on L, then for all h · ς ∈ L such

that Ψ(h),Ψ(η + ζ −B(h · ς)) ∈ L (so that η ≤ h(l) ≤ ζ for all l ∈ E), we have

Z(Ψ(η + ζ −B(h · ς)) ≤ Ψ(η) + Ψ(ζ)−B(Ψ(h)). (5.1.3)

Proof. Similar to the proof of Theorem 5.1.2 we can prove it by using right hand

side of the inequality (3.3.1) and using Theorem 1.5.2 instead of Theorem 5.1.1.

5.2 Exponential convexity

This section contains the investigation of the exponential and logarithmic convexity

of the functionals that are associated with the extension of Jessen functional given

in the previous section.
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Remark 5.2.1. We consider the following functionals under the assumption of

Theorems 5.1.2 and 5.1.3, respectively.

Ω(Ψ) = Ψ(η) + Ψ(ζ)− Z(Ψ(B(h · ς)))−Ψ(η + ζ −B(h)), (5.2.1)

i(Ψ) = Ψ(η) + Ψ(ζ)−B(Ψ(h))− Z(Ψ(η + ζ −B(h · ς)). (5.2.2)

Then Ω(Ψ) and Ω′(Ψ) are positive.

In the following theorem and its corollaries we use notations as: C is a real open

interval, S is any real interval, Θ = {gl | l ∈ C} is a family of continuous functions

defined on S. Ω(Ψ) is as given in Remark 5.2.1. Then the new m-exponentially

convex functions are produced by the useful results given below.

Theorem 5.2.1. Assume the function l 7→ [s1, s2, s3; gl] is m-exponentially J -

convex on C, where s1, s2, s3 are distinct points of S. Then l 7→ Ω(gl) is an m-

exponentially J -convex on C. In addition, the continuity of this function implies

the m-exponential convexity on C.

Proof. Suppose li, lj ∈ C, lij =
li+lj

2
and ai, aj ∈ R for i, j ∈ {1, 2, ...,m} (m ∈ N).

Define the function ∆ on S by

∆(s) =
m∑

i,j=1

aiajglij(s).

Being the linear combination of continuous functions, ∆ is continuous. The hypoth-

esis of m-exponential J -convexity of the function l 7→ [s1, s2, s3; gl] gives

[s1, s2, s3; ∆] =
m∑

i,j=1

aiaj[s1, s2, s3; glij ] ≥ 0,

which implies the convexity of ∆ on S. In addition, the linearity of Ω gives

m∑
i,j=1

aiajΩ(glij) ≥ 0.
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We conclude that the function l 7→ Ω(gl) is an m-exponentially J -convex function

on C.

We have obtained the corollaries below from the above theorem.

Corollary 5.2.2. Assume the function l 7→ [s1, s2, s3; gl] is exponentially J -convex

on C, where s1, s2, s3 are distinct points of S. Then l 7→ Ω(gl) is an exponentially

J -convex function on C. In addition, the continuity of this function implies the

exponential convexity on C.

Corollary 5.2.3. Assume the function l 7→ [s1, s2, s3; gl] is 2-exponentially J -convex

on C, where s1, s2, s3 are distinct points of S. Then l 7→ Ω(gl) is 2-exponentially

J -convex function on C. In addition, the continuity of this function implies the

2-exponential convexity on C, and thus the function is log-convex. That is, for

l, r, s ∈ C such that r < s < l the following holds

Ωl−r(gs) ≤ Ωl−s(gr)Ω
s−r(gl).

Proof. This is directly obtained from Theorem 5.2.1 and Remark 1.3.4.

To define the basic inequality of log-convex functions we present positive func-

tionals.

Remark 5.2.2. The following positive functionals are useful in defining the basic

inequality of log-convex functions.

Ω(fl) =
1

l2
(exp(lη) + exp(lζ)− Z (exp (lB(h · ς)))− exp(lη + lζ − lB(h))) .

Ω(gl) =
1

l(l − 1)

(
ηl + ζ l − Z

(
(B(h · ς))l

)
− (η + ζ −B(h))l

)
.

Ω(hl) =
1

(log l)2

(
l−η + l−ζ − Z

(
l−B(h·ς))− lB(h)−η−ζ) .

Ω(kl) =
1

l

(
exp(−η

√
l) + exp(−ζ

√
l)− Z

(
exp

(
−B(h · ς)

√
l
))
− exp

(
(B(h)− η − ζ)

√
l
))

.
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Theorem 5.2.4. Let Ω(Ψ) be the linear functional defined by (5.2.1) and consider

the functions φi : (0,∞) → R for i = 1, 4 and φi : (1,∞) → R for i = 2, 3 defined

as

φ1(l) = Ω(fl), φ2(l) = Ω(gl), φ3(l) = Ω(hl), φ4(l) = Ω(kl). Then

(i) The functions φi are continuous on (0,∞) for i = 1, 4 and continuous on

(1,∞) for i = 2, 3.

(ii) Suppose m ∈ N, l1, . . . , lm ∈ (0,∞) for i = 1, 4 and l1, . . . , lm ∈ (1,∞) for

i = 2, 3. Then [
φi

(
lj + lk

2

)]m
j,k=1

are positive semidefinite matrices.

(iii) φi’s are exponentially convex on (0,∞) when i = 1, 4 and on (1,∞) for i = 2, 3.

(iv) Let l, r, s ∈ (0,∞) for i = 1, 4 and r, s, l ∈ (1,∞) for i = 2, 3 with l < r < s,

then

(φi(r))
s−l ≤ (φi(l))

s−r (φi(s))
r−l ,

where φi(l) for i = 1, 2, 3, 4 are defined in Remark 5.2.2.

Proof. (i) The continuity of these functions is obvious.

(ii) Let dj, lj ∈ R, where j = 1, . . . ,m (m is any natural number). Define the

auxiliary function ∆1 on S = R by

∆1(s) =
m∑

j,k=1

djdkf lj+lk
2

(s).

Since

∆′′1(s) =
n∑

j,k=1

djdk
d2

ds2
f lj+lk

2

(s) ≥ 0
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for s ∈ S by Lemma 1.3.3. This implies ∆1 is convex. Now Theorem 5.1.2 implies

that Ω(∆1) ≥ 0. This means that[
φ1

(
lj + lk

2

)]m
j,k=1

is a positive semidefinite matrix.

To prove the remaining positive semidefinite matrices, we can define the auxiliary

functions ∆i for i = 2, 3, 4 in the similar manner.

We easily get (iii) and (iv) from (i), (ii) and Lemma 1.3.2.

Remark 5.2.3. We can construct similar results for the positive functional i(Ψ)

defined in (5.2.2).

5.3 Mean value theorems

The lemma given below will be very helpful to state the mean value theorems of

Cauchy and Lagrange type.

Lemma 5.3.1. [52] Let Ψ : S → R, S ⊆ R, be such that Ψ ∈ C2(S), Ψ′′ is bounded

and d = inf l∈S Ψ′′(l), D = supl∈S Ψ′′(l). Then the functions Ψ1,Ψ2 : S → R defined

by

Ψ1(l) =
D

2
l2 −Ψ(l),

Ψ2(l) = Ψ(l)− d

2
l2

(5.3.1)

are convex.

Theorem 5.3.2. Let L satisfies properties L1 and L2 on a nonempty set E, and

let Ψ : S → R,Ψ ∈ C2(S), where S = [η, ζ] ⊆ R (−∞ < η < ζ < ∞). If B,Z are

isotonic linear normalised functionals and ς is a weight function (defined in (1.5.1)),
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then for all h, h · ς ∈ L such that Ψ(B(h · ς)), (B(h · ς))2 ∈ L there exists some $ ∈ S
at which

Ψ(η) + Ψ(ζ)− Z(Ψ(B(h · ς)))−Ψ(η + ζ −B(h)) = αΨ′′($), (5.3.2)

where

α =
1

2

[
η2 + ζ2 − (η + ζ −B(h))2 − Z([B(h · ς)]2)

]
.

Proof. Assume D = maxl∈S Ψ′′(l) and d = minl∈S Ψ′′(l). Then Lemma 6.2.1 gives

the convexity of the functions Ψ1,Ψ2 : S → R. Since they are also continuous.

Apply Theorem 5.1.2, we get

Ψ(η) + Ψ(ζ)− Z(Ψ(B(h · ς)))−Ψ(η + ζ −B(h)) ≤ αD, (5.3.3)

and

Ψ(η) + Ψ(ζ)− Z(Ψ(B(h · ς)))−Ψ(η + ζ −B(h)) ≥ αd. (5.3.4)

Now combining these two inequalities and since Ψ′′ is continuous, there exists $ ∈
S (d ≤ Ψ′′($) ≤ D) such that (5.3.2) holds.

Theorem 5.3.3. Assume L satisfies properties L1 and L2 on a nonempty set E,

and suppose Φ,Ψ : S → R,Φ,Ψ ∈ C2(S), where S = [η, ζ] ⊆ R (−∞ < η < ζ <∞).

If B,Z are isotonic linear normalised functionals and ς is a weight function (defined

in (1.5.1)), then for all h, h · ς ∈ L such that Φ(B(h · ς)),Ψ(B(h · ς)), (B(h · ς))2 ∈ L
and η2 + ζ2− (η+ ζ −B(h))2−Z([B(h · ς)]2) 6= 0 there exists some $ ∈ S such that

the following holds

Ψ′′($) [Φ(η) + Φ(ζ)− Z(Φ(B(h · ς)))− Φ(η + ζ −B(h))]

= Φ′′($) [Ψ(η) + Ψ(ζ)− Z(Ψ(B(h · ς)))−Ψ(η + ζ −B(h))] .
(5.3.5)

Proof. Suppose the function k ∈ C2(S), k = c1Φ− c2Ψ, where c1 and c2 are defined

by

c1 = Ψ(η) + Ψ(ζ)− Z(Ψ(B(h · ς)))−Ψ(η + ζ −B(h)), (5.3.6)
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and

c2 = Φ(η) + Φ(ζ)− Z(Φ(B(h · ς)))− Φ(η + ζ −B(h)). (5.3.7)

As k ∈ C2(S), applying Theorem 5.3.2 on the function k ensures the existence of

some $ ∈ S such that the following holds

k(η) + k(ζ)− Z(k(B(h · ς)))− k(η + ζ −B(h)) = αk′′($). (5.3.8)

The left-hand side of the above equation is equal to zero. Since α is non zero, so we

have that k′′($) = 0. Thus the assertion of our theorem follows directly.

Similarly we can define mean value theorems for Theorem 5.1.3. Here we omit

the proofs.

Theorem 5.3.4. Assume L satisfies properties L1 and L2 on a nonempty set E,

and assume Ψ : S → R,Ψ ∈ C2(S), where S = [η, ζ] ⊆ R (−∞ < η < ζ < ∞). If

B,Z are isotonic linear normalised functionals and ς is a weight function (defined in

(1.5.1)), then for all h·ς ∈ L such that Ψ(η+ζ−B(h·ς)),Ψ(h), (η+ζ−B(h·ς))2, h2 ∈
L there exists some $ ∈ S such that the following holds

Ψ(η) + Ψ(ζ)−B(Ψ(h))− Z(Ψ(η + ζ −B(h · ς))) = βΨ′′($), (5.3.9)

where

β =
1

2

[
η2 + ζ2 −B(h2)− Z([η + ζ −B(h · ς)]2)

]
.

Theorem 5.3.5. Assume L satisfies properties L1 and L2 on a nonempty set E, and

suppose Φ,Ψ : S → R,Φ,Ψ ∈ C2(S), where S = [η, ζ] ⊆ R (−∞ < η < ζ < ∞). If

B,Z are isotonic linear normalised functionals and ς is a weight function (defined

in (1.5.1)), then for all h · ς ∈ L such that Φ(η + ζ − B(h · ς)),Ψ(η + ζ − B(h ·
ς)),Φ(h),Ψ(h), (η+ζ−B(h·ς))2, h2 ∈ L and η2+ζ2−B(h2)−Z([η+ζ−B(h·ς)]2) 6= 0
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there exists some $ ∈ S such that the following holds

Ψ′′($) [Φ(η) + Φ(ζ)−B(Φ(h))− Z(Φ(η + ζ −B(h · ς)))]

= Φ′′($) [Ψ(η) + Ψ(ζ)−B(Ψ(h))− Z(Ψ(η + ζ −B(h · ς)))] .
(5.3.10)

5.4 LBP type inequality for m(M)-ψ-convex func-

tions

The result below is related to counterpart of the inequality ψ(B(h)) ≤ Z(ψ(B(h·ς)))
(see (5.1.1)) over compact interval S = [η, ζ] for m(M)-ψ-convex functions. In this

section, we use:

T1 =
ζ −B(h · ς)

ζ − η
ψ(η) +

B(h · ς)− η
ζ − η

ψ(ζ)− Z(ψ(B(h · ς))),

T2 =
ζ −B(h · ς)

ζ − η
Φ(η) +

B(h · ς)− η
ζ − η

Φ(ζ)− Z(Φ(B(h · ς))).

Theorem 5.4.1. Suppose ψ : S = [η, ζ](⊆ R) → R is a convex function and

h : E → S such that ψ(B(h · ς)), h · ς ∈ L, ς is weight function and B,Z : L → R
are isotonic linear normalised functionals.

(i) Assume Φ ∈ L(S,m, ψ) and Φ(B(h · ς)) ∈ L, then

mT1 ≤ T2. (5.4.1)

(ii) Assume Φ ∈ U(S,M,ψ) and Φ(B(h · ς)) ∈ L, then

T2 ≤MT1. (5.4.2)

(iii) Assume Φ ∈ B(S,m,M,ψ) and Φ(B(h · ς)) ∈ L, then both (5.4.1) and (5.4.2)

hold.
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Proof. (i) Since Φ ∈ L(S,m, ψ) and Φ(B(h · ς)) ∈ L, this yield Φ −mψ is convex

and (Φ −mψ) ◦ B(h · ς) ∈ L. For the convex function Φ −mψ, Theorem 5.1.1 is

applied to obtain the required results.

(ii) Similarly, we observe Φ(B(h · ς)) ∈ L and Φ ∈ U(S,M,ψ). It yields Mψ − Φ is

convex and (Mψ − Φ) ◦B(h · ς) ∈ L.

(iii) It can be easily observed that this is true from (i) and (ii).

The above theorem is used to obtain the below useful corollary.

Corollary 5.4.2. Assume the second order derivative of convex function ψ : S ⊆
R → R exists on

◦
S and h : E → S such that ψ(B(h · ς)), h · ς ∈ L, ς is weight

function and B,Z : L→ R are isotonic linear and normalised functionals.

(i) If second order derivative of Φ : S → R exists and for given real number

m, Φ′′(l) ≥ mψ′′(l), l ∈
◦
S. Then (5.4.1) holds under the assumption that

Φ(B(h · ς)) ∈ L.

(ii) If second order derivative of Φ : S → R exists and for given real number m,

Φ′′(l) ≤Mψ′′(l), l ∈
◦
S. Then (5.4.2) is true if Φ(B(h · ς)) ∈ L.

(iii) If second order derivative of Φ : S → R exists and for given real number m,

mψ′′(l) ≤ Φ′′(l) ≤ Mψ′′(l), l ∈
◦
S. Then both (5.4.1) and (5.4.2) hold, under

the assumption that Φ(B(h · ς)) ∈ L.

The following propositions are some particular cases of the above corollary.

Proposition 5.4.3. Let the second order derivative of Φ : S ⊆ R→ R exists on
◦
S.

(i) For inf
l∈
◦
S

Φ′′(l) = s > −∞, we get

s

2

[
(η + ζ)B(h · ς)− ηζ − Z([B(h · ς)]2)

]
≤ T2. (5.4.3)

under the assumption that Φ(B(h · ς)), [B(h · ς)]2 , h · ς ∈ L.
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(ii) For sup
l∈
◦
S

Φ′′(l) = S <∞, we obtain

T2 ≤
S

2

[
(η + ζ)B(h · ς)− ηζ − Z([B(h · ς)]2)

]
. (5.4.4)

assuming that Φ(B(h · ς)), [B(h · ς)]2 , h · ς ∈ L.

(iii) For −∞ < s ≤ Φ′′(l) ≤ S <∞, l ∈
◦
S, both (5.4.3) and (5.4.4) hold, under the

assumption that Φ(B(h · ς)), [B(h · ς)]2 , h · ς ∈ L.

Proof. Define the auxiliary function g(l) := Φ(l)− 1
2
sl2. Then g′′(l) = Φ′′(l)− s ≥ 0

yields g is convex, or, equivalently, Φ ∈ L(S, 1
2
s, (·)2). The below inequality is

obtained by using Corollary 5.4.2.

m

[
ζ −B(h · ς)

ζ − η
η2 +

B(h · ς)− η
ζ − η

ζ2 − Z([B(h · ς)]2)

]
≤ T2,

which is clearly equivalent to (5.4.3). Analogously, we can prove (ii), and (iii) follows

by (i) and (ii).

Another useful finding has been given as;

Proposition 5.4.4. Assume that the second order derivative of Φ : S ⊆ R+ → R
exists on

◦
S. Let q ∈ (−∞, 0) ∪ (1,∞) and define hq : S → R, hq(l) = φ′′(l)l2−q.

(i) For inf
l∈
◦
S
hq(l) = k > −∞, we have

k

q(q − 1)

[
qLq−1

q−1(η, ζ)B(h · ς)− ηζ(q − 1)Lq−2
q−2(η, ζ)− Z([B(h · ς)]q)

]
≤ T2. (5.4.5)

assuming that Φ(B(h · ς)), [B(h · ς)]q , h · ς ∈ L, and Lq is the q-logarithmic

mean.

(ii) For sup
l∈
◦
S
hq(l) = K <∞, we have

T2 ≥
K

q(q − 1)

[
qLq−1

q−1(η, ζ)B(h · ς)− ηζ(q − 1)Lq−2
q−2(η, ζ)− Z([B(h · ς)]q)

]
.

(5.4.6)
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under the assumption that Φ(B(h · ς)), [B(h · ς)]q , h · ς ∈ L.

(iii) For −∞ < k ≤ Φ′′(l) ≤ K <∞, l ∈
◦
S, both (5.4.5) and (5.4.6) hold, assuming

that Φ(B(h · ς)), [B(h · ς)]q , h · ς ∈ L.

Proof. (i) Define the auxiliary mapping gq(l) = Φ(l)− k
q(q−1)

lq. Then

g′′q (l) = Φ′′(l)− klq−2 = lq−2(l2−qΦ′′(l)− k)

= lq−2(hq(l)− k) ≥ 0.

which implies gq is convex or, equivalently, Φ ∈ L(S, k
q(q−1)

, (·)q). We Apply Corollary

5.4.2 to deduce (5.4.5). Analogously, we can prove (ii), and (iii) follows by (i) and

(ii).

Below proposition is also true.

Proposition 5.4.5. Suppose that the second order derivative of Φ : S ⊆ R+ → R
exists on

◦
S. Define z(l) = l2Φ′′(l), l ∈ S.

(i) For inf
l∈
◦
S
z(l) = γ > −∞, we have

γ

[
Z(ln[B(h · ς)]) + ln

[
I

(
1

η
,

1

ζ

)]
+ 1− B(h · ς)

L(η, ζ)

]
≤ T2. (5.4.7)

under the assumption that Φ(B(h · ς)), ln[B(h · ς)], h · ς ∈ L. L and I denote

the logarithmic and identric mean, respectively.

(ii) For sup
l∈
◦
S
z(l) = Γ <∞, we get

T2 ≤ Γ

[
Z(ln[B(h · ς)]) + ln

[
I

(
1

η
,

1

ζ

)]
+ 1− B(h · ς)

L(η, ζ)

]
. (5.4.8)

assuming that Φ(B(h · ς)), ln[B(h · ς)], h · ς ∈ L.
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(iii) For −∞ < γ ≤ z(l) ≤ Γ < ∞ for l ∈
◦
S, both (5.4.7) and (5.4.8) hold, under

the assumption that Φ(B(h · ς)), ln[B(h · ς)], h · ς ∈ L.

Proof. Define the auxiliary mapping g(l) = Φ(l)+γ ln l. Analogously as in the proof

of Proposition 5.4.4, we get the required results.

Finally, the following proposition holds.

Proposition 5.4.6. Suppose that the second order derivative of Φ : S ⊆ R+ → R
exists on

◦
S. Define σ(l) = lΦ′′(l), l ∈ S.

(i) For inf
l∈
◦
S
σ(l) = ξ > −∞, we have

ξ

[
B(h · ς) ln I(η, ζ)− G2(η, ζ)

L(η, ζ)
+B(h · ς)−B(h · ς)Z(ln[B(h · ς)])

]
≤ T2

(5.4.9)

assuming that Φ(B(h · ς)), ln[B(h · ς)], h · ς ∈ L. G and L denote geometric

and logarithmic mean, respectively.

(ii) For sup
l∈
◦
S
σ(l) = Ξ <∞, then

T2 ≤ Ξ

[
B(h · ς) ln I(η, ζ)− G2(η, ζ)

L(η, ζ)
+B(h · ς)−B(h · ς)Z(ln[B(h · ς)])

]
(5.4.10)

under the assumption that Φ(B(h · ς)), ln[B(h · ς)], h · ς ∈ L.

(iii) For −∞ < ξ ≤ σ(l) ≤ Ξ <∞ for l ∈
◦
S, both (5.4.9) and (5.4.10) hold, under

the assumption that Φ(B(h · ς)), ln[B(h · ς)], h · ς ∈ L.

Proof. Define the auxiliary mapping g(l) = Φ(l) − ξl ln l. Analogously as in the

proof of Proposition 5.4.4, we get the required results.
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Chapter 6

m-Exponential convexity of

refinements of

Hermite-Hadamard’s inequality

In this chapter, m-exponential convexity of the functions related with the refinement

of Hermite Hadamard inequality (1.4.10) is examined. In addition, the results about

exponential and log-convexity are deduced. To construct means with Stolarsky

property, Cauchy and Lagrange type mean value theorems are also given.

Below are the functional forms of inequalities (1.4.9):

Remark 6.0.1.

Γ1(ψ) = aψ

(
α + γ

2

)
+ bψ

(
γ + β

2

)
− ψ

(
α + β

2

)
. (6.0.1)

Γ2(ψ) =
1

β − α

∫ β

α

ψ(r)dr − aψ
(
α + γ

2

)
+ bψ

(
γ + β

2

)
. (6.0.2)

Γ3(ψ) =
1

2
[cψ(α) + dψ(β) + ψ(δ)]− 1

β − α

∫ β

α

ψ(r)dr. (6.0.3)

Γ4(ψ) = (1− c)ψ(α) + (1− d)ψ(β)− ψ(δ). (6.0.4)

73



Then for 1 ≤ j ≤ 4, Γj(ψ) are positive.

6.1 Exponential convexity

Now we apply positive functionals (given in the previous section) on a given family

of functions to investigate m-exponential and exponential convexity.

In the following theorem and its corollaries we use notations as: C is a real open

interval, S is any real interval, Ξ = {gl | l ∈ C} is a family of functions defined on S.

Γ1(Ψ) is as given in Remark 6.0.1. Then we have the following useful results which

produce new m-exponentially convex functions.

Theorem 6.1.1. Suppose that the function l 7→ [s1, s2, s3; gl] is m-exponentially

J -convex on C, where s1, s2, s3 are distinct points of S. Then l 7→ Γ1(gl) is an m-

exponentially J -convex function on C. In addition, the continuity of this function

implies the m-exponential convexity on C.

Proof. Suppose lj, lk be the elements of C, ljk =
lj+lk

2
and cj, ck are real numbers for

j, k = 1, . . . ,m. Consider the function ∆ on S as

∆(s) =
m∑

j,k=1

cjckgljk(s).

The hypothesis of function l 7→ [s1, s2, s3; gl] is m-exponentially J -convex thus yields

[s1, s2, s3; ∆] =
m∑

j,k=1

cjck[s1, s2, s3; gljk ] ≥ 0.

This implies the convexity of ∆ on S. Thus, we get Γ1(∆) is non negative. By the

linear property of Γ1 we have

m∑
j,k=1

cjckΓ1

(
gljk
)
≥ 0,
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concluding the m-exponentially J -convexity of function l 7→ Γ1(gl) on C.

The above model results the following outcomes.

Corollary 6.1.2. Suppose that the function l 7→ [s1, s2, s3; gl] is exponentially J -

convex on C, where s1, s2, s3 are distinct points of S. Then l 7→ Γ1(gl) is an exponen-

tially J -convex function on C. In addition, the continuity of this function implies

the exponential convexity on C.

Corollary 6.1.3. Suppose that the function l 7→ [s1, s2, s3; gl] is 2-exponentially J -

convex on C, where s1, s2, s3 are distinct points of S. Then below statements are

true:

i) The continuity of the function l 7→ Γ1(gl) implies the 2-exponential convexity

of l 7→ Γ1(gl) on C, which concludes the log-convexity stated as:

Γl−r1 (gs) ≤ Γl−s1 (gr)Γ
s−r
1 (gl)

for l, r, s ∈ C with r < s < l.

ii) Assume that the function l 7→ Γ1(gl) on C is strictly positive and its first order

derivative also exists, then for l ≤ u and r ≤ v, (l, r, u, v ∈ C) yields

ς(l, r; Γ1) ≤ ς(u, v; Γ1),

where

ς(l, r; Γ1) =


(

Γ1(gl)
Γ1(gr)

) 1
l−r

, l 6= r;

exp
(

d
dl

(Γ1(gl))

Γ1(gl)

)
, otherwise.

(6.1.1)

Proof. i) This is directly obtained from Remark 1.3.4 and Theorem 6.1.1.

ii) (i) follows the log-convexity of function l 7→ Γ1(gl) on C, which yields l 7→
log Γ1(gl) is a convex function on C. Now for l ≤ u and r ≤ v, applying [53,
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Proposition 3.2] we obtained

log Γ1(gl)− log Γ1(gr)

l − r
≤ log Γ1(gu)− log Γ1(gv)

u− v
. (6.1.2)

It yields

ς(l, r; Γ1) ≤ ς(u, v; Γ1).

By applying limit on (8) follows the remaining cases.

Remark 6.1.1. In defining fundamental inequality of logarithmic convexity these

described positive functionals are very useful.

Γ1(fl) =
1

l2

[
a exp

(
l(α + γ)

2

)
+ b exp

(
l(β + γ)

2

)
− exp

(
l(α + β)

2

)]
.

Γ1(gl) =
l

(l − 1)2l
[
a(α + γ)l + b(γ + β)l − (α + β)l

]
.

Γ1(hl) =
1

(log l)2

[
al−

1
2

(α+γ) + bl−
1
2

(β+γ) − l−
1
2

(α+β)
]
.

Γ1(kl) =
1

l

[
a exp

(
−1

2
(α + γ)

√
l

)
+ b exp

(
−1

2
(β + γ)

√
l

)
− exp

(
−1

2
(α + β)

√
l

)]
.

Theorem 6.1.4. Consider the linear functional Γ1(ψ) stated in (6.0.1). Now for

i=1,4 and i=2,3 let’s define θi : (0,∞)→ R and θi : (1,∞)→ R, respectively, as

θ1(l) = Γ1(fl), θ2(l) = Γ1(gl), θ3(l) = Γ1(hl), θ4(l) = Γ1(kl).

We then have:

(i) For i = 1, 4 and i = 2, 3, θi functions preserve continuity on (0,∞) and (1,∞),

respectively.

(ii) Let m ∈ N, li ∈ (0,∞) and li ∈ (1,∞) (1 ≤ i ≤ m) for i = 1, 4 and i = 2, 3,

respectively. This implies that the below matrices are positive semidefinite.[
θi

(
lj + lk

2

)]m
j,k=1

.
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(iii) The exponential convexity holds for θi functions on (0,∞) and (1,∞) for i =

1, 4 and i = 2, 3, respectively.

(iv) Suppose l, r, s ∈ (0,∞) and l, r, s ∈ (1,∞) for i = 1, 4 and i = 2, 3, respec-

tively. It yields

(θi(r))
s−l ≤ (θi(l))

s−r(θi(s))
r−l, (l < r < s).

(v) Assume that θi functions are strictly positive and their first order derivative

also exist on (0,∞) and (1,∞) for i = 1, 4 and i = 2, 3, respectively. Then

for l ≤ u and r ≤ v, where l, r, u, v ∈ (0,∞) and l, r, u, v ∈ (1,∞) for i = 1, 4

and i = 2, 3, respectively yield

ς(l, r; θi) ≤ ς(u, v; θi),

with

ς(l, r; θi) =


(
θi(l))
θi(r)

) 1
l−r

, l 6= r;

exp
(

d
dl

(θi(l))

θi(l)

)
, otherwise.

(6.1.3)

Proof. (i) The functions l→ θi(l) (1 ≤ i ≤ 4) are obviously continuous.

(ii) For natural number m and cj, ck are real numbers for j, k = 1, . . . ,m, consider

the function ∆1 on S = R defined as

∆1(s) =
m∑

j,k=1

cjckf lj+lk
2

(s).

Now for s ∈ S Lemma 1.3.3 yields

∆′′1(s) =
m∑

j,k=1

cjck
d2

ds2
f lj+lk

2

(s) ≥ 0.
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This yields the convexity of ∆1. Theorem 1.4.7 results that Γ1(∆1) is non negative.

It implies that the following matrix is a positive semidefinite matrix:[
θ1

(
lj + lk

2

)]m
j,k=1

.

Analogously, the auxiliary functions ∆i (i ∈ {2, 3, 4}) may be defined are helpful in

proving rest of the positive semidefinite matrices.

(i), (ii) and Lemma 1.3.2 simply yield (iii) and (iv). Part (iv) is simply used to

prove (v).

6.2 Mean value theorems

Below lemma is important in proving our results.

Lemma 6.2.1. [52] Consider S = [α, β](⊆ R), ψ ∈ C2(S). Suppose ψ : S → R, ψ′′

is bounded and let d = infs∈S ψ
′′(s),D = sups∈S ψ

′′(s). It implies the convexity of

the real functions ψ1, ψ2 defined over the set S as

ψ1(s) =
D

2
s2 − ψ(s)

ψ2(s) = ψ(s)− d

2
s2.

(6.2.1)

Theorem 6.2.2. Suppose S = [α, β](⊆ R) is compact and assume a real function

ψ on S, where ψ ∈ C2(S). Consider the points γ, δ ∈ S, and a, b, c, d are defined in

(1.4.9). It implies the existence of point $ ∈ S such that

aψ

(
α + γ

2

)
+ bψ

(
β + γ

2

)
− ψ

(
α + β

2

)
= εψ′′($), (6.2.2)

where

ε =
1

2

[
a

(
α + γ

2

)2

+ b

(
β + γ

2

)2

−
(
α + β

2

)2
]
.
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Proof. Suppose d = mins∈S ψ
′′(s),D = maxs∈S ψ

′′(s). Lemma 6.2.1 follows the

convexity of functions ψ1, ψ2 : S → R; the continuity property also holds for ψ1 and

ψ2. Now using the leftmost inequality of (1.4.10) yields

aψ

(
α + γ

2

)
+ bψ

(
β + γ

2

)
− ψ

(
α + β

2

)
≤ εD,

and

aψ

(
α + γ

2

)
+ bψ

(
β + γ

2

)
− ψ

(
α + β

2

)
≥ εd.

Joining the above two inequalities and using the fact that second order derivative of

ψ is continuous, results the existence of a point $ in S with d ≤ ψ′′($) ≤ D. This

proves the required result.

Theorem 6.2.3. S = [α, β](⊆ R) is compact and assume two real functions ψ, χ

on S, where ψ, χ ∈ C2(S). Consider the points γ, δ ∈ S, and a, b, c, d are defined in

(1.4.9). It implies the existence of point $ ∈ S such that

ψ′′($)

[
aχ

(
α + γ

2

)
+ bχ

(
β + γ

2

)
− χ

(
α + β

2

)]
= χ′′($)

[
aψ

(
α + γ

2

)
+ bψ

(
β + γ

2

)
− ψ

(
α + β

2

)]
.

(6.2.3)

Proof. Define a function ϑ ∈ C2(S) by ϑ = e1χ− e2ψ, where

e1 = aψ

(
α + γ

2

)
+ bψ

(
β + γ

2

)
− ψ

(
α + β

2

)
(6.2.4)

and

e2 = aχ

(
α + γ

2

)
+ bχ

(
β + γ

2

)
− χ

(
α + β

2

)
. (6.2.5)

As the function ϑ ∈ C2(S) and implementing this function to Theorem 6.2.2 implies

the existence of a point $ ∈ S such as

aϑ

(
α + γ

2

)
+ bϑ

(
β + γ

2

)
− ϑ

(
α + β

2

)
= εϑ′′($). (6.2.6)
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The expression on right side of this equation is non zero, whereas the one on the

left side is zero. Thus it follows, ϑ′′($) = 0 concluding the required result.

Remark 6.2.1. We may describe different types of means by applying (6.2.3) under

the assumption that χ′′/ψ′′ is invertible.

Such as,

$ =

(
χ′′

ψ′′

)−1(
Γ1(χ)

Γ1(ψ)

)
. (6.2.7)

Applying mean value Theorem 6.2.3 (Cauchy kind) on χ = fl, ψ = fr (given by

Lemma 1.3.3). This implies

Q(l, r; Γ1) = log ς(l, r; Γ1)

provide

α ≤ Q(l, r; Γ1) ≤ β.

Thus Q(l, r; Γ1) is a mean. Now suppose l, r, u and v are real numbers such as

l ≤ u, r ≤ v then Theorem 6.1.4 results that this mean is monotonic.

ς(l, r; Γ1) =


(

Γ1(fl)
Γ1(fr)

) 1
l−r

, l 6= r;

exp
(

Γ1(id.fl)
Γ1(fl)

)
· exp

(
−2

l

)
, l = r 6= 0.

Furthermore, applying mean value Theorem 6.2.3 (Cauchy kind) on χ = gl, ψ = gr

(given by Lemma 1.3.3). This implies the existence of an element $ ∈ S so that

$l−r =
Γ1(gl)

Γ1(gr)
.

For distinct points l, r, we obtain

α ≤
(

Γ1(gl)

Γ1(gr)

) 1
l−r

≤ β

80



provided that $ 7→ $l−r is invertible. This provides ς(l, r; Γ1) is a mean which is

monotonic as well, where

ς(l, r; Γ1) =


(

Γ1(gl)
Γ1(gr)

) 1
l−r

, l 6= r;

exp
(
−Γ1(g0·gl)

Γ1(gl)

)
· exp

(
1−2l
l(l−1)

)
, l = r 6= 1.

Remark 6.2.2. Analogous result can also be constructed for Γj(ψ), j = 2, 3, 4

stated in Remark 6.0.1.
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Chapter 7

Jensen’s inequality for generalized

Choquet integral and exponential

concavity

This chapter applies the notion of m-exponentially concave functions on the func-

tional Λ which is associated with the Jensen’s inequality for generalized Choquet

integral (1.4.11). Its outcomes lead to useful results about log-concavity and ex-

ponential concavity. The consequence of the above result provide us an interesting

application in the probability. The Stolarsky type means and Cauchy and Lagrange

type mean value theorems are discussed in section 3. In the last section, few appli-

cations about information and probability theory are given.

7.1 m-Exponential concavity

The following lemma is very useful.

82



Lemma 7.1.1. (i) Let φp : [0,∞)→ R, with p ∈ [0, 1] defined as

φp(x) = xp.

Then p 7→ φp(x), and p 7→ d2

dx2φp(x) are increasing and concave for each

x ∈ [0,∞).

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

→ x

φ p →

Figure 7.1: The graph of φp(x) = xp for p = 0, 0.2, 0.5, 0.8, 1

0 0.5 1 1.5
−3

−2.5

−2

−1.5

−1

−0.5

0

→ x

φ"
p →

Figure 7.2: The graph of φ′′p(x) = p(p− 1)xp−2 for p = 0, 0.2, 0.5, 0.8, 1
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(ii) Let ψ : [1,∞)→ R is defined as

ψ(x) = e−
1
x .

Then x 7→ ψ(x) and x 7→ d2

dx2ψ(x) are increasing and concave for each x ∈
[1,∞),

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

→ x

ψ
 →

Figure 7.3: The graph of ψ(x) = e−
1
x

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

→ x

ψ
" 

→

Figure 7.4: The graph of ψ′′(x) = e−
1
x (1− 2x)/x4

It can be observed from Figures 1, 2, 3 and 4 that the above functions are

increasing and concave.
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The following lemma is very important in proving our results.

Lemma 7.1.2. Assume g : [0, a]→ R be a concave function with

sup
l∈[0,a]

g(l) = g(a), (7.1.1)

then g is an increasing concave function.

Proof. Assume on contrary g is not an increasing function, then there exists x, y ∈
[0, a] such that 0 ≤ x < y < a with g(x) ≥ g(y). It yields g(y) > g(a), but

supl∈[0,a] g(l) = g(a). We get a contradiction.

Remark 7.1.1. In Lemma 7.1.2, if g : [0,∞)→ R then (7.1.1) is equivalent with

lim
a→∞

sup
l∈[0,a]

g(l)→∞.

The below given functional is acting on an increasing concave functions:

g 7→ Λ(g) = Cµν(g(X))− g(Cµν(X)). (7.1.2)

Theorem 1.4.8 implies Λ(g) ≤ 0.

Theorem 7.1.3. Suppose that g 7→ Λ(g) is a linear functional given in (7.1.2) and

let ∆1 : [0,∞)→ R and ∆2 : [1,∞)→ R defined as

∆1(p) = Λ(φp), ∆2(x) = Λ(ψ(x))

where the functions φp and ψ are given in Lemma 7.1.1. Then following assertions

hold.

(i) Functions ∆i are continuous on [0,∞) for i = 1, and [1,∞) for i = 2.
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(ii) For natural numbers m and 1 ≤ i ≤ m, ui ∈ [0,∞), vi ∈ [1,∞), the following

matrices [
∆1

(
uj + uk

2

)]m
j,k=1

,

[
∆2

(
vj + vk

2

)]m
j,k=1

are negative semidefinite.

(iii) The functions ∆i are exponentially concave on [0,∞) for i = 1 and, [1,∞) for

i = 2.

(iv) Assume l,m, n ∈ [0, 1] with l < m < n, then

(Cµν(Xm)− (Cµν(X))m)n−l ≥
(
Cµν(X l)− (Cµν(X))l

)n−m
×(Cµν(Xn)− (Cµν(X))n)m−l ;

Assume r, s, t ∈ [1,∞) with r < s < t, then(
Cµν

(
exp

(
−1

X

))
− exp

(
−1

Cµν(X)

))t−r

≥
(
Cµν

(
exp

(
−1

X

))
− exp

(
−1

Cµν(X)

))t−s
×
(
Cµν

(
exp

(
−1

X

))
− exp

(
−1

Cµν(X)

))s−r
.

Proof. (i) The functions ∆i, i = 1, 2 are continuous (obvious).

(ii) For each natural numbers m and ηj, uj ∈ R, (1 ≤ j ≤ m) be arbitrary and

define auxiliary function Θ1 : [0,∞)→ R by

Θ1(x) =
m∑

j,k=1

ηjηkφuj+uk
2

(x).

Now lima→∞ supx∈[0,a] φp(x)→∞, and Lemma 7.1.1 implies

Θ′′1(x) =
m∑

j,k=1

ηjηk
d2

dx2
φuj+uk

2

(x) ≤ 0,
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provided that ηj and ηk have same signs and x ≥ 0. Further Lemma 7.1.2 indicates

that Θ1 is an increasing concave function. Theorem 1.4.8 suggests Λ(Θ1) ≤ 0. This

yields [
∆1

(
uj + uk

2

)]m
j,k=1

is negative semidefinite matrix.

By defining an auxiliary function Θ2 in similar manner, we can conclude that[
∆2

(
vj + vk

2

)]m
j,k=1

is negative semidefinite matrix.

(i), (ii) and Lemma 1.6.1 simply yield (iii) and (iv).

The following model about m-exponential concavity based on Theorem 7.1.3

stated as follows:

Theorem 7.1.4. Assume C be an open interval of R, and define a family of continu-

ous functions Υ = {ρt|t ∈ C} on S ⊆ [0,∞), such that lima→∞ supx∈[0,a] ρt(x)→∞
and t 7→ d2

dx2ρt(x) is m-exponentially concave on C for every x ∈ S. Assume the

functional g 7→ Λ(g) as stated in (7.1.2). Then t 7→ Λ(ρt) is an m-exponentially

concave function on C.

Remark 7.1.2. In the above theorem, we can easily add other key components of

Theorem 7.1.3.

7.2 Mean value theorems

The mean value theorems will be constructed with the help of below lemma.
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Lemma 7.2.1. Assume g ∈ C2([0, a]), such that supl∈[0,a] g(l) = g(a). Suppose

d = inf l∈[0,a] g
′′(l), D = supl∈[0,a] g

′′(l). Then the functions ϕi : S → R for i = 1, 2

described as

ϕ1(l) = g(l)− D

2
l2

ϕ2(l) =
d

2
l2 − g(l)

(7.2.1)

are concave and increasing functions.

Proof. Since the functions ϕ1, ϕ2 meet the hypothesis of Lemma 7.1.2, so we obtain

the desired result.

Theorem 7.2.2. For all X ∈ L1
µν and g ∈ C2([0, a]), supx∈[0,a] g(x) = g(a). Then

there exists 0 ≤ $ ≤ a such that

Cµν (g(X))− g (Cµν(X)) = σg′′($), (7.2.2)

where

σ =
1

2

[
Cµν

(
X2
)
− (Cµν (X))2] .

Proof. Suppose D = maxx∈[0,a] g
′′(x) and d = minx∈[0,a] g

′′(x). Then the functions

ϕ1, ϕ2 : [0, a] → R given in Lemma 7.2.1, are concave and increasing. It yields

Λ(ϕ1), Λ(ϕ2) ≤ 0, that is,

σd ≤ Cµν (g(X))− g (Cµν(X)) ≤ σD. (7.2.3)

Now by Bolzano theorem of intermediate value, there exists $ ∈ [0, a] from (7.2.2).

Corollary 7.2.3. For all X ∈ L1
µν Let f, g ∈ C2([0, a]) are concave functions with

supx∈[0,a] f(x) = f(a), supx∈[0,a] g(x) = g(a) and f(0) = g(0) = 0. Then 0 ≤ $ ≤ a

exists which ensures

g′′($) [Cµν (f(X))− f (Cµν(X))] = f ′′($) [Cµν (g(X))− g (Cµν(X))] (7.2.4)
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under the assumption that the denominators are not equal to zero.

Proof. Assume an auxiliary function χ ∈ C2([0, a]) defined with χ(x) = a1f(x) −
a2g(x), where a1 and a2 are defined by

a1 = Cµν (g(X))− g (Cµν(X)) , (7.2.5)

and

a2 = Cµν (f(X))− f (Cµν(X)) . (7.2.6)

Since Λ(χ) ≤ 0 and supx∈[0,a] χ(x) = χ(a). Now by using Theorem 7.2.2, there is

some $ (0 ≤ $ ≤ a) exists which ensures

Cµν (χ(X))− χ (Cµν(X)) = σχ′′($). (7.2.7)

At right-hand side σ 6= 0 whereas at left-hand side, the whole expression is zero. So

we conclude χ′′($) = 0.

Remark 7.2.1. With the existence of inverse of g′′/f ′′, the means of different kinds

can be defined by (7.2.4), that is,

$ =

(
g′′

f ′′

)−1(
Λ(g)

Λ(f)

)
. (7.2.8)

Let’s use particularly g(x) = φn(x), f(x) = φp(x) in (7.2.4) (φp functions are defined

in Lemma 7.1.1), the following expressions are obtained:

γ(n, p; Λ) =


(

(Cµν(Xn)−(Cµν(X))n)n

Cµν(Xp)−(Cµν(X))p

) 1
n−p

, n 6= p;

exp
(

(Cµν(X))n ln(Cµν(X))−Xn lnX(Cµν(Xn))′

Cµν(Xn)−(Cµν(X))n

)
, n = p = 1.

89



7.3 Applications

Theorem 7.1.3 results a significant application in the theory of probability and a

captivating link can also be seen among the moments of random variables.

Corollary 7.3.1. Let (S,F) be a measurable space and assume X be an integrable

real-valued random variable and P = µ = ν with a finite expectation EP (X), where

P is the probability measure, then for 0 < m < n < p < 1

{EP (Xn)− (EP (X))n}p−m

≥ {EP (Xm)− (EP (X))m}p−n{EP (Xp)− (EP (X))p}n−m.
(7.3.1)

The Jensen type inequality stated below is a very strong and useful tool in

statistics.

Proposition 7.3.2. For m > 1/2, we get

EPXm ≤ (EPX)m+

[(
EP

6
√
X
)2

+
(
EP

6
√
X
)

6
√
EPX + 3

√
EPX

]3m−1/2

×
[
EP
(

6
√
X
)
− 6
√
EPX

]
.

Proof. Choosing j = 1/6, k = 1/2 in (7.3.1) yield the required result.

Dα(P ||Q) (Rényi divergence) and DKL(P ||Q) (Kullback-Leibler divergence) are

two most important quantities in the theory of information and probability. These

quantities are defined as follows:

Dα(P ||Q) =
1

α− 1
ln

∫
pαq1−αdµ (α > 1)

DKL(P ||Q) =

∫
p ln

p

q
dµ,

where p and q are probability mass functions. (For details and applications see [16]

and [59].)

The following proposition is a relation between Kullback-Leibler and Rényi di-

vergence.
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Proposition 7.3.3. Dα(P ||Q) ≥ DKL(P ||Q), where α > 1

Proof. Since log g is concave, from Theorem 2.3 of [52], we get

log

(∫
X

pgdµ

)
≥
∫
X

p log gdµ.

Substitute g(t) =
(
p
q

)α−1

(t), we get the required result.
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Conclusion

This dissertation is based on following four aspects; some advancement in Jensen’s

type inequalities, the exponentially convex functions and their construction in a

similar way given by J. Jakšetić and J. Pečarić, exponential concavity, mean value

theorems which led us to Stolarsky type means.

Firstly, the positive functional (defined in the form of the difference of the two

sides of the known Jensen’s inequality for norms) has been used to investigate the

m-exponential convexity and the log-convexity. We gave an application in the prob-

ability which was the consequence of our theorem. This gave an interesting con-

nection between moments of discrete random variables. We also gave an important

advancement in the Jessen and reverse Jensen inequality by introducing weight func-

tion. We opted an elegant method of constructing m-exponential convex functions

by applying the positive functionals associated with the weighted integral Jensen’s

inequality and weighted Jessen inequality. Some interesting results that are asso-

ciated with this refined Jessen’s inequality for m(M)-ψ-convex have been shown.

We have introduced the counterpart of the refined Jessen inequality and investigate

logarithmic and exponential convexity. We also gave LBP inequality for m(M)-ψ-

convex functions. We have deduced a useful corollary and presented some of its

particular cases by defining some auxiliary functions. These expressions contained

some well known means which depict their usefulness. Moreover, we investigated
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the m-exponential convexity and the log-convexity by using positive functionals

which were associated with the refinement of Hermite Hadamard inequality. We

also gave an idea of logarithmic and m-exponentially concave functions. We have

applied this concept on the linear functional associated with the Jensen’s inequality

for generalized Choquet integral. The consequence of obtained results provided us

significant application in the theory of probability and a captivating link can also

be seen among the moments of random variables. Dα(P ||Q) (Rényi divergence) and

DKL(P ||Q) (Kullback-Leibler divergence) are two most important quantities in the

theory of information and probability. We also gave a useful result that showed a

relation between Kullback-Leibler and Rényi divergence. Furthermore, cauchy and

Lagrange mean value theorems are also given which enable us to construct means

with Stolarsky property. Several families of functions have also been presented re-

lated to our main results.
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