
1

Modifying Network Traffic Profiles to
Counter Recognition

By

Salman Haider

00000171616

Supervisor

Dr. Syed Taha Ali

Department of Electrical Engineering

A thesis submitted in partial fulfillment of the requirements for the degree

of Masters of Science in Information Technology (MS IT)

In

School of Electrical Engineering and Computer Science,

National University of Sciences and Technology (NUST),

Islamabad, Pakistan.

(July, 2020)

11-Aug-2020

11-Aug-2020

11-Aug-2020

11-Aug-2020

11-Aug-2020

Dedication

Dedicated to my beloved parents and my wife

iii

Acknowledgment

I am grateful to Allah Almighty for guidance and blessings. I would like to

express my sincere gratitude to my advisor Dr. Dr. Syed Taha Ali and all

committee members for the continuous support during my MS course and

research work, for their patience, motivation, and immense knowledge.

This work would not have been possible without support of my parents.

I would like to thank my parents and my wife.

Salman Haider

v

Table of Contents

1 Introduction 1

1.1 Introduction . 1

1.2 Motivation . 4

1.3 Problem statement . 5

1.4 Research Objective . 6

2 Background Information 8

2.1 Traffic Analysis . 8

2.1.1 Conventional Packet Filtering 9

2.1.2 Deep Packet Inspection (DPI) 9

2.1.3 Encrypted Traffic Classification 10

2.2 WebRTC . 12

2.2.1 WebRTC API . 13

2.2.2 Privacy and Security 15

3 Literature Review 16

4 Proposed Methodology 25

4.1 Media Stream . 27

4.2 RTC Peer Connection . 28

4.3 RTC Data Channel . 28

vi

TABLE OF CONTENTS vii

5 Implementation 30

5.1 Creating Peer Connection . 30

5.2 Capturing Media Streams . 32

5.3 Creating Data Channel . 33

5.3.1 Adding Text Data . 34

5.3.2 Adding File Data . 35

6 Results Evaluation 37

6.1 Audio Stream Results . 37

6.2 Video Stream Results . 39

6.3 Screen Sharing Results . 41

7 Conclusion 44

7.1 Future Work . 45

References 46

List of Figures

1.1 Network Traffic Classification Model 2

1.2 Sample Traffic Profile . 5

2.1 Network Traffic Profile . 9

2.2 Deep Packet Inspection - An Insight 10

2.3 IPSec Packet Structure . 11

2.4 A simple WebRTC System . 12

2.5 WebRTC Protocol Stack . 14

4.1 A simple WebRTC System . 26

4.2 Capturing Media Audio/Video 27

4.3 RTCPeerConnection API . 29

5.1 RTCPeerConnection API . 31

6.1 Average Packet Size of all Audio Streams 38

6.2 Network Traffic for Audio Streams 38

6.3 Network Traffic Difference for All Audio Streams 39

6.4 Average Packet Size of all Video Streams 40

6.5 Network Traffic for Video Streams 40

6.6 Network Traffic Difference for All Video Streams 41

6.7 Average Packet Size of all Screen Sharing Stream 42

viii

LIST OF FIGURES ix

6.8 Network Traffic for Screen Sharing Streams 42

6.9 Network Traffic Difference for All Screen Sharing Streams . . . 43

Abstract

With the rapid advancement of networking techniques, network traffic anal-

ysis has become key part of network management. Network traffic detection

creates open threats to privacy and confidentiality of sensitive data. Differ-

ent encryption techniques are being used to hide network information. But

encryption doesn’t hide statistical properties of a packet, therefore, network

traffic still can be classified by manipulating these properties. In our research,

we proposed an approach in which we added additional data to WebRTC data

channel associated with RTC peer connection that modified packet sizes. We

modified network profile of live streams such as Audi Stream, Video Stream,

and Screen Sharing Stream, that helped us to show false data of network

traffic profile to fool detectors and censoring authorities to circumvent cen-

sorship. As WebRTC data channel is peer-to-peer (P2P) connection, so

sharing data through it is also mimicking signalling server.

x

Chapter 1

Introduction

1.1 Introduction

With the increase of internet users, network services are increasing rapidly.

As internet services are getting more common these days, security and pri-

vacy concerns has been raised. It has been observed, attackers find vulnera-

bilities in security, exploit networks, and sensitive data gets leaked. Recent

reports show that, due to network security vulnerabilities, frequency of data

leakage is continuously increasing.

Traffic analysis plays very important role in traffic management. An-

alyzing network traffic is a serious threat to people’s online privacy and

sensitive data. With the rise of technology, traffic analysis techniques get-

ting more advanced day by day that can detect even encrypted traffic [1].

There are different software applications e.g. Tor [2], Virtual Private Net-

work(VPN), SSH Tunnel etc. to defeat the censoring infrastructure of a

network. As encryption doesn’t change any packet’s statistical properties

of flow in a network like direction, arrival time, packet size [3], therefore,

its really easy for different censoring techniques to analyze and get impor-

1

2

tant and sensitive information from encrypted traffic. Another limitation

with censorship is, when a censor gets IP address that connects to the net-

work, will be able to find the addresses of all connected people to that net-

work.https://www.overleaf.com/project/5f232a245a3bd90001db4ed6

Figure 1.1: Network Traffic Classification Model

Statistical information of packet’s flow help to extract traffic classification

as shown in figure 1.1 and other important information related to encrypted

traffic i.e. words or phrases can be extracted from Voice-over-IP using packet

size or bit rate [4]. To avoid censorship and being detected, researches have

3

designed systems e.g. SkypeMorph [5], StegoTorus [6], CensorSpoofer [7] etc.

that help to hide information in their content by making proxy connection

but these system has been failed due to inconsistent relationship between

proxy protocol and cover protocol such as deocy routing [8–10].

There are different encrypted protocols that used to show structure and

behavior of a packet in flow of network traffic. These information are ex-

tracted to classify the network flow that will help to detect traffic patterns.

Before analysing network traffic, traffic flow should be identified either it

is encrypted or not. For encrypted network traffic, Deep Packet Inspection

(DPI) is most affected as compared to extracting statistical properties and

behavior of packets. Traffic classification is used to find predefined categories

of traffic i.e. normal or abnormal traffic. But this may contain also sensitive

data related to network that maybe harmful in specific scenarios.

In this research, we will focus on modifying network traffic profile and

shape. It will help to hide important and sensitive information about network

traffic. By this methodology, we will secure and hide statistical information

about packets. We applied it on multiple peer-to-peer (P2P) communica-

tions i.e. Text Chat, One-to-One Audio and Video Chat, Audio and Video

Stream Broadcasting, and File sharing by modifying their data volume and

packet size. It also helps to launch Denial-of-Service (DoS) attack and Dis-

tributed Denial of Service (DDoS) attack. As mostly censors cause leakage

of traffic data, it will help to avoid censorship. Network censorship is practi-

cally applied by Governments [11] to control users access and block unethical

activities.

4

1.2 Motivation

Network traffic is basically amount of data that moving through a network,

encapsulated in the form of network packets. With the increase of users,

network traffic has been rapidly increased and thus a lot of studies has been

focused on network traffic analysis that is major part of network traffic man-

agement.

Whereas many techniques introduced to analyze network traffic and its

properties to find anomalies and vulnerabilities. It increased privacy con-

cerns of online data and users. With the time, different studies proposed

encryption protocols and techniques to secure network traffic profile. After

encryption, traffic is still being detected and classified using its different pa-

rameters. Because encryption doesn’t affect different parameters e.g. arrival

time, direction, number of packets etc.

FreeWave [12], SkypeMorh, StegoTorus connects with proxy network and

Collage [13] encapsulates information while sharing content but due to cen-

sorship these systems has been failed due to different reasons e.g. inconsis-

tency between decoy routing [14] and client or proxy. Client can establish

connection to any host that is not blocked, and decoy routing then can help

to connect any IP address (destination) that is blocked. Another reason for

failure of these systems against censors is, cover protocol and proxy protocol

behave differently to channel that cause inconsistency. Difference of charac-

teristics of network traffic matched maybe the another reason of failure, as

cover protocol and proxy protocol carries different characteristics [15]. Cen-

sorship may cause of leakage of sensitive information while analysing packet

structure.

Network traffic profile is data volume or number of packets in a specific

time duration that is called as Profiling Time Window (PTW).Network traf-

5

fic measurement defines two categories normal traffic and abnormal traffic.

Different approaches and protocols are used to detect this category that also

create privacy concerns. Figure 1.2 is showing a traffic profile with sampling

rate of 4 minutes. Network traffic profile also collects data during inactive

periods, but that data is ignored extracting statistical properties. Extrac-

tion of data from traffic profile may cause of leakage of sensitive information

about network that can lead to severe problems for organization.

Figure 1.2: Sample Traffic Profile

1.3 Problem statement

Protection of privacy and sensitive data in real time network traffic is be-

coming the need of time. Networks and technologies are advancing day by

day. Network traffic analysis causes a serious threat to the privacy of the

network traffic and data crossing over it. To secure data, few researches

have proposed to encrypt protocols and traffic data but still its possible to

detect its pattern and formulate traffic class that cause revealing sensitive

6

information about content and user’s location using enumerated IP address

of the connected users because encrypted traffic is having same statistical

properties of packet. So, detectors can easily extract information to censor

or classify network traffic.

The key challenge here is to avoid censorship and classification of network

traffic. Basically, we need to modify the profile and shape of a network traffic

that it can not be detected by any application. By reshaping traffic profile,

it will make detectors to stop analysing correct data and they would not be

able to classify traffic correctly. It will also help to lunching different kind of

DoS or DDoS attacks.We need to find a model that should help in censorship

circumvention and traffic detection by showing false data.

1.4 Research Objective

Main goal of this research is to find the most optimal solution of serious issues

related to privacy and security of sensitive data about network traffic and its

data. Network users want privacy about their physical and virtual location as

well as their data transferring through network. Previous studies focused on

encryption of network traffic and data to hide sensitive information related

to network that can be helpful to exploit network traffic patterns. But using

encryption techniques we can’t hide all the statistical properties such as

number of packets transferred over specific duration. This enables to detect

traffic passing through network and they can manipulate it using different

parameters. Extracting information about IP addresses of nodes on network

can give information about their location that will breach security.

We will try to find its best solution that will help to fool detectors by

7

giving them false data about network traffic. Our solution will show them

invalid traffic provide to mislead them to classify the network traffic. There

are different approached to classify network packets using different parame-

ters but they do need of real and actual traffic profile to check categorically

whether traffic is normal or not. It will also help to avoid censorship and

to launch different attacks i.e. Dos, DDoS attacks etc. Our approach will

also mimic socket server because we will modify network traffic that will be

peer-to-peer (P2P) communication.

Chapter 2

Background Information

This chapter covers all the background information related to this research

briefly. In 2.1 section their is a brief overview of Traffic Analysis. In section

2.2 WebRTC, free and open source framework for P2P communication, is

discussed.

2.1 Traffic Analysis

Much studies has been focused on traffic analysis of a network using different

parameters e.g. packet size, number of packets, virtual bit rate (VBR), arrival

time etc. A lot of information can be extracted through traffic analysis. A

traffic profile can be generated using this information. We can formulate that

network traffic is normal or abnormal using traffic profile in a network.

Figure 2.1 shows that arrival rate of packets at a specific time. Using such

information, we can make traffic prediction and classify that is this normal

traffic or abnormal. Abnormal traffic normally can contain some malware or

it can be a DoS attack. This information can also create privacy concerns

for users. Detectors can extract much information about user including they

8

9

Figure 2.1: Network Traffic Profile

also can detect his location enumerating IP address of a packet header.

2.1.1 Conventional Packet Filtering

To extract traffic information through packet’s header. Because firewalls had

very low processing capacity so its difficult to process large data volume of

packets. This technique is not enough for packet filtering, it is similar to

getting a title of book without caring whats inside the book.

2.1.2 Deep Packet Inspection (DPI)

Deep Packet Inspection (DPI) is an advanced technique of network traffic

filtering that used to detect content and signature of a packet by applying

on application layer. Using DPI, network packets are examined by the ID

of a packet (Signature). These packets are matched either with string or

10

used different algorithms of expression matching [16] e.g. NIDS of Snort or

L7-filter in Linux [17].

Figure 2.2: Deep Packet Inspection - An Insight

By inspecting traffic profile, DPI is also used to redirect specific packet to

some different destination. DPI helps us to discover location and categorize

traffic either is normal or not. We can also block or reroute network packets

that different content or signature or those packets are not detected. DPI has

few outcomes that makes it difficult to implement: as packets are collected in

live stream so there is a large number of signatures i.e. Packet ID and defining

its difficulty. As these days, different type of attacks has been launched so

need to improve scalability of DPI.

2.1.3 Encrypted Traffic Classification

Traffic classification [18, 19] is the key of network model, management, and

planning. There was privacy concerns of online data to analyze network

traffic and its statistical properties. To overcome this limitation, different

researches introduced different technologies and methods to encrypt network

11

traffic that was a serious issue to network traffic classification. Peer-to-peer

application are trying to defeat Internet service providers [20] by applying

encryption and obfuscation techniques of protocols.

Internet users are more concerned these days about their privacy and

security. Onion Routing [21] is also used for establishing connections anony-

mously to advance the privacy of online content shared. TLS, SKype, SSH,

and BitTorrent, all these, protocols are using encryption techniques to pro-

vide privacy and confidentiality. Information security is threatened by dffer-

ent encrypted channels as Trojans, Advance Persistent Threat (APT) [22]

defeat firewalls to broadcast confidential data.

Figure 2.3: IPSec Packet Structure

Encrypted traffic doesn’t provide security and privacy to online data. As

we can see in image 2.3 that only data part is encrypted. Detectors can

extract information about packets and its routing through packet header.

Its destination location, size, and arrival time can also be retrieved that can

be a challenge for encrypted protocols to preserve its security. So, encrypted

traffic analysis can provide detection and forensics analysis of network traffic

that can be misused.

12

2.2 WebRTC

WebRTC is a free and open source framework who provide real-time commu-

nication capabilities to web browsers. It supports audio, video and generic

data to sent between peers. Media is only shared between peers without shar-

ing to server. WebRTC is flexible and easy to use. It access media devices,

opens own peer connection and starts discovering peers. After connecting to

peers, it starts streaming media to all connected peers. By 2016 there was

an estimate 2 Billion installed browsers works fine with WebRTC.

Figure 2.4: A simple WebRTC System

There are different web applications of WebRTC that utilizes different

resources camera or microphone, and also applicable for advance way of

communication such as video chat and screen sharing. Many platforms like

Skype, Facebook, Google Hangouts use RTC [23] but they need plugins to

have real-time communication. Downloading and installing a new plugin can

13

be annoying for users. WebRTC supports all modern browsers e.g. Google

Chrome, Opera, Firefox etc. without downloading and installing any plugin.

2.2.1 WebRTC API

WebRTC provides two standard technologies, capturing media devices and

connection between peers (P2P). It facilitates both computers and smart-

phone. Both type of devices are supported with all kind of features such

as capturing media, connecting peers, and streaming data. WebRTC is de-

signed with three APIs (Application Programming Interface) implemented

in JavaScript:

• MediaStream - MediaStream also known as getUserMedia captures in-

put stream from media devices. The stream can be a video track,

it may be generated by using hardware device or maybe pre-recorded

video and screen sharing service, an audio track or other types such as

files or text. Output of a media stream can be sent to more than one

location. A stream allows the associated app to collect and manipulate

data to specify outcome.

• RTCPeerConnection - RTCPeerConnection deals with the connection

between different peers to communicate. Communication media can

be different e.g. Audio, Video, Text Chat, File Sharing etc. In order

to connect, peers need an ICE server configuration for signaling. ICE

server can be TURN or STUN server. They basically provide ICE

candidate to remote peer.

• RTCDataChannel - RTCDataChannel wroks with RTCPeerConnection

API. It works with SCTP (Stream Control Transmission Protocol) [24].

RTCDataChannel can transmit text or a file or any encrypted data. It

14

works with an interface associated with RTCPeerConnection which can

be used to transfer bi-directional data between peers. Each peer can

have up to 65,534 data channels.

Real time communication is very sensitive to time parameter, as audio

and video stream is designed to tolerate packet loss. Application must be

enough intelligent to handle packet loss or delayed recovery. As this is real

time communication, therefore, UDP is preferred protocol for delivery of

real time data. UDP supports real time communication in browsers but for

WebRTC, browsers needs a lot of protocols and services above it shown in

figure 2.5. UDP doesn’t offer reliability and it delivers each packet to the

destination app when it arrives.

Figure 2.5: WebRTC Protocol Stack

15

2.2.2 Privacy and Security

MediaStream or getUserMedia is an important feature that only works in a

secure context. Secure Context is a window which fulfill at least minimum

standards of authentication and privacy [25]. Furthermore, before capturing

media streams, user’s permissions is also required for both audio and video

inputs.

Chapter 3

Literature Review

Many studies have proposed that how data is can be extracted through a

network traffic and how it can be used for different purposes such as cen-

sorship. Different researches also proposed different techniques of encryption

to secure data but they still couldn’t hide network traffic information as we

can’t hide packets statistical properties such as arrival rate, packet size and

direction.

Mazurczyk [26] have presented a study that we can use Skype to transfer

hidden information. They analyzed network traffic deeply and find out those

packets in which there was no noise because there is high correlation between

noise and packet size in Skype. They used encrypted data to transfer and

shared secret of encryption technique on communication side through that

it can be decrypted at destination. Its results were really promising that

show that this staeganorgraphic approach can offer high bandwidth almost

1.8 kbps, utilizing 30% of silent packets. He also proposed that this approach

SkyDe can also be used for other IP protocols to utilize their packets without

noise. Another research [27] proposed similar concept of hiding data in Skype

traffic. This research was based on the idea of intentional loss of packets to

16

17

replace with payload of selected packets with encrypted data. They tested

it on different variants and concluded that most optimal approach would be

utlizing 1% of packets from the video packets for data hiding and transferring

purposes. This approach results into higher bandwidth up to 0.93kbps and

little quality degradation that can be ignored.

Abdullaziz [28] proposed a steganographic technique to hide data in UDP

packets that is non-detectable. In this approach he proposed that the parity

of 1’s and 0’s are utilized to exploit and encoded to secret data. This approach

is based on UDP packet size that is totally random. He concluded that these

channels might have low bandwidth but these channel and data shared on

these channels cannot be detected. They also shared secret key between hosts

using communication channel that is commenced between them. To covert

the channel through which data is being shared, matched the data size of

packets, if packet size is not matching is single byte padded. Such packets

those are available are extended with additional source of secret data.

Another approach of analyzing un-observable network traffic [9] was pro-

posed by Houmansadr. They analyze main social media that use VoIP data

communication and try to find the result about hiding data and mimic the

data. The findings are quite good, before doing any kind of data mimicking,

must see the basic advisories protocol, before data hiding the someone had to

find the flaw in the system which is really tough because system like Skype

already have many ad-hoc security checks. The important finding was that

wrong data hiding or data intrusion is much worse the no data hiding, IP can

be tracked and blocked by doing that because system like SWEET and Skype

have high level security that can block the IP after finding the irregularities

in Network traffic. The last finding was quite discouraging for the data hid-

ing as they preferred to not hide data in these types of system software. for

18

the Mimicking side protocol is really tough as as they are really complex in

correlations and dependencies. He proposed that he is not mimicking the

protocol instead hiding data into protocol stack such as SWEET. [29] em-

beds secret data in email messages. Packets containing hidden data maybe

statistically anomalous with comparison of normal Skype packets. On the

other side, to detect such kind of anomalies traffic analyzing is required at

large scale that increase the benchmark for censoring authorities. He also

proposed that ”unobservability by imitation” is totally a flawed approach

so introduced his own communication approach. An approach of censorship

circumvention [7] was also presented, they monitor the network with differ-

ent types of techniques mainly are IP filtering and Packet inspection. Their

system is highly suitable for detection unusual traffic on the network and can

find the dummy IP with the help of system. They made infrastructure that

covers the idea of decoupling the both channels e.g. upstream, downstream

etc. Upstream channel can hide request data using some hiding technique like

steganography within Email or Internet Messenger (IM) while downstream

channel spoof IP address to conceal the real address of proxy server.

S Khattak [30] proposed an approach to support censorship resilient trans-

port. Researches launched attacks to check censor’s capabilities. The cen-

sorship model is in between client and server. They also proposed a model

for a LC (Cirumvention System) that helps a censoring authority to commu-

nicate over network and introduced a system that can resist censorship by

provide link circumventions. They main research on direct censorship and

use the model of censor on client, sensor on server. to achieve the censor-

ship in the model they have used Block routing information that connect the

rows of the routing table, these rows mainly contain the source IP address

and the Destination IP address. After detecting the IP address the Firewall

19

block those IP addresses for 90 seconds. This approach can also fine the

corrupt IP addresses from the routing table and its helps a lot in Hijacking

and DNS manipulation. Li [15] proposed an approach to avoid censorship

of video streaming named as Facet. Facet work in this flow; Facet client

distributes ID for conferencing call for discovery. It can be public or private.

Then Facet client sends connection request to server. After accepting this

request by client, initial connection is established. After connecting with

server, client sends URL of censored video to server. Server sends this URL

to facet pipeline to download, decode and resize the video. After acceptance,

client can watch the video in video conferencing session.

An approach was proposed [31], how to migitate DoS (Denial-of-Service)

attack by analyzing network traffic. Researchers proposed the model that

pass all request through Intrusion Detection System (IDS) to check whether

the requests are normal or abnormal. If they find any anomaly, it seems, it

may be a spam request to launch a DoS attack so all the information about

that request is recorded as log in database. When the request comes to IDs,

request data is checked into logs. If it exist there, then the request is blocked

otherwise data is sent to server.

Herrero [32] proposed a communication model then modify datagrames

in WebRTC, Proposed model communicate over a tunnel. There solution is

consist of three main techniques and they are tunnel for data transmission,

a local gateway for real time communication and lastly the Central gateway.

It establishes a tunnel between client and server. System receives WebRTC

data and converts it into frames, and sends them to tunnel. Through tunnel,

enhancement features are added to transmit those frames to network. This

technique is having four stages, in the first stage Web RTC create session

protocol and it is encrypted with password, browser B receives that and sends

20

the answer to the first server. In the second stage, as the communication

channel is built, the server a sent IP address and the information related

to ports and protocols. Browser B receives that IP address and protocol

information. In the third step both the browsers complete their verification.

In the fourth stage proper communication will occurs and UDP and TCP

packet will be sent to each other. the information will be secured as the

payload is encrypted. Fiat [33] proposed a peer-to-peer (P2P) Addressable

Network for accessing n items in n number of nodes. Every search in networks

take O(log n) time. His approach was to avoid censorship that even after

removal of large number of nodes. they create content addressable memory

that can be used in a completely distributed function. This is work very

well in the loaded environment as it has the load balancing approach in the

system, the reason is that they choose the bottom super node completely

randomly in the system and so single bootom node will not be overloaded.

This type of network is created in distributed environment. This system is

highly spam resistant it means any node can complete control of all nodes

in the network but still spam cannot be generated. Meidan [34] proposed

an approach to analyze network traffic through IoT devices. He collected

data from different devices and label for all different devices. He trained

a classifier to detect that traffic is generated by IoT devices or not. After

labelling stream, he associate each IoT devices to a class. After experiments,

he proposed his approach has 99.2% accuracy. To test this model, he collected

traffic data from PCs and Smartphones and this data was stored in pcap file.

By extracting information from this file, packets were transformed to sessions

with 4-tuple contains source, destination IP, and port numbers. Each session

was presented by a vector from the transport and application layers features

and enhanced with some publically available data set such as GeoIP. After

21

completing the data set with labels, data set was divided to three categories

based on session classifiers, single-session, multi-session, test set to evaluate

results.

Moghaddam [35] presented an idea, SkypeMorph, of prevention of detecting

a specific type of network traffic such as Tor connections e.g. analysing traffic

between a remote peer and peers in this network. Clients obfuscates the data

to bridge. He used Skype Video calls as our target protocol to investigate.

He proposed an approach to create serious issues for censoring authorities to

distinguish between bridge connection and actual Skype calls. An advantage

of SkypeMorph bridges easily change IP address and port number whitout

sharing information to clients. SkypeKit let peers to share streaming data

through the Skype network but this data is relayed by other nodes. It creates

an extra overhead on the network, therefore, SkypeMorph sends data directly

from client node to bridge.

Geddes [8] proposed that those systems that block detection to avoid cen-

sorship such as SkypeMorph, Censor Spoofer, and FreeWave use cover chan-

nels to hide proxy connections. He proposed that these system can still be

attacked because of client proxy and loss intolerant. Results of this research

proposed that, such protocols are not a good choice to avoid network traffic

detection to avoid censorship. An approach [36] was presented that decoy

routing doesn’t need a peer to connect to specific IP address that is blocked

on the network. It is possible for a peer to connect any unblocked host,

decoy routing is used to connect to destination IP address that is blocked

without sending any information to host. Different switches is used in differ-

ent location in the world, they work as a decoy router for the system. The

main framework is, the packet is sent by the user to the decoy switch and

the packet had a message identify the hijacking. The main design have fol-

22

lowing steps, the decoy switch will have centralized management, suspected

network traffic detection and mainly the diversion of traffic in a efficient way.

Decoy routing need a friendly environment of network. Elahi [37] proposed

a model to avoid censorship in network traffic. User try to access CRs and

other relevant information through dissemination channel or out pf bound

channel. Then user can connect over the channel in which data is shared,

and CRs acts as a proxy. The connection is may or may not be hidden to

prevent detection. The proxy then redirects the user’s request locally or some

covert destinations. One of the biggest disadvantage of censor is that they

can block any infrastructure but can not shut down. However, sometimes

damage by blocking, is not so worst. Sometimes a censor can deploy more

resources than expected to compromise network strategies that can cause of

an attack. For instance, a censor utilizes a large pool of IP addresses that can

cause vulnerabilities; audio/video streaming should be packet loss or delay

tolerance while mail services can tolerate high latency. Such attacks are least

harmful, can damage on specific protocols such as VoIP that is used only for

video and audio network traffic. Kopsell and Hilling [38] presented solution

to avoid censorship in network traffic by blocking settings, their classification

was based on censor’s decision making process that is valuable for this sce-

nario. Decision making process was supported with communication based on

TCP/IP layer. Such communication can be a stream, depends upon either

it is encrypted or not. Information extracted through such information can

tell us either its video or audio stream and these stream are communication

in the form of bytes that can be detected. Two limitations of blocking are:

structure of service and information distributed about that service. They

mentioned the example of connecting large set of access points and all are

circumvention strategies through which censor is completely failed to detect.

23

Yu and Lee [39] proposed that currently all techniques who avoid cen-

sorship such as Tor totally depends upon volunteers who participate to run

relays. The actual problem is to gather so many volunteers who work without

any benefit. There are different techniques for volunteering such as e-Cash.

They proposed a model to give benefits to both censored and uncensored

users who utilize their own resources. They gave a model by using users

browsing experience is optimized providing a practical relay in structure.

Major goals of this research are, users should not be blocked by censor. In-

stead of this, they should be automatically disconnected from internet. User

should not be identified by censors that they are using this approach or not.

Another goal is that, it should not be detected that which users are using

what content on network. This approach provides low latency like normal.

It is implemented on common platforms and protocols such as TCP or TLS.

This system contains multiple components such as browsing hosts, their goal

is to target websites anonymously without being detected, flower hosts, to

connect these websites anonymously, distributed servers that have capability

for spoofing IP address. They evaluated from experiments that this approach

provides a mechanism to avoid censorship and usability of user experience in

daily web browsing. Different researches have proposed models to hide proxy

connections with the use of decoy routing or cover protocols. They analyzed

Skype-like communication to tunnel IP traffic through different proxies and

fool different sessions [7, 12]. Frolov [40] developed a framework uTLS to

mimic other TLS implementations. They used real time network traffic data

and fool many TLS system without any extra manual effort. He collected

11B TLS client messages in time period of more that 9 months and analyzed

them. They also collected and analyzed 5.9B messages of TLS servers. He

tested existing approaches of to avoid censorship at risk of being blocked, and

24

found that many of them are detectable. His developed library helped users

to make fool many TLS handshakers that also allow to counter recognition

and censorship. Researchers also made their data set to public to compare

popular TLS fingerprints and their own devices TLS.

Chapter 4

Proposed Methodology

In previous chapters we have discussed, how network sensitive information

can be leaked that creates privacy issues. Network traffic detection can also

cause censorship that may block different proxy servers or even Tor. In pre-

vious researches, different encryption techniques has also been proposed to

hide traffic data but encryption techniques cannot hide packet’s statistical

properties thus network traffic was still available that was a privacy concern.

To overcome these limitations, we will try to find most optimal solution to

modify network traffic profile that will help to avoid network traffic detec-

tion and censorship. We worked with peer-to-peer (P2P) communication

using different sources such as Text Chat, Video Chat, Audio Chat, and File

Sharing. We used modern, free, and open source framework WebRTC. As

WebRTC supports all modern browsers, it was easy to configure and use.

Another reason to use WebRTC is that it has a large number of audience.

Many applications are using WebRTC.

To modify traffic profile, we added additional data through data channel

to communicate. Data sending through data channel doesn’t affect media

stream or communication channel. When peers are discovered and connected

25

26

Figure 4.1: A simple WebRTC System

27

Figure 4.2: Capturing Media Audio/Video

data channel is created associated with that connection.

4.1 Media Stream

We are using different media stream to show network traffic such as Text

Chat, Audio Chat, Video Chat, and File Sharing. Audio chat and Video

chat depends upon hardware or if virtual devices are installed to stream pre-

recorded audio or video track. Media streams in WebRTC is supported by

all modern web browsers e.g. Firefox, Opera, Google Chrome etc.

Figure 4.2 is showing that how media is captured through hardware de-

vices or virtually installed devices then WebRTC API manipulate data that

28

is handled by web application.

4.2 RTC Peer Connection

RTCPeerConnection is an api that is fully responsible of all functions to dis-

cover and connect peers, and sharing streams between all peers. Streams can

be of any type audio, video, file, text etc. It manages complete workflow of

NAT (Network Adress Translation) traversal. NAT traversal is a networking

technique of establishing and maintaining connections of all gateways that

implement NAT. RTCPeerConnection helps to create connection offer, ac-

cept the offer, and retrieve the current state of that connection. It keeps

track of local and remote streams. This API sends keepalives to STUN or

TURN server between peers automatically.

4.3 RTC Data Channel

Data channel API allows to exchange arbitrary data between peers as Web

Socket does but it send peer-to-peer (P2P). Each data channel is associated

with a peer connection that provides reliable delivery of sent messages and

out of order delivery sent messages. We can share different kind of data

through data channel such as file or text etc. In our proposed work, we add

some additional data through data channel. We tried with both text string

and file. We also sent encrypted data through data channel and decrypted

it on receiving peer. For encryption, we used AES algorithm.

29

Figure 4.3: RTCPeerConnection API

Chapter 5

Implementation

As described in previous section, we implemented different modules of We-

bRTC to check traffic then we added additional data to modify traffic so that

we can fool detectors to analyze network traffic by providing false data. For

this purpose, we established a connection between two peers and created an

associated channel to that peer and sent extra data so that we can compare

network traffic captured earlier and later. In this section, we will see codes of

creating connections, capturing media streams, sharing between peers, cre-

ating a data channel, and sending additional data through that channel to

see results.

5.1 Creating Peer Connection

In order to implement our research, first of all we created a new connection

so that we can discover another peer to connect and share media.

30

31

Figure 5.1: RTCPeerConnection API

// defining peers, we can also add servers as parameter, default is null

const localPeer = new RTCPeerConnection()

const remotePeer = new RTCPeerConnection()

//creating an offer using promises

localPeer.createOffer()

.then(offerSDP => {

localPeer.setLocalDescription(offerSDP)

})

//creating an answer for offer

const remoteSDP = new RTCSessionDescription()

remotePeer.setRemoteDescription(remoteSDP)

remotePeer.createAnswer()

.then(answerSDP => {

remotePeer.setLocalDescription(answerSDP)

})

32

5.2 Capturing Media Streams

We deployed our research with different media streams. In this section, we

will see how we captured media streams. For audio and video streams, we

used hardware devices e.g. microphone, web camera etc.

// for Audio Streams

const mediaConstraints = {

audio: true,

video: false

}

// for Video Streams

const mediaConstraints = {

audio: false,

video: true

}

// for Audio/Video stream

const mediaConstraints = {

audio: true,

video: true

}

// for Screen Sharing

const screen = {

33

mandatory: {

mediaSource: ’screen’,

maxWidth: 1366,

maxHeight: 1080,

minAspectRatio: 1.5

},

optional: []

}

const mediaConstraints = {

audio: true, // audio can be muted

video: screen

}

// getUserMedia API

const stream = navigator.mediaDevices.getUserMedia(mediaConstraints)

// adding stream to web interface

const media = document.createElement(’video’)

media.srcObject = stream

5.3 Creating Data Channel

DataChannel API is used to send arbitrary data between peers. In our

research, we are using this API to send additional data to modify network.

34

We are using this API to mimic signalling or socket server. This data can not

be traced, so it never can be calculated how much data is being sent through

this channel. As we have already discussed that, data channel is associated

with RTC peer connection, so we used already established peer connection

in above code.

const options = {

ordered: false,

maxPacketLifeTime: 2000,

maxRetransmits: 3

}

const dataChannel = localPeer.createDataChannel("channelName", options)

5.3.1 Adding Text Data

As we have created data channel, now we are going to add some text data.

We used encryption algorithm AES-256 to encrypt text string using npm

(node package module) package ’cryptr’.

// to encrypt

const encryptedText = cryptr.encrypt(’Text String’)

// e7b75a472b65bc4a42e7b3f78833a4d00040beba796062bf

// to open a data channel

dataChannel.onopen = () => {

console.log(’Channel is opened now’)

}

35

// to send encrypted text

dataChannel.send(encryptedText)

// to receive data through data channel

dataChannel.onmessage = event => {

console.log(’Data’, event.data)

}

// to decrypt

const text = cryptr.decrypt(’e7b75a472b65b3a4d00040beba796062bf’)

// to close data channel

dataChannel.onclose = () => {

console.log(’Channel is closed now’)

}

5.3.2 Adding File Data

After adding text, we tested it with bigger amount of data. For this pur-

pose, we added file. To add file in RTC Data Channel, we read it through

FileReader API. We divided file into chunks.

// file input from HTML form

const file = files[0] //an array of multiple files

// File Reader API to read file data

const fileReader = new FileReader()

fileReader.readAsDataURL(file)

36

fileReader.onload = (event, fileData) => {

var data = {}

const chunkLength = 2000

if(event){

fileData = event.target.result

}

if(fileData.length > chunkLength){

data.stream = fileData.slice(0, chunkLength)

}else{

data.stream = fileData

data.last = true

}

// to send file data

dataChannel.send(data)

}

Chapter 6

Results Evaluation

We deployed three media sources used by WebRTC and appended data in

it. We captured network traffic using Wireshark, taking 5 minutes as sample

rate for all.

6.1 Audio Stream Results

We started an audio communication and connected with other peer. Initially

we captured packet sizes for five minutes. After that we added, encrypted

text data and file stream then checked packet sizes, details given below in

figure 6.1.

37

38

Figure 6.1: Average Packet Size of all Audio Streams

(a) Normal Traffic (b) With Text Data (c) With File Stream

Figure 6.2: Network Traffic for Audio Streams

Figure 6.2 shows that how much network traffic is modified in audio

streams with adding some additional data. First we captured packets for

five minutes, average packet size was 145 bytes, after adding encrypted text

stream for 5 minutes, packet size rose to 220 bytes and by adding more data

such as file stream, it reached to 311 bytes on average. We ignored silent

39

packets or having no data in it.

Figure 6.3: Network Traffic Difference for All Audio Streams

6.2 Video Stream Results

As we experimented with audio stream for five minutes of sample rate, sim-

ilarly, we did with video streams. And add both type of data e.g. encrypted

text, and file stream etc.

40

Figure 6.4: Average Packet Size of all Video Streams

(a) Normal Traffic (b) With Text Data (c) With File Stream

Figure 6.5: Network Traffic for Video Streams

Figure 6.5 shows that after adding additional data average size of packet

of normal traffic is 513 bytes, that rose by adding text data to 616 bytes, and

with file stream it reached to 744 bytes on average.

41

Figure 6.6: Network Traffic Difference for All Video Streams

6.3 Screen Sharing Results

As discussed in previous sections, with 5 minutes of sampling rate captured

traffic of screen sharing stream with WebRTC using Wireshark. And we got

following results:

42

Figure 6.7: Average Packet Size of all Screen Sharing Stream

(a) Normal Traffic (b) With Text Data (c) With File Stream

Figure 6.8: Network Traffic for Screen Sharing Streams

Above given table and graphs are showing that how traffic profile is mod-

ified by adding some additional data in data channel created with RTC peer

connection. Average size of packet in normal traffic rose from 568 bytes to

668 bytes by adding some encrypted text data and reached to 778 bytes with

file stream.

43

Figure 6.9: Network Traffic Difference for All Screen Sharing Streams

Chapter 7

Conclusion

Network traffic analysis plays key role in network management and network

traffic flow. Network detection and extracting packet statistical information

can cause privacy and confidentiality issues. Even encrypted traffic also

contains sensitive information in packet header that can also cause to detect

or even classify network traffic. We modified network traffic profile by adding

some additional encrypted data to fool detectors. We established peer-to-peer

(P2P) connection using WebRTC and tested on Video Chat, Audio Chat, and

Screen Sharing. We modified these streams by adding additional encrypted

using data channel that doesn’t affect on live communication. This additional

data modify packet size that changes traffic profile and detectors, censorship

authorities will see false traffic profile. This vulnerability of WebRTC can also

cause to be attacked by different attackers e.g. DoS Attack etc. This research

contributes in maintaining privacy of a network and to avoid detection and

censorship. Hopefully, this will give some new and interesting ideas and

aesthetics to research field.

44

45

7.1 Future Work

Modifying network traffic profiles can give new aesthetics to research field.

We can manipulate different statistical properties of network packets. We

can also use silent gaps of a packet to modify its properties that will help us

to reshape network traffic and will be difficult to detect and classify. We can

also make some algorithmic approach to add WebRTC data. We can check

packet size and modify it according to protocol definition. These approaches

will help to secure more a network.

Bibliography

[1] Charles V Wright, Lucas Ballard, Scott E Coull, Fabian Monrose, and

Gerald M Masson. Spot me if you can: Uncovering spoken phrases in

encrypted voip conversations. In 2008 IEEE Symposium on Security

and Privacy (sp 2008), pages 35–49. IEEE, 2008.

[2] R Dingledine, N Mathewson, and P Syverson. Tor: the second-

generation onion router in’proceedings of the 13th conference on usenix

security symposium-volume 13’. USENIX Association, San Diego, CA,

page 21, 2004.

[3] Yuzhi Wang, Ping Ji, Borui Ye, Pengjun Wang, Rong Luo, and

Huazhong Yang. Gohop: Personal vpn to defend from censorship. In

16th International Conference on Advanced Communication Technology,

pages 27–33. IEEE, 2014.

[4] Andrew M White, Austin R Matthews, Kevin Z Snow, and Fabian Mon-

rose. Phonotactic reconstruction of encrypted voip conversations: Hookt

on fon-iks. In 2011 IEEE Symposium on Security and Privacy, pages

3–18. IEEE, 2011.

[5] Hooman Mohajeri Moghaddam, Baiyu Li, Mohammad Derakhshani,

and Ian Goldberg. Skypemorph: Protocol obfuscation for tor bridges.

46

BIBLIOGRAPHY 47

In Proceedings of the 2012 ACM conference on Computer and commu-

nications security, pages 97–108, 2012.

[6] Zachary Weinberg, Jeffrey Wang, Vinod Yegneswaran, Linda Briese-

meister, Steven Cheung, Frank Wang, and Dan Boneh. Stegotorus: a

camouflage proxy for the tor anonymity system. In Proceedings of the

2012 ACM conference on Computer and communications security, pages

109–120, 2012.

[7] Qiyan Wang, Xun Gong, Giang TK Nguyen, Amir Houmansadr, and

Nikita Borisov. Censorspoofer: asymmetric communication using ip

spoofing for censorship-resistant web browsing. In Proceedings of the

2012 ACM conference on Computer and communications security, pages

121–132, 2012.

[8] John Geddes, Max Schuchard, and Nicholas Hopper. Cover your acks:

Pitfalls of covert channel censorship circumvention. In Proceedings of

the 2013 ACM SIGSAC conference on Computer & communications se-

curity, pages 361–372, 2013.

[9] Amir Houmansadr, Chad Brubaker, and Vitaly Shmatikov. The parrot is

dead: Observing unobservable network communications. In 2013 IEEE

Symposium on Security and Privacy, pages 65–79. IEEE, 2013.

[10] Max Schuchard, John Geddes, Christopher Thompson, and Nicholas

Hopper. Routing around decoys. In Proceedings of the 2012 ACM con-

ference on Computer and communications security, pages 85–96, 2012.

[11] Philipp Winter and Stefan Lindskog. How the great firewall of china is

blocking tor. USENIX-The Advanced Computing Systems Association,

2012.

BIBLIOGRAPHY 48

[12] Amir Houmansadr, Thomas J Riedl, Nikita Borisov, and Andrew C

Singer. I want my voice to be heard: Ip over voice-over-ip for unobserv-

able censorship circumvention. In NDSS, 2013.

[13] Sam Burnett, Nick Feamster, and Santosh S Vempala. Chipping away

at censorship firewalls with user-generated content. In USENIX Security

Symposium, pages 463–468. Washington, DC, 2010.

[14] Josh Karlin, Daniel Ellard, Alden W Jackson, Christine E Jones, Greg

Lauer, David Mankins, and W Timothy Strayer. Decoy routing: Toward

unblockable internet communication. In FOCI, 2011.

[15] Shuai Li, Mike Schliep, and Nick Hopper. Facet: Streaming over video-

conferencing for censorship circumvention. In Proceedings of the 13th

Workshop on Privacy in the Electronic Society, pages 163–172, 2014.

[16] Reham Taher El-Maghraby, Nada Mostafa Abd Elazim, and Ayman M

Bahaa-Eldin. A survey on deep packet inspection. In 2017 12th Inter-

national Conference on Computer Engineering and Systems (ICCES),

pages 188–197. IEEE, 2017.

[17] Justin Levandoski. Application layer packet classifier for linux. http://l7-

filter. sourceforge. net/, 2008.

[18] Silvio Valenti, Dario Rossi, Alberto Dainotti, Antonio Pescapè, Alessan-

dro Finamore, and Marco Mellia. Reviewing traffic classification. In

Data Traffic Monitoring and Analysis, pages 123–147. Springer, 2013.

[19] Bin Hu and Yi Shen. Machine learning based network traffic classifi-

cation: a survey. Journal of Information and Computational science,

9(11):3161–3170, 2012.

BIBLIOGRAPHY 49

[20] Zigang Cao, Gang Xiong, Yong Zhao, Zhenzhen Li, and Li Guo. A

survey on encrypted traffic classification. In International Conference

on Applications and Techniques in Information Security, pages 73–81.

Springer, 2014.

[21] David Goldschlag, Michael Reed, and Paul Syverson. Onion routing.

Communications of the ACM, 42(2):39–41, 1999.

[22] Colin Tankard. Advanced persistent threats and how to monitor and

deter them. Network security, 2011(8):16–19, 2011.

[23] Sam Dutton et al. Getting started with webrtc. HTML5 Rocks, 23,

2012.

[24] Shaojian Fu and Mohammed Atiquzzaman. Sctp: State of the art in

research, products, and technical challenges. IEEE Communications

Magazine, 42(4):64–76, 2004.

[25] Kazuhiro Minami and David Kotz. Secure context-sensitive authoriza-

tion. Pervasive and Mobile Computing, 1(1):123–156, 2005.

[26] Wojciech Mazurczyk, Maciej Karas, and Krzysztof Szczypiorski. Skyde:

a skype-based steganographic method. arXiv preprint arXiv:1301.3632,

2013.

[27] Wojciech Mazurczyk, Maciej Karaś, Krzysztof Szczypiorski, and Artur

Janicki. Youskyde: information hiding for skype video traffic. Multime-

dia Tools and Applications, 75(21):13521–13540, 2016.

[28] Osamah Ibrahiem Abdullaziz, Vik Tor Goh, Huo-Chong Ling, and Kok-

Sheik Wong. Network packet payload parity based steganography. In

BIBLIOGRAPHY 50

2013 IEEE Conference on Sustainable Utilization and Development in

Engineering and Technology (CSUDET), pages 56–59. IEEE, 2013.

[29] Wenxuan Zhou, Amir Houmansadr, Matthew Caesar, and Nikita

Borisov. Sweet: Serving the web by exploiting email tunnels. arXiv

preprint arXiv:1211.3191, 13, 2012.

[30] Sheharbano Khattak, Laurent Simon, and Steven J Murdoch. System-

ization of pluggable transports for censorship resistance. arXiv preprint

arXiv:1412.7448, 2014.

[31] M Anirudh, S Arul Thileeban, and Daniel Jeswin Nallathambi. Use

of honeypots for mitigating dos attacks targeted on iot networks. In

2017 International conference on computer, communication and signal

processing (ICCCSP), pages 1–4. IEEE, 2017.

[32] Rolando Herrero. Encapsulating and tunneling webrtc traffic, March 16

2017. US Patent App. 14/855,542.

[33] Amos Fiat and Jared Saia. Censorship resistant peer-to-peer content

addressable networks. In SODA, volume 2, pages 94–103, 2002.

[34] Yair Meidan, Michael Bohadana, Asaf Shabtai, Juan David Guarnizo,

Mart́ın Ochoa, Nils Ole Tippenhauer, and Yuval Elovici. Profiliot: a

machine learning approach for iot device identification based on network

traffic analysis. In Proceedings of the symposium on applied computing,

pages 506–509, 2017.

[35] Hooman Mohajeri Moghaddam. Skypemorph: Protocol obfuscation for

censorship resistance. Master’s thesis, University of Waterloo, 2013.

BIBLIOGRAPHY 51

[36] Sambuddho Chakravarty, Vinayak Naik, Hrishikesh B Acharya, and

Chaitanya Singh Tanwar. Towards practical infrastructure for decoy

routing (positional paper). In Proceedings of the Workshop on Security

of Emerging Networking Technologies (SENT) Held in Conjunction with

22nd Network and Distributed System Security (NDSS) Symposium. In-

ternet Society, 2015.

[37] Tariq Elahi, Colleen M Swanson, and Ian Goldberg. Slipping past the

cordon: A systematization of internet censorship resistance. Centre for

Applied Cryptographic Research (CACR), University of Waterloo, Tech.

Rep, 10, 2015.

[38] Stefan Köpsell and Ulf Hillig. How to achieve blocking resistance for

existing systems enabling anonymous web surfing. In Proceedings of the

2004 ACM workshop on Privacy in the electronic society, pages 47–58,

2004.

[39] Hyunwoo Yu, Eunsu Lee, and Suk-Bok Lee. Symbiosis: Anti-censorship

and anonymous web-browsing ecosystem. IEEE Access, 4:3547–3556,

2016.

[40] Sergey Frolov and Eric Wustrow. The use of tls in censorship circum-

vention. In NDSS, 2019.

	Dedication
	Acknowledgment
	Abstract
	Introduction
	Introduction
	Motivation
	Problem statement
	Research Objective

	Background Information
	Traffic Analysis
	Conventional Packet Filtering
	Deep Packet Inspection (DPI)
	Encrypted Traffic Classification

	WebRTC
	WebRTC API
	Privacy and Security

	Literature Review
	Proposed Methodology
	Media Stream
	RTC Peer Connection
	RTC Data Channel

	Implementation
	Creating Peer Connection
	Capturing Media Streams
	Creating Data Channel
	Adding Text Data
	Adding File Data

	Results Evaluation
	Audio Stream Results
	Video Stream Results
	Screen Sharing Results

	Conclusion
	Future Work

	References

