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Abstract

In this thesis, some aspects of spacetime coordinates are presented. After discussing some

non-singular coordinates for the Schwartzschild, the Reissner-Nordström and the Kerr black

hole spacetimes, non-singular Kruskal-like coordinates for different cases of general circularly

symmetric black holes in (2 + 1) dimensions are constructed. The approach is further ex-

tended to construct non-singular coordinates for the rotating BTZ black hole. As Kruskal-like

coordinates do not remove the coordinate singularity for the extreme BTZ spacetime geom-

etry, the possibility of obtaining Carter-like coordinates is discussed. It is found that these

coordinates also do not remove the coordinate singularity for this geometry.

The Double-null form has great importance in general relativity (GR), especially in solar-

terrestrial relationships, investigation of black hole spacetimes, formulating the Newman-

Penrose formalism and Numerical Relativity etc. In Chapter 3, three dimensional spacetimes

are classified according to the possibility of converting them to double-null form. It is found

that a class of (2 + 1)−dimensional spacetimes in which coefficient g02 or g12 or both are

non-zero, cannot be transformed to the double-null form.

In black hole thermodynamics, it has been shown earlier for different spacetimes that the

Einstein field equations at the horizon can be expressed as the first law of black hole ther-

modynamics. In Chapter 4, a simpler approach, using the concept of foliation is devel-

oped to obtain such results. Using this simpler approach, thermodynamic identities are

established for the Schwarzschild, the Reissner-Nordström, the Kerr, and the Kerr-Newmann

black holes. An important aspect of this approach is that one has to essentially deal with

an (n− 1)−dimensional induced metric for an n−dimensional spacetime, which significantly

simplifies the calculations to obtain such results.



List of publications from this thesis

[1] Syed Muhammad Jawwad Riaz and Azad A. Siddiqui

“Non-singular coordinates for circularly symmetric black holes in (2+1) dimensions” Gen.

Rel. Grav. (2011) 43 : 1167-1178 ; DOI 10.1007/s10714-010-1058-5

[2] Azad A. Siddiqui1, Syed Muhammad Jawwad Riaz and M. Akbar

“Foliation and the First Law of Black hole Thermodynamics” Chin. Phys. Lett. Vol. 28,

No. 5 (2011) 050401

[3] Syed Muhammad Jawwad Riaz and Azad A. Siddiqui

“Foliation and the First Law of Black Hole Thermodynamics for Kerr and Kerr-Newman

Spacetimes” (Submitted to Chin. Phys. Lett.)

[4] Syed Muhammad Jawwad Riaz and Azad A. Siddiqui

“Double Null form for (2+1) dimensional Space times” (Submitted to Gen. Rel. Grav.)

i



Contents

1 Introduction 2

1.1 Black Holes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 The Schwarzschild Black Hole . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 Singularities of the Schwarzschild Black Hole . . . . . . . . . . . . . . 7

1.2.2 The Eddington-Finkelstein Coordinates . . . . . . . . . . . . . . . . . 10

1.2.3 The Kruskal Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.2.4 The Kruskal-Szekeres Coordinates . . . . . . . . . . . . . . . . . . . . 18

1.2.5 Compactified Kruskal-Szekeres Coordinates . . . . . . . . . . . . . . . 18

1.3 The Reissner-Nordström Black Hole . . . . . . . . . . . . . . . . . . . . . . . 22

1.3.1 The Kruskal like Coordinates . . . . . . . . . . . . . . . . . . . . . . . 23

1.3.2 Compactified Kruskal-Szekeres like Coordinates . . . . . . . . . . . . . 25

1.3.3 The Extreme Reissner-Nordström Black Hole . . . . . . . . . . . . . . 29

1.3.4 Non-Existence of Kruskal like Coordinates for the eRN Black Hole . . 29

1.3.5 The Carter Coordinates for the eRN Black Hole . . . . . . . . . . . . 31

1.3.6 The RN Black Hole with Charge Exceeding Mass . . . . . . . . . . . . 31

1.4 The Kerr Black Hole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2 Non-singular Coordinates for (2 + 1)-Dimensional Black Hole Spacetimes 35

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.2 Non-singular Coordinates for Some Circularly Symmetric (2+1)−Dimensional

Black Holes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.2.1 Case 1: when k = 1, g(v) = A > 0 and h(v) = 0 . . . . . . . . . . . . . 37

ii



2.2.2 Case 2: when k = 0, g(v) = A > 0 and h(v) = B > 0 . . . . . . . . . . 38

2.3 Rotating BTZ (Banados-Teitelboim-Zanelli) Black Hole . . . . . . . . . . . . 39

2.3.1 Non-singular Coordinates for the Usual Rotating BTZ Black Hole . . 40

2.3.2 Non-Existence of Carter-like Coordinate for the EBTZ Black Hole . . 45

3 Double-Null Form for (2 + 1)-Dimensional Spacetimes 50

3.1 Existence of Double-Null Form for (2+1)-Dimensional Spacetimes . . . . . . . 51

3.1.1 Case 1: g00, g11, g22 ̸= 0 and g01 = 0 . . . . . . . . . . . . . . . . . . . 53

3.1.2 Case 2: g00, g22, g01 ̸= 0 and g11 = 0 . . . . . . . . . . . . . . . . . . . 54

3.1.3 Case 3: g11, g22, g01 ̸= 0 and g00 = 0 . . . . . . . . . . . . . . . . . . . 55

3.1.4 Case 4: g00, g11, g22, g01 ̸= 0 . . . . . . . . . . . . . . . . . . . . . . . . 56

4 Foliation and the First Law of Black Hole Thermodynamics 58

4.1 Thermal Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.1.1 Black Hole Thermodynamics . . . . . . . . . . . . . . . . . . . . . . . 62

4.1.2 Laws of Black Hole Thermodynamics . . . . . . . . . . . . . . . . . . . 63

4.1.3 Foliation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.1.4 Foliation of a Black Hole Spacetime . . . . . . . . . . . . . . . . . . . 69

4.2 Field Equations and the First Law of Black Hole Thermodynamics . . . . . . 70

4.2.1 The Schwarzschild Black Hole . . . . . . . . . . . . . . . . . . . . . . . 72

4.2.2 The RN Black Hole . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2.3 The Kerr Black Hole . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.2.4 The Kerr-Newmann Black Hole . . . . . . . . . . . . . . . . . . . . . . 76

5 Conclusion 81

iii



List of Figures

1.1 In Schwarzschild coordinates, light cones close up approaching r = 2m . . . . 11

1.2 In Eddington-Finkelstein coordinates, light cones tip over as r gets smaller

approaching r = 2m. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3 The transformation of the Schwarzschild vaccum geometry between Schwarzschild

and Kruskal-Szekeres coordinates [9]. . . . . . . . . . . . . . . . . . . . . . . . 17

1.4 Schwarzschild spacetimes in (Ψ, ξ, θ, ϕ) coordinates [9]. . . . . . . . . . . . . . 20

1.5 The Maximal extension of the Schwarzschild spacetime in (Ψ, ξ, θ, ϕ) coordi-

nates [9]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.6 Reissner-Nordströn spacetime in (Ψ, ξ, θ, ϕ) coordinates [9]. . . . . . . . . . . 27

1.7 Maximal extension of the Reissner-Nordströn spacetime in (Ψ, ξ, θ, ϕ) coordi-

nates [9]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.1 The region 0 < r < r+ of the rotating BTZ black hole. η− is along x-axis and

ξ− is along y-axis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.2 The region r > r− of the rotating BTZ black hole. η+ is along x-axis and ξ+

is along y-axis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

1



Chapter 1

Introduction

Among experimental sciences, Physics is the science of measurement. Position has basic im-

portance among all measurements. A coordinate system (CS) is needed to measure accurate

position of an object in space (or spacetime). When we choose a CS, actually we are as-

signing a label to each point in space. As the laws of physics are invariant, no matter what

CS is chosen, therefore, to compare measurements between two different coordinate systems,

we need a set of equations which relate the two different labels assigned to the same physi-

cal point. These kinds of relations are called “coordinate transformations” which relate the

two coordinate systems. The simplest known CS is the cartesian CS, with three mutually-

perpendicular axes, usually labeled by x, y and z. However, it is not always the best choice.

It is usually most convenient to choose a CS that possess the same symmetries as the situation

being modeled. Thus for physical problems possessing spherical symmetry, spherical polar

coordinates are our best choice. In spherical coordinates, a point is still labeled by three

numbers, i-e. the distance from the origin and two angular coordinates. Coordinate trans-

formations relate the labels of a point in one CS to the labels of the same point in the other CS.

In Physics, the theory of relativity is considered to be one of the greatest achievements.

The “Special Theory”, which exclude gravity, was put forward by Einstein in 1905 to explain

some troubling facts that had arisen in the study of electromagnetism. In particular, his

postulate that the speed of light in vacuum is constant for all observers forced scientists to

throw away many commonsense assumptions like the absolute nature of the passage of time.

About a decade later, Einstein published the “General Theory of Relativity” (GR), which
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describes all motions as relative. Time is no longer absolute and uniform. It is taken as an

added dimension along with curved space and depends on the velocity. GR catalyzed and

added an essential depth of knowledge to the science of Physics. With relativity, Cosmology

and Astrophysics predict extraordinary astronomical phenomena such as black holes, neutron

stars, and gravitational waves. Different coordinate systems are used in black hole physics

to remove the coordinate singularities to explore black hole spacetimes. In theoretical and

experimental work on solar-terrestrial relationships, a variety of coordinate systems are used

to display satellite trajectories, boundary locations, and vector field measurements. The need

for more than one coordinate system arises from the fact that often various physical processes

are understood better, experimental data more ordered or calculations are easily performed

in one CS than in the other. Therefore, in those situations it is necessary to transform from

one to another of these CS.

The plan of the thesis is as follows:

In the remaining sections of Chapter 1, different non-singular coordinates for the Schwarzschild,

the Reissner-Nordström (RN) and the Kerr black hole spacetimes are given along with their

Carter-Penrose (CP) diagrams. In Chapter 2, non-singular coordinates are obtained for differ-

ent cases of general circularly symmetric black holes in (2+1) dimensions are presented. The

approach is further extended to construct non-singular coordinates for the rotating Banados-

Teitelboim-Zanelli (BTZ) black hole along with the CP diagrams. In Chapter 3, after giving

the importance of the double-null form, their existence for (2 + 1)-dimensional spacetimes

is discussed. In Chapter 4, after brief description of black hole thermodynamics and folia-

tion, a simple procedure is developed using the concept of foliation to express Einstein’s field

equation as the first law of black hole thermodynamics for the Schwartzschild, the RN, the

Kerr, and the Kerr-Newman black hole spacetimes. The thesis concludes in Chapter 5 with

a brief summery and discussion. In particular, some unsolved problems and further lines of

investigation are mentioned.
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1.1 Black Holes

Thermonuclear reactions in a star create pressure which supports the star against gravity.

The pressure reduces due to exhaustion of nuclear fuel, as a result the balance between pres-

sure and gravity can no longer be maintained and the star begins to contract. If the mass of

the star is sufficient, so that the inward force of gravity overcomes all outward acting forces,

then the collapse continues. The volume of the star continues to decrease and, therefore, the

density continues to increase. Hence the escape velocity, within a trapped surface, exceeds

the velocity of light. Then a star becomes a black hole.

Now the question is, what volume of a given mass is needed to trap even light and what

would be the geometry of the space surrounding such a mass. Shortly after description of

gravity as a geometric property of space and time (GR), in 1916, a German Physicist, K.

Schwarzschild [1] calculated what the space surrounding a point mass would look like, and

calculated the value of the radial parameter, r, of the trapped surface from the point, now

called the Schwarzschild radius. In 1939, J. R. Oppenheimer and H. Synder [2] showed that

a cold and sufficiently massive star must collapse indefinitely. In 1967, J. A. Wheeler named

such an object a “black hole” [3] and Ruffini [4] identified the first observed black hole in

Cygnus XI.

The basic idea of Einstein’s theory of gravitation consists in geometrizing the gravitational

force. Einstein postulated that a particle would travel on the straightest available path

(called the geodesic) in spacetime [5]. This law should replace Newton’s laws of motion. The

straightness of the path depends on the spacetime curvature, therefore, gravitation can be

expressed in terms of spacetime curvature. In Newtonian terms, gravitation is due to the

presence of matter. According to special relativity there is no essential difference between

matter and energy. Thus, in relativistic terms, the geometry of spacetime is related to the

distribution of matter through the Einstein’s field equations

Gµν = κTµν , (1.1)
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where Gµν is the Einstein tensor which is symmetric, i.e. Gµν = Gνµ, and vanishes when

the spacetime is flat and Tµν is the energy-momentum tensor which can be thought of as the

source for the gravitational field. It is a divergence free tensor, i-e.∇Tµν = 0. The coupling

constant κ = 8πG/c4 where G is gravitational constant and c is the speed of light. The

complete form of the Einstein field equations contain an extra term, called the cosmological

constant, denoted by Λ. It was found recently to be extremely small and is responsible for

the present accelerated expansion of the Universe. Thus the Einstein field equations with

cosmological constant, Λ, can be written as

Rµν −
1

2
gµνR+ Λgµν = κTµν . (1.2)

The right and left hand sides of equation (1.2) provide information about the physics and the

geometry of the spacetime respectively. Although these equations look simple in appearance,

they are complicated and it is difficult to find an exact solution of these equations. These

equations are second order, non-linear partial differential equations in the metric tensor.

In classical GR, the no-hair conjecture states that “all black hole solutions of the Einstein-

Maxwell equations of gravitation and electromagnetism can be completely characterized by

three parameters”. These are:

(1) Mass, m

(2) Charge, Q

(3) Spin, usually the angular momentum, a, per unit mass.

Using this characterization, three general classes of black holes are:

(a) Static black holes with no charge and no rotation, described by the Schwarzschild solution

(b) Black holes having electrical charge, described by the RN solution

(c) Stationary rotating black holes, described by the Kerr solution.
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1.2 The Schwarzschild Black Hole

When one is faced with a difficult set of mathematical equations, the first step is to look

for special cases that are simple to solve. Such an approach often yields insight into the

most interesting and physically relevant situations. As for any other theory of mathematical

physics, it is also true for General Relativity. Therefore, for the first application of the theory

of general relativity, consider a solution to the field equations that is time independent and

spherically symmetric. Such a situation describes the field of gravity found outside the sun,

for example. Since our interest is in the field outside the matter distribution, one can simplify

things even further by restricting to the matter-free regions of space in the vicinity of some

mass. In relativity, it means that one can find a solution to the problem using the vacuum

field equations and ignoring the stress-energy tensor. That type of solution, found in 1916 by

Schwarzschild, is named after him. The vacuum solution of the field equations (1.1), obtained

by K. Schwarzschild [1], for spherically symmetric gravitational fields due to a point mass,

m, is given (in gravitational units G = c = 1) by the metric,

ds2 = f(r)dt2 − dr2

f(r)
− r2dΩ2, (1.3)

where f(r) = (1 − 2m
r ), m is the mass of the Schwarzschild black hole and dΩ2 = (dθ2 +

sin2θdϕ2) is the line element of the 2−sphere.

The Schwarzschild spacetime is asymptotically flat, as the metric tends to the Minkowski

metric in polar coordinates as r → ∞

ds2 = dt2 − dr2 − r2dΩ2. (1.4)

A spacetime is stationary if and only if there exists a timelike coordinate t such that the met-

ric is independent of t. In other words, Schwarzschild spacetime possesses time translation

symmetry, since the metric remains unchanged by time translation t → t + t0, where t0 is

an arbitrary constant. Clearly the Schwarzschild metric (1.3) is independent of the timelike

coordinate t and is, therefore, stationary.
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A spacetime is static if and only if the coordinates are chosen so that in addition to time

translation symmetry, the spatial coordinates do not change when move along tangent vector

gk. It requires that the tangent vector, gk, be orthogonal to all the spatial tangent vectors

gk.gµ = gkµ = 0, for µ ̸= k. Evidently the Schwarzschild metric (1.3) is also static. It

is spherically symmetric. This is evident from the fact that the angular part r2dΩ2 of the

metric is the metric of a 2−sphere of radius r. The radius, r, in Schwarzschild coordinates is

defined such that the area of the 2−sphere measured by an observer at rest in Schwarzschild

coordinates is 4πr2.

1.2.1 Singularities of the Schwarzschild Black Hole

The Schwarzschild metric (1.3) shows unusual behavior at r = 2m. For r > 2m, gtt > 0

and grr < 0. However, the signs of these components of the metric (1.3) reverse for r < 2m.

Therefore, a world line along the t-axis has ds2 < 0 and describes a spacelike curve. However,

a world line along the r-axis has ds2 > 0 and describes a timelike curve. The space and time

character of the coordinates have reversed. This shows that a massive particle inside the

Schwarzschild radius r = 2m can not remain stationary at r = constant.

At r = 2m, gtt is zero. The fact that gtt vanishes reveals that the surface r = 2m is an

infinite redshift surface. Obviously something unusual is going on. However, nothing unusual

appears to gθθ and gϕϕ, while grr behaves very badly. In fact, grr → ∞ as r → 2m. When

a mathematical expression tends to infinity at some point, that point is called a singularity.

In GR, the presence of a singularity must be explored very carefully. The first question to

ask is whether a singularity is physically real or it is due to a bad choice of coordinates we

have made. For the Schwarzschild geometry, the singularity at r = 2m is due to a bad choice

of coordinates and is a coordinate singularity. By using a different set of coordinates, it is

possible to write the metric (1.3) in such a way that the singularity at r = 2m is removed.

However, the singularity at r = 0 is due to infinite curvature and cannot be removed by a

change in coordinates and is an essential singularity. The Riemann tensor is helpful for de-

termining whether a singularity is essential or coordinate. If the curvature invariants become
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infinite the singularity is essential. Constructing scalars from the Riemann tensor one could

check if they become infinite somewhere. Infinitely many scalars could be constructed from

the Riemann tensor. However, symmetry considerations can be used to show that there are

only finitely many independent scalars. All others can be expressed in terms of these. Thus

one only needs to construct the simplest scalars. These are

R1 = gabRab = R , (1.5)

R2 = Rab
cdR

cd
ab , (1.6)

R3 = Rab
cdR

cd
efR

ef
ab . (1.7)

If the above defined independent curvature invariants, R1, R2 and R3 are all finite the sin-

gularity (if any) is coordinate, otherwise the singularity is essential. For the Schwarzschild

metric (1.3), the invariants are

R1 = 0 , (1.8)

R2 =
48m2

r6
, (1.9)

and

R3 =
64m3

r6
. (1.10)

The invariants R2 and R3 have infinite value at r = 0, but remain finite at r = 2m. Thus
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the singularity at r = 2m is a coordinate singularity and can be removed by changing to an

appropriate coordinate system.

Before proceeding to the construction of a non-singular coordinate system for the Schwarzschild

spacetime, it is useful to first see the procedure used in its developing form, without the com-

plications introduced by the spacetime curvature. This procedure is to use null coordinates

v =
1√
2
(t+ r), u =

1√
2
(t− r), (1.11)

so that

t =
1√
2
(v + u), r =

1√
2
(v − u), (1.12)

and the flat spacetime represented by the Minkowski metric as

ds2 = dt2 − dr2 − r2dθ2 − r2sin2θdϕ2, (1.13)

takes the form

ds2 = 2dvdu− r2dθ2 − r2sin2θdϕ2. (1.14)

The metric tensor components in these coordinates are

g01 = g10 = 1, g22 = −r2, g33 = −r2sin2θ, gµν = 0 , (1.15)

and its determinant is r4sin2θ. The coordinates (v, u) are called null because g00 = g11 = 0.

The use of null coordinates is not crucial for constructing non-singular coordinates but has

been discussed because they are commonly used for spacetime diagrams.
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1.2.2 The Eddington-Finkelstein Coordinates

The Schwarzschild black hole is studied further by examining the behavior of light cones near

surface r = 2m. For the radial light rays (dθ = dϕ = 0), the Schwarzschild metric (1.3) takes

the form

ds2 =

(
1− 2m

r

)
dt2 − dr2(

1− 2m
r

) . (1.16)

The paths of light rays are studied by setting ds2 = 0, which leads to a relationship, express-

ing the slope of a light cone

dt

dr
= ±

(
1− 2m

r

)−1

. (1.17)

Notice that Eq.(1.17) as r → ∞

dt

dr
= ±1. (1.18)

Therefore in this limit one can recover the motion of light rays in flat space (integration gives

t = ±r modulo a constant, just one could expect for light cones in Minkowski space). Now

examine the behavior as one approaches smaller r, specifically approaching r = 2m. It will

be helpful to examine the positive sign, which corresponds to outward going radial null rays.

Then one can write Eq.(1.17) as

dt

dr
=

r

r − 2m
. (1.19)

Observe that as r → 2m, dt/dr → ∞. This indicates that the light cones are becoming

narrow as one approaches r = 2m (at r = 2m, the lines become vertical). This effect is

shown in Fig.(1.1). The solution of Eq.(1.19) is

t = r + 2m ln |r − 2m

2m
|. (1.20)
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This shows that the Schwarzschild time approaches ±∞ logarithmically, as null rays approach

r = 2m. In Schwarzschild coordinates, radially falling light rays never appear to cross the

horizon r = 2m.

Figure 1.1: In Schwarzschild coordinates, light cones close up approaching r = 2m .

The first attempt to get rid of the coordinate singularity of the Schwarzschild metric was

made by Eddington [6] and re-discovered by Finkelstein [7]. They carried out a transforma-

tion of the time coordinate (1.20), which seems to show that in falling light rays pass through

the Schwarzschild horizon. For this purpose, they introduced a new radial coordinate, r∗, as

r∗ = r + 2m1n
( r

2m
− 1

)
, (1.21)

along with two retarded and advanced null coordinates

u = t− r∗ and v = t+ r∗. (1.22)

From Eq.(1.21), one can write
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dr∗ = dr +
dr

(r/2m− 1)
,

=
(r/2m− 1)

(r/2m− 1)
dr +

dr

(r/2m− 1)
=

( r

2m

) dr

(r/2m− 1)
,

=
dr

(1− 2m/r)
. (1.23)

Use the advanced coordinate, v, of Eq.(1.22) to write

dt = dv − dr∗ = dv − dr

(1− 2m/r)
. (1.24)

Taking squares, Eq.(1.24) takes the form

dt2 = dv2 − 2
dvdr

(1− 2m/r)
+

dr2

(1− 2m/r)2
. (1.25)

Using Eq.(1.25), the Schwarzschild metric (1.3) takes the advanced Eddington-Finkelstein

form of the metric

ds2 =

(
1− 2m

r

)
dv2 − 2dvdr − r2dΩ2. (1.26)

The metric (1.26) is no longer singular at r = 2m, while the curvature singularity at r = 0 is

clearly seen.

Once again, consider the radial paths of light rays by setting dθ = dϕ = 0 and ds2 = 0.

This time one finds that

(
1− 2m

r

)
dv2 − 2dvdr = 0. (1.27)

On dividing both sides by dv2, we obtain

(
1− 2m

r

)
− 2

dr

dv
= 0. (1.28)
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If one sets r = 2m, dr/dv = 0 and one can integrate it to find r(v) = constant, which

describes light rays that stay right where they are, neither outgoing nor incoming. Eq.(1.28)

can be written as
dv

dr
=

2

(1− 2m/r)
. (1.29)

Integrating both sides to have

v(r) = 2(r + 2m1n|r − 2m|) + const. (1.30)

Eq.(1.30) gives us the paths that radial light rays follow using (v, r) coordinates. If r > 2m,

then as r increases, v increases. This describes the behavior one could expect for outgoing

radial light rays. If r < 2m, as r decreases, v increases. So the light rays are ingoing. In

these coordinates, light cones no longer become increasingly narrow and they make it past the

line r = 2m. However, the fact that the time and radial coordinates reverse their characters

inside r = 2m means that light cones tilt over in this region (see Fig.(1.2)).

Figure 1.2: In Eddington-Finkelstein coordinates, light cones tip over as r gets smaller
approaching r = 2m.

Using the retarded time of Eq.(1.22), the Schwarzschild metric (1.3) takes the retarded

13



Eddington-Finkelstein form of the metric

ds2 =

(
1− 2m

r

)
du2 + 2dvdr − r2dΩ2. (1.31)

In short, the following points are concluded:

(a) There is no singularity in Eqs.(1.26) and (1.31) at r = 2m, showing that r = 2m is only

a coordinate singularity.

(b) Advanced Eddington-Finkelstein coordinates (v, r) give a pathological description of out-

going radial null cones. Similarly retarded Eddington-Finkelstein coordinates (u, r) give a

pathological description of ingoing radial null cones.

(c) Moving towards the direction of smaller values of r, light cones begin to tip over and

squeeze up.

(d) For r < 2m, future-directed lightlike and timelike curves are directed towards r = 0.

(e) In retarded coordinate, u, the Schwarzschild metric (1.3) takes the form

ds2 =

(
1− 2m

r

)
du2 + 2dudr − r2dΩ2. (1.32)

Using v and u simultaneously, the metric (1.3) takes the double-null form

ds2 = (1− 2m

r
)dudv − r2dΩ2. (1.33)

Thus Eddington-Finkelstein coordinates are well suited for describing the geometry over the

region 2m < r < ∞ and −∞ < t < ∞. However, another coordinate system is needed to

describe the interior region of the surface r = 2m.

1.2.3 The Kruskal Coordinates

To describe the interior region of the surface r = 2m, of the Schwarzschild black hole, the

Kruskal coordinates [8] can be used. In these coordinates Kruskal exponentiated the ad-

vanced and retarded coordinates (v, u) given by Eq.(1.22) and A Qadir [5] introduced two

constants α, β such that the entire manifold of the maximally extended Schwarzschild solu-

tion is covered by a single coordinate patch
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V = αev/β , U = −αeu/β , (1.34)

so that we have

V U = −α2e
√
2r∗/β. (1.35)

Using Eq.(1.21) in Eq.(1.35), V and U are related to r by

V U = −α2
∣∣∣ r
2m

− 1
∣∣∣2√2m/β

e
√
2r/β . (1.36)

Choose β = 2
√
2m to get simplest form of the Eq.(1.36). For this choice of β, the metric

(1.3) in Kruskal coordinates (U, V ) takes the form

ds2 =
16m2

α2r
e−r/2mdUdV − r2dΩ2, (1.37)

which is perfectly well defined and no longer singular at the horizon r = 2m as determinant

= −(256m4sinθ/α2)2 is non-zero.

In the Kruskal coordinates, the Schwarzschild spacetime is shown in Fig.(1.3). The Kruskal

diagram shows the four regions I, II, III and IV bounded by event horizons. Regions I

and III represent exterior region of the Schwarzschild black hole in which r > 2m. While

regions II and IV are two identical, but time-reversed regions in which the physical sin-

gularity r = 0 lies and represent interior regions of the Schwarzschild black hole in which

0 < r < 2m. Event horizons are solid straight lines at 45 degrees passing through the cen-

ter of the diagram. t =constant are dotted lines pass through the center of the diagram at

various angles. On the right side (of region I) lines with inclinations 45◦ and −45◦ represent

t = +∞ and t = −∞ respectively. Also, r =constant curves are hyperbolae to which the

lines with inclinations 45◦ and −45◦ are asymptotic. From the diagram, in regions I and III
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the vertical hyperbolae are timelike world lines and the horizontal straight line is the space-

like hypersurface t = 0. In regions II and IV the vertical straight line is timelike and the

horizontal hyperbolae are spacelike hypersurfaces. The horizontal hyperbolae end at r = 0,

which is an essential singularity as is clear from Eq.(1.37), thus the diagram ends at this

hyperbola.
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Figure 1.3: The transformation of the Schwarzschild vaccum geometry between
Schwarzschild and Kruskal-Szekeres coordinates [9].
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1.2.4 The Kruskal-Szekeres Coordinates

Another useful coordinate system called“Kruskal-Szekeres coordinates” can be obtained from

the Kruskal coordinates given in previous subsection, which has a timelike coordinate T and

a spacelike coordinate R, defined by

T =
1√
2
(V − U), R =

1√
2
(V + U). (1.38)

In (T,R) coordinates, with α = 1, the metric (1.37) takes the form

ds2 =
4m

r
e−r/2m(dT 2 − dR2)− r2dΩ2. (1.39)

Using the definitions of V and U , Eqs.(1.38) give

T =
√
2
∣∣∣ r
2m

− 1
∣∣∣1/2 er/4msinh(t/4m), R =

√
2
∣∣∣ r
2m

− 1
∣∣∣1/2 er/4mcosh(t/4m), (1.40)

where T varies from −∞ to +∞ and R from 0 to ∞. The inverse transformations are

R2 − T 2 = 2
( r

2m
− 1

)
er/2m, T/R = tanh(t/4m). (1.41)

In (T,R) coordinates, outgoing and ingoing null geodesics are given by T = constant and R =

constant respectively. Furthermore, the future and past horizons are given by the equation

TR = 0. The curvature singularity at r = 0 is given by the equation TR = 2. Hence

these coordinate covers the entire Schwarzschild spacetime and are well-behaved everywhere

outside the physical singularity.

1.2.5 Compactified Kruskal-Szekeres Coordinates

Coordinates that have a finite range of values are called compactified coordinates and are

useful in tracing spacetime diagrams. In order to see the entire spacetime diagram at a
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glance, it is required to bring regions at infinity (in space and time) to a finite position. Such

representations of spacetimes are called block diagrams and are generally known as CP dia-

grams. For the Schwarzschild geometry, compactification of the Kruskal-Szekeres coordinates

is achieved by defining [5]

Ψ = tan−1(T +R) + tan−1(T −R), ξ = tan−1(T +R) + tan−1(T −R). (1.42)

The compactified Schwarzschild spacetime in (Ψ, ξ) coordinates is given in Fig(1.4) and the

maximal extension in Fig.(1.5). The lower and upper boundaries in Fig(1.5) represent the

past and future essential singularities respectively. The lower and upper right edges are past

null infinity, I−, and future null infinity, I+ respectively. The past null infinity is reached by

past directed null lines while the future null infinity is reached by future directed null lines.

The bottom and upper right vertex are the past timelike infinity, I−, and the future timelike

infinity, I+, respectively. These are reached by timelike lines going to the past or future,

which do not come from or go into r = 0. Finally the right vertex is spacelike infinity, I0. t

= constant curves in region I go from I− to I+ and r = constant curves in this region go

from the center of the diagram to I0. A similar description is possible for other regions.
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Figure 1.4: Schwarzschild spacetimes in (Ψ, ξ, θ, ϕ) coordinates [9].
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Figure 1.5: The Maximal extension of the Schwarzschild spacetime in (Ψ, ξ, θ, ϕ) coordinates
[9].
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1.3 The Reissner-Nordström Black Hole

Reissner [10] and Nordström [11] obtained the solution of Eqs.(1.1), with a non-vanishing

energy-momentum tensor arising from the electromagnetic field, which describes the field

outside a spherically symmetric massive charged point, called the RN black hole and is given

by

ds2 =

(
1− 2m

r
+
Q2

r2

)
dt2 − 1(

1− 2m
r + Q2

r2

)dr2 − r2dΩ2, (1.43)

where m and Q are mass and charge (in gravitational units) of the black hole respectively.

The metric (1.43) looks like the Schwarzschild metric (1.3) with the replacement

m→ m(r) = m− Q2

2r
. (1.44)

For the RN black hole, apart from the essential singularity at r = 0, there are two horizons

r± = m±
√
m2 −Q2, (1.45)

called the outer and inner horizons, respectively.

The RN time coordinate, t, is timelike outside the outer horizon, r > r+, spacelike between

the horizons r− < r < r+ and again timelike inside the inner horizon r < r−. Conversely,

the radial coordinate r is spacelike outside the outer horizon, r > r+, timelike between the

horizons r− < r < r+ and again spacelike inside the inner horizon r < r−. This physical

behavior is similar to that of the Schwarzschild geometry.

For the RN metric, the invariants given by Eqs. (1.6) and (1.7) are

R2 =
48m2

r6

(
1− 2Q2

mr
+

7Q4

6m2r2

)
, (1.46)

22



R3 =
64m3

r9

(
1− 3Q2

mr
+

7Q4

2m2r2
− 7Q6

4m3r3

)
. (1.47)

Notice that both invarients R2 and R3 remain finite at r = r± and become infinite at r = 0.

Therefore, r = r± are coordinate singularities while r = 0 is an essential singularity.

1.3.1 The Kruskal like Coordinates

To construct non-singular coordinates, like the Schwarzschild black hole case, it is possi-

ble to go through the steps: RN coordinates → Eddington-Finkelstein like coordinates →

Kruskal-Szekeres like coordinates → Compactified Kruskal-Szekeres like Coordinates. With

the previous experience of using Eddington-Finklestein coordinates in the Schwarzschild ge-

ometry, we can bypass these coordinates and proceed directly to the Kruskal like coordinates.

In terms of r− and r+, f(r) =
(
1− 2m

r + Q2

r2

)
can be written as

f(r) =
(r − r+)(r − r−)

r2
. (1.48)

In order to remove the coordinate singularities, define r∗ as

r∗ =

∫
dr

f(r)
= r +

r2+
(r+ − r−)

ln |r − r+
k1

| −
r2−

(r+ − r−)
ln

∣∣∣∣r − r−
k2

∣∣∣∣ ,
where k1 and k2 are arbitrary constant of integration, which are obviously most conveniently

chosen to be r+ and r− respectively. Using r∗ to define null coordinates u and v, the definition

of the Kruskal coordinates given by Eqs.(1.34) here yields

V = αet/βe−r/β

∣∣∣∣ rr+ − 1

∣∣∣∣
r2+

β(r+−r−)

∣∣∣∣ rr− − 1

∣∣∣∣−
r2−

β(r+−r−)

,

U = −αe−t/βe−r/β

∣∣∣∣ rr+ − 1

∣∣∣∣
r2+

β(r+−r−)

∣∣∣∣ rr− − 1

∣∣∣∣−
r2−

β(r+−r−)

.
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V and U are related to r by

V U = −α2e−2r/β

∣∣∣∣ rr+ − 1

∣∣∣∣
2r2+

β(r+−r−)

∣∣∣∣ rr− − 1

∣∣∣∣−
2r2−

β(r+−r−)

.

Using these coordinates the metric (1.43) takes the form

ds2 =
2β2

α2
(1− r+

r
)(1− r−

r
)e

2r

β

∣∣∣∣ rr+ − 1

∣∣∣∣−
2r2+

β(r+−r−)

∣∣∣∣ rr− − 1

∣∣∣∣−
2r2−

β(r+−r−)

dUdV − r2dΩ2. (1.49)

Observe that Kruskal like coordinates (V,U) do not remove both the singularities simulta-

neously. For this geometry, two separate coordinate patches are needed to cover the entire

region of the CP diagram. One for the region 0 < r < r+ and the other for r− < r < ∞.

Thus, for coordinates, (V+, U+), regular at r = r+ choose

β =
2r2+

(r+ − r−)
,

and

α =
2r+r−

(r+ − r−)
.

Write (1− r+
r ) as ( r+r )( r

r+
− 1), the metric (1.49) takes the form

ds2 =
2r2+
r2

(
r

r−
− 1

) (r2++r2−)

r2
+

e
− r(r+−r−)

r2
+ dU+dV+ − r2dΩ2. (1.50)

Clearly the metric (1.50) is non-singular at r = r+. However, these coordinates do not remove

the singularity at r = r−.

Construct coordinates (V−, U−), to remove the singularity at r = r− by choosing β =
−2r2−

(r+−r−) .

Again writing (1− r−
r ) as ( r−r )( r

r−
− 1), the metric (1.49) takes the form

ds2 =
2r2−
r2

(
r

r+
− 1

) (r2++r2−)

r2−
e
− r(r+−r−)

r2− dU−dV− − r2dΩ2. (1.51)
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Clearly the metric (1.51) is non-singular at r = r−. Here at least two coordinate patches are

required to cover the RN geometry from infinity to the singularity at r = 0. Whereas one

coordinate patch is enough for the entire CP diagram for the Schwarzschild geometry.

1.3.2 Compactified Kruskal-Szekeres like Coordinates

The Kruskal picture is not easy to draw because of the two coordinate systems and the fact

that one region stretches off to infinity, while the other hits a singularity at a finite position.

To trace the CP diagram for the RN geometry, define coordinates analogues to the compact-

ified Kruskal-Szekeres coordinates [5], as

ψ+ = tan−1(v++u+)+tan
−1(v+−u+), ξ+ = tan−1(v++u+)−tan−1(v+−u+), (r− < r <∞)

(1.52)

ψ− = tan−1(v−+u−)+tan
−1(v−−u−), ξ− = tan−1(v−+u−)−tan−1(v−−u−), (0 < r < r+)

(1.53)

where the generalized Kruskal-Szekeres coordinates are,

v+ = α+exp

(
r

β+

) ∣∣∣∣ rr+ − 1

∣∣∣∣
r2+

β+(r+−r−)

∣∣∣∣ rr− − 1

∣∣∣∣−
r2−

β+(r+−r−)

sinh

(
t

β+

)
, (1.54)

u+ = α+exp

(
r

β+

) ∣∣∣∣ rr+ − 1

∣∣∣∣
r2+

β+(r+−r−)

∣∣∣∣ rr− − 1

∣∣∣∣−
r2−

β+(r+−r−)

cosh

(
t

β+

)
, (1.55)

v− = α+exp

(
r

β−

) ∣∣∣∣ rr+ − 1

∣∣∣∣
r2+

β−(r+−r−)

∣∣∣∣ rr− − 1

∣∣∣∣−
r2−

β−(r+−r−)

sinh

(
t

β−

)
, (1.56)
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u− = α+exp

(
r

β−

) ∣∣∣∣∣ rr+ − 1

∣∣∣∣∣ r2+

β−(r+−r−)

∣∣∣∣∣ rr− − 1

∣∣∣∣∣
−

r2−
β−(r+−r−)

cosh

(
t

β−

)
, (1.57)

where

β+ =
2r2+

(r+ − r−)
, β− =

−2r2−
(r+ − r−)

, (1.58)

and α± are constants. The values of α+ and α− are chosen so that the hypersurfaces in

(v+, u+) and (v−, u−) coordinates match properly at a point, r, between r− and r+. The

coordinates (v+, u+) are non-singular at r = r+ and are used for r− < r < ∞. Similarly,

(v−, u−) are non-singular at r = r− and are used for 0 < r < r+. r = r± correspond to

v+ = u+ = 0 and v− = u− = 0 respectively. The implicit relation between these coordinates

and r is given by

u2+−v2+ = α2
+exp

(
2r

β+

) ∣∣∣∣ rr+ − 1

∣∣∣∣
2r2+

β+(r+−r−)

∣∣∣∣ rr− − 1

∣∣∣∣−
2r2−

β+(r+−r−)

= −tan
(
ψ+ + ξ+

2

)
tan

(
ψ+ − ξ+

2

)
,

(1.59)

and

u2−−v2− = α2
−exp

(
2r

β−

) ∣∣∣∣ rr+ − 1

∣∣∣∣
2r2+

β−(r+−r−)

∣∣∣∣ rr− − 1

∣∣∣∣−
2r2−

β−(r+−r−)

= −tan
(
ψ− + ξ−

2

)
tan

(
ψ− − ξ−

2

)
.

(1.60)

The resulting diagram, Fig.(1.6), in compactified Kruskal-Szekeres like coordinates, is the CP

diagram of the RN geometry. Fig.(1.7) shows the maximal extension. Notice that the essential

singularity in this case is timelike in contrast to the Schwarzschild essential singularity which

is spacelike.
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Figure 1.6: Reissner-Nordströn spacetime in (Ψ, ξ, θ, ϕ) coordinates [9].
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Figure 1.7: Maximal extension of the Reissner-Nordströn spacetime in (Ψ, ξ, θ, ϕ) coordi-
nates [9].
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1.3.3 The Extreme Reissner-Nordström Black Hole

From Eq.(1.45), it is clear that r+ + r− = 2m. As Q → 0, r+ → 2m and r− → 0. In this

limit, the RN black hole tends to become the Schwarzschild black hole, the outer horizon

becomes the Schwarzschild event horizon while the inner horizon collapses on to the essential

singularity. The previous analysis breaks down at r+ = r− = m when Q2 = m2. This is

called the extreme Reissner-Nordström (eRN) case.

The metric for the the eRN spacetime in (t, r, θ, φ) coordinates is

ds2 =
(
1− m

r

)2
dt2 − dr2

(1− m
r )

2
− r2dΩ2. (1.61)

Metric (1.61) is singular at r = 0 and m, the former being an essential and the latter a

coordinate singularity.

1.3.4 Non-Existence of Kruskal like Coordinates for the eRN Black Hole

To avoid the coordinate singularity for a black hole in spherical coordinates for a spacetime,

one defines r∗ as

r∗ =

∫ √
g11
g00

dr, (1.62)

which is the generalization of (1.21), and the advanced and retarded coordinates [12] (v, u)

as v = t+ r∗ and u = t− r∗. Then the Kruskal like coordinates (V,U) are given by V = αeβv

and U = −αe−βu, where α and β are constants.

For the eRN geometry r∗ is

r∗ = r − rm

r −m
+ 2m1n

∣∣∣∣r −m

m

∣∣∣∣ , (1.63)
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which has two different types of singularities, namely a logarithmic and a pole divergence,

unlike the usual RN geometry where both divergence are logarithmic. There is an even more

important difference, namely that for the usual RN geometry these singularities are at two

different values of r, whereas for the eRN case both are at r = m. For the usual RN spacetime

one can choose suitable value of β to remove either singularity from the metric, but for the

eRN spacetime both singularities can not be removed simultaneously by the usual procedure

as the eRN metric in (V,U) coordinates is

ds2 =
1

4m2
e−

r

2m e
r

r−mdV dU − r2dΩ2, (1.64)

which is singular at r = m. There are no Kruskal like coordinates known for the extreme case.

De Felice and Clarke [13] noted the above problem and introduced the following coordi-

nates

t̃ = tan−1V + tan−1U, r̃ = tan−1V − tan−1U. (1.65)

In these coordinates the eRN metric takes the form

ds2 =
(r −m)2

r2
4m2sin−1(t̃+ r̃)sin−1(t̃+ r̃)

(
dt̃2 − dr̃2

)
− r2dΩ2. (1.66)

The term (r −m)2 in the metric tends to zero as the horizon is approached. The metric is

not regular there and it may not even be defined for particular values of t̃ and r̃. For example

as V → 1 and U → 0, t̃ and r̃ going to π
4 and, therefore, sin−1(t̃ + r̃) in the metric (1.66)

becomes undefined.
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1.3.5 The Carter Coordinates for the eRN Black Hole

To avoid the coordinate singularity at r = m, Carter introduce the coordinates [14]

ψ = tan−1v + cot−1w, ξ = tan−1v − cot−1w, (1.67)

where v = t+ r∗ and w = −t+ r∗, with r∗ given as

r∗ =

∫
dr

(1− m
r )

2
. (1.68)

In the (ψ, ξ, θ, φ) coordinates Eq.(1.61) take the form

ds2 =
(r −m)2

4r2
sec2

(
ψ + ξ

2

)
cosec2

(
ψ − ξ

2

)
(dψ2 − ξ2)− r2dΩ2, (1.69)

or

ds2 =
(r −m)2

4r2
(1 + v2)(1 + w2)(dψ2 − ξ2)− r2dΩ2. (1.70)

This metric is not manifestly regular at r = m, as one can not put r = m in Eq.(1.69) directly.

However, as r → m, (r−m) → 0, either v → 0 and w → −∞, or v → ∞ and w → 0, one can

set w → −∞, or v → ∞ in such a way that (r −m)2(1 + w2) or (r −m)2(1 + v2) remains

finite. The product is finite but can only be evaluated using L’Hospital’s rule, which make

these coordinates inconvenient for numerical calculations [5].

1.3.6 The RN Black Hole with Charge Exceeding Mass

The RN spacetime with Q > m, has no horizons. The change in geometry from extremal to

one with no horizon is discontinuous. In other words there is no way to pack a black hole with

more charge then its mass. Indeed if we try to force additional charge into an extremal black

hole, then the work so done increases its mass so that the chargeQ does not exceed its massm.
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Real fundamental particles nevertheless have charge far exceeding their mass. e.g, the charge

to mass ratio of a proton is
e

mp
≈ 1018

where e is the charge in Coulomb and mp is the mass of the photon in Planck unit. However,

the Schwarzschild radius of such a fundamental particle is far smaller then its Compton wave-

lenght. Therefore, quantum mechanics, nor GR, governs the structure of these fundamental

particle.

1.4 The Kerr Black Hole

As an important generalization of the Schwarzschild metric, Kerr [11] presented the first ax-

isymmetric asymptotically flat, non-static but stationary metric, describing a spinning black

hole, now called a Kerr black hole. This metric is interpreted as the field generated by a

material source at rest, having angular momentum. The Kerr metric, in the so-called Boyer-

Lindquist coordinates, has the form

ds2 =
∆2

ρ2
[
dt− asin2θdϕ

]2
+
sin2θ

ρ2
[
(r2 + a2)dϕ− adt

]2
+
ρ2

∆2
dr2 + ρ2dθ2, (1.71)

where

∆2 = r2 − 2mr + a2,

is the horizon function and

ρ2 = r2 + a2cos2θ.

In metric (1.71), a is the angular momentum per unit mass of the source of the Kerr field.

For a = 0 (absence of rotation) the Kerr metric (1.71) reduces to the Schwarzschild metric

(1.3). The generalization of the Kerr metric for a spinning black hole with charge is called

the charged Kerr or Kerr-Newmann black hole [12].
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For the rotating gravitational source, represented by the Kerr metric (1.71), it is needed to

investigate the essential and coordinate singularities. Since the metric, given by Eq. (1.71),

is off-diagonal, simply putting g00 = 0 will not determine the singularities of this metric. The

horizon of the Kerr black hole rotates, observed by a distant observer, therefore it is incorrect

to try to solve for the location of the horizon by assuming that it is at rest. The world line

of photon sitting on the horizon and battling against inflow of space, remains at fixed radius

r and polar angle θ, but it moves in time t and azimuthal angle ϕ. The photon 4−velocity is

vµ = {v0, 0, 0, v3}, and the condition that it is on null geodesics is

0 = vµv
µ = gµυv

µvυ = g00(v
0)2 + 2g03v

0v3 + g33(v
3)2.

It has solutions provided the determinant of the 2 × 2 matrix of the metric coefficients in t

and ϕ is less then or equal to zero. The determinant is

g = g00g33 − g203 = − sin2 θ∆2. (1.72)

Thus if ∆2 ≥ 0, there exist null geodesics such that a photon can be instantaneously at rest

in r and θ, whereas if ∆2 < 0, then no null geodesics exist. The boundary

∆ = 0

defines outer and inner horizons at

r = r± = m

[
1±

√
1− a2

m2

]
. (1.73)

Here to determine the nature of the singularity is not so easy because calculating the indepen-

dent, and not identically zero, components of the Riemann tensor is very tedious. After some

very messy calculations, it is found that the singularities given by Eq. (1.73) are coordinate

singularities, while there is an essential singularity at r = a, θ = π
2 , called a ring singularity.

It is possible to construct Kruskal-Szekres like coordinates here, like the RN case, by getting
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rid of the zeroes of g11 [5]. For this purpose one would only need to find r∗ by integrating

r2dr/∆2. Here writing ∆ = (r − r+)(r − r−) with r± given by Eq.(1.73), and using exactly

the same formulae as before.
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Chapter 2

Non-singular Coordinates for
(2 + 1)-Dimensional Black Hole
Spacetimes

2.1 Introduction

Lower dimensional gravity is used as an arena for investigating various problems that arise

in four dimensions but are not solvable there. Those that have been investigated include

quantum gravity in three dimensions [15] and black hole evaporation in two dimensions

[16]. Also black hole solutions of the Einstein field equations in (2 + 1) dimension share

many important features with (3+ 1)−dimensional black holes. Both have an event horizon.

They occur as an endpoint of gravitational collapse. Both show mass inflation and have

non-vanishing Hawking temperature and interesting thermodynamic features [17, 18]. Black

holes in (2 + 1) dimensions provide a simple toy model for a number of studies including

super-string and super-gravity theories. Another important aspect of (2 + 1) dimensional

spacetime is that it significantly simplifies the calculations in Numerical Relativity. The

reason for the simplicity in (2 + 1) dimensions lies in the fact that, in (3 + 1) dimensional

spacetime, the curvature tensor decomposes into a curvature scalar, R, a Ricci tensor, Rµν ,

and a remaining trace-free Weyl tensor, Cσ
µνρ, whereas in (2 + 1) dimensions, the Weyl

tensor vanishes identically and the full curvature tensor is determined by the Ricci tensor

and its trace as

Rµνρδ = gµρRνσ + gνσRµρ − gνρRµσ − gµσRνρ −
1

2
(gµρgνσ − gµσgνρ)R. (2.1)
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Thus the fundamental difference between (2+1) and (3+1) dimensional spacetimes originates

in the fact that the curvature tensor in (2+1) dimensions depends linearly on the Ricci tensor.

Therefore, the structure of (2 + 1) dimensional gravity is simple enough to allow a number

of exact computations which are impractical in (3 + 1) dimensions [19]. Work on (2 + 1)-

dimensional gravity dates back to 1963 and occasional articles appeared over the next twenty

years [20]. Credit for the recent growth of interest goes to Deser, Jackiw, and T Hooft [21],

who examined the classical and quantum dynamics of the point source.

In the following sections non-singular coordinates for some circularly symmetric black holes

in (2 + 1) dimensions, and rotating BTZ black hole are presented.

2.2 Non-singular Coordinates for Some Circularly Symmetric
(2 + 1)−Dimensional Black Holes

The circularly symmetric black hole solutions in (2 + 1)−dimensional gravity with a cosmo-

logical constant for a null fluid collapse, whose horizon structure depends on the value of k,

where k is a proportionality constant between the fluid pressure, P , and energy density, ρ, is

given by Viqar Husain [22] as

ds2 = −F (r, v)dv2 + 2dvdr + r2dθ2, (2.2)

where 0 < r < ∞ is the radial coordinate, −∞ < v < ∞ is an advanced time coordinate,

0 ≤ θ ≤ 2π is the angular coordinate and

F (r, v) = (1− 2g(v)− 2h(v)r1−k − Λr2). (2.3)

Here g(v), h(v) are arbitrary functions and Λ = −1/l2 (l is the radius of curvature). The

metric (2.2) represents static BTZ black hole for k = 1 and represents black hole with multiple

horizon for k < 1 [22].

In the following sub-sections non-singular Kruskal-like coordinates are presented for k = 1

and k = 0 cases.
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2.2.1 Case 1: when k = 1, g(v) = A > 0 and h(v) = 0

This case represents the static BTZ black hole, the metric (2.2) takes the form

ds2 = −F (r)dv2 + 2dvdr + r2dθ2, (2.4)

where F (r) = (1− 2A− Λr2).

In double null coordinates (v, u), metric (2.4) takes the form

ds2 = −F (r)dudv + r2dθ2, (2.5)

where F (r) = (1− 2A− Λr2). Its zeros are at r = ±l
√
2A− 1 = ±c. Hence the metric (2.5)

is singular at r = ±c, so we can write F (r) = (r−c)(r+c)
l2 . In order to remove the coordinate

singularity, we define r∗ as

r∗ =

∫
1

F (r)
dr =

l2

2c
ln

∣∣∣∣r − c

r + c

∣∣∣∣ .
Coordinates analogous to the Kruskal-like coordinates are then obtained as V = αeβv and

U = −αe−βu. Using these coordinates the metric (2.5) takes the form

ds2 =
(r − c)(r + c)

l2α2β2

∣∣∣∣r + c

r − c

∣∣∣∣ l2β

c

dV dU + r2dθ2. (2.6)

Set β = c/l2, to get

ds2 =
l2(r + c)2

α2c2
dV dU + r2dθ2, (2.7)

which is non-singular at r = c.

Coordinates U and V are related with r by
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V U = −α2

∣∣∣∣r − c

r + c

∣∣∣∣ .
As r → c, V,U → 0.

Now we introduce Kruskal-Szekres-like coordinates

ξ = V + U, η = V − U.

In (ξ, η) coordinates the metric (2.7) takes the form

ds2 =
l2(r + c)2

4α2c2
(dξ2 − dη2) + r2dθ2, (2.8)

where ξ and η are related with r by

ξ2 − η2 = −α2

(
r − c

r + c

)
.

Thus (ξ, η) coordinates cover the whole manifold and are non-singular at r = c.

2.2.2 Case 2: when k = 0, g(v) = A > 0 and h(v) = B > 0

In this case the F (r, v) given by Eq.(2.3) takes the form

F (r) = (1− 2A− 2Br − Λr2). (2.9)

The zeros of F (r) are given by

r± = l2(B ±
√
l2B2 + 2A− 1).

Now F (r) can be written as, F (r) = (r−r+)(r−r−)
l2 . In order to remove the coordinate singu-

larities at r = r±, define r
∗ as
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r∗ =

∫
1

F (r)
dr =

l2

(r+ − r−)
ln

∣∣∣∣r − r+
r − r−

∣∣∣∣ .
Coordinates analogous to the Kruskal-like coordinates are then obtained as V = αeβv and

U = −αe−βu. Using these coordinates the metric (2.5) takes the form

ds2 =
4l2(r − r−)

α2(r+ − r−)2
dV dU + r2dθ2, (2.10)

which is non-singular at r = r+ but it is still singular at r = r−. V and U are related to r by

V U = −α2

∣∣∣∣r − r+
r − r−

∣∣∣∣ ,
V, U → 0 as r → r+.

In Kruskal-Szekres-like coordinates metric (2.10) takes the form

ds2 =
l2(r − r−)

α2(r+ − r−)2
(dξ2 − dη2) + r2dθ2, (2.11)

where ξ and η are related with r by

ξ2 − η2 = −α2

(
r − r+
r − r−

)
.

The coordinate system (V,U) covers only the region r− < r < ∞ of the whole manifold.

Similarly by defining coordinates analogous to the Kruskal-like coordinates, V = −αe−βv

and U = αeβu, the singularity at r = r− in the region 0 < r < r+ of the spacetime can be

removed.

2.3 Rotating BTZ (Banados-Teitelboim-Zanelli) Black Hole

M. Banados, C. Teitelboim, and J. Zanelli discovered, in 1992, the black hole solution of

Einstein’s equations with a negative cosmological constant in (2+1) dimensions, called BTZ
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(Banados-Teitelboim-Zanelli) black hole [23]. The BTZ solution is guaranteed by the (2+ 1)

dimensional version of Birkhoff’s theorem [24]. This discovery was rather surprising as there

was no speculation at that time that there would exist a black hole solution in (2 + 1) di-

mensions. It attracted much interest in recent years because of its classical and quantum

properties [25]. The line element of the rotating BTZ black hole can be written as

ds2 = −f(r)dt2 + 1

f(r)
dr2 + r2(dϕ− J

2r2
dt)2 , (2.12)

where the function f(r) is given by

f(r) = −M +
r2

l2
+
J2

4r2
, (2.13)

with −∞ < t < ∞, 0 < r < ∞ and 0 ≤ ϕ ≤ 2π. The two constants M and J are

dimensionless mass and angular momentum respectively. Note that l = (−Λ)
−1

2 is the radius

of curvature that provides the length scale necessary to have horizons in a theory in which

the mass is dimensionless. Horizons of the rotating BTZ metric are zeros of the function

f(r). Depending on these zeros, there are three different cases of the rotating BTZ metric:

(1) Two distinct real roots, usual rotating BTZ black hole

(2) Repeated real roots, extreme BTZ (EBTZ) black hole

(3) No real root, naked rotating BTZ singularity.

2.3.1 Non-singular Coordinates for the Usual Rotating BTZ Black Hole

Considering the first case when M2 > J2/l2. For this case f(r) has two distinct real roots.

These roots are given by

r2± =
Ml2

2

[
1±

√
1− J2

M2l2

]
. (2.14)

The Ricci scalar, R, for the rotating BTZ metric is given by

R = 6/l2 , (2.15)

which is independent of r. This suggests that r = r± are coordinate singularities. Checking

the second curvature invariant confirms this expectation. In terms of r− and r+ , f(r) can

40



be written as

f(r) =
(r2 − r2+)(r

2 − r2−)

l2r2
. (2.16)

In order to remove the coordinate singularities, we define r∗ as

r∗ =

∫
1

f(r)
dr =

l2r+
2(r2+ − r2−)

ln |r − r+
r + r+

| − l2r−
2(r2+ − r2−)

ln

∣∣∣∣r − r−
r + r−

∣∣∣∣ . (2.17)

Like the RN case, two separate coordinate patches are needed to cover the entire region of

the CP diagram of the rotating BTZ black hole: one for the region 0 < r < r+ and the other

for r− < r < ∞. Coordinates analogous to the Kruskal-like coordinates, for 0 < r < r+, are

given by V− = αeβv and U− = −αe−βu, where the advanced and retarded coordinates [12]

are v = t+ r∗ and u = t− r∗, α and β are positive constants. Using Kruskal-like coordinates

the metric (2.12) takes the form

ds2 =
J2

16β2r2

{
1

V 2
−
dV 2

− +
1

U2
−
dU2

−

}
+

{
J2

8α2β2r2
−

(r2 − r2+)(r
2 − r2−)

α2β2l2r2

}

×
∣∣∣∣r − r−
r + r−

∣∣∣∣
βl2r−

2(r2
+

−r2−)

∣∣∣∣r − r+
r + r+

∣∣∣∣
−βl2r+

2(r2
+

−r2−)

dV−dU− − J

2β

{
1

V−
dV− − 1

U−
dU−

}
dϕ+ r2dϕ2,

(2.18)

where

V− = αeβt
∣∣∣∣r − r+
r + r+

∣∣∣∣
−βl2r+

2(r2
+

−r2−)

∣∣∣∣r − r−
r + r−

∣∣∣∣
βl2r−

2(r2
+

−r2−)

,

U− = −αeβt
∣∣∣∣r − r+
r + r+

∣∣∣∣
−βl2r+

2(r2
+

−r2−)

∣∣∣∣r − r−
r + r−

∣∣∣∣
βl2r−

2(r2
+

−r2−)

.

V− and U− are related to r by
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V−U− = −α2

∣∣∣∣r − r+
r + r+

∣∣∣∣
−βl2r+

(r2
+

−r2−)

∣∣∣∣r − r−
r + r−

∣∣∣∣
βl2r−

(r2
+

−r2−)

.

It follows that V−, U− → 0 as r → r− but the metric (2.18) remains singular at r = r+. The

coordinate system (V−, U−) covers only the region 0 < r < r+ of the whole manifold. This

region is shown in Fig.(2.1).

Coordinates, analogous to the Kruskal-like coordinates, for r− < r < ∞ are given by

V+ = −αe−βv and U+ = αeβu. Using these coordinates the metric (2.12) takes the form

ds2 =
J2

16β2r2

{
1

V 2
+

dV 2
+ +

1

U2
+

dU2
+

}
+

{
J2

8α2β2r2
−

(r2 − r2+)(r
2 − r2−)

α2β2l2r2

}

×
∣∣∣∣r − r−
r + r−

∣∣∣∣
−βl2r−

2(r2
+

−r2−)

∣∣∣∣r − r+
r + r+

∣∣∣∣
βl2r+

2(r2
+

−r2−)

dV+dU+ + r2dϕ2 − J

2β

{
1

V+
dV+ − 1

U+
dU+

}
dϕ,

(2.19)

where

V+ = −αe−βt

∣∣∣∣r − r+
r + r+

∣∣∣∣
βl2r+

2(r2
+

−r2−)

∣∣∣∣r − r−
r + r−

∣∣∣∣
−βl2r−

2(r2
+

−r2−)

,

U+ = αeβt
∣∣∣∣r − r+
r + r+

∣∣∣∣
βl2r+

2(r2
+

−r2−)

∣∣∣∣r − r−
r + r−

∣∣∣∣
−βl2r−

2(r2
+

−r2−)

.

V+ and U+ are related to r by

V+U+ = −α2

∣∣∣∣r − r+
r + r+

∣∣∣∣
βl2r+

(r2
+

−r2−)

∣∣∣∣r − r−
r + r−

∣∣∣∣
−βl2r−
(r2

+
−r2−)

.

It follows that V+, U+ → 0 as r → r+ but the metric (2.19) remains singular at r = r−. The

coordinate system (V+, U+) covers only the region r− < r < ∞ of the whole manifold. This
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region is shown in Fig.(2.2).

Kruskal-Szekres-like coordinates for the region 0 < r < r+, are defined as

ξ− = V− + U−, η− = V− − U−.

Using these coordinates, the metric (2.18) takes the form

ds2 = −[−
J2(ξ2− + η2−)

8β2r2(ξ2− − η2−)
2
+

1

4
(− J2

8α2β2r2
+

(r2 − r2+)(r
2 − r2−)

α2β2l2r2
)

∣∣∣∣r − r−
r + r−

∣∣∣∣
βl2r−

(r2
+

−r2−)

∣∣∣∣r − r+
r + r+

∣∣∣∣
−βl2r+

(r2
+

−r2−)

]dξ2− + [
J2(ξ2− + η2−)

8β2r2(ξ2− − η2−)
2

+
1

4
(− J2

8α2β2r2
+

(r2 − r2+)(r
2 − r2−)

α2β2l2r2
)

∣∣∣∣r − r−
r + r−

∣∣∣∣
βl2r−

(r2
+

−r2−)

∣∣∣∣r − r+
r + r+

∣∣∣∣
−βl2r+

(r2
+

−r2−)

]dη2−

+
J2ξ−η−

2β2r2(ξ2− − η2−)
dξ−dη− + r2dϕ2 − J

β
[

η−
ξ2− − η2−

dξ− − ξ−
ξ2− − η2−

dη−]dϕ, (2.20)

here

ξ− = 2α

∣∣∣∣r − r+
r + r+

∣∣∣∣
−βl2r+

2(r2
+

−r2−)

∣∣∣∣r − r−
r + r−

∣∣∣∣
βl2r−

2(r2
+

−r2−)

sinh(βt) ,

η− = 2α

∣∣∣∣r − r+
r + r+

∣∣∣∣
−βl2r+

2(r2
+

−r2−)

∣∣∣∣r − r−
r + r−

∣∣∣∣
βl2r−

2(r2
+

−r2−)

cosh(βt) ,

and the inverse transformations are

t =
1

β
tanh−1(

ξ−
η−

) ,

ξ2− − η2− = −4α2

[
r − r+
r + r+

] −βl2r+

(r2
+

−r2−)
[
r − r−
r + r−

] βl2r−
(r2

+
−r2−)

.
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For the region r− < r <∞, define

ξ+ = V+ + U+, η+ = V+ − U+

Using these coordinates the metric (2.19) takes the form

ds2 = −[−
J2(ξ2+ + η2+)

8β2r2(ξ2+ − η2+)
2
+

1

4
(− J2

8α2β2r2
+

(r2 − r2+)(r
2 − r2−)

α2β2l2r2
)

∣∣∣∣r − r−
r + r−

∣∣∣∣
−βl2r−
(r2

+
−r2−)

∣∣∣∣r − r+
r + r+

∣∣∣∣
βl2r+

(r2
+

−r2−)

]dξ2+ + [
J2(ξ2+ + η2+)

8β2r2(ξ2+ − η2+)
2

+
1

4
(− J2

8α2β2r2
+

(r2 − r2+)(r
2 − r2−)

α2β2l2r2
)|r − r−
r + r−

|
−βl2r−
(r2

+
−r2−) |r − r+

r + r+
|

βl2r+

(r2
+

−r2−) ]dη2+

+
J2ξ+η+

2β2r2(ξ2+ − η2+)
dξ+dη+ + r2dϕ2 − J

β
[

η+
ξ2+ − η2+

dξ+ − ξ+
ξ2+ − η2+

dη+]dϕ, (2.21)

where

ξ+ = 2α

∣∣∣∣r − r+
r + r+

∣∣∣∣
βl2r+

2(r2
+

−r2−)

∣∣∣∣r − r−
r + r−

∣∣∣∣
−βl2r−

2(r2
+

−r2−)

sinh(βt) ,

η+ = 2α

∣∣∣∣r − r+
r + r+

∣∣∣∣
βl2r+

2(r2
+

−r2−)

∣∣∣∣r − r−
r + r−

∣∣∣∣
−βl2r−

2(r2
+

−r2−)

cosh(βt) ,

and the inverse transformations are

t =
1

β
tanh−1(

ξ+
η+

) ,

ξ2+ − η2+ = −4α2

[
r − r+
r + r+

] βl2r+

(r2
+

−r2−)
[
r − r−
r + r−

] −βl2r−
(r2

+
−r2−)

.

The values of α and β are chosen so that the coordinates (ξ−, η−) and (ξ+, η+) are matched

at a point r between r− and r+. The coordinates (ξ−, η−) are non-singular at r = r−. These
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are used for 0 < r < r+. Similarly (ξ+, η+) are non-singular at r = r+. These are used for

r− < r <∞. r = r± corresponds to ξ− = η− = 0 and ξ+ = η+ = 0 respectively.

Notice that the particular case J = 0, which corresponds to static BTZ black hole, we can

recover the results presented in subsection (2.2.1).

2.3.2 Non-Existence of Carter-like Coordinate for the EBTZ Black Hole

For the extreme case the metric (2.12) takes the form

ds2 =

(
r4e
r2l2

− g(r)

)
dt2 +

1

g(r)
dr2 − 2r2e

l
dtdϕ+ r2dϕ2, (2.22)

where g(r) = (r2−r2e)
2

r2l2 and r2e = Ml2

2 . This metric is singular at r = re. Like the eRN case [86],

Kruskal-like coordinates do not remove the singularity in EBTZ case also. Hence, to avoid

the coordinate singularity, we introduce Carter-like coordinates [14]

ψ = tan−1(
v

l
) + cot−1(

w

l
) ,

ξ = tan−1(
v

l
)− cot−1(

w

l
) ,

here v = t+ r∗ and w = −t+ r∗, with r∗ given by

r∗ =

∫
r2l2

(r2 − r2e)
2
dr =

l2

4re
ln

∣∣∣∣r − re
r + re

∣∣∣∣− l2

2

r

(r2 − r2e)
.

In (ψ, ξ, ϕ) coordinates the metric (2.22) takes the form

ds2 =
1

4r2

{
(f1 + f2)dψ

2 + (f1 − f2)dξ
2 +

r4e
2
f3f4dψdξ

}
−r

2
e

2
(f3dψ+f4dξ)dϕ+r

2dϕ2, (2.23)

where

f1 =
r4e
4
{sec4(ψ + ξ

2
) + csc4(

ψ − ξ

2
)} ,
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f2 = {r
4
e

2
− (r2 − r2e)

2}sec2(ψ + ξ

2
) csc2(

ψ − ξ

2
) ,

f3 = sec2(
ψ + ξ

2
) + csc2(

ψ − ξ

2
) ,

and

f4 = sec2(
ψ + ξ

2
)− csc2(

ψ − ξ

2
) .

Note that ψ and ξ are related to the radial parameter by

tan(
ψ + ξ

2
) + cot(

ψ − ξ

2
)− l

[
1

2re
ln|r − re

r + re
| − r

(r2 − r2e)

]
= 0. (2.24)

The determinant of the metric (2.23) is

|gab| = −(r − re)
4(r + re)

4

16r2
sec4(

ψ + ξ

2
) csc4(

ψ − ξ

2
) , (2.25)

where

csc4(
ψ − ξ

2
) = (1 +

w2

l2
)2 = (1 +

1

l2
(−t+ r∗)2)2. (2.26)

or
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csc4(
ψ − ξ

2
) = (

l2

4re
[(r − re) ln(r − re)− (r − re) ln(r + re)− re −

re(r − re)

(r + re)
])4

−4(r − re)(
l2

4re
[(r − re) ln(r − re)− (r − re) ln(r + re)− re

−re(r − re)

(r + re)
])3t+ 2(r − re)

2(
l2

4re
[(r − re) ln(r − re)− (r − re) ln(r + re)

−re −
re(r − re)

(r + re)
])2(l2 + 3t2)− 4(r − re)

4(
l2

4re
[(r − re) ln(r − re)

−(r − re) ln(r + re)− re −
re(r − re)

(r + re)
])(l2 + t2)t+ (r − re)

4(l2 + t2)2.

(2.27)

Notice that as r → re and ψ → ξ, the value of the determinant is finite − r2el
4

256 sec4(ξ), but the

metric (2.23) is still not regular at r = re. Therefore, Carter-like coordinates do not remove

the singularity in extreme BTZ case.
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Figure 2.1: The region 0 < r < r+ of the rotating BTZ black hole. η− is along x-axis and
ξ− is along y-axis.
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Figure 2.2: The region r > r− of the rotating BTZ black hole. η+ is along x-axis and ξ+ is
along y-axis.
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Chapter 3

Double-Null Form for
(2 + 1)-Dimensional Spacetimes

Different forms of spacetime metrices are used in the study of solar-terrestrial relationships,

investigation of black hole spacetimes, the Newman-Penrose (NP) formalism and Numerical

Relativity etc. The need for more than one forms arises from the fact that often various phys-

ical processes are more understood, experimental data more ordered, or calculations more

easily performed in one form than in another. The double-null form for (2 + 1) dimensional

spacetime is

ds2 = 2g̃01dudv + g̃22dϕ
2, (3.1)

where g̃01 and g̃22 depend on u, v and ϕ.

The double-null form is widely used by Howard in his investigation of black hole spacetimes

[26] and also in earlier work by Roman and Bergman [27]. It is also helpful in simplifica-

tion of different calculations in NP formalism which was developed by Ezra T. Newman and

Roger Penrose [28, 29, 30, 31]. In case of vacuum space-times, the NP formalism simplifies

dramatically in double-null form, which allows many theorems to be proven easily.

Double-null form also plays a key role in Numerical Relativity which is applied to many

areas, such as cosmological models, perturbed black holes and neutron stars [32, 33, 34]. In
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numerical analysis, careful attention is paid to the stability and convergence of the numerical

solution which is usually possible using double-null form of the spacetime. Apart from NP

formalism and Numerical Relativity, the double-null form also helps to formulate light-cone

gauge of string theory which is a great attempt to reunite quantum mechanics and general

relativity [35, 36, 37, 38, 39]. In the following sections we discuss existence of double-null

form for (2+1) dimensional spacetimes.

3.1 Existence of Double-Null Form for (2+1)-Dimensional Space-
times

Consider the general spacetime metric in three dimensions

ds2 = g00dt
2 + g11dr

2 + g22dϕ
2 + 2g01dtdr + 2g02dtdϕ+ 2g12drdϕ , (3.2)

where g00, g11, g22, g01, g02 and g12 depend on t, r and ϕ.

In order to transform metric (3.2) into the double-null form (3.1), consider t = t(u, v),

r = r(u, v) and use the coordinate transformations

g̃ab =
∂xl

∂x̃a
.
∂xm

∂x̃b
.glm , (3.3)

where xl, xm and x̃a, x̃b refer to the (t, r, ϕ) and (u, v, ϕ) coordinates respectively, with

l,m, a, b = 0, 1, 2, to obtain the following system of partial differential equations

g̃00 =

(
∂t

∂u

)2

g00 +

(
∂r

∂u

)2

g11 + 2

(
∂t

∂u

)(
∂r

∂u

)
g01, (3.4)

g̃11 =

(
∂t

∂v

)2

g00 +

(
∂r

∂v

)2

g11 + 2

(
∂t

∂v

)(
∂r

∂v

)
g01, (3.5)

g̃22 = g22, (3.6)
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g̃01 =

(
∂t

∂u

)(
∂t

∂v

)
g00 +

(
∂r

∂u

)(
∂r

∂v

)
g11 +

(
∂t

∂u

∂r

∂v
+
∂r

∂u

∂t

∂v

)
g01, (3.7)

g̃02 =

(
∂t

∂u

)
g02 +

(
∂r

∂u

)
g12, (3.8)

g̃12 =

(
∂t

∂v

)
g02 +

(
∂r

∂v

)
g12. (3.9)

Requiring g̃00 = g̃11 = g̃02 = g̃12 = 0 in the above system of Eqs.(3.4) to (3.9), we find

(
∂t

∂u

)2

g00 +

(
∂r

∂u

)2

g11 + 2

(
∂t

∂u

)(
∂r

∂u

)
g01 = 0, (3.10)

(
∂t

∂v

)2

g00 +

(
∂r

∂v

)2

g11 + 2

(
∂t

∂v

)(
∂r

∂v

)
g01 = 0, (3.11)

g22 = g̃22, (3.12)

(
∂t

∂u

)(
∂t

∂v

)
g00 +

(
∂r

∂u

)(
∂r

∂v

)
g11 +

(
∂t

∂u

∂r

∂v
+
∂r

∂u

∂t

∂v

)
g01 = g̃01, (3.13)

(
∂t

∂u

)
g02 +

(
∂r

∂u

)
g12 = 0, (3.14)

(
∂t

∂v

)
g02 +

(
∂r

∂v

)
g12 = 0. (3.15)
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Requiring the Jacobian,

J =

(
∂t

∂u

)(
∂r

∂v

)
−
(
∂t

∂v

)(
∂r

∂u

)
, (3.16)

of the transformations from (t, r, ϕ) to (u, v, ϕ) to be non-zero, Eqs.(3.14) and (3.15) have

only trivial solution

g02 = g12 = 0.

This shows that if the metric (3.2) contains g02 or g12 then it cannot be transformed into the

double-null form (3.1). Therefore, the most general form of a (2 + 1) dimensional spacetime

metric that possibly can be transformed into the double null form is

ds2 = g00dt
2 + g11dr

2 + g22dϕ
2 + 2g01dtdr. (3.17)

Now in order to obtain specific transformations to transform metric (3.17) in double-null

form we consider the following cases:

(1) g00, g11, g22 ̸= 0 and g01 = 0

(2) g00, g22, g01 ̸= 0 and g11 = 0

(3) g11, g22, g01 ̸= 0 and g00 = 0

(4) g00, g11, g22, g01 ̸= 0.

3.1.1 Case 1: g00, g11, g22 ̸= 0 and g01 = 0

The system of Eqs.(3.10) to (3.13) becomes

(
∂t

∂u

)2

g00 +

(
∂r

∂u

)2

g11 = 0, (3.18)

(
∂t

∂v

)2

g00 +

(
∂r

∂v

)2

g11 = 0, (3.19)
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g22 = g̃22, (3.20)

(
∂t

∂u

)(
∂t

∂v

)
g00 +

(
∂r

∂u

)(
∂r

∂v

)
g11 = g̃01. (3.21)

Requiring the Jacobian (3.16) to be non-zero, Eqs.(3.18) and (3.19) imply

(
∂t

∂u

)(
∂r

∂v

)
+

(
∂t

∂v

)(
∂r

∂u

)
= 0, (3.22)

which gives the following transformations

t = Φ(u± v), r = Ψ(u∓ v), (3.23)

where Φ and Ψ are arbitrary functions.

3.1.2 Case 2: g00, g22, g01 ̸= 0 and g11 = 0

In this case the system of Eqs.(3.10) to (3.13) becomes

(
∂t

∂u

)2

g00 + 2

(
∂t

∂u

)(
∂r

∂u

)
g01 = 0, (3.24)

(
∂t

∂v

)2

g00 + 2

(
∂t

∂v

)(
∂r

∂v

)
g01 = 0, (3.25)

g22 = g̃22, (3.26)
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(
∂t

∂u

)(
∂t

∂v

)
g00 +

(
∂t

∂u

∂r

∂v
+
∂r

∂u

∂t

∂v

)
g01 = g̃01. (3.27)

Eqs.(3.24) and (3.25) can be written as

∂t

∂u

(
∂t

∂u
g00 + 2

∂r

∂u
g01

)
= 0 (3.28)

and

∂t

∂v

(
∂t

∂v
g00 + 2

∂r

∂v
g01

)
= 0. (3.29)

Eqs.(3.28) and (3.29) are satisfied for the following cases:

(a) ∂t
∂u = ∂t

∂v = 0

(b) ∂t
∂ug00 + 2 ∂r

∂ug01 =
∂t
∂vg00 + 2 ∂r

∂vg01 = 0 ⇒ g01 = g00 = 0

(c) ∂t
∂u = ∂t

∂vg00 + 2 ∂r
∂vg01 = 0

(d) ∂t
∂v = ∂t

∂ug00 + 2 ∂r
∂ug01 = 0.

In cases (a) and (b), the double-null form is not possible as they lead to contradictions g̃01 = 0

and g00 = 0 = g01 respectively. However, existence of double-null form is possible for cases

(c) and (d).

3.1.3 Case 3: g11, g22, g01 ̸= 0 and g00 = 0

In this case the system of Eqs.(3.10) to (3.13) takes the form

(
∂r

∂u

)2

g11 + 2

(
∂t

∂u

)(
∂r

∂u

)
g01 = 0, (3.30)

(
∂r

∂v

)2

g11 + 2

(
∂t

∂v

)(
∂r

∂v

)
g01 = 0, (3.31)
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g22 = g̃22, (3.32)

(
∂r

∂u

)(
∂r

∂v

)
g11 +

(
∂t

∂u

∂r

∂v
+
∂r

∂u

∂t

∂v

)
g01 = g̃01. (3.33)

Eqs.(3.30) and (3.33) can be written as

∂r

∂u

(
∂r

∂u
g11 + 2

∂t

∂u
g01

)
= 0 (3.34)

and

∂r

∂v

(
∂r

∂v
g11 + 2

∂t

∂v
g01

)
= 0. (3.35)

Eqs.(3.34) and (3.35) are satisfied for the following cases:

(a) ∂r
∂u = ∂r

∂v = 0

(b) ∂r
∂ug11 + 2 ∂t

∂ug01 =
∂r
∂vg11 + 2 ∂t

∂vg01 = 0 ⇒ g01 = g11 = 0

(c) ∂r
∂u = ∂r

∂vg11 + 2 ∂t
∂vg01 = 0

(d) ∂r
∂v = ∂r

∂ug11 + 2 ∂t
∂ug01 = 0.

Cases (a) and (b), again lead to contradictions g̃01 = 0 and g11 = 0 = g01 respectively,

however, existence of double-null form is possible for cases (c) and (d).

3.1.4 Case 4: g00, g11, g22, g01 ̸= 0

In this case, the following system of partial differential equations

(
∂t

∂u

)2

g00 +

(
∂r

∂u

)2

g11 + 2

(
∂t

∂u

)(
∂r

∂u

)
g01 = 0, (3.36)
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(
∂t

∂v

)2

g00 +

(
∂r

∂v

)2

g11 + 2

(
∂t

∂v

)(
∂r

∂v

)
g01 = 0, (3.37)

g22 = g̃22, (3.38)

(
∂t

∂u

)(
∂t

∂v

)
g00 +

(
∂r

∂u

)(
∂r

∂v

)
g11 +

(
∂t

∂u

∂r

∂v
+
∂r

∂u

∂t

∂v

)
g01 = g̃01, (3.39)

is to be solved, along with requiring the Jacobian (3.16) to be non-zero, to obtain the trans-

formations which will give the required double-null form.
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Chapter 4

Foliation and the First Law of
Black Hole Thermodynamics

4.1 Thermal Physics

One of the most electrifying and rapidly developing branches of the study of black holes is

“black hole thermodynamics”. The law of conservation of energy is the basis of the subject.

Historically, thermodynamics is developed to understand the energy conversion involving heat

and other forms of energy. Later Maxwell, Boltzmann and others gave this theory a sound

base to give a better comprehension regarding the macroscopic variables as driving force for

the microscopic mechanical variables. Classical thermodynamics deals only with equilibrium

states of a system. The laws of thermodynamics form an axiomatic basis of thermodynamics

and were accepted after a lot of careful experimentation. These laws are a complete set of

logically sufficient axioms, from which the rest of thermodynamics can be extracted. The laws

of thermodynamics explain temperature equivalence (zeroth law), energy conservation (first

law), entropy tendencies (second law) and condition for an absence of temperature (third

law). The four laws of thermodynamics are [40]-[46]:

1) Zeroth Law of Thermodynamics

“Objects in thermal equilibrium with a third object are in thermal equilibrium with each other”.

This is also known as the principle of temperature measurement. It enables us to define the

parameter, temperature as heat flows from a higher temperature to lower temperature and

so there is no heat flow when two systems are at the same temperature. It was formulated
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by Ralph Fowler in 1931, as stated above. Scottish physicist Joseph Black in 1738 gave the

theoretical framework for the zeroth law. Almost after 100 years of Joseph Black, Scottish

physicist James Clerk Maxwell published “laws of equal temperature” in 1871, which was

considered the first formulation by most references. The term “zeroth law” was coined by

Fowler and Edward in 1939.

In classical thermodynamics absolute zero is the temperature at which an ideal gas would

have zero volume. From the kinetic theory of gases and Boltzmanns statistical mechanics,

the absolute temperature, T , is related to the energy density, E, of random motion of the

particles in the system by the formula [47]

E =
3

2
nkT, (4.1)

where n is the number of moles per unit volume of particles in the system and k is the Boltz-

manns constant, which has a value 1.3810− 16ergs/◦K.

2) First Law of Thermodynamics

“In an isolated system the net deficit of energy on inter-converting other forms of energy is

equivalent to the gain of heat energy”.

For example, if at a given pressure, there is a decrease of volume of a system, this will equal

the increase in heat of that system (all other physical quantities being held fixed).

In an arbitrary thermodynamic transformation let ∆Q denote the net amount of heat ab-

sorbed by the system and ∆W the net amount of work done by the system. The first law

states that the internal energy ∆U , defined by

∆U = ∆Q−∆W,

is the same for all transformations leading from a given initial state to a given final state.

It can be stated as “Energy can neither be created nor destroyed. It can only change form.”

However, in 1837, Rudolf Clausius, gave the first explicit statement of the first law of ther-

modynamics as

“there is a state function U, called energy, whose differential equals the work exchanged with
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the surroundings during an adiabatic process.”

In an infinitesimal transformation, any change in U , dU , is the difference between heat

added dQ and the work done by the system, dW ,

dU = dQ− dW = dQ− PdV.

where dU is a perfect differential dQ and dW are imperfect ones (that is they are non in-

tegrable). dQ is the heat added to the system and dW is the work done by the system. It

states that mechanical work and heat are two forms of energy and must be lumped together

when the change in the internal energy of the system is computed.

3) Second Law of Thermodynamics

“The over-all change in heat energy of an isolated system is non-negative in any inter-

conversion of energy”.

If we use a temperature difference to work a heat engine, the amount of work done by it

will not be greater than the energy used, but it can be less. Reversible processes are those

in which it is equal and the others are called irreversible. In statistical terms the extent of

disorder of the system, measured by a parameter called entropy (and generally denoted by

S), must be non-decreasing in any process.

It can be stated as the spontaneous tendency of a system to go towards thermodynamic equi-

librium cannot be reversed without at the same time changing some organized energy, work

into some disorganized energy, heat. The laws of thermodynamics have a negative quality

that differentiates them from other laws of physics. The first law may be stated by saying

that energy cannot be destroyed. German scientists Rudolf Clausius is the first who gives the

first formulation of the second law, now known as the Clausius’s principle:

“There exists no thermodynamic transformation whose sole effect is to extract a quantity of

heat from a colder reservoir and to deliver it to a hotter reservoir”.

It is logically equivalent to another statement called Kelvin’s principle:

“There exists no thermodynamic transformation whose sole effect is to extract a quantity of

heat from a given heat reservoir and convert it entirely into work”.
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Carnot Engine:

It is a hypothetical engine that operates on the reversible Carnot cycle. A carnot cycle op-

erates between two temperatures, a higher one Th, that of the heat source and a lower one,

Tc, that of the heat sink. The cycle consist of two adiabatic and two isothermal processes.

This cycle does not convert all the heat drawn from the reservoir at Th into work, some of

it is dumped as unused heat into sink at Tc. The net work done by the engine per cycle is

the area enclosed by the two adiabatic and two isothermal curves. The Carnot efficiency, η,

is given by:

η =
Th − Tc
Th

× 100.

Second law can also be stated as:

“No engine operating between two given temperatures is more efficient than a Carnot engine”.

The above four different phrasings of second law are equivalent [48].

4) Third Law of Thermodynamics

It is the least known of all the laws. This law enables us to define the entropy of a substance

up to an arbitrary additive constant but does not uniquely determine the difference in entropy

of two states. It was independently uncovered by Walther Nernst in 1906 and Max Planck

formulated it in 1911. It can be stated in a variety of ways. Two formulations due to Nernst

are:

“Isothermal reversible processes become isentropic in the limit of zero temperature”.

and

“It is impossible to reduce the temperature of any system to the absolute zero in a finite num-

ber of operations”. This law can be rephrased as

“The absolute zero of temperature can never be achieved by a finite number of isothermal

(constant temperature) and adiabatic (constant heat) cooling steps”.

In other words, it takes an infinite number of successive isothermal and adiabatic steps to

reach zero temperature.

Thermodynamic systems which are not isolated, a law, known as Stefans law, deals with

them. The darker a body the more efficient it is at absorbing or emitting radiation. The
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idealized limit of a perfect radiator is called a “black body”. Stefans law states that “the

total energy density, ρ, radiated by a black body is proportional to the fourth power of the

temperature”,

ρ = σT 4, (4.2)

where σ ≈ 7.6x1015erg/cm3/◦K4 is the Stefan-Boltzmann constant. This was stated as a

purely empirical result. An attempt at spectral analysis of this energy radiation led to confus-

ing results [47]. For long wave-lengths Wein found that E ∝ λ−2, where λ is the wave-length

of the black body radiation being observed. However, for high frequencies Rayleigh and Jeans

found that ρ ∝ V 3e−ντ , where ν is the frequency of the black body radiation being observed

and ν is proportional to its absolute temperature. In 1900 Max Planck deduced a formula

for the energy density of radiation if it is emitted and absorbed by matter in discrete quanta

of hν, where h is called Planck’s constant. This energy density distribution, which Planck

verified experimentally, known as the Planck spectrum, is

ρ(ν, T ) =
8πc3hν3

e
hν

kT − 1
. (4.3)

On integration over all ν this gives Stefans law. In the long wavelength limit it gives Weins

law and in the high frequency limit the Rayleigh-Jeans law. It clearly provides a more

fundamental understanding of radiation from black bodies and is generally regarded as the

birth of the quantum theory.

4.1.1 Black Hole Thermodynamics

The connection between black holes and thermodynamics started from an argument presented

by Penrose about reversing the entropy increase by using black holes [49]. To extract rest

energy from non-usable objects, Penrose started with the consideration that objects could be

lowered from a safe distance into the black hole. As it would be lowered it would wind up a

spring. At the surface of the hole it would be released and the freed spring could then do some

useful work. He soon realized, the natural next step was to fill up a box with non-usable

thermal radiation and lower the box into the black hole, as before, then open it near the

surface to let the thermal energy out. Due to the equivalence of mass and energy this would
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allow the relaxed spring to do useful work. He would, in fact, not only have “got something

from nothing” but would have got rid of the thermal pollution far from the hole.

Penrose and Floyd (1971) [50], went on to construct a mechanism to extract energy from

rotating black holes. The essence of the Floyd-Penrose process is to break a compound ob-

ject inside the ergosphere of a Kerr black hole in such a way that one part falls into the hole

and the other goes away to infinity. Since the locally-rest-particles appear to travel faster

than light as viewed from infinity. Applying energy conservation, as seen from infinity the

outgoing particle appears to have more energy than the original object did, even counting the

rest energy in. As such the rotating black hole has lost energy in all. This can be arranged

if the incoming object has angular momentum in the same direction to the rotation of the

black hole.

At the time when Penrose presented this argument it seemed unbelievable that energy could

ever be extracted from a black hole. However, it soon became clear that the Kerr black hole

stored some of its energy in its ergosphere which is outside the black hole. Thus no energy

really came out of the black hole itself, it merely appeared to lose mass on account of some

of the supposed mass being stored as energy outside the black hole. Ruffini and his student,

Christodoulou [51], demonstrated that there is an irreducible mass that a black hole has and

extra energy of electromagnetic nature can be stored in it.

4.1.2 Laws of Black Hole Thermodynamics

In comparing the laws of black hole thermodynamics in GR with the ordinary laws of ther-

modynamics, it should be noted that the black hole uniqueness theorems [52] establish that

stationary black holes are characterized by a small number of parameters analogous to the

state parameters of ordinary thermodynamics. In the corresponding laws:

a) The role of energy, E, is played by the mass, M , of the black hole.

b) The role of temperature, T , is played by a constant times the surface gravity, κ, of the

black hole.

c) The role of Entropy, S, is played by a constant times the area, A, of the black hole.
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The fact that E andM represent the same physical quantities provides a strong mathematical

analogy between the laws of black hole thermodynamics and ordinary laws of thermodynam-

ics that might be of physical significance. As argued in [53], this can not be the case in

classical GR. The physical temperature of the black hole is zero, so there can be no physi-

cal relationship between T and κ. Therefore, it would be inconsistent to assume a physical

relationship between S and A. However, the situation changes when Quantum effects are

considered [54].

In 1971 Stephen Hawking [55], stated that the area, A, of the event horizon of a black

hole can never decrease (but can remain constant) in any process, mathematically:

∆A ≥ 0.

It was later noted by Bekenstein [56] that this result is analogous to the statement of the

ordinary second law of thermodynamics, namely, that the total entropy, S, of a closed system

never decrease in any process,

∆S ≥ 0. (4.4)

With these arguments it is legitimate to establish the laws of black hole thermodynamics in

parallel to the laws of ordinary thermodynamics by using parameters of the black hole.

Zeroth Law:

In order to discuss zeroth law, it is fruitful to define Hawking radiation. A thermal radiation

is predicted to be emitted by black holes known as “Hawking radiation”, due to quantum

mechanical effects. It is named after the physicist Stephen Hawking, who provided a theo-

retical argument for its existence in 1974.

“The event horizon is described by a quantity κ, the surface gravity, which remains con-

stant over the event horizon”. It is called zeroth law.

The relationship between the surface gravity and the physical temperature of the black hole
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(Hawking temperature) is expressed by

TH =
κ

2π
.

For the Schwarzschild black hole, where κ = 1
4M , the Hawking temperature becomes

TH =
1

8πM
.

In case of the rotating Kerr black hole, the Hawking temperature is

TH = (
κ

8π
) = 2

(
1 +

M√
M2 − a2

)−1( 1

8πM

)
,

where a = J
M . For the charged non-rotating RN black hole, one has

TH =
κ

8π
=

(
1− Q4

r4+

)
1

8πM
.

First Law:

The first law of black hole thermodynamics, like the first law of ordinary thermodynamics,

is a statement representing energy conservation. Energy conservation holds only if there is

time translational invariance. The difference from usual thermodynamics arises because we

can conceive of an “isolated system” as one with adequate thermal insulation. There can

never be gravitational insulation and hence we can not really think of the equivalent of an

isolated system in the context of black holes. Nevertheless, we can treat a black hole as an

approximately isolated system. In fact, for actual use of thermodynamics we accept the fact

that there are no real isolated systems but only approximations to them. The first law of

black hole thermodynamics then states that:

“ the net energy including rest energy going into a black hole equals the sum of increase

in the rest energy of the black hole spacetime and the energy radiated away from the in falling

object”.

When a black hole goes from one stationary state to another, this law deals with the mass

(energy) change, dM . In simple words this law is an identity relating the change in mass,

M , angular momentum, J , and area , A, of the horizon of a black hole spacetime when it is
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perturbed. The variation of these quantities always satisfy

dM = (
κ

8π
)dA+ work terms, (4.5)

or

dM = TdSBH + work terms, (4.6)

where SBH is entropy of the black hole.

Second Law:

In any classical process, the area of the event horizon does not decrease, mathematically

dA ≥ 0.

Also the black hole entropy, SBH , never decreases . If the quantum effect is taken into

account, namely that the area of the event horizon can be reduced via Hawking radiation,

the second law of back hole thermodynamics can be violated . It is important to note that

naturally the black hole radiation is thermal, therefore, generates a rise in the entropy in the

surrounding. The generalized entropy, S
′
, introduced by Bekenstein [56] is defined as

S
′
= SBH + Sm,

where SBH is the black hole entropy and Sm is the entropy of the surrounding matter. The

statement known as generalized Second Law (GSL) is

∆S
′ ≥ 0.

The ordinary second law of black hole thermodynamics seems to fail when a matter is dropped

into a black hole because according to classical GR, the matter will disappear into a spacetime

singularity, in this way the net entropy of the universe decreases as there is no compensation

for the lost entropy. The GSL keeps the law of entropy valid as the total entropy of the

universe still increases when that matter falls into the black hole.
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Third Law:

Within a finite time the limit κ = 0 cannot be reached, i-e, it is not possible how many

processes we do, we will never reach the limit κ = 0. However, the extremal black holes, the

Kerr black hole in which a
M = 1, do have κ = 0 thus zero temperature (absolute zero) but

non-zero entropy. To actually reduce the surface gravity to zero is merely an idealized case

because it is forbidden by the cosmic censorship conjecture.

It is important to note that the close mathematical analogy of the zeroth, first and sec-

ond laws of thermodynamics to corresponding laws of classical black hole thermodynamics is

broken by the Plank-Nernst form of the third law of thermodynamics [57], which states that

S → 0 as T → 0. The analogy of this law fails in black hole thermodynamics, since there

exist extremal black holes (black hole with κ = 0) with finite area. However there is a good

reason to believe that the “Plank-Nernst theorem” should not be viewed as a fundamental

law of thermodynamics, but rather as a property of the density of the states near the ground

state in the thermodynamic limit, which happens to be valid for commonly studied materials.

Indeed, examples can be given of ordinary systems that violate the Plank-Nernst form of the

third law in a manner very similar to the violations of the analog of this law that occur for

black holes [58]. As far as, we are concerned with physical theories regarding the laws of

black hole thermodynamics, thereby a number of open questions can be raised [59]-[61], such

as:

1) Is the black hole entropy real or subjective?

2) Where does it appear on or near the horizon or deep in the hole?

3) What dynamical mechanism makes the black hole entropy a universal function, indepen-

dent of the hole past history or detailed internal condition?

When quantum effects are considered, one can ask about:

4) Can the black hole entropy be derived from quantum mechanical considerations?

5) What happens to the black hole entropy after the black hole has evaporated, due to the

effect of Hawking radiation? Will all the information disappear after the evaporation?
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These frequently asked questions are embarrassing, because we do not know with our present

knowledge how to answer them precisely. Nevertheless, it is hoped that success in modern

theory of gravity would be the key to answer–if not all–some of these open questions.

4.1.3 Foliation

The word foliation is from a Latin original folia, which means leaf. The concept of foliation

or slicing develops in seventeenth century from the theory of differential equations where

the trajectories of solution space can be considered as the leaves of the foliation. Poincare,

in late nineteenth century, was able to develop methods for the study of global, qualitative

properties of dynamical systems in situations where the explicit solution methods had failed.

He discovered that the study of the geometry of the space of the trajectories of a dynami-

cal system reveals complex phenomena. He gave strong impetus to the topological methods

and emphasized the qualitative nature of the phenomena, which led to the subject of foliation.

The foliation of an n-dimensional manifold, M , is a decomposition of M into submanifolds,

all being of the same dimension, p. The submanifolds are the leaves of the foliation. The

co-dimension, q, of a foliation is defined as q = n−p. A foliation of co-dimension one is called

a foliation by hypersurfaces. The pioneers of foliation theory were Reeb [62] and Ehresmann

[63], the former, in particular, coined the term foliation.

The simplest understood cases of foliation are when p = q = 1, e.g. the two dimensional

xy-plane can be foliated by the straight lines, y = mx+ c, with c taken as the parameter and

any fixed m. One can also foliate the xy-plane by circles, x2 + y2 = a2(0 < a < ∞), but in

this case the origin is left out unless the degenerate circle, a = 0, is included.

A foliation of a manifold is said to be complete if it covers the entire manifold by a se-

quence of non-intersecting sub-manifolds. For example, a disc of radius a can be completely

foliated by circles but it can not be completely foliated by squares as there would be some

portion of the disc left uncovered.
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Hypersurfaces (timelike, null or spacelike) could be used to foliate a spacetime. For this

approach, we have to specify some geometrical property that this family of hypersurfaces

must satisfy. A local or global time parameter, varying from one hypersurface to another, is

then provided. However, there is no guarantee that a complete foliation can be so achieved.

An example of the first approach is the requirement that the hypersurfaces look flat to an

observer, locally i-e. have zero intrinsic curvature. An example of the global approach is the

requirement that this family of hypersurfaces have zero or constant mean extrinsic curvature.

4.1.4 Foliation of a Black Hole Spacetime

Traditionally black holes are understood as embedded in asymptotically flat spacetime. It is

taken for granted that the spacetime is not compact. A classical black hole is a region from

inside of which not even light can escape to infinity. Therefore, an infinity to escape to is

required. There is a problem, if the spacetime did not tend to Minkowski space far away

from the source, or more dramatically, if the universe was closed so that there was nothing

sufficiently far away from the source. In a closed universe, as there is no infinity to escape

to, the distingtion between inside and outside a black hole is ambiguous, or alternatively, the

distinction between the black hole singularity and the final cosmological singularity is not

clear.

Penrose, pointed out that it should be possible to regard the black hole singularity as a

part of the final singularity [64, 65]. He suggested that there should exist a foliation of the

spacetime by a sequence of spacelike hypersurfaces which would approach the singularity

smoothly without cutting it anywhere. Thus the entire spacetime would be foliated. The

limit of some parameter going to some specific value should yield the entire singularity.

Initially hypersurfaces of zero mean extrinsic curvature are used to foliate a spacetime

called foliation by maximal slicing [66]. Foliating even the most simple of spacetimes, the

Schwarzschild spacetime, the hypersurfaces did not pass through all the spacetime points [67].

This meant that either Penrose’s conjecture was incorrect or the maximal slicing procedure
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was inappropriate for the purpose. Later York slicing procedure [67, 68] was thought to be

more appropriate for the purpose. In this slicing hypersurfaces are defined to have some

given constants mean extrinsic curvature. After that there has been a lot of work on foliating

different spacetimes [69]-[88].

4.2 Field Equations and the First Law of Black Hole Thermo-
dynamics

Black hole horizon acts as a boundary of the spacetime and blocks any physical information

to flow out to the rest of world. This led Bekenstein [89] to claim that the black holes

must hold non-zero entropy since they withhold information from the outside observer. This

interpretation became unambiguous when Hawking [90] showed that a black hole can emit

thermal radiation with a temperature proportional to its surface gravity at the black hole

horizon and with an entropy proportional to its horizon area [91]. The Hawking temperature

T = κ/2π and the black hole entropy S = A/4G are connected through the identity dE =

TdS, usually called first law of black hole thermodynamics [89, 90, 91]. In more general, the

first law of black hole thermodynamics is related with the energy change by dE = TdS +

workterms. For Kerr-Newman black hole family, the first law of black hole thermodynamics

is given by

dE = TdS +ΩdJ +ΦdQ, (4.7)

where Ω = ∂M
∂J is the angular velocity and Φ = ∂M

∂Q is the electric potential. The above

equation indicates that the thermodynamic interpretation of the Einstein field equations is

possible near horizon because black hole solutions are obtained from Einstein’s field equa-

tions and the geometric quantities of the spacetime metric are related to the thermodynamic

quantities. Jacobson [92] was able to find the Einstein field equations by employing the

first law of thermodynamics δQ = TdS along with proportionality of entropy to the hori-

zon area of the black hole. In case of Einstein gravity [93], as well as for a more general

Lanczos-Lovelock theories of gravity, Paranjape Sarkar and Padmanabhan [94] found that it

is possible to interpret the field equations for a special class of spherically symmetric space-

times as a thermodynamic identity TdS = dE + PdV near black hole horizon. For a more

general situation in Einstein gravity, Kothawala, Sarkar and Padmanabhan [95] found that
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the field equations near any spherically symmetric horizon can be expressed as a thermal

identity TdS = dE + PdV and extended their approach for stationary axis-symmetry hori-

zons and time dependent evolving horizon and found, in both cases, that the structure of the

Einstein equations near horizon can also be expressed as a thermodynamic identity under

the virtual displacement of the horizon. However, it was soon realized that the notions of

temperature and entropy can also be associated with several other types of horizons which

advocate a generic thermodynamic behavior of horizons [96, 97, 98, 99]. In case of apparent

horizon of FRW universe, Cai and Kim [100] are able to derive the Friedmann equations of

(n+1)-dimensional Friedman-Robertson-Walker (FRW) universe with any spatial curvature

by applying the first law of thermodynamics (TdS = −dE) to the apparent horizon. Also by

using the entropy expression of a static spherically symmetric black hole in the Gauss-Bonnet

gravity and in more general Lovelock gravity, they reproduce the corresponding Friedmann

equations. The possible extensions to the scalar-tensor gravity and f(R) gravity theory have

been studied in reference [101]. However, in more general context, Akbar etal [102] have

shown that thermodynamic interpretation of Friedmann equations, describing the dynamics

of the universe, is possible at apparent horizon of FRW universe and showed that it is possible

to interpret the differential form of Friedmann equations near apparent horizon as a universal

form dE = TdS +WdV in the Einstein theory of general relativity as well as for a wider

class of Gauss-Bonnet and Lovelock theories of gravity. These thermodynamic interpretation

of gravitational dynamics at horizons needs further investigation for understanding it at a

deeper level [93, 105]. In recent years, (2+1)-dimensional BTZ (Banados-Teitelboim-Zanelli)

black holes have drawn a lot of attention as simplified models for exploring conceptual issues

relating to the black hole thermodynamics (see, e.g.,[19, 106]). The thermodynamic inter-

pretation of field equations for static as well as non-static BTZ black hole near horizon is

presented in [107] and for charged rotating BTZ black hole in [18]. Further interesting work

in this direction, can be seen in [103, 104].

In the next subsection, using the concept of foliation, we present an elegant and simpler

way of obtaining relationship between the Einstein field equations at the horizon and the

first law of black hole thermodynamics. Instead of obtaining field equations of black hole
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spacetime and analyzing thermal interpretation at the horizon, here the main idea is to con-

sider a foliation so that the horizon corresponds to a particular hypersurface. Then we work

out the field equations for the induced metric of the hypersurfaces and obtain the earlier

thermal analysis for the hypersurface corresponding to the horizon. The main advantage of

our procedure is that instead of dealing with the field equations of an n−dimensional space-

time, we deal with the field equations of (n− 1)−dimensional induced metric. In the coming

subsections, we present our procedure for the Schwarzschild, RN, Kerr and Kerr-Newman

spacetimes.

4.2.1 The Schwarzschild Black Hole

The thermal quantities associated with the event horizon of the Schwarzschild black hole

Eq.(1.3) are the temperature T = f ′(r)
4π |horizon= 1

8πm and the entropy S = A
4 = 4πm2 (where

A is the horizon area).

Consider r = constant (say k) hypersurfaces, so that the black hole horizon corresponds

to a particular hypersurface. The induced metric of the hypersurfaces is then given by

ds2h = f(k)dt2 − k2(dθ2 + sin2θdϕ2). (4.8)

The (0, 0)-component of the Einstein tensor given by Eq.(1.1) with κ = −8π for the induced

metric (4.8) is

G00 =
f(k)

k2
=

1− 2m
k

k2
. (4.9)

Treating k as a parameter and considering an arbitrary small displacement dk, the (0, 0)-

component of the Einstein field equations (1.1) for the induced metric (4.8) with T00 = 0

gives

dk

2
− m

2πk2
d(πk2) = 0. (4.10)
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For the hypersurface given by k = 2m the above Eq.(4.10) yields the first law

dm = TdS. (4.11)

It is important to note that k = 2m, which corresponds to the black hole event horizon, is

the only hypersurface satisfying the first law.

4.2.2 The RN Black Hole

The thermal quantities associated with the RN black hole (1.43) at the outer horizon (r =

r+ = m+
√
m2 −Q2) are the temperature T = f ′(r)

4π |r=r+=
(mr+−Q2)

2πr3+
, entropy S = A

4 = πr2+

(where A is the horizon area) and electric potential Φ = ∂m
∂Q |r=r+=

Q
r+
.

We again consider r = constant (say k) hypersurfaces, so that the black hole horizons corre-

spond to particular hypersurfaces. The induced metric of the hypersurfaces takes the same

form as given by Eq.(4.8), with f(k) now given by

f(k) = 1− 2m

k
+
Q2

k2
. (4.12)

The (0, 0)-component of the Einstein tensor (1.1) for the induced metric (4.8) with f(k) given

by (4.12) is

G00 =
f(k)

k2
=

1− 2m
k + Q2

k2

k2
. (4.13)

Again treating k as a parameter and considering an arbitrary small displacement dk, the

(0, 0)-component of the Einstein field Eqs.(1.1) for the induced metric with T00 = −P gives

dk

2
− mdk

k
+
Q2dk

2k2
= 4πPk2dk, (4.14)

where P corresponds to the pressure of the source. Also at the horizon m = r+
2 + Q2

2r2+
, which
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gives

dm =
dr+
2

− Q2

2r2+
dr+ +

Q

r+
dQ. (4.15)

Now using Eq.(4.15) in Eq.(4.14) and simplifying at the horizon, k = r+, we obtain

dm− (mr+ −Q2)

2πr3+
d(πr2+)−

Q

r+
dQ = Pd(

4

3
πr3+), (4.16)

which can be expressed in terms of the thermal quantities, defined after Eq.(4.12), as the

first law

dm = TdS +ΦdQ+ PdV, (4.17)

where V = 4
3πr

3
+ is the volume enclosed by the horizon.

4.2.3 The Kerr Black Hole

The Vaccum solution of the field equations (1.1), for axis-symmetric gravitational field due to

a mass, M, called the Kerr black hole [108] is given by (1.71). Consider r =constant (say k),

hypersurfaces, so that the black hole horizons correspond to particular hypersurfaces. The

induced metric of the hypersurfaces is given by

ds2h = −∆2

ρ2
(dt− a sin2 θdϕ)2 + ρ2dθ2 +

sin2 θ

ρ2
(adt− (k2 + a2)dϕ)2, (4.18)

where ∆2 = (k2 + a2)− 2mk, ρ2 = k2 + a2 cos2 θ.

The Kerr black hole is associated with temperature, T , entropy, S, and angular velocity, Ω, as

T =
K

2π
=

1

2π
lim
r−→k

√
−g11
g00

(
(g00)′

g00
) =

m(k2 − a2)

2π(k2 + a2)2
, (4.19)
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S = π(k2 + a2), (4.20)

Ω = lim
r−→k

−g13

g33
=

a

k2 + a2
. (4.21)

At the horizon m = k2+a2

2k , which gives

dm =
k2 − a2

2k2
dk. (4.22)

From J = am and Eq.(4.22), we have

dJ =
a(k2 − a2)

2k2
dk. (4.23)

Also

TdS = − (a2 − k2)

2(k2 + a2)
dk, (4.24)

and

ΩdJ =
a2(k2 − a2)

2k2(k2 + a2)
dk. (4.25)

The (0, 0)-component of the Einstein tensor for the induced metric (4.18) is

2mk − k2

2k2
+

4mka2

2k2(k2 + a2)
− 12m2k2a2

2k2(k2 + a2)2
= 0. (4.26)

Subtracting and adding mk(k2−a2)
(k2+a2)2 , we have
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2mk − k2

2k2
+

4mka2

2k2(k2 + a2)
− 12m2k2a2

2k2(k2 + a2)2
− mk(k2 − a2)

(k2 + a2)2
+
mk(k2 − a2)

(k2 + a2)2
= 0. (4.27)

Now treating k as a parameter and multiplying both sides of Eq.(4.27) by an arbitrary small

displacement dk, and using Eq.(4.24), we get

2mk − k2

2k2
dk +

4mka2

2k2(k2 + a2)
dk − 12m2k2a2

2k2(k2 + a2)2
dk − TdS +

mk(k2 − a2)

(k2 + a2)2
dk = 0.

For the hypersurfaces given by k = k2+a2

2m , we have

−a2(k2 − a2)

2k2(k2 + a2)
dk +

k2

2k2
dk − a2

2k2
dk − TdS = 0.

Combining second and third term to get

−a2(k2 − a2)

2k2(k2 + a2)
dk +

k2 − a2

2k2
dk − TdS = 0. (4.28)

Using Eqs.(4.22) and (4.25) in Eq.(4.28), we have

dm = TdS +ΩdJ.

It is important to note that k2 + a2 − 2mk = 0, which corresponds to the black hole event

horizons, is the only hypersurfaces satisfying the first law.

4.2.4 The Kerr-Newmann Black Hole

The solution of the Einstein-Maxwell equations for axis symmetric gravitational field due to

a charge rotating mass, m, with cosmological constant equals zero, called the Kerr-Newman

black hole is given (in gravitational units G=c=1 ) by the metric (1.71), with

∆2 = (r2 + a2)− 2mr +Q2

and

ρ2 = r2 + a2 cos2 θ.
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Consider r = constant (say k), hypersurfaces, so that the black hole horizons correspond to

a particular hypersurfaces. The induced metric of the hypersurfaces is given by

ds2h = −∆2

ρ2
(dt− a sin2 θdϕ)2 + ρ2dθ2 +

sin2 θ

ρ2
(adt− (k2 + a2)dϕ)2, (4.29)

where ∆2 = (k2 + a2)− 2Mk +Q2, ρ2 = k2 + a2 cos2 θ.

The Kerr-Newman spacetime is associated with temperature, T , entropy, S, and angular

velocity, Ω, as

T =
K

2π
=

1

2π
lim
r−→k

√
−g11
g00

(
(g00)′

g00
) =

m(k2 − a2)−Q2k

2π(k2 + a2)2
, (4.30)

S = π(k2 + a2), (4.31)

Ω = lim
r−→k

−g13

g33
=

a

k2 + a2
. (4.32)

At the event horizon, the mass, m, is given by

m =
(k2 + a2) +Q2

2k
,

which gives

dm =
k2 − a2 −Q2

2k2
dk +

Q

k
dQ. (4.33)

From J = am and using Eq.(4.33), we have
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dJ = adm =
a(k2 − a2 −Q2)

2k2
dk +

aQ

k
dQ. (4.34)

From Eqs.(4.30) and (4.31), we get

TdS =
mk(k2 − a2)−Q2k2

(k2 + a2)2
dk. (4.35)

Using Eq.(4.32) and Eq.(4.34), we have

ΩdJ =
a

k2 + a2
dJ =

a2(k2 − a2 −Q2)

2k2(k2 + a2)
dk +

a2Qk

k2(k2 + a2)
dQ, (4.36)

Now the electrostatic potential and the differential of horizon’s volume are given by [12]

ϕ =
kQ

k2 + a2
, (4.37)

and

dV = 4π(k2 + a2)dk. (4.38)

The (0, 0)-component of the Einstein tensor for the induced metric (4.29) is

2mk − k2 −Q2

(k2 + a2)2
+

2a2(2mk −Q2)

(k2 + a2)3
− 3a2[4m2k2 +Q2(Q2 − 4mk)]

(k2 + a2)4
= −8πP, (4.39)

where P is (0, 0)-component of the Stress-energy tensor.

Now treating k as a parameter and considering an arbitrary small displacement dk and

multiplying both sides of Eq.(4.39) by −(k2+a2)
2 dk, we have

−2mk − k2 −Q2

2(k2 + a2)
dk−a

2(2mk −Q2)

(k2 + a2)2
dk+

3a2[4m2k2 +Q2(Q2 − 4mk)]

2(k2 + a2)3
dk = P (4π(k2+a2)dk).

(4.40)
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For the hypersurfaces given by 2mk = k2 + a2 +Q2, we have

− a2

2(k2 + a2)
dk − a2

(k2 + a2)
dk +

3a2[(k2 + a2 +Q2)2 +Q2(Q2 − 4mk)]

2(k2 + a2)3
dk = PdV. (4.41)

Simplifying, we have

− a2

2(k2 + a2)
dk +

a2

2(k2 + a2)
dk +

a2Q2

2(k2 + a2)2
dk +

5a2Q2

2(k2 + a2)2
dk − 6a2Q2

2(k2 + a2)2
dk = PdV.

(4.42)

Adding and subtracting k2

2(k2+a2)dk and Q2

2(k2+a2)dk in Eq.(4.42) and simplifying, we have

− a2

2(k2 + a2)
dk+

a2

2(k2 + a2)
dk− k2

2(k2 + a2)
dk+

Q2

2(k2 + a2)
dk+

k2

2(k2 + a2)
dk− Q2

2(k2 + a2)
dk = PdV.

(4.43)

From 2nd, 3rd and 4th terms we get −TdS, so we have

−TdS − a2

2(k2 + a2)
dk +

k2

2(k2 + a2)
dk − Q2

2(k2 + a2)
dk = PdV.

Adding and subtracting a4

2k2(k2+a2)dk,
a2Q2

2k2(k2+a2)dk and a2Qk
k2(k2+a2)dQ, we get

−TdS − a2

2(k2 + a2)
dk +

a4

2k2(k2 + a2)
dk +

a2Q2

2k2(k2 + a2)
dk − a2Qk

k2(k2 + a2)
dQ

− a4

2k2(k2 + a2)
dk − a2Q2

2k2(k2 + a2)
dk +

a2Qk

k2(k2 + a2)
dQ+

k2

2(k2 + a2)
dk − Q2

2(k2 + a2)
dk = PdV.

(4.44)

Simplifying 2nd, 3rd, 4th and 5th terms, we have

−TdS−ΩdJ− a4

2k2(k2 + a2)
dk− a2Q2

2k2(k2 + a2)
dk+

a2Qk

k2(k2 + a2)
dQ+

k2

2(k2 + a2)
dk− Q2

2(k2 + a2)
dk = PdV.
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Adding and subtractingk2−a2−Q2

2k2 dk + Q
k dQ and using Eq.(4.33) we get

−TdS − ΩdJ + dm− k2 − a2 −Q2

2k2
dk − Q

k
dQ+

a2Qk

k2(k2 + a2)
dQ− a4

2k2(k2 + a2)
dk

− a2Q2

2k2(k2 + a2)
dk +

k2

2(k2 + a2)
dk − Q2

2(k2 + a2)
dk = PdV. (4.45)

Simplifying 5th and 6th term and using Eq.(4.37) we finally have

dm = TdS +ΩdJ + ϕdQ+ PdV.

It is important to note that k2 + a2 + Q2 − 2mk = 0, which corresponds to the black hole

event horizons, is the only hypersurfaces satisfying the first law.
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Chapter 5

Conclusion

In this thesis, we have presented:

In Chapter 1, after discussing singularities of the Schwarzschild black hole spacetime, suitable

coordinates are used to remove the coordinate singularities of the Schwarzschild, the RN, and

the Kerr black hole spacetimes. Also non-existence of the Kruskal-like coordinates for the

eRN black hole is discussed. It is further noticed that the Carter-like coordinates for the eRN

back hole are inconvenient to be used for numerical calculations.

In Chapter 2, after presenting non-singular Kruskal-like coordinates for different cases of gen-

eral circularly symmetric black holes in (2+1) dimensions, non-singular Kruskal-Szekeres-like

coordinates for the usual rotating BTZ black hole are constructed. It is observed that they

cannot remove both the singularities simultaneously. For this, like the RN black hole, we

need two separate coordinate patches to cover a full block of the CP diagram. In case of the

rotating EBTZ black hole, Carter-like coordinates do not remove the coordinate singularities

and are not regular at the horizon.

In Chapter 3, using coordinate transformation, existence of double-null form for different

classes of general spacetimes metrics in (2 + 1) dimensions have been obtained. It has been

observed that the existence depends on two coefficients g02 and g12 of the metric. A class of

three dimensional spacetimes in which coefficient g02 or g12 or both are non-zero cannot be

transformed to the double-null form. Further investigation on the remaining classes of three
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dimensional spacetimes yields:

1) Classes g00, g11, g22 ̸= 0, g01 = 0 and g00, g11, g22, g01 ̸= 0 can be transformed into the

double-null form and the required transformations have been obtained.

2) The class g00, g22, g01 ̸= 0, g11 = 0, satisfying the conditions

a) ∂t
∂u = ∂t

∂vg00 + 2 ∂r
∂vg01 = 0

or

b) ∂t
∂v = ∂t

∂ug00 + 2 ∂r
∂ug01 = 0

can also be transformed into the double-null form, but specific transformations have not been

obtained in this case.

However, the spacetimes satisfying conditions

c) ∂t
∂u = ∂t

∂v = 0

or

d) ∂t
∂ug00 + 2 ∂r

∂ug01 =
∂t
∂vg00 + 2 ∂r

∂vg01 = 0

cannot be transformed into the double-null form.

3) The class g11, g22, g01 ̸= 0, g00 = 0, satisfying the conditions

a) ∂r
∂u = ∂r

∂vg11 + 2 ∂t
∂vg01 = 0

or

b) ∂r
∂v = ∂r

∂ug11 + 2 ∂t
∂ug01 = 0.

can also be transformed into the double-null form, but specific transformations have not been

obtained in this case.

However, the spacetimes satisfying conditions

c) ∂r
∂u = ∂r

∂v = 0

or

d) ∂r
∂ug11 + 2 ∂t

∂ug01 =
∂r
∂vg11 + 2 ∂t

∂vg01 = 0

cannot be transformed into the double-null form.

4) Class g00, g11, g22, g01 ̸= 0, the system of partial differential equations (3.36) to (3.39) is to

be solved to obtain transformations that transform the class into the double-null form.
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In Chapter 4, a new approach to express the Einstein field equation as the first law of black

hole thermodynamics at the horizon of the Schwarzschild, RN, Kerr and Kerr-Newmann black

holes have been presented. In this approach, foliations of these spacetimes have been used

such that the horizon corresponds to a particular leaf (hypersurface) of the foliation. Then

we work out the field equations of the induced metric of the hypersurfaces and obtain that

the field equations for the induced metric, at the horizon, can be expressed as the first law of

black hole thermodynamics. The important aspect of this approach is that here we have to

essentially deal with (n − 1)−dimensional induced metric for an n−dimensional spacetime,

which significantly simplifies the calculations to obtain such results. It will be interesting in

future to extend this approach to the other black hole geometries.

In addition to the work mentioned, it will be interesting to investigate the following problems

in future:

a) Turning to the EBTZ black hole case, there are no Kruskal-like coordinates known for

this spacetime. The Carter-like coordinates for this geometry are not regular at the horizon,

therefore, a non-singular coordinate system for the EBTZ black hole is needed.

b) Double-Null Form for (3 + 1)−dimensional Spacetimes

Consider the general spacetime metric in four dimensions

ds2 = g00dt
2 + g11dr

2 + g22dθ
2 + g33dϕ

2 + 2g01dtdr + 2g02dtdθ

+2g03dtdϕ+ 2g12drdθ + 2g13drdϕ+ 2g23dθdϕ, (5.1)

where g00, g11, g22, g33, g01, g02, g03, g12, g13 and g23 depend on t, r, θ and ϕ.

In order to transform metric (5.1) into the double-null form (3.1), consider t = t(u, v),

r = r(u, v) and use the coordinate transformations (3.33), where now xl, xm and x̃a, x̃b refer

to the (t, r, θ, ϕ) and (u, v, θ, ϕ) coordinates respectively, with l,m, a, b = 0, 1, 2, 3, and also

requiring g̃00 = g̃11 = g̃22 = g̃02 = g̃03 = g̃12 = g̃13 = g̃23 = 0, to obtain the following system
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of partial differential equations

(
∂t

∂u

)2

g00 +

(
∂r

∂u

)2

g11 + 2

(
∂t

∂u

)(
∂r

∂u

)
g01 = 0, (5.2)

(
∂t

∂v

)2

g00 +

(
∂r

∂v

)2

g11 + 2

(
∂t

∂v

)(
∂r

∂v

)
g01 = 0, (5.3)

g22 = 0, (5.4)

g33 = g̃33, (5.5)

(
∂t

∂u

)(
∂t

∂v

)
g00 +

(
∂r

∂u

)(
∂r

∂v

)
g11 +

(
∂t

∂u

∂r

∂v
+
∂r

∂u

∂t

∂v

)
g01 = g̃01, (5.6)

(
∂t

∂u

)
g02 +

(
∂r

∂u

)
g12 = 0, (5.7)

(
∂t

∂v

)
g02 +

(
∂r

∂v

)
g12 = 0, (5.8)

(
∂t

∂u

)
g03 +

(
∂r

∂u

)
g13 = 0, (5.9)

(
∂t

∂v

)
g03 +

(
∂r

∂v

)
g13 = 0, (5.10)
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g23 = 0. (5.11)

Requiring the Jacobian,

J =

(
∂t

∂u

)(
∂r

∂v

)
−
(
∂t

∂v

)(
∂r

∂u

)
, (5.12)

of the transformations (t, r, θ, ϕ) to (u, v, θ, ϕ)to be non-zero, Eqs. (5.7) to (5.10), only have

trivial solution

g02 = g12 = g13 = g03 = 0.

This proves that if the metric (5.1) contains g02, g12, g03, g13, g22 or g23 then it cannot be

transformed into the double-null form (3.1).

Hence the class of (3 + 1)−dimensional spacetimes in which any one of the coefficients g02,

g12, g03, g13, g23 or g22 is non-zero, cannot be transformed to the double-null form. It will

be interesting to adopt the procedure used in Chapter 3, to explore the double-null form for

other remaining classes of (3 + 1)−dimensional spacetimes.
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Abstract In this paper we present non-singular coordinates for the rotating BTZ
(Banados–Teitelboim–Zanelli) black hole. The approach is further extended to con-
struct non-singular coordinates for different cases of general circularly symmetric
black holes in 2 + 1 dimensions.

Keywords BTZ black hole · Kruskal coordinates · General relativity ·
Carter coordinates

1 Introduction

The BTZ solution is the most general black hole solution in three dimensions, as is
guaranteed by the (2 + 1) dimensional version of Birkhoff’s theorem [1]. It attracted
much interest in recent years because of its classical and quantum properties (for
review see [2]).

The Schwarzschild space time has a coordinate singularity, in (t, r) coordinates,
at r = 2m. Kruskal (or Kruskal–Szekeres) coordinates are defined for this space–
time to remove the coordinate singularity in such a way that we can directly insert
r = 2m in the metric coefficients and obtain a finite answer (±16m2

e ) (as the coordinates
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1168 S. M. J. Riaz, A. A. Siddiqui

are manifestly regular at the horizon). The RN space–time for (Q < m) has two
coordinate singularities (r− and r+) in (t, r) coordinates. One can avoid each of these
singularities by appropriately defining an analogue of the Kruskal coordinates [3], but
cannot remove both simultaneously. As such, for this analogue we need two separate
coordinate patches to cover a full block of the Carter–Penrose (CP) diagram.

The plane of the paper is as follows. In the Sect. 2 we discuss coordinate singularities
of the rotating BTZ black hole. In Sect. 3 we present non-singular Kruskal–Szekeres
like coordinates for the usual rotating BTZ black hole. In Sect. 4 we present non-
singular Kruskal–Szekeres like coordinates for different cases of general circularly
symmetric black holes in 2 + 1 dimensions. The conclusion and discussion is given
in the last section.

2 Rotating BTZ black hole

The rotating BTZ black hole [4–8] is a solution of the standard Einstein–Maxwell
equations in (2 + 1) dimensions, with a negative cosmological constant. The line
element of the BTZ black hole can be written as

ds2 = − f (r)dt2 + 1

f (r)
dr2 + r2

(
dφ − J

2r2 dt

)2

, (1)

where the function f (r) is given by

f (r) = −M + r2

l2 + J 2

4r2 , (2)

with −∞ < t < ∞, 0 < r < ∞ and 0 ≤ φ ≤ 2π .
Horizons of the rotating BTZ metric are roots of the function f (r). Depending on

these roots, there are three different cases of the rotating BTZ metric:

(1) Two distinct real roots, usual rotating BTZ black hole;
(2) Repeated real roots, extreme BTZ black hole;
(3) No real root, naked rotating BTZ singularity.

Considering the first case when M2 > J 2/ l2. For this case f (r) has two distinct
real roots. These roots are given by

r2± = Ml2

2

⎡
⎣1 ±

√
1 − J 2

M2l2

⎤
⎦ . (3)

The Ricci scalar R for the rotating BTZ metric is given by

R = 6/ l2,

which is independent of r . This suggests that r = r± are coordinate singularities.
Checking the second curvature invariant confirms this expectation. In terms of r− and
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r+, f (r) can be written as

f (r) = (r2 − r2+)(r2 − r2−)
l2r2 . (4)

3 Non-singular coordinates for the usual rotating BTZ black hole

In order to remove the coordinate singularities, we define r∗ as

r∗ =
∫

1

f (r)
dr = l2r+

2(r2+ − r2−)
ln

∣∣∣∣r − r+
r + r+

∣∣∣∣ − l2r−
2(r2+ − r2−)

ln

∣∣∣∣r − r−
r + r−

∣∣∣∣ . (5)

We define Kruskal-like coordinates and observe that they cannot remove both the sin-
gularities simultaneously. For this we need two separate coordinate patches to cover
a full block of the CP diagram: one for the region 0 < r < r+ and the other for
r− < r < ∞. Coordinates analogous to the Kruskal-like coordinates, for 0 < r < r+,
are given by V− = αeβv and U− = −αe−βu , where the advanced and retarded coor-
dinates [9] are v = t + r∗ and u = t − r∗, α and β are positive constants. Using these
coordinates the metric (1) takes the form

ds2 = J 2

16β2r2

{
1

V 2−
dV 2− + 1

U 2−
dU 2−

}
+

{
J 2

8α2β2r2 − (r2 − r2+)(r2 − r2−)
α2β2l2r2

}

×
∣∣∣∣r − r−
r + r−

∣∣∣∣
βl2r−

2(r2+−r2−)
∣∣∣∣r − r+
r + r+

∣∣∣∣
−βl2r+

2(r2+−r2−) dV−dU−

− J

2β

{
1

V−
dV− − 1

U−
dU−

}
dφ + r2dφ2, (6)

where

V− = αeβt
∣∣∣∣r − r+
r + r+

∣∣∣∣
−βl2r+

2(r2+−r2−)
∣∣∣∣r − r−
r + r−

∣∣∣∣
βl2r−

2(r2+−r2−) ,

U− = −αeβt
∣∣∣∣r − r+
r + r+

∣∣∣∣
−βl2r+

2(r2+−r2−)
∣∣∣∣r − r−
r + r−

∣∣∣∣
βl2r−

2(r2+−r2−) .

(7)

V− and U− are related to r by

V−U− = −α2
∣∣∣∣r − r+
r + r+

∣∣∣∣
−βl2r+
(r2+−r2−)

∣∣∣∣r − r−
r + r−

∣∣∣∣
βl2r−
(r2+−r2−) . (8)

As r → r−, V−, U− → 0 but the metric (6) remains singular at r = r+. The coordi-
nate system (V−,U−) covers only the region 0 < r < r+ of the whole manifold. This
region is shown in Fig. 1. Coordinates, analogous to the Kruskal-like coordinates, for
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r = r-
r = - r-
r < r-
r < r-
 r- < r < r+
r- < r < r+

Legend

The region 0 < r < r+ of the rotating BTZ black hole

–1

–0.5

0

0.5

1

15.05.0–1–
x

Fig. 1 η− is along x-axis and ξ− is along y-axis

r− < r < ∞ are given by V+ = −αe−βv and U+ = αeβu . Using these coordinates
the metric (1) takes the form

ds2 = J 2

16β2r2

{
1

V 2+
dV 2+ + 1

U 2+
dU 2+

}
+

{
J 2

8α2β2r2 − (r2 − r2+)(r2 − r2−)
α2β2l2r2

}

×
∣∣∣∣r − r−
r + r−

∣∣∣∣
−βl2r−

2(r2+−r2−)
∣∣∣∣r − r+
r + r+

∣∣∣∣
βl2r+

2(r2+−r2−) dV+dU+ + r2dφ2

− J

2β

{
1

V+
dV+ − 1

U+
dU+

}
dφ, (9)

where

V+ = −αe−βt
∣∣∣∣r − r+
r + r+

∣∣∣∣
βl2r+

2(r2+−r2−)
∣∣∣∣r − r−
r + r−

∣∣∣∣
−βl2r−

2(r2+−r2−) ,

U+ = αeβt
∣∣∣∣r − r+
r + r+

∣∣∣∣
βl2r+

2(r2+−r2−)
∣∣∣∣r − r−
r + r−

∣∣∣∣
−βl2r−

2(r2+−r2−) .

(10)

V+ and U+ are related to r by

V+U+ = −α2
∣∣∣∣r − r+
r + r+

∣∣∣∣
βl2r+
(r2+−r2−)

∣∣∣∣r − r−
r + r−

∣∣∣∣
−βl2r−
(r2+−r2−) . (11)

It follows that as r → r+, V+,U+ → 0. We see that the metric (9) remains singular
at r = r−. The coordinate system (V+,U+) covers only the region r− < r < ∞ of
the whole manifold. This region is shown in Fig. 2.

123



Non-singular coordinates for circularly symmetric black holes in 2 + 1 dimensions 1171

r = r+
r = - r+
r+ > r > r-
r+ > r > r-
r > r+
r > r+

Legend

The region r- < r  of the rotating BTZ black hole

–1

–0.5

0

0.5

1

15.05.0–1–
x

Fig. 2 η+ is along x-axis and ξ+ is along y-axis

We introduce space like and time like coordinates for the region 0 < r < r+, as
ξ− = V− + U−, η− = V− − U−.

Using these coordinates the metric (6) takes the form

ds2 = −
[
− J 2(ξ2− + η2−)

8β2r2(ξ2− − η2−)2
+ 1

4

(
− J 2

8α2β2r2 + (r2 − r2+)(r2 − r2−)
α2β2l2r2

)

×
∣∣∣∣r − r−
r + r−

∣∣∣∣
βl2r−
(r2+−r2−)

∣∣∣∣r − r+
r + r+

∣∣∣∣
−βl2r+
(r2+−r2−)

⎤
⎦ dξ2−

+
[

J 2(ξ2− + η2−)
8β2r2(ξ2− − η2−)2

+ 1

4

(
− J 2

8α2β2r2 + (r2 − r2+)(r2 − r2−)
α2β2l2r2

)

×
∣∣∣∣r − r−
r + r−

∣∣∣∣
βl2r−
(r2+−r2−)

∣∣∣∣r − r+
r + r+

∣∣∣∣
−βl2r+
(r2+−r2−)

⎤
⎦ dη2−

+ J 2ξ−η−
2β2r2(ξ2− − η2−)

dξ−dη−+r2dφ2− J

β

[
η−

ξ2− − η2−
dξ−− ξ−

ξ2− − η2−
dη−

]
dφ,

(12)

here

ξ− = 2α

∣∣∣∣r − r+
r + r+

∣∣∣∣
−βl2r+

2(r2+−r2−)
∣∣∣∣r − r−
r + r−

∣∣∣∣
βl2r−

2(r2+−r2−) sinh(βt),

η− = 2α

∣∣∣∣r − r+
r + r+

∣∣∣∣
−βl2r+

2(r2+−r2−)
∣∣∣∣r − r−
r + r−

∣∣∣∣
βl2r−

2(r2+−r2−) cosh(βt),

(13)
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and the inverse transformations are

t = 1

β
tanh−1

(
ξ−
η−

)
, (14)

and

ξ2− − η2− = −4α2
[

r − r+
r + r+

] −βl2r+
(r2+−r2−)

[
r − r−
r + r−

] βl2r−
(r2+−r2−) . (15)

For the region r− < r < ∞, we define space like and time like coordinates as
ξ+ = V+ + U+, η+ = V+ − U+.

Using these coordinates the metric (9) will takes the form

ds2 = −
[
− J 2(ξ2+ + η2+)

8β2r2(ξ2+ − η2+)2
+ 1

4

(
− J 2

8α2β2r2

+ (r2 − r2+)(r2 − r2−)
α2β2l2r2

) ∣∣∣∣r − r−
r + r−

∣∣∣∣
−βl2r−
(r2+−r2−)

∣∣∣∣r − r+
r + r+

∣∣∣∣
βl2r+
(r2+−r2−)

⎤
⎦ dξ2+

+
[

J 2(ξ2+ + η2+)
8β2r2(ξ2+ − η2+)2

+ 1

4

(
− J 2

8α2β2r2

+ (r
2 − r2+)(r2 − r2−)
α2β2l2r2

) ∣∣∣∣r − r−
r + r−

∣∣∣∣
−βl2r−
(r2+−r2−)

∣∣∣∣r − r+
r + r+

∣∣∣∣
βl2r+
(r2+−r2−)

⎤
⎦ dη2+

+ J 2ξ+η+
2β2r2(ξ2+ − η2+)

dξ+dη+ + r2dφ2 − J

β

[
η+

ξ2+ − η2+
dξ+ − ξ+

ξ2+ − η2+
dη+

]
dφ,

(16)

here

ξ+ = 2α

∣∣∣∣r − r+
r + r+

∣∣∣∣
βl2r+

2(r2+−r2−)
∣∣∣∣r − r−
r + r−

∣∣∣∣
−βl2r−

2(r2+−r2−) sinh(βt),

η+ = 2α

∣∣∣∣r − r+
r + r+

∣∣∣∣
βl2r+

2(r2+−r2−)
∣∣∣∣r − r−
r + r−

∣∣∣∣
−βl2r−

2(r2+−r2−) cosh(βt) ,

(17)

and the inverse transformations are

t = 1

β
tanh−1

(
ξ+
η+

)
, (18)

ξ2+ − η2+ = −4α2
[

r − r+
r + r+

] βl2r+
(r2+−r2−)

[
r − r−
r + r−

] −βl2r−
(r2+−r2−) . (19)
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The coordinates (ξ−, η−) are non-singular at r = r− and are used for the region
0 < r < r+. Similarly (ξ+, η+) are non-singular at r = r+ and are used for the region
r− < r < ∞. The values of α and β are chosen so that the coordinates (ξ−, η−) and
(ξ+, η+) are matched properly at a point r between r− and r+. r = r± correspond to
ξ+ = η+ = 0 and ξ− = η− = 0 respectively.

4 Non-singular coordinates for some cases of the circularly
symmetric 2 + 1 dimensional black holes

The metric [10]

ds2 = −(1 − 2g(v)− 2h(v)r1−k −�r2)dv2 + 2dvdr + r2dθ2, (20)

where g(v), h(v) are arbitrary functions and � = −1/ l2, is a solution of the 2 + 1
dimensional Einstein equations for the null fluid stress energy tensor with P = kρ.
Case 1: As discussed in [10] for k = 1, g(v) = A > 0 and h(v) = 0, the metric (20)
takes the form

ds2 = −F(r)dv2 + 2dvdr + r2dθ2, (21)

where F(r) = 1 − 2A −�r2.
In double null coordinates (u, v) the metric (21) takes the form

ds2 = −F(r)dudv + r2dθ2. (22)

The only real positive root of the function F(r) is c = l
√

2A − 1(A > 1/2), where
the metric (22) is singular. In order to remove this coordinate singularity, we define
r∗ as

r∗ =
∫

1

F(r)
dr = l2

2c
ln

∣∣∣∣r − c

r + c

∣∣∣∣ . (23)

Coordinates analogous to the Kruskal–Szekeres like coordinates, defined by

V = αev/β, U = −αe−u/β, (24)

where v = t + r∗, u = t − r∗ and α is a positive constant. In these coordinates (with
β = l2/c) the metric (22) takes the form

ds2 = l2(r + c)2

α2c2 dV dU + r2dθ2, (25)

here

V = αet/β

√∣∣∣∣r − c

r + c

∣∣∣∣, U = −αe−t/β

√∣∣∣∣r − c

r + c

∣∣∣∣. (26)
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and U and V are related with r by

V U = −α2
∣∣∣∣r − c

r + c

∣∣∣∣ . (27)

In space like and time like coordinates ξ = V + U, η = V − U, the metric (25) takes
the form

ds2 = l2(r + c)2

4α2c2 (dξ2 − dη2)+ r2dθ2, (28)

where

ξ = α

√∣∣∣∣r − c

r + c

∣∣∣∣ sinh

(
t

β

)
, η = α

√∣∣∣∣r − c

r + c

∣∣∣∣ cosh

(
t

β

)
, (29)

and the inverse transformations are

t = β tanh−1
(
ξ

η

)
, ξ2 − η2 = −α2

(
r − c

r + c

)
. (30)

These coordinates (ξ, η) cover the whole manifold and are non-singular at r = c.
Case 2: As discussed in [10] for k = 0, g(v) = A > 0 and h(v) = B > 0, the metric
(20) takes the similar form as given by Eq. (21) with F(r) now given by

F(r) = 1 − 2A − 2r B + r2/ l2. (31)

F(r) has real roots if l2 B2 ≥ 1 − 2A. If A < 1/2 we have two positive real roots
otherwise only one positive real root exists. The extreme case corresponds to l2 B2 =
1 − 2A. The two positive real roots of F(r) are given by

r± = l2 B ±
√

l4 B2 − l2(1 − 2A).

In order to remove the coordinate singularities at r = r±, define r∗ as

r∗ =
∫

1

F(r)
dr = l2

(r+ − r−)
ln

∣∣∣∣r − r+
r − r−

∣∣∣∣ .
Here the Kruskal–Szekeres like coordinates do not remove both the singularities

simultaneously and we need two coordinate patches, one for the region r− < r < ∞
and another for the region 0 < r < r+. Using Kruskal–Szekeres like coordinates,
Eq. (24), the metric (22) takes the form

ds2 = 4l2(r − r−)
α2(r+ − r−)2

dV dU + r2dθ2, (32)

which is non-singular at r = r+ but it is still singular at r = r−.
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Here

V = α e
t (r+−r−)

2l2

√∣∣∣∣r − r+
r − r−

∣∣∣∣, U = −α e
−t (r+−r−)

2l2

√∣∣∣∣r − r+
r − r−

∣∣∣∣. (33)

V and U are related to r by

V U = −α2
∣∣∣∣r − r+
r − r−

∣∣∣∣ . (34)

In space like and time like coordinates ξ = V + U, η = V − U,metric (32) takes the
form

ds2 = l2(r − r−)
α2(r+ − r−)2

(dξ2 − dη2)+ r2dθ2, (35)

here

ξ = α

√∣∣∣∣r − r+
r − r−

∣∣∣∣ sinh

(
t (r+ − r−)

2l2

)
, η = α

√∣∣∣∣r − r+
r − r−

∣∣∣∣ cosh

(
t (r+ − r−)

2l2

)
,

(36)

and the inverse transformations are

t = 2l2

(r+ − r−)
tanh−1

(
ξ

η

)
, ξ2 − η2 = −α2

(
r − r+
r − r−

)
. (37)

The coordinate system (ξ, η) covers only the region r− < r < ∞ of the whole man-
ifold. Following the similar approach as adopted in Sect. 3, one can easily construct
the non-singular coordinates for the region 0 < r < r+ also.

5 Conclusion and discussion

We have presented the Kruskal-like coordinates that remove coordinate singularities
of the usual rotating BTZ black hole. In case of the rotating extreme BTZ black hole
the metric (1) takes the form

ds2 =
(

r4
e

r2l2 − g(r)

)
dt2 + 1

g(r)
dr2 − 2r2

e

l
dtdφ + r2dφ2, (38)

where g(r) = (r2−r2
e )

2

r2l2 and r2
e = Ml2

2 . This metric is singular at r = re. We have not
been able to find Kruskal (or Kruskal–Szekres) like coordinates for this metric. Hence,
to avoid the coordinate singularity, we introduce the Carter-like coordinates [11]

ψ = tan−1
(v

l

)
+ cot−1

(w
l

)
, ξ = tan−1

(v
l

)
− cot−1

(w
l

)
, (39)
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here v = t + r∗ and w = −t + r∗, with r∗ given by

r∗ =
∫

r2l2

(r2 − r2
e )

2 dr = l2

4re
ln

∣∣∣∣r − re

r + re

∣∣∣∣ − l2

2

r

(r2 − r2
e )
. (40)

In the (ψ, ξ, φ) coordinates the metric (38) takes the form

ds2 = 1

4r2

{
( f1 + f2)dψ

2 + ( f1 − f2)dξ
2 + r4

e

2
f3 f4dψdξ

}

−r2
e

2
( f3dψ + f4dξ)dφ + r2dφ2, (41)

where

f1 = r4
e

4

{
sec4

(
ψ + ξ

2

)
+ csc4

(
ψ − ξ

2

)}
,

f2 =
{

r4
e

2
− (r2 − r2

e )
2
}

sec2
(
ψ + ξ

2

)
csc2

(
ψ − ξ

2

)
,

f3 = sec2
(
ψ + ξ

2

)
+ csc2

(
ψ − ξ

2

)
,

and

f4 = sec2
(
ψ + ξ

2

)
− csc2

(
ψ − ξ

2

)
. (42)

Note that ψ and ξ are related to the radial parameter by

tan

(
ψ + ξ

2

)
+ cot

(
ψ − ξ

2

)
− l

[
1

2re
ln

∣∣∣∣r − re

r + re

∣∣∣∣ − r

(r2 − r2
e )

]
= 0. (43)

The determinant of the metric (41) is

|gab| = − (r − re)
4(r + re)

4

16r2 sec4
(
ψ + ξ

2

)
csc4

(
ψ − ξ

2

)
(a, b = 0, 1, 2).

Now

csc4
(
ψ − ξ

2

)
=

(
1 + w2

l2

)2

=
(

1 + 1

l2 (−t + r∗)2
)2

, (44)
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on simplifying, we have

csc4
(
ψ − ξ

2

)

=
(

l2

4re

[
(r − re) ln(r − re)− (r − re) ln(r + re)− re − re(r − re)

(r + re)

])4

−4(r −re)

(
l2

4re

[
(r −re) ln(r −re)−(r −re) ln(r + re)−re− re(r − re)

(r + re)

])3

t

+2(r −re)
2
(

l2

4re

[
(r −re) ln(r −re)−(r −re) ln(r +re)−re− re(r −re)

(r +re)

])2

×(l2 + 3t2)

−4(r −re)
4
(

l2

4re

[
(r − re) ln(r − re)−(r − re) ln(r + re)−re− re(r − re)

(r + re)

])

×(l2 + t2)t

+(r − re)
4(l2 + t2)2. (45)

As r → re and ψ → ξ , the value of the determinant is finite − r2
e l4

256 sec4(ξ), but the
metric (41) is still singular at r = re. Carter-like coordinates for this geometry can-
not remove the coordinate singularity and are manifestly not regular at the horizon.
However these coordinates work in the case of extreme Reissner–Nordstörm black
hole, there they give finite determinant and are regular at the horizon. Non-singular
Kruskal-like coordinates are also presented for different cases of the general circularly
symmetric 2 + 1 dimensional black holes.

Whereas the non-rotating BTZ metric can be easily transformed into the double-
null form, and has the same singularities as in the (t, r) coordinates, here we have
dealt with the rotating BTZ metric. We tried to solve the Einstein equations for this
case but have not been unsuccessful so far. We have also tried to find the coordinate
transformation to transform the metric in the desired form. The attempts that we made
indicate that perhaps the rotating-BTZ metric may not be transformed to the required
form. However, this has not been proved formally. Even if we manage to prove the
non-existence, the result may not be pertinent here.
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comments that have improved the manuscript significantly.
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Foliation and the First Law of Black Hole Thermodynamics
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There has been lots of interest in exploring the thermodynamic properties at the horizon of a black hole spacetime.
It has been shown earlier that for different spacetimes, the Einstein field equations at the horizon can be expressed
as the first law of black hole thermodynamics. Using the idea of foliation, we develop a simpler procedure to
obtain such results. We consider 𝑟 = constant slices, for the Schwarzschild and Reissner–Nordstrom black hole
spacetimes. The Einstein field equations for the induced 3-dimensional metrics of the hypersurfaces are expressed
in thermodynamic quantities under the virtual displacements of the hypersurfaces. As expected, it is found that
the field equations of the induced metric corresponding to the horizon can be written as a first law of black hole
thermodynamics. It is to be mentioned here that our procedure is much easier, to obtain such results, as here
one has to essentially deal with (𝑛− 1)-dimensional induced metric for an 𝑛-dimensional spacetime.

PACS: 04.70.Dy, 05.70.−a, 98.80.Jk DOI: 10.1088/0256-307X/28/5/050401

Splitting a space into a sequence of subspaces, such
that every point in the space lies in one and only one
of the subspaces, is called a foliation.[1] The foliation
of an 𝑛-dimensional manifold, 𝑀 , is a decomposition
of 𝑀 into submanifolds, all being of the same di-
mension, 𝑝. The submanifolds are the leaves of the
foliation. The co-dimension 𝑞 of a foliation is de-
fined as 𝑞 = 𝑛 − 𝑝. A foliation of co-dimension 1 is
called a foliation by hypersurfaces. Some physically
reasonable solutions to the Einstein field equations
are singular and represent black hole spacetimes.[2]

These spacetimes have special significance because of
the horizons in their geometry. To analyze the dy-
namics of such geometries, one often foliates[3−22] the
spacetime by a sequence of null or space-like hyper-
surfaces. Here we have used 𝑟 = constant foliations
for the Schwarzschild and Reissner Nordstrom black
holes to discuss the first law of thermodynamics at
their horizons.

The relationship between the Einstein field equa-
tions and the first law of black hole thermody-
namics was first presented by Jacobson,[23] then
Padmanabhan[24] made a general formalism for un-
derstanding the thermodynamics of horizons. Since
then there has been a lot of work in this direction for
different spacetime geometries.[25−35]

In this Letter, using foliation, we present an el-
egant and simpler way of obtaining relationship be-
tween the Einstein field equations at the horizon and
the first law of black hole thermodynamics. Instead of
obtaining field equations of black hole spacetime and
analyzing thermal interpretation at the horizon, here
the main idea is to consider a foliation so that the hori-

zon corresponds to a particular hypersurface. Then we
work out the field equations for the induced metric of
the hypersurfaces and obtain the earlier thermal anal-
ysis for the hypersurface corresponding to the horizon.
The main advantage of our procedure is that instead
of dealing with the field equations of an 𝑛-dimensional
spacetime, we deal with the field equations of (𝑛− 1)-
dimensional induced metric.

The static, spherically symmetric solution to the
Einstein field equations

𝐺𝑎𝑏 = −8𝜋𝑇𝑎𝑏, (𝑎, 𝑏 = 0, 1, 2, 3) (1)

known as the Schwarzschild black hole is given in grav-
itational units 𝑐 = 𝐺 = 1 as

𝑑𝑠2 = 𝑓(𝑟)𝑑𝑡2 − 𝑑𝑟2

𝑓(𝑟)
− 𝑟2(𝑑𝜃2 + sin2 𝜃𝑑𝜑2), (2)

where 𝑓(𝑟) = 1 − 2𝑚
𝑟 , 𝑚 is the mass of the

Schwarzschild black hole, 𝐺𝑎𝑏 and 𝑇𝑎𝑏 are Einstein’s
and Stress-energy tensors respectively. The thermal
quantities associated with the event horizon of the
above black hole spacetime are the temperature 𝑇 =
𝑓 ′(𝑟)
4𝜋 |horizon= 1

8𝜋𝑚 and the entropy 𝑆 = 𝐴
4 = 4𝜋𝑚2,

where 𝐴 is the horizon area.
We consider a foliation of the Schwarzschild black

hole spacetime by 𝑟 = constant (say 𝑘) hypersurfaces,
so that the black hole horizon corresponds to a partic-
ular hypersurface. The induced metric of the hyper-
surfaces is given by

𝑑𝑠2ℎ = 𝑓(𝑘)𝑑𝑡2 − 𝑘2(𝑑𝜃2 + sin2 𝜃𝑑𝜑2). (3)

In order to look for the dynamics of the hyper-
surfaces, we consider (0, 0)-component of the Einstein
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tensor for the induced metric which is

𝐺00 =
𝑓(𝑘)

𝑘2
=

1 − 2𝑚
𝑘

𝑘2
. (4)

Now treating 𝑘 as a parameter and considering an ar-
bitrary small displacement 𝑑𝑘, the (0, 0)-component of
the Einstein field equation (1) for the induced metric
with 𝑇00 = 0 gives

𝑑𝑘

2
− 𝑚

2𝜋𝑘2
𝑑(𝜋𝑘2) = 0. (5)

For the hypersurface given by 𝑘 = 2𝑚, Eq. (5) yields
the first law

𝑑𝑚 = 𝑇𝑑𝑆. (6)

It is important to note that 𝑘 = 2𝑚, which corre-
sponds to the black hole event horizon, is the only
hypersurface satisfying the first law.

Reissner and Nordstrom obtained the solution to
Eq. (1), with a non-vanishing energy-momentum ten-
sor arising from the electromagnetic field, which de-
scribes the field outside a spherically symmetric mas-
sive charged point, called the Reissner–Nordstrom
(RN) black hole, is given in gravitational units by
Eq. (2), with 𝑓(𝑟) now given by

𝑓(𝑟) = 1 − 2𝑚

𝑟
+

𝑄2

𝑟2
, (7)

where 𝑚 and 𝑄 are mass and charge of the black hole
respectively. The thermal quantities associated with
the RN black hole at the outer horizon (𝑟 = 𝑟+ =

𝑚+
√︀

𝑚2 −𝑄2) are the temperature 𝑇 = 𝑓 ′(𝑟)
4𝜋 |𝑟=𝑟+=

(𝑚𝑟+−𝑄2)
2𝜋𝑟3+

, entropy 𝑆 = 𝐴
4 = 𝜋𝑟2+ (where 𝐴 is the hori-

zon area) and electric potential Φ = 𝜕𝑚
𝜕𝑄 |𝑟=𝑟+= 𝑄

𝑟+
.

We again consider a foliation of the RN spacetime
by 𝑟 = constant (say 𝑘) hypersurfaces, so that the
black hole horizon corresponds to a particular hyper-
surface. The induced metric of the hypersurfaces takes
the same form as given by Eq. (3), with 𝑓 now given
by Eq. (7).

In order to look for the dynamics of the hypersur-
faces, consider (0, 0)-component of the Einstein tensor
for the induced metric

𝐺00 =
𝑓(𝑘)

𝑘2
=

1 − 2𝑚
𝑘 + 𝑄2

𝑘2

𝑘2
. (8)

Again treating 𝑘 as a parameter and considering an
arbitrary small displacement 𝑑𝑘, the (0, 0)-component
of the Einstein field equation (1) for the induced met-
ric with 𝑇00 = −𝑃 , after multiplying it with 𝑑𝑘, gives

𝑑𝑘

2
− 𝑚𝑑𝑘

𝑘
+

𝑄2𝑑𝑘

2𝑘2
= 4𝜋𝑃𝑘2𝑑𝑘, (9)

where 𝑃 corresponds to the pressure of the source.
Also at the horizon 𝑚 = 𝑟+

2 + 𝑄2

2𝑟2+
, which gives

𝑑𝑚 =
𝑑𝑟+

2
− 𝑄2

2𝑟2+
𝑑𝑟+ +

𝑄

𝑟+
𝑑𝑄. (10)

Now substituting Eq. (10) into Eq. (9) and simplifying
at the horizon, 𝑘 = 𝑟+, we obtain

𝑑𝑚− (𝑚𝑟+ −𝑄2)

2𝜋𝑟3+
𝑑(𝜋𝑟2+)− 𝑄

𝑟+
𝑑𝑄 = 𝑃𝑑(

4

3
𝜋𝑟3+), (11)

which can be expressed in terms of the thermal quan-
tities defined after Eq. (7) as the first law

𝑑𝑚 = 𝑇𝑑𝑆 + Φ𝑑𝑄 + 𝑃𝑑𝑉, (12)

where 𝑉 = 4
3𝜋𝑟

3
+ is the volume enclosed by the hori-

zon.
In summary, we have presented a new approach

to express the Einstein field equation as the first
law of black hole thermodynamics at the horizon of
the Schwarzschild and the Reissner–Nordstrom black
holes. In our approach, we have used the foliations of
these spacetimes such that the horizon corresponds to
a particular leaf (hypersurface) of our foliation. Then
we work out the field equations of the induced met-
ric of the hypersurfaces and show that the field equa-
tions for the induced metric, at the horizon, can be
expressed as the first law of black hole thermodynam-
ics. The important aspect of our approach is that here
we have to essentially deal with (𝑛 − 1)-dimensional
induced metric for an 𝑛-dimensional spacetime, which
significantly simplifies the calculations to obtain such
results. Here we have dealt with the Schwarzschild
and the Reissner–Nordstrom black hole spacetimes
which are static and spherically symmetric. It will be
interesting to extend this approach to the Kerr and the
Kerr–Newmann black holes, which are not spherically
symmetric and also to other black hole geometries.
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