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Abstract

Melanoma is an aggressive skin cancer type that is incredibly terrifying because of its ten-
dency to become prevalent across the body if not detected and treated on time. In the field
of medical image diagnosis, computer vision can play a significant role, as shown by several
existing technologies. In this paper, we present neural network models such as basic CNN,
ResNet-18, and EfficientNet-B0 for image processing in melanoma skin cancer detection.
This data set has binary classes such as benign and malignant with a 10605 sample size,
where 9605 images for training, and 1000 images for testing the model’s performance. The
process of segmentation, extracting features, classification, and pre-processing process are
the processes that were used in this study. A classification with a success of 97% accuracy
was produced by EfficientNet-B0, which outperformed 87% from ResNet-18 and 80% from
CNN for the classification of malignant and benign. According to other evaluation perfor-
mances such as sensitivity, specificity, f1-score, precision, error rate, Mathew’s correlation
coefficient, geometric mean, and bookmaker informedness, EfficientNet-B0 outperforms
ResNet-18 and CNN. The findings of this research indicate Neural Network models specif-
ically EfficientNet-B0 show significant potential for accurate and efficient melanoma skin
cancer detection to save lives.
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1.1 Medical Imaging & its Applications

Medical image processing can aid in the early diagnosis, care, and detection of disor-
ders. [1]. Medical imaging utilizes various technologies to visualize internal organs and
structures, aiding diagnosis and monitoring. However, as medical image analysis expands,
organ segmentation and abnormality identification become more complex. The classifi-
cation of medical images aids in determining the number of medications and radiation
exposure, as well as limiting the growth of conditions like tumors [2]. It is a method and
procedure for capturing images of the inside of a body for use in clinical research, medical
treatment, and the physiology of certain organs and tissues. It is now crucial for both
medical diagnosis and treatment. Due to doctors’ interest in studying internal anatomy,
these images are crucial in medical applications [3]. Computer vision, pattern recognition,
image mining, and machine learning are now all parts of medical image processing [4]. Due
to their effectiveness, neural networks provide answers to a number of image identification
issues, and they are currently being used in the medical field [5]. As a result of recent
developments in computer vision, the field of medical imaging has also seen an increase in
interest in Transformers, which can capture global context as opposed to CNNs with local
receptive fields [6]. The enhanced outcomes of modern medicine largely depend on medical
imaging. X-rays, MRIs, ultrasounds, endoscopies, tactile imaging, computerized tomog-
raphy (CT scan), and other imaging techniques are some examples of medical imaging
methods.

Figure 1.1: Several types of Medical Imaging
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Medical imaging refers to the use of various imaging techniques for the purpose of clin-
ical investigation and medical intervention, to produce visual representations of a body’s
inside. Numerous techniques have been developed, such as those based on cross-sectional
and X-ray images (SPECT, PET, or ultrasound), as well as tomographic modalities like
computed tomography (CT), magnetic resonance imaging (MRI), and others. The chal-
lenging and crucial step of image processing is segmentation. In the area of image inter-
pretation, it has grown in popularity [7]. Methods for segmenting images are currently
improving more quickly and precisely. We are discovering a broad segmentation algorithm
that can be used to segment different types of photos by merging numerous new theories
and technology [8]. To segment tissues and human organs, a variety of image segmentation
techniques have been applied in medical applications. Applications include mass detec-
tion in mammograms, automated blood cell classification, border detection in coronary
angiograms, surgical planning, simulation of surgeries, tumor detection and segmentation,
brain development study, functional mapping, border detection in angiograms, image reg-
istration, heart segmentation, and analysis of cardiac images, among others. Segmentation
is a technique used in the field of medicine to separate different tissues by extracting and
categorizing features. Organizing visual pixels into anatomical sections can assist people
recognize bones, muscles, and blood vessels. Additionally, by using MRI pictures, this ap-
proach can be used to identify the characteristics of breast tumors and extract information
about skin cancer from images.

1.1.1 Machine Learning in Medical Imaging

Machine learning models can accurately identify diseases by analyzing medical images,
aiding in early detection and diagnosis [9]. It is an effective method for finding patterns in
medical photos, but it should be used with caution because it can be abused if the tech-
nology’s advantages and disadvantages are not understood. [10]. It has made significant
strides in medical imaging, revolutionizing how medical professionals analyze and interpret
images for diagnostic and treatment purposes. Through the use of machine learning ap-
proaches, quantitative characteristics (radiomics) may be extracted from medical pictures,
allowing for a more thorough assessment of tissues and lesions [11]. Machine learning as-
sists in aligning and fusing multiple medical images from different modalities, aiding in
improved visualization and diagnosis [12]. Many medical imaging modalities produce vol-
umetric data (e.g., CT and MRI), and applying machine learning to 3D data presents
unique challenges and opportunities [13]. Integrating information from multiple imaging
modalities such as combining MRI and PET scans, using machine learning can offer a more
thorough understanding of the patient’s situation [14]. Medical images are often subject
to noise and artifacts, making it difficult to interpret the underlying information. Machine
learning algorithms can be used to de-noise medical images, improving their clarity and
facilitating more accurate diagnoses. Ensuring transparency and interpretability of AI
models is crucial in medical imaging to gain the trust of healthcare professionals [15].

1.1.2 Neural Networks in Medical Imaging

Neural Networks, particularly due to their capacity to extract subtle patterns from large
amounts of complex picture data, convolutional neural networks (CNNs) have become
effective tools in Health Imaging. They excel in tasks like image segmentation, disease
detection, and feature extraction, contributing to enhanced diagnostic accuracy and im-
proved patient care [16]. More recently, the use of neural networks has begun. This
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method has the advantage that characteristics are recognized as part of the learning pro-
cess rather than having to be calculated and identified as an initial step. Specific pertinent
areas of interest in medical imaging are made possible by neural network attention mecha-
nisms, which improves interpretability [17]. Combining information from multiple imaging
modalities using neural networks provides a comprehensive understanding of medical con-
ditions [18]. GANs are used to generate realistic medical images, augment datasets, and
improve image quality, aiding in data scarcity issues [19].

Three-dimensional convolutional neural networks (3D CNNs) are employed for tasks
like brain lesion detection and segmentation in MRI volumes [20]. The accuracy of sub-
sequent studies is increased by using autoencoders to improve the quality and remove
noise from medical images [21]. RNNs are used to analyze medical data of a time series,
such as electrocardiograms (ECGs) and electroencephalograms (EEGs) [22]. For image
segmentation tasks, including locating tumor spots in medical imaging, U-Net topologies
are frequently utilized [23]. LSTM networks are applied to predict disease progression and
outcomes based on longitudinal medical data [24]. For Automation, CNNs can automate
the analysis of medical images, reducing the need for manual interpretation and reducing
inter-observer variability. For High-throughput analysis, CNNs can process large amounts
of data quickly, enabling the analysis of multiple images in real time. For Multi-modal
analysis, CNNs can be trained to simultaneously analyze multiple modalities, such as MRI
and CT scans.

1.2 Skin Cancer & its Types

One of the biggest healthcare costs in the world is cancer. According to figures from around
the world, there will be roughly 10.0 million cancer-related deaths in 2020 (9.9 million if
non-melanoma skin cancer is excluded) [25]. Even though it is typically associated with
greater rates of morbidity and mortality, complexion cancer is less common in persons
with darker skin tones than it is in light-skinned Caucasians. To increase the likelihood
of early diagnosis of malignant cancers, doctors must become knowledgeable about skin
cancer in people of color [26]. The fifth most frequently reported disease in the world is
now skin cancer, which has a negative impact on both the economic and public health [27].
There are two types of skin cancer melanoma skin cancer (MSC) and non-melanoma skin
cancer (NMSC)—can be simply distinguished [28]. The greatest preventable cause of skin
cancer is excessive exposure to UV radiation from natural sources like the sun or artificial
sources like tanning beds. The World Health Organization (WHO)’s International Agency
for Research on Cancer (IARC) estimates that there were 8.2 million cancer-related deaths
in 2012 and that there would be 27 million additional instances of the disease by 2030 [29].
The inner dermis layer and the outer epidermis layer make up the two primary layers of
skin. Skin cancer first manifests in the epidermis, which is made up of three main cell
types. Squamous cells, or thin, flat cells, make up the top layer of the epidermis. Round
cells known as basal cells and melanocytes are found underneath the squamous cells. The
epidermis’s base layer contains the cells that make melanin. Melanin is the name of the
pigment that gives skin its color. When the skin is exposed to the sun, melanocytes create
more pigment, darkening the skin. The following skin cancer subtypes are.
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Figure 1.2: Types of Skin Cancer

1.2.1 Non-Melanoma Skin Cancer

The most prevalent cancer in Caucasians is NMSC, and each year, the incidence of this
disease rises [30]. A subset of tumors known as non-melanoma skin cancer (NMSC) arise in
skin cells other than melanocytes, which are in charge of producing melanin, the pigment
that gives skin its color. Basal cell carcinoma (BCC) and squamous cell carcinoma are two
examples of the rare malignancies that make up NMSC. The two most frequent types of
non-melanoma skin cancer are basal cell carcinoma (BCC) and squamous cell carcinoma
(SCC).

Basal cell carcinoma

Skin cancer of the most prevalent kind is basal cell carcinoma (BCC). The face, neck, and
scalp are typical sun-exposed locations where it develops. BCC normally grows slowly and
seldom metastasizes to other body regions [31]. It develops from basal cells, which are
found in the top layer of the skin, the epidermis, in the lower layer. Though it can happen
anywhere, BCC generally appears on parts of the body that are frequently exposed to the
sun, such as the hands, neck, and face.

Squamous cell carcinoma

Skin cancer squamous cell carcinoma (SCC) is another prevalent kind. It can grow more
quickly than BCC and also appears in places that are exposed to light. If SCC is not
properly treated, it has a higher chance of spreading to neighboring lymph nodes or other
organs [32]. Squamous cells, which are located in the upper layers of the epidermis, the
skin’s outermost layer, are where it starts.
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1.2.2 Melanoma Skin Cancer

Melanoma is the fifth most widespread and deadliest kind of skin cancer in the UK which is
most likely either malignant, grow and spread, or benign which is grow but not spread [33].
Melanocytes, the skin’s pigment-producing cells, are the source of melanoma, a more severe
form of skin cancer. Anywhere on the body, including areas that are not exposed to the
sun, might develop it. If melanoma is not found and treated early, it has a high likelihood
of spreading to other organs [34]. The Centres for Disease Control and Prevention’s cancer
statistics show that only 22.1 out of 100,000 people in the US are affected by melanoma,
a cancerous tumor that arises from melanocytes. [35]. Despite only accounting for 4% of
all skin cancers, it causes 75% of skin cancer mortality. [36]. Usually affecting the back,
arms, legs, and face, it spreads quickly and becomes more quickly. UV radiation exposure,
numerous moles, fair skin that is prone to burning easily, and a family history of the
condition are risk factors. Physicians have a lot of work to do when segmentation is done
manually, which could result in prejudice if medical viewpoints are present. After reviewing
intricate photos, which takes time, doctors frequently arrive at a joint diagnosis [37]. It
gets more challenging to cure and can even be fatal once it has spread deeper into the
skin or other parts of the body. Despite having a far lower prevalence than NMSCs, it has
been on the rise among populations with fair skin for many years [38].

Figure 1.3: Stages of Melanoma Skin cancer

According to estimates, people in the United States with early-detected melanoma
have a five-year survival rate of roughly 99%. In the U.S., melanoma is expected to claim
the lives of 7,990 people in 2021 (5,420 men and 2,570 women), and 186,680 new cases
will be detected there. The top layer of skin, the epidermis, will be the site of 89,070
noninvasive instances, while the dermis, the second layer of skin, will be the site of 97,610
invasive cases. 39,490 of the invasive cases will affect women and 58,120 will affect men.
Women (56.7%) were affected by MM of the skin in 1784 incident instances more often
than men (43.3%). In comparison to women, men had a mean age at diagnosis that was
17 years higher (566 vs. 549 years, P < 005). For the TNM code, a sizable amount of
information that was categorized as ”missing” or ”unknown” was retrieved. TX led the T
category with 44.1 percent, followed by the T1 stage with 30.9 percent [39].
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Symptoms of Melanoma Skin Cancer

This form of cancer typically appears on the lower legs in females. On skin that hasn’t been
exposed to the sun, melanoma can develop in both men and women. Any skin tone can be
impacted by melanoma. Melanoma commonly develops on the hands, feet, or under the
fingernails or toenails in those with darker skin tones. Symptoms of melanoma include A
huge brownish spot with darker flecks, a mole that fluctuates in size, appearance, or feels,
or one that bleeds, a little lesion with an unruly border, and areas that are red, pink, white,
blue, or blue-black, a hurtful, itchy, or burning lesion, The mucous membranes lining your
mouth, nose, vagina, or anus, as well as any dark lesions on your hands, feet, fingertips, or
palms. A new mole or a change in an existing mole is frequently how it manifests. Keep
an eye out for moles with uneven borders, varying hues within a single mole, or a diameter
higher than 6 millimeters. Melanoma lesions can be asymmetrical, indicating that one half
is different from the other in terms of size, color, or shape. Shades of brown, black, blue,
red, or white, as well as other hues, can all be contained within them. Instead of having a
smooth and distinct border, a melanoma lesion may have margins that are ragged, fuzzy,
or notched.

A warning indicator could be an uneven distribution of color or the occurrence of dif-
ferent colors within the same mole. Melanomas typically have a diameter bigger than
6 millimeters, or the size of a pencil eraser, compared to regular moles. It’s crucial to
remember that melanomas can come in smaller sizes as well. A mole or skin lesion should
be examined by a medical practitioner if it changes in size, shape, color, elevation, or
symptoms (such as itching, bleeding, or crusting).

1.3 Classification

An example of a supervised learning problem is classification, where the algorithm learns
from a collection of samples that have already been assigned to the appropriate classes.
The objective is to create a model that can extrapolate from the training data to generate
precise predictions on fresh, unstudied data. Naive Bayes, Decision Trees, Random Forests,
Support Vector Machines (SVM), and Neural Networks are a few common categorization
techniques [40]. With a proven promise of ongoing applicability in the real-world envi-
ronment, it has substantially improved the research paradigm and spectrum. specifically
in the areas of healthcare, security, education, gaming, robotics, finance, and autonomous
systems [41]. Usually, the integrity of the input-data representation has a significant im-
pact on how well an ML algorithm performs. It has been demonstrated that a good data
representation outperforms a bad one in terms of performance. As a result, for many
years, feature engineering has been an important area of research in machine learning and
has influenced various research investigations. This method attempts to create features
out of raw data. Several types of features were proposed and compared in the context of
computer vision, such as histogram of oriented gradients (HOG), despite the fact that it
is exceedingly field-specific and frequently necessitates significant human work [42].

Machine learning attempts to make it possible for computers to learn from data, spot
patterns, and make judgments based on that data. Machine learning comes in a variety
of forms, including supervised learning, unsupervised learning, semi-supervised learning,
reinforcement learning, and deep learning. Machine learning (ML) has recently gained a
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lot of traction in research and has been applied to a number of applications, including
text mining, spam detection, video recommendation, image categorization, and multi-
media idea retrieval [43]. Other technologies that are occasionally utilized include semi-
supervised learning and reinforcement learning [44]. The creation of supervised machine
learning algorithms allows for the production of broad patterns and hypotheses by using
data from external sources to forecast the outcome of future data. The goal of classifica-
tion algorithms is to categorize data based on past knowledge. Classification is commonly
used in data science issues [45]. This type of machine learning uses labeled data to train
the algorithm. Applications like image classification, speech recognition, natural language
processing, and predictive modeling are frequently utilized in the finance, healthcare, and
marketing industries. Because they can make precise predictions and have a proven assess-
ment framework, supervised learning algorithms are a popular choice for many practical
applications.

Figure 1.4: Supervised vs Unsupervised vs Semi-Supervised vs
Reinforcement Machine Learning.

In medical imaging classification plays a significant influence in diagnosing diseases
and conditions, as well as assisting in making judgments that are influenced by healthcare
professionals based on image data. These methods involve analyzing and categorizing X-
rays, MRI scans, and CT scans are examples of medical imagery, and more, to identify
patterns and features indicative of specific diseases or conditions. Deep learning techniques
include CNN’s architecture which has shown remarkable performance in medical due to
its capacity to automatically deduce hierarchical features from images, and classification.
CNNs have been widely used for tasks like detecting tumors, identifying specific anatomical
structures, and more [46]. For classifying medical images, two common machine-learning
methods are Random Forests and Decision Trees. They function by developing a deci-
sion tree-based model that can capture intricate connections between target labels and
visual attributes [47]. Another well-liked machine learning approach is the use of virtual
machines (VMs) for classification tasks in medical imaging. They operate by identifying
a hyperplane that effectively divides several classes in the feature space [48]. Ensemble
methods combine multiple classifiers to improve classification performance. Bagging and
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boosting are common ensemble techniques that have been applied to medical image clas-
sification [49]. Transfer learning is a technique for enhancing the performance of medical
image classification tasks with less data by utilizing pre-trained models on big datasets.
This approach has been particularly effective when labeled medical image datasets are
scarce [50].

1.3.1 Types of Classification

In classification tasks, classes can be categorized into different types based on the number
and nature of the classes involved.These different types of classes in classification highlight
the varying complexities and characteristics of classification tasks. The choice of the
appropriate type of classification depends on the nature of the problem, the available
data, and the specific goals of the application. The commonly used types of classes in
classification are:

Binary Classification

In machine learning, binary classification falls under the category of supervised learning
since it is supported by high-quality training data that includes examples from two classes
and labels each example as either class 0 or class 1 using a set of feature values. In order
to predict the unobserved binary labels of new instances from their seen feature values,
a binary decision rule is first built using the training data. A broad family of algorithms
that automatically learn prediction rules from training data is represented by binary clas-
sification [51]. Classifying incidents into one of two categories—typically expressed as 0
or 1, positive or negative; true or untrue; etc.—is the aim. For applications like email
spam detection, sentiment analysis, and medical diagnosis, this kind of categorization is
employed.

Multi-class classification

The phrase ”multi-class classification” refers to classification issues in machine learning
that involve more than two classes. When comparing and evaluating various categorization
models or machine learning methods, performance metrics are quite helpful [52]. The
objective of this sort of machine learning classification issue is to place instances into
one of many classes. For tasks like speech recognition, text classification, and picture
classification, this form of classification is employed.

1.4 Neural Networks

A well-known machine learning method called a neural network was developed as an
inspiration for biological neural network topologies. Through the creation of an artificial
neural network, it imitates the functioning of the human brain [53]. They are made up
of linked ”neurons,” or nodes, arranged in layers. It offers a variety of strong brand-new
methods for handling issues with pattern recognition, data analysis, and control. The most
fundamental kind of neural network is a feed-forward neural network. A hidden layer or
layers, an output layer, and an input layer make them up. For a variety of applications,
including image classification, regression, and fundamental pattern recognition, FNNs are
employed [54].



CHAPTER 1. INTRODUCTION 10

Figure 1.5: Binary classification vs Multi classification

Figure 1.6: Basic structure of Neural Networks

A layer termed bias in a neural network (NN) can contain any number of nodes since
the layers are independent of one another. The bias nodes are always initialized to 1.
Importantly, a bias value allows for the right or left movement of the activation function,
which may be critical for the success of ANN training. When the NN is employed as a
classifier, the input and output nodes will correspond to the input features and output
classes. The NN typically has an input and an output node when it is used to approximate
a function, though. Nevertheless, there are more necessary designed hidden nodes than
input nodes.

Images and other grid-like data may be processed using CNNs. In order to automatically
learn hierarchical features, they employ convolutional layers, Consequently, they excel in
image segmentation, object detection, and classification [55]. Natural language and time
series are two examples of sequential data that RNNs are intended to handle. They have
a feedback loop that allows information to be passed from one step of the sequence to the
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next, making them suitable for tasks like language modeling and speech recognition [56].
Recent research has focused on creating neural networks with fewer parameters to reduce
computational requirements and improve efficiency [57]. The most modern DL approaches
have demonstrated excellent performance in a number of applications, including natural
language processing (NLP), audio and speech processing, visual data processing, and oth-
ers [58]. Bag of words and scale-invariant feature transform (SIFT) [59]. Once a unique
feature is implemented and proven to work successfully, it creates a new area of study that
is studied for decades. [60]. Deep learning algorithms can now handle challenging tasks
including audio and picture recognition, natural language processing, and autonomous ve-
hicles. TensorFlow, PyTorch, and Keras are a few well-known deep learning frameworks.

Figure 1.7: Artificial Intelligence vs Machine Learning vs Neural Networks
vs Deep Learning

1.4.1 Types of Neural Network

Although there are several neural network types, each with a distinct design and field of
use, new architectures are continuously being created for certain tasks and applications.
Here are a few examples of the neural network types we utilized for this project.

Convolutional Neural Network

In the field of neural networks, The most renowned and widely used algorithm is CNN [61].
CNN has a number of advantages over its forerunners, but its main benefit is that it does
so automatically and without human assistance, recognizing the important components
[62]. CNNs have been extensively used in a wide range of fields, including computer
vision, audio processing, face recognition, etc. CNNs were created using the neurons
present in both human and animal brains and have a structure similar to a regular neural
network. More specifically, CNN models the complex cell pattern found in the visual
cortex of a cat’s brain [63]. Convolutional Neural Networks (CNNs) are a particular
kind of neural network made for processing grid-like input, such as images. By enabling
automatic feature extraction from images and delivering cutting-edge performance in tasks
like image classification, object identification, and more, they have revolutionized a number
of disciplines, including computer vision. CNNs are made up of a number of components
that enhance their performance.
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Convolutional Layers

Convolutional layers are typically used at the end of the CNN architecture for making final
predictions. They take the extracted features and transform them into a format suitable
for the final classification or regression task [64]. It is the primary component of the
convolutional neural network. When specific criteria are met, filtering in the convolutional
layer causes the output result to be generated from the input. The neurons in convolutional
layers are arranged in either a rectangular grid or a cubic block. Thus, input and output
layers with filters may consist of a neuronal block with a rectangular grid or a cubical
block shown in Fig 1.8.

Figure 1.8: Convolutional layer

1.4.2 Building Block of CNN

This process is necessary to make sure that the neural network only obtains the information
necessary for classifying an image. By doing this, the network’s accuracy is increased while
simultaneously ensuring that the least amount of processing power is required to train the
network. The result of the convolution technique is referred to as a feature map, convolved
feature, or activation map. A feature map is produced by using a feature detector. The
kernel or filter are alternate name for the feature detector. The feature map is produced
when the kernel is multiplied element by element using the aforementioned picture. These
are CNN’s pillars, in that order.

Padding

Padding is the technique of enhancing a source image’s border pixels before convolutional
filters are applied. It helps adjust the output feature’s duration map and retain spatial
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information. There are two types of padding: ”valid” padding (no padding) and ”same”
padding (adding padding to keep output size the same) [65]. To avoid the issues outlined
above, Simply adding layers of zeros to our input photos is the technique of padding. This
avoids shrinkage because our (x*x) image becomes (x + 2p) x (x + 2p) after padding
if p = the number of layers of zeros added to the image’s border shown in Fig 1.9.

Figure 1.9: Padding (Zero Padding)

Kernel

A kernel or filter is a small matrix applied to the input image to perform convolution. It
extracts specific features by multiplying its values with the corresponding pixel values of
the input and summing the results [66]. Due to the smaller reduction in layer dimensions,
it performs better, the resultant image is typical of size (xk + 1)*(xk + 1) when a
(x*x) image is convolved with a (k*k) kernel.

Figure 1.10: The kernel is an iterative matrix that moves through the input
data, performs a dot product operation on a section of the data, and then

outputs the outcome as a matrix of dot products.

Stride

The convolutional filter’s step size is referred to as the stride, and it is measured in the input
image’s size. A larger stride results in smaller output feature maps, as fewer convolutions
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are performed. Smaller strides can help retain more spatial information [64]. Stride is
the number of the input matrix’s pixels that are shifted. Our output image dimension for
padding p, filter size k*k, input image size x*x,and stride ’s’ will be:

((x+ 2p− k + 1)/s+ 1) ∗ ((x+ 2p− k + 1)/s+ 1) (1.1)

Figure 1.11: The filters are shifted one pixel at a time when the stride is 1.
The filters are shifted 2 pixels at a time when the stride is 2, and so on.

Pooling

By sliding a filter of a certain size with a certain stride size and determining the maximum
or average of the input, the output of the Convolutional layers is sampled down. The
feature maps’ spatial dimensions are reduced but vital data is preserved via pooling layers.
The feature maps are downsampled using methods like max pooling and average pooling
[67].

Types of Pooling

Max pooling is a straightforward method that helps move forward with the image’s most
crucial attributes by taking the maximum of a region. The brighter pixels in the picture
are selected using max-pooling, where average pooling is a technique that uses the average
value for feature map patches to build a pooled feature map that has been down-sampled.

A specific form of linear operation called convolution is employed in feature extraction.
By applying a tiny array of numbers to the input, which is an array of integers, it extracts
the features. An element-wise product between each element of the kernel and the input
tensor is calculated at each point of the tensor and summed to produce the output value
at the corresponding location of the output tensor. Modern CNN designs often employ
zero padding to preserve in-plane dimensions and enable the application of extra layers.
Without zero padding, each feature map after the convolution process would get smaller.

Residual Neural Network

He et al. (2015) named the artificial neural network (ANN) known as the Residual Network
(ResNet). The idea of residual learning was first proposed by Residual Neural Networks
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Figure 1.12: Max Pooling and Average Pooling

(ResNets), a form of deep neural network design. They were created to solve the vanishing
gradient issue and make it possible to train incredibly deep networks. ResNets are fre-
quently utilized for a variety of computer vision applications and have a substantial effect
on the field of deep learning. It is made to handle sequential data, including time series
data, audio signals, and text written in natural language.ResNet16, ResNet18, ResNet34,
ResNet50, ResNet101, ResNet110, ResNet152, ResNet164, ResNet1202, and so forth are
only a few of its many versions.

Figure 1.13: Residual unit structure diagram

The core idea of ResNets is the residual block. Instead of learning the desired output
directly, The residual (difference) between the input and output is learned by a residual
block. A ”shortcut” or ”skip connection” that connects the input straight to the output of
one or more layers is introduced to accomplish this. This allows the network to learn the
identity function, making it easier to train deep networks. In Fig 1.13 the first thing that
stands out to us is the direct link that bypasses certain triple-layer layers. The decoder’s
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connection, often known as the core of residual blocks, is this link. Without the skip
connection, input ’X is multiplied by the pre-trained layer before being added to a bias
term, hence the output is not pre-trained.

ResNet-18

ResNet-18 is the name of a convolutional neural network with 18 layers. A pre-trained
version of the network that has been trained on more than a million images is present in
the image database. These Residual blocks have made it possible to train incredibly deep
networks, and the ResNet model is made up of these blocks.

Building Blocks of ResNet-18

ResNet-18 is made up of a variety of residual blocks. A series of layers, including con-
volutional layers, batch normalization, activation functions, and a skip connection, make
up each residual block. The inclusion of the residual/skip connection, which adds the
original input to the output of the convolutional layers, is the main novelty of ResNet.
Two convolutional layers make up ResNet-18’s fundamental residual block, which is then
followed by batch normalization and ReLU activation for each layer.

H(x) = f(wx+ b) (1.2)

Now that a new skip connection method has been developed, the output of H(x) has
changed to

H(x) = f(x) + x (1.3)

Triple-layer of the input may be varying f decoder section output which might happen
with a convolutional layer of more-trained layers. The two methods described above can
thus be used to solve this problem. Zero is a decoder that uses a skip connect to enhance
its dimensions. For the input to fit the dimensions, 11 convolutional layers are added. The
result of this situation is:

H(x) = f(x) + w1.x (1.4)

When utilizing the first method, no new parameter is supplied; however, an additional
parameter, w1, is introduced here. The skip connections strategy in ResNet addresses the
issue of disappearing gradient in deep CNNs by providing an additional shortcut channel
for the gradient to flow through. Furthermore, the skip connection feature is helpful
since it allows regularization to bypass any layer that negatively affects the architecture’s
performance.

1.4.3 Efficient Neural Network

A software solution known as an efficient neural network uses machine learning (ML)
techniques to ”mimic” the functions of the human brain. The neural network architecture
used in EfficientNet has been scaled up. Compound scaling is a recently suggested tech-
nique that scales all dimensions using a compound coefficient. The three factors—depth,
breadth, and resolution—are scaled up in this context in a methodical, rational manner.
Each layer’s feature maps are expanded by the width scale. Layers are added to the
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network by using the depth scale. The supplied photos’ resolution is raised using the
Resolution scale.

EfficientNet-B0

In order to train EfficientNet-b0, a convolutional neural network, more than a million
images from the ImageNet database were used. The network can categorize photos into
1000 different item categories, including various animals, a keyboard, a mouse, and a
pencil. Every architecture shares characteristics with its predecessors. The additional
parameters caused by the various feature maps are the sole distinction. With the exception
of the multiplied block(x2) that grows and covers additional blocks, all the models have the
same design as the prior one. This provides a large number of input parameters, making
it an extremely robust model. The differences between all the models are easily visible,
and they steadily expanded the number of sub-blocks. The compound scaling approach
was used to scale up in two phases, starting with EfficientNet-B0:

Step 1

The coefficient, which necessitates a small grid search for the network’s depth, breadth,
and resolution constants, was set to 1 under the presumption that there would be twice
as many sources accessible.

Step 2

To produce the subsequent versions from B1 to B7, the constants are then fixed and
scaled up from the baseline network using various coefficients.Due to these restrictions,
EfficientNet was given priority in this work as well. The remaining EfficientNet models
were also ignored for this primary reason since they calculate a large number of parameters,
which uses a lot of processing power and time and results in a subpar result. Fine-tuning
has been used in conjunction with baseline versions of each model for determining MVA
for EfficientNet models. In Fig 1.14 the flow chart is useful in understanding the structure
and workings of an ENN and is often used as a visual aid in explaining the process.
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Figure 1.14: This flow chart is a graphical representation of the different
stages and operations involved in the ENN architecture.

To enhance EfficientNet models B1–B7, we used the EfficientNet-B0 network and
evenly increased the depth, breadth, and resolutions using a simple and efficient compound
coefficient. For the common transfer learning problem, EfficientNets are smaller, have
fewer parameters, and generalize better to produce higher disappointing results. In order
to redesign, the suggested study adjusted EfficientNet models B0-B4. Medical imaging
uses pre-trained data sets, hence the data augmentation approach is used to provide extra,
distinctive CXR images in order to control overfitting. When we applied the pre-trained
EfficientNets to the CXR data set, we enhanced the models by utilizing a global average
pooling (GAP) to reduce the number of parameters and handle overfitting. Before a final
dense layer that acts as the output and has a SoftMax activation function to calculate the
probabilities of the input CXR representing the normal and infected classes, two dense
layers with a ReLU activation function and a dropout rate of 0.4 come after the GAP.

Activation Functions

Activation functions are crucial in transforming artificial neural network output into non-
linear outputs because without this non linearity, the network’s findings would be less
accurate. For back-propagation learning to take place, the activation function needs to be
differentiable. When utilizing neural networks to code fractal pictures, the nonlinearity
of the activation function is crucial since the coefficients of the Iterated Function System
vary depending on the different forms of fractals.The sigmoid function, which yields a
positive result, is the most often selected activation function. Other functions that can
have positive or negative values based on the input to the network, such tans or arctan,
have a tendency to train neural networks more quickly [68]. Some of the most popular
activation functions are listed below.

ReLU (Rectified Linear Unit)

The activation function used most frequently in deep learning nowadays is ReLU. It leaves
all positive inputs unaltered while replacing all negative inputs with zero. In deep learning,
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one of the most often used activation functions is the rectified linear unit (ReLU) activation
function. It is a non-linear function that transforms all negative inputs to zero while
preserving positive inputs. This is how the ReLU function is described:

f(x) = max(0, x) (1.5)

The ReLU activation function is computationally efficient and easy to implement,
which makes it a popular choice for building deep neural networks. IIt has been demon-
strated to deliver positive outcomes in a variety of applications, including speech recogni-
tion, picture classification, and natural language processing.

Leaky ReLU

The leaky rectified linear unit A different form of the rectified linear unit (ReLU) activa-
tion function is known as leaky ReLU. The primary distinction is that the typical ReLU
activation function maps all negative inputs to zero, but the leaky ReLU activation func-
tion permits a modest negative slope for negative inputs. As specified, the Leaky ReLU
function is:

f(x) = max(x, x) (1.6)

where α is a small positive constant, typically set to 0.01, that determines the slope of
the function for negative inputs. The Leaky ReLU activation function can help mitigate the
dying ReLU problem, where a traditional ReLU activation function may produce neurons
that never activate and become dead. In several deep learning models, it is commonly
employed and has been shown to produce good results in many applications, including
image classification, speech recognition, and natural language processing.

Sigmoid

Any input may be translated into a probability by using the sigmoid activation function,
which transfers it to the range of 0 to 1. In mathematical terms, the sigmoid activation
function is:

S(x) =
1

1 + e−x
(1.7)

where ex is the exponential function. The sigmoid function has a smooth and contin-
uous transition, which makes it well-suited for binary classification problems. However,
it does have certain drawbacks, such as the vanishing gradient problem, which can make
deep neural network training challenging.

Softmax

The softmax activation function addresses multi-class classification problems. It creates
a probability distribution over a number of classes from the inputs. The definition of the
softmax function is as follows:

f(xi) =
exi∑
(exj )

(1.8)

where exi is the input to the function for class i and the sum is taken over all classes
j. Because of the softmax function’s guarantee that the output total will never exceed
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1, they may be used to represent a probability distribution over several classes. In the
output layer of a neural network, it is typically used to produce a probability distribution
over a number of classes. The final forecast is then chosen as the class with the highest
probability. It is frequently employed in several applications, such as speech recognition,
picture classification, and natural language processing.

Tanh (Hyperbolic Tangent)

The input range for the tanh activation function is from -1 to 1. Similar to the sigmoid
activation function, but with various values that are squashed. One definition of the tanh
function is:

f(x) = tanh(x) =
2

(1 + e−2x)
− 1 (1.9)

The tanh activation function is similar to the sigmoid activation function, but it maps
its inputs to a different range, which can be useful in some cases. It can produce saturation
at the extremes of the range, which can make it more difficult to optimize compared to
other activation functions, such as the rectified linear unit (ReLU). The tanh activation
function is widely used in many applications, including recurrent neural networks, where
it is used to model sequences of data. It is also commonly used in CNNs, where it is
applied to add nonlinearity to each neuron’s output.

Figure 1.15: Grapical Representation of Activation functions
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1.4.4 Application of Neural Networks

Recent studies have extensively explored the use of neural networks for medical image
diagnosis, including the detection of diseases like melanoma. CNNs, in particular, have
demonstrated remarkable success in analyzing medical images such as X-rays, MRIs, and
histopathological slides. Neural networks are being employed in the pharmaceutical indus-
try for drug discovery and development. They aid in predicting the properties of molecules,
identifying potential drug candidates, and optimizing chemical structures. In the field of
NLP, transformers like BERT and GPT-3 have gained prominence. These models are be-
ing utilized for tasks such as sentiment analysis, language translation, and even generating
human-like text. Neural networks play a pivotal role in the development of self-driving
cars. They enable object detection, lane tracking, and decision-making based on real-time
sensor data. Financial institutions are leveraging neural networks for stock market predic-
tion, risk assessment, fraud detection, and algorithmic trading. Neural networks are used
for analyzing environmental data, such as satellite imagery and sensor readings, to predict
natural disasters, monitor climate changes, and assess environmental impacts. Healthcare
providers are using neural networks to analyze patients’ medical records, genetic data,
and lifestyle information to personalize treatment plans and predict disease risks. Speech
Recognition which is used to build speech recognition systems that can transcribe and
translate speech into text. Recommended Systems, is used to build recommended systems
that suggest items to users based on their preferences and behaviors. Financial Forecast-
ing, is used to predict stock prices, currency exchange rates, and other financial market
trends.In order to diagnose illnesses, forecast patient outcomes, and provide individual-
ized treatment approaches, healthcare is used. Robotics, which is used to build intelligent
robots that can perform tasks such as object recognition, navigation, and control.

1.5 Goal of the Study

The study aims to enhance the detection of aggressive melanoma skin cancer using com-
puter vision techniques, particularly through the application of neural network models.
The goal is to address the challenge of timely diagnosis of melanoma, which can become
life-threatening if not detected early. By utilizing various neural network architectures,
including EfficientNet-B0, ResNet-18, and basic CNN, the study seeks to develop accurate
and efficient models for classifying melanoma skin lesions. The ultimate objective is to
improve the accuracy of melanoma detection, potentially leading to early interventions
and improved patient outcomes.
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In this chapter, we begin our study with the neural network idea before moving on to dis-
cuss neural network methods. The neural network techniques are efficient for fine-tuning
the networks, as in Convolutional Neural Networks, Residual Neural Networks, Efficient
Neural Networks on image datasets including Skin cancer, etc.

In a recent study, PCA and SVM are used for the classification of MSC image data
set [69]. In order to determine how varying the number of training images and epochs
could impact accuracy, Rina Refianti and Achmad Benny Mutiara applied CNN to the
MSC image data set [70]. An EfficientNet-B0 was utilized in this article to detect network-
based malignancies from MRI data [71]. The experiment employs 4,509 TUSP images,
with 3,386 training and 1,123 testing images, so the 18-layer CNN model ResNet performs
well in categorizing TUSP images [72]. The project focuses on training ResNet-18 and
ResNet-50 models to detect colorectal cancer using colon gland images. ResNet-50 sur-
passes Resnet-18 according to the accuracy, sensitivity, and specificity across all testing
data sets [73]. The researcher was able to obtain images of skin lesions from the ISIC 2019
data set making use of the proposed spiking VGG-13 model [74]. MAFCNN-SCD is a
unique approach for skin cancer diagnosis in dermoscopic pictures that uses an optimized
multi-attention fusion CNN. Extensive simulations show that the technology outperforms
competing techniques, showing its potential for precise and efficient skin cancer categoriza-
tion [75]. Researchers used hybrid CNN models with an SVM classifier to automatically
classify dermoscopy pictures as benign or malignant lesions [76]. A dermoscopy-based
ML diagnostic system for identifying and categorizing skin lesions with ABCD rules for
prepossessing, segmentation, feature extraction, and classification [77]. Bonechi, Simone’s
manuscript proposes a DL method to classify the cutaneous lesions. Preliminary results
from the ISIC data set show promising outcomes, highlighting the significance of informa-
tion fusion in enhancing classification accuracy [78]. They used DL models they had chosen
using a search method such as EfficientNets, SENets, and ResNeXt WSL. Additionally,
they incorporate patient metadata with an additional input branch in our dense neural
network [79]. The detection and classification of MSC using Support vector machines
(SVM) and neural networks (NN) by Mhaske H and Phalke [80]. The system comprises
three stages such as input gathering, augmentation, model creation, and prediction by
fusing AI techniques that are CNN and SVM with image processing technologies [81].
Results from the benchmarking using 1011 lesion cases demonstrate the effectiveness of
the approach in accurately classifying the checklist criteria, performing skin condition di-
agnosis, and generating feature vectors for image retrieval and region localization [82].
Li Weipeng demonstrates superior performance, particularly for rare disease categories,
through comprehensive experiments using various deep-learning model architectures [83].
The researchers applied filter detection using discrete wavelet transformation, dimension
reduction using PCA, and classification using supervised ML algorithms [84]. In auto-
mated skin lesion diagnosis, a quantitative study concludes that dermoscopic images are
better than macroscopical images. Data from 2917 cases, each comprising a dermatoscopic
and macroscopic image, and patient metadata, was used to access the effectiveness of the
method [85].

In this article, the key contribution is the creation and assessment of a Using additional
parameters and the highly accurate neural network-based MSC image categorization sys-
tem, using CNN, ResNet18, and EfficientNet-B0. In the upcoming sections, we will delve
into the Materials and Methods, where we outline the data set and methodology, and the
Results, where we present the outcomes of our experiments.
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References Dataset Methods Findings

Refianti R, Mutiara
AB, [70]

MSC CNN Acc=93%

Shah HA, Saeed F. [71] MRI
EfficientNet-
B0

Acc=87%

Guo M, Du Y. [72] TUSP ResNet-18 Acc=83%

Sarwinda D, Paradisa
RH, [73]

Colorectal
cancer

ResNet-18 Acc=80%

Qasim Gilani S, Syed
T, [74]

Skin cancer VGG-13 Acc=89%

Zghal NS,Derbel N [77] MSC
Image pro-
cessing

Acc=90%

Bonechi, Simone [78] ISIC ResNet-50 Acc= 83%

Gessert, Nils [79]
ISIC
HAM10000

EfficientNets Sens=72%/74%

Mhaske H, Phalke D.
[80]

MSC NN, SVM
Acc:NN=60-70%,
SVM=80%-90%

Vijaya lakshmi M. [81] MSC CNN, SVM Acc =85%

Kawahara, Jeremy [82]
7-point
dataset

Inception
v3

Sens=52%/60%
Spec=90%/91%

Li, Weipeng [83] ISCI SENet154 Sens=85%/87%

Elgamal M. [84] Skin cancer ANN KNN
Acc=95%
Spec=Sens=95%

Yap, Jordan [85]
ILSVRCo
2015+Own

ResNet50
Precision=72%
Acc=72%

Moldovan D. [86] HAM(10000)
Deep
Learning
models

Acc=75%-85%

Table 2.1: Summary of Related Work
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In this study, we present a summary of the data set that was implemented in our study in
addition to the approach used to include neural networks in the classification task. The
methodology discusses the processes needed to create and train the neural networks, while
the data set selected for this research serves as the fundamental building block for our
investigations.

3.1 Data Acquisition

”Melanoma Skin Cancer” is the name of the data collection that we used in our research.
It has 10,605 images with binary classes with the most samples being malignant and
the minority class with the fewest samples benign that were gathered from the Kaggle
database. Data is collected from different ISIC MSC directories, which is the largest
community-based data platform for machine learning in the world.

Figure 3.1: The data set consists of 9605 images for training the model and
1000 images for evaluation of the model with image dimensions (224x224)

with RGB scale.

In benign which has 5500 images and in malignant, there is 5105. Any data set with
an uneven distribution of values across its classifications is deemed unbalanced. However,
it is generally accepted in the field that data sets displaying considerable, and in some
cases dramatic imbalances, are indicative of unbalanced data. The performance of the
majority of popular classifier learning algorithms, which presuppose an evenly distributed
class distribution and equal miss-classification costs, suffers significantly when trying to
classify data with an uneven class distribution.

3.2 Neural Networks for Image Classification

The methodology discusses the processes needed to create and train the neural networks,
while the data set selected for this research serves as the fundamental building block for
our investigations.
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3.2.1 Convolutional Neural Network (CNN)

It is required to have a sample data set with a variety of melanoma manifestations. The
original data set is then used to build subsets for training and testing. Let

F = (x1, y1), (x2, y2), ..., (xn, yn) (3.1)

where F denotes the data set of MSC images. Each pair (xi, yi) represents an input
image xi, and its corresponding label yi, is the class label (0 for benign and 1 for malig-
nant), and n shows the total number of images. A single output matrix computation is
described as follows:

Fi = f(

N∑
i=1

Ii ∗ k +Bj) (3.2)

First, a kernel matrix K corresponding to each input matrix Ii is convolved. Then,
each member of the resulting matrix is given a bias value Bj , and the sum of all the
convoluted matrices is calculated. One output matrix Fi is generated by applying a non-
linear activation function f to every component of the previous matrix.

no =
ni + 2p− k

s
+ 1 (3.3)

no displays the number of output features, ni reveals the number of input characteristics,
p shows padding size, s shows stride size and k is the number of convolution filter sizes.
Analyze the effectiveness of the train model using a different testing data set after training.
Let Ftest denote the testing data set, where m is the number of test images.

Ftest = (xtest1, ytest1), (xtest2, ytest2), ..., (xtestm, ytestm) (3.4)

Predict the labels for the test images using the trained model

ŷtesti = F (xtesti) (3.5)

Compare the predicted labels ŷtesti with the true labels ytesti to compute the evalu-
ation of the model.

Figure 3.2: The architecture of basic CNN structure, and the various layers
that make up the CNN model on the skin cancer image data set
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The training procedure entails feeding the training images and labels into the model
repeatedly. Any required hyperparameter modifications are made once the validation set
performance of the model was assessed for over-fitting.

3.2.2 ResNet-18

ResNet-18 is a popular CNN architecture known for its deep residual learning. The archi-
tecture has 18 layers, including residual blocks, convolutional layers, batch normalization
algorithms, and ReLU activation functions. Propagate an input image xi through the
ResNet-18 model to obtain the predicted output ŷi. For each layer in the ResNet-18
architecture, compute the activation value ai as follows: For a convolutional layer,

ai = Convolve(xi,Wi) + bi (3.6)

where Wi represents the weights of the layer and bi represents the bias term. Imple-
ment batch normalization For all activations in a specific channel, BN indicates the same
normalization.

BNb,c,x,y = γc ∗
Ib,c,x,y − µc√

σ2
c + ϵ

+ βc (3.7)

In this case, BN subtracts the mean activation µc from all input channel c activations,
where β is the sum of all channel c activations for every attribute b in the whole mini-
batch and for all spatial x, y positions. Then, following a similar strategy, BN divides the
centered activation by the standard deviation σc (plus ϵ for numerical stability). Testing is
conducted using running mean and variance averages, followed by an affine transformation
channel-wise that is parametrized by γc and βc, which are discovered during training.

Apply the ReLU activation function to introduce non-linearity and enhance feature
representation.

f(x) =

{
x, x > 0
0, Otherwise

}
= max(0, xi) (3.8)

For each residual block, compute the output by passing the activation value ai through a se-
ries of convolutional layers and adding the input to the output, creating a skip connection.
Apply global average pooling lastly to get a compact representation of the characteristics.

GAP =
1

Xk
(
∑
xϵXK

xpk)pk (3.9)

When a parameter is p > 0. The pooled feature map’s contrast is increased and the
image’s salient features are brought into sharper focus when this exponent is set to p > 1.
The expected probability distribution over the class labels can be obtained by running the
pooled features through a fully connected layer with softmax activation.

pi =
ezi∑J
j ezj

(3.10)

where the softmax input is zi and the number of categories is j. A probability distri-
bution with a range of (0,1) and a sum of 1 can be created from the output value of a
multi-classification using the softmax function pi. Then, the distance between the actual
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and desired output may be calculated using the cross-entropy loss function of Softmax,
and the formula is as follows:

L =

J∑
j

yJpi (3.11)

where the real tag is represented by yj . The loss function for the classification issue
represents the discrepancy between expected and actual outcomes. Finding a set of optimal
solutions in the parameter space to reduce L can be thought of as the network’s training
process as a parameter optimization process.

Figure 3.3: The ResNet-18 architecture can be summed up in this visual
representation. Convolutional layers, batch normalization, and ReLU

activation are applied to the input. The final layers are comprised of global
average pooling, fully linked layers with ReLU activation, and a softmax

activation for generating class probabilities.
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Layer Filter Size Resolution Activation Function

Input - 224x224 -

Conv 3x3 112x112 Relu

Conv 3x3 112x112 Relu

Conv 3x3 112x112 Relu

Conv 3x3 112x112 Relu

Residual - 112x112

Conv 3x3 56x56 Relu

Conv 3x3 56x56 Relu

Conv 3x3 56x56 Relu

Conv 3x3 56x56 Relu

Residual - 56x56

Conv 3x3 26x26 Relu

Conv 3x3 26x26 Relu

Conv 3x3 26x26 Relu

Conv 3x3 26x6 Relu

Residual - 26x26

Conv 3x3 13x13 Relu

Conv 3x3 13x13 Relu

Conv 3x3 13x13 Relu

Conv 3x3 13x13 Relu

Pooing and FC - 4096 Relu

Second FC - 10000 Softmax

Table 3.1: ResNet-18’s architecture includes convolutional layers, followed
by four levels of residual blocks.

Figure 3.4: Visual architecture of ResNet-18 includes convolutional layers,
followed by four levels of residual blocks.



CHAPTER 3. MATERIALS AND METHODS 31

3.2.3 EfficientNet-B0

Efficient-NET defines the design of convolutional neural networks as well as a scaling
method that uniformly expanded the network’s depth d, width w, and resolution r for the
optimal performance. It has several variants inside of it, ranging from b0 to b7; for this
study, the b0 version is chosen. The EfficientNet-b0 design has 5.3 million parameters in
total.

d = αϕ (3.12)

w = βϕ (3.13)

r = γϕ (3.14)

s.t : α.β2.γ2 = 2 (3.15)

where, α ≥ 1, β ≥ 1, γ ≥ 1 (3.16)

According to the equation, FLOPS would rise by ((alpha.beta2.gamma2)phi) from
the original equation, where phi is the user-defined coefficient. To get the predicted result
I, propagate an input image xi via the EfficientNet-B0 model. Iteratively adjusting the
parameters based on the obtained gradients will train the EfficientNet-B0 model using the
training subset. Measure the trained model’s classification accuracy and other performance
measures on the testing subset. Fig 3.5 depicts the EfficientNET-b0 network’s visual flow
chart and Table 3.2 shows the baseline network.

Layer Filter Size Resolution

Input - 224x224

MB Conv 3x3 112x112

MB Conv 3x3 112x112

MB Conv 3x3 56x56

MB Conv 3x3 28x28

MB Conv 3x3 14x14

MB Conv 3x3 14x14

MB Conv 3x3 7x7

Conv 1x1 7x7

Pooing and FC - 7x7

Table 3.2: This tabular representation summarizes the
EfficientNet-B0.Taking into consideration the filter size and resolution, the

MB (Melanoma-Biopsy) convolution layer is specifically designed for
melanoma skin cancer detection.
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Figure 3.5: EfficientNet-B0 typically consists of multiple layers for feature
extraction and prediction. It can be combined with Albumentations, an
image augmentation library, to increase data diversity and improve the
model’s generalization. The Adam optimizer is employed to optimize the

model’s parameters during training.
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Figure 3.6: This representation provides an overview of the EfficientNet-B0
architecture. Taking into consideration the filter size and resolution, the

image size, and the MB (Melanoma-Biopsy) convolution layer.
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3.3 Evaluation Metrics for Classification

By comparing predictions to actual class labels, measurement To assess the effectiveness
and performance of categorization models, measurement measures are utilized. The choice
of evaluation metrics depends on the specific requirements of the classification problem
and the desired trade-offs between different aspects of performance. With the aid of the
Confusion Matrix, a machine-learning concept that provides details regarding actual and
anticipated classifications made by a classification system, we may present several often
used assessment metrics for classification. A confusion matrix contains two dimensions,
one of which is index by the class that an item really belongs to, and the other by the class
that serves as the predictive class. We have used the equations 3.17 to 3.25 with the help of
a 2x2 confusion matrix showing the predicted and actual classification. The values in the
following table are labeled as true positives (TP) for events that were correctly predicted,
false positives (FP) for events that were incorrectly predicted, true negatives (TN) for
correctly predicted events, and false negatives (FN) for incorrectly predicted events.

Actual Values
Positive Negative Total

Predicted Values
Positive TP FP TP + FP
Negative FN TN FN + TN
Total TP + FN FP + TN N

3.3.1 Accuracy

A machine-learning model’s performance is assessed using accuracy. The ratio of the
model’s accurate predictions to all of its prior forecasts is known as the success rate.
The accuracy of binary classification issues is determined by dividing the total number of
predictions by the proportion of true positive and true negative predictions.

Accuracy =
TP + TN

TP + TN + FP + FN
(3.17)

3.3.2 Sensitivity

Sensitivity is a measure of a model’s accuracy in identifying positive cases. It is calculated
by dividing the total number of true positive data cases by the number of cases in which
the model accurately predicted the positive class. A high sensitivity score indicates that
the model is good at spotting positive circumstances and has a low rate of false negatives.
In some situations when the cost of missing a positive instance is substantial, sensitivity
is a valuable statistic. For instance, it is important for medical diagnoses to have high
sensitivity to guarantee that all positive instances are found.

Sensitivity =
TP

TP + FP
(3.18)

3.3.3 Specificity

Specificity describes the extent to which a model or system can accurately identify a certain
class or category based on a set of inputs. In terms of machine learning, Specificity is a
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model’s capacity to detect negative occurrences, High specificity means that there are few
false positive errors, meaning that the model is good at avoiding false alarms.

Specificity =
TN

TN + FP
(3.19)

3.3.4 F1 Score

The F1 score, which takes into account both precision and recall, is used to evaluate the
accuracy of a model. The harmonic mean of recall and accuracy, it offers a harmony
between the two measures. The F1 score is frequently used as a single statistic to assess
the effectiveness of a classifier. Its range is 0 to 1, with 1 reflecting perfect accuracy.

F1− Score =
(2 ∗ P ) ∗ (SNS)

P + SNS
(3.20)

3.3.5 Precision

In order to assess the accuracy of a classifier or retrieval system, precision is a statistic
used in machine learning and information retrieval. The number of true positive instances
divided by the total number of true positive and false positive instances is used to calculate
the percentage of relevant occurrences among the retrieved instances.

Precision =
TP

TP + FP
(3.21)

3.3.6 Error Rate

The ratio of inaccurate predictions to all of the predictions produced is known as the error
rate, which serves as a gauge of a model’s or system’s accuracy. A frequently employed
statistic to evaluate the performance of a classifier is the number of errors (false positives
plus false negatives) divided by the total number of occurrences.

ER =
FP + FN

TP + TN + FP + FN
(3.22)

3.3.7 Mathew’s Correlation Coefficient

The effectiveness of binary (two-class) classifications is gauged using Matthew’s Correla-
tion Coefficient (MCC). A number between -1 and 1, where 1 is a perfect forecast, 0 is an
average random prediction, and -1 is an inverse prediction, is provided after taking into
account true and false positives and negatives.

MCC =
TP ∗ TN − FP ∗ FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(3.23)

MCC = +1: A MCC score of +1 indicates a perfect prediction, meaning the model has
accurately classified all instances in the dataset.
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MCC > 0: A positive MCC score suggests that the model’s predictions are better than
random chance. The higher the MCC, the stronger the correlation between predicted and
true labels.

MCC = 0: A MCC score of 0 implies that the model’s predictions are no better than
random chance. The model shows no correlation between predicted and true labels.

-1 < MCC < 0: A negative MCC score indicates an inverse correlation between predicted
and true labels. The lower the MCC, the stronger the inverse correlation.

MCC = -1: A MCC score of -1 signifies a completely incorrect prediction. The model’s
predictions are in total disagreement with the true labels.

3.3.8 Geometric Mean

A geometric mean is a single scalar number that represents the overall effectiveness of
a binary classifier. The classifier’s true positive, false positive, true negative, and false
negative predictions are shown in a table called the confusion matrix. The square root of
the product of true positive rate and true negative rate is used to determine the geometric
mean of the confusion matrix.

GM =
√
SNS ∗ SPC (3.24)

Geometric Mean = 1: A geometric mean of 1 suggests that the model’s overall performance
is similar to random chance. It means that the model is not able to effectively discriminate
between the different classes in the dataset.

Geometric Mean > 1: A geometric mean greater than 1 indicates that the model’s per-
formance is better than random chance. The higher the geometric mean, the better the
overall classification performance.

Geometric Mean = 0: A geometric mean of 0 typically means that one or more of the
classes in the dataset were not predicted correctly by the model. It suggests that the
model is unable to capture the patterns or features necessary to classify certain classes
accurately.

Geometric Mean < 1: A geometric mean less than 1 suggests that the model’s perfor-
mance is worse than random chance. It means that the model’s predictions are inversely
correlated with the true labels.

3.3.9 Bookmaker Informedness

Bookmaker Informedness refers to the degree to which the odds set by a bookmaker
accurately reflect the true probabilities of an event’s outcomes. In other words, it is a
measure of how ”informed” the bookmaker is about the event they are betting on.

BI = SNS + SPC − 1 (3.25)
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Bookmaker Informedness = 0: A value of 0 indicates that the classifier’s performance is
equivalent to random chance. It means the classifier is not providing any useful information
for making predictions.

0 ¡ Bookmaker Informedness < 1: A value between 0 and 1 suggests that the classifier is
providing some useful information but is not highly informative. The closer the value is
to 1, the more informative the classifier.

Bookmaker Informedness = 1: A value of 1 signifies perfect informedness, indicating that
the classifier is providing complete and accurate information for making predictions.

Bookmaker Informedness > 1: A value greater than 1 suggests that the classifier is more
than perfectly informed. However, this scenario is not practically achievable, as it would
require the classifier to exceed the limits of information provided by the data.
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In the Section “Results and discussion”, we present a discussion of the metrics imple-
mented in this tool, by analyzing their properties and relating them to the properties of
the segmentation as well as to the requirements of the segmentation algorithms. We draw
conclusions from this study on the best metrics to use for certain image data and segmen-
tation jobs. We evaluated a variety of potential Neural Network Framework instantiates
in this Chapter, to assess the usefulness of each model. We apply three models to the
image classification problem using the Melanoma Skin Cancer based on the Image data
set. In the preceding experiments, all models are trained on the training set and tested
on the testing set. Our research is based on widely used neural network approaches such
as CNN, ResNet-18, and EfficientNET-B0 architecture, which perform well on this image
data set and have been demonstrated to generalize well to a variety of other domains.
Its capacity to generalize the observed patterns and correlations from the training data
to current, unobserved images is what determines how well it can convert colored images
to grayscale. This generalization enables the network to efficiently represent the intensity
information available in RGB images in gray-scale output. An important area of research
in the field of images is the automated chromatic coloring of grayscale images. With the
advancement of throughout the previous many years, deep learning, the automatic color-
ing of grayscale images has progressively become a reality. The deep learning model often
outperforms the straightforward coloring approach. We employ 56 example skin lesions
to assess the segmentation method’s sensitivity to its input parameters as shown in Fig
4.1. It highlights the effectiveness of the gradient- and feature-based adaptive contour
model-based melanoma image segmentation approach.

(a) RGB Image (b) Gray Image

Figure 4.1: Filters extracting from the first layer of a trained Melanoma
skin cancer image data set on raw (RGB) input (a) in gray-scale output (b).

To obtain the matrix representation, the image is typically passed through several
layers of the neural network, each layer performing a computation to extract features at
different levels of abstraction. The network’s last layer generates a matrix that effectively
and concisely depicts the picture. In order for the neural network employed for this task to
become adept at identifying patterns and characteristics in photos, it must be trained on a
sizable collection of images. The training process involves adjusting the weights and biases
of the network based on the input and output, such that the network is able to accurately
classify images based on their content. converting an image into a matrix through NN in
Fig 4.2 is a powerful and widely used technique in computer vision and machine learning,
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providing a way to represent and process images in a meaningful and computationally
efficient way.

Figure 4.2: Conversion of images in the matrix form with different
kernels(Filters).

The mentioned studies explore the application of various machine learning and neu-
ral networks techniques for the classification and diagnosis of skin cancer and melanoma.
Different models such as PCA and SVM, CNNs (including EfficientNet-B0, ResNet-18,
ResNet-50, VGG-13, and hybrid CNNs), and neural networks with additional input branches
have been employed to analyze medical image data sets and detect skin cancer with an
accuracy range 75%-93% and the other evaluation metrics such as sensitivity, specificity
range 52%-95%, and 90%-95%. EfficientNet-B0, ResNet-50, and spiking VGG-13 has
shown promising results in detecting malignancies and skin lesions. Hybrid CNNs with
SVM classifiers have been used to classify dermoscopy pictures as benign or malignant
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lesions, while a dermoscopy-based ML diagnostic system with ABCD rules for prepos-
sessing, segmentation, feature extraction, and classification have been developed. On the
MSC image data set, a number of as- assessment metrics, such as accuracy, sensitivity,
specificity, f1-score, precision, error rate, Mathew’s correlation, geometric mean, and book-
maker informedness was utilized to assess a model’s performance is shown in Table 4.1.

Metrics CNN ResNet-18 EfficientNet-B0

Accuracy 0.80 0.87 0.97

Sensitivity 0.64 0.82 0.99

Specificity 0.95 0.93 0.93

F1-Score 0.76 0.86 0.97

Precision 0.93 0.91 0.95

Error Rate 0.19 0.12 0.03

Mathew’s Correlation 0.75 0.82 0.94

Geometric Mean 0.77 0.84 1.01

Bookmaker Informedness 0.60 0.75 0.92

Table 4.1: Performance of Neural Networks on Melanoma skin cancer image
data set.

The estimated Type-I error is the cases incorrectly classified as positive out of all in-
stances incorrectly labeled as negative. the calculated Type-I error from ENetB0 instances
6% actually negative are incorrectly classified as positive by the model, also the results
from CNN and RNet-18 are 4% and 6%, respectively. Type II Error from a melanoma
skin cancer image data set using the ENet-B0 model incorrectly classifies 1% of actual
melanoma-positive images as melanoma-negative, The model demonstrates a moderate
tendency to misclassify non-melanoma images. However, it excels with a high sensitiv-
ity of 99%, leading to a low Type 2 error rate of 1%, effectively identifying most actual
melanoma cases while from Cnn and ResNet-18, the model incorrectly classifies 3.6% and
1.8% shown in Fig 4.3.

CNN RNet-18 ENet-B0

Type-I 0.04 0.06 0.06

Type-II 0.36 0.18 0.01

Table 4.2: Showcase the performance of MSC image classification model.

It can be seen that the classification performance of EfficientNet-B0 is significantly
better than other mainstream models ResNet-18 and CNN if we focus on accuracy. The
calculated accuracy represents the percentage of skin cancer images that were correctly
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(a) Case I (b) Case II

Figure 4.3: This graph shows the performance of the MSC image
classification model. With a Type I and Type II

classified by the different models. It provides an estimation of how well the model can
distinguish between benign and malignant cases, so the EfficientnetB0 model accurately
classified 97% of the skin cancer images in the evaluation set whereas the ResNet-18 model
accurately classified 87% and the basic CNN model classified 80% in terms of accuracy.
The percentage of successfully diagnosed malignant instances by the model is represented
by the estimated sensitivity. It indicates how well the model is able to detect actual posi-
tive cases of skin cancer. In this study, our primary research objective was to investigate
the classification of MSC neural networks, with a focus on comparing the performance of
three models such as CNN, ResNet-18, and EfficientNet-B0. Our findings shed light on the
effectiveness of these models and their potential applications in the field of dermatology.
EfficientNet-B0 demonstrated the highest accuracy of 97% in classifying melanoma skin
cancer, outperforming both CNN and ResNet-18, which achieved accuracies of 80% and
87%, respectively shown in Fig 4.4 to 4.6b.

EfficientNet-B0 has a 59.9% prevalence of melanoma skin cancer, in this data set, 59%
participants have received a melanoma skin cancer malignant diagnosis, and 41% have
benign. The model’s ability to learn complex representations from image data, combined
with its relatively smaller parameter size compared to other models, likely contributed
to its superior performance. It is essential to consider the performance metrics, such as
sensitivity, specificity, F1-Score, precision, error rate, Mathew’s correlation coefficients,
geometric mean, and bookmaker informedness in Fig 4.7.
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(a) Accuracy

(b) Loss

Figure 4.4: Accuracy and Loss of the Test and Train data set when
employing the basic CNN model are shown in this graph. The number of
model training epochs is indicated on the x-axis of images (a) and (b) and
the y-axis displays the accuracy in the image (a) and loss in the image (b).
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(a) Accuracy

(b) Loss

Figure 4.5: Accuracy and Loss of the Test and Train data set when
employing the basic ResNet-18 model are shown in this graph. The number
of model training epochs is indicated on the x-axis of images (a) and (b) and
the y-axis displays the accuracy in the image (a) and loss in the image (b).
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(a) Accuracy

(b) Loss

Figure 4.6: Accuracy and Loss of the Test and Train data set when
employing the basic EfficientNet-B0 model are shown in this graph. The
number of model training epochs is indicated on the x-axis of images (a)
and (b) and the y-axis displays the accuracy in the image (a) and loss in

the image (b).



CHAPTER 4. RESULTS AND DISCUSSION 46

(a) Sensitivity (b) Specificity

(c) F1 Score (d) Precision

(e) Error Baar (f) Mathew’s CC

(g) Geometric Mean (h) Bookmaker Informedness

Figure 4.7: The graph depicts the performance of a melanoma skin cancer
classification model over epochs. In the image (a) attains 99% sensitivity
and (b) attains 93% specificity. The F1-score and precision are 97% and
95% in images (c) and (d) respectively, with a 3% error rate in (e). The
Matthews correlation coefficient is 91%, indicating robust handling of
imbalanced data in (f). The model achieves a balanced classification

performance with a geometric mean of 1.01 in (g) and effectively captures
true positive and true negative rates, as evidenced by a Bookmaker
informedness of 92% in (h). The model demonstrates high accuracy,

sensitivity, and specificity, making it a valuable tool for early melanoma
detection and diagnosis.
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Figure 4.8: This graph uses three different colors to display the model
accuracy for each method. The number of epochs is displayed on the

horizontal axis, and the vertical axis measures model accuracy. ResNet18
and CNN are represented by the blue and green lines, and the yellow line

shows the EfficientNet-B0 method.
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We successfully applied the CNN basic model, ResNet-18, and EfficientNet-B0 on the
Melanoma skin cancer image data set for classification. Our aim was to identify the most
effective model among the three for accurately distinguishing between malignant and be-
nign skin lesions. Upon meticulous evaluation and thorough analysis, EfficientNet-B0
emerged as the clear front-runner, demonstrating remarkable performance across various
evaluation metrics. Notably, it achieved 97% accuracy, surpassing both CNN and ResNet-
18, which achieved 80% and 87%. This strong accuracy implies the model’s ability to
correctly classify skin lesions with high precision. Moreover, EfficientNet-B0 displayed
outstanding sensitivity, indicating its proficiency in detecting 99% true positive cases of
melanoma with a 1% error rate. This is a crucial aspect of melanoma diagnosis, as im-
proving patient prognosis and treatment results depends heavily on early identification.
Equally important, EfficientNet-B0 exhibited excellent specificity, reducing false positive
rates for non-melanoma cases. This implies a lower likelihood of misclassifying benign
lesions as malignant, thereby minimizing unnecessary anxiety and medical interventions
for patients. Furthermore, the F1-Score, precision, Mathew’s correlation coefficient, and
other key metrics consistently demonstrated the well-balanced and robust performance
of EfficientNet-B0. Its ability to handle imbalanced data and maintain high predictive
accuracy across both classes strengthens its suitability for melanoma classification. Based
on the conclusive findings of this study, EfficientNet-B0 emerged as the most effective and
promising model for melanoma skin cancer classification, surpassing CNN and ResNet-18
in accuracy and other key metrics. Its robust performance and potential for clinical use
highlight its significance in improving melanoma diagnosis and patient care.
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