

Exploring Vehicle Trajectory Data using

MobilityDB

By

Raees Ahmed

(2020-NUST-MS-GIS-330057)

A thesis submitted in partial fulfillment of the requirements for the

degree of Master of Sciences in Remote Sensing and GIS

Institute of Geographical Information Systems

School of Civil and Environmental Engineering

National University of Sciences & Technology

Islamabad, Pakistan

October 2022

ii

ACADEMIC THESIS: DECLARATION OF AUTHORSHIP

I, Raees Ahmed, declare that this thesis and the work presented in it are my own and

have been generated by me as the result of my own original research.

Exploring Vehicle Trajectory Data using MobilityDB

I confirm that:

1. This thesis is composed of my original work, and contains no material previously

published or written by another person except where due reference has been made in

the text;

2. Wherever any part of this thesis has previously been submitted for a degree or any other

qualification at this or any other institution, it has been clearly stated;

3. I have acknowledged all main sources of help;

4. Where the thesis is based on work done by myself jointly with others, I have made clear

exactly what was done by others and what I have contributed myself;

5. None of this work has been published before submission.

6. This work is not plagiarized under the HEC plagiarism policy.

Signed: ……………………………

Date: ………………………………

iii

DEDICATION

This dissemination is dedicated to my Late Dearest Mother. By the virtue of whose

prays, I have been able to reach at this high position. My Late Father whose support

and believe in me made me stand in front of every obstacle in my life. My wife and

daughters whose support and courage after my parents made it possible to successfully

continue this sacred path of knowledge. To my brothers and sisters for their

unconditional support. May Allah bless them all with best reward.

iv

ACKNOLEDGEMENTS

All praise to Allah Almighty, the most merciful, most forgiving and loves to forgive. To whom

all the knowledge belongs for known and unknown. Who always blessed me with best of the

best to achieve this knowledgeable landmark. This achievement was not possible without

guidance under light of Prophet Mohammad (SAWA) saying “Seek knowledge from the cradle

to the grave”.

Many thanks to my family who always believed in me and prayed for my success, especially

my father who supported me throughout his life. When I was sad due to broke down of my old

laptop during first semester, He gifted me new laptop to continue my MS degree on last evening

of his life. Enormous thanks to my late mother. Without her prayers, I was never able to

complete this journey. A prayer follows every moment your thought crosses my heart. I wish

you both to be granted highest place in Jannah.

I would like to express my heartfelt appreciation to my supervisor Dr. Ali Tahir for patient

guidance, advice and encouragement throughout this wonderful task. He always remained

available to answer my queries promptly. Fortunately, I would also like to acknowledge Dr.

Salman Atif and Dr. M Tariq Saeed for their kind support and guidance which gave me new

ideas throughout the course of the study. I would especially thank Dr. Ejaz Ahmed for

continuously motivating me to work harder and complete this research in an easy and optimized

way. Getting mobility desired datasets from TPL Pvt Ltd was not an easy task without support

from my supervisor Dr. Ali Tahir and my senior Mr. M Daud Kamal.

I am very thankful and pay my gratitude to all IGIS staff who always worked behind and arrange

administrative support in time. I would like to acknowledge my fellow students Mr. Faqir

Hussain, Mr. Asif and Mr. Alauddin for creating healthy discussions on the subject.

Raees Ahmed

v

TABLE OF CONTENTS

CERTIFICATE ... i

ACADEMIC THESIS: DECLARATION OF AUTHORSHIP ii

DEDICATION .. iii

ACKNOLEDGEMENTS .. iv

TABLE OF CONTENTS ... v

LIST OF FIGURES .. viii

LIST OF TABLES ... x

ABSTRACT .. xi

1 INTRODUCTION .. 1

1.1 Background Information ... 2

1.2 Rationale.. 3

1.3 Objectives .. 4

1.4 Scope of study ... 4

1.5 MobilityDB at Present ... 5

1.6 Mobility Data Properties (MDP) ... 6

1.7 Mobility Data Space (MDS) ... 8

1.8 Advantages of the MDS .. 9

1.8.1 Transparency and data sovereignty .. 9

1.8.2 Wide range of data from a single source ... 9

1.8.3 Easy to use ... 10

vi

1.8.4 Data protection and security .. 10

1.9 Areas of application in Pakistan .. 11

1.10 MobilityDB Visualization ... 15

1.11 Challenges faced by MobilityDB .. 16

2 MATERIALS AND METHODS .. 19

2.1 Study Area ... 19

2.2 Methodology ... 19

2.3 Environment Building ... 20

2.4 Linux Installation .. 21

2.5 Windows Installation... 24

2.6 Comparison of different MobilityDB versions ... 28

2.7 Data Loading to MobilityDB .. 29

2.8 Preprocessing .. 37

2.9 Generation of Trip ID .. 40

2.10 Database Schemas preparation .. 41

2.11 Creation of Point and Temporal Point... 41

2.12 Data Cleaning .. 43

2.13 Creation of Trajectory ... 44

3 RESULTS AND DISCUSSIONS ... 49

3.1 Exploratory Data Analysis (EDA) .. 49

3.2 Histogram Analysis ... 54

vii

3.3 Spatiotemporal Analyses ... 57

3.4 Applicability scenarios .. 57

4 CONCLUSIONS AND RECOMMENDATIONS ... 75

4.1 Conclusions ... 75

4.2 Recommendations for further research ... 77

5 REFERENCES ... 78

6 Appendix-1. Python Based Tool to Generate Trip ID. ... 80

7 Appendix-2. SQL curser to generate trip ID. .. 81

8 Appendix-3. SQL schema to update columns ... 82

9 Algorithm 4: SQL schema to monthly hours driven ... 83

viii

LIST OF FIGURES

Figure 1.1. MobilityDB ecosystem. ... 18

Figure 2.1. Methodology flow chart. ... 27

Figure 2.2. Study area map. ... 31

Figure 2.3. Month wise GPS points distribution.. 34

Figure 2.4. PostgreSQL ODBC driver configuration. ... 34

Figure 2.5. ODBC connection saved. .. 35

Figure 2.6. Import / Export wizard - data source selection. ... 35

Figure 2.7. Data destination - DSN name specification... 36

Figure 2.8. Table selection for migration to MobilityDB. ... 36

Figure 2.9. Data migration from SQL to PostgreSQL. .. 39

Figure 3.1. Record reduction with Trip generation.. 50

Figure 3.2. SQL to MobilityDB data compression ratio. ... 51

Figure 3.3. Comparison between hours driven and actual trips. 51

Figure 3.4. Three micro-mobility descriptors. ... 52

Figure 3.5. Comparison of total distance travelled with total trips performed. 56

Figure 3.6. All active trips at specified time. ... 60

Figure 3.7. Temporal range - QGIS plugin Move. .. 60

Figure 3.8. QGIS display of results Scenario 2. .. 62

Figure 3.9. Visual display of Scenario 2 result - Petrol filling 65

Figure 3.10. Trips crossing Burhan Interchange M1. .. 66

ix

Figure 3.11. Spatiotemporal locations of active vehicles. ... 67

Figure 3.12. Stepwise varying non-linear speed interval of trajectory. 69

Figure 3.13. Stepwise speed interval visualization. ... 69

Figure 3.14. Temporally active trips .. 71

Figure 3.15. Spatiotemporal K-NN display. .. 73

Figure 3.16. Visual display of scenario 08. ... 74

x

LIST OF TABLES

Table 1.1. Key parameters of MoD. ... 7

Table 2.1. MobilityDB instance functional comparison. 30

Table 2.2. Meta Data. ... 32

Table 2.3. Monthly record details. .. 32

Table 2.4. Data elements received. ... 38

Table 2.5. Updated data elements. .. 42

Table 2.6. Duplication removal query and utility algorithm. 45

Table 2.7. Outlier records. ... 48

Table 3.1. Dataset description after data cleaning. ... 50

Table 3.2. Month wise histogram analysis ... 84

Table 3.3. Temporal range query output. .. 59

Table 3.4. Spatial range query results - Scenario 02. .. 62

Table 3.5. Trip crossing nearby given location .. 65

Table 3.6. Temporal location identification - Scenario 04. 67

Table 3.7. Result of spatiotemporal K-NN query ... 71

Table 3.8. Result set - Scenario 08 ... 73

Table 4.1. Application areas in Pakistan. .. 76

xi

ABSTRACT

MobilityDB, an extension to PostgreSQL and PostGIS, is used for the

management of spatiotemporal mobility data. With the continuous growth in mobility

datasets, utilization of MobilityDB is need of time for storage management and

extraction of useful information from uncertain moving data. Due to complex

architecture and configuration of MobilityDB on Debian operating systems and non-

availability on Windows, the study focuses on three areas related to MobilityDB in

Pakistan. (a) Exploration of MobilityDB using Abstract Data Types (ADT) and

identification of various use cases in Pakistan. (b) Data compression by constructing

trajectories from raw GPS logs (c) Spatiotemporal Trajectory analysis to produce

decision support information followed by animated visualization with respect to Cluster

and Frequent patterns. Big mobility datasets of TPL received in SQL format were

migrated to MobilityDB followed by environment building. Preprocessing of mobility

data was performed with respect to trips generation and outlier elimination. Generation

of trips is performed with the help of vehicle statuses using custom build SQL curser

utility. Finally spatiotemporal trajectory analysis performed using MobilityDB and

visualization of extracted information carried out using an open-source plugin named

‘Move’ in QGIS. To make this study self-contained and easy for readers, all areas were

documented with configurational commands, source codes, spatiotemporal range and

aggregate queries along with brief description. The results were concluded with the help

of spatiotemporal queries followed by animated visualization of cluster and frequent

mobility patterns. Results revealed that MobilityDB successfully implemented on big

datasets reducing 99% data size thus increasing the database performance and

optimization. The study also identified various applicability areas in Pakistan

considering real-life use cases based upon TPL’s mobility data.

1

Chapter 1

1 INTRODUCTION

Easy, flexible management and visualization of temporal geographic

always remained need of time. Since 1980s many efforts have been contributed

to manage and visualize temporal geographic data in computer systems. Based

upon three components space, time and attributes, GIS modelers proposed several

spatiotemporal models. The Spatiotemporal Object and Space Time Models can

also represent state changes at space. The Temporal Map Sets (TMS) model, an

extensions of snapshot model, proposed to manage geographic data in a space and

time (Beller, 1991) environment. GIS and computer scientists had presented many

theories and techniques to utilize temporal data along with relational datasets.

MobilityDB is an advanced platform to manage, analyze and visualize temporal

datasets. MobilityDB an extension of PostGIS and PostgreSQL, for handling

spatiotemporal data, platform developed by Computer & Decision Engineering

Department of the Université Libre de Bruxelles (ULB) with the monetary

support by European Commission, Fonds de la Recherche Scientifique (FNRS),

Belgium and Innoviris, Belgium. Project was developed by team of developers

supervised by Project Steering Committee (PSC) members. MobilityDB works

with PostgreSQL (Zimányi, 2020) and PostGIS (an add on to the database) along

with QGIS (An open-source Geographic Information System) for mobility data

visualization. Move is also an open-source plugin to QGIS for temporal

visualization of mobility datasets (Schoemans, 2022). This study aims on

highlighting issues faced by MobilityDB users while installation, utilization and

upgradation followed by test scenarios with their proposed resolution guidelines.

2

In this regard a case study pertaining to mobility datasets of TPL insurance

company of Pakistan will also be analyzed to help understand the power and

utilization of MobilityDB in Pakistan. In this study we will present all phases of

MobilityDB starting from installation / configuration, data loading, preprocessing

and explorations onto MobilityDB and spatiotemporal analysis followed by

trajectory construction.

1.1 Background Information

Unfortunately, thousands of research work have been carried out on moving

object databases in past decade but few of them remained focal point due to their

prototype and very less such prototypes were used at commercial level (Güting et

al., 2010). MobilityDB an extension to PostgreSQL and PostGIS is the main

prototype which works on abstract data type. MobilityDB builds indexes and

aggregation thus reducing the storage capacity with powerful data extraction

capability (Zimányi et al., 2020). Demand of moving object data and its utilization

in spatiotemporal database management is increasing day by day. Mobility

objects generate huge amount of data in Realtime which require an efficient

management system. Applications configured on PostgreSQL and PostGIS

working in simple architecture face performance issues. To resolve such issues a

scalable architecture of PostgreSQL is required which is achieved by Citus (an

extension of Postgres). Citus enables PostgreSQL a distributed query processing

allowing horizontal scalability (Bakli et al., 2019). Citus based Postgres

architecture generally have one Coordinator node for managing metadata along

with multiple worker nodes for storing and managing actual data. Both the

Coordinator and worker nodes are of same application configuration except their

roles. Client when execute some query is received at coordinator which is then

3

transferred to respective worker node for efficient processing (Cubukcu et al.,

2021). Visualization / temporal animation of moving object data is the area still

require lot of work. Move (Moving Objects Visual Exploration) is only an open

source QGIS plugin used to query and visualize the temporal data from

MobilityDB (Schoemans et al., 2022).

1.2 Rationale

Large amount of multi-dimensional data is generated on daily basis by

GPS equipped devices such as mobile phones, vehicle trackers and other

electronic equipment. Many studies have already been done to use these data for

commercial and security purposes by assessing user’s movement pattern and their

social behaviors. These big data required big data platform to analyze the data

quickly and efficiently. Traditional database systems like My SQL, Oracle,

MongoDB etc can easily accommodate large spatial datasets, but such database

management system is still lacking with respect to temporal notion. MobilityDB

is the only database system at present which not only provide efficient and

optimized data storage but its sophisticated and continuously growing temporal

mobility functions and views help manage large moving datasets. MobilityDB is

an emerging platform also provide support to PostgreSQL platform along with

maximum database adapter support.

4

1.3 Objectives

Following are the objectives of the study:

(a). To explore MobilityDB using Abstract Data Types (ADT) and

identification of various use cases in Pakistan.

(b). Performing data compression by constructing trajectories from

raw GPS logs

(c). To Accomplish spatiotemporal trajectory analysis to produce

decision support information based upon the following:

• Cluster Patterns

• Frequent Patterns

• Outlier Identification

1.4 Scope of study

The work displayed in this research shows a proof of idea where GPS

information examination can yield results that assistance numerous areas of

decision making. It shows the utilization of GPS data produced by two thousand

two hundred and sixty-one users. This information gathered can be considered to

classify user behavior and describe interests of users on different levels. This

knowledge can be used to personalize road safety, anticipation and security

related issues to improve the user experience. It elaborates procedures adopted for

processing the raw GPS data from collection till analysis. Some records can be

created to generalize the process for use with any kind of mobility data. The GPS

mobility data collected is constrained free and movement data is based on the

behaviors of the user.

5

1.5 MobilityDB at Present

MobilityDB aims in overcoming the limitations of SECONDO and

HERMES while providing real world solutions to moving objects (Zimányi,

2019). MobilityDB is currently utilized for ground and sea level transport

management, however, aerial utilization is still in its initial phases. Both data

variants of General Transit Feed Specification (GTFS) have been analyzed using

Mobility for Buenos Aires public transportation system (Godfrid, 2022). Many

public and private offices in Pakistan still working on static object data structure

like PostgreSQL or MongoDB to manage their spatial data. In contrast,

MobilityDB presents four temporal data types (tbool, tint, tfloat and ttext)

originated from discrete data types to manage temporally dynamic behavior of

moving objects and two spatiotemporal types (tgeompoint and tgeogpoint) for

managing geometric and geographic object properties respectively. These data

types further refer parameters which contribute to successful implementation of

moving object databases.

6

1.6 Mobility Data Properties (MDP)

Data quality and data standards collectively plays very important role in

defining how good a GIS application / utility can be for users. Data quality is

related to “fitness for use” which varies with intended use, scale, and method of

collection. Metadata with appropriate / acceptable data standards and training

levels in data production are of prime values. Like all other databases,

MobilityDB also relies on the quality of mobility data both on dataset and

parameters level. Metadata for Mobility data must include accuracy, reliability,

relevance, timeliness, completeness conciseness and time dimension in space in

line with Federal Geographic Data Committee (FGDC) and United States

National Map Accuracy Standard (NMAS). In addition to aforesaid data quality

standards, projection, scale, cartographic quality, classification scheme, periodic

instances along with transfer format are of paramount importance. MDP must

include timestamps, universally unique identifier (UUID), Vehicle type / state,

costs, currencies, Propulsion types and temporal trip information. A trip is the

combination of all GPS points collected since start till end of a journey inclusive

of time instances. MDP data provisioning must be based upon reliable application

program interfaces (APIs) rather conventional electronic data interchange. MDP

provider APIs must be flexible enough to support pagination, municipality

boundaries and event timings. Table 1.1 shows data segments as key parameters

with respect to moving objects trips:

7

Table 1.1. Key parameters of MoD.

Field Type Req / Opt Remarks

Provider ID UUID Required
A unique UUID must be according to

provider list

Provider

Name
String Required Public name to each MDP

Device ID UUID Required
GPS Device broadcasting UUID

compatible

Object ID String Required
Unique License number allotted to each

moving Object

Object Type Enum Required Type of Moving Object

Propulsion

Type
Enum [] Required

Array of Propulsion types for multiple

values

Trip ID
Alpha-

Numeric
Required Unique values assigned to each Trip

Trip Duration Period Required Trip start and end time

Trip Distance Int Optional

Distance travelled by moving object (can

be calculated with GIS function based

upon source and destination)

Route Tgeompoint Required
Continuous mapped temporal geometric

point locations recorded during the trip

Accuracy Int Required
Approximation accuracy level in distance

units (meters) of points during route

Start time Timestamp Required
Self-explanatory

End time Timestamp Required

Publication

time
Timestamp Required Data and Time of trip availability

Trip Cost Int Optional Standard trip charges

Currency String Optional Alphabetic standard currency code

8

With the application of MDP, mobility data exchange always remains the key

factor for implementation of successful mobilityDB in any country.

Unfortunately, no sophisticated Mobility data exchange portals exists in Pakistan

on national level. However, national spatial data infrastructure (NSDI) is under

study since last decade under the umbrella of Survey of Pakistan (SoP) as a joint

venture with Space & Upper Atmosphere Research Commission (SUPARCO)

Pakistan, Pakistan agricultural research council (PARC) and Pakistan bureau of

statistics (PBS). The trajectory of NSDI in Pakistan started since 2009 with efforts

put in by SoP and SUPARCO, however, a company named GIS plus recently

assigned the viability study of practical implementation of NSDI in Pakistan.

Issues related to the implementation of NSDI remains same from 2009 till date.

These issues related to data, policies at institutions, technical limitations, and

skilled human resource (Ali, 2020).

1.7 Mobility Data Space (MDS)

The Mobility Data Space is a data marketplace where partners in the

mobility sector can share data based on equal rights and data sovereignty to

facilitate and advance innovative, environmentally sustainable, and user-friendly

mobility concepts. It sets itself apart from existing data marketplaces through its

focus on transparency, decentralized architecture, high data protection standards

and data sovereignty. It also offers users unique opportunities to benefit from the

added-value potential of their data. Establishing the Mobility Data Space in the

market aims to contribute to the German and European economic and digital

sovereignty.

Its technical basis is the result of close collaboration of European and

national initiatives to ensure compatibility with GAIA-X domain projects and

9

other European data spaces. The German government has provided start-up

financing through the Federal Ministry of Transport and Digital Infrastructure.

The Mobility Data Space is open to all companies, organizations and legal entities

working on mobility solutions. From major vehicle manufacturers to rideshare

services, from public transport operators to navigation software companies as

well as from research institutes to bikeshare providers.

1.8 Advantages of the MDS

1.8.1 Transparency and data sovereignty

Users have access to the Mobility Data Space under the same terms and

conditions. Data exchange between buyer and seller is free, however both can

make transaction on mutual agreement. Data is transmitted directly between the

contractual parties (peer-to-peer). There is no central data storage, and the data

provider always knows who is using their data. At present, there is no comparable

mobility platform available to organizations who do not want to go through an

intermediary when exchanging data. Today, they must enter time-consuming and

cost-intensive individual contracts. Data providers can decide who can use their

data. They are also free to deny certain entities the usage of their data. Pricing is

completely self-determined by the providers.

1.8.2 Wide range of data from a single source

The Mobility Data Space covers all kinds of mobility-related data,

including i.e., maps, weather, and infrastructure data. This sets it apart from other

data spaces in the mobility sector which often only cover certain segments. The

data offered in the National Access Point for mobility data, operated as a mobility

data marketplace by the German Federal Highway Research Institute on behalf of

10

the German Federal Ministry of Transport and Digital Infrastructure, will also be

made available in the Mobility Data Space. This includes data that public

companies and authorities must share under the European guidelines on smart

transport systems and open data, such as information on hazards, roadwork and

available truck parking space along motorways and highways. Interoperability

with other data spaces, such as other European countries and GAIA-X domain

data spaces, will give users cross-sector opportunities to access data and thus

offering a high degree of scalability.

1.8.3 Easy to use

The data space offers its users easy access and follows transparent rules.

For the most basic types of data sharing, a prefabricated and easy-to-configure

connector is available. Training and tutorials are available to assist users in

completing various tasks within the data space.

1.8.4 Data protection and security

The Mobility Data Space complies with antitrust legislation and the

European General Data Protection Regulation (GDPR) as well as the European

directives and conceptual thinking on the Data Governance Act (DGA), Digital

Service Act (DSA) and Digital Markets Act (DMA). To ensure complete

compliance with data protection requirements, the German Federal

Commissioner for Data Protection and Freedom of Information (GFDI) has been

consulted. In accordance with the principle of “Security by Design”, the Mobility

Data Space has been designed in a decentralized manner, and data is held by its

users. Only the data catalogue itself is stored centrally.

11

1.9 Areas of application in Pakistan

Pakistan is far behind in utilization of Mobility data in the field of GIS.

Analysis of speed and transport infrastructure can not only help generate useful

velocity maps but also make administration upgrade existing road network in

Pakistan. Based upon route and trajectory analysis, travel time can be accurately

calculated. Trip time forecasting can contribute to the development of more

innovative software applications which can help plan / book before time. Most of

big cities like Karachi, Lahore, Faisalabad, Rawalpindi, and Multan etc. have

already grown tremendously in terms of population, however, their road

infrastructures are not upgraded with the passage of time. MobilityDB can

provide current and upcoming road congestions warning. Utilization of datasets

including vehicle speed, school and offices timings, roads conjoining, traffic

lights, weather condition, road infrastructure condition and number of lanes along

with Mobility data can help resolve traffic congestion issues currently faced by

major cities in Pakistan (Syed, 2014). Traffic measurements can be done based

upon different time intervals like hourly, daily, or weekly etc. MobilityDB can

easily extract traffic volume / count information on a certain time and space using

tgeogpoint (inst) function. Trips data can help extract multi-dimensional

information including mobility optimization, intermodal, and commuting

scenarios (Rovinelli, 2021).

MobilityDB can help understand pedestrian mobility patterns for

population / density evaluation. MobilityDB can help overcome the crash ratio

with the help of heatmaps based upon vehicle, bike and pedestrians crash

incidents in densely populated cities like Karachi, Lahore, Faisalabad, Peshawar

and Multan. This would not only save human life but also reduce burden on

12

emergency departments like Rescue 1122 and Hospitals. MobilityDB can predict

crash risks on major roads. Pakistan is the 4th largest polluted country as per

annual assessment by World Health Organization (WHO). MobilityDB has the

capability to track temporal emissions by transport and help overcome pollution

related hazards. MobilityDB can help record sea level rise and its impact on road

infrastructure.

MobilityDB can forecast equality of resources based on population,

demographic, and socioeconomic parameters. Equity evaluation can also be made

with the help of velocity maps produced with mobilityDB. MobilityDB Can

analyze and classify different roadways based upon their mobility loads, facilities,

and services. Public mobility services in Pakistan including Careem, Uber, Bykea

etc. can further be identified for their different socio-economic impacts on society.

Currently there is no sophisticated mechanism in Pakistan for upgradation of road

infrastructure. Mobility data can be utilized for identification places with poor

infrastructure for further restoration. Moreover, point of interest and placed like

school, hospitals and groceries can well be managed with the availability of

mobility Data. Mobility pattern is very fundamental identifier in crime prediction.

Socio temporal Trajectory Analysis in MobilityDB can be applied in law & order

management offices in Pakistan.

13

Moving objects databases generally has large sizes due to continuous interval-

based recording of geometric points during the journey of objects. One of the

benefits of using MobilityDB is the storage of large temporal dataset onto a

smaller storage by making temporal geometric point sequence (Zimányi, 2020).

MobilityDB offers a construct for representing the evolution of a value during a

sequence of time instants where value between successive time instant is

interpolated by a linear function (Rovinelli, 2021). Moving objects data if

recorded in a temporal way produces many records These records are uniquely

identified on the bases of timestamp and geometrical locations. It is therefore a

computational resource hungry and complex task to store and manage mobility

datasets in traditional database management systems like SQL or MongoDB etc.

MobilityDB helps us to resolve these issues of data scaling and management by

creating an aggregate geospatial trajectory record thus reducing overall storage

space. This ability of data compactness by detaching redundance provide an extra

edge to MobilityDB over PostGIS. Analysis performed on Moscow public

transportation showed extraordinary storage reduction for 10 billion rows (500

MB / day) to 15 thousand (05 MB / day) rows (Godfrid, 2022).

MobilityDB provide many functions (timespan, direction,

startTimestamp, endTimestamp and nearestApproachDistance etc) views

(geography_columns, geometry_columns, raster_columns and custom

materialized views etc) and abstract data types (tgeogpoint for temporal

geography point, tgeompoint for temporal geometry point, Time Types and

Period Types etc.) as mentioned in Table 1.1. These functions provide a rich

analytical capability to MobilityDB by using temporal data types and help extract

precious information. MobilityDB allows us to visualize semantic trajectories

14

modeled upon temporal patterns. This means that we can store spatiotemporal

points along with additional information in a single record / table (Rovinelli,

2021). Computing travel time, distance among different locations, road / path on

which certain object is travelling, pattern and semantic analysis are some of

MobilityDB analytical functions.

Mobility datasets are generally large in scale and require an efficient

distributed database management technique. MobilityDB and Citus (Postgres

extension for distributed data management) together make it possible to manage

gigantic trajectory datasets. Tsesmelis, Dimitrios deployed big data on

BerlinMOD and Scalar datasets using a MobilityDB cluster and Citus on MS

Azure (Tsesmelis, 2021). During the project, several other factors regrading

performance ring were also identified with the help of an open-source software

named ‘autoscaller’ that used to scale and automatically monitor performance

matrices and help take performance related decisions. Installation and

configuration of Citus on top of MobilityDB can be completed by using kubectl

command from your host machine or simply pulling docker image ‘mobilitydb-

aws:latest’ configured with Citus extension, however, step by step instructions

are available on GitHub portal. SQL (Structured Query Language) is an ANSI

(American National Standards Institute) standard query language used to manage

relational databases while PostgreSQL is an open-source and world’s most

advance and quickly evolving relational DBMS (Relational Database

Management System) developed by PostgreSQL Global Development Group

(PGDG) in compliance with SQL. Large industry has been developed around

these two words that is PostgreSQL and ecosystem (Open-source applications,

certified application vendors). Postgres ecosystems include all those tools and

15

applications which are interoperable with PostgreSQL (Figure 1.1). MobilityDB

utilizes full scale SQL interface and support for majority of PostgreSQL

ecosystems while performing query-based operations. A database adapter is the

implementation mechanism of database connector. In case of MobilityDB, python

version of MobilityDB connecter is available which support both the psycopg2

(most powerful python adapter for python language) and asyncpg (3x efficient

than psycopg2 and clean database client library for custom data types) adapters

for PostgreSQL developed by MobilityDB team. Similarly, MobilityDB-

SQLAlchemy is also an extension package for SQLAlchemy (famous object

relational mapper for mapping classes as SQL objects like tables or views etc

giving databases and SQL a new orientation).

1.10 MobilityDB Visualization

Visual illustration of temporal datasets always remained a cumbersome

task for researched. Generally relational databases are not equipped with tools or

functions to display time series datasets. DB researchers are working since last

decade on the development of interactive tools to display MOD. Tools which are

capable of handling sophisticated and complex temporal queries and similarly

display the temporal results. MobilityDB team has provided an open-source tool

named ‘MOVE’ as QGIS plugin with simple interface to perform query

execution, data retrieval and visualization of dynamic attributed of trajectories.

MOVE tool creates separate layers for each PostGIS geometry type (MultiPoint,

MultiLineString and MultiPolygon) and MobilityDB temporal points

(tgeogpoint, tgeompoint). Each newly created layer with MobilityDB temporal

type is marked as temporal layer and can be explored or visualized with the

temporal controller of QGIS. It is pertinent to mention that an optimized

16

visualization depends upon the number of records returned, step interval and

frame rate settings. Any query which results millions of temporal records can

make QGIS unstable if executed in MOVE plugin configured on low specification

computer. In such scenarios, limiting the SQL query to small number of rows

might be helpful. Another solution to the visualization of temporal data is

provided by Python based open-source libraries named ‘MovingPandas’ (Graser,

2020) and ‘moveVis’.

1.11 Challenges faced by MobilityDB

Two levels of issues currently faced by MobilityDB. The first issue is

related to configuration of working plate-form which is the source of motivation

behind this study. The second level issues are related to the implementation of

MobilityDB due to missing of trajectory segmentation and ML based APIs

(Zimányi, 2021). Moving object datasets (MoDs) mostly require data warehouse

(DW) to support data analysis and online analytical processing (OLAP) queries

(Vaisman, 2019). On data processing side, MobilityDB still facing issues while

performing spatio-temporal join queries. Very limited reading / help material is

available which is the main motivation behind this study. Similarly, visualization

of mobility data is done in QGIS and python libraries ‘moveVis’ and

‘MovingPandas’. Visualization of Mobility data in QGIS is a bit simple and

works fine on select statements. However, for complex queries having joins with

one or more tables, Move plugin produces errors. On other hand, visualization of

mobility data using python package ‘moveVIS’ is very powerful and works well

on all type of queries but requires python development skills. With the application

of MDP, mobility data exchange always remains key factor for implementation

of successful mobilityDB in any country.

17

Mobility Data is generated in many public and private sectors which

include Pakistan Railway, Metro Bus Service, Rescue 1122, Civil Aviation, Uber,

Careem, Bykea, TPL Insurance and many more. Unlike many public and private

organizations in European Union who regularly release their data in publish form

for research purposes, no such trend exists in Pakistan. Although many private

data exchange portals exists in Pakistan but most of the portals are managed by

private organizations with limited geospatial data availability. Open Data

Pakistan (ODP) is collaborative effort by National Center for Big Data and Cloud

Computing (NCBC), Lahore University of Management Sciences (LUMS) and

Higher Education Commission (HEC) with lot of non-geospatial datasets. Most

of above-mentioned offices were approached through verbal and non-verbal

means of communications for sharing their old mobility data for this study but

none of them cooperated in this regard.

TPL is the leading insurance company in major cities including Karachi,

Islamabad, Lahore, Multan and Faisalabad in Pakistan which provides insurance

services in the field of transport, property, tourism, mobile, health, marine,

engineering and miscellaneous. However, we are using mobility dataset of

vehicles insured with TPL. Keeping in view, the enormous size of data, TPL

provided dataset in the form of SQL backup file of size 2.92 GB.

18

Figure 1.1. MobilityDB ecosystem.

19

Chapter 2

2 MATERIALS AND METHODS

2.1 Study Area

Pakistan’s urban transport is still far behind in the field of automated

online facilities achieved in developed countries. Several factors including good

governance, capacity building and urban planning for efficient, cost-effective

public transportation have already been highlighted (Imran, 2009). In addition to

the improvement of transport infrastructure, modernization of urban transport is

the need of time. Many areas including real time terrific monitoring, security,

optimized spatial Out-of-home (OOH) advertising, historical trends analysis and

moving objects database management are some of many areas which require

radical research to be done. This study focuses on the management of large

datasets of TPL with MobilityDB and analyses different applications of

MobilityDB. TPL’s GPS equipped vehicles mostly work in major cities of

Pakistan, however, their trips may extend to sub urban areas of Pakistan as shown

in Figure 2.2. However, this study will focus on Islamabad city due to its

organized road infrastructure and organized traffic conditions.

2.2 Methodology

 This study has been segregated into two major phases. First phase includes

comparison of different versions of MobilityDB, installation and configuration of

the most suitable version to be used in this study. Second phase includes loading

of TPL’s dataset into MobilityDB, its upgradation, socio-temporal analysis and

extraction of useful information with the help of MobilityDB queries which

makes it possible in an optimized and simpler way. Configuration of MobilityDB

is a cumbersome task due to limited helping material viz a viz non availability on

20

windows platform. In this regard, Docker (Linux environment simulation

application for windows) application had been used to configure MobilityDB over

windows and dedicated Ubuntu operating system, along with MobilityDB

instance, is to be installed in parallel to further execute complex queries.

Data loading into MobilityDB, upgradation and evaluation is the initiating and

complex steps in the study followed by data acquisition. Data received in SQL

server backup file which was further migrated to PostgreSQL server with the help

of SSIS (SQL Server Integration Services) model, followed by restoration on

Microsoft SQL Server 2019.

Upgradation of data with respect to MobilityDB i.e. generation of points,

temporal points and trajectories prior to visualization of temporal trajectories in

QGIS 3.22.4 with the help of open-source plugin named ‘Move’. Generation of

spatiotemporal queries for extraction of analytical information like max

concurrent trips, total travelled distance, average duration / speed of trips, longest

trip, histogram of trip length, minimum distance between pair of vehicles,

activation of certain vehicles at certain point in time etc. Figure 2.1 shows the

proposed methodology flowchart to be followed in this study.

2.3 Environment Building

Currently, MobilityDB is available on Linux / Debian operating systems only,

however, MobilityDB team is dedicatedly working for implementing MobilityDB

extension on PostGIS in windows. Two main branches of MobilityDB i.e Master

and Development are available for end users to use in their research or production

environment. Difference between the two is only the number of functions each

database instance carries. Master copy is the latest release with every function

thoroughly test by MobilityDB team before publishing on GIT or Docker hubs

21

(Zimányi, 2020). However, development branch is the upcoming version still

under validation by MobilityDB development team with more function than

master branch. To successfully configure MobilityDB extension to Postgres

installed on Linux following requirements are mandatory: -

• PostgreSQL Version Higher than 10 --{Checked by simple SQL

command # SELECT version();}--

• CMake Version higher than 3.6 --{Checked by batch command # cmake --

version}--

• PostGIS higher then 2.4 10 --{Checked by simple SQL command #

SELECT PostGIS_Version();}--

• JSON-C to implement RCO (Reference Counting Object) model for easy

construction of JSON objects in C and their easy casting from C to JSON

representation of objects.

• GNU Scientific Library (GSL) is free numerical library of C & C++ for

mathematical routines.

• Development files for PostgreSQL, PostGIS / liblwgeom, JSON-C, PROJ

2.4 Linux Installation

To install MobilityDB in Linux following batch commands are required

to be executed in chronological order: -

(a) Following command would incorporate all deficiencies

requirements for Linux / Debian systems.

• sudo apt install build-essential cmake postgresql-server-dev-13

libproj-dev libjson-c-dev

(b) Run gist (commands used to share code or snippet with others) in

chronological order: -

22

• git clone https://github.com/MobilityDB/MobilityDB

• mkdir MobilityDB/build

• cd MobilityDB/build

• sudo apt-get update

• sudo apt install cmake # version 3.16.3-1ubuntu1

Note: if the local machine is already running any application (PgAdmin,

Postgres or Docker Container on port: 5432 (default Postgres port), You

need to stop all such services / applications before executing following

command)

(c) To install PostGIS following apt repository command would be

required: -

• sudo apt update

• sudo apt -y upgrade

• sudo reboot

• sudo apt -y install gnupg2

• wget--quiet-O-

https://www.postgresql.org/media/keys/ACCC4CF8.asc | sudo

apt-key add –

• echo "deb http://apt.postgresql.org/pub/repos/apt/

`lsb_release -cs`-pgdg main" |sudo tee

/etc/apt/sources.list.d/pgdg.list

(d) To install PostGIS version 13 or later, run following commands: -

• sudo apt update

• sudo apt install PostGIS postgresql-13-PostGIS-3

(e) Enable newly installed PostGIS : -

23

• sudo -i -u postgres

(f) Create user & database: -

• createuser PostGIS_user

• createdb mobilitydb -O PostGIS_user

(g) Postgres default user ‘postgress’ comes with default password

‘postgres’ which may be also used as well. To change default user

password, following command would be required: -

• sudo su – postgres

• psql -c "alter user postgres with password

'some_password'"

(h) Connect to the database:

• psql -d mobilitydb

(i) Verify that newly installed PostGIS is working properly, check

version installed: -

• select PostGIS_version();

(j) With all above mentioned configuration, we need to update

‘postgresql.conf’ file with the compatible version of PostGIS (In

following command, we will use PostGIS version 3.2.1). It is pertinent to

mention that ‘postgresql.conf’ file may be located on Linux / Debian

based operating system by two methods (Generic Search and Path Based).

In Generic search, user can use to locate the configuration file by using

Linux open search on installation folder while path-based search requires

complete path as mentioned below: -

• $ which postgres /usr/local/pgsql/bin/postgres

• $ ls /usr/local/pgsql/data/postgresql.conf

24

‘postgresql.conf’ is generally used by Linux operating system, which

cannot be modified with following changes due to limited update

privileges by an ordinary login. The same can be modified by Linux

‘neno’ untility with administrative right or by using sudo commands: -

• shared_preload_libraries='PostGIS-3'

• max_locks_per_transaction = 128

(k) If everything configured smoothly, now we need to enable the

PostGIS and Mobilitydb extensions on the database in the same order as

mentioned below: -

o If MobilityDB is connected to PgAdmin4, execute

following commands in SQL query pane:

• create extension postgis;

• create extension mobilitydb cascade;

o By using Linux command terminal with psql commands: -

• psql mobility -c "create extension postgis"

• psql mobility -c "create extension mobilitydb"

2.5 Windows Installation

Installation of MobilityDB on Linux from scratch is a very complex

process to configure each required component with similar or compatible

specifications. To ease out this cumbersome process, pre-compiled images have

been made available on Docker Hub by MobilityDB team. Benefit of using these

images include an easy installation and upgradation of MobilityDB on Linux /

Debian and Windows based operating systems. Docker is an independent and

open platform for developing, sharing, and running applications. While Docker

containers help execute multiple application simultaneously in a loosely coupled

25

environment. It is portable artifact to package applications with all necessary

deficiencies and configurations. Docker containers improve the development

process in a way that generally when a team of developers working on some

application is required to install most of the services on operating system directly

on each development machine locally. This type of development architecture is

usually complex and involve many errors related to configurational and

versioning of services required with respect to host operating system. This

approach of setting up a new environment can be a tedious job depending upon

application complexity. In our case, setting up MobilityDB on a remote client

from scratch. Each remote client requires all the requirement of MobilityDB

mentioned earlier. This kind of cumbersome installation of MobilityDB is

replaced by MobilityDB containers where no requirement is meant to be installed

on local operating system because the container has its own separate OS layer

mounted by Linux based image. Here we have everything packaged in one

isolated environment i.e., every requirement of MobilityDB with specific version

packaged with a configuration in the start script inside of one container. There are

multiple Docker images of MobilityDB available on Docker hub (a public

repository for Docker accessible without login requirement). Every image

corresponds to different release and branch of MobilityDB with different PostGIS

extensions / functions. Most stable with maximum extensions / functions with all

dependencies is by codewit repository used in this study as well, however, for

large and scalable datasets MobilityDB version named ‘MobilityDB-aws-Latest’

is preferred as it is equipped with Citus extension (specifically designed for

distributed query management). Docker images are pulled and executed in

Docker engine (a docker runtime) which can be installed on Mac, Linux, and

26

Windows. With the implementation of MobilityDB using docker give opportunity

to execute multiple branch containers of MobilityDB simultaneously on different

host port.

Following is the installation process of MobilityDB from Codewit repository of

Docker hub: -

(a) Download docker requires only one command to fetch the

container regardless of which operating system on host machine.

• docker pull codewit/mobilitydb

(b) Although MobilityDB container can work independently without

any Docker-volume but to keep MobilityDB files outside of docker

container, following command is used to create Docker Volume named

‘mobility_data’

• sudo docker volume create mobility_data

27

Figure 2.1. Methodology flow chart.

28

(c) All pulled images are required to be executed to make them

operational. To make any conflict with any Postgres instance already

running on local machine, we have mapped the postgres default port 5432

with the host port 25432 in the following command: -

• docker run --name "mobilitydb_codewit" -d -p 25432:5432 -v

mobilitydb_data:/var/lib/postgresql codewit/mobilitydb

Upon successful execution of above three commands, MobilityDB docker

image is now up and running and is ready to accept connections. We can connect

newly configured MobilityDB container by using any version of PgAdmin4

Client (a web-based GUI tool used to communicate with Postgress database both

locally and remotely) with following parameters: -

• Name: mobilitydb_codewit or any name of your choice

• Host: localhost or IP address of MobilityDB container

• Maintenance Database: postgres

• Username & Password: docker (default ID & Pwd for all Docker

images of MobilityDB, can be changed as well)

2.6 Comparison of different MobilityDB versions

MobilityDB is a new database management platform for moving object

geospatial trajectories. There are various versions of MobilityDB available online

mainly two branches. Having fully functional instance of PostgreSQL loaded with

all desired extensions including PostGIS and MobilityDB is the key to smooth

and successful development of applications based upon temporally moving

29

objects. To validate multiple docker images with all key parameters, following

comparisons have been drawn: -

Comparison presented in Table 2.1 illustrates that different docker images

are suitable for different scenarios. MobilityDB codewit-latest image is suitable

for initial study or small datasets, however, for a scalable large dataset,

MobilityDB-AWS-latest image equipped with Citus is recommended.

2.7 Data Loading to MobilityDB

Applications running on or capturing mobility data always work on big

and growing datasets. Such datasets require a sophisticated mechanism for ETL

(extract, transform and load) like SSIS (SQL Server Integration Services) or

Python based customized ETL processes which text databases cannot have.

Traditional text databases like notepad, excel or access are not well suited to

manage large and real-time growing datasets due to large data count and low

performance limitations. Table 2.2 summarizes the overall metadata and Table

2.3 elaborate about the composition of TPL dataset in the form of SQL tables.

Each table is of same structure listing month wise GPS points collected during

trips except RegCom which lists the work done on each vehicle dataset details: -

Monthly records and temporal points are illustrated in Figure 2.3.

30

Table 2.1. MobilityDB instance functional comparison.

S

No

Image

Name
Tag

Size-

MB
Extensions

Functions

/Views
Casts Citus

1.

mobilityd

b

Latest 641
06 (hstore,

mobilitydb,

pg_cron,

plpgsql,

postgis &

postgis_top

ology)

3021 / 04

84 No

2.
Maste

r
674 3038 / 04

3.
mobilityd

b-aws
Latest 672

04 (citus,

mobilitydb,

plpgsql &

postgis)

3044 / 05 82 Yes

4.
mobilityd

b
Latest 440

03

(mobilitydb

, plpgsql &

postgis)

2874 / 02 97 No

5.
13-2.5-

develop

Devel

op
647 3031 / 04 84 No

6.
13-2.5-

master

Maste

r
617

Container does not have MobilityDB

extension

31

Figure 2.2. Study area map.

32

Table 2.2. Meta Data.

Sr No Data Remarks

(a) Duration
01 October 2015 to 30 September 2016 (01 Year)

(b) Vehicles Count
107

(c) Record Count
105,301378 (105 million plus)

(d) Size
DB Backup (2.92) and restored size is 32 GB

Table 2.3. Monthly record details.

Sr No Name Type Records Size
Remarks -

Data Time

(a) Analytics_Set_1

SQL

Tables

7070801 2.4GB Jan,2016

(b) Analytics_Set_2 8256378 2.5GB Feb,2016

(c) Analytics_Set_3 9917801 2.9GB Mar, 2016

(d) Analytics_Set_4 10413247 3.1GB Apr, 2016

(e) Analytics_Set_5 11382101 3.5GB May,2016

(f) Analytics_Set_6 10345889 3.2GB Jun,2016

(g) Analytics_Set_7 10178527 3.1GB Jul,2016

(h) Analytics_Set_8 11147331 3.4GB Aug,2016

(j) Analytics_Set_9 9890153 3.0GB Sep,2016

(k) Analytics_Set_10 4916962 1.7GB Oct,2016

(m) Analytics_Set_11 5185764 1.8GB Nov,2015

(n) Analytics_Set_12 6594163 2.2GB Dec,2015

(p) RegCom 2261 0.1GB
Oct,2015 to

Sep, 2016

33

Keeping in view the scope of dataset, SQL server’s import / export tool was used

to import to mobilityDB which uses SSIS data flow task at backend. Connectivity

of MS SQL server with PostgreSQL require PostgreSQL ODBC driver

(psqlODBC) to be installed. Once the ODBC driver is installed, it required

connection configurations with MS SQL server (data source, database name,

server name / IP address, username, password, and port number). Figure 2.4

shows the connection configurations of PostgreSQL server. Upon provisioning of

required configurational details, a button named ‘Test’ is to be used to validate

the connection strength. Once the connection is test as successful, the

configurations are saved with any alias, ‘pgadmin13’ as shown in Figure 2.5.

After making successful PostgreSQL connection instance, data migration

stage comes. MS SQL server import / export wizard is used which require data

source information (MS SQL server in our case as mentioned in Figure 2.6). Data

destination is selected with the help of data source name (DSN) as mentioned in

Figure 2.7. Same DSN name is to be entered in the field named ‘DSN’ under

connection string in Figure 2.7. Figure 2.8 shows the selection of tables as per

Table 2.3 on next step.

34

Figure 2.3. Month wise GPS points distribution.

Figure 2.4. PostgreSQL ODBC driver configuration.

0

1

2

3

4

5

6

7

8

9

10

N
o

 o
f

P
o

in
ts

 in
 M

ill
io

n
 /

 M
o

n
th

35

Figure 2.5. ODBC connection saved.

Figure 2.6. Import / Export wizard - data source selection.

36

Figure 2.7. Data destination - DSN name specification.

Figure 2.8. Table selection for migration to MobilityDB.

37

Data loading from SQL server to Postgres was accomplished in phased manner

where table named “Analytics_Set_1” was imported first and “Analytics_Set_12”

at last in chronological order. Data migration took several days due to large

dataset and migration from local machine SQL server to MobilityDB hosted over

Docker platform where each table took on average 12 hours maximum time as

depicted in Figure 2.9.

2.8 Preprocessing

After successful data migration to Postgres, data structure evaluation

carried out. Table 2.4 clearly shows some data elements received from TPL office,

was not required in this study. The same has been summarized in the remark’s

column of Table 2.4 where some elements were marked as not required due non

availability of information.

38

Table 2.4. Data elements received.

S No Column Name Type Remarks

1 Id int
Identity / unique column –

Required

2 ReportGroupDate datetime Record Date and Time – Both

columns are same, only one can

be kept for future use

3 Ordered datetime

4 assembletime Datetime

5 Cellnumber varchar(100)
TPL specific unique ID for each

vehicle - Required

6 vehicleReg varchar(100)
Vehicle registration number -

Required

7 DriverId varchar(500) Driver names - Required

8 Vehiclestatus varchar(500) Engine ON / OFF – Required

9 MobileSpeed int Speed of Vehicle – Required

10 Mobileodo int ODO meter speed – Required

11 Location varchar(100)

Blank Column Not – Required

12 Skillset varchar(500)

13 c2 int

14 C3 int

15 C4 int

16 C5 int

17 C6 int

18 C7 int

19 C8 int

20 C9 int

21 distance int

22 direction varchar(100)

23 gpstime Datetime GPS time – Required

24 locationName
varchar(5000

)

Customized location names by

company– Required

39

continued

S No Column Name Type Remarks

25 locationdistance Int Location distance – Required

26 locationdirection varchar(20)
Direction to / from location –

Required

27 latitude float Latitude value – Required

28 longitude float Longitude Value – Required

29 zipcode varchar(100)
Blank – will be updated by

Reverse GeoCoding

30 country int Blank Column Not – Required

31 areagroup int Area group – Required

32 locationtolerance int Location tolerance – Required

33 province int
Blank – will be updated by

Reverse GeoCoding

Figure 2.9. Data migration from SQL to PostgreSQL.

40

All such columns which were marked as not required were deleted and columns

named city, state (province), country, zip code, complete address, trip, trip_id and

trajectory were added for further analysis. Table 2.4 depicts the final list of

columns to be used in this study.

2.9 Generation of Trip ID

It is pertinent to mention that trajectory analysis is incomplete and

complex without any identification of start and stop of every trip. Trip ID field

plays pivotal role in making individual vehicle’s trajectory analysis. However,

trip start and stop information was not available in provided dataset as mentioned

in Table 2.4. Keeping in view the large dataset, it was necessary to generate

accurate trip ID with available data columns. Two indigenously developed

utilities were tested on subset of dataset.

Algorithm 1 shows a tool that was developed in python to read each vehicle’s

GPS record and assigns Trip ID to every group of records which appear in

chronological order as per GPS time stamp.

Algorithm 2 shows the SQL snippet for curser to automatically generate and

assign a unique trip ID to every bunch of records which start with vehicle status

ID as ‘Start Up’ and closes with vehicle status ID as ‘Ignition off’. The curser

script is required to be executed on every table i.e Analytics_Set_1,

Analytics_Set_2, Analytics_Set_3, Analytics_Set_4, Analytics_Set_5,

Analytics_Set_6, Analytics_Set_7, Analytics_Set_8, Analytics_Set_9,

Analytics_Set_10, Analytics_Set_11, Analytics_Set_12 respectively by replacing

only table name.

Comparison of both utilities for assignment of trip ID proved the SQL curser

method with respect to performance and accuracy. On the other hand, Python

41

based tool gave 90% accuracy and required lot of CPU and database resources.

This tool not only took lot of time due to multiple database hits but also missed

trip ID on some legitimate records. Finally, SQL based curser was applied on

whole dataset due to better accuracy and optimization to generate trip IDs. After

generation of Trip IDs, data columns were finalized (Table 2.6).

2.10 Database Schemas preparation

Algorithm 3 shows PostgreSQL schema was used for alteration of each

SQL data table as mentioned in Table 2.6.

2.11 Creation of Point and Temporal Point

A Point is a zero-dimensional spatial representation of discrete

information while temporal points are time associated points. To create a point

using latitude and longitudes, PostgreSQL function named ST_MakePoint is used

followed by assigning spatial reference system ID 4326 (a common ID used to

relocate objects bearing latitude and longitude on earth surface). Following query

is used on all tables mentioned in Table 2.3 respectively.

Update public."Analytics_Set_1" Set point =

ST_SetSRID(ST_MakePoint(longitude ,latitude), 4326), tpoint =

tgeompointinst(ST_SetSRID(ST_MakePoint(longitude ,latitude), 4326),

gpstime);

42

Table 2.5. Updated data elements.

S No Column Name Type Remarks

1 Id int Identity / unique column – Required

2 ReportGroupDate datetime Record Date and Time – Both columns

are same, only one can be kept for

future use

3 Ordered datetime

4 assembletime Datetime

5 Cellnumber varchar(100)
TPL specific unique ID for each vehicle

- Required

6 DriverId varchar(500) Driver names - Required

7 vehicleReg varchar(100) Vehicle registration number - Required

8 Vehiclestatus varchar(500) Engine ON / OFF – Required

9 MobileSpeed int Speed of Vehicle – Required

10 Mobileodo int ODO meter speed – Required

11 gpstime Datetime GPS time – Required

12 locationName varchar(5000)
Customized location names by

company– Required

13 locationdistance Int Location distance – Required

14 locationdirection varchar(20) Direction to / from location – Required

15 latitude float Latitude value – Required

16 longitude float Longitude Value – Required

17 areagroup int Area group – Required

18 locationtolerance int Location tolerance – Required

19 province int Blank Column Not – Required

20 City varchar(100)

New Columns – generated by Reverse

Geo Coding

21 State varchar(500)

22 Country varchar(20)

23 Complete_address varchar(5000)

24 Trip tgeogpoint Columns created in newly created table

‘Analytics_trips’ 25 Trajectory geometry

26 Point geometry
Newly created column Geographic

Point

27 Tpoint Tgeompointinst
Newly created column Temporal

Geographic Point

28 Trip_id int Newly created column Unique Trip ID

43

2.12 Data Cleaning

While generating trajectories, number of garbage / outlier records were

observed. Such records violate the functional dependencies of MobilityDB. For

instance, most of the records were duplicate due repeating time stamps. In other

words, these records were generated duplicate due to malfunction of GPS

instrument installed on moving object. MobilityDB’ s temporal sequence function

‘tgeompointseq’ expects every point with unique and incremented time stamp. In

case of duplicate records with same time stamps, this function return error

message ‘Timestamps for temporal values must be increasing + duplicate time

stamp’. Similarly, every data segment also bears some outliers where latitude was

-80 and longitude was zero (outside the boundaries of Pakistan) due to

malfunction of installed GPS transponder. GPS time recorded during the trip was

used to get trip start and stop time. These timestamps were then converted into

MobilityDB period data type for further calculation of total journey time.

Calculation revealed that some trips were longer than 48 hrs. Which upon

investigation further revealed the merging of more than one trip was due to

missing trip start status. Table 2.8 illustrate number of duplicated records, outliers

or trips with abnormal lengths or Lat/Lng which were eliminated before

generating trajectories.

On this stage, all duplicate records were identified and only one unique

record was kept for further processing and trajectory generation. Outliers were

simply deleted against mentioned latitude / longitude. Elimination of such

duplicate time stamp record was very tedious process which is completed in two

steps. First step was to copy all duplicate records in a separate table against each

table mentioned in Table 2.3 with alias as ‘_Dup’ at the end. In second step, a

44

python based small utility was developed which reads every record from newly

created duplicate records table and perform removal of respective duplicate

record bearing max ID from source table. Table 2.7 shows the query and python-

based duplication removal utility code which were used in data cleaning.

2.13 Creation of Trajectory

Trajectory is the path followed by an object with the passage of time.

Trajectory creation is the core step performed in the study which requires

temporal points to be arranges in the form of array. A PostgreSQL function named

‘array_agg’ is used to arrange temporal points on the elements of array returned.

These array elements are sorted on ascending order of GPS time and passed to a

temporal sequence function of MobilityDB named ‘tgeompointseq’ which

transforms it to temporal geometric point. These temporally and geometrically

arranged set of points are now passed to another MobilityDB function named

‘trajectory’ which finally creates trajectory of latitude and longitudes recorded

during movement of TPL vehicles. The instance query creating trajectory of

sample trip ID ‘12379’ from table named ‘Analytics_Set_7’ is mentioned below:

select "vehicleReg", trip_id, trajectory(tgeompointseq(array_agg(tpoint order by

gpstime))) as Traj FROM public."Analytics_Set_7" where trip_id=12379 group

by "vehicleReg", trip_id;

45

Table 2.6. Duplication removal query and utility algorithm.

Step PostgreSQL Query Remarks

1.

Select "vehicleReg",gpstime, count(*)

Duplication_Count into

public."Analytics_Set_1_Dup" from

public."Analytics_Set_1" group by "vehicleReg",

gpstime having count(*) > 1

Copy all duplicate records

into a temporary table

‘Analytics_Set_1_Dup’.

2.

import module

import psycopg2

conn = psycopg2.connect(

 database="postgres", user='postgres',

password='postgres', host='127.0.0.1', port='15432')

cur = conn.cursor()

query = """select * from

public."Analytics_Set_1_dup";"""

cur.execute(query)

table_data = cur.fetchall()

iterate the list of tuple rows

for num, row in enumerate(table_data):

 sql_update_query = "delete from

public."'"Analytics_Set_1"'" where id = (select

max(id) from public."'"Analytics_Set_1"'" where

"'"vehicleReg"'" = '%s' and "'"gpstime"'" = '%s')" % (

 row[0],row[1])

 cur.execute(sql_update_query)

 conn.commit()

close cursor objects to avoid memory leaks

cur.close()

close the connection object to avoid memory leaks

conn.close()

This is OK

print('Job Done.....')

Source code of data

cleaning utility.

Note: PostgreSQL query

mentioned in step 1 and

this tool were executed

against all data tables

sequentially by updating

table name.

46

To store generated trajectories along with their associated information from each

of 12 data segments named Analytics_Set_1, Analytics_Set_2, Analytics_Set_3,

Analytics_Set_4, Analytics_Set_5, Analytics_Set_6, Analytics_Set_7,

Analytics_Set_8, Analytics_Set_9, Analytics_Set_10, Analytics_Set_11,

Analytics_Set_12 following 12 additional data segments named

Analytics_Trips_1, Analytics_Trips_2, Analytics_Trips_3, Analytics_Trips_4,

Analytics_Trips_5, Analytics_Trips_6, Analytics_Trips_7, Analytics_Trips_8,

Analytics_Trips_9, Analytics_Trips_10, Analytics_Trips_11,

Analytics_Trips_12 are created are created with the help of following

PostgreSQL schema only by changing table names mentioned above each time: -

-- Table: public.Analytics_Trips_1

DROP TABLE IF EXISTS public."Analytics_Trips_1";

CREATE TABLE IF NOT EXISTS public."Analytics_Trips_1"

(

 trip_id integer,

 "vehicleReg" character varying(100) COLLATE pg_catalog."default",

 trip tgeompoint,

 traj geometry,

 trip_start date,

 trip_stop date,

 trip_span period

)

TABLESPACE pg_default;

ALTER TABLE IF EXISTS public."Analytics_Trips_1"

 OWNER to postgres;

GRANT ALL ON TABLE public."Analytics_Trips_1" TO postgres;

GRANT ALL ON TABLE public."Analytics_Trips_1" TO PUBLIC;

47

Trajectories on complete dataset are generated and stored into newly created

tables with the help of insert / select PostgreSQL query for ‘Analytics_Trips_1’

table given below: -

insert into public."Analytics_Trips_1"

select trip_id, "vehicleReg", tgeompointseq(array_agg(tpoint order by

gpstime))

,trajectory(tgeompointseq(array_agg(tpoint order by gpstime))) Traj

,min(gpstime),max(gpstime), period(min(gpstime), max(gpstime))

FROM public."Analytics_Set_1" group by "vehicleReg", trip_id

48

Table 2.7. Outlier records.

Sr No Month Duplicate Outliers
Len = 0

Hrs

Len >

48 Hrs

Invalid Lat

/ Long

(a) Jan,2016 0
500 10 62 22

(b) Feb,2016 50
338 04 71 17

(c) Mar, 2016 54
145 31 224 05

(d) Apr, 2016 59
30 12 80 24

(e) May,2016 01
44 06 82 08

(f) Jun,2016 70
714 09 90 13

(g) Jul,2016 47
101 06 87 06

(h) Aug,2016 86
692 15 89 10

(j) Sep,2016 65
124 09 71 09

(k) Oct,2016 50,386
563 02 28 04

(m) Nov,2015 0
966 04 27 21

(n) Dec,2015 0
596 23 52 09

49

Chapter 3

3 RESULTS AND DISCUSSIONS

3.1 Exploratory Data Analysis (EDA)

Insurance industry is still small in Pakistan as compared to its competitors

in the region. Many other companies including State Life Corporation, Jubilee

Life, EFU Life are working in insurance industry in Pakistan, however, TPL

Insurance is the leading insurance company which is providing its services in

various fields including car insurance since 2005. Dataset used bears the

movement of TPL insured vehicles within the road network of Pakistan. It

includes trips performed round the clock and seven days a week by 107 vehicles.

Generally, there is no fix rules for data explanation and analysis in data sciences,

however, EDA mainly depends upon data dynamics. Table 3.1 shows trips

performed from Nov, 2015 till Oct, 2016 in each monthly data segment with total

number of GPS points recorded during movement. Figure 3.1 indicate the data

reduction while trips generation using GPS points. Figure 3.2 shows one of the

promising characteristics of MobilityDB which is data size reduction. MOD

generally bears large data set due to storage of dedicated record in database

against every GPS point recorded. Moreover, statistical distribution analysis in

Figure 3.2 indicates three micro mobility descriptors namely duration of trips

performed, total distance travelled and average speed while performing trips in

each month. We further compare the actual trips performed and number of hours

consumed in performing those trips, as shown in Figure 3.3.

50

Table 3.1. Dataset description after data cleaning.

Sr

No
Data Segment Duration Trips

Points

(Mil)

Distance

KM

Hrs

driven

Size

(MB)

(a) Analytics_Trips_1 Jan,2016 19291 6.2 235264 14766 21

(b) Analytics_Trips_2 Feb,2016 21741 6.8 297657 17862 23

(c) Analytics_Trips_3
Mar,

2016
24290 8.1 611115 26051 27

(d) Analytics_Trips_4 Apr, 2016 23935 8.5 396840 21127 27

(e) Analytics_Trips_5 May,2016 25187 9.5 409696 21861 30

(f) Analytics_Trips_6 Jun,2016 22510 8.9 375197 20306 27

(g) Analytics_Trips_7 Jul,2016 22714 8.6 360607 19407 27

(h) Analytics_Trips_8 Aug,2016 24490 9.4 380693 20328 29

(j) Analytics_Trips_9 Sep,2016 22824 8.3 326675 16632 27

(k) Analytics_Trips_10 Oct,2016 16411 4.7 198210 10317 17

(m) Analytics_Trips_11 Nov,2015 19243 5.0 201033 11306 20

(n) Analytics_Trips_12 Dec,2015 18417 6.1 218095 13241 20

Figure 3.1. Record reduction with Trip generation

0

2000000

4000000

6000000

8000000

10000000

12000000

R
ec

o
rd

s

Months

GPS Points Trips

51

Figure 3.2. SQL to MobilityDB data compression ratio.

Figure 3.3. Comparison between hours driven and actual trips.

0

500

1000

1500

2000

2500

3000

3500

S
iz

e(
m

b
)

Months

Data Size SQL Data Size MoD

0

5000

10000

15000

20000

25000

30000

T
ri

p
s

-
H

rs

Trips Performed Hrs driven

52

Figure 3.4. Three micro-mobility descriptors.

0

20

40

60

80

100

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10 11 12

S
p

ee
d

 [
K

m
 /

 h
]

M
o

n
th

s

Months

Monthly Avg Speed

Month Speed Avg

0

100000

200000

300000

400000

500000

600000

700000

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10 11 12

D
is

ta
n
ce

 [
 k

m
]

M
o

n
th

s

Months

Distance Travelled

Month Distance KM

0

5000

10000

15000

20000

25000

30000

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10 11 12

D
u

ra
ti

o
n

 [
m

in
]

M
o

n
th

s

Months

Duration

Month Duration

53

Query used to calculate number of trips and total number of points recorded in

each trip is as follows:

SELECT COUNT(*) as NumTrips, sum(numinstants(trip)) as numPoints from

public."Analytics_Trips_x"

Calculation of total hours consumed in each month to perform trips is carried out

in two steps as mentioned in Algorithm 4.

Geographic coordinates are not like coordinates in Mercator, State plane or UTM

and they do not give linear distance between two points. These spherical

coordinates represent angular coordinates on the globe. The distance calculated

in Geographic coordinate system considers curvature of earth. Contrary to

Geographic, Geometric reference system is based on plane 2D surface. To get

more accurate distance travelled in each month, geometric trajectories are

converted into geographic reference system in Table 3.1 which give results in

meters. PostgreSQL and MobilityDB queries used to calculate travelled distance

for each data table are given below: -

Select st_length(traj::geography)::int / 1000 from public."Analytics_Trips_x";

Same results may be obtained by using MobilityDB function ‘length’ as

mentioned in following query: -

Select round(Sum(length(trip)*100) :: int, 0) from

public."Analytics_Trips_x";

There may be slight difference in the calculation due to different mathematical

algorithms used by Geometric and Geographic Coordinate system. Moreover,

table size was calculated with the help of information schema using PostgreSQL

function named ‘pg_relation_size’. This function returns values in Bytes which

further converted to Mega Bytes (MBs) for easy understanding: -

54

select table_name, (pg_relation_size(quote_ident(table_name)) / 1024) /

1024 as Size_MB from information_schema.tables where table_schema

= 'public' order by table_name

3.2 Histogram Analysis

This section would elaborate data distribution with the help of Histogram.

It would be completed in 02 steps given below: -

 Step 01: Data Consolidation:

Each month’s data segments is summarized with respect to trips

performed and copied into table named ‘analytics_trips_all’ with the help of SQL

schema 01.

Step 02: Histogram Generation:

This section summarizes the distribution of dataset into 07 groups and assigns

each group the occurrence frequency with respect to the trips performed and

number of GPS points collected in each trip. It would help understand the length

of trips and their frequency in whole dataset by making histogram for each

monthly segment with the help of schema 02. Output as Histogram is mentioned

in Appendix 05.

55

Schema 01.

SELECT x.*

INTO analytics_trips_all

FROM (Select 1 as month_id,trip_id, COUNT(*) from

public."Analytics_Set_1" group by trip_id union

Select 2 as month_id,trip_id, COUNT(*) from public."Analytics_Set_2" group

by trip_id union

Select 3 as month_id,trip_id, COUNT(*) from public."Analytics_Set_3" group

by trip_id union

Select 4 as month_id,trip_id, COUNT(*) from public."Analytics_Set_4" group

by trip_id union

Select 5 as month_id,trip_id, COUNT(*) from public."Analytics_Set_5" group

by trip_id union

Select 6 as month_id,trip_id, COUNT(*) from public."Analytics_Set_6" group

by trip_id union

Select 7 as month_id,trip_id, COUNT(*) from public."Analytics_Set_7" group

by trip_id union

Select 8 as month_id,trip_id, COUNT(*) from public."Analytics_Set_8" group

by trip_id union

Select 9 as month_id,trip_id, COUNT(*) from public."Analytics_Set_9" group

by trip_id union

Select 10 as month_id,trip_id, COUNT(*) from public."Analytics_Set_10"

group by trip_id union

Select 11 as month_id,trip_id, COUNT(*) from public."Analytics_Set_11"

group by trip_id union

Select 12 as month_id,trip_id, COUNT(*) from public."Analytics_Set_12"

group by trip_id) x

56

Schema 02.

With Groups (GroupNo, GroupRange) AS (

Select 1, intrange (0, 2) Union

Select 2, intrange (2, 10) Union

Select 3, intrange (10, 50) Union

Select 4, intrange (50, 200) Union

Select 5, intrange (200, 500) Union

Select 6, intrange (500, 1000) Union

Select 7, intrange (1000, 1000000)),

TripCount (month_id,trip_id, no_observ) AS (

Select month_id,trip_id, sum(count) from analytics_trips_all group by

month_id,trip_id), GroupTrip (month_id,GroupNo, GroupRange, trip_id) AS (

Select month_id,GroupNo, GroupRange, trip_id from Groups left outer join

TripCount ON no_observ::int <@ GroupRange), histogram

(month_id,GroupNo, GroupRange, freq) AS (Select month_id,GroupNo,

GroupRange, Count(*) from GroupTrip group by month_id,GroupNo,

GroupRange order by month_id,GroupNo, GroupRange)

select month_id,GroupNo, GroupRange,freq, repeat ('▩', (freq::float / max(freq)

OVER() * 30)::int) AS bar from histogram

Figure 3.5. Comparison of total distance travelled with total trips performed.

0

100000

200000

300000

400000

500000

600000

700000

Tr
ip

s
C

o
u

n
t

an
d

 D
Is

ta
n

ce
 [

K
m

]

Trips Distance KM

57

3.3 Spatiotemporal Analyses

Temporal data is always large in volume due to continuous recording of

GPS points during movement of objects. In addition to the management of

spatiotemporal trajectory data, MobilityDB (Syed, 2014) reduces the size of data

by generating sequential temporal trips and trajectories and improved the query

processing time. Same can be concluded upon comparing results from Table 3.1

and Table 2.8. Keeping in view the volume and complexity of mobility data,

further analysis will be performed on data segment named ‘Analytics_Trips_1’

bearing trips data performed during January 2016. It is pertinent to mention that

data segments from ‘Analytics_Trips_1’ to ‘Analytics_Trips_12’ have same

schema and all queries related to ‘Analytics_Trips_1’ would also be applicable to

other data tables. Following PostgreSQL queries using MobilityDB functions will

further emphasize the strength and importance of MobilityDB. These queries will

try to extract useful information in a precise and simple way for making this study

self-contained.

3.4 Applicability scenarios

Scenario 01: Which vehicles performed trips during specific time frame?

Explanation: These are temporal range queries where all those trips will be

extracted which overlap with given time frame. In the following query, period

('2016-01-01 20:00', '2016-01-01 20:10') was applied on temporal geometric point

array column named ‘trip’ with type ‘tgeompoint’.

Select distinct "vehicleReg", trip_id, trip_span from public."Analytics_Trips_1"

where trip && period ('2016-01-01 20:00', '2016-01-01 20:10')

Table 3.3 shows results with active trips during the specified time frame. We can

measure the speed of moving objects by using speed function applied over

58

trajectory column in the same query. However, interpretation of temporal float

results would be little tedious due to stepwise array of points along with changing

speed over time. Figure 3.6 shows the visualization of temporal results from

Scenario 01 on QGIS. It is pertinent to mention that QGIS plugin ‘Move’ is

capable of interpreting only simple queries and produces erroneous errors on

complex MobilityDB queries. This problem can be solved by copying results

while executing complex queries into a separate table in MobilityDB for further

accessibility of this data in QGIS by simple select statement. Figure 3.7 shows

the temporal range in QGIS temporal controller for visual movement of results

obtained in result of query pertaining to Scenario 01.

59

Table 3.2. Temporal range query output.

S No Vehicle

ID

Trip

ID

Trip Life / Span

1 TLY 863 13960 [2016-01-01 07:33:08+00, 2016-01-02 12:57:34+00]

2 TLZ 792 18205 [2016-01-01 10:54:09+00, 2016-01-01 21:21:36+00]

3 TLZ 692 16805 [2016-01-01 10:54:52+00, 2016-01-02 11:09:26+00]

4 TLV 882 11912 [2016-01-01 13:33:56+00, 2016-01-01 20:03:49+00]

5 TLZ 361 15681 [2016-01-01 16:15:42+00, 2016-01-01 23:48:17+00]

6 TLV 872 10705 [2016-01-01 17:33:08+00, 2016-01-01 20:01:03+00]

7 TLY 903 14006 [2016-01-01 17:46:26+00, 2016-01-01 21:05:22+00]

8 TLY 361 13680 [2016-01-01 18:05:14+00, 2016-01-01 20:28:07+00]

9 TLT 123 5322 [2016-01-01 18:34:59+00, 2016-01-01 20:32:23+00]

10 TLZ 561 16453 [2016-01-01 19:03:02+00, 2016-01-01 20:16:56+00]

11 TLU 363 6897 [2016-01-01 19:03:10+00, 2016-01-01 20:56:35+00]

12 TLV 361 9789 [2016-01-01 19:06:20+00, 2016-01-01 20:13:38+00]

13 TLV 250 9586 [2016-01-01 19:10:24+00, 2016-01-01 21:12:53+00]

14 TLW 292 12753 [2016-01-01 19:25:35+00, 2016-01-01 22:40:38+00]

15 TLV 870 10473 [2016-01-01 19:29:33+00, 2016-01-01 21:27:16+00]

16 FK 274 2053 [2016-01-01 19:31:52+00, 2016-01-01 21:13:07+00]

17 TLU 663 8178 [2016-01-01 19:39:21+00, 2016-01-01 20:45:16+00]

18 TLV 878 10995 [2016-01-01 19:40:33+00, 2016-01-01 21:07:19+00]

19 TLX 061 13051 [2016-01-01 19:40:43+00, 2016-01-01 20:41:24+00]

20 TLU 417 7283 [2016-01-01 19:56:42+00, 2016-01-01 20:22:56+00]

21 TLV 450 10072 [2016-01-01 19:59:10+00, 2016-01-02 11:57:31+00]

22 TLU 792 8791 [2016-01-01 20:03:50+00, 2016-01-01 20:04:37+00]

23 TLV 992 12393 [2016-01-01 20:03:52+00, 2016-01-01 20:09:59+00]

24 TLV 872 10706 [2016-01-01 20:04:00+00, 2016-01-01 21:46:21+00]

25 TLV 882 11913 [2016-01-01 20:05:55+00, 2016-01-01 20:17:30+00]

60

Figure 3.6. All active trips at specified time.

Figure 3.7. Temporal range - QGIS plugin Move.

61

Scenario 02: Which vehicles passed from specified region or area?

Explanation: For this query, OSM data was used for Islamabad region in the

table named ‘ibd_landuse’. This is an example spatial range query which uses

MobilityDB’s function named ‘intersects’ which filters geographical intersection

of trips along with geometry of provided region.

Select distinct t.vehicleReg,trip_id, trip_span, trip, traj into tbl_q2 from

Analytics_Trips_1 t , ibd_landuse m where m.name like '%F-10 Markaz%’ AND

intersects(t.trip, m.geom)

Results shows total 52 trips performed by same vehicle registration number "TLU

663" between 01-01-2016 till 30-01-2016 (Table 3.4) to almost same location.

This also means that these trips belong to some specific purpose in nearby

location. Following query will be used in MOVE plugin to check temporal

visualization given in Figure 3.8.

Select vehicleReg,trip_ID, trip,traj from tbl_q2

Table 3.4 shows results trips passed from specified location.

62

Table 3.3. Spatial range query results - scenario 02.

Sr No Vehicle ID Trip

ID

Trip duration / Span

1 TLU 663 8174 [2016-01-01 05:43:40+00, 2016-01-01 06:20:12+00]

2 TLU 663 8175 [2016-01-01 06:20:45+00, 2016-01-01 06:22:10+00]

3 TLU 663 8176 [2016-01-01 06:45:37+00, 2016-01-01 07:24:07+00]

4 TLU 663 8187 [2016-01-02 00:47:44+00, 2016-01-02 01:33:06+00]

5 TLU 663 8188 [2016-01-02 01:51:41+00, 2016-01-02 02:03:10+00]

6 TLU 663 8174 [2016-01-01 05:43:40+00, 2016-01-01 06:20:12+00]

- - - -

- - - -

51 TLU 663 8771 [2016-01-30 00:22:12+00, 2016-01-30 00:22:35+00]

52 TLU 663 8772 [2016-01-30 00:28:35+00, 2016-01-30 01:07:51+00]

Figure 3.8. QGIS display of results Scenario 2.

63

Upon further analysis to identify the purpose of same vehicle visiting same area

revealed that vehicle visited Shell Filling station location in F-10 sector Islamabad

(Figure 3.9).

Scenario 02 can also be answered using K-Nearest Neighbor (KNN)

technique which is the basic machine learning algorithm based upon supervised

learning mechanism. MobilityDB uses distance operator ‘|=|’ to identify

Euclidean distance between two geometries. On the other hand, PostGIS uses ‘<-

>’ as distance operator which give 2D distance between two-point geometries

only. Following MobilityDB query return same 52 results showing all those trips

which cross the specified location: -

Select distinct trip_id,vehicleReg,(t.trip |=| m.geom) e_distance,traj from

Analytics_Trips_1 t , ibd_landuse m where m.name like '%F-10 Markaz%' and

(t.trip |=| m.geom) =0;

Scenario 03: Which vehicles passed nearby given location?

Explanation: This is another spatial range example where PostGIS function

named ‘st_dwithin’ will be used to find which trip passes from within specified

distance of given geometry. It is pertinent to mention that both the geometries

must be in the same Coordinate Reference System (CRS) i.e same SRID which is

4326 in this case. Currently the data is in decimal degrees and 01 degree = 111km.

We used here 0.001 meters (0.11 Km) to draw intersecting area. Following query

is used to extract the desired information: -

SELECT distinct a.vehicleReg,a.trip_ID, a.trip_span, a.trip,a.traj into tbl_q3

FROM analytics_trips_1 a, ibd_points b WHERE st_dwithin(a.traj, b.geom,

0.001) and b.name like '%Burhan Interchange%'

64

Following query will be used in MOVE plugin to check temporal visualization

given in Figure 3.10.

SELECT vehicleReg,trip_ID, trip,traj from tbl_q3

Table 3.5 shows that total 03 vehicles crossed Burhan Interchange during 09 trips

performed on different time periods.

Figure 3.10 shows the geometrical display of vehicle crossing Burhan Interchange

M1 using plugin Move in QGIS.

Scenario 04 : Find the location of vehicle at certain time stamp?

Explanation: This is temporal identification of location scenario where

MobilityDB function ‘valueAtTimestamp’ can easily extract point location from

the trip. This function has two parameters. One is the trip from which the point is

to extracted and other parameters is the specified time stamp. For instance,

following query will extract locations of vehicles on time stamp ‘2016-01-01

20:00:00’: -

select vehicleReg, ST_AsText(valueAtTimestamp(trip, timestamptz '2016-01-01

20:00:00')), valueAtTimestamp(trip, timestamptz '2016-01-01 20:00:00') FROM

analytics_trips_1 where ST_AsText(valueAtTimestamp(trip, timestamptz '2016-

01-01 20:00:00')) is not null

Table 3.6 shows that total 21 vehicle’s location at given time stamp on same time

stamp. Same is depicted in Figure 3.11.

65

Figure 3.9. Visual display of Scenario 2 result - Petrol filling

Table 3.4. Trip crossing nearby given location

S

No
Vehicle ID Trip ID Trip duration / Span

1

TLU 363

6907 [2016-01-02 05:11:10+00, 2016-01-02 07:23:26+00]

2 6909 [2016-01-02 08:16:52+00, 2016-01-02 08:58:23+00]

3 7040 [2016-01-13 01:57:40+00, 2016-01-13 02:37:32+00]

4 7041 [2016-01-13 03:29:15+00, 2016-01-13 04:57:08+00]

5 7111 [2016-01-18 07:06:52+00, 2016-01-18 07:36:58+00]

6 7112 [2016-01-18 08:41:55+00, 2016-01-18 10:38:07+00]

7
TLV 879

11488 [2016-01-13 06:45:22+00, 2016-01-13 10:00:26+00]

8 11494 [2016-01-14 10:41:00+00, 2016-01-14 13:59:22+00]

9 TLV 992 12518 [2016-01-12 07:01:40+00, 2016-01-12 09:36:23+00]

66

Figure 3.10. Trips crossing Burhan Interchange M1.

67

Table 3.5. Temporal location identification - scenario 04.

Sr No Vehicle ID Trip ID Type

1 FK 274 2053 POINT(69.2265238776655 27.129102483165)

2

TLU 363 6897 POINT(73.0076333333333

33.6224333333333)

3 TLT 123 5322 POINT(67.0452 24.8285666666667)

4

TLU 663 8178 POINT(73.1032213761822

33.5996701071222)

5 TLU 417 7283 POINT(66.9821 24.8177166666667)

6

TLV 882 11912 POINT(67.9810666666667

26.5083666666667)

- - - -

- - - -

19

TLZ 792 18205 POINT(66.9826086513589

24.8302188295064)

20 TLZ 561 16453 POINT(71.2088666666667 31.1199875)

21

TLZ 692 16805 POINT(66.9825666666667

24.8302333333333)

Figure 3.11. Spatiotemporal locations of active vehicles.

68

Scenario 05: Identify the speed pattern of any trip?

Explanation: Speed of moving objects generally changes with the passage of

time. To identify step wise non-linear speed pattern, MobilityDB’s function

named speed is used. This function takes trajectory as input and splits the speed

intervals in stepwise manner. For instance, following query will extract the

desired output: -

Select speed(trip) from Analytics_Trips_1 where trip_id=7040

Figure 3.12 shows the speed interval of a trip (trip id 7040) where after start of

the trip, vehicle achieves speed interval of 8.53 km /hr. from 01:57:40 till

01:57:45. Then speed drop and reaches to zero km / hr. This again changes on

02:00:50 at the rate of 2.98 km / hr. Similarly, speed interval of whole trip can be

accessed with the help of function named ‘speed’.

Figure 3.13 shows the visual display of trip id 7040, where upon visual

analysis, it is revealed that the vehicle after ignition just want to enter on a two-

lane highway (Express Way – Islamabad). Driver upon reaching the verge of lane

entrance, waited to take a suitable pause in coming traffic. Upon getting the

desired traffic pause, entered on highway and continues his journey.

69

Figure 3.12. Stepwise varying non-linear speed interval of trajectory.

Figure 3.13. Stepwise speed interval visualization.

70

Scenario 06: Find count of vehicles at every instant between 20:00 and 20:10?

Explanation: This is a temporal aggregation pattern query, where we want to

identify all active trips between given time stamp i.e '2016-01-01 20:00’ and

'2016-01-01 20:10'. Following query return the varying number of periods with

active trips (Figure 3.14): -

Select tcount(atperiod(trip, period('2016-01-01 20:00','2016-01-01 20:10')))

Num_Trip from Analytics_Trips_1 where trip && period('2016-01-01

20:00','2016-01-01 20:10')

Scenario 07: What was the closest distance between any vehicle and given

location (Blue Area) on a given Date?

Explanation: This is a spatiotemporal K-NN query, where we want to identify

the closest location or direction between any vehicle and given location. For

instance, ‘Blue Area’ location was selected in the given query and MobilityDB’s

distance function named ‘|=|’ is used to calculate the minimum distance between

selected trajectory and given location: -

Select MIN(trip |=| m.geom) as distancee,t.vehicleReg, t.traj, t.trip_span from

Analytics_Trips_1 t , ibd_landuse m where m.name like '%Blue Area%' AND

intersects(t.trip, m.geom) and t.trip && period ('2016-01-06', '2016-01-07')

group by t.vehicleReg, t.traj, t.trip_span

Table 3.7 illustrate a vehicle nearest location during 04 trips with minimum

distance during the specified time. Same is depicted in Figure 3.15, where a

vehicle with registration number ‘AH 391’ visited ‘Blue Area’ location same day

about 04 times.

71

Figure 3.14. Temporally active trips

Table 3.6. Result of spatiotemporal K-NN query

Reg No Trip ID Distance Duration

AH 391

5 0
[2016-01-06 02:00:49+00, 2016-01-06

02:31:28+00]

9 0
[2016-01-06 15:20:16+00, 2016-01-06

15:30:14+00]

10 0
[2016-01-06 15:47:45+00, 2016-01-06

15:54:50+00]

11 0
[2016-01-06 15:59:21+00, 2016-01-06

16:03:22+00]

72

Scenario 08: How many trips start and finish in different areas in the same

location (Islamabad)?

Explanation: This is another spatiotemporal K-NN intersection query, where

task is to identify all those trips which started and finished in the given location

i.e Islamabad. Following query used PostGIS function named ‘ST_Intersects’

which further used two geometries. MobilityDB functions ‘startValue’ and

‘endValue’ returned the start and end geometries of trajectories which further

intersected with the given geometry (Islamabad).

Select t.vehicleReg,t.trip_id,t.traj,t.trip_span from Analytics_Trips_1 t ,

ibd_landuse m where ST_Intersects(startValue(t.trip),m.geom) AND

ST_Intersects(endValue(t.trip),m.geom)

Table 3.8 shows total 104 trips which were started and finished in Islamabad.

Same is displayed in Figure 3.16.

73

Figure 3.15. Spatiotemporal K-NN display.

Table 3.7. Result set - Scenario 08

Sr

No
Trip ID

Distanc

e
Duration

1 AH 391 16
[2016-01-07 07:36:52+00, 2016-01-07

07:36:58+00]

2 DV 748 2024
[2016-01-30 12:29:08+00, 2016-01-30

12:30:30+00]

3 TLU 363 6976
[2016-01-08 02:51:25+00, 2016-01-08

02:54:15+00]

4
TLW

292
12837

[2016-01-13 06:13:17+00, 2016-01-13

06:14:56+00]

5 TLY 361 13739
[2016-01-09 00:58:19+00, 2016-01-09

00:58:45+00]

- - - -

- - - -

- - - -

103 VA 489 19078
[2016-01-27 14:40:43+00, 2016-01-27

14:43:17+00]

104 ZF 531 19210
[2016-01-19 15:23:29+00, 2016-01-19

15:26:11+00]

74

Figure 3.16. Visual display of scenario 08.

75

 Chapter 4

4 CONCLUSIONS AND RECOMMENDATIONS

4.1 Conclusions

In this study, we have created a deep understanding of MobilityDB which

is mainly based upon its configurations till implementation using moving vehicles

data set of an insurance company named TPL Pakistan Pvt Ltd in a phased

manner. Complete insightful steps were also made part of the study starting from

data loading, pre-processing and analysis in order to make the document self-

contained for readers. We comprehensively analyzed the implementation

scenarios of MobilityDB and identified some major potential areas in Pakistan

which need to be automated with MobilityDB. Multiple use cases were analyzed

for moving and static vehicles to extract decision support information. Based

upon these practical scenarios, it is evident that MobilityDB is the backbone and

only moving object database system in mobility automation. GIS based

visualization created in an open-source plugin named ‘Move’ in QGIS 3.22

precisely exhibit the utilization of MobilityDB for Mobility data. The results

achieved with the help of real-life scenarios can be vital for multiple public and

private sectors. Table 4.1 shows some of the major MobilityDB implementation

sectors in Pakistan which can benefit with MobilityDB. To achieve true benefits

of MobilityDB, more research and elaborated documentation with

implementation scenarios need to be carried out in addition to the availability of

mobility datasets.

76

Table 4.1. Application areas in Pakistan.

S No Sector Department

1 Transport Infrastructure
National Highway

Authority

2 Innovative Automation using Mobility Data Public & Govt Offices

3
Congestion Index (CI) Forecasting and

Mitigation
Planning &

Development
4

Equity (Population, demographic and socio-

economic)

5 Spatiotemporal Traffic Analysis Traffic Police

6 Mobility Patterns and Commute analysis
Research &

Development

7 Crash Ratio and Risk identification Rescue & NDMA

8 Carbon Emission Contribution (CEC)
Environmental

Protection Department

9 Transit Categorization
Provincial Mass Transit

Authority

10 Emergency / Crime Management
Law Enforcement

Agencies

77

4.2 Recommendations for further research

This study mainly focuses on analysis of 2D datasets using mobilityDB,

however, there is still research gap in application of mobilityDB using 3D datasets

which involve altitude variable. Future trajectory prediction for both long term

and short-term mobility agents is another potential area to be explored by the

research community. Currently future trajectory is predicted by feeding

spatiotemporal datasets to machine learning algorithms, however, MobilityDB

application in this regard can be further explored. Mobility data is generated by

GPS equipped moving objects in real time resulting large number of records on

servers which need to be processed in an efficient and optimized way. Citus, an

extension to MobilityDB, is another area of research to process large

spatiotemporal datasets in distributed environment.

78

5 REFERENCES

1. Ali, A., & Imran, M. (2020). The Evolution of National Spatial Data

Infrastructure in Pakistan-Implementation Challenges and the Way

Forward. International Journal of Spatial Data Infrastructures Research, 15,

110-142.

2. Beller, A. (1991). A temporal GIS prototype for global change research.

In Proceedings of GIS/LIS.

3. Godfrid, J., Radnic, P., Vaisman, A., & Zimányi, E. (2022). Analyzing public

transport in the city of Buenos Aires with MobilityDB. Public Transport, 1-35.

4. Graser, A., & Dragaschnig, M. (2020). Exploring movement data in notebook

environments. In IEEE VIS 2020 Workshop on Information Visualization of

Geospatial Networks, Flows and Movement (MoVis).

5. Imran, M. (2009). Public transport in Pakistan: a critical overview. Journal of

Public Transportation, 12(2), 4.

6. Rovinelli, G., Matwin, S., Pranovi, F., Russo, E., Silvestri, C., Simeoni, M., &

Raffaetà, A. (2021). Multiple aspect trajectories: a case study on fishing vessels

in the Northern Adriatic sea. Paper presented at the EDBT/ICDT Workshops.

7. Georgiou, H., Karagiorgou, S., Kontoulis, Y., Pelekis, N., Petrou, P., Scarlatti,

D., & Theodoridis, Y. (2018). Moving objects analytics: Survey on future location

& trajectory prediction methods. arXiv preprint arXiv:1807.04639.

8. Güting, R. H., Behr, T., & Xu, J. (2010). Efficient k-nearest neighbor search on

moving object trajectories. The VLDB Journal, 19(5), 687-714.

9. Schoemans, M., Sakr, M. A., & Zimányi, E. (2022). MOVE: Interactive Visual

Exploration of Moving Objects. In EDBT/ICDT Workshops.

10. Syed, W. H., Yasar, A., Janssens, D., & Wets, G. (2014). Analyzing the real time

factors: which causing the traffic congestions and proposing the solution for

Pakistani City. Procedia Computer Science, 32, 413-420.

11. Tsesmelis, D. (2021). Big Data Management and Analytics Master Thesis from

Université Libre de Bruxelles.

79

12. Vaisman, A., & Zimányi, E. (2019). Mobility data warehouses. ISPRS

International Journal of Geo-Information, 8(4), 170.

13. Helland‐Hansen, W., & Hampson, G. J. (2009). Trajectory analysis: concepts and

applications. Basin Research, 21(5), 454-483.

14. Zimányi, E., Sakr, M., & Lesuisse, A. J. A. T. o. D. S. (2020). MobilityDB: A

mobility database based on PostgreSQL and PostGIS. 45(4), 1-42.

15. Zimányi, E., Sakr, M., & Lesuisse, A. (2020). MobilityDB: A mobility database

based on PostgreSQL and PostGIS. ACM Transactions on Database Systems

(TODS), 45(4), 1-42.

16. Zimányi, E., Sakr, M., Lesuisse, A., & Bakli, M. (2019, August). Mobilitydb: A

mainstream moving object database system. In Proceedings of the 16th

International Symposium on Spatial and Temporal Databases (pp. 206-209).

17. Zimányi, E., Sakr, M., Bakli, M., Schomans, M., Tsesmelis, D., & Choquet, R.

(2021, November). MobilityDB: hands on tutorial on managing and visualizing

geospatial trajectories in SQL. In Proceedings of the 3rd ACM SIGSPATIAL

International Workshop on APIs and Libraries for Geospatial Data Science (pp.

1-2).

80

6 Appendix-1. Python Based Tool to Generate Trip ID.

import module

import psycopg2

conn = psycopg2.connect(

 database="postgres", user='postgres', password='postgres',

host='127.0.0.1', port='15432')

cur = conn.cursor()

cur2 = conn.cursor()

query2 = """Select distinct "vehicleReg" from Analytics_cars;"""

cur2.execute(query2)

table_data2 = cur2.fetchall()

tripid = 1

iterate the list of Cars

for num, row in enumerate(table_data2):

 print(tripid)

 query = "SELECT id,vehiclestatus FROM public."'"Analytics_Set_1"'"

where "'"vehicleReg"'" = '%s' order by gpstime" % (row[0])

 cur.execute(query)

 table_data = cur.fetchall()

 if len(table_data) > 0:

 # iterate the list of tuple rows

 for num, row in enumerate(table_data):

 Status = 'off'

 if (row[1] == 'Start up') or (row[1] == 'Driving') or (row[1] ==

'Start up;(No Driver Id)')

 or (row[1] == 'Excess Idle') or (row[1] == 'Speed violation') or

(row[1] == 'GPS unlocked')

or (row[1] == 'Harsh Braking') or (row[1] == 'Nogo Area') or (row[1]

=='Speed violation'):

 Status = 'Start up'

 sql_update_query = "Update public."'"Analytics_Set_1"'" set

"'"tripid"'" = '%s' where id = %s" % (

tripid, row[0])

 else:

 sql_update_query = "Update public."'"Analytics_Set_1"'" set

"'"tripid"'" = '%s' where id = %s" % (tripid, row[0])

 Status = 'off'

 tripid += 1

 cur.execute(sql_update_query)

 conn.commit()

close cursor objects to avoid memory leaks

cur.close()

cur2.close()

close the connection object to avoid memory leaks

conn.close()

print('Job Complete.....')

81

7 Appendix-2. SQL curser to generate trip ID.

Declare @ID varchar(30);

Declare @CarID varchar(30);

Declare @CarStatus varchar(30);

Declare @PrevStatus varchar(30) = '';

Declare @TripID int = 1;

Declare Cur1 CURSOR FOR

Select distinct "vehicleReg" from Veh_Reg

OPEN Cur1

FETCH NEXT FROM Cur1 INTO @CarID;

WHILE @@FETCH_STATUS = 0

BEGIN

 DECLARE Cur2 CURSOR FOR

 Select id,vehiclestatus from Analytics_Set_1 where trip_id = 0 and

vehicleReg = '' + @CarID + '' order by gpstime

 OPEN Cur2;

 FETCH NEXT FROM Cur2 INTO @ID,@CarStatus;

 WHILE @@FETCH_STATUS = 0

 BEGIN

 if @CarStatus in ('Start up','Driving','Start up;(No Driver

Id)','Excess Idle','Speed violation','GPS unlocked','Driving;(Unauthorised

Driver)','Harsh Braking','Nogo Area','Nogo Area;(Unauthorised

Driver)','Speed violation','Speed violation;(Unauthorised Driver)','Trailer

Door','Trailer Door;(Unauthorised Driver)')

 begin

 -- Store Prev Status to double check trip closing

 set @PrevStatus = @CarStatus

 update Analytics_Set_1 set trip_id = @TripID where

id = @ID

end

 FETCH NEXT FROM Cur2 INTO @ID,@CarStatus;

if @CarStatus in ('Ignition off') and @PrevStatus in ('Start up','Driving','Start

up;(No Driver Id)','Excess Idle','Speed violation','GPS

unlocked','Driving;(Unauthorised Driver)','Harsh Braking','Nogo Area','Nogo

Area;(Unauthorised Driver)','Speed violation','Speed violation;(Unauthorised

Driver)','Trailer Door','Trailer Door;(Unauthorised Driver)')

 begin

 update Analytics_Set_1 set trip_id = @TripID where id = @ID

 set @TripID = @TripID + 1;

 set @PrevStatus = ''

 end

 END;

 CLOSE Cur2;

 DEALLOCATE Cur2;

 FETCH NEXT FROM Cur1 INTO @CarID;

END;

PRINT 'DONE';

CLOSE Cur1;

DEALLOCATE Cur1;

82

8 Appendix-3. SQL schema to update columns

ALTER TABLE public."Table_Name"

DROP COLUMN "DriverId",

DROP COLUMN Location,

DROP COLUMN Skillset,

DROP COLUMN C2,

DROP COLUMN C3,

DROP COLUMN C4,

DROP COLUMN C5,

DROP COLUMN C6,

DROP COLUMN C7,

DROP COLUMN C8,

DROP COLUMN C9,

DROP COLUMN "distance",

DROP COLUMN "province",

DROP COLUMN "country",

 ADD COLUMN "City" character varying COLLATE pg_catalog."default",

 ADD COLUMN "State" character varying COLLATE pg_catalog."default",

 ADD COLUMN "Country" character varying COLLATE

pg_catalog."default",

 ADD COLUMN "Complete_address" character varying COLLATE

pg_catalog."default",

 ADD COLUMN point geometry,

 ADD COLUMN tpoint tgeompoint;

83

9 Algorithm 4: SQL schema to calculate monthly hours driven.

Step 01: Consolidate Monthly Data

SELECT x.* INTO analytics_trips_time FROM (

Select 1 as month_id,vehicleReg, Sum(EXTRACT(epoch FROM

duration(trip_span))/3600) Hr from Analytics_trips_1 group by vehicleReg

union

Select 2 as month_id,vehicleReg, Sum(EXTRACT(epoch FROM

duration(trip_span))/3600) Hr from Analytics_trips_2 group by vehicleReg

union

Select 3 as month_id,vehicleReg, Sum(EXTRACT(epoch FROM

duration(trip_span))/3600) Hr from Analytics_trips_3 group by vehicleReg

union

Select 4 as month_id,vehicleReg, Sum(EXTRACT(epoch FROM

duration(trip_span))/3600) Hr from Analytics_trips_4 group by vehicleReg

union

Select 5 as month_id,vehicleReg, Sum(EXTRACT(epoch FROM

duration(trip_span))/3600) Hr from Analytics_trips_5 group by vehicleReg

union

Select 6 as month_id,vehicleReg, Sum(EXTRACT(epoch FROM

duration(trip_span))/3600) Hr from Analytics_trips_6 group by vehicleReg

union

Select 7 as month_id,vehicleReg, Sum(EXTRACT(epoch FROM

duration(trip_span))/3600) Hr from Analytics_trips_7 group by vehicleReg

union

Select 8 as month_id,vehicleReg, Sum(EXTRACT(epoch FROM

duration(trip_span))/3600) Hr from Analytics_trips_8 group by vehicleReg

union

Select 9 as month_id,vehicleReg, Sum(EXTRACT(epoch FROM

duration(trip_span))/3600) Hr from Analytics_trips_9 group by vehicleReg

union

Select 10 as month_id,vehicleReg, Sum(EXTRACT(epoch FROM

duration(trip_span))/3600) Hr from Analytics_trips_10 group by vehicleReg

union

Select 11 as month_id,vehicleReg, Sum(EXTRACT(epoch FROM

duration(trip_span))/3600) Hr from Analytics_trips_11 group by vehicleReg

union

Select 12 as month_id,vehicleReg, Sum(EXTRACT(epoch FROM

duration(trip_span))/3600) Hr from Analytics_trips_12 group by vehicleReg

) x

Step 02: Extract monthly hours

SELECT month_id,sum(hr)::numeric::integer as Hrs_Drive from

analytics_trips_time group by month_id order by month_id

84

Algorithm 5: Month wise histogram analysis

Month

ID

Grp

No

Grp

Range

Fre

q

Histogram Bar

1

1 [0,2) 1

2 [2,10) 6328 ▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩

3 [10,50) 5407 ▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩

4 [50,200) 2996 ▩▩▩▩▩▩▩▩▩▩▩

5 [200,500) 1481 ▩▩▩▩▩

6 [500,1000) 1158 ▩▩▩▩

7

[1000,10000

00)

1903 ▩▩▩▩▩▩▩

2

1 [0,2) 1

2 [2,10) 7239
▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩

▩▩

3 [10,50) 6015 ▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩

4 [50,200) 3304 ▩▩▩▩▩▩▩▩▩▩▩▩

5 [200,500) 1710 ▩▩▩▩▩▩

6 [500,1000) 1304 ▩▩▩▩▩

7

[1000,10000

00)

2167 ▩▩▩▩▩▩▩▩

3

1 [0,2) 3

2 [2,10) 8494
▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩

▩▩▩▩▩▩

3 [10,50) 7072
▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩

▩

4 [50,200) 3776 ▩▩▩▩▩▩▩▩▩▩▩▩▩

5 [200,500) 1784 ▩▩▩▩▩▩

6 [500,1000) 1176 ▩▩▩▩

7

[1000,10000

00)

1984 ▩▩▩▩▩▩▩

4 1 [0,2) 2

85

Month

ID

Grp

No

Grp

Range

Fre

q

Histogram Bar

2 [2,10) 7386
▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩

▩▩

3 [10,50) 6751 ▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩

4 [50,200) 3559 ▩▩▩▩▩▩▩▩▩▩▩▩▩

5 [200,500) 2075 ▩▩▩▩▩▩▩

6 [500,1000) 1467 ▩▩▩▩▩

7

[1000,10000

00)

2695 ▩▩▩▩▩▩▩▩▩▩

5

1 [0,2) 1

2 [2,10) 6884 ▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩

3 [10,50) 7443
▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩

▩▩

4 [50,200) 3899 ▩▩▩▩▩▩▩▩▩▩▩▩▩▩

5 [200,500) 2318 ▩▩▩▩▩▩▩▩

6 [500,1000) 1767 ▩▩▩▩▩▩

7

[1000,10000

00)

2875 ▩▩▩▩▩▩▩▩▩▩

6

1 [0,2) 4

2 [2,10) 5990 ▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩

3 [10,50) 6424 ▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩

4 [50,200) 3644 ▩▩▩▩▩▩▩▩▩▩▩▩▩

5 [200,500) 2191 ▩▩▩▩▩▩▩▩

6 [500,1000) 1553 ▩▩▩▩▩

7

[1000,10000

00)

2703 ▩▩▩▩▩▩▩▩▩▩

7

1 [0,2) 1

2 [2,10) 6006 ▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩

3 [10,50) 6651 ▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩

4 [50,200) 3701 ▩▩▩▩▩▩▩▩▩▩▩▩▩

5 [200,500) 2146 ▩▩▩▩▩▩▩▩

86

Month

ID

Grp

No

Grp

Range

Fre

q

Histogram Bar

6 [500,1000) 1557 ▩▩▩▩▩

7

[1000,10000

00)

2653 ▩▩▩▩▩▩▩▩▩

8

1 [0,2) 4

2 [2,10) 6272 ▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩

3 [10,50) 7466
▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩

▩▩

4 [50,200) 3919 ▩▩▩▩▩▩▩▩▩▩▩▩▩▩

5 [200,500) 2224 ▩▩▩▩▩▩▩▩

6 [500,1000) 1662 ▩▩▩▩▩▩

7

[1000,10000

00)

2935 ▩▩▩▩▩▩▩▩▩▩

9

1 [0,2) 3

2 [2,10) 6345 ▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩

3 [10,50) 6938
▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩

▩

4 [50,200) 3440 ▩▩▩▩▩▩▩▩▩▩▩▩

5 [200,500) 2037 ▩▩▩▩▩▩▩

6 [500,1000) 1546 ▩▩▩▩▩

7

[1000,10000

00)

2515 ▩▩▩▩▩▩▩▩▩

10

1 [0,2) 1

2 [2,10) 5913 ▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩

3 [10,50) 4477 ▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩

4 [50,200) 2454 ▩▩▩▩▩▩▩▩▩

5 [200,500) 1340 ▩▩▩▩▩

6 [500,1000) 844 ▩▩▩

7

[1000,10000

00)

1382 ▩▩▩▩▩

11 2 [2,10) 6725 ▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩

87

Month

ID

Grp

No

Grp

Range

Fre

q

Histogram Bar

 3 [10,50) 5872 ▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩

4 [50,200) 2758 ▩▩▩▩▩▩▩▩▩▩

5 [200,500) 1397 ▩▩▩▩▩

6 [500,1000) 925 ▩▩▩

7

[1000,10000

00)

1559 ▩▩▩▩▩▩

12

2 [2,10) 5272 ▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩

3 [10,50) 5548 ▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩▩

4 [50,200) 3172 ▩▩▩▩▩▩▩▩▩▩▩

5 [200,500) 1481 ▩▩▩▩▩

6 [500,1000) 1090 ▩▩▩▩

7

[1000,10000

00)

1853 ▩▩▩▩▩▩▩

