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Abstract

Black holes are one of the most interesting objects of study in physics. Classically, they

trap everything including light. They are characterized by an event horizon which encloses

a curvature singularity. A study of black hole physics shows that a black hole behaves as a

thermodynamic system, with the area of the event horizon playing the role of the entropy

and a geometric quantity called surface gravity as the temperature of the black hole.

It is possible to introduce differential geometric concepts in ordinary thermodynamics.

The most known structures were postulated by Weinhold and Ruppeiner who introduced

Riemannian metrics in the space of equilibrium states of a thermodynamic system. These

geometric structures can obviously be applied in black hole thermodynamics. Unfortu-

nately, the results are not in agreement with ordinary thermodynamics which is manifestly

Legendre invariant. To overcome this inconsistency, the theory of geometrothermodynam-

ics was proposed. It incorporates arbitrary Legendre transformations into the geometric

structure of the equilibrium space in an invariant manner.

In this thesis I have studied the thermodynamics of various black holes in different grav-

ity theories by means of thermodynamic Riemannian curvatures. The thermodynamics of

black holes is reformulated within the context of the formalism of geometrothermodynam-

ics. This reformulation is shown to be invariant with respect to Legendre transformations

and to allow several equivalent representations. Legendre invariance allows to explain

a series of contradictory results known in the literature from the use of Weinhold’s and

Ruppeiner’s thermodynamic metrics for black holes.

I present a brief review of classical and black hole thermodynamics and the basic

mathematical elements of geometrothermodynamics in the first chapter. Then I present a

systematic and consistent construction of geometrothermodynamics by using Riemannian

contact geometry for the phase manifold and harmonic maps for the equilibrium manifold

in section 1.11.

In chapter two, using the formalism of geometrothermodynamics, I investigate the geo-

metric properties of the equilibrium manifold for diverse thermodynamic systems. Starting

from Legendre invariant metrics of the phase manifold, I derive thermodynamic metrics for

the equilibrium manifold whose curvature becomes singular at those points where phase

transitions of first and second order occur.

iii



iv

I present the thermodynamics and the thermodynamic geometries of charged rotating

BTZ black holes in the third chapter. The thermodynamics of these black holes is investi-

gated within the context of the Weinhold and Ruppeiner geometries and the formalism of

geometrothermodynamics. Considering the behavior of the heat capacity and the Hawking

temperature, I show that Weinhold and Ruppeiner geometries cannot describe completely

the thermodynamics of these black holes and of their limiting case of vanishing electric

charge. In contrast, the Legendre invariance imposed on the metric in geometrothermo-

dynamics allows one to describe these black holes and their limiting cases in a consistent

and invariant manner.

In the fourth chapter, the thermodynamic properties of five-dimensional static and

spherically symmetric black holes in Einstein-Gauss-Bonnet theory are investigated. To

formulate the thermodynamics of these black holes I use the Bekenstein-Hawking entropy

relation and, alternatively, a modified entropy formula which follows from the first law of

thermodynamics of black holes. The results of both approaches are not equivalent.

Chapter five is devoted to the study of thermodynamic geometries of the most general

static, spherically symmetric, topological black holes of the Hořava–Lifshitz gravity. In

particular, I show that a Legendre invariant metric derived in the context of geometrother-

modynamics for the equilibrium manifold reproduces correctly the phase transition struc-

ture of these black holes. Moreover, the limiting cases in which the mass, the entropy or

the Hawking temperature vanish are also accompanied by curvature singularities which

indicate the limit of applicability of the thermodynamics and the geometrothermodynam-

ics of black holes. The Einstein limit and the case of a black hole with flat horizon are

also investigated.
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Chapter 1

Introduction

One of the most interesting aspects of modern theoretical physics is its direct relation with

different areas of mathematics. General Relativity (GR), for instance, can be considered as

an application of differential geometry. Once a metric tensor is given which is compatible

with a torsion-free connection and satisfies the Einstein field equations, the corresponding

curvature turns out to be a measure of gravitational interaction. This fascinating result

combines apparently different concepts of geometry and physics, allowing us to study

gravity by measuring the curvature of spacetime. In fact, this result can conceptually

be generalized to include all the known field interactions in nature. The electromagnetic,

weak and strong interactions can classically be described by using the Minkowski metric

and a gauge connection. In all the cases, the resulting gauge curvature can be considered

as a measure of the corresponding field interaction [54].

In particular, the four known interactions of nature can be described in terms of ge-

ometrical concepts. Indeed, Einstein proposed the astonishing principle “field strength =

curvature” to understand the physics of the gravitational field (see, for instance, [54,93]).

In this case, “curvature” means the curvature of a Riemannian manifold. In GR, the

connection involved is unique as a consequence of the assumption that the torsion tensor

vanishes. The idea of this construction can be represented schematically as metric →
Christoffel symbols → Riemann curvature = gravitational field strength.

The second element of GR is Einstein’s field equations

Rµν − 1
2
gµνR + Λgµν = 8πGTµν , (1.1)

which established for the first time the amazing principle “geometry = energy” in some

sense, where G is the gravitational constant and Λ is the cosmological constant. The

conceptual fundamentals of this principle were very controversial; however, experimental

evidence has shown its correctness and all modern generalizations of Einstein’s theory

follow the same principle. On the other hand, since the field strength can be considered

as a measure of the gravitational interaction, we conclude that the entire idea of GR can

1
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be summarized in the principle “gravitational interaction = curvature” which holds for all

known forces of nature [118].

Although thermodynamics is based entirely upon empirical results which are satisfied

under certain conditions in almost any macroscopic system, the geometric approach to

thermodynamics has proved to be useful and illuminating. In very broad terms, one can

say that in a thermodynamic system all the known forces act among the particles that

constitute the system. Due to the large number of particles involved in the system, only

a statistical approach is possible, from which average values for the physical quantities

of interest are derived. The question arises whether it is also possible to find a geomet-

ric construction for which the principle “curvature = thermodynamic interaction” holds.

The formalism of geometrothermodynamics (GTD) [112] satisfies this condition. (I shall

discuss it in detail in section 1.11.) First, I must mention that the interpretation of ther-

modynamic interaction is based upon the statistical approach to thermodynamics in which

all the properties of the system can be derived from the explicit form of the corresponding

Hamiltonian [61] and the interaction between the particles of the system is described by

the potential part of the Hamiltonian. Consequently, if the potential vanishes, the system

has zero thermodynamic interaction. In this thesis, I present the metric structures which

satisfy this condition for systems with no thermodynamic interaction as well as for systems

characterized by interaction with phase transitions in non-standard theories of gravity.

It is not an exaggeration to say that one of the most exciting predictions of Einstein’s

theory of gravitation is that there may exist black holes: A black hole is, by definition, a

region in spacetime in which the gravitational field is so strong that it precludes even light

from escaping to infinity. A black hole is formed when a massive body contracts to a size

less than the radius at which the escape velocity is the speed of light. When the massive

body gets charged the geometry becomes more complicated. The inclusion of rotation also

increases the complexity.

The term “black hole” was introduced by Wheeler in 1964 for the first time and it was

publicized in 1967 [144], although the theoretical study of these objects has quite a long

history. It has frequently been supposed by theoretical physicists that Newton’s theory of

gravitation predicts the black holes [93]. The idea of a body so massive that even light

could not escape was first put forward by John Michell in 1783 [90] and Pierre–Simon de

Laplace in 1796 [81] within the framework of the Newtonian theory. Such “dark stars”, as

these were named by Michell, were largely ignored in the nineteenth century, since it was

not understood how a wave such as light could be influenced by gravity. In 1915, Albert

Einstein published his theory of GR, a new theory of gravitation that made fundamental

predictions on the effect of gravity on light. Only a few months after the publication of

GR, Karl Schwarzschild solved the Einstein field equations (1.1) by assuming a static and

spherically symmetric geometry, obtaining what is now called the Schwarzschild solution
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or metric [131]:

ds2 = −
(
1− rs

r

)
dt2 +

(
1− rs

r

)−1
dr2 + r2dΩ2, (1.2)

where dΩ2 is the line element of the two-sphere and rs = 2GM/c2 is called the Schwarzschild

radius.

The inclusion of an electric charge Q also yields an exact static spherical solution which

is known as the Reissner-Nordström black hole (1918) when Q2 ≤ GM2 [123]. Finally,

an angular momentum J can be added to the system yielding a stationary, axisymmetric

solution which, when Q = 0, is known as the Kerr solution (1963) [77] and is called the

Kerr-Newman solution (1965) when Q 6= 0 [101]. These solutions describe a black hole

when the condition J2c2

G2M2 + Q2

G ≤ M2 is satisfied. The equality sign corresponds to the

extreme black hole solutions which have zero temperature. When the above constraint is

violated we have a naked singularity, a visible singularity not surrounded by a horizon.

The uniqueness theorems state that the only static or stationary solutions of the

Einstein–Maxwell equations that are asymptotically flat and have regular horizons are

the above solutions characterized only by the parameters M , Q and J . All the other pa-

rameters that specified the initial state before the formation of the black hole are radiated

away during the creation process. This simple description of a black hole is summarized

by the well-known metaphoric statement of Wheeler: A black hole has no hair.

The theory of black holes has been strongly connected to the theory of gravitational

collapse after the work of Oppenheimer and Snyder [103] and Penrose’s theorem [109]:

a realistic, slightly non–spherical complete collapse leads unavoidably to the formation

of a black hole and a singularity [62]. In the context of gravitational collapse towards a

black hole, two important conjectures have been formulated, the cosmic censorship and the

hoop conjectures. The cosmic censorship conjecture [108] forbids the existence of naked

singularities, while the hoop conjecture [137] states that black holes form when and only

when a mass M gets compacted into a region whose circumference in every direction is

less than its Schwarzschild circumference 4πGM/c2. During the last few decades, a great

effort has been initiated in order to detect the energetic astrophysical processes predicted

to be powered by black holes.

One of the most remarkable achievements in black hole physics was the realization that

black holes have temperature T and entropy S. The discovery by Bekenstein [16] that the

behavior of the horizon area of a black hole resembles the behavior of the entropy of

a classical thermodynamic system initiated an intensive and still ongoing investigation of

what is now called black hole thermodynamics [14,44,69]. Several attempts have been made

in order to describe the thermodynamic behavior of black holes. Indeed Bardeen, Carter

and Hawking [14], supported by previous work of Christodoulou [40] and Penrose [110],

have shown that black holes obey the so–called four laws of black hole mechanics. I shall

discuss these in detail in the section 1.7.
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The geometry of thermodynamics has been the subject of moderate research since

the original works by Gibbs [58] and Caratheodory [33]. During the last few decades

several attempts have been made to introduce differential geometric concepts in ordinary

thermodynamics. Results have been achieved in many different approaches.

Riemannian geometry was first introduced in statistical physics and thermodynamics

in 1945 by Rao [122]. On the other hand, Riemannian geometry in the space of equilib-

rium states was introduced in 1976 by Weinhold [141] and by Ruppeiner in 1979 [125,126].

The Ruppeiner metric is similar to the Rao metric used in mathematical statistics and

is conformally equivalent to Weinhold’s metric. The study of the relation between the

phase space and the metric structures of the space of equilibrium states led to the result

that Weinhold’s and Ruppeiner’s thermodynamic metrics are not invariant [98, 127], i.e.

the geometric properties of the space of equilibrium states are different when different

thermodynamic potentials are used. This result clearly contradicts ordinary equilibrium

thermodynamics which is manifestly invariant. Moreover, the question whether the curva-

ture of the space of equilibrium states can be considered as a measure for thermodynamic

interaction remained unanswered.

In order to incorporate certain requirements in Riemannian structures at the level of

the phase space and the equilibrium space, the formalism of GTD was proposed [112]

and applied to different thermodynamic systems [2, 113–119]. The main motivation for

introducing the formalism of GTD was to formulate a geometric approach which takes

into account the fact that in ordinary thermodynamics the description of a system does

not depend on the choice of thermodynamic potential. The main goal of this thesis is

to present metric structures which satisfy these conditions for systems with no thermody-

namic interaction as well as for systems characterized by interaction with phase transitions

in non standard theories of gravity.

The task of quantizing GR is one of the outstanding problems of modern theoretical

physics. Attempts to reconcile quantum theory and GR date back to the 1930s ( for a

historical review see [124,134] ). The obstacles to quantize gravity are in part technical. GR

is a complicated nonlinear and non-renormalizable theory. Moreover, viewed as an ordinary

field theory, it has a coupling constant G1/2. The problem of finding a consistent quantum

theory of gravity goes deeper. GR is a geometric theory of spacetime and quantizing

gravity means quantizing spacetime itself. Faced with such problems, it is natural to look

for simpler models that share the important conceptual features of GR while avoiding

some of the computational difficulties.

Einstein gravity in a (2 + 1)-dimensional spacetime [35,36] has some unusual features

that clearly differentiate it from the (3 + 1)-dimensional Einstein gravity [15, 48, 59, 60].

Any vacuum solution with Λ = 0 is flat and any vacuum solution with non-vanishing

cosmological constant has constant curvature. This follows from the fact that the Weyl



5

tensor in 2+1 dimensions is identically zero. The (2 + 1)-dimensional spacetime has no

local degrees of freedom and thus its dynamics is substantially different from the one of the

(3+1)-dimensional case. In particular, there is no Newtonian limit, that is there is no grav-

itational force between masses. Note, however, that the absence of gravitational dynamics

in GR does not imply that (2 + 1)-dimensional spacetimes are trivial and uninteresting.

In what concerns black hole solutions in (2 + 1)-dimensional Einstein gravity, quite

surprisingly (since the (2+1)-dimensional spacetime is quite poor at the dynamical level),

Bañados, Teitelboim and Zanelli [12] found a black hole solution (the BTZ black hole),

with mass M and angular momentum J , that is asymptotically Anti de Sitter (AdS). The

existence of this black hole gets even more remarkable when one realizes that the BTZ

metric has constant curvature and thus there can be no curvature singularity at the origin.

The extension to include a radial electric field in the BTZ black hole, has been done by

Clément [41] and Mart́ınez, Teitelboim and Zanelli [86]. In chapter 3 of this thesis, I

will discuss the thermodynamics and the thermodynamic geometries of BTZ and charged

rotating BTZ black holes in (2 + 1)-dimensional gravity [2].

Shortly after Einstein’s announcement of his theory of GR, physicists initiated efforts

to develop a unified field theory. In the 1920s Kaluza and Klein [76, 80] for the first time

unified gravity and electromagnetism by suggesting the existence of an extra dimension,

besides the usual 3+1 dimensions. Indeed, they realized that 5-dimensional vacuum GR

contained (3 + 1)-dimensional GR in the presence of an electromagnetic field together

with Maxwell’s laws of electromagnetism and an equation for a scalar field. The domi-

nant view is that the extra dimension is not observed on experimentally accessible energy

scales because it is too small. The Kaluza-Klein mechanism has also unified matter and

geometry since the photon that is present in the (3+1)-dimensional spacetime is a manifes-

tation of empty 5-dimensional spacetime. The key point to the Kaluza-Klein unification

is the realization that to a (3 + 1)-dimensional gauge symmetry (e.g., the U(1) gauge

invariance of Maxwell theory) corresponds a geometric symmetry (an invariance with re-

spect to coordinate transformations) in the extra dimension. Thus, the main achievement

of Kaluza-Klein proposal demonstrated that different uncorrelated phenomena that oc-

cur in (3 + 1)-dimensional spacetime can be manifestations of the same 5-dimensional

theory. From then onwards the theories of strong and weak nuclear interactions have

been developed and several attempts to unify the (3 + 1)-dimensional theories in a single

D > 5 higher-dimensional theory have been tried with some successes. (For a nice review

see [104].)

Not surprisingly, the mere extension of GR by considering extra spacelike dimensions

can immediately lead to very non-trivial alterations in the theory [79, 111]. According to

the basic principles of GR, higher dimensional gravity is described by theories containing

higher powers of the curvature [84]. In five dimensions, the most general theory leading to
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second order field equations for the metric is the so–called Einstein-Gauss-Bonnet (EGB)

theory, which contains quadratic powers of the curvature [82]. The inclusion of additional

structure in the gravitational action increases even further the diversity of the models

available and gives rise to a rich phenomenology. The black holes in EGB gravity have

interesting properties. Although some part of EGB gravity resembles GR, the other part

does not. Some properties of these black holes are reviewed in chapter 4 of this thesis.

The Kaluza-Klein idea of extra spacetime dimensions continues to pervade current

attempts to unify the fundamental forces, but in ways somewhat different from that orig-

inally visualized. Recently Petr Hor̃ava [65] suggested a new candidate for quantum field

theory of gravity. This theory is a non-relativistic power-counting renormalizable theory in

four dimensions, which admits the Lifshitz scale invariance in time and space that reduces

to Einstein’s GR at large scales [66]. The Hor̃ava theory has received a great deal of atten-

tion and since its formulation various properties and characteristics have been extensively

analyzed. I shall review the Hor̃ava-Lifshitz gravity and investigate the thermodynamic

geometries of the most general static, spherically symmetric, topological black holes of

Hor̃ava’s gravity in chapter 5 of this thesis. In particular, I will show that a Legendre

invariant metric derived in the context of GTD for the equilibrium manifold reproduces

correctly the phase transition structure of these black holes [119].

Henceforth in this thesis I use the units in which c = ~ = 8G = kB = 1.

1.1 Classical Thermodynamics

Since this thesis is written for a readership of mathematicians who may not have studied

thermodynamics, I provide a brief review of the basic concepts of this subject.

Thermodynamics is the science of energy conversion involving heat and other forms of

energy, most notably mechanical work. It studies and interrelates the macroscopic vari-

ables, such as temperature, volume and pressure, which describe physical thermodynamic

systems. Historically, thermodynamics developed out of the need to understand the rela-

tion between heat and chemical transformations and the conversion of heat into mechanical

energy. Later Maxwell [87], Boltzmann [21] and others placed the theory on more secure

footing, providing much greater clarity, by regarding the macroscopic variables as driving

force for the microscopic (molecular) mechanical variables.

Perhaps the most striking feature of matter is the incredible simplicity with which it

can be characterized. Thermodynamics is a phenomenological theory of matter. As such,

it draws its results directly from experiments. Classical thermodynamics only deals with

equilibrium states of a system, each of which corresponds to a set of indistinguishable

microstates. The following is a list of some concepts, which will be used [67,107].

• A thermodynamic system is a certain quantity of matter or the space which is under
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thermodynamic study or analysis. The system is covered by the boundary, which

may be notional or real and the area beyond the boundary is called the surroundings.

The boundary of the system can be fixed or it can be movable. The exchange of

mass or energy or both can occur between the system and surroundings.

• There are three mains types of thermodynamic systems. A system in which the

transfer of mass as well as energy can take place across its boundary is called an open

system. A system in which the transfer of energy takes place across its boundary with

the surroundings, but no transfer of mass takes place is known as a closed system.

A system in which neither the transfer of mass nor that of energy takes place across

boundary with the surroundings is known as a isolated system.

• Thermodynamic variables are measurable thermodynamic quantities associated with

the thermodynamic system, such as the pressure P , the volume V , the temperature

T , the magnetic field H, etc. These macroscopic variables always occur in conjugate

pairs of extensive and intensive variables. A thermodynamic quantity is said to be

extensive if it is directly proportional to the system size or the amount of material

in the system under consideration and is said to be intensive if it does not depend

on the system size or the amount of material in the system

• Related to the intensive variable pressure P the extensive variable is volume V . The

pair define the mechanical energy; work PdV (in Joules) is done by the system on

the surroundings if its volume is increased by dV in equilibrium at pressure P . The

pair (P, V ) is the most familiar pair of the mechanical state variables.

• A thermodynamic state is specified by the set of values of all the thermodynamic

variables necessary for the description of the system.

• Quantities, such as temperature T and pressure P , which return to the same value

whenever the system returns to the same equilibrium state are called state variables.

• Thermodynamic equilibrium prevails when the thermodynamic state of the system

does not change with time. In thermodynamics a state automatically means a state

in equilibrium unless otherwise specified.

• The amount of heat required to raise the temperature T by 1 degree when the volume

occupied by the system is kept constant, is called heat capacity at constant volume

and is denoted by CV . Heat capacity is an extensive variable.

• The equation of state (EOS ) is a functional relationship among the thermodynamic

variables for a system in equilibrium. If P , V and T are the only thermodynamic

variables of the system under consideration, the EOS takes the form

f(P, V, T ) = 0, (1.3)
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Figure 1.1: Geometrical representation of the equation of state.

which reduces the number of independent variables of the system from three to two.

The function f is assumed to be given as a part of the specifications of the system. It

is customary to represent the state of such a system by a point in a three dimensional

PV T−space. The EOS then defines a surface in this space, as shown in Fig.(1.1).

Any point lying on the surface represents a state in equilibrium.

• A thermodynamic transformation is a change of state. If the initial state is an

equilibrium state, the transformation can be brought about only by the changes

in the external conditions of the system. The transformation is quasi-static if the

external condition changes so slowly that at any moment the system is approximately

in equilibrium. It is reversible if the transformation retraces its history in time when

the external condition does so.

• The PV−diagram of a system is the projection of the surface of the equation of

state on to the PV−plane. Every point on the PV−diagram therefore represents an

equilibrium state.

• A heat reservoir, or simply reservoir, is a system so large that the gain or loss of any

finite amount of heat does not change its temperature significantly.

• A system is thermally isolated if no heat exchange can take place between it and the

surroundings. Thermal isolation may be achieved by surrounding a system with an

adiabatic wall. Any transformation the system can undergo in thermal isolation is

said to take place adiabatically.

• The concept of work is taken over from mechanics. For a system with parameters

P , V and T , the work done d̄W by a system in an infinitesimal transformation in

which the volume increased by dV is given by

d̄W = PdV. (1.4)
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• The ideal gas is an important idealized thermodynamic system. Experimentally all

gases behave in a universal way when they are sufficiently dilute. The ideal gas is an

idealization of this limiting behavior. The parameters for an ideal gas are pressure

P, volume V , temperature T and number of molecules N . The EOS of an ideal gas

is given by

PV = NRT, (1.5)

where R is the gas constant and its value is 8.315 joule/deg.

1.2 The Laws of Thermodynamics

The laws of thermodynamics form an axiomatic basis of thermodynamics. They are decep-

tively the simplest statements, each implying many properties of thermal behavior which

are not at all self evident and which were accepted after a lot of careful experimenta-

tion. These laws are a complete set of logically sufficient axioms, from which the rest of

thermodynamics can be derived. For completeness I also include the zeroth law of ther-

modynamics. The laws of thermodynamics define the rules of temperature equivalence

(zeroth law, 1786), energy conservation (first law, 1837), entropy tendencies (second law,

1865) and conditions for an absence of temperature (third law, 1906) [11]. The combined

law of thermodynamics, sometimes called the Gibbs fundamental equation, is the combi-

nation of the four laws in one expression (for a historical review of the laws of classical

thermodynamics, see for instance [133]).

The Zeroth Law of Thermodynamics: The zeroth law of thermodynamics is a

generalization of the principle of thermal equilibrium between thermodynamic systems, in

contact. A system is said to be in thermal equilibrium when it experiences no net change

in thermal energy. Suppose A, B and C are three distinct thermodynamic systems, then

it states that:

“If systems A and B are in thermal equilibrium with system C, then system A is in

thermal equilibrium with system B”.

This is also known as the principle of temperature measurement. Practically the Zeroth

law means that all the three thermodynamic systems are at the same temperature and it

forms the basis for comparison of temperatures.

The zeroth law as stated above was formulated by Ralph Fowler in 1931 [78]. The

theoretical framework for the zeroth law was first enunciated by Scottish physicist Joseph

Black in his 1786 Lectures on Chemistry [19]. Most references, however, state that Irish

physicist James Maxwell’s “law of equal temperatures”, published almost 100 years after

Black in 1871, was the first formulation of what is now called the zeroth law [87]. The

term “zeroth law” was coined jointly by Fowler and Edward Guggenheim in 1939 [56].
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The First Law of Thermodynamics: The first law of thermodynamics can be

stated in several ways:

“Energy can be neither created nor destroyed. It can only change form.”

“In any process in an isolated system, the total energy remains the same”.

“For a thermodynamic cycle the net heat supplied to the system equals the net work

done by the system”.

It is more than just a definition. In an arbitrary thermodynamic transformation let

∆Q denote the net amount of heat absorbed by the system and ∆W the net amount of

work done by the system. The first law of thermodynamics states that the quantity ∆U ,

defined by

∆U = ∆Q−∆W, (1.6)

is the same for all transformations leading from a given initial state to a given final state.

This immediately defines a state function U , called the internal energy. It is defined only

up to an arbitrary additive constant. It is not difficult to see that U is an extensive

variable; if a system in equilibrium is divided into two equal parts, each part has half the

internal energy U of the original system.

Julius Robert von Mayer and James Prescott Joule are the two well known names

associated with the conventional first law of thermodynamics [133]. The statement of the

principle of “conservation of energy” appeared due to Mayor whereas the credit for accu-

rate experimental determination of the principle of “mechanical equivalent of heat” goes

to Joule. Both the principles are different from each other. The experimental foundation

of the first law is Joule’s demonstration of the equivalence between heat and mechanical

energy – the feasibility of converting mechanical work completely into heat. The inclusion

of heat as a form of energy leads naturally to the inclusion of heat in the statement of

the conservation of energy. The first law is precisely such a statement [133]. However, the

first explicit statement of the first law of thermodynamics was given by Rudolf Clausius

in 1837:

“There is a state function U , called ‘energy’, whose differential equals the work ex-

changed with the surroundings during an adiabatic process.”

In an infinitesimal transformation, any change in U , dU , is the difference between heat

added d̄Q and the work done by the system, d̄W ,

dU = d̄Q−d̄W = d̄Q− PdV. (1.7)

where dU is a perfect differential d̄Q and d̄W are imperfect ones (that is they are non-

integrable). Note the convention used here: d̄Q is the heat added to the system, d̄W is the

work done by the system. This set of equations is called the first law of thermodynamics.
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It states that mechanical work and heat are two forms of energy and must be lumped

together when the change in the internal energy of the system is computed.

Consider a thermodynamic system with variables P , T and V . Any pair of these three

variables can be chosen as the independent variables that completely specify the state of

the thermodynamic system. The other variable is then determined by the EOS. Consider

U = U(P, V ), then

dU =
(

∂U

∂P

)

V

dP +
(

∂U

∂V

)

P

dV. (1.8)

The requirement that dU is exact leads to the result

∂

∂V

[(
∂U

∂P

)

V

]

P

=
∂

∂P

[(
∂U

∂V

)

P

]

V

. (1.9)

The Second Law of thermodynamics: The laws of thermodynamics have a neg-

ative quality that distinguishes them from other laws of physics, which makes direct,

positive, experimental proof quite difficult. The first law may be stated by saying that

energy cannot be destroyed. This sort of statement is much harder to demonstrate than

the positive statement of any other law of physics.

The second law also has this negative quality and the lack of direct verification is even

more difficult than with the first law. One way of phrasing the second law is that:

“The spontaneous tendency of a system to go toward thermodynamic equilibrium cannot

be reversed without at the same time changing some organized energy, work into some

disorganized energy, heat.”

No single experiment can assure the validity of this statement. The theory of ther-

modynamics has been and still is, successful in interpreting and predicting all thermal

phenomenon so far.

German scientist Rudolf Clausius is credited with the first formulation of the second

law, now known as the Clausius’s principle:

“There exist no thermodynamic transformation whose sole effect is to extract a quan-

tity of heat from a colder reservoir and to deliver it to a hotter reservoir“.

It is logically equivalent to another, apparently different statement, called Kelvin’s prin-

ciple:

“There exist no thermodynamic transformation whose sole effect is to extract a quantity

of heat from a given heat reservoir and convert it entirely into work”.

Carnot Engine: An engine that does all the things required by definition in a re-

versible way is called a Carnot engine. A Carnot cycle operates between two temperatures,

a hotter one Th, that of the heat source and a colder one, Tc, that of the heat sink. Any

sort of material can be used, not just one having U as a function of T only. The cycle

consists of four quasistatic processes:
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Figure 1.2: Example of Carnot cycle, plotted in PV–plane.

• an isothermal expansion from 1 to 2, at temperature Th, withdrawing heat ∆Q12

from the source and doing work ∆W12 (not necessarily equal to ∆Q12);

• an adiabatic expansion from 2 to 3, doing further work ∆W23 but with no change in

heat and ending up at Tc;

• an isothermal compression at Tc from 3 to 4 requiring work ∆W34 = −∆W43 to

be done on the system and contributing heat ∆Q34 = −∆W43 to the heat sink at

temperature Tc ending at the state 4;

• finally, an adiabatic compression from 4 to 1, requiring work ∆W14 = −∆W41 (∆Q41 =

0) to be done on the system to bring it back to state 1, ready for another cycle, see

Fig.(1.2).

This cycle, of course, does not convert all the heat drawn from the reservoir at Th into

work, some of it is dumped as unused heat into sink at Tc. The net work done by the

engine per cycle is the area inside the closed region 1234 in Fig.(1.2) and which, according

to the first law is equal to the ∆Q12 +∆W34 = ∆Q12−∆W43. Since dU = 0 for any cyclic

transformation. The efficiency η with which heat is withdrawn and converted to work is

equal to the ratio between the work produced and the heat withdrawn

η = 1− ∆W43

∆Q12
. (1.10)

There are a large number of Carnot cycles, all operating between Th and TC to generate

work involving different substances with different EOS. Since all the processes are qua-

sistatic, the cycle is reversible; it can be run backward. One way of stating second law is

to say that all the Carnot cycles operating between temperatures Th and Tc have the same

efficiency. Another way is to say that
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“No engine operating between two given temperatures is more efficient than a Carnot

engine.”

By now I have mentioned four different phrasings of the second law. All these state-

ments are equivalent, see for instance [67,94].

Entropy: a Thermal-State Variable Since any quasistatic, reversible cycle can

be considered as a sum of Carnot cycles, for any such cycle the integral of the quantity

d̄Q/T around the whole cycle is zero. For any thermodynamic state function Z(x, y), the

integral is zero, as long as all of the parts of the path are reversible processes. Therefore,

at equilibrium, the quantity dS = d̄Q/T is a perfect differential; where d̄Q is the heat

given to the system in an elementary reversible process and T is the temperature of

the thermodynamic system during the process. The integral of this perfect differential,

S(x, y), is a state variable and is called the entropy of the system. It is an extensive

variable, proportional to n. Therefore, for the intensive variable T the related extensive

variable is S. Thus there is an integrating function for d̄Q, if heat d̄Q is absorbed in a

reversible process; it is reciprocal of the thermodynamic temperature T .

Choose any arbitrary fixed state O of the thermodynamic system as reference state.

The entropy S(A) for any state A is defined as

S(A) =
∫ A

O

d̄Q

T
. (1.11)

This perfect differential measures the change dS in state variable S, the entropy. The

difference in the entropy of two states is defined by

S(A)− S(B) =
∫ A

B

d̄Q

T
, (1.12)

where the path of integration is any reversible path between A and B. However, there is

no such integrating factor for d̄Q for an irreversible process. Thus, for a reversible process,

the integral
∫ d̄Q

T is independent of the path and it depends only on the initial and final

states. Another way of stating the second law is that for all closed cycles the integral

around the cycle ∮
d̄Q

T
≤ 0, (1.13)

where the equality holds for reversible cycles.

The entropy S is the extensive variable that pairs with T as V with P . The heat

absorbed by the system in a reversible process is d̄Q = TdS. This product has the dimen-

sions of energy and equals the amount of heat given to the system, at temperature T in

the thermodynamic scale, during a reversible quasistatic process which produces a change

dS in the entropy of the system [67,94].
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Figure 1.3: Representation of a one-dimensional molecule’s position (x, px) and its velocity

U = (ẋ, ṗx).

The Third Law of Thermodynamics: The third law of thermodynamics is the

least known of all the laws. It refers to the absolute zero temperature on the Kelvin

scale. The second law enables us to define the entropy of a substance up to an arbitrary

additive constant but does not uniquely determine the difference in entropy of two states

A and B, if A refers to one substance and B to another. The third law was independently

uncovered by Walther Nernst in 1906 and formulated by Max Planck in 1911 for such a

determination. The third law has been formulated in a variety of ways. Two (essentially

equivalent) formulations, due to Nernst, state that:

“Isothermal reversible processes become isentropic in the limit of zero temperature,”

and

“It is impossible to reduce the temperature of any system to the absolute zero in a finite

number of operations.”

A stronger version, proposed by Planck, states that:

“The entropy of a system at absolute zero is a constant, which may be taken to be

zero.”

The generality of this statement lies in the facts that: (a) it refers to any system; and (b)

that S → 0 as T → 0, regardless of the values of any other parameter of which S may be

a function. It is obvious that the third law determines the entropy of any thermodynamic

system uniquely.

1.3 The Phase Space and Legendre Transformations

In mathematics and physics, the phase space, introduced by Willard Gibbs in 1901, is the

space of all possible states of a physical system; by “state” we do not simply mean the
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Figure 1.4: Legendre Transformation.

positions x of all the objects in the system (which would occupy physical space or config-

uration space), but also their velocities or momenta p (which would occupy momentum

space). One needs both the position and momentum of system in order to determine the

future behavior of that system. In particular, the specification of a molecule’s momentum

and position is sufficient to determine completely its future motion [107]. Thus the status

of an individual molecule at any instant can be defined in terms of six coordinates, x, y,

z, px, py, pz (and, perhaps, of a seventh, time). This six-dimensional space is called the

phase space. Each molecule is pictured as following a trajectory in phase space, between

collisions, as it moves under the influence of the general field of force represented by the

potential energy [94].

Consider a particle of mass m, constrained to move along a line, so its phase space

is two dimensional, the coordinates being position x and momentum px , as shown in

Fig.(1.3). If the particle is at point P , it will not stay there; its velocity U in phase

space will have two components, ẋ and ṗx. There is a direct relationship between the x

component of molecules’s velocity and position in phase space,

x =
ṗx

m
. (1.14)

The Legendre transformations: The Legendre transform or Legendre transformation

(LT), named after Adrien-Marie Legendre, is a very useful mathematical tool: it transforms

functions on a vector space to functions on the dual space [9].

Let y = f(x) be a convex function, f ′′(x) > 0. The LT of the function f is a new

function g of a new variable p, which is constructed in the following way (see Fig.(1.4)).

We draw the graph of f in the xy-plane. Let p be a given number. Consider the straight
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line y = px. We take the point x = x(p) at which we are measuring the maximal distance

between the line y = px and f(x): for each p the function px − f(x) = F (p, x) has a

maximum with respect to x at the point x(p). Now we define

L(f)(p) = g(p) = F (p, x(p)). (1.15)

The point x(p) is defined by the extremal condition

∂F

∂x
= 0, (1.16)

that is f ′(x) = p. The convexity condition ensures that there is only one of these critical

points x(p) and that it is a maximum.

If f : IR n → IR is a convex function, ∇2f > 0. The LT is given by

L(f)(p) = maxx(px− f(x)). (1.17)

Example 1: If f(x) = x2, then g(p) = L(f)(p) = p2/4.

Example 2: If f(v) = 1
2mv2, then g(p) = L(f)(p) = p2/(2m).

The LT is its own inverse and it uses maximization as the transformation procedure.

The transform is especially well behaved if f(x) is a convex function. The LT is an

application of the duality relationship between points and lines. The LT is used extensively

in mechanics (taking us from Lagrangians to Hamiltonians and back) and thermodynamics

(relating energy to other thermodynamic potentials) [9].

1.4 The Chemical and Thermodynamic Potentials

The chemical potential µ is the state variable conjugate to n, the number of moles of

matter in the system under consideration. Consider a thermodynamic system containing

n constituent species. Its total internal energy U is postulated to be a function of the

entropy S, the volume V and the number of particles of each species n1, ..., nk. The

chemical potential of the i-th species, µi is defined as the partial derivative

µi =
(

∂U

∂ni

)

S,V,nj 6=i

, (1.18)

where the subscripts simply emphasize that the entropy, volume and the other particle

numbers are to be kept constant.

The internal energy U has many properties of a potential function. For a reversible

process

dU = TdS − PdV +
∑

i

µidni. (1.19)

Thus, the internal energy U is the potential appropriate when all the extensive variables
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Name Symbol Formula Variables

Internal energy U
∫

(TdS − PdV +
∑

i µidni) S, V, {ni}

Helmholtz free energy F U − TS T, V, {ni}

Enthalpy H U + PV T, V, {ni}

Gibbs free energy G U + PV − TS T, P, {ni}

Grand potential Ω U − TS −∑
i µidni T, V, {µi}

Table 1.1: Thermodynamic potentials. Where T = temperature, S = entropy, P =

pressure, V = volume, ni is the number of particles of type i in the system and µi is the

chemical potential for an i-type particle. For the sake of completeness, the set of all ni are

also included as natural variables, although they are sometimes ignored.

are the independent variables. If U is expressed as a function of the extensive variables S,

V , n, then its partials are given by
(

∂U

∂S

)

V,n

= T,

(
∂U

∂V

)

S,n

= −P,

(
∂U

∂n

)

S,V

= µ, (1.20)

are intensive variables, which thus play a role analogous to the components of forces. Since

value of a second partial is independent of the order of application of the derivatives. A

most useful set of relationships between the partials of the intensive variables is
(

∂T

∂V

)

S,n

=
[

∂

∂V

(
∂U

∂S

)

V,n

]

S,n

, (1.21)

[
∂

∂S

(
∂U

∂V

)

S,n

]

V,n

= −
(

∂P

∂S

)

V,n

, (1.22)

(
∂T

∂n

)

S,V

=
(

∂µ

∂S

)

S,n

, −
(

∂P

∂n

)

S,V

=
(

∂µ

∂V

)

S,n

. (1.23)

These derivative interrelationships are called Maxwell’s relations. Since each of the partials

is a state variable, they can be integrated along any convenient reversible path to obtain

differences in the value of various intensive state variables, between different equilibrium

states.

Suppose that Xi and Yi to be conjugate pairs of mechanical variables and the Yi to

be the natural variables of the internal energy. Since all of the natural variables of the

internal energy U are extensive quantities, i.e.,

λU(Xi) = U(λXi), (1.24)
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so that
∂

∂λ
U(λXi) = U(Xi), (1.25)

then

U(Xi) =
∑

j

(
∂U

∂Xj

)
Xj =

∑

i

YjXj . (1.26)

From the equation of state, we then have:

U = TS − PV +
∑

i

µini, (1.27)

where the intensive variables T , P , etc., are all expressed as functions of the extensive

variable set. This equation is called Euler’s equation. When all the intensive variables

are explicitly given in terms of the extensive variables, for a particular system its thermal

properties can all be calculated from the expression for U , by appropriate transformation

and differentiation [94].

The fact that we have both a differential and an integrated equation for U implies that

we have another differential relationship between the intensive and extensive variables.

Taking the differential of Euler’s equation we have

dU =
∑

YjdXj +
∑

XjdYj . (1.28)

Since change in the internal energy U in a reversible process is given by

dU =
∑

YjdXj , (1.29)

subtracting Eqs.(1.28) and (1.29) we get

∑

j

XjdYj = 0, (1.30)

or ∑

i

nidµi = V dP − SdT. (1.31)

In particular, for 1 mole of a single-component material (n = 1),

dµ = −sdT + vdP, (1.32)

where s and v are the values of entropy and volume per mole of material (for example

v = M/ρ, where M is the molecular weight and ρ is its density). This differential equation

for chemical potential µ of a substance is called the Gibbs–Duhem equation. It states that

the sum of the imperfect differentials on the right-hand side turns out to be a perfect

differential of the state variable we call thermodynamic potential. In general µ increases

with the increase of pressure and decreases as the temperature increases.

The Thermodynamic Potentials: The term thermodynamic potential derives from
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Figure 1.5: Legendre Transformation from U as a function V to H as a function of P .

an analogy with mechanical potential energy. They are extensive state variables of dimen-

sions of energy. Their purpose is to allow for simple treatment of equilibrium for systems

interacting with the environment. The concept of thermodynamic potentials was intro-

duced by Pierre Duhem in 1886. The main thermodynamic potential which has a physical

interpretation is the internal energy, U . Other thermodynamic potentials are LT of the

internal energy U(S, V, n) with respect to natural variables S, V or n [94]. Five common

thermodynamic potentials are listed in Table 1.1.

For example, the enthalpy H is LT of U = U(S, V, ni) with respect to −PV . Geomet-

rically, the LT from U to H involves the pair of variables (P, V ). For a specific value of

V , the function U(V ), has a slope

dU

dV
= P (V ), (1.33)

which defines the tangent, HQ (see Fig.(1.5)). The tangent HQ has an intercept on the

U axis of H = U + PV . Since

dU = −PdV, dH = dU + PdV + V dP, (1.34)

we see that
dH(P )

dP
= V (P ). (1.35)

Thus enthalpy H is the potential that has P as a basic variable of V .

A mnemonic device that can be used to work out relationships between one thermody-

namic function and another is given in Fig.(1.6). The four variables T , S, Y , X are at the

corners of square and the four related potentials are at the sides. The variables adjacent

to a potential are the natural ones for the potential and the arrows relate other variables

to the partials of the potential.
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Figure 1.6: Diagram illustrating the thermodynamic potentials and their partials with

respect to their natural variables and the Maxwell relations connecting the partials of

these variables, for a two-variable system.

1.5 Thermodynamic Description of Phase Transitions

Every substance we know about can exist in several different forms, called phases. Phase

diagrams show the preferred physical states of matter at different temperatures and pres-

sure. Within each phase, the material is uniform with respect to its chemical composition

and physical state. Water can be a vapor, liquid or solid. Change of phases comes abruptly,

as we know ordinary water is liquid at room temperature and atmospheric pressure, but

if cooled below 273.15K it solidifies; and if heated above 373.15K it vaporizes. At each

of these temperatures the material undergoes a precipitous change of properties–a “phase

transition”. The measurement of the external conditions at which the transformation

occurs is termed as the phase transition point. At high pressures solid water undergoes

several additional phase transitions from one solid form to another. These distinguishable

solid phases, designated as “ice I”, “ice II”, “ice III”, ..., differ in crystal structure and

in essentially all thermodynamic properties. The “phase diagram” of water is shown in

Fig.(1.7).

In solid state the entropy S and thermodynamic potential increases as temperature T

increases. Its heat capacity goes to zero at zero temperature, however CV rises at high

temperatures. However, if we add more and more heat quasistatically to the crystalline

solid holding the pressure constant at some moderate value, its temperature rises until

finally it melts, turning into a liquid. The temperature Tm at which melting occurs depends

on the pressure and the amount of heat required to melt 1 mole of the crystal is called
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Figure 1.7: Phase diagram for water.

the latent heat of melting Lm, which is a function of pressure [94]. If heat is added

to the liquid, its temperature will increase until another phase change occurs–the liquid

evaporates. Again the temperature remains constant at the temperature of vaporization

TV until all the liquid is converted into vapor.

Since the temperature of melting Tm is nearly independent of pressure, whereas the

temperature of vaporization TV is strongly dependent on P . Therefore as P decreases, the

two curves one for TV , the other for Tm, converge. As shown in Fig.(1.8), where the curve

AB is the melting-point curve and AC is the vaporization-point curve. The two meet at

the triple point A, which is the only point where solid, liquid and vapor can coexist in

equilibrium. Below this pressure the liquid is not a stable phase and along the curve OA

the solid transform directly into the vapor (sublimation). Along this curve the latent heat

of sublimation

Ls = Lm + Lv, (1.36)

at the triple point. The dashed lines are the lines of intersection of the PV T surfaces by

planes parallel to the PT plane for different values of V .

As pressure increases, keeping T = T (P ), so that the difference between volume and

entropy of gas and liquid diminish until at C, the critical point, there ceases to be any

distinction between liquid and gas and hence the curve AC terminates.

If a phase change involves a major rearrangement of structure of the substance, re-

sulting in change of volume, viscosity and so on. Since such changes involve energy input

or output to produce a finite amount of heat, the latent heat L, is required to raise the

temperature of the substance from just below the transition temperature to just above it.

Since

CP = T
∂S

∂T

∣∣∣∣
P

, (1.37)

the heat capacity of the substance becomes infinite at transition [34]. Such transitions are

called phase changes of the first kind.
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Figure 1.8: Phase diagram for a material that expands upon melting. Solid lines are the

curves for phase change, dashed lines those for constant volume.

If the changes of phase involve a different kind of ordering in a crystal lattice or the

appearance of superfluid, some of which may be a simple change of slope of S against T

at the transition point. In this case the heat capacity changes discontinuously but does

not become infinite at transition temperature. Such changes are called phase changes of

the second kind.

There is still another kind of phase transition that does not fit into the ongoing clas-

sification. An example of this is the transition between the two kinds of liquid helium,

which is called a lambda transition.

1.6 Statistical Mechanics: The Role of Entropy

Statistical Mechanics uses laws of probability for dealing with large populations, to the

study of the thermodynamic behavior of systems composed of a large number of particles

and provides a framework for relating the microscopic properties of individual atoms and

molecules to the macroscopic bulk properties of materials. Physical quantities which de-

scribe a macroscopic body in equilibrium are, almost always, close to their mean values.

However, there are certain small deviations from the mean values, which is the natu-

ral behavior of the system under consideration. We call these deviations thermodynamic

fluctuations. The problem of concern is how to find the probability of these deviations.

In statistical mechanics, entropy is, in some sense, a measure of the number of ways in

which a system may be arranged, often taken to be a measure of “disorder”. Specifically,

the entropy of the system is given by the natural logarithm of the number of microstates

Ωm (that are consistent with the macrostate), i.e.,

S = ln Ωm. (1.38)

The microstate Ωm will be a function of the macrostate, namely Ωm = Ωm(U, V,N) where
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U , V and N are the extensive parameters of the system. The Eq.(1.38) is very important

as it provides the basic connection between macroscopic (thermodynamic) entropy and

statistical microscopic physics (number of states). The thermodynamic definition of en-

tropy provides the experimental definition, while the statistical one extends the concept,

providing an explanation and a deeper understanding of its nature. Clearly, S = 0 when

Ωm = 1 meaning that there is no entropy present when there is only one exact microstate

(hence no disorder).

Using the first law we can also express the entropy as a thermodynamic potential

dS =
1
T

dU +
P

T
dV − µ

T
dn, (1.39)

which is just the differential form of the entropy. If the entropy S = S(U, V, n) is known,

then complete knowledge of all the thermodynamic parameters can be obtained. Further-

more, for isolated systems (where dQreversible = 0) in equilibrium

dS = 0 ⇔ S = Smaximum (1.40)

and for irreversible processes

dS > 0. (1.41)

So the state of equilibrium is defined as the state of maximum entropy.

In 1907 Einstein inverted Eq.(1.38) and obtained

Ωm = eS , (1.42)

which is associated to the probability distribution as

P ∝ eS . (1.43)

By Taylor expanding the entropy about the fluctuation quantity x up to the second order,

we obtain

S(x) = S(0)− 1
2
βx2, (1.44)

where

β = −∂2S

∂x2

∣∣∣∣
0

. (1.45)

Substituting Eq.(1.44) into Eq.(1.42) we obtain

P (x) = Ae−
1
2
βx2

, (1.46)

with A being a normalization constant and the normalization condition is given by
∫

P (x)dx = 1. (1.47)
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Thermodynamic system Black hole

Temperature, T Surface gravity, κ

Energy, U Black hole’s mass M

Entropy, S Area of event horizon, A

Table 1.2: Analogy between thermodynamic parameters and black hole’s parameters.

Since integration is over all space, hence by using Gaussian integration formula

A =

√
β

2π
. (1.48)

Thus the probability distribution of the various values of the fluctuations is:

P (x) =

√
β

2π
e−

1
2
βx2

. (1.49)

This probability distribution is categorized as a Gaussian distribution. It reaches a max-

imum when x = 0 and decreases rapidly and symmetrically as |x| increases. The mean

squared fluctuation is defined as

< x2 >=
∫

x2P (x)dx =
1
β

. (1.50)

The Gaussian distribution for more than one variable reads

P =
√

β

(2π)n/2
e−

1
2
βijxixj , (1.51)

where

βij = − ∂2S

∂xi∂xj
, β = |βij |. (1.52)

Note that βij = βji.

1.7 Black Hole Thermodynamics

Black hole thermodynamics has continued to fascinate researchers since Hawking’s discov-

ery of the thermal radiation from black holes [68,69] because it provides a real connection

between gravity and quantum mechanics. The relationship between geometrical proper-

ties of the event horizon and thermodynamic quantities clearly indicates a relationship

between properties of the spacetime geometry and some kind of quantum physics. The

thermodynamic behavior should have a statistical interpretation in quantum gravity and

hence it provides clues to the form of the quantization of gravity. (For more discussions

on black hole physics see, for instance, [55].)
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1.8 Four Laws of Black Hole Thermodynamics

The laws of black hole thermodynamics are purely classical and resemble the usual four

laws of thermodynamics presented in section 1.1, if one admits that surface area A of the

horizon is proportional to the entropy S of the black hole, as suggested by Bekenstein [16],

and that the surface gravity κ is proportional to the black hole temperature T [69]. At

first, this resemblance was only an analogy since if the black hole had a temperature it

would have to radiate, in a clear contradiction with the known classical fact that nothing

could escape from the black hole horizon. However, in a revolutionary work, Hawking [69],

using a semiclassical treatment in which the gravitational field of the black hole is treated

classically but the matter is treated quantum mechanically, has shown that the black holes

do indeed radiate a spectrum characteristic of a blackbody.

In this section we discuss thermodynamic properties of black hole thermodynamics

established by Bardeen, Carter and Hawking [14]. Some results from the classical black

hole mechanics will be displayed in a suggestive form such that the analogy between these

laws and the laws of classical thermodynamics is transparent.

By its very definition, a classical black hole cannot emit anything, so it seems useless

to attempt to associate a nonzero temperature with it. On the other hand, there must be

some relationship between dM , the change in the mass of a black hole and dA, the change

in its horizon area. When dA = 0 the change of energy of the black hole is

dM = ΩdJ + φdQ, (1.53)

where J and Q are the angular momentum and charge of the hole and Ω and φ are the

angular velocity and electric potential of the horizon. It is like the first law of thermody-

namics but with the heat flow term dQ = TdS missing.

In 1971 Stephen Hawking [69] showed that the area, A of the event horizon of a black

hole can never decrease (though it can remain constant) in any process:

dA ≥ 0. (1.54)

The area of the event horizon increases when (1) mass increases and (2) spin decreases.

It was later noted by Bekenstein [16] that this result is analogous to the statement of

the second law of classical thermodynamics, namely that the total entropy, S of a closed

system never decreases in any process:

dS ≥ 0. (1.55)

With these arguments it is legitimate to establish the laws of black hole mechanics in

parallel to the laws of classical thermodynamics (section 1.1) by using parameters of the

black hole (see Table 1.2 and 1.3) as follows:

Zeroth Law: The zeroth law states that:
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Law Thermodynamic system Black hole

Zeroth Law T constant on a body

in thermal equilibrium κ constant over a black hole’s event horizon

First Law dU = TdS − PdV + µdn dM = κ
8πdA + ΩdJ + φdQ

Second Law dS ≥ 0 dA ≥ 0

Third Law T = 0 cannot be reached κ = 0 cannot be reached

Table 1.3: Analogy between the laws of thermodynamic and the laws of black hole me-

chanics.

“The surface gravity κ of a stationary black hole is constant everywhere on the surface

of the event horizon”.

Although κ is defined locally on the horizon, it turns out that it is always constant

over the horizon of a stationary black hole. This constancy is reminiscent of the Zeroth

Law of thermodynamics which states that the temperature is uniform everywhere over a

system in thermal equilibrium. The surface gravity is related to the Hawking temperature

TH by

TH =
κ

2π
. (1.56)

First Law: The first law (an energy conservation law) states that when one throws an

infinitesimal amount of matter into a stationary black hole described by M , J and Q, it

will evolve into a new stationary black hole in such a way that the change in the hairs of

the system satisfies

dM =
( κ

8π

)
dA + “work terms”, (1.57)

or

dM = THdSBH + “work terms”. (1.58)

It is readily seen that the above equations are analogous to the first law of thermodynamics,

i.e.

dE = TdS + “work terms”. (1.59)

The entropy of the black hole is thus represented by a quarter of the area of the event

horizon, that is

SBH =
A

4
. (1.60)

This quantity, SBH , is known as the Bekenstein-Hawking entropy. The factor 1
4 was found

by Hawking [70] based on the application of the quantum field theory to the black holes

which shows that they will absorb and emit particles as if they were thermal black bodies

with the Hawking temperature, TH . The “work terms” are given differently depending on
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the type of the black holes. For the Kerr-Newman black hole family, the first law would

be

dM =
( κ

8π

)
dA + ΩdJ + φdQ, (1.61)

where Ω is the angular velocity of the hole and φ is the electric potential which are defined

by

Ω =
∂M

∂J
, φ =

∂M

∂Q
. (1.62)

Second Law: The second law states that:

“In any classical process, the area of a black hole, A and hence its entropy SBH , do

not decrease;”

dSBH ≥ 0. (1.63)

This statement is analogous to the second law of classical thermodynamics which is

consequently obtainable from the Hawking’s area theorem. In classical thermodynamics

and black hole physics, the second law indicates the irreversibility inherent in the system

under consideration. In thermodynamics, the law of nondecreasing entropy signifies that

the part of the internal energy U that cannot be transformed into work grows with time.

Quite similarly, the law of nondecreasing area of a black hole signifies that the fraction of

a black hole’s internal energy that cannot be extracted grows with time.

The second law of black hole mechanics can be violated if the quantum effects are

taken into account, namely that the area of the event horizon can be reduced via Hawking

radiation. It is essential that the black hole radiation is thermal in nature, therefore

generating a rise in entropy in the surrounding region. The generalized entropy, S′ was

introduced by Bekenstein [17] to account for this sort of entropy. It is defined as the sum

of the black hole’s entropy, SBH and the entropy of the surrounding matter, Sm

S′ = SBH + Sm. (1.64)

This statement is known as the Generalized Second Law (GSL):

dS′ ≥ 0. (1.65)

The ordinary second law seems to fail when the matter is dropped into a black hole because

according to classical GR, the matter will disappear into a spacetime singularity, in this

manner the total entropy of the universe decreases as there is no compensation for the lost

entropy. The GSL keeps the law of entropy valid as the total entropy of the universe still

increases when the matter falls into the black hole.

Third Law: Finally, the third law states that:

“It is impossible by any procedure, no matter how idealized, to reduce the black hole

temperature to zero by a finite sequence of reversible processes.”



28

However, the extremal black holes, for example the Kerr black holes do have κ = 0 thus

zero temperature (absolute zero) but non-zero entropy. To actually reduce the surface

gravity to zero is merely an idealized case because it is forbidden by the Cosmic censorship

conjecture. The surface gravity of the Kerr-Newman black hole is given by

κ =
4π

A

√
M2 −Q2 − J2

M2
, (1.66)

and thus κ = 0 implies J2

M2 + Q2 = M2, which is the condition for an extreme black hole.

If the state κ < 0 could be reached we would have a naked singularity. Hence, the cosmic

censorship conjecture stated by Penrose plays the role of the third law.

Israel emphasized that it is difficult to define the meaning of “finite sequence of re-

versible processes” considering only quasi-static processes [71]. He proposed and proved

the following version of the third law:

A non-extremal black hole cannot become extremal at a finite advanced time in any

continuous process in which the stress-energy tensor of accreted matter stays bounded and

satisfies the weak energy condition in the neighborhood of the outer apparent horizon.

1.9 Thermodynamics as Geometry

One of the first applications of differential geometry [49] in thermodynamics is due to

Gibbs [58] and Charatheodory [33]. Results have been achieved in two different approaches.

The first approach, developed by Hermann [63] and Mrugala [95,96], uses the natural

contact structure of the so-called phase space T . Extensive and intensive thermodynamic

variables are taken together with the thermodynamic potential to constitute well-defined

coordinates on T . The space of thermodynamic equilibrium states E , a subspace of T ,

is defined by means of a smooth embedding map φ : E → T . This implies that each

system possesses its own space E . On the other hand, it is always possible to introduce

the fundamental Gibbs 1-form on T which, when projected on E with the pullback of φ,

generates the first law of thermodynamics and the conditions for thermodynamic equilib-

rium. Furthermore, on T it is also possible to consider Riemannian structures [64, 136].

The second one consists of introducing metric structures on the space of thermodynamic

equilibrium states E .

During the last few decades several attempts have been made in order to introduce dif-

ferential geometric concepts in ordinary thermodynamics. In the next section I will discuss

basic ideas and concepts of thermodynamic geometry from the viewpoint of Riemannian

geometry and different approaches to study the geometry of black holes.
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1.10 Thermodynamics: A Riemannian Geometric Model

It has been known, particularly since the early works of Gibbs, that the analysis of thermo-

dynamic systems can be facilitated with the help of graphical and geometrical methods. It

was Weinhold [141] who first realized that the “geometry” of thermodynamic phase spaces

lacks an intrinsic metric structure. He introduced in the equilibrium space a Riemannian

metric defined in terms of the second derivatives of the internal energy U , which is mass

M in the case of black holes, with respect to entropy S and other extensive variables Na

of the thermodynamic system under consideration. The Weinhold metric is given by

gW
ij = ∂i∂jU(S,Na), (1.67)

However, the geometry based on this metric seems to be meaningless in the context of

pure equilibrium thermodynamics. Later on Ruppeiner [125] argued that if the theory

of fluctuations is included in the axioms of equilibrium thermodynamics, there exists a

corresponding Riemannian metric which enables us to represent thermodynamic systems

by Riemannain manifolds and associate the curvature of these manifolds with the in-

teractions. He introduced a Riemannian metric structure in thermodynamic fluctuation

theory and related it to the second derivatives of the entropy. This geometric structure

was used to find the significance of the distance between equilibrium states and to study

the thermodynamics of equilibrium systems. It was observed by Ruppeiner [126] that

in thermodynamic fluctuation theory the Riemannian curvature of the Ruppeiner metric

measures the complexity of the underlying statistical mechanical model. This concept is

associated to probabilities, i.e., the less probable a fluctuation between states, the further

apart they are. This can be recognized if one considers gij in the distance formula (line

element) between the two equilibrium states

ds2 = gijdxidxj , (1.68)

where the matrix of coefficients gij is the symmetric metric tensor and we have βij = gij .

The Ruppeiner metric is defined as

gR
ij = −∂i∂jS(M,Na), (1.69)

where S is the entropy, M denotes the energy and Na are other extensive variables of the

system such as electric charge Q and angular momentum J . The Ruppeiner geometry is

conformally related to the Weinhold geometry [97,127] as

ds2
R =

1
T

ds2
W , (1.70)

where T is the temperature of the system under consideration. Eq.(1.70) often provides a

more convenient way to compute the Ruppeiner metric [2].
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One of the aims of the application of geometry in thermodynamics is to describe phase

transitions in terms of curvature singularities and to interpret curvature as a measure of

thermodynamic interaction. Since the proposal of Weinhold, many investigations have

been carried out to understand the thermodynamic geometry of various thermodynamic

systems. The Weinhold and the Ruppeiner geometries have been analyzed in a number

of black hole families to study phase space, critical behavior and stability properties [6–

8, 26, 53, 72, 73, 89, 91, 130, 132]. In some particular cases, it was found that the Weinhold

and the Ruppeiner geometries carry information about the phase transitions structure. In

fact, this is true in the case of the ideal gas, whose curvature vanishes and the van der

Waals gas for which the thermodynamic curvature becomes singular at those points where

phase transitions occur.

Unfortunately, the results obtained are contradictory in the case of black holes. For in-

stance, for the Kerr black hole the Weinhold metric predicts no phase transitions at all [6]

whereas the Ruppeiner metric, with a very specific thermodynamic potential, predicts

phase transitions that are compatible with the results of standard black hole thermody-

namics [132]. Nevertheless, a change of the thermodynamic potential affects the Ruppeiner

geometry in such a way that the resulting curvature singularity does not correspond to

a phase transition. Another example is provided by the BTZ black hole for which the

curvature of the equilibrium space turns out to be flat [26,89,130]. This flatness is usually

interpreted as a consequence of the lack of thermodynamic interaction. However, if one

applies an invariant approach the resulting manifold is curved [113].

The problem of using the Weinhold or the Ruppeiner metrics in equilibrium space is

that the results can depend on the choice of thermodynamic potential, i.e., the results are

not invariant with respect to LT [98,128]. These results indicate that, in the case of black

holes, geometry and thermodynamics are compatible only for a specific thermodynamic

potential. However, it is well known that ordinary thermodynamics does not depend on

the thermodynamic potential, i.e., it is invariant with respect to LT. The formalism of

GTD incorporates Legendre invariance into the geometric structures of the phase space

and equilibrium space so that the results do not depend on the choice of thermodynamic

potential. The phase transition structure contained in the heat capacity of black holes [44]

becomes completely integrated in the scalar curvature of the Legendre invariant metric so

that a curvature singularity corresponds to a phase transition.

1.11 Geometrothermodynamics: A Consistent Approach

to the Geometry of Thermodynamics

In this section I present the main geometric structures which are necessary for the formu-

lation of GTD [112].
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The formalism of GTD was developed in order to unify in a consistent manner the

geometric properties of the phase space and the space of equilibrium states [112]. Legendre

invariance plays an important role in this formalism. As an approach GTD allows us to

handle thermodynamic systems in terms of geometric structures which are invariant with

respect to LT, i.e., independent of the thermodynamic potential [112]. GTD explains why

Weinhold’s and Ruppeiner’s metrics are not suitable to describe thermodynamics in an

independent manner [115]. It can be used to derive Legendre invariant metrics which,

in particular, describe black hole thermodynamics in a unified and consistent manner

[2, 5, 113–121,135,139,140].

The idea is easily applicable. We first consider an arbitrary metric on the phase space

whose pullback induces a metric on the space of equilibrium states. Then we derive the

conditions for the invariance of these metrics under an arbitrary LT, where the contact

structure is considered to be compatible with the Riemannian structure. GTD unifies the

thermodynamics and geometry either in the space of equilibrium states or at the level of

the phase space [112].

In analytic geometry, a thermodynamic system is described by an equation of state

f(Ea, Ia) = 0 which determines a surface in the space with coordinates {Ea, Ia}. One of

the most important contributions of analytic geometry to the understanding of thermody-

namics is the identification of points of phase transitions with extremal points of the surface

f(Ea, Ia) = 0. More detailed descriptions of these contributions can be found in standard

textbooks on thermodynamics (see, for instance, [34]). This approach, however, implies

that the equation f(Ea, Ia) = 0 must be determined experimentally. Here I present an

alternative approach in which a thermodynamic system is described by an extremal hyper-

surface, satisfying a system of differential equations. This alternative approach provides

a solid mathematical structure to thermodynamics and opens the possibility of finding

extremal surfaces and investigating their thermodynamic properties by analyzing their

geometric structure.

1.11.1 Harmonic Maps

The subject of harmonic maps is vast and has many applications. Harmonic maps were

defined and named by F. B. Fuler, who also gave important examples and asked significant

questions [57]. I first consider relevant aspects of harmonic functions on Euclidean space;

then I will give a general introduction to harmonic maps on Riemannian manifolds [50].

Harmonic functions on Euclidean spaces: Harmonic functions f on an open domain

W of IR m are solutions of the Laplace equation

∆f = 0, (1.71)
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where

∆ :=
∂2

(∂x1)2
+ +

∂2

(∂xm)2
, (x1, ..., xm) ∈ W. (1.72)

The operator ∆ is called the Laplace operator or Laplacian after P. S. Laplace.

The Dirichlet principle: Dirichlet’s principle, also known as Thomson’s principle, states

that the function f minimizes the functional

EW (f) :=
1
2

∫

W

m∑

α=1

(
∂f

∂xα
(x)

)2

dxm =
1
2

∫

W

m∑

α=1

|dfx|2dxm, (1.73)

where dmx := dx1...dxm. The harmonic functions are critical points (also called extremals)

of the Dirichlet energy functional(1.73).

Harmonic Maps on Riemannian Manifolds: Harmonic maps are solutions to a nat-

ural geometrical variational problem. This notion was motivated from some fundamental

concepts of differential geometry, such as geodesics, minimal surfaces and harmonic func-

tions. They are nonlinear extensions of harmonic functions. Just like harmonic functions,

harmonic maps are critical points of the Dirichlet energy functional, of maps between two

Riemannian manifolds [138].

Consider two (pseudo)-Riemannian manifolds (M, γ) and (M ′, γ′) of dimension m and

m′, respectively. Let the base manifold M be coordinatized by xα (α, β, γ, ... = 1, 2, ..., m)

and M ′ by x′µ (µ, ν, λ, ... = 1, 2, ..., m′), so that the metrics on M and M ′ can be, in

general, smooth functions of the corresponding coordinates, i.e., γ = γ(x) and γ′ = γ′(x′).

A harmonic map is a smooth map ϕ : M → M ′, or in coordinates ϕ : x 7−→ x′ so that x′

becomes a function of x and the x′s satisfy the field equations following from the action [92]

S =
1
2

∫
dmx

√
| det(γ)| γαβ(x)

∂x′µ

∂xα

∂x′ν

∂xβ
γ′µν(x

′) , (1.74)

which sometimes is called the “Dirichlet energy functional” of the harmonic map ϕ. Using

the calculus of variations for the action (1.74), the field equations are

1√
|det(γ)|

∂

∂xβ

(√
| det(γ)|γαβ ∂x′µ

∂xα

)
+ Γµ

νλ γαβ ∂x′ν

∂xα

∂x′λ

∂xβ
= 0 , (1.75)

where Γµ
νλ are the Christoffel symbols associated to the metric γ′µν of the target manifold

N . If γ′µν is a flat metric, one can choose Cartesian-like coordinates such that γ′µν = χµν =

diag(±1, ...,±1), the field equations become linear and the harmonic map is linear [50,51].

Harmonic maps appear in many different contexts; e.g.,

(a) Constant maps are harmonic.

(b) If dim M = 1, then the harmonic maps are the geodesics of M ′.

(c) If M ′ = IR , they are the harmonic functions on M.

(d) If M ′ = S′(= the unit circle), then the harmonic maps are canonically identified with

the harmonic 1-forms on M with integral periods.
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(e) If dimM = 2, they include (parametric representations of) the minimal surfaces of M ′;

the energy is the Dirichlet-Douglas integral.

(f) If M is a Riemannian submanifold of M ′ of minimal volume, then the inclusion map

i : M → M ′ is harmonic.

1.11.2 Curvature as a Measure of the Thermodynamic Interaction

Now I show that harmonic maps are the correct mathematical tool to investigate the

properties of the phase manifold and its submanifolds which contain the information about

the physical states of thermodynamic systems. I present a systematic and consistent

construction of the formalism of GTD by using Riemannian contact geometry for the

definition of the thermodynamical phase manifold and harmonic maps for the definition

of the equilibrium manifold [118]. In fact, I will use the method of harmonic maps, which

has been extensively used in field theories and appears naturally in the context of GTD.

This approach allows us to interpret any thermodynamic system as a hypersurface in the

equilibrium space completely determined by the field theoretical approach of harmonic

maps.

1.11.3 The Thermodynamic Phase Manifold

The main element of GTD is the thermodynamic phase manifold which is a Riemannian

contact manifold whose contact structure and metric are invariant with respect to LT.

The first step to introduce the language of differential geometry in thermodynamics is the

definition of the (2n+1)-dimensional differential manifold T and its tangent manifold TT .

Let V ⊂ TT be a field of hyperplanes. It can be shown that V = kerΘ, where Θ is a non-

vanishing differential 1-form [39]. If the Frobenius integrability condition Θ ∧ dΘ = 0 is

satisfied, the hyperplane field V is completely integrable. On the other hand, if Θ∧dΘ 6= 0,

then V is non-integrable. In the limiting case Θ∧(dΘ)n 6= 0, the hyperplane field V becomes

maximally non-integrable and it is said to define a contact structure on T . The pair (T ,V)

is usually known as a contact manifold [23,49] and sometimes it is also denoted as (T , Θ)

to emphasize the role of the contact form Θ.

Let G be a non-degenerate metric on T . The set (T ,Θ, G) defines a Riemannian

contact manifold. Notice that the contact manifold (T , Θ) is uniquely defined in the

following sense. The condition Θ∧ (dΘ)n 6= 0 is independent of Θ; in fact, it is a property

of V = kerΘ. If another 1-form Θ′ generates the same V, it must be of the form Θ′ = fΘ,

where f : T → R is a smooth non-vanishing function. The Riemannian metric G, however,

is completely arbitrary. I will use this freedom to select only those metrics which are

invariant under the LT.

Suppose the thermodynamic phase space T can be coordinatized by the set of indepen-

dent coordinates ZA = {Φ, Ea, Ia}, a = 1, ..., n, A = 0, 1, ..., 2n. Here Φ represents the
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thermodynamic potential and Ea and Ia are the extensive and intensive thermodynamic

variables, respectively. The positive integer n indicates the number of thermodynamic

degrees of freedom of the system.

Notice that in the manifold T all the coordinates Φ, Ea and Ia must be completely

independent and thus thermodynamic systems cannot be described in T . An LT is defined

as [9]

{ZA} −→ {Z̃A} = {Φ̃, Ẽa, Ĩa} (1.76)

Φ = Φ̃− δklẼ
kĨ l , Ei = −Ĩi, Ej = Ẽj , Ii = Ẽi, Ij = Ĩj , (1.77)

where i∪j is any disjoint decomposition of the set of indices {1, ..., n} and k, l = 1, ..., i. In

particular, for i = {1, ..., n} and i = ∅ we obtain the total LT and the identity, respectively.

LT are a special case of contact transformations which leave invariant the contact structure

of T . Legendre invariance guarantees that the geometric properties of G do not depend

on the thermodynamic potential used in its construction. In these particular coordinates,

let the fundamental Gibbs 1-form be defined on T as

Θ = dΦ− δabI
adEb , δab = diag(1, 1, ..., 1) , (1.78)

an expression which is manifestly invariant with respect to LT (1.77). Consequently, the

contact manifold (T , Θ) is Legendre invariant and so will be the Riemannian contact

manifold (T ,Θ, G), if we demand Legendre invariance of the metric G.

Any Riemannian contact manifold (T , Θ, G) whose components are Legendre invari-

ant is called a thermodynamic phase manifold and constitutes the starting point for the

description of thermodynamic systems in terms of geometric concepts. I would like to em-

phasize the fact that Legendre invariance is an important condition that guarantees that

the description does not depend on the choice of the thermodynamic potential, a property

that is essential in ordinary thermodynamics.

1.11.4 Geodesics of the Phase Manifold

Consider a base manifold with dim(M) = 1 and identify the target manifold with the

thermodynamic phase manifold (T , Θ, G). Then, the field Eqs.(1.75) reduce to the geodesic

equations
d2ZA

dλ2
+ ΓA

BC

dZB

dλ

dZC

dλ
= 0 , (1.79)

where λ is an affine parameter and ΓA
BC are the Christoffel symbols of the phase manifold

metric G. Since any Legendre invariant G has a non-zero curvature, these geodesic equa-

tions are highly non-linear and difficult to solve in general. Preliminary results indicate

that geodesics of the phase manifold represent families of thermodynamic systems that

can be investigated in the context of GTD.
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1.11.5 The Equilibrium Manifold

Consider the harmonic map ϕ : E → T , where E is a subspace of the phase manifold

(T ,Θ, G) and dim(E) = n. For the sake of concreteness, let us assume that the extensive

variables {Ea} are the coordinates of E . Then, in terms of coordinates the harmonic

embedding map reads ϕ : {Ea} 7−→ {ZA(Ea)} = {Φ(Ea), Ea, Ia(Ea)}. Moreover, the

pullback ϕ∗ of the harmonic map induces canonically a metric g on E by means of

g = ϕ∗(G) , i.e., gab =
∂ZA

∂Ea

∂ZB

∂Eb
GAB = ZA

,aZB
,b GAB . (1.80)

If we assume that the metric γ of the base manifold coincides with the induced metric g,

the action (1.74) reduces to

S =
n

2

∫
dnE

√
|det(g)| , (1.81)

and the field equations become

1√
| det(g)|

(√
| det(g)| gabZA

,a

)
,b

+ ΓA
BCZB

,b ZC
,c gbc = 0 . (1.82)

The action (1.81) corresponds to the volume element of the submanifold E ⊂ T and, con-

sequently, the field Eqs.(1.82) represent the condition for E to be an extremal hypersurface

in the phase manifold [140]. If the harmonic map satisfies the condition

ϕ∗(Θ) = ϕ∗(dΦ− δabI
adEb) = 0, (1.83)

the pair (E , g) is called the space of thermodynamic equilibrium states (equilibrium mani-

fold). The last condition is equivalent to

dΦ = IadEa ,
∂Φ
∂Ea

= Ia . (1.84)

The first of these equations corresponds to the first law of thermodynamics, whereas the

second one is usually known as the condition for thermodynamic equilibrium [34]. Thus

the harmonic map ϕ : E → T defines the equilibrium manifold (E , g) as an extremal

submanifold of the phase manifold (T ,Θ, G) in which the first law of thermodynamics and

the equilibrium conditions for a given system with fundamental equation Φ = Φ(Ea) hold.

In the GTD formalism, Eq.(1.84) also means that the intensive thermodynamic vari-

ables are dual to the extensive ones. Notice that the mapping ϕ as defined above implies

that the equation Φ = Φ(Ea) must be explicitly given. In standard thermodynamics this

is known as the fundamental equation from which all the equations of state can be de-

rived [34, 67]. In this representation, the second law of thermodynamics is equivalent to

the convexity condition on the thermodynamic potential

∂2Φ/∂Ea∂Eb ≥ 0, (1.85)
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if Φ coincides with the internal energy of the system [63]. The smooth map ϕ induces in

a canonical manner a metric g (thermodynamic metric) in the equilibrium manifold E by

means of g = ϕ∗(G). Consequently, E is a Riemannian manifold with a non–degenerate

metric g.

The thermodynamic potential must satisfy the homogeneity condition

Φ(λEa) = λβΦ(λEa), (1.86)

for constant parameters λ and β. Differentiating this homogeneity condition with respect

to λ at λ = 1 and using (1.84), we get

βΦ = δabI
aEb, (1.87)

which is known as Euler’s identity. Calculating the exterior derivative of (1.87) and using

(1.84), we obtain the generalized Gibbs-Duhem relation

(1− β)δabI
adEb + δabE

adIb = 0. (1.88)

The classical expressions for Euler’s identity (1.27) and Gibbs-Duhem (1.31) relation are

obtained from the above equations by putting β = 1.

1.11.6 Geodesics of the Equilibrium Manifold

Consider a base manifold with dim(M) = 1 and identify the target manifold M ′ with the

equilibrium manifold (E , g) defined above. Then, the field equations reduce to the geodesic

equations in the equilibrium manifold

d2Ea

dτ2
+ Γa

bc

dEb

dτ

dEc

dτ
= 0 , (1.89)

where Γa
bc are the Christoffel symbols of the thermodynamic metric g and τ is an arbitrary

affine parameter along the geodesic. The solutions to the geodesic equations depend on the

explicit form of the thermodynamic metric g which, in turn, depends on the fundamental

equation Φ = Φ(Ea). Therefore, a particular thermodynamic system leads to a specific

set of geodesic equations whose solutions depend on the properties of the system. Not all

the solutions need to be physically realistic since, in principle, there could be geodesics

that connect equilibrium states that are not compatible with the laws of thermodynam-

ics. Those geodesics which connect physically meaningful states will represent quasi-static

thermodynamic processes. Therefore, a quasi-static process can be seen as a dense suc-

cession of equilibrium states. This is in agreement with the standard interpretation of

quasi-static processes in ordinary thermodynamics [34]. The affine parameter τ can be

used to label each of the equilibrium states which are part of a geodesic. Because of its

intrinsic freedom, the affine parameter can be chosen in such a way that it increases as
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the entropy of a quasi-static process increases. This opens the possibility of interpreting

the affine parameter as a “time” parameter with a specific direction which coincides with

the direction of entropy increase. This has been shown explicitly in the case of the ideal

gas [121].

From the above discussion I conclude that that harmonic maps play an important role

in the formalism of GTD. They can be used to derive geodesic equations in different spaces

and to introduce in a consistent and invariant way the concept of equilibrium manifold.

It turns out that for a given fundamental equation of the form Φ = Φ(Ea), GTD pro-

vides an invariant approach to construct the corresponding equilibrium manifold whose

points represent equilibrium states. The harmonic map which determines the equilibrium

manifold generates also a system of differential equations that determine extremal hyper-

surfaces in the phase manifold. This construction allows us to investigate the properties

of the curvature of the equilibrium manifold and to propose it as an invariant measure

of thermodynamic interaction. The thermodynamic curvature not only measures the in-

teraction of the thermodynamic system, but also becomes singular at those points where

phase transitions occur [118]. Thus, GTD represents an invariant geometric formalism of

standard thermodynamics that resembles the famous principle “curvature = interaction”

valid for all known forces of nature.

In GTD, to describe a thermodynamic system it is necessary to specify a metric G

for the phase manifold T and a fundamental equation Φ = Φ(Ea). These ingredients

allows us to construct explicitly the pair (E , g) that constitutes the equilibrium manifold

whose geometric properties should be related to the thermodynamic properties of the

specific system. In chapter 2 I will present different metrics G which generate equilibrium

manifolds for different thermodynamic systems. It is worth mentioning that GTD allows

us to implement easily different thermodynamic representations.

Finally, I mention that the geometry of the metric g = φ∗(G) is invariant with respect

to arbitrary diffeomorphisms performed on E . This can be shown by considering explicitly

the components of g in terms of the components of G and applying arbitrary LT on

G. This important property allows us to consider variational principles in GTD that

impose additional conditions on the metric structures [139]. It is the only consistent

and invariant formalism that correctly describes geometry of thermodynamics. Indeed,

it correctly reproduces the thermodynamic behavior of black holes in different gravity

theories, which is the main subject of this thesis.



Chapter 2

Phase Transitions in

Geometrothermodynamics

In this chapter I will present metrics G which generate equilibrium manifolds for different

thermodynamic systems. In order to describe a thermodynamic system in GTD it is

necessary to specify the metric G for the phase manifold T and a fundamental equation Φ =

Φ(Ea). These ingredients allow us to construct explicitly the pair (E , g) that constitutes the

equilibrium manifold whose geometric properties should be related to the thermodynamic

properties of the specific system.

2.1 Metrics used in Geometrothermodynamics

As mentioned before, the only freedom in the construction of the phase manifold is in

the choice of the metric G. Legendre invariance implies a series of algebraic conditions

for the metric components GAB [112] and it can be shown that these conditions are not

trivially satisfied. For instance, a straightforward computation shows that the flat metric

G = δABdZAdZB is not invariant with respect to LT (1.77). It then follows that the phase

space is necessarily curved. A detailed analysis of the Legendre invariance conditions show

that the metric

G = (dΦ− IadEa)2 + λ (EaIa)2k+1dEadIa , Ea = δabE
b , Ia = δabI

b , (2.1)

where λ is an arbitrary real constant and k is an integer, is invariant with respect to partial

and total LT. To our knowledge this is the most general metric satisfying the conditions

of Legendre invariance. The corresponding scalar curvature

R =
2
λ2





[
n∑

a=1

(EaIa)−2k−1

]2

− 3
n∑

a6=b

(EaIaEbIb)−2k−1



 , (2.2)

shows that the manifold is curved in general.
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Furthermore, the phase manifold metric

G = (dΦ− IadEa)2 + λ(EaI
a)2k+1(χbcdEbdIc) , (2.3)

where χab is a constant diagonal tensor, satisfies the conditions that follow from a total

LT (1.77). The corresponding curvature is rather cumbersome and cannot be written in a

compact form; however, an inspection of its explicit form shows that it is always different

from zero.

The metrics (2.1) and (2.3) are the most general Legendre invariant metrics found so

far and contain other known metrics as particular cases [112]. The LT impose very strong

conditions on the components GAB; indeed, Eq.(1.77) shows that such a transformation

can change an extensive variable to the negative of the corresponding intensive variable.

This implies that only very specific combinations of extensive and intensive variables can

be invariant under LT.

From the description given above it follows that if we limit ourselves to the case of

total LT, then there exists a class of metrics,

G = (dΦ− δabI
adEb)2 + (ξabE

aIb)(χcddEcdId), ηab = diag(−1, 1, ..., 1) (2.4)

parameterized by the diagonal constant tensors ξab and ηab, which is invariant for several

choices of these free tensors. In fact, since ξab and ηab must be constant and diagonal it

seems reasonable to express them in terms of the usual Euclidean and pseudo–Euclidean

metrics δab = diag(1, ..., 1) and ηab = diag(−1, 1, ..., 1) respectively. Then, for instance,

the choice

ξab = δab, χab = ηab, (2.5)

corresponds to a Legendre invariant metric which has been used to describe the geometric

properties of systems with first order phase transitions [112,116]. Moreover, the choice

ξab = δab, χab = δab, (2.6)

turned out to describe correctly second order phase transitions especially in black hole

thermodynamics [116]. The additional choice

ξab =
1
2
(δab − ηab), ηab = δab, (2.7)

can be used to handle in a geometric manner second order phase transitions and also

the thermodynamic limit T → 0 [2, 135]. Obviously, for a given thermodynamic system

it is very important to choose the appropriate metric in order to describe correctly the

thermodynamic properties in terms of the geometric properties in GTD.

The pullback φ of the Legendre invariant metric (2.1) generates the following thermo-

dynamic metric

g = λ(EaΦa)(2k+1)δabΦbcdEadEc, (2.8)



40

where

Φa =
∂Φ
∂Ea

, Φbc =
∂2Φ

∂Eb∂Ec
, (2.9)

which can be shown to be invariant with respect to arbitrary (partial and total) LT. On the

other hand, the metric (2.3) of the phase manifold generates the thermodynamic metric

g = λ(ξb
aE

aΦb)(χb
aΦbcdEadEc), (2.10)

where

χb
a = ξacδ

bc, χb
a = χacδ

bc, (2.11)

which is invariant with respect to total LT. In the case of (2.7), the pullback ϕ∗ induces

on E , by means of g = ϕ∗(G), the thermodynamic metric

g =
1
2

[
Ea

(
∂Φ
∂Ea

− ηabδ
bc ∂Φ

∂Ec

)](
ηabδ

bc ∂2Φ
∂Ec∂Ed

dEadEd

)
. (2.12)

Notice that the explicit components of the thermodynamic metric g can be calculated in

a straightforward manner once the fundamental equation Φ = Φ(Ea) is explicitly given.

However, in the formalism of GTD the metric

g0 =
∂2Φ

∂Ea∂Eb
dEadEb, (2.13)

is generated as

g0 = ϕ(G0) = ϕ∗(δabdEadIb), (2.14)

where the metric G0 is not Legendre invariant. This implies that the results obtained

by using the metric g0 can depend on the choice of thermodynamic potential and, conse-

quently, can lead to contradictory results. In particular, for Φ = U (internal energy), g0 is

equivalent to the Weinhold metric and for Φ = S, g0 is the Ruppeiner metric, which are

not Legendre invariant.

An important issue to be addressed when imposing invariance conditions on metrics is

the one related to the existence of solutions. In our case, the point is whether there exist

metrics which satisfy the condition of invariance under LT. In fact, it is easy to construct

an invariant (2n + 1)-dimensional metric by defining the non-degenerate metric as the

“square” of the Gibbs 1-form (1.78) and the invariance of this metric follows from the

invariance of the Gibbs 1-form.

2.2 Geometrothermodynamic Representations

In the context of GTD, it is also possible to consider any representation of the fundamental

equation Φ = Φ(Ea). The mapping φ can be defined in each case, independently of

the chosen thermodynamic potential. On the other hand, since only Legendre invariant

structures on T and E are considered, the characteristics of the underlying geometry for a
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given thermodynamic system will be independent of the thermodynamic potential. This

is in agreement with standard thermodynamics. However, LT allow us to introduce a set

of seven additional thermodynamic potentials which depend on different combinations of

extensive and intensive variables. The complete set of thermodynamic potentials can be

written as

M =M(S, J,Q),

M1 = M1(T, J,Q) = M − TS,

M2 = M2(S, Ω, Q) = M − ΩJ,

M3 = M3(S, J, φ) = M − φQ,

M4 = M4(T, Ω, Q) = M − TS − ΩJ,

M5 = M5(T, J, φ) = M − TS − φQ,

M6 = M6(S, Ω, φ) = M − ΩJ − φQ,

M7 = M7(T, Ω, φ) = M − TS − ΩJ − φQ.

(2.15)

Thus, for any representation of the fundamental equation, one has the freedom of choosing

anyone of the potentials M,M1, ..., M7, without affecting the thermodynamic properties

of thermodynamic systems.

The mathematical tools presented in the last sections allow us to define geometric

structures in an invariant way. In particular, the curvature of the thermodynamic metric

g should represent the thermodynamic interaction independently of the thermodynamic

potential. In fact, this is not a trivial condition from a geometric point of view. For

instance, a geometric analysis of black hole thermodynamics by using metrics introduced

ad hoc in the equilibrium manifold leads to contradictory results [6, 26,89,130,132].

2.3 Systems with Second Order Phase Transitions

Using the choice (2.5), the non-degenerate metric

G = (dΦ− δabI
adEb)2 + (δabE

aIb)(ηcddEcdId), ηab = diag(−1, 1, ..., 1) (2.16)

is invariant with respect to total LT (1.77) and consequently, can be used to describe the ge-

ometric properties of the phase manifold T . The smooth map ϕ : {Ea} 7→ {Φ(Ea), Ea, Ia(Ea)},
satisfying ϕ∗(dΦ− δabI

adEb) = 0, induces the thermodynamic metric

g = ϕ∗(G) =
(

Ec ∂Φ
∂Ec

) (
ηabδ

bc ∂2Φ
∂Ec∂Ed

dEadEd

)
(2.17)

that can be explicitly calculated once the fundamental equation Φ = Φ(Ea) is specified.

Notice that by virtue of the equilibrium conditions (1.84) and Euler’s identity (1.87), the

conformal factor of the thermodynamic metric (2.17) turns out to be proportional to the
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thermodynamic potential Φ. This means that in general the conformal factor can assumed

different from zero.

For concreteness, assume that E1 = S is the entropy of a system with two thermody-

namic degrees of freedom (n = 2). Then, the dual intensive variable I1 = ∂Φ/∂S = T

represents the temperature and the thermodynamic metric (2.17) reduces to

g = (ST + E2I2)
[−ΦSSdS2 + Φ22(dE2)2

]
, (2.18)

where a subscript represents derivation with respect to the corresponding coordinate.

To describe the phase transition structure of the system I use the heat capacity

C = T

(
∂T

∂S

)
=

ΦS

ΦSS

, (2.19)

so that phase transitions of second order occur at those points where C diverges. For

the calculation of concrete examples it is necessary to specify the fundamental equation

Φ = Φ(S,E2). In particular, I am interested in analyzing the thermodynamic properties

of black hole configurations [44] for which usually Φ = M is the mass (energy) of the black

hole and E2 is an additional extensive variable like electric charge Q, angular momentum

J , etc. In this case, the fundamental equation is essentially equivalent to the entropy–area

relation S = S(M, E2) = kA, where A is the area of the horizon and k is a constant

that depends on the dimension of the spacetime. However, it turns out that it is not

always possible to express the fundamental equation in the form M = M(S, E2) and the

entropy–area relation S = S(M, E2) must be used. In ordinary thermodynamics this

corresponds to a change from the energy representation to the entropy representation.

GTD allows us to perform changes of representations in a simple manner. In fact, to

obtain the entropy representation of the metric (2.18)the Gibbs 1-form (1.78) of the phase

space can be rewritten as

ΘS = dS − 1
T

dM +
I2

T
dE2, (2.20)

Therefore, the first law of thermodynamics becomes

dM = TdS + I2dE2, (2.21)

as

dS = (1/T )dM − (I2/T )dE2, (2.22)

and identify M and E2 as the new extensive variables, whereas 1/T and −I2/T represent

the corresponding new dual intensive variables. Replacing these new variables in the

general expression (2.17), the metric is given by

g =
(
MSM + E2S2

) [−SMM dM2 + S22(dE2)2
]

, (2.23)
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Black hole Fundamental equation

RN S = π(M +
√

M2 −Q2)2

RNAdS M = (D−2)ωD−2

16π

(
4S

ωD−2

)D−1
D−2

[
1
l2

+
(ωD−2

4S

) 2
D−2 + 2π2Q2

(D−2)(D−3)S2

]

Kerr S = 2π(M2 +
√

M4 − J2)

KAdS M = D−2
2π

(ωD−2

2D

) 1
D−2 S

D−3
D−2

(
1 + 4π2J2

S2

) 1
D−2

BTZ M = S2

16π2l2
+ 4π2J2

S2

BTZCS M = 1
8π2k2

[
S2 + 8π2kJ + S

l

√
(l2 − k2)(S2 + 16π2kJ)

]

BTZTF S = 2
√

2πl

[
M +

(
M2 − J2

l2

) 1
2

] 1
2

− 3
2 ln 2

√
2πl

[
M +

(
M2 − J2

l2

) 1
2

] 1
2

Table 2.1: Black holes with two degrees of freedom. Here I use the following nota-

tions: RN = Reissner-Nordström, RNAdS = Reissner-Nordström-Anti-de-Sitter, KAdS =

Kerr-Anti-de-Sitter, BTZ = Bañados-Teitelboim-Zanelli, BTZCS = Bañados-Teitelboim-

Zanelli-Chern-Simons, BTZTF = Bañados-Teitelboim-Zanelli black hole with thermal fluc-

tuations, M = mass, S=entropy, Q = charge, J = angular momentum, Λ = −1/l2= cos-

mological constant and ωD−2 = 2π
D−1

2 /Γ[D−1
2 ] is the volume of the unit (D − 2)–sphere,

k = Chern-Simons coupling constant.

which allows us to investigate the properties of the same thermodynamic system in the

entropy representation.

The above thermodynamic metrics (2.18) and (2.23) have been used to investigate the

black hole configurations listed in Table 2.1. In all the cases GTD is mathematically con-

sistent and reproduces the thermodynamic behavior of the black holes. In fact, the scalar

curvature of the equilibrium manifold (E , g) is in all cases different from zero, indicating

the presence of non-trivial thermodynamic interaction. Furthermore, in Table 2.2 I present

the heat capacity and the scalar curvature for each of the black holes contained in Table

2.1. It follows that at those points where the heat capacity diverges the scalar curvature of

the equilibrium manifold becomes singular. Consequently, a second order phase transition

is characterized by a curvature singularity. This shows that indeed the curvature of the

equilibrium manifold can be considered as a measure of thermodynamic interaction.
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BH Heat Capacity Scalar curvature

RN −2π2r2
+(r+−r−)

(r+−3r−)

(r2
+−3r−r++6r2

−)(r++3r−)(r+−r−)2

π2r3
+(r2

++3r2
−)2(r+−3r−)2

RNAdS
(D−2)S

[
D−1

l2
+(D−3)

(
ωD−2

4S

) 2
D−2

− 2π2Q2

(D−2)S2

]

D−1
l2

−(D−3)

(
ωD−2

4S

) 2
D−2

+
2(2D−5)π2Q2

(D−2)S2

NRNAdS

 D−1

l2
−(D−3)

(
ωD−2

4S

) 2
D−2

+
2(2D−5)π2Q2

(D−2)S2




2

Kerr 2π2r+(r++r−)2(r+−r−)
r2
+−6r+r−−3r2

−

(3r3
++3r2

+r−+17r+r2
−+9r3

−)(r+−r−)3

2π2r2
+(r++r−)4(r2

+−6r+r−−3r2
−)2

KAdS − (D−2)S[3S2+20π2J2−D(S2+4π2J2)](S2+4π2J2)
3S4+24π2J2S2+240π4J4−D(S4+48π4J4)

NKAdS

[3S4+24π2J2S2+240π4J4−D(S4+48π4J4)]2

BTZ
4πr+(r2

+−r2
−)

r2
++3r2

−
−3

2
l4

(r2
++3r2

−)2

BTZCS
4π(l2−k2)r2

+(r2
+−r2

−)

l[lr+(r2
++3r2

−)−kr−(r2
−+3r2

+)]
NBTZCS

l2[lr+(r2
++3r2

−)−kr−(r2
−+3r2

+)]2

BTZTF
4πr+(r2

+−r2
−)

r2
++3r2

−
,

(r2
+−r2

−)2(5r4
+−6r2

+r2
−+9r4

−)

4π2r4
+(r2

++3r2
−)3

Table 2.2: GTD of black holes with two degrees of freedom. Here I use the following

notations: r+ = radius of the exterior horizon, r− = radius of the interior horizon. The

function N represents in each case the numerator of the scalar curvature which is a well-

behaved function at the points where the denominator vanishes. For more details see [116].

The fact that the above mentioned results are invariant with respect to LT explains

some contradictory results [8,26,91] that follow when the equilibrium manifold is equipped

with metrics strongly associated to a particular thermodynamic potential.

The (3 + 1)-dimensional Kerr-Newman black hole represents a thermodynamic system

with three degrees of freedom. Indeed, from the entropy-area relation one can derive the

fundamental equation [44]

S = π
(
2M2 −Q2 + 2

√
M4 −M2Q2 − J2

)
, (2.24)

which depends on the extensive variables M , J and Q. The second order phase transitions

are determined by the corresponding heat capacity:

C = − 4TM3S3

2M6 − 3M4Q2 − 6M2J2 + Q2J2 + 2(M4 −M2Q2 − J2)3/2
. (2.25)

According to the general expression for the metric g, as given in Eq.(2.17), the equi-

librium manifold is (2 + 1)-dimensional and the corresponding Legendre invariant metric
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reduces to

gKN
ab = (MSM + QSQ + JSJ )




SMM 0 0

0 −SQQ −SQJ

0 −SQJ −SJJ


 . (2.26)

Inserting, here, the expression for the entropy (2.24), we obtain a rather cumbersome

metric which cannot be written in a compact form. Nevertheless, the scalar curvature can

be shown to have the form RKN = NKN/DKN , where

DKN =
[
2M6 − 3M4Q2 − 6M2J2 + Q2J2 + 2(M4 −M2Q2 − J2)3/2

]2
, (2.27)

and NKN is a function which is always positive in the black-hole region M4 ≥ M2Q2 +J2.

Since the denominators of the heat capacity and the scalar curvature coincide, I conclude

that there exist curvature singularities at those points where second order phase transitions

occur. This result reinforces the interpretation of the curvature of the manifold E as a

measure of thermodynamic interaction.

An additional test for the thermodynamic metrics (2.18) and (2.23) consists in calcu-

lating the curvature of systems with no thermodynamic interaction or no phase transitions.

Table 2.3 contains the fundamental equations for some ordinary thermodynamic systems

which I investigated from the point of view of GTD.

Table 2.4 contains the results of our analysis. In the case of the ideal gas and its

paramagnetic generalization, which have no thermodynamic interaction, the curvature

vanishes and the equilibrium manifold becomes flat. In fact, one can show the general

result that any generalization of the ideal gas whose fundamental equation can be separate

in its variables as

S = S1(U) + S2(V ) + S3(E3) + ... (2.28)

always generates a flat thermodynamic metric [140].

The 1-dimensional Ising model [83] generates a metric whose curvature is non-zero,

indicating the presence of thermodynamic interaction and regular everywhere, indicating

the lack of second order phase transitions. Consequently, GTD reproduces at the level of

the curvature the properties associated with the thermodynamic interaction between the

particles of the above mentioned systems.

2.4 Systems with First Order Phase Transitions

In order to study the system with first order phase transitions, consider the choice (2.6)

thus, the non–degenerate and Legendre invariant metric is given by

G = (dΦ− δabI
adEb)2 + (δabE

aIb)(δcddEcdId). (2.29)

This metric is also invariant with respect to total LT (1.77) and can be used to describe

the geometric properties of T . If one assume that the equilibrium manifold E ⊂ T has as
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System Fundamental equation

IG S = N
(
ln V

N + 3
2 ln U

N

)

PaIG S = N
[
ln V

N + 3
2 ln U

N − 3
2 ln

(
1− 2M2

N2

)
− 3

µ2
M2

N2

]

1IM F = −J − T ln
(

cosh H
T +

√
sinh2 H

T + e−4 J
T

)

Table 2.3: Ordinary thermodynamic systems. I use the following notations: IG =

ideal gas, PaIG = paramagnetic ideal gas, 1IM = 1–dimensional Ising model, U = energy

, V = volume, N = total number of molecules, M = magnetization, H = magnetic field,

T = Temperature, J = spin interaction parameter.

coordinates the extensive variables {Ea}, the smooth embedding map E → T , satisfying

ϕ∗(dΦ − δabI
adEb) = 0, can be used to generate in a canonical way the thermodynamic

metric

g = ϕ∗(G) = (EcΦc)
(

∂2Φ
∂Ea∂Eb

dEadEb

)
, (2.30)

for the equilibrium manifold E . In the case of a thermodynamic systems with only two

degrees of freedom (n = 2), let us introduce the extensive variables Φ = U = internal

energy, E1 = S = entropy and E2 = V = volume, together with the intensive variables

T = temperature and P = pressure. The first law of thermodynamics (1.84) reads dU =

TdS − PdV and the explicit form of the thermodynamic metric is

g = (ST − PV )
(
USSdS2 + 2USV dSdV + UV V dV 2

)
, (2.31)

or, equivalently, in the entropy representation

g =
1
T

(U + V P )
(
SUU dU2 + 2SUV dUdV + SV V dV 2

)
. (2.32)

Probably, the best–known thermodynamic system with a very rich structure of first

order phase transitions is the van der Waals fluid [34]. For the sake of generality, I will use

here the van der Waals fundamental equation together with the theorem of corresponding

states in order to recast the fundamental equation in an invariant form applicable to all

fluids

S = ln
(
3V − 1

)
+

3
2

ln
(

U +
3
V

)
, (2.33)

where U = U/Uc and V = V/Vc, with Uc = 4a/9b, Vc = 3b and a and b are the van der

Waals constants. The heat capacity following from this fundamental equation turns out

to be constant and, consequently, no second order phase transitions can occur. However,
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System Heat Capacity Curvature scalar

IG 3
2N R = 0

PaIG 3
2N

(
1− 2M2

N2

)
R = 0

1IM − 1
T 2

{
M(T,H)

I3[I+cosh H
T ] −

N(T,H)2

I2[I+cosh H
T ]2

}
R 6= 0

Table 2.4: GTD of some ordinary systems. Here I = I(T, H, J) is function with

non-zero values. The Ricci scalar for the Ising model cannot be put in a compact form,

but a numerical analysis shows that it is everywhere regular.

the critical points determined by the roots of the equation

PV
3 − 3V + 2 = 0 , (2.34)

correspond to first order phase transitions [34], where P = P/Pc, with Pc = a/27b2, is the

reduced pressure.

From the fundamental Eq.(2.33) it is then straightforward to compute the thermody-

namic metric in the entropy representation:

gvdW = −
9

(
5UV

2 − UV − 3V + 3
)

4(3V − 1)(UV + 3)3V 2

{
V

4
dU

2 − 6V
2
dUdV +

+ 9

[
2(UV + 3)(UV

4 − 6V
2 + 6V − 1)

3(3V − 1)2
− 1

]
dV

2

}
. (2.35)

The 2–dimensional equilibrium manifold turns out to be curved in general, indicating that

the particles of the fluid interact thermodynamically. Furthermore, the scalar curvature

of the above metric can be written in the form

R =
N vdW

(
PV

3 − 3V + 2
)2 , (2.36)

where N vdW is a function of U and V that is well–behaved at the points where the de-

nominator vanishes. The scalar curvature diverges at the critical points determined by

Eq.(2.34). Consequently, a first order phase transition can be interpreted geometrically as

a curvature singularity. This is in accordance with our intuitive interpretation of thermo-

dynamic curvature.

It is worth noticing that the metric (2.30) can also be used to describe the properties

of ordinary systems. Indeed, a straightforward computation of the corresponding thermo-
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dynamic metrics, using the fundamental equations of the ordinary systems listed in Table

2.3, leads to results equivalent to those reviewed in Table 2.4.

2.5 Conclusion

GTD is a differential geometric formalism whose objective is to describe in an invariant

manner the properties of thermodynamic systems in terms of geometric concepts. In this

chapter, I presented different thermodynamic metrics to describe the properties of thermo-

dynamic systems. I used two different thermodynamic metrics which can be canonically

derived from the non-degenerate Legendre invariant metric

G = (dΦ− δabI
adEb)2 + (δabE

aIb)(χcddEcdId), (2.37)

of the phase manifold T , where χab is an arbitrary constant diagonal tensor. If χab = ηab,

the resulting thermodynamic metric can be used to describe the properties of systems

characterized by second order phase transitions. This was shown in particular for sev-

eral black hole configurations in diverse theories and dimensions. In the Euclidean case,

χab = δab, the corresponding thermodynamic metric was shown to correctly reproduce the

structure of phase transitions of first order in the specific case of a fundamental equation

which describes realistic gases and fluids.

The formalism of GTD indicates that phase transitions occur at those points where

the thermodynamic curvature is singular. The singularities represent critical points where

the geometric description of GTD does not hold anymore and must give place to a more

general approach. In ordinary thermodynamics the situation is similar; near the points

of phase transitions equilibrium thermodynamics is not valid and non-equilibrium models

must be implemented. The results show that the metric structure of the phase manifold T
determines the type of systems that can be described by a specific thermodynamic metric:

An Euclidean structure describes systems with first order phase transitions, whereas a

pseudo-Euclidean structure describes systems with second order phase transitions. At the

moment an explanation for this result is unknown.



Chapter 3

Thermodynamic Geometry of

Charged Rotating BTZ Black

Holes

The spacetime of a black hole in 2+1 dimensions with negative cosmological constant Λ

provides an example of a lower-dimensional toy model which shares many of the important

conceptual issues of GR in 3+1 dimensions, but avoids some of the difficulties found in

mathematical computations. This spacetime is known as the BTZ black hole [12] and it

warrants attention in its own right (for a review, see [36]). A key feature of this model lies

in the simplicity of its construction. It is a spacetime with constant negative curvature

and is obtained as a discrete quotient of (2 + 1)-dimensional AdS space [13]. The BTZ

spacetime is free of phase transitions. Even so, all characteristic features of black holes

such as the event horizon and Hawking radiation are present so that this model is a genuine

black hole. Furthermore, despite its simplicity, the BTZ black holes plays an outstanding

role in many of the recent developments in string theory, specially in the context of the

AdS/CFT conjecture [142].

One of the most interesting aspects of black holes is related to their thermodynamic

properties. In the case of the BTZ black holes, the extensive thermodynamic variables are

the mass M , angular momentum J and entropy S which is proportional to the horizon

area. The intensive variables are the angular velocity Ω and the Hawking temperature T

at the horizon.

In this chapter I present the thermodynamics and the thermodynamic geometries of

charged rotating BTZ (CR-BTZ) black holes in (2+1)-dimensional gravity. The thermody-

namics of these systems is investigated within the context of the Ruppeiner and Weinhold

thermodynamic geometries and the formalism of GTD. Considering the behavior of the

heat capacity and the Hawking temperature, these geometries cannot describe completely

49
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the thermodynamics of these black holes and of their limiting case of vanishing electric

charge. In contrast, the Legendre invariance imposed on the metric in GTD allows one

to describe the CR-BTZ black holes and their limiting cases in a consistent and invariant

manner [2].

3.1 General Relativity in 2+1 Dimensions

Let us briefly describe how GR is modified in 2+1 dimensions [36]. The Einstein-Hilbert

actions becomes

S =
1
2π

∫
d3x

√−g(R− 2Λ) + Sm, (3.1)

where Sm is the matter part of the action. As in 3+1 dimensions, the resulting Euler-

Lagrange equations are the standard Einstein field equations (1.1). These field equations

are written in covariant form and are invariant under the action of the group of diffeo-

morphisms of the spacetime. The choice of the energy-momentum tensor Tµν completely

determines the Ricci tensor Rµν , but in general it does not determine the Riemann

tensor Rµνγδ. This is the fundamental difference between (3 + 1)-dimensional and (2 + 1)-

dimensional gravities. The Weyl tensor (or conformal tensor) is defined to be the tensor

Cµνγδ. In n-dimensions, with n ≥ 3, the Weyl tensor can be written as follows

Cµνγδ = Rµνγδ +
2

n− 2
(gµ[γRδ]ν − gν[γRδ]µ) +

2
(n− 1)(n− 2)

Rgµ[γgδ]ν . (3.2)

In 2+1 dimensions:

Cµνγδ = Rµνγδ + gµγRνδ + gνγRµδ − gνγRµδ − gµδRνγ +
1
2
(gµγgνδ − gµδgνδ)R. (3.3)

The Weyl tensor in GR provides curvature to the spacetime when the Ricci tensor is

zero. In GR the source of the Ricci tensor is the energy-momentum of the local matter

distribution. If the matter distribution is zero then the Ricci tensor will be zero. How-

ever the spacetime is not necessarily flat in this case since the Weyl tensor contributes

curvature to the Riemann curvature tensor and so the gravitational field is not zero in

spacetime void situations. This term allows gravity to propagate in regions where there is

no matter/energy source.

In 2+1 dimensions the space geometry is determined by the Riemann curvature tensor

Rµνγδ. In 2+1 dimensions the latter has six independent components, exactly as many as

the associated Ricci tensor. This means that the space time geometry can be expressed in

terms of the Ricci tensor

Rµνγδ = gµγRνδ + gνγRµδ − gνγRµδ − gµδRνγ − 1
2
(gµγgνδ − gµδgνδ)R. (3.4)

As a result the Weyl tensor (3.3), the traceless part of Rµνγδ, vanishes identically and

the gravitational field has no dynamical degrees of freedom. One concludes that Rµνγδ is
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completely determined by Tµν and by the cosmological constant Λ. In particular, regions of

spacetime with Tµν = 0 are regions of constant curvature, with Rµνγδ = Λ(gµγgνδ−gµδgνδ)

and R = 6Λ. Thus every solution of the vacuum Einstein field equations (1.1) with Λ = 0 is

flat and every solution with a non-vanishing cosmological constant has constant curvature.

Physically a (2 + 1)-dimensional spacetime has no local degrees of freedom: curvature is

concentrated at the location of matter and there are no gravitational waves. GR in a (2+1)-

dimensional spacetime has no Newtonian limit in the sense that there is no gravitational

force between static point sources. (For more discussion on (2 + 1)-dimensional gravity

see [36].)

In order to quantize (2 + 1)-dimensional GR, one needs to first understand the clas-

sical solutions of the Einstein field equations (1.1). Indeed, many of the best-understood

approaches to quantization start with particular representations of the space of solutions.

There are two fundamental approaches to classical GR in 2+1 dimensions. The first of

these, based on the Arnowitt-Deser-Misner (ADM) decomposition of the metric, is familiar

from (3+1)-dimensional gravity [10]. The main new feature in this case is that for certain

topologies, one can find the general solution of the constraints. The second approach is

also similar to a (3+1)-dimensional formalism. It starts with the first-order field equations

which becomes substantially simpler in 2+1 dimensions. In both cases, the goal is to set

up the field equations in a manner that permits a complete characterization of the classical

solutions.

The unified treatment of space and time is a cornerstone of GR. Sometimes it is useful

to introduce an explicit–although largely arbitrary – division of spacetime into spatial and

temporal directions. Such a division is described by the ADM formalism [10]. The ADM

decomposition of spacetime into space and time furnishes a natural setting for the initial

value problem and it underlies Wheeler’s “geometrodynamical” picture of classical GR as

the dynamics of evolving spatial geometries. It provides a canonical description of the

gravitational phase space and it leads to a Hamiltonian version of classical GR.

3.2 The BTZ (2 + 1)-Dimensional Black Holes

Consider a spacetime manifold with the topology [0, 1] × Σ which represents a segment

of a Universe between an initial surface {0} × Σ and final surface {1} × Σ, where both

the initial and final surfaces are assumed to be spacelike and Σ is an open or closed two-

surface [35]. The ADM approach to (2 + 1)-dimensional GR starts with a slicing of the

spacetime manifold M into constant time surfaces Σt endowed with a coordinate system

{xi} and an induced metric gij(t, xi). In order to obtain the (2+1)-dimensional geometry,

one must describe the way nearby time slices Σt and Σt+dt fit together. To do so, start at

a point on Σt with coordinates xi and displace it infinitesimally in the direction normal to
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Σt [36]. The resulting change in proper time can be written as

dτ = Ndt, (3.5)

where N(t, xi) is the lapse function. Such a displacement will shift the time coordinate

and alter the spatial coordinates as well. To allow for such a possibility, we write

xi(t + dt) = xi(t)−N idt, (3.6)

where N i(t, xi) is the shift vector. By the Lorentzian version of the Pythagoras theorem,

the interval between points (t, xi) and (t + dt, xi + dxi) is then

ds2 = −N2dt2 + gij(dxi + N idt)(dxj + N idt). (3.7)

The Eq.(3.7) is the ADM form of the metric. It is customary in the ADM formalism to

establish a new set of conventions that emphasize the role of the surface Σ. Henceforth

in this section, spatial indices i, j, ... will be lowered and raised with the spatial metric gij

and its inverse gij and not with the full spacetime metric. Note that the components of

gij are not simply the spatial components of the full three-metric gµν ; the inverse of the

metric tensor (3.7)

gµν =


 − 1

N2
N i

N2

Nj

N2

(
gij − N iNj

N2

)

 . (3.8)

This convention can cause confusion at first, but it simplifies later notation.

The geometry of the slice Σt, (t ∈ [0, 1]) comprises of two elements: the intrinsic

geometry of the slice as a two-manifold and the extrinsic geometry, which describes the

embedding of Σt in the spacetime M [35]. Just as the intrinsic geometry is determined by

the behavior of vectors tangent to Σt under parallel transport, the extrinsic geometry is

determined by the behavior of vectors normal to Σt. In particular, the extrinsic curvature

Kij of a surface Σ is defined by

Kµν = −∇µnν + nµnρ∇ρnν , (3.9)

where ∇ is the full three-dimensional covariant derivative and nµ is the unit normal to

Σ. In the ADM decomposition (3.7), the normal to Σt has components nµ = (N, 0, 0).

Therefore the expression for the intrinsic curvature becomes

Kij =
1

2N
(∂tgij −(2) ∂iNj −(2) ∂jNi). (3.10)

A general stationary, axially symmetric (2 + 1)-dimensional metric can be written in

the form

ds2 = −N(r)2dt2 + f(r)2dr2 + r2(dφ−Nφ(r)dt)2. (3.11)

The spatial metric gij takes the form
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gij =

(
f2 0

0 r2

)
. (3.12)

The only non-zero components of the Ricci tensor are

(2)Rrr =
f ′

fr
, (3.13)

(2)Rφφ =
rf ′

f3
, (3.14)

and hence √
(2)g(2)R = 2

f ′

f2
. (3.15)

Since the metric (3.11) is static, the extrinsic curvature becomes

Kij = − 1
2N

((2)∇jNi +(2) ∇iNj), (3.16)

and the only non-vanishing component is

Krφ = − r2

2N
(Nφ)′. (3.17)

The corresponding canonical momentum is

πr
φ = − r3

2Nf
(Nφ)′. (3.18)

The momentum constraint can be evaluated as

(2)∇jπ
ij = 0 = gil∂Kπk

l −
1
2
gil(∂lgjk)πjk. (3.19)

Since gjk has only diagonal elements and πjk is entirely off-diagonal, the last term of the

last equation vanishes. Hence

πr
φ = constant = A(say). (3.20)

The Hamiltonian constraint equation becomes

2A2f

r3
− 2

f ′

f
= 0. (3.21)

Whose solution is
1
f2

= B2 +
A2

r2
, (3.22)

where B2 is a constant of integration which is required to be positive to ensure that f2

remains positive for large values of r. To proceed further one of the dynamical equations

of motion coming from varying gij in the action is required. The Hamiltonian constraint

is

H = 2fr(πφr)2 − 2
f ′

f2
, (3.23)
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the momentum constraint is independent of f and all time derivatives vanish, so the action

is

Ieff ∼ −
∫

dt

∫
dr

{
2Nrf(πφr)2 − 2N

f ′

f2

}
+ terms independent of f. (3.24)

The field equation obtained by varying f is thus

N ′

f2
+ Nr(πrφ)2 = 0. (3.25)

Combining the last two Eqs.(3.23) and (3.25) with the constraint H = 0, we obtain

N ′

N
= −f ′

f
, (3.26)

or

N = f−1, (3.27)

up to a constant factor that can be absorbed by a suitable rescaling of the time coordinate

t. In order to determine Nφ we use (3.18):

(Nφ)′ =
2Nf

r3
πr

φ = −2
A

r3
, (3.28)

so

Nφ = C +
A

r2
. (3.29)

These solutions are considered for C = 0, since otherwise the metric has nonphysical

asymptotic behavior.

Substituting Eqs.(3.22), (3.27) and (3.29) in (3.11), we finally obtain

ds2 = −
(
B2 +

A2

r2

)
dt2 +

(
B2 +

A2

r2

)−1
dr2 + r2

(
dφ +

A

r2
dt

)2
, (3.30)

= −
(
Bdt− A

B
dφ

)2
+

(
B2 +

A2

r2

)−1
dr2 +

(
r2 +

A2

B2

)
dφ2. (3.31)

This metric can be put in a slightly more standard form by defining

r̃ =
1

B2
(A2 + B2r)1/2, (3.32)

and hence as a result of above rescaling, we get

ds2 = −
(
dt− A

B
dφ

)2
+ dr̃2 + B2r̃2dφ2. (3.33)

To find a physical interpretation for the constants of A and B, it is useful to examine the

ADM equations of motion in the presence of sources, treating the conical singularity at

r = 0 as a point particle. In the presence of matter, the field equations obtained from the

variation of N and N ′ become

H = −
√

(2)gT 0
0 , (3.34)

Hi = −
√

(2)gT 0
i . (3.35)
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and the mass of an isolated source is then

m =
∫

d2x

√
(2)gT 0

0 = −
∫

d2xH. (3.36)

The only term in the Hamiltonian constraint that has a chance of behaving peculiarly at

r = 0 is the spatial curvature (2)R. Under these conditions the curvature can be written

as ∫

Σ
d2x

√
(2)g

(2)

R =
∫

∂Σ
dφv⊥ = 2πv⊥, (3.37)

where it is evident from (3.18) that

v⊥ = − 2
f

+ const ∼ −2B + const, (3.38)

as r → ∞. One can fix the constant by noting that when B = 1 and A = 0, the metric

gij is that of flat Euclidean two-space for which the integral (3.37) vanish. Hence

v⊥ = 2− 2B =
β

π
, (3.39)

and the total curvature integral is 2β.

Considering the axially symmetric spacetime with negative cosmological constant Λ =

−1/l2, for which the spacetime is asymptotically AdS [35]. The Hamiltonian constraint

(3.21) is now
2A2f

r3
− 2

f ′

f2
− 2r

l2
f = 0, (3.40)

which has its solution
1
f2

= B2 +
A2

r2
+

r2

l2
. (3.41)

The equation of motion for N now becomes

N ′

f2
+ Nr(πφr)2 − Nr

l2
= 0. (3.42)

The solution however is still N = f−1.

Renaming some of the constants, we obtain a metric

ds2 = −N2dt2 + r2(dφ2 + Nφdt)2 + N−2dr2, (3.43)

with

N2 = −M +
r2

l2
+

J2

4r2
, Nφ = − J

2r2
. (3.44)

The two constants of integration M and J appearing are the conserved charges associated

with asymptotic invariance under time displacements (mass) and rotational invariance

(angular momentum), respectively. These charges are given by flux integrals through a

large circle at spacelike infinity [12]. This spacetime is the (2 + 1)-dimensional black hole

of BTZ. It has an event horizon at r = r+ and an inner horizon r = r−, where

r2
± =

l2

2

[
M ±

(
M2 − J2

l2

)]
, (3.45)

are the zeros of the lapse function N .



56

3.3 The Charged Rotating BTZ Black Holes

The rotating BTZ solutions with the incorporation of the charge Q, i.e., the charged

rotating BTZ (CR-BTZ) black hole solutions [13, 86] in 2+1 spacetime dimensions are

derived from the action [1, 86]

I =
1
2π

∫
dx3√−g

(
R + 2Λ− π

2
FµνF

µν
)

. (3.46)

The corresponding line element for the CR-BTZ solution is

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2

(
dφ− J

2r2
dt

)2

, (3.47)

with lapse function:

f(r) = −M +
r2

l2
+

J2

4r2
− π

2
Q2 ln r . (3.48)

Here M and J are the mass and angular momentum respectively and Q is the charge

carried by the black hole. The horizons of the CR-BTZ metric correspond to the roots of

the lapse function f(r). Depending on these roots there are three cases for the CR-BTZ

configuration [4, 24,25]:

1. Usual CR-BTZ black hole when two distinct real roots exist;

2. Extreme CR-BTZ black hole in case of two repeated real roots;

3. Naked CR-BTZ singularity when no real roots exist.

I shall investigate the first case in this thesis. In terms of the exterior horizon radius

r+, the black hole mass and the angular momentum are given respectively by

M =
r2
+

l2
+

J2

4r2
+

− π

2
Q2 ln(r+), (3.49)

and

J = 2r+

√
M − r2

+

l2
− π

2
Q ln(r+). (3.50)

The corresponding angular velocity on the horizon takes the form

Ω = 2r2
+

∂M

∂J

∣∣∣∣
r=r+

=
J

2r2
+

=
1
r+

√
M − r2

+

l2
− π

2
Q ln(r+). (3.51)

The Hawking temperature T at the black hole horizon is

T =
1
4π

df

dr
=

1
4π

(
2r+

l2
− J2

2r3
+

− π

2
Q2

r+

)
, (3.52)

and the electric potential is given by

φ =
∂M

∂Q

∣∣∣∣
r=r+

= −πQ ln r+. (3.53)



57

Furthermore, using the fundamental postulate of black hole thermodynamics, the entropy

of the CR-BTZ black hole is defined as

S = 4πr+. (3.54)

In terms of this entropy, the corresponding thermodynamic fundamental equation and the

temperature for the CR-BTZ black hole are given respectively by

M =
(

S

4πl

)2

+
(

2πJ

S

)2

− πQ2

2
ln

S

4π
, (3.55)

and

T =
(

∂M

∂S

)

J,Q

=
S

8π2l2
− 8π2J2

S3
− πQ2

2S
. (3.56)

The thermodynamic quantities T, S, J,Q and M obey the first law of thermodynamics [3]

dM = TdS + ΩdJ + φdQ. (3.57)

An important quantity for the analysis of the thermodynamic properties is the heat

capacity of the CR-BTZ black hole [4], CJ,Q = (∂M/∂T )J,Q , which is given by

CJ,Q = S
S4 − 4π3l2Q2S2 − 64π4l2J2

S4 + 4π3l2Q2S2 + 192π4l2J2
, (3.58)

or using the horizon radius r+ as coordinate, by

CJ,Q = 4πr+
4r4

+ − πl2Q2r2
+ − l2J2

4r4
+ + πl2Q2r2

+ + 3l2J2
. (3.59)

Furthermore, the capacitances

C̃S,Q =
(

∂J

∂Ω

)

S,Q

, (3.60)

and

C̃S,J =
(

∂Q

∂φ

)

S,J

, (3.61)

can also contain important information about the thermodynamic behavior of black holes.

From the fundamental Eq.(3.55), we obtain

C̃S,Q =
S2

4π
, C̃S,J = − 1

4π ln(S/4π)
= − 1

4π ln(r+)
. (3.62)

From expressions (3.52) and (3.54), I conclude that the condition

S4 − 4π3l2Q2S2 − 64π4l2J2 > 0 (3.63)

must be satisfied in order for the temperature to be positive definite, a requirement which

follows from the standard laws of black hole thermodynamics. From the above condition

and the expression (3.58), it follows that the heat capacity is always positive definite.
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Figure 3.1: Behavior of the heat capacity and temperature as functions of the event horizon

radius r+ of a CR-BTZ black hole with Q = 2, J = 1 and l = 1. Temperature and heat

capacity vanish at r+ ≈ 1.79. The unstable region (CJ,Q < 0) corresponds to an unphysical

region with negative temperature. To illustrate the contribution of the charge I include

the plots (dotted curves) for the case of the non-static BTZ black hole with Q = 0 [26,113].

This is an important observation which implies that a CR-BTZ black hole with a positive

definite temperature must be a thermodynamically stable configuration. In fact, a change

of sign of the heat capacity is usually associated with a drastic change of the stability

properties of a thermodynamic system; a negative heat capacity represents a region of

instability whereas the stable domain is characterized by a positive heat capacity.

It is worth mentioning that the heat capacity is a regular function for all real positive

values of the exterior horizon radius. In fact, the denominator of the expression (3.59) is

always positive and, consequently, CJ,Q is a regular function, except in the pathological

case where S = J = Q = 0. On the other hand, in black hole thermodynamics, divergences

of the heat capacity are associated with second-order phase transitions. This implies that

a CR-BTZ black hole cannot undertake a phase transition associated with a divergence of

the heat capacity. The above observations demonstrate that the CR-BTZ black hole is a

completely stable thermodynamic system with no phase transition structure.

However, the capacitance C̃S,J becomes singular for a black hole with horizon radius

r+ = 1, at which the electric potential φ vanishes. This indicates the presence of a second-

order phase transition. In fact, since the heat capacity can be written as

CJ,Q =
(

T

∂2M/∂S2

)

J,Q

, (3.64)

a second-order phase transition takes place if the condition

∂2M

∂S2
= 0, (3.65)

is satisfied. Therefore, for the capacitance

C̃S,J =
(

T

∂2M/∂Q2

)

S,J

, (3.66)
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by analogy the singularity situated at

∂2M

∂2Q
= 0, (3.67)

can be considered as a second-order phase transition.

The above observations demonstrate that the CR-BTZ black hole is a completely stable

thermodynamic system with no phase transition structure following from the heat capacity

CJ,Q. The only second-order phase transition can occur for the horizon radius r+ = 1 at

which the capacitance C̃S,J diverges. In this chapter, I will use this fact in order to

test different geometric descriptions of the thermodynamics of the CR-BTZ black hole.

For selected values of J , Q and l, Fig.(3.1) shows the behavior of the heat capacity and

temperature for a charged black hole (solid line) and for a neutral black hole (dotted line).

The comparison of both curves shows that the charge essentially increases the value of the

horizon radius at which the heat capacity and temperature vanish. As the value of the

horizon radius increases the contribution of the charge decreases. Finally, for very large

values of the horizon radius the heat capacities and the temperatures coincide, indicating

that the contribution of the charge is negligible.

One would expect that the limiting case T → 0 or, equivalently, C → 0 corresponds to

an extreme black hole with only one horizon of radius, say, r∗. To analyze this question

it is necessary to find the domain of parameters for which the equation f(r) = 0 allows

only one positive real root and to calculate the value of T for this domain. However, the

equation f(r) = 0 cannot be solved analytically because of the presence of the logarithmic

term ln r. An alternative procedure consists in solving the equation T = 0 for r2 to obtain

r2 := r2
∗ =

πl2Q2

8
(1 + η) , η =

√
1 +

16J2

π2l2Q4
, (3.68)

and introducing this solution into the equation f(r) = 0 to obtain the value of the mass

at this radius, i. e.,

M =
πQ2

4

[
η − ln(1 + η)− ln

πl2Q2

8

]
, (3.69)

where J2 is replaced by using the definition of the auxiliary parameter η. Now the question

is whether the last expression represents a physical mass, i.e. whether it is positive. A

numerical analysis shows that for any value η > 1, a condition that follows from the

definition of η, there always exists a combination of values for Q and l such that M is

positive. Fig.(3.2) shows an example of the behavior of the mass for a fixed value of the

parameter l. Therefore, the limit T → 0 indeed corresponds to an extreme black hole.

Notice that the above numerical analysis is necessary only if the solution must cor-

respond to a black hole with positive mass. If this condition is not imposed, a simpler

analysis is possible. The only solution of the equation f ′(r) = 0 is r = r∗ and f(r) is a

smooth function for r ∈ (0,∞) with limr→0,+∞ f(r) = +∞, the equation f(r) = 0 has
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Figure 3.2: The mass M of an extreme CR-BTZ black hole with horizon radius r∗ =

πl2Q2(1 + η)/8 as a function of the charge Q and the angular parameter η > 1. Here, I

select l = 1 as a representative value. The plane M = 0 is plotted to visualize the region

where M > 0.

only one solution for an extreme black hole r = rebh if and only if f ′(rebh) = 0. On the

other hand, since

T = 0 ⇐⇒ f ′(r+) = 0 (3.70)

this immediately proves that any black hole with zero temperature is extremal.

3.4 Weinhold and Ruppeiner Geometries

Now I construct the thermodynamic geometry of the CR-BTZ black hole by using the

Weinhold metric (1.67). In this case the extensive variables are N r = {J,Q} so that the

general Weinhold metric becomes

ds2
W =

(
∂2M

∂S2

)
dS2 +

(
∂2M

∂J2

)
dJ2 +

(
∂2M

∂Q2

)
dQ2 + 2

(
∂2M

∂S∂J

)
dSdJ

+ 2
(

∂2M

∂J∂Q

)
dJdQ + 2

(
∂2M

∂Q∂S

)
dQdS,

(3.71)

and in the special case of the CR-BTZ black hole

ds2
W =

(
1

8π2l2
+

24π2J2

S4
+

πQ2

2S2

)
dS2 +

8π2

S2
dJ2 − π ln

(
S

4π

)
dQ2

− 32π2J

S3
dSdJ − 2

πQ

S
dSdQ .

(3.72)
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Figure 3.3: Thermodynamic curvature for the Weinhold (RW ) geometry as a function of

the event horizon radius, r+, of the CR-BTZ black hole. Here, the free parameters are

chosen as Q = 2, J = 1 and l = 1. The curvature is completely regular in the entire

domain of r+.

The corresponding scalar curvature is given by

RW =
l2r2

+

[
− 4r4

+(1 + 2 ln r+ + 4 ln r+
2) + πl2Q2(9 + 2 ln r+)r+

2 + J2l2(1 + 2 ln r+)
]

[
− 4 r+

4 ln r+ − π Q2l2(ln r+ + 2)r+
2 + J2l2 ln r+

]2 .

(3.73)

The general behavior of the scalar curvature for the Weinhold geometry is illustrated in

Fig.(3.3). The thermodynamic curvature is regular for all positive values of the horizon

radius. At the value r+ ≈ 1.79 (with l = 1, J = 1, Q = 2), at which the temperature

vanishes, the scalar curvature is RW ≈ 0.0527. Moreover, it is positive and regular in

the interval 0.185 < r+ < 1.79, a region where the temperature is negative and in the

interval 1.79 ≤ r+ < 2.4, a region where the temperature is positive. This means that the

Weinhold thermodynamic curvature cannot differentiate between a CR-BTZ black hole

with positive temperature and a similar configuration with negative temperature.

I now investigate the limiting case of a vanishing charge. The additional extensive

variable in this case is N r = {J} so that the Weinhold metric reduces to

ds2
W =

(
1

8π2l2
+

24π2J2

S4

)
dS2 − 32π2J

S3
dSdJ +

8π2

S2
dJ2 , (3.74)

and the corresponding scalar curvature becomes

RW = 16
π2l2S6

(S4 − 64π4J2l2)2
. (3.75)

A true curvature singularity exists at the value S4 = 64π4J2l2 that, according to Eq.(3.63)

with Q = 0, corresponds to the the limit of vanishing temperature or, equivalently, to the

extreme black hole limit. This result shows that the Weinhold thermodynamic curvature

in this case correctly describes the transition from a region with positive and well-defined
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temperature to a region with an unphysical negative temperature. This is in contrast to

what I obtained in the case of a charged black hole in which the Weinhold thermody-

namic curvature is not able to recognize the transition to an extreme black hole with zero

temperature.

Now I consider the Ruppeiner geometry. A direct computation of the Ruppeiner metric

(1.69) cannot be performed because it is not possible to rewrite explicitly the fundamental

Eq.(3.55) in the the form S = S(M,J,Q). Nevertheless, indirect methods of computation

are available. Indeed, if one assume the invariance of the line element under a change

of thermodynamic potential, the relationship (1.70) can be used to derive the Ruppeiner

metric from the Weinhold metric. Then,

ds2
R =

dS2

S
+

π

T

[
8π

S2

(
2J

S
dS − dJ

)2

+
(

Q

S
dS − dQ

)2

−
(

1 + ln
S

4π

)
dQ2

]
. (3.76)

A second indirect and equivalent method to compute the components of the Ruppeiner

metric consists in applying the chain rule for partial derivatives. For instance, from the

definition of the temperature given in Eq.(3.56) one obtains that

gR
MM = −

(
∂2S

∂M2

)

J,Q

= −
(

∂(1/T )
∂M

)

J,Q

=
1
T 3

(
∂T

∂S

)

J,Q

. (3.77)

This means that

gR
MM =

1
T 3

gW
SS , (3.78)

or, using the appropriate coordinates in the corresponding line elements,

gR
MM =

1
T

gW
MM , (3.79)

as stated in Eq.(1.70). The remaining metric components can be calculated in a similar

manner. For instance,

gR
JJ = −

(
∂2S

∂J2

)

M,Q

= − ∂

∂J

(
1

∂J/∂S

)

M,Q

= −
(

∂J

∂S

)−3 (
∂(∂J/∂S)

∂S

)

M,Q

, (3.80)

and

gR
QQ = −

(
∂2S

∂Q2

)

M,J

= −
(

∂Q

∂S

)−3 (
∂(∂Q/∂S)

∂S

)

M,J

, (3.81)

etc. None of these computations requires the explicit use of the equation S = S(M,J,Q).

The thermodynamic curvature scalar RR of the metric (3.76) turns out to be nonzero,

i.e., the space of its thermodynamic equilibrium states is non-flat. The explicit form of

RR cannot be written in a compact form. Therefore, I perform a numerical analysis of its

behavior and the result is illustrated in Fig.(3.4).

The singularity located at r+ ≈ 1.79 represents the limit for which the heat capacity

vanishes and the temperature becomes negative. This shows that the Ruppeiner thermo-

dynamic curvature describes correctly the behavior of the CR-BTZ black hole.
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Figure 3.4: Thermodynamic curvature, RR, of the Ruppeiner geometry as a function of the

event horizon, r+, for a CR-BTZ black hole with J = l = 1, Q = 2. The only singularity

is located at r+ ≈ 1.79.

In the limiting case of a vanishing charge, it is possible to rewrite the fundamental

Eq.(3.49) as S = S(M, J) in the following manner

S = 4πr+ = π

√√√√8Ml2

(
1 +

√
1− J2

M2l2

)
, (3.82)

so that the Ruppeiner metric can be computed by using the definition (1.69). Then

ds2
R = − πl2

(r2
+ − r2−)3

[
r+(r2

+ + 3r2
−)(l2dM2 + dJ2)− 2lr−(3r2

+ + r2
−)dMdJ

]
, (3.83)

where

r2
± =

l2M

2

(
1±

√
1− J2

l2M2

)
. (3.84)

A straightforward calculation shows that the curvature of this metric vanishes identically,

indicating the absence of thermodynamic interaction, i.e., the thermodynamic variables

M and J do not generate thermodynamic interaction. This is a peculiar result because,

as we have seen above, the Ruppeiner geometry correctly describes the thermodynamic

behavior of the CR-BTZ black hole. This implies that only the charge Q acts as a source

of thermodynamic interaction in the Ruppeiner geometry. It seems that there is no spe-

cific reason for the existence of this difference between thermodynamic variables of this

particular black hole configuration.

3.5 Geometrothermodynamics of the CR–BTZ Black Holes

For the geometric description of the thermodynamics of the CR-BTZ black hole in GTD,

I first introduce the 7-dimensional phase space T with coordinates M, S, J,Q, T,Ω and φ,

a contact 1-form

Θ = dM − TdS − ΩdJ − φdQ, (3.85)
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which satisfies the condition Θ ∧ (dΘ)3 6= 0 and a Legendre invariant metric

G = (dM − TdS − ΩdJ − φdQ)2 + TS(−dTdS + dΩdJ + dφdQ). (3.86)

This particular metric is a special case of a metric used in [113] to describe the region of

positive temperature of the BTZ black hole.

Let E be a (2 + 1)-dimensional subspace of T with coordinates Ea = (S,Q, J), a =

1, 2, 3, defined by means of a smooth mapping ϕ : E → T . The subspace E is called the

space of equilibrium states if ϕ∗(Θ) = 0, where ϕ∗ is the pullback of ϕ. Furthermore, a

metric structure g is naturally induced on E by applying the pullback on the metric G of T
, i.e., g = ϕ∗(G). It is clear that the condition ϕ∗(Θ) = 0 leads immediately to the first law

of thermodynamics of black holes as given in Eq.(3.57). It also implies the existence of the

fundamental equation M = M(S, Q, J) and the conditions of thermodynamic equilibrium

Eqs. (3.51)-(3.53). Moreover, the induced metric

g = ϕ∗(G) = S
∂M

∂S

(
−∂2M

∂S2
dS2 +

∂2M

∂J2
dJ2 +

∂2M

∂Q2
dQ2

)
, (3.87)

determines all the geometric properties of the equilibrium space E . In the above expression

I used the Euler identity to simplify the form of the conformal factor. In order to obtain

the explicit form of the metric it is only necessary to specify the thermodynamic potential

M as a function of S, J and Q as given in Eq.(3.55). Another advantage of the use of

GTD is that it allows us to easily implement different thermodynamic representations of

the fundamental equation, given as M = M(S, Q, J), S = S(M,Q, J), Q = Q(S, M, J) or

J = J(S, M,Q) and redefine the coordinates in T and the smooth mapping φ in such a

way that the condition ϕ∗(Θ) = 0 generates on E the corresponding fundamental equation

in the S−, Q−, or the J−representation, respectively. The results obtained with different

representations of the same fundamental equation are completely equivalent.

For the CR-BTZ black hole, using the fundamental equation M = M(S, J,Q) given in

Eq.(3.55), the thermodynamic metric can be written as

g =
S4 − 64π4J2l2 − 4π3l2Q2S2

8π2l2S2

[
−

(
1

8π2l2
+

24π2l2

S4
+

πQ2

2S2

)
dS2 +

8π2

S2
dJ2 − π ln

S

4π
dQ2

]
.

(3.88)

The corresponding thermodynamic curvature turns out to be nonzero and is given by

RGTD =
2l4r4

+

D1D2

[
1

ln2 r+

+
1

D1D2
2

(
N1

ln r+
+ N0

)]
(3.89)

where

D1 = 4r4
+ + πl2Q2r2

+ + 3l2J2 , D2 = 4r4
+ − l2J2 − πl2Q2r2

+ ,

N0 = 4[6J6l6 + 23π J4l6Q2r2
+ + l4J2

(
15π2l2Q4 + 8 J2

)
r4
+

+ 4πl4Q2
(
14 J2 + π2Q4l2

)
r6
+ + 4l2

(
π2Q4l2 − 40 J2

)
r8
+

− 16 π Q2l2r10
+ + 128 r12

+ ] ,
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Figure 3.5: Thermodynamic curvature of the CR-BTZ black hole (RGTD) as a function of

event horizon r+. A typical behavior is depicted for the specific values Q = 2, J = l and

l = 1.

N1 = 2[−15 J6l6 − 6π J4l6Q2r2
+ − 3l4J2

(
π2l2Q4 − 20J2

)
r4
+

+ 128πJ2l4Q2r6
+ − 4l2

(
4J2 − 5π2l2Q4

)
r8
+ + 96π Q2l2r10

+ + 64 r12
+ ] .

One can see from the expression for the scalar curvature that the curvature singularities

are situated at those values of the parameters where D1 = 0, D2 = 0 or ln r+ = 0. For real

values of the parameters the condition D1 = 4r4
++πl2Q2r2

++3l2J2 = 0 cannot be satisfied.

In fact, this term appears in the denominator of the heat capacity (3.59) and determines

the absence of phase transitions of the CR-BTZ black hole. The singularities determined

by the roots of the equation D2 = 4r4
+ − l2J2 − πl2Q2r2

+ = 0 coincide with the points

where T = 0 or, equivalently, where the heat capacity (3.59) vanishes. This implies that

the no physical region of negative temperatures is isolated from the allowed region with

positive temperatures by a true curvature singularity. The third singularity located at

ln r+ = 0 can be interpreted as a critical point that is not determined by the heat capacity

(3.59). In fact, at r+ = 1 the second derivative of the mass ∂2M/∂Q2 = 0, indicating

either the transition into a region of instability or a second order phase transition. The

singular behavior of the GTD scalar curvature is illustrated in Fig.(3.5).

Let us now consider the limiting case of vanishing charge. The geometrothermodynamic

metric reduces to

g =
S4 − 64 π4J2l2

8π2l2S2

[
−

(
1

8π2l2
+

24π2l2

S4

)
dS2 +

8π2

S2
dJ2

]
, (3.90)

and the corresponding scalar curvature can be written as

RGTD =
256 l4π4S8

(S4 + 192π4J2l2)2 (S4 − 64π4J2l2)
. (3.91)

The behavior of this scalar and the temperature is depicted in Fig.(3.6). It follows that in

general a curvature singularity appears when the condition S4 − 64π4J2l2 = 0 is satisfied

which, according to Eq.(3.56) with Q = 0, corresponds to a zero temperature. I conclude
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Figure 3.6: Behavior of the scalar curvature in GTD and temperature as functions of the

event horizon radius r+ = S/4π of a neutral rotating BTZ black hole with J = 1 and

l = 1. The curvature singularity coincides with the point of zero temperature.

that the invariant metric proposed in GTD correctly describes the limiting case of a neutral

BTZ black hole.

3.6 Conclusion

In this chapter, I analyzed the thermodynamics and the thermodynamic geometry of

the charged rotating BTZ black holes. By considering the behavior of the heat capacity

and the Hawking temperature, I found that this black hole configuration is free of phase

transitions and stable. In fact, the instability region is characterized by a non-physical

negative temperature. Moreover, a numerical analysis is performed which shows that in

the limiting case of zero temperature the black hole becomes extreme.

I analyzed the thermodynamic geometry based on the Weinhold metric and found that

the corresponding thermodynamic curvature is free of singularities in the entire equilib-

rium manifold. This result is not in accordance with the analysis of the behavior of the

heat capacity and the Hawking temperature that indicates the presence of an unphysical

region with negative temperature for r+ ≤ 1.79 (the additional parameters are chosen as

l = 1, J = 1 and Q = 2). The Weinhold geometry does not describe correctly the ther-

modynamic geometry in this specific case. However, in the limiting case of a vanishing

electric charge there exists a true curvature singularity that is located at the point where

the temperature vanishes. It is not clear why the presence of an electric charge cannot be

handled correctly in the context of the Weinhold thermodynamic metric.

Although it is not possible to calculate explicitly the Ruppeiner metric, it can be de-

rived from the Weinhold metric by using a conformal transformation with the inverse of

the temperature as the conformal factor. A numerical analysis of the Ruppeiner ther-

modynamic curvature shows that it is smooth and well-behaved in the region r+ > 1.79,



67

with a true curvature singularity situated at r+ ≈ 1.79. This is exactly the value of the

horizon radius at which the Hawking temperature vanishes. This result indicates that the

Ruppeiner geometry correctly describes the thermodynamics of the CR-BTZ black hole.

However, in the limiting case of vanishing electric charge the Ruppeiner metric turns out

to be flat. Since a vanishing thermodynamic curvature is usually interpreted as indicating

the absence of thermodynamic interaction, it is not clear why Ruppeiner geometry cor-

rectly describes the thermodynamics of the CR-BTZ black hole but fails in the limiting

neutral case.

Finally, the properties of a Legendre invariant metric proposed in the context of GTD

are analyzed. In this case, the curvature can be calculated explicitly and it turns out that

it possesses a true curvature singularity at those points where the Hawking temperature

vanishes, and at the horizon radius r+ = 1 where a secondorder phase transition is located.

In the entire region where the CR-BTZ black hole corresponds to a stable thermodynamic

system with no phase transition structure, the thermodynamic curvature of GTD is de-

scribed by a smooth function of all the thermodynamic variables. In the limiting case of

vanishing electric charge, the metric proposed in GTD is also able to correctly describe

the thermodynamic properties of the black hole configuration in the sense that it is finite

and smooth in the region where the black hole is stable, but possesses a true curvature sin-

gularity at the point where the temperature vanishes. Since the Weinhold and Ruppeiner

metrics are not invariant with respect to LT, I conclude that the Legendre invariance

imposed in the context of GTD is an important property to describe geometrically the

thermodynamics of black holes without intrinsic contradictions.



Chapter 4

Geometrothermodynamics of

Five–Dimensional Black Holes in

Einstein-Gauss-Bonnet Theory

High-dimensional GR is perhaps one of the oldest and most elegant ways for unifying all

interactions in physics. Higher-derivative curvature terms naturally occur, such as in the

quantum field theory in curved space [18] and in the effective low-energy action of string

theories. In GR because of the nonlinearity of the Einstein field equations (1.1), it is quite

difficult to find exact analytical solutions with these higher derivative terms. In most

cases, one has to adopt some approximation methods or find solutions numerically.

In five dimensions, the most general theory leading to second order field equations for

the metric is the EGB theory, which contains quadratic powers of the curvature. The most

general action of the EGB theory is obtained by adding the Gauss-Bonnet (GB) invariant

and the matter Lagrangian Lmatter to the Einstein-Hilbert action

I = κ

∫
d5x

√−g (R + αLGB + Lmatter) , (4.1)

where

LGB = (R2 − 4RµνRµν + RαβγδRαβγδ), (4.2)

is the GB Lagrangian, κ is related to the Newton constant and α is the GB coupling

constant having dimensions of (length)2. Here R, Rµν and Rαβγδ are respectively, the

Ricci scalar, the Ricci tensor and the Riemann tensor. The gravity theory with a GB term

was originally proposed by Lanczos [82], independently rediscovered by Lovelock [84],

(See [146] and [147] for more discussions on EGB gravity).

GB extensions of GR have been motivated from a string theoretical point of view as

a version of higher-dimensional gravity, since this sort of modification also appears in low

68
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energy effective actions of string theory. The pioneering work in this regard belongs to

Boulware and Deser [22]. They obtained the most general static black hole solutions in

EGB theory. The GB term yields non trivial dynamics in dimensions greater than or equal

to five. It has some remarkable features. For instance, in higher dimensions, it is the most

general quadratic correction which preserves the property that the equations of motion

involve only second order derivatives of the metric [84]. Despite being quadratic in the

Riemann tensor (and Ricci tensor), terms containing more than two partial derivatives of

the metric cancel out, making the Euler-Lagrange equations second order quasilinear par-

tial differential equations in the metric. Consequently, there are no additional dynamical

degrees of freedom, as in f(R) gravity. However, in 3 + 1 dimensions, the GB term is

topological in nature and it does not enter the dynamics [129]. This is the most general

combination of tensors that satisfies the following conditions [84]:

• it is symmetric;

• it depends only on the metric and its first two derivatives;

• it has vanishing divergence;

• it is linear in the second derivatives of the metric.

If we go to higher dimensions (D ≥ 5), it turns out that these conditions are satisfied by a

linear combination of the metric, the Einstein tensor and the Lovelock tensor [82,84]. The

Lovelock tensor arises from the variation of the GB term in the above action (4.1). The

EGB gravity is the natural generalisation of GR to five or six dimensions. The GB term

is important from both physical and geometrical points of view; it naturally arises as the

next leading order of the α-expansion of the heterotic superstring theory (α−1 is the string

tension) [146] and plays a fundamental role in Chern–Simons gravitational theories [38].

This chapter deals with the thermodynamic properties of five-dimensional static and

spherically symmetric black holes in Einstein-Maxwell-Gauss-Bonnet (EMGB) theory with

and without incorporating the effects of cosmological constant and in Einstein-Yang-Mills-

Gauss-Bonnet (EYMGB) theory. It exhibits the various stable and unstable phases of the

black holes in these modified gravity theories. To formulate the thermodynamics of these

black holes the Bekenstein-Hawking entropy relation and, alternatively, a modified entropy

formula which follows from the first law of thermodynamics of black holes have been used.

4.1 Spherically Symmetric Black Holes in EMGB Gravity

In the case of the EGB gravity minimally coupled to the electromagnetic field, the matter

component of the action (4.1) is given by

Lmatter = FαβFαβ , (4.3)
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where

Fαβ = Aβ,α −Aα,β (4.4)

is the electromagnetic tensor field, Aµ is the vector potential. The gravitational and

electromagnetic field equations obtained by varying the action (4.1) with respect to gµν

and Fµν are

Gµν − αHµν = Tµν , ∇µνF
µ
ν = 0, (4.5)

where Tµν is the electromagnetic stress energy momentum tensor given by

Tµν = 2F λ
µ Fλσ − 1

2
FλνF

λσgµν , (4.6)

and

Hµν = 2
(
RRµν − 2RµλRλ

ν − 2RσδRµνσδ + Rαβσ
µ Rναβσ

)
− 1

2
gµνLGB. (4.7)

(Note that Eq.(4.5) does not contain any derivative of the curvature term, so derivatives

of the metric tensor higher than two do not appear. Thus, the GB gravity is a special case

of higher derivative gravity.)

Spherically symmetric black holes of the EMGB theory have been investigated very

intensively as possible scenarios for the realization of the low energy limit of certain string

theories. A particular solution which contains as a special case a black hole spacetime

obtained by using the following five-dimensinal static spherically symmetric line element

[37] (see also [31,99])

ds2 = −G(r)dt2 +
dr2

G(r)
+ r2dΩ2

3 , (4.8)

where dΩ2
3 is the metric of a three-dimensional hypersurface with constant curvature 6k

which has the explicit form

dΩ2
3 =





dθ2
1 + sin2 θ1(dθ2

2 + sin2 θ2dθ2
3) , (k = 1)

dθ2
1 + sinh2 θ1(dθ2

2 + sin2 θ2dθ2
3) , (k = −1)

α−1dx2 + dφ2
1 + dφ2

2 , (k = 0) .

(4.9)

Here, the coordinate x has the dimension of length while the angular coordinates are

dimensionless as usual and

(θ1, θ2) ∈ [0, π], (θ3, φ1, φ2) ∈ [0, 2π]. (4.10)

If we assume that there exists a charge Q at r = 0, such that it is a point charge for k = 1

and is the charge density of a line charge for k = 0. Then the vector potential Aµ can be

Aµ = φ(r)δ0
µ, (4.11)

where

φ(r) = − Q

2r2
. (4.12)
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The metric function G(r) can be obtained by solving the field Eqs.(4.5) as

G(r) = k +
r2

4α

[
1±

√
1 +

8α(M + 2α|k|)
r4

− 8αQ2

3r6

]
, (4.13)

where the geometric mass M + 2α|k| is different from that of Einstein gravity for k = ±1.

Thus, the mass of a five-dimensional spacetime in GB gravity for k = ±1, differs from that

of GR by a term which is proportional to 6α|k|. Note that the GB term decreases the mass

of the spacetime for α < 0 and increases the mass for α > 0. It is worthwhile to mention

that this occurs only for the five-dimensional spacetime. For higher-dimensional solutions

in EMGB gravity see, for instance [47]. This solution is well defined if the expression

within the square root is positive definite. For the solution (4.13) of the EMGB theory

to describe a black hole it is necessary that the condition G(r) = 0 be satisfied. For the

special case k = +1, the roots of this equation are

r± =
1
2

[√
M +

2Q√
3
±

√
M − 2Q√

3

]
, (4.14)

independent of the value of the coupling constant α. It turns out that in some cases these

radii determine naked singularities [47]. However, the specific case with α < 0 and k = +1

corresponds to a solution which is asymptotically de Sitter and represents a black hole

with an event horizon situated at

r+ =
1
2

[√
M +

2Q√
3

+

√
M − 2Q√

3

]
, (4.15)

provided ( Q
M )2 ≤ 3

4 . It is remarkable to note that there exist no asymptotically de Sitter

solutions for k = 0 and k = −1.

It is interesting to mention that this specific black hole solution is asymptotically de

Sitter although the cosmological constant does not appear explicitly in the action (4.1).

This is a particular characteristic of the EGB theory in five dimensions [47]. Moreover,

the fact that the radius of the event horizon does not depend on the value of the coupling

constant α leads to interesting thermodynamic consequences. In fact, it will be shown

later that the thermodynamics of the black holes by using the Bekenstein-Hawking entropy

relationship differs completely from the one obtained by using a modified entropy relation

in which the coupling constant appears explicitly.

4.1.1 Geometrothermodynamics with the Bekenstein–Hawking Entropy

Relation

In order to study thermodynamic properties of the black hole solution described above

first I will use the classical (Bekenstein-Hawking) definition of black hole entropy and in
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Figure 4.1: Temperature and heat capacity of a charged black hole in EGB theory as a

function of the Bekenstein-Hawking entropy S for Q = 1.

the next subsection 4.1.2 I will define the modified form of entropy for EGB theory by

adding an extra term (6αr). The surface area of the event horizon is given by

A = r3
+

∫ π

θ=0

∫ π

φ=0

∫ 2π

ψ=0
sin2 θ sinφdθdφdψ = 2π2r3

+ . (4.16)

Choosing the constants appropriately, the Bekenstein-Hawking entropy [52] of the black

hole is given by

S = r3
+, (4.17)

representing the fundamental equation that contains all the thermodynamic information.

In the mass representation, M = M(S, Q), for the black hole solution presented above this

fundamental equation can be rewritten as

M = S
2
3 +

1
3

Q2

S
2
3

. (4.18)

Using the energy conservation law of the black hole

dM = TdS + φdQ, (4.19)

one obtains the temperature and electric potential of the black hole on the event horizon

as

T =
2
9

3S
4
3 −Q2

S
5
3

, (4.20)

and

φ =
2
3

Q

S
2
3

. (4.21)

In the positive domain (S4/3 > Q2/3), the temperature increases rapidly as a function of

the entropy S until it reaches its maximum value at S4/3 = 5Q2/3. Then, as the entropy

increases, the temperature becomes a monotonically decreasing function. This behavior is

shown in Fig.(4.1).
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Figure 4.2: Thermodynamic curvature of a charged black hole in EGB theory as a function

of the Bekenstein-Hawking entropy S for Q = 1. The curvature singularities are located

at the points T = 0 and C →∞.

According to Davies [44–46], the phase transition structure of the black hole can be

derived from the heat capacity, C = T∂S/∂T , which in this case is given by

CQ = −3S

(
3S

4
3 −Q2

3S
4
3 − 5Q2

)
. (4.22)

In the physical region with 3S4/3 − Q2 > 0, i. e., the region with positive temperature,

the heat capacity is positive in the interval Q2 < 3S4/3 < 5Q2, indicating that the black

hole is stable in this region. At the maximum value of the temperature which occurs

at 3S4/3 − 5Q2 = 0, the heat capacity diverges and changes spontaneously its sign from

positive to negative. This indicates the presence of a second order phase transition which

is accompanied by a transition into a region of instability, see Fig.(4.1). These are the

main features of the thermodynamic behavior of the charged spherically symmetric black

hole (4.13).

For the geometrothermodynamic approach to black hole thermodynamics all what is

needed is the fundamental equation, M = M(S, Q) as given in Eq.(4.18). Then, from the

general metric (2.12) with Φ = M and Ea = (S,Q), the thermodynamic metric of the

equilibrium manifold is given by

g =
4
27

3S4/3 −Q2

S4/3

(
3S4/3 − 5Q2

9S2
dS2 + dQ2

)
. (4.23)

The corresponding scalar curvature is given by

R = − 243 S8/3

(3S4/3 −Q2)(3S4/3 − 5Q2)2
. (4.24)

A first singularity is situated at the roots of the equation 3S4/3 − Q2 = 0, i.e., at the

points where the temperature vanishes. The second singularity corresponds to the roots

of 3S4/3 − 5Q2 = 0. According to the expression for the heat capacity (4.22), these
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are exactly the points where phase transitions take place and the temperature reaches its

maximum value. It follows that the geometrothermodynamic curvature of the metric (4.23)

reproduces correctly the thermodynamic behavior near the points of zero temperature as

well as near the points of phase transitions as shown in Fig.(4.2).

The thermodynamic geometry of this black hole was also studied in [37] using the

Ruppeiner geometry. It turns out that the Ruppeiner metric is flat in this case and,

consequently, cannot reproduce the behavior at the places where phase transitions occur

or where the temperature becomes negative.

4.1.2 Geometrothermodynamics with a Modified Entropy Relation

Usually the entropy of black holes satisfies the so-called area formula, i.e, the black hole

entropy equals one-quarter of the horizon area. In gravity theories in higher dimensions

and with higher powered curvature terms, however, the entropy of black holes does not

necessarily satisfy the area formula and other possibilities can be considered to define

entropy. For instance, in [28] a simple method was suggested to get the black hole entropy,

by assuming that black holes, considered as genuine thermodynamic systems, must obey

the first law of thermodynamics. That is a black hole solution, parameterized by the mass

M or, alternatively, by the outer horizon radius r+ and the temperature T , satisfies the

first law of thermodynamics

dM = TdS + µidQi, (4.25)

where Qi are the additional charges of the black hole and µi are the corresponding chemical

potentials. If the mass and the temperature can be calculated by using standard methods,

the integration of the first law yields the modified entropy formula

S =
∫ r+

0
T−1

(
∂M

∂r+

)

Qi

dr+ + S0 , (4.26)

where the additive integration constant S0 can be fixed by imposing the condition that the

entropy goes to zero in the case of an extreme black hole or when the area of the horizon

vanishes. Notice that in the integration (4.26) the charges Qi must be considered as

constants. In [42], the modified entropy was computed for an n−dimensional generalization

of the black hole solution (4.13) with the result

S =
ΩKrn−2

+

4G

[
1 +

2α̃k(n− 2)
(n− 4)r2

+

]
, (4.27)

where Ωk denotes the spatial volume element and α̃ = (n− 2)(n− 3)α. In the case n = 5,

the modified entropy reduces to

S = r3
H + 6kα̃r+ , (4.28)

where suitable units were chosen and I set S0 = 0 for simplicity. Notice that the contri-

bution of the correction term vanishes for k = 0 so that the GB term has no effect on the
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Figure 4.3: Modified temperature as function of the specific charge q and the coupling

parameter α̃ for a fixed value of the mass M = 1.

expression for the entropy which reduces in this case to the standard area formula. More-

over, the modified entropy formula does not contain the additional charges Qi explicitly,

but only implicitly through the horizon radius r+. So one can assume the validity of the

modified entropy (4.28) regardless of the nature of the additional charges.

For the black hole solution (4.13) the modified entropy formula (with k = 1) gives

S =
1
8

[√
M +

2Q√
3

+

√
M − 2Q√

3

]3

+ 3α̃

[√
M +

2Q√
3

+

√
M − 2Q√

3

]
. (4.29)

In this case the fundamental equation is of the form S = S(M, Q) and cannot be

rewritten explicitly as M = M(S, Q). This means that for the further analysis I must use

the entropy representation. This is not a problem for the formalism of GTD which can

be applied to any arbitrary representation. In fact, for the entropy representation we only

need to consider the fundamental 1-form as

ΘS = dS − 1
T

dM +
φ

T
dQ, (4.30)

so that the thermodynamic potential is Φ = S. The coordinates of the equilibrium mani-

fold are Ea = (M,Q) and the equilibrium conditions become

1
T

=
∂S

∂M
,

φ

T
= − ∂S

∂Q
. (4.31)

From the above expressions one obtains the temperature and electric potential of the black

hole on the event horizon as

T =
8
3

√
M(1− q2)

(4α̃ + M + M
√

1− q2)(
√

1 + q +
√

1− q)
, (4.32)

φ =
2√
3

√
1 + q −√1− q√
1 + q +

√
1− q

, (4.33)
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Figure 4.4: Modified heat capacity and entropy as functions of the specific charge q and

the coupling parameter α̃ for a fixed value of the mass M = 1.

where q = 2Q√
3M

represents a rescaled specific charge that satisfies the condition q2 ≤ 1.

Furthermore, to find out the phase transitions structure we must find the points where

the heat capacity (CQ = T∂S/∂T |Q = −(∂S/∂M)2/(∂2S/∂M2)|Q)

CQ = −3
4

√
M

√
1− q2(

√
1 + q +

√
1− q)(4α̃ + M + M

√
1− q2)2

M(1− 3q2) + (4α̃ + M)
√

1− q2 − 8α̃
, (4.34)

diverges. Since the coupling constant α̃ is negative, the temperature function turns out to

be positive definite only for certain ranges of α̃ and q. In Fig.(4.3), I choose a particular

range of values of α̃ ∈ [−1/4, 0] in which the modified temperature is positive. The

behavior of the modified heat capacity and entropy in the same range of values is depicted

in Fig.(4.4). Notice that the entropy is not positive definite in this interval; however, it is

possible to choose the arbitrary constant S0 in Eq.(4.26) so that the modified entropy is

always positive and the expressions for the modified temperature and heat capacity remain

unchanged.

An interesting result of using the modified entropy is that the phase transition structure

now depends on the value of the coupling constant α̃. For instance, if I choose it as

α̃ = −1/4, the heat capacity is as illustrated in Fig.(4.5) (left plot). In this case, the heat

capacity is represented by a negative smooth function with no singularities in the interval

−1 ≤ q ≤ 1, indicating that the black hole is a completely unstable thermodynamic

system with no phase transition structure. This behavior changes drastically, if I choose

a different value of the coupling constant. In fact, Fig.(4.5) (right plot) illustrates the

singular behavior of the heat capacity in the case α̃ = −1/10. The black hole undergoes

a second order phase transition at q ≈ ±0.82. In the interval −0.82 ≤ q ≤ 0.82, the

configuration is unstable because the heat capacity is negative. Outside this interval,

however, the black hole is stable. I conclude that the coupling constant α̃ can induce a

second order phase transition in an unstable black hole in such a way that the resulting

configuration is a stable black hole for certain values of the specific charge q.
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Figure 4.5: The heat capacity as a function of the specific charge q for α̃ = −1/4 (left

plot) and α̃ = −1/10 (right plot). In both cases the mass is M = 1.

Now I investigate this black hole configuration in the context of GTD. As mentioned

above, the coordinates of the equilibrium manifold are Ea = (M, Q) and the thermody-

namic potential Φ = S is given by the fundamental Eq.(4.29). Then, the thermodynamic

metric for the equilibrium manifold E is given by

g = − 3r+(r2
+ + 2α̃)

8
√

1− q2 M2

{
3r+[2r2

+ − 3q2M + 4α̃(
√

1− q2 − 2)]
2(1− q2)3/2

dM2

+
√

M

[
4α̃ + (2 + q)M

(1 + q)3/2
+

4α̃ + (2− q)M
(1− q)3/2

]
dQ2

}
.

(4.35)

The behavior of the corresponding scalar curvature is shown in Fig.(4.6) for two different

values of the coupling constant. The plot on the left shows the case α̃ = −1/4 and

corresponds to the case of an unstable configuration as shown in Fig.(4.5) (left plot). It is

clear that the curvature is represented by a smooth function that is free of singularities in

the entire domain of the specific charge, except at q = ±1 where the temperature vanishes

(see Fig.(4.3)). The plot on the right illustrates the behavior for α̃ = −1/10 and shows two

curvature singularities at q ≈ ±0.82 which are the points where the phase transition occurs

(see right plot in Fig.(4.5)). In this case, it is also possible to show that an additional

curvature singularity (not plotted) exists in the limiting case q → ±1, indicating the blow

up of the approach as T → 0.

4.2 Spherically Symmetric Black Holes in EMGB Gravity

with Cosmological Constant

In the case of the EMGB theory with cosmological constant, the matter component of the

action (4.1) is given by

Lmatter = FαβFαβ − 2Λ , Fαβ = Aβ,α −Aα,β , (4.36)
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Figure 4.6: Thermodynamic curvature as a function of the rescaled specific charge q. For

α̃ = −1/4 (left plot) the curvature is completely regular, except at q = ±1. Curvature

singularities appear for q ≈ 0.82 and α̃ = −1/10 (right plot).

where Fαβ represents the electromagnetic Faraday tensor. By variational principle (i.e.,

δS = 0) we obtain the Einstein-Maxwell equations with GB term

Gµν + λgµν = T (EM)
µν + T (GB)

µν , (4.37)

where T
(EM)
µν is the usual electromagnetic energy-momentum tenor given by

T (EM)
µν = FµαFα

ν −
1
4
gµνFαβFαβ, (4.38)

and

T (GB)
µν = α

(
4RαβRµανβ − 2RµαβγRαβγ

ν + 4RµαRα
ν − 2RRµν +

1
2
gµνRGB

)
, (4.39)

is the effective tensor associated with the quadratic GB-term.

A five-dimensional spherically symmetric solution in EMGB grvity with Λ was obtained

by Wiltshire [143], using the metric ansatz (4.8) with k = +1 and the metric function is

G(r) = 1 +
r2

4α
− r2

4α

√
1 +

8αM

r4
− 8αQ2

3r6
+

4αΛ
3

. (4.40)

If α is very small then the metric coefficient G(r) can be approximately written as

G(r) w 1− 2m

πr2
+

Q2

3r4

r2

l2
+ O(α), (4.41)

where l =
√

6
Λ is the curvature scalar. So, in the limit α → 0 the above solution re-

duces to the usual five-dimensional Einstein-Maxwell solution (i.e., RN solution) with a

cosmological constant.

The two parameters M(> 0) and Q are identified as the mass and electric charge of

the system. The limit of vanishing cosmological constant generates a solution contained in

Eq.(4.13) with the minus sign in front of the square root and a redefined mass parameter.
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Figure 4.7: Behavior of the temperature in the range Q ∈ [−1, 1] and S ∈ [0, 10] for fixed

value of the cosmological constant Λ = −1.

In this limit, however, the resulting solution does not describe a black hole, but a naked

singularity.

For the solution (4.40) to describe a black hole spacetime, it is necessary that the

expression inside the square root must be positive and the function G(r) vanishes on the

horizon radius, i. e.,

1 +
8αM

r4
+

− 8αQ2

3r6
+

+
4αΛ

3
> 0 , 1 +

r2
+

4α
− r2

+

4α

√
1 +

8αM

r4
+

− 8αQ2

3r6
+

+
4αΛ

3
= 0 . (4.42)

Moreover, to guarantee that the mass of the black hole is always positive (see below) we

demand that the coupling constant α and the cosmological constant Λ must be positive

and positive definite, respectively. In this section I will limit the analysis to this range

of parameters, so that the black holes determined by the function (4.40) turns out to be

asymptotically AdS.

4.2.1 Geometrothermodynamics with the Bekenstein–Hawking Entropy

Relation

The thermodynamics of EMGB black hole with cosmological constant is essentially an

extension of the RNdS black hole due to GB theory in the canonical ensembles. The

condition G(r+) = 0 implies that

Λ
3

r6
+ − 2r4

+ + 2 (M − 2α) r2
+ −

2
3
Q2 = 0 . (4.43)

Moreover, as I mentioned in section 4.1.1, with the appropriate choice of units the Bekenstein-

Hawking entropy of the black hole is given by S = r3
+. Then, the corresponding thermo-

dynamic fundamental equation in the mass representation becomes

M = 2α + S2/3 +
Q2

3S2/3
− Λ

6
S4/3 . (4.44)
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Figure 4.8: Behavior of the heat capacity in the range Q ∈ [−1, 1] and S ∈ [0, 10] for fixed

value of the cosmological constant Λ = −1. The right plot shows the details of the phase

transition structure for the particular charge Q = 1/2.

Notice that to guarantee the positiveness of the mass, we must assume that α > 0 and

Λ < 0.

Using the energy conservation law of the black hole

dM = TdS + φdQ, (4.45)

one obtains the temperature and electric potential of the black hole on the event horizon

as

T =
2
9

3S4/3 − ΛS2 −Q2

S5/3
, (4.46)

and

φ =
2Q

3S
2
3

. (4.47)

Now, for a given charge, the heat capacity has the expression

CQ = 3S

(
3S

4
3 − ΛS2 −Q2

5Q2 − 3S
4
3 − ΛS2

)
. (4.48)

The expression for the temperature (4.46) shows that it is positive only in the range

3 S4/3 − ΛS2 > Q2. Consequently, the heat capacity can take either positive or negative

values, indicating the possibility of stable and unstable states for the black hole. In fact,

the expression for the heat capacity exhibits a very rich structure in the range where the

temperature is positive. In Fig.(4.7), a particular range was chosen to show the behavior

of the temperature. Similar behavior for heat capacity is shown in Fig.(4.8), the plot on

the right shows for the particular value Q = 1/2 two different phase transitions at S ≈ 0.6

and S ≈ 4.9. The first one corresponds to a transition from a stable state (C > 0) to

an unstable state (C < 0). The second one represents a second order phase transition in

which the black hole becomes a stable system again.
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Figure 4.9: Curvature singularities in the equilibrium manifold of the black hole (4.40)

with Λ = −1 and Q = 1/2. The singularities are located at S ≈ 0.6 and S ≈ 4.9.

The fundamental equation is in this case given as M = M(S,Q) in Eq.(4.44). Then,

the associated coordinates to the equilibrium manifold E are Ea = (S, Q) and Φ = M is

the thermodynamic potential. The thermodynamic metric can then be written as

g =
4

27S4/3
(3S4/3 − ΛS2 −Q2)

[
1

9S2
(3S4/3 + ΛS2 − 5Q2)dS2 + dQ2

]
. (4.49)

A straightforward computation results in the following scalar curvature:

R =
27
2

S7/3N(S,Q, Λ)(
3S4/3 −Q2 − ΛS2

)3 (
3S4/3 − 5 Q2 + ΛS2

)2 , (4.50)

with

N(S, Q,Λ) = 42Q2S7/3Λ− 34 SQ4Λ− 5S3Q2Λ2 − 18Q4 3
√

S − 7S5Λ3

+ 36S11/3Λ + 15S13/3Λ2 − 162S3 + 108 Q2S5/3 . (4.51)

From the expression for the scalar curvature it is obvious that the singularities are

located at the points satisfying 3S4/3 − Q2 − ΛS2 = 0, which coincide with the points

where T → 0 and at the points satisfying 3S4/3 − 5Q2 + ΛS2 = 0, which are the points

where CQ →∞. For the particular case Λ = −1 and Q = 1/2 the singularities are shown

in Fig.(4.9); their locations clearly coincide with the points where second order phase

transitions occur, see right plot in Fig.(4.8).

4.2.2 Geometrothermodynamics with a Modified Entropy Relation

The modified entropy relation (4.28), with k = +1, cannot be solved in this case to obtain

an explicit fundamental equation M = M(Q,S). We must therefore consider the implicit

fundamental equation determined by the relationships

S = r3
+ + 6α̃r+ , M =

α̃

3
+

Q2

3r2
+

+ r2
+ −

Λ
6

r4
+ . (4.52)
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Figure 4.10: Temperature and heat capacity for a black hole of the EMGB theory with

cosmological constant Λ = −1, charge Q = 1 and coupling constant α̃ = 1/4 (for the

temperature) and α̃ ∈ (0, 0.5) (for the heat capacity). The temperature is positive for

rH > rmin
H ≈ 0.73.

Then, the main thermodynamic variables can then be expressed as

T =
2(3r4

+ −Q2 − Λr6
+)

9r3
+(r2

+ + 2α̃)
, (4.53)

φ =
2Q

3r2
+

, (4.54)

CQ =
3r+(r2

+ + 2α̃)2(3r4
+ −Q2 − Λr6

+)
6α̃Q2 + 5Q2r2

+ + 6α̃r4
+ − 3r6

+(1 + 2α̃Λ)− Λr8
+

. (4.55)

For a physically reasonable configuration we demand the positiveness of the temper-

ature; this implies that 3r4
+ − Λr6

+ > Q2. For a given value of Λ and Q, this condition

determines a minimum horizon radius rmin
+ for which the temperature is positive. More-

over, from the expression for the heat capacity (4.55) and from the condition of positive

temperature, it follows that if the condition

α̃|Λ| ≥ 1
2

(4.56)

is satisfied, the heat capacity is positive and, consequently, all possible black hole configu-

rations are stable. This is an interesting condition that relates two fundamental constants,

namely, the tension of the string, proportional to α̃−1 and the cosmological constant Λ.

For the range α̃|Λ| < 1/2 where unstable states in principle can exist, let us consider

the parameters Λ = −1 and Q = 1. This choice together with the positiveness condition

of the temperature fix the value of rmin
+ ≈ 0.73 (see left plot in Fig.(4.10)). Notice that

the value of rmin
H does not depend on the value of the coupling constant α̃. In Fig.(4.11),

the behavior of the heat capacity is explored for the entire range α̃ ∈ (0, 1/2), according to

the condition α̃|Λ| < 1/2. One can see that the heat capacity is represented by a smooth

positive function in the entire domain. All the black hole configurations are found stable

in this case.
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Figure 4.11: Thermodynamic curvature for a black hole of the EMGB theory with cosmo-

logical constant Λ = −1, charge Q = 1 and coupling constant α̃ = 1/4.

I now investigate the geometric properties of the equilibrium manifold. According to

the implicit fundamental equation, the thermodynamic metric (2.12) can be written as

g = −f1(rH , Q, α̃, Λ)
{(

5Q2r2
+ + 6α̃r4

+ − 3r6
+(1 + 2α̃Λ)− Λr8

+

)
dS2

+ 9rH

(
r2
H + 2α̃

)2
dQ2

}
,

(4.57)

where

f1(rH , Q, α̃, Λ) =
4

243
(r2

H + 6α̃)(3r4
+ −Q2 − Λr6

+)
r6
H(r2

H + 2α̃)4
. (4.58)

The expression for the scalar is quite cumbersome but it can schematically be represented

as

R =
N(r+, Λ, Q, α̃)

(3r4
+ −Q2 − Λr6

+)3
(
6α̃Q2 + 5Q2r2

+ + 6α̃r4
+ − 3r6

+(1 + 2α̃Λ)− Λr8
+

)2 (r2
H + 6α̃)3

,

(4.59)

where N(r+, Q, Λ, α̃) is a finite function in the entire domain of definition. From the

expression for the scalar curvature (4.59), the temperature (4.53) and heat capacity (4.55),

it follows that singularities can take place only at those points where T → 0 or C → ∞.

In Fig.(4.11), the behavior of the scalar curvature is shown for a particular choice of the

parameters. One can see that a singularity occurs at the point where the temperature

vanishes. The singularity situated at (r2
H + 6α̃) = 0 corresponds to the limit S → 0 which

indicates the breakdown of the thermodynamic picture of the black hole and, hence of

GTD. No other singularities exist because the heat capacity is finite in this domain.

4.3 Spherically Symmetric Black Holes in EYMGB Gravity

In an attempt to associate a geometric structure to the electromagnetic field, Yang and

Mills [145] used in 1953 the concept of a principal fiber bundle with the Minkowski space-
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time as the base manifold and the symmetry group U(1) as the standard fiber to demon-

strate that the Faraday tensor can be interpreted as the curvature of this particular fiber

bundle. It is well known that the weak interaction and the strong interaction can be

represented as the curvature of a principal fiber bundle with a Minkowski base manifold

and the standard fiber SU(2) and SU(3), respectively. This has opened the possibility

of fixing the background metric in accordance with the desired properties of the base

manifold and selecting different connections as local cross-sections of the principal fiber

bundle. This interesting geometrical approach constitutes the base for constructing the

modern gauge theories that are used to describe the physics of the electromagnetic, weak

and strong interactions. In this section, I will show that geometrothermodynamic metric

(2.12) can be fixed as the background metric in accordance with the desired properties

of the base manifold and it is possible to interpret the thermodynamic interaction as the

curvature of a Legendre invariant Riemannian manifold. I first describe the black hole

solution [88] and its properties in EYMGB gravity and then study the geometry of the

black hole thermodynamics in the subsequent sections.

The five-dimensional spherically symmetric solution obtained recently by Mazhari-

mousavi and Halisoy [88] has the metric ansatz

ds2 = −B(r)dt2 +
dr2

B(r)
+ r2dΩ2

3 . (4.60)

In this case the metric on the unit three sphere dΩ2
3 is given by

dΩ2
3 =

1
4
(dθ2 + dφ2 + dψ2 − 2 cos θdφdψ), (4.61)

with

θ ∈ [0, π], (φ, ψ) ∈ [0, 2π]. (4.62)

For the Yang-Mills field the energy momentum tensor is given by

Tµν = 2F iα
µ F i

να −
1
2
gµνF

i
αβF iαβ, (4.63)

where F i
αβ are the Yang-Mills field 2-forms such that

F i
αβF iαβ = 6Q2/r4, (4.64)

represents the matter Lagrangian in the general action (4.1). The modified Einstein equa-

tions in EYMGB theory are just the same as (1.1) and the solution is given by

B(r) = 1 +
r2

4α
−

√
1 +

M

2α
+

r4

16α2
+

Q2

α
ln r , (4.65)

where M is an integration constant to be identified as the mass and Q is the only non-zero

gauge charge.
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Figure 4.12: Temperature and the heat capacity in terms of the Yang-Mills charge Q. To

illustrate the thermodynamic behavior, the Bekenstein-Hawking entropy was chosen as

S = 10.

This black hole solution of the EYMGB theory is well defined for all r if the GB

coupling parameter α is positive definite. For α < 0 , the spacetime has a curvature

singularity at the hypersurface r = rs, where rs is the largest root of B(r) = 0. The event

horizon radius r+ satisfies the equation B(r+) = 0 and is given by

M = r2
+ − 2Q2 ln r+ . (4.66)

4.3.1 Geometrothermodynamics with the Bekenstein–Hawking Entropy

Relation

In suitable units, the entropy S of the black hole is given by S = r3
+, where A = 2π2r3

+

is the surface area of the event horizon. According to Eq.(4.66), the thermodynamic

fundamental equation in the M -representation becomes

M = S
2
3 − 2

3
Q2 ln S . (4.67)

Thus, the expressions for the thermodynamic quantities, namely, the temperature and the

electric potential are given by

T =
2
3

S2/3 −Q2

S
, φ = −4

3
Q ln S . (4.68)

It follows that for the temperature of the black hole to be positive the charge must satisfy

the condition Q < S1/3. Moreover, for a fixed value of the entropy, the maximum tem-

perature is reached at the value Q = 0, indicating that the Yang-Mills charge reduces the

temperature of the black hole. This behavior is illustrated in Fig.(4.12).

Now, for a fixed charge, the heat capacity is given by the expression

CQ = −3S
S2/3 −Q2

S2/3 − 3Q2
. (4.69)
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Figure 4.13: The thermodynamic curvature with S = 10 as a function of the Yang-Mills

charge Q. Singularities are due to the existence of a second order phase transition at

Q ≈ ±1.24 or to the vanishing of the temperature at Q ≈ ±2.15.

In the region Q < S1/3, where the temperature is positive, the heat capacity diverges

at those points where Q = S1/3/
√

3, indicating the existence of a second order phase

transition. In the interval S1/3/
√

3 < |Q| < S1/3, the heat capacity is positive (and

T > 0), i.e., the black hole configuration is stable in this interval. Furthermore, the

heat capacity is negative within the interval 0 < |Q| < S1/3/
√

3 which corresponds to an

unstable thermodynamic configuration. Since the heat capacity at Q = 0 is negative, I

conclude that the addition of a Yang-Mills charge Q to an unstable neutral black hole not

only reduces its temperature, but also changes its heat capacity until it becomes positive

and the system becomes stable, if the charge is sufficiently large. The transition from an

unstable state to a stable state is accompanied by a second order phase transition. This

thermodynamic behavior is illustrated in Fig.(4.12).

To investigate the geometry of the corresponding equilibrium manifold, I use the gen-

eral metric (2.12) with the fundamental equation M = M(S, Q) as given in Eq.(4.67).

Then,

g =
4
27

(
S2/3 −Q2

) (
S2/3 − 3Q2

S2
dS2 − 6 ln S dQ2

)
. (4.70)

The corresponding thermodynamic curvature scalar can be represented as

R =
N(S, Q)

(S2/3 −Q2)3(S2/3 − 3Q2)2 ln2 S
, (4.71)

where N(S, Q) is a well-behaved function of its arguments. We see that there are several

places where true curvature singularities can exist. First, if Q = S1/3 the curvature scalar

diverges and, as described above, the temperature vanishes. Then, at Q = S1/3/
√

3 there

exists a singularity whose location coincides with the values at which the heat capacity

diverges and second order phase transitions occur. Finally, if lnS → 0 the curvature

scalar diverges. I interpret this additional singularity as related to a second order phase
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Figure 4.14: Temperature and heat capacity in terms of the horizon radius r+ of a black

in the EYMGB theory. Here the modified entropy relation is used with Q = 1 and α̃ = 1

transition which is not contained in CQ. In fact, in analogy to the heat capacity CQ defined

in Eq.(4.69), I can introduce the capacitance

CS ≡
(

∂Q

∂Φ

)

S

=
(

∂Φ
∂Q

)−1

S

=
(

∂2M

∂Q2

)−1

S

. (4.72)

Then, from the fundamental Eq.(4.67)

CS = − 3
4 lnS

, (4.73)

so that in the limit S → 1, a second order phase transition occurs. This proves the physical

origin of the additional singularity of the thermodynamic curvature. The behavior of this

thermodynamic curvature is depicted in Fig.(4.13).

4.3.2 Geometrothermodynamics with a Modified Entropy Relation

In this case, the thermodynamic fundamental equation cannot be written explicitly. There-

fore, I use the implicit equation S = S(M, Q) determined by the expressions

S = r3
+ + 6α̃rH , and M = r2

+ − 2Q2 ln r+ . (4.74)

Then, the thermodynamic variables are given by

T =
2
3

r2
+ −Q2

r+(r2
+ + 2α̃)

, (4.75)

φ = 4Q ln r+ , (4.76)

CQ =
3r+(r2

+ −Q2)(r2
+ + 2α̃)2

−r4
+ + (2α̃ + 3Q2)r2

+ + 2Q2α̃
. (4.77)

Notice that in this case the condition for a positive definite temperature reads r2
H > Q2.

Moreover, the explicit presence of the coupling constant α̃ in the heat capacity leads to

the possibility of modifying the phase transition structure of the black hole by changing
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Figure 4.15: Scalar curvature in terms of the horizon radius r+ of a black in the EYMGB

theory with Q = 1 and α̃ = 1.

the value of the GB coupling constant. Indeed, the expression for the heat capacity (4.77)

diverges for

r2
H =

3
2

Q2 + α̃± 1
2

√
9Q4 + 20 α̃ Q2 + 4 α̃2 , (4.78)

indicating that for a given value of the Yang-Mills charge it is possible to find a range of

values of α̃ for which second order phase transitions take place. This behavior is illustrated

in Fig.(4.14).

For the thermodynamic system determined by the fundamental Eq.(4.74), the Legendre

invariant metric (2.12) is given by

g = − 4
27

(r2
+ + 6α̃)(r2

+ −Q2)
r2
+(r2

+ + 2α̃)4

{(−r4
+ + (2α̃ + 3Q2)r2

+ + 2Q2α̃
)
dS2

+ 18r2
+(r2

+ + 2α̃)3 ln r+dQ2

}
.

(4.79)

The expression for the scalar curvature can be schematically written as

R =
N(r+, Q, α̃)[−r4

+ + (2α̃ + 3Q2)r2
+ + 2Q2α̃

]2 (r2
+ −Q2)3(r2

+ + 6α̃)3(ln r+)2
, (4.80)

where N(r+, Q, α̃) is a function that is finite at those points where the denominator van-

ishes. We see that curvature singularities occur at r2
+ = Q2, which is the point where the

temperature vanishes and at the roots (4.78) which determine the points where second or-

der phase transitions occur CQ. The singularity situated at ln r+ → 0 corresponds to a sec-

ond order phase transition determined by the capacitance CS ≡ (∂Q/∂Φ)S = −1/(4 ln r+),

according to Eq.(4.74). Finally, the singularity situated at (r2
+ + 6α̃) = 0 corresponds to

the limit S → 0 which indicates the breakdown of the thermodynamic picture of the

black hole and, consequently, of GTD. A particular example of location of these curvature

singularities is depicted in Fig.(4.15).
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4.4 Conclusion

In this chapter, I analyzed the thermodynamics of static spherically symmetric black holes

in the five dimensional EGB theory and its generalizations including an electromagnetic

Maxwell field, a cosmological constant and a Yang-Mills field. To investigate the thermo-

dynamics of these black holes I used two different approaches. The first one is based upon

the Bekenstein-Hawking entropy relation, according to which the entropy of a black hole is

proportional to the area of its event horizon. The second approach uses as a starting point

a modified entropy relation which follows from the assumption that black holes satisfy the

first law of thermodynamics in higher dimensions. The two approaches are not equivalent

since the corresponding thermodynamic variables exhibit completely different behaviors.

In particular, I noticed that the thermodynamics of black holes based upon the modified

entropy formula depends on the value of the coupling constant of the GB term that ap-

pears in the action of the theory. Phase transitions appear which depend on the explicit

value of the coupling constant and change the stability properties of the black holes. This

kind of phase transitions is absent when the Bekenstein-Hawing entropy relation is used.

For all the black holes analyzed in this chapter, I used the formalism of GTD to find

the geometric properties of the corresponding manifolds of equilibrium states. Once the

thermodynamic fundamental equation of the black is given, a standard procedure of GTD

allows us to compute the explicit form of the thermodynamic metric that describes the

geometric properties of the equilibrium manifold. It turns out that the thermodynamic

metrics depend on the entropy relation used to construct the thermodynamics of the black

holes under consideration. The thermodynamic metrics obtained from the Bekenstein-

Hawking relation are different from those obtained by using the modified entropy formula.

Nevertheless, in all the analyzed cases I found that the curvature singularities of the equi-

librium manifold are located at those points where the heat capacity diverges and the black

hole undergoes a second order phase transition. Moreover, curvature singularities also ap-

pear at those points where the temperature vanishes, indicating the limit of applicability

of black hole thermodynamics and of GTD.

I conclude that the formalism of GTD can be used in the EGB theory for five dimen-

sional black holes to describe the thermodynamic properties in terms of geometric concepts,

regardless of the entropy relation used to formulate the thermodynamics. In particular,

all the black holes analyzed in the EGB theory can be characterized by non-flat equi-

librium manifolds. This means that all those black holes possess an intrinsic non trivial

thermodynamic interaction. Moreover, the thermodynamic interaction can be represented

by means of the curvature of the equilibrium manifold, the points where the heat capacity

diverges and, consequently, second order phase transitions occur, are represented in GTD

by curvature singularities, indicating the limit of applicability of the thermodynamics and
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GTD to black holes.



Chapter 5

Geometrothermodynamics in

Hořava–Lifshitz Gravity

One of the biggest difficulties in attempts toward the theory of quantum gravity is the

fact that GR is non-renormalizable. This would imply loss of theoretical control and

predictability at high energies. In 2009 Petr Hořava formulated a new theory of gravity to

evade this difficulty by invoking a Lifshitz-type anisotropic scaling at high energy [65,66].

(I shall discuss it in detail in section 5.1.) This theory is called Hořava–Lifshitz (HL)

gravity.

HL gravity , being a less restricted theory than GR, requires the temporal and spa-

tial coordinates to be treated on different grounds. The theory itself is invariant under

the so-called foliation-preserving diffeomorphism, which is a combination of global time

reparametrizations and spatial diffeomorphisms. It is a field theoretical model which can

be interpreted as a complete theory of gravity in the ultraviolet (UV) limit. The model

is renormalizable and non-relativistic in the UV regime [102]. Moreover, it reduces to

Einstein’s gravity theory with a cosmological constant in the infrared (IR) limit.

5.1 Hořava–Lifshitz Gravity: Review and Basic Equations

Now I explain basics of HL gravity, such as power-counting argument, Lorentz symmetry,

basic quantities, action and equations of motion.

Power–counting: Let us begin with heuristically explaining the usual power-counting

argument in field theory. As the simplest example, consider a scalar field with the canonical

kinetic term:
1
2

∫
dtd3xψ̇2, (5.1)

where a dot represents differentiation with respect to the time coordinate. The scaling

dimension of the scalar field ψ is determined by demanding that the kinetic term be

91
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invariant under the scaling

t → lt, x → lx, ψ → l−sψ (5.2)

where l is an arbitrary number and s is the scaling dimension to be determined. The

invariance of the kinetic term under the scaling gives s = 1. In other words, the scalar

field scales like energy. Thus n-th order interaction term behaves as
∫

dtd3xψ̇2 ∝ E(1+3−ns), (5.3)

where E is the energy scale of the system under consideration. Here, the minus sign in

the exponent comes from −1 in E → l−1E. Now, it is expected that we have a good

theoretical control of UV regime, i.e., high E, behaviors if the exponent is non-positive.

Since s = 1, this condition leads to n ≤ 4. This is the power-counting renormalizability

condition [65].

Unfortunately, Einstein gravity is not power-counting renormalizable. This is because

the curvature is a highly nonlinear function of the metric. The nonrenormalizability is one

of the difficulties in attempts to quantize GR.

Lorentz symmetry: As already stated, HL gravity is power-counting renormalizable.

To evade such argument the basic idea is very simple, abandoning Lorentz symmetry and

invoking a different kind of scaling in the UV regime [66]. The scaling invoked here, often

called anisotropic scaling or Lifshitz scaling, is

xi → lxi, t → lzt, (5.4)

where z is a number called dynamical critical exponent and i = 1, 2, 3.

Let us now see how the power-counting argument changes if the scaling is anisotropic

as in (5.4). Invariance of the canonical kinetic term (5.1) under this scaling leads to

s =
3− z

2
. (5.5)

This of course recovers the previous result s = 1 for z = 1. The interesting fact here is

that s = 0 if z = 3. This implies that, if z = 3, the amplitude of quantum fluctuations of

ψ does not change as the energy scale of the system changes. The n-th order interaction

term behaves as ∫
dtd3xψ̇2 ∝ E

(z+3−ns)
z . (5.6)

For z = 3 (and thus s = 0), the exponent is negative for any n and, therefore, any nonlinear

interactions are power-counting renormalizable. For z > 3, the theory is power-counting

super–renormalizable [85]. From the above consideration, it is expected that gravity may

become renormalizable if the anisotropic scaling with z ≥ 3 is realized in the UV regime.

Basic Equations: Since the Lorentz invariance is not respected, the time coordinate
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t and the spatial coordinates xi(i = 1, 2, 3) are treated separately. The fundamental

symmetry of the theory is the invariance under space-independent time reparametrization

and time-dependent spatial diffeomorphism:

t → t′(t), x → ~x(t, ~x). (5.7)

The time-dependent spatial diffeomorphism allows an arbitrary change of spatial coor-

dinates on each constant time surface. However, the time reparametrization here is not

allowed to depend on spatial coordinates. As a result, unlike GR, in HL gravity the folia-

tion of spacetime by constant time hypersurfaces is not just a choice of coordinates but is

a physical entity. Indeed, the foliation is preserved by the symmetry transformation (5.7).

For this reason, the map (5.7) is called foliation preserving diffeomorphism. In addition to

the foliation preserving diffeomorphism invariance, we assume that the theory is invariant

under the spatial parity ~x → −~x and the time reflection t → −t.

The breaking of the four-dimensional diffeomorphism invariance, allows for a different

treatment of the kinetic and potential terms for the metric. Thus, although the kinetic

term is quadratic in time derivatives of the metric, the potential has higher-order space

derivatives. In particular, the UV behavior of the potential is determined by the square of

the Cotton tensor of the three-dimensional geometry. At large distances, higher derivative

terms do not contribute and the theory reduces to standard GR. Indeed at λ = 1, which

is an IR fixed point, standard GR is recovered [20].

Since HL gravity breaks general four-dimensional covariance and splits it into three-

dimensional covariance plus reparametrization invariance of time. It is therefore convenient

to formulate it in the (3 + 1)–ADM formalism, where an arbitrary metric can be written

in the form

ds2 = −N2dt2 + gij(dxi + N idt)(dxj + N jdt) , (5.8)

where N2 is the lapse function and N i represents the shift. The shift N i and the metric

gij depend on both the time coordinate t and the spatial coordinates ~x, the lapse function

N is assumed to be a function of the time only. This condition on the lapse function is

called the projectability condition. The projectability condition stems from the foliation

preserving diffeomorphism. The lapse function represents a gauge freedom associated with

the space-independent time reparametrization t → t′(t) and, thus, it is fairly natural to

restrict it to be space independent.

Action: Then, the HL action is written as [85],

IHL =
∫
LHL dt d3x , (5.9)
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where

LHL =
√

gN

[
2
κ

(
KijK

ij − λK2
)

+
κ2µ2(ΛR− 3Λ2)

8(1− 3λ)
+

κ2µ2(1− 4Λ)
32(1− 3λ)

R2 −

− κ2

2ω4

(
Cij − µω2

2
Rij

)(
Cij − µω2

2
Rij

)]
. (5.10)

Here Rij and R are the three-dimensional Ricci tensor and curvature scalar, respectively.

Moreover, for a spacelike hypersurface with a fixed time the extrinsic curvature Kij and

the Cotton tensor Cij are given by the expressions

Kij =
1

2N
(ġij −∇iNj −∇jNi) , Cij = εikl∇k

(
Rj

l − 1
4

R δj
l

)
. (5.11)

Finally, κ2, λ, µ, ω and Λ are constant parameters. In (5.10), the first two terms are the

kinetic terms, while the others give the potential of the theory in the so-called “detailed-

balanced” form.

In general, the IR vacuum in Hořava’s theory is AdS spacetime. It was found that the

Schwarzschild–AdS black hole solution is not recovered in the IR limit, although Einstein’s

theory with cosmological model was obtained at the level of the action [105]. This difficulty

was solved by introducing an additional parameter which modifies the IR behavior [27,85,

100]. The vacuum of this theory turns out to be the AdS spacetime. In order to obtain

a Minkowski vacuum in the IR sector, one can consider an additional term (µ4R) in the

original action. This generalization is known as the deformed HL model.

This chapter explores the thermodynamic geometries of the most general static, spher-

ically symmetric, topological black holes of the HL gravity. A Legendre invariant metric

derived in the context of GTD for the equilibrium manifold reproduces correctly the phase

transition structure of these black holes. Moreover, the limiting cases in which the mass,

the entropy or the Hawking temperature vanish are also analyzed which indicate the limit

of applicability of the thermodynamics and the GTD of black holes. I then investigate the

Einstein limit and the case of a black hole with flat horizon in this gravity theory.

5.2 Topological Black Hole Solutions in HL Gravity

Consider now the spherically symmetric line element

ds2 = −Ñ2(r)f(r)dt2 +
dr2

f(r)
+ r2dΩ2

k , (5.12)

where dΩ2
k is the line element of the 2–dimensional Einstein space with constant curvature

2k. Substituting the metric (5.12) into the action (5.9), we obtain [29],

IHL =
κ2µ2Ωk

8(1− 3λ)

∫
Ñ

[
(λ− 1)

2
F ′2 − 2λ

r
FF ′ +

(2λ− 1)
r2

F 2

]
dt dr , (5.13)
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where a prime denotes the derivative with respect to r and F is defined as,

F (r) = k − Λr2 − f(r) . (5.14)

The variation of (5.13) leads to the following set of equations
(

2λ

r
F − (λ− 1)F ′

)
Ñ ′ + (λ− 1)

(
2
r2

F − F ′′
)

Ñ = 0 , (5.15)

(λ− 1)r2F ′2 − 4λrFF ′ + 2(2λ− 1)F 2 = 0 , (5.16)

whose solution is

F (r) = αrs , Ñ = γr1−2s , (5.17)

where α and γ are integration constants and s is given by

s =
2λ−

√
2(3λ− 1)

λ− 1
. (5.18)

This solution was obtained recently by Cai, Cao and Ohta (CCO) [30]. In general, the value

of s with a positive sign in front of the square root is also a solution of the above equations.

However, in this case the asymptotic properties of the solution are not compatible with the

properties of a black hole spacetime. In the allowed interval λ > 1/3, i. e. for s ∈ (−1, 2),

the above solution is asymptotically AdS and describes the gravitational field of a static

black hole.

In order to obtain the thermodynamic variables of the CCO black hole, it is necessary

to use the canonical Hamilton formulation for the corresponding thermodynamic ensemble

[29]. According to this Hamiltonian approach, the mass of the black hole is

M =
c3γΩkl

2−2s

16πG

(
1 + s

2− s

) 
k +

r2
+

l2

( r+

l )s




2

, (5.19)

where l2 = −1/Λ represents the radius of curvature. Moreover, the Hawking temperature

is given by

T =
γ

4πr2s
+

[
(2− s)

r2
+

l2
− ks

]
. (5.20)

Finally, integrating the first law of thermodynamics, dM = TdS + µidQi, for constant

values of the additional thermodynamic variables Qi, the entropy associated with the

black hole is obtained as

S =
c3Ωkl

2

4G

(
1 + s

2− s

)(
r2
+

l2
+ k ln

r2
+

l2

)
. (5.21)

The entropy S is defined up to an additive constant that can be chosen arbitrarily in order

to avoid zero or negative values. Here, r+ represents the radius of the exterior horizon

which is a function of M and l determined by the algebraic equation

rs
+ −

A

M
1
2 l2

r2
+ −

Ak

M
1
2

= 0 , A =
κµγ

1
2 Ω

1
2
k

2
7
4 [3λ− 1]

1
4

. (5.22)
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Figure 5.1: Temperature and heat capacity of the topological black hole. I choose k = 1,

l = 1 and s = −1/2 so that T > 0 for r+ > 0. Moreover, γ = 1 and Ωkc
3/(4G) = 1

for simplicity. The heat capacity is a smooth function in the entire region r+ > 0 with a

minimum located at r+ ≈ 0.53.

Using the expressions (5.19) and (5.20), we obtain the heat capacity

C =

(
∂M

∂r+

)(
∂T

∂r+

)−1

=
c3Ωkl

2

4G

(
1 + s

2− s

)(
k +

r2
+

l2

) (
(2− s)

r2
+

l2
− ks

)

(s− 1)(s− 2)
r2
+

l2
+ ks2

. (5.23)

According to Davies [44–46], second order phase transitions take place at those points

where the heat capacity diverges, i. e., for

r2
+

l2
=

ks2

(s− 1)(2− s)
. (5.24)

Then, I conclude that phase transitions can occur only for k = 1 and s ∈ (1, 2) and for

k = −1 and s ∈ (−1, 1). For all the remaining values of k and s the corresponding black

hole cannot undergo a phase transition. Notice that the phase transition condition (5.24)

must be considered together with the inequality

r2
+

l2
>

ks

2− s
(5.25)

that follows from the condition T > 0 from Eq.(5.20). The behavior of heat capacity and

temperature of the topological black hole is depicted in Fig.(5.1).

5.3 Weinhold and Ruppeiner Geometries

According to Eqs.(5.19)–(5.21), the mass of the CCO black hole is a function of the en-

tropy S and the curvature radius l. Although the entropy is clearly a thermodynamic

variable, the thermodynamic nature of the radius of curvature is not so obvious. Never-

theless, a detailed analysis [32] of the thermodynamic properties of AdS black holes reveal
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that indeed it is possible to consider the cosmological constant as a well-defined thermo-

dynamic variable. Here, I follow this result and assume that the radius of curvature is a

thermodynamic variable.

Let us consider first the Weinhold metric Eq.(1.67). Since in the case of black holes

the internal energy is represented by the mass M , the Weinhold metric becomes

gW = MSSdS2 + 2MSldSdl + Mlldl2 , (5.26)

where MS = ∂M/∂S, etc. Since the expression for M as given in Eq.(5.19), does not

contain S explicitly, it is necessary to use r+ as a coordinate and its relation to S and l

by means of Eqs.(5.20) and (5.21). Then, we obtain

gW = MSSS2
r+

dr2
+ + 2 (MSSSl + MSl) Sr+dr+dl +

(
MSSS2

l + 2MSlSl + Mll

)
dl2 . (5.27)

Introducing the thermodynamic Eqs.(5.19)–(5.21), the explicit metric components are

given by

gW
r+r+

=
c3Ωkγ

4πG

(
1 + s

2− s

)
l4−2s

(r+

l

)−2−2s
(

k +
r2
+

l2

)(
ks2 + (s2 − 3s + 2)

r2
+

l2

)
, (5.28)

glr+
=

c3Ωkγ

4πGr+

(
1 + s

2− s

)
l−2s

(r+

l

)−1−2s
{

k

(
ks2 + (s2 − 3s + 2)

r2
+

l2

)
ln

r2
+

l2

+(s− 2)
r2
+

l2

(
r2
+

l2
− k(s− 2)

)
− k2s2

}
, (5.29)

gW
ll =

c3Ωkγ

8πG(k + r2
+/l2)r2s

+

(
1 + s

2− s

) {
2k2

(
ks2 + (s2 − 3s + 2)

r2
+

l2

)
ln2 r2

+

l2

+4k
[
(s− 2)

r2
+

l2

[
r2
+

l2
− k(s− 2)

]
− k2s2

]
ln

r2
+

l2
+ 3

r6
+

l6
+ k(11− 4s)

r4
+

l4

+k2(2s2 − 10s + 13)
r2
+

l2
+ k3(1 + 2s2)

}
. (5.30)

Moreover, the curvature scalar can be expressed as

RW =
NW

DW
, DW = (s2−s−2)r6

++k(s2+8s−8)l2r4
++k2(s2−3s+2)l4r2

++k3s2l6 , (5.31)

where NW is a function of r+ and l which is finite at those points where the denominator

vanishes. The singularities are determined by the roots of the equation DW = 0. It is

easy to see that the solutions of this equation do not coincide with the points where the

heat capacity diverges. The concrete example of a stable black hole in which a curvature

singularity exists at a point where the heat capacity is regular as shown in Fig.(5.2). I

conclude that the Weinhold curvature fails to reproduce the phase transition structure of

the CCO topological black hole.
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Figure 5.2: The curvature of the topological black hole. Here, I chose k = 1, l = 1 and

s = −1/2 as representative values. Moreover, γ = 1 and Ωkc
3/(4G) = 1 for simplicity.

The curvature shows a singularity at r+ ≈ 0.60.

Now I consider the Ruppeiner metric

gR = SMMdM2 + 2SMldMdl + Slldl2 , (5.32)

which in terms of the coordinates r+ and l becomes

gR = SMMM2
r+

dr2
+ + 2 (SMl + SMMMl) Mr+

dr+dl +
(
SMMM2

l + 2SMlMl + Sll

)
dl2 .

(5.33)

Using the expressions for the thermodynamic variables (5.19) and (5.21), we obtain

gR
r+r+

=
c3Ωk

G

(
1 + s

2− s

)
l2

r2
+

(
k +

r2
+

l2

)
[
s2

(
k +

r2
+

l2

)
+ (2− 3s)

r2
+

l2

]

[
s
(
k +

r2
+

l2

)
− 2

r2
+

l2

] , (5.34)

gR
lr+

= −c3Ωk

G

(
1 + s

2− s

)
l

r+

(
k +

r2
+

l2

)
[
s2k

(
k − r2

+

l2

)
− k(s− 2)

r2
+

l2
− (2s2 − 7s + 6)

r4
+

l4

]

[
s
(
k +

r2
+

l2

)
− 2

r2
+

l2

]2 ,

(5.35)

gR
ll =

c3Ωk

2G

(
1 + s

2− s

)
1[

s
(
k +

r2
+

l2

)
− 2

r2
+

l2

]3

{
2ks

r2
+

l2

[
(11s− 19)

r4
+

l4
+ 7k(2s− 1)

r2
+

l2

+ k2(1 + 7s)
]

+ k ln
(r2

+

l2

)[
(s3 − 6s2 + 12s− 8)

r6
+

l6
+ ks(3s2 − 12s + 12)

r4
+

l4

+ 3k2s2(s− 2)
r2
+

l2
+ k3s3

]
+ k

[
(20− 3s3)

r6
+

l6
− k(20 + 9s3)

r4
+

l4
+ k2(4− 9s3)

r2
+

l2

+ k3s2(2− 3s)

]
+ (6s2 − 22s + 20)

r8
+

l8

}
. (5.36)

From these expressions for the metric functions it is then straightforward to find the

scalar curvature

RR =
NR

DR
, DR = (s + 1)l10

[
A ln

(r2
+

l2

)
−B

]2(
k +

r2
+

l2

)2[
s
(
k +

r2
+

l2

)
− 2

r2
+

l2

]3
, (5.37)
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Figure 5.3: Thermodynamic curvature of the Ruppeiner metric. This case corresponds to

the choice: k = 1, l = 1, s = −1/2, γ = 1 and Ωkc
3/(4G) = 1. A singularity exists at

r+ ≈ 1.18 which does not correspond to a phase transition.

with

A = kl6
[r4

+

l4
(s3 − 5s2 + 8s− 4) +

r2
+

l2
(2s2 − 5s + 2)ks + k2s3

]
, (5.38)

B = kl6
[r4

+

l4
(3s3−13s2+16s−4)+

r2
+

l2
(6s2−15s+6)ks+3k2s3

]
+r6

+
(2s2−8s+8) . (5.39)

The curvature singularities are determined by the roots of the equation DR = 0 which

do not coincide with the points where the heat capacity (5.23) shows second order phase

transitions. To illustrate the behavior of the curvature I analyze the particular case with

k = 1, l = 1 and s = −1/2 for which the temperature is always positive and the heat ca-

pacity is a smooth positive function which corresponds to a stable black hole configuration.

The numerical analysis of this case is depicted in Fig.(5.3).

5.4 Geometrothermodynamics of the CCO Black Holes

The formalism of GTD is invariant and, consequently, one can choose any arbitrary ther-

modynamic potential Φ in any arbitrary representation to describe the thermodynamics

of a black hole. Take, for instance, Φ = M for the CCO topological black holes presented

in section 5.2. The coordinates of the 5-dimensional phase manifold can be chosen as

ZA = (M,S, l, T, L), where T is the temperature dual to S and L is the dual of the cur-

vature radius l. The fundamental 1-form is then Θ = dM − TdS − ldL and the Legendre

invariant metric (2.4) is written as

G = Θ2 + ST (−dSdT + dldL) . (5.40)

The smooth map ϕ : E → T or in coordinates ϕ : (S, l) 7→ [M(S, l), S, l, T (S, l), L(S, l)]

determines the equilibrium manifold E with metric

gGTD = ϕ∗(G) = SMS

(−MSSdS2 + Mlldl2
)

, (5.41)
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on which the first law of thermodynamics dM = TdS+ ldL and the equilibrium conditions

T =
∂M

∂S
≡ MS , L =

∂M

∂l
≡ Ml (5.42)

hold. As mentioned above, the fundamental equation M = M(S, l) cannot be written

explicitly and so I use r+ instead of S as a coordinate. Then,

gGTD = SMS

[
−MSSS2

r+
dr2

+ − 2MSSSr+Sldldr+ + (Mll −MSSS2
l )dl2

]
. (5.43)

Using the expressions for the mass and the entropy, we obtain

gGTD =
c3Ω2

kγ
2r−4s

+

16π2G

(
s + 1
2− s

)[
(s− 2)

r2
+

l2
+ ks

]
S(r+, l)

{[
(s− 1)(s− 2)

r2
+

l2
+ ks2

]

×
[(

1 +
kl2

r2
+

)
dr2

+ + 2
kl

r+

(
ln

r2
+

l2
− 1

)
dldr+

]
+ C(r+, l)dl2

}
, (5.44)

where

C(r+, l) =
2k2

(
ln

r2
+

l2
− 1

)2 [
(s− 1)(s− 2)

r2
+

l2
+ ks2

]
−

(
k2 + 3

r4
+

l4

)(
k +

r2
+

l2

)

2
(
k +

r2
+

l2

) . (5.45)

The curvature scalar corresponding to the metric (5.43) is found to be

R
GTD

=
N

GTD

DGTD , (5.46)

where

D
GTD

=

(
k2 + 3

r4
+

l4

)2 (
k +

r2
+

l2

)13 (
r2
+

l2
+ k ln

r2
+

l2

)3

×
[
(2− s)

r2
+

l2
− ks

]4 [
(s− 1) (s− 2)

r2
+

l2
+ ks2

]2

. (5.47)

Here N
GTD

is a function of r+ and l that is finite at those points where the denominator

vanishes. There are several curvature singularities in this case. The first one occurs if

k + r2
+/l2 = 0 and corresponds to the limit M → 0, as follows from Eq.(5.19). A second

singularity is located at the roots of the equation r2
+ + k ln r2

+ = 0 and can be interpreted

from Eq.(5.21) as the limit S → 0. Moreover, according to Eq.(5.20), the singularity

situated at r2
+/l2 = ks/(2− s) corresponds to the limit T → 0.

Finally, if (s−1)(s−2)r2
+/l2+ks2 = 0 a singularity occurs that, according to Eq.(5.23),

coincides with the limit C →∞, i.e., with the points where second order phase transitions

take place. Clearly, the singularities at which the mass, the entropy or the temperature

vanish must be considered as unphysical and indicate the limit of applicability of the

thermodynamics of black holes.
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Figure 5.4: Thermodynamic curvature of the GTD metric. This case corresponds to the

choice: k = 1, l = 1, s = −1/2, γ = 1 and Ωkc
3/(4G) = 1. The expression S3R

GTD
is

plotted to avoid the unphysical singularity at S = 0.

The thermodynamic curvature in GTD for the case k = 1, l = 1 and s = −1/2 shows

a singularity at the value r2
+ + ln r2

+ = 0, i. e., for r+ ≈ 0.75, which corresponds to the

limit S → 0. The behavior of the curvature S3R
GTD

to avoid the unphysical singularity

as S → 0 is illustrated in Fig.(5.4). We see that in the analyzed interval no curvature

singularities appear. This is in accordance with the behavior of the heat capacity which

in the same interval is free of phase transitions as illustrated in Fig.(5.2). A curvature

singularity can be observed for r+ → 0 which indicates the break down of the black hole

configuration and, consequently, of its thermodynamics.

I conclude that the curvature obtained within the formalism of GTD correctly describes

the thermodynamic behavior of topological black hoes in HL gravity.

5.4.1 The Einstein Limit of the CCO Black Holes

Einstein’s theory of gravity with cosmological constant is obtained from the HL gravity

in the limit λ → 1. The CCO topological black holes reduce in this case to a single black

hole configuration with s = 1/2, whereas the corresponding thermodynamic variables are

written as

M =
c3Ωkl

16πG

l

r+

(
k +

r2
+

l2

)2

, (5.48)

S =
c3Ωkl

2

4G

(
r2
+

l2
+ k ln

r2
+

l2

)
, (5.49)

T =
γ

8πr+

(
3
r2
+

l2
− k

)
, (5.50)

and

C =

(
∂M

∂r+

)(
∂T

∂r+

)−1

=
c3Ωkl

2

2G

(
k +

r2
+

l2

)(
3

r2
+

l2
− k

)

(
k + 3

r2
+

l2

) . (5.51)
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It follows that the second order phase transitions take place at the points where the

condition 3r2
+/l2 + k = 0 is satisfied.

Inserting the expressions (5.48) and (5.49) into the metric (5.43), we obtain

gGTD =
1
32

(
c3Ωkγ

4G

)2 (
r2
+

l2
+ k ln

r2
+

l2

)(
k − 3

r2
+

l2

)
l2

r2
+

(
A1dr2

+ + 2A2dldr+ + A3dl2
)

,

(5.52)

with

A1 =
l2

r2
+

(
k +

r2
+

l2

)(
k + 3

r2
+

l2

)
, (5.53)

A2 = k
l

r+

(
ln

r2
+

l2
− 1

)(
k + 3

r2
+

l2

)
, (5.54)

A3 =
1

k +
r2
+

l2

[
k2

(
k + 3

r2
+

l2

)(
ln

r2
+

l2
− 2

)
ln

r2
+

l2
− 6

r4
+

l4

(
k +

r2
+

l2

)
− k2

(
k − r2

+

l2

)]
.

(5.55)

The corresponding scalar curvature can be expressed as

RGTD =
NGTD

DGTD
, (5.56)

DGTD =
(

k +
r2

l2

)4 (
r2

l2
+ k ln

r2

l2

)3 (
3

r2

l2
− k

)3 (
3

r4

l4
+ k2

)2 (
3

r2

l2
+ k

)2

, (5.57)

where the numerator function NGTD is finite at all the points where the denominator

vanishes. From this expression we can see that the roots of the equation 3r2
+/l2 + k = 0

determine curvature singularities which coincide with the points where second order phase

transitions occur (C → ∞). Additional singularities occur if r2
+/l2 + k = 0, r2

+/l2 +

k ln(r2
+/l2) = 0, or 3r2

+/l2 − k = 0 which correspond to the limits M → 0, S → 0 or

T → 0, respectively.

5.4.2 The Limiting Black Hole with Flat Horizon

Thermodynamics of a CCO black hole with a flat horizon (k = 0) is described by the

following variables [29]

M =
c3γΩkl

2−2s

16πG

(
1 + s

2− s

) (r+

l

)2(2−s)
, (5.58)

S =
c3Ωkl

2

4G

(
1 + s

2− s

) (r+

l

)2
, (5.59)

T =
γl−2s

4π
(2− s)

(r+

l

)2−2s
, (5.60)

and

C =

(
∂M

∂r+

)(
∂T

∂r+

)−1

=
c3Ωk

4G

(
1 + s

2− s

)
r2
+

s− 1
=

S

s− 1
. (5.61)
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From the expression for the heat capacity we see that this black hole is free of phase

transitions.

Using the relations (5.58) and (5.59), the thermodynamic metric (5.43) is written as

gGTD =
(s− 2)r6

+

8

(
c3γΩk

4πG

)2(
1 + s

s− 2

)2(
r+

l

)−4s

×
[
2(s− 1)(s− 2)l−4(s+1)dr2

+ − 3l−2(3+2s)r2
+dl2

]
, (5.62)

for which the curvature R = 0, indicating that no phase transition structure exists. This

is in accordance with the result obtained above from the study of the heat capacity.

According to GTD, a flat equilibrium manifold is a consequence of the lack of thermo-

dynamic interaction. This can be understood in the following way. For this special case,

Eq.(5.59) indicates that the horizon radius is

r+ =

[
4G

Ωkc3

(
2− s

1 + s

)
S

] 1
2

, (5.63)

so that Eq.(5.58) generates the explicit fundamental equation

M =
γ

4π

(
4G

Ωkc3

)1−s(
2− s

1 + s

)1−s
S2−s

l2
, (5.64)

which, in turn, can be rewritten as

(2− s) lnS = lnM + ln l2 + ln S0 , S0 =
4π

γ

(
c3Ω0

4G

1 + s

2− s

)1−s

. (5.65)

So, the entropy function can be separated in the extensive variables M and l. On the

other hand, all thermodynamic potentials that possess the property of being separable

have been shown [139] to correspond to systems with no thermodynamic interaction and

zero thermodynamic curvature. This is an indication that the statistical internal structure

of a CCO black hole with flat horizon is equivalent to that of an ideal gas which is the

main example of a system with no intrinsic thermodynamic interaction. I notice that in

this limiting case the Weinhold and Ruppeiner geometries are flat too, indicating that

there exists a statistical analogy between a black hole with flat horizon and an ideal gas.

5.5 Conclusion

In this chapter, I applied the formalism of GTD to describe the thermodynamics of the

CCO topological black holes in the Hořava-Lifshitz model of quantum gravity. In the

thermodynamic phase manifold a particular Riemannian metric is introduced whose main

property is its invariance with respect to LT. The Legendre invariant metric induces in a

canonical manner a thermodynamic metric in the equilibrium manifold which is defined

as a submanifold of the thermodynamic phase manifold.



104

I used the expressions of the main thermodynamic variables of the CCO black holes

in order to compute the explicit form of the thermodynamic metric of the equilibrium

manifold. The corresponding thermodynamic curvature turned out to be nonzero in gen-

eral, indicating the presence of thermodynamic interaction. Moreover, it was shown that

the phase transitions which are characterized by divergencies of the heat capacity are de-

scribed in GTD by curvature singularities in the equilibrium manifold. I also studied the

thermodynamics of the CCO black holes by using Weinhold and Ruppeiner geometries

and found that they fail to describe the corresponding phase transition structure.

It is found that the geometrothermodynamic equilibrium manifold of the CCO black

holes present additional curvature singularities which correspond to the vanishing of the

mass, entropy and Hawking temperature. In general, the vanishing of these thermody-

namic variables is an indication of the limit of applicability of black hole thermodynamics.

So I conclude that the formalism of GTD breaks down, with curvature singularities, exactly

at those points where black hole thermodynamics fails.

In the context of the GTD of the CCO black holes, the limit of Einstein gravity and

of a black holes with flat horizons is also analyzed. In both cases the obtained results

are consistent with the thermodynamics of the respective black hole configurations. It

turned out that the equilibrium manifold of black holes with flat horizons is flat. The

flatness of the equilibrium manifold is interpreted as a consequence of the lack of intrinsic

thermodynamic interaction. This property resembles the statistical behavior of an ideal

gas.



Chapter 6

Summary and Future Directions

Geometrical methods always played an important role in thermodynamics. They not only

facilitate the analysis of thermodynamic systems of equilibrium states, but also give a

better understanding and deeper insight into the mathematical structure of the theory. The

empirical laws of phenomenological thermodynamics can be expressed in a mathematically

rigorous and concise way if one uses the language of differential and contact geometry. This

approach to problems of equilibrium thermodynamics was originated by Hermann [63] and

further developed by Mrugala [95].

Another approach to the geometry of thermodynamics is based on the concept of

the distance between thermodynamic states. On a purely phenomenological level, it was

initiated by Weinhold [141] who introduced a sort of Riemannian metric into the space of

thermodynamic parameters by means of a scalar product of some reference vectors, tangent

to the manifold of thermodynamic states. Many authors later discussed the physical

consequences which resulted from the Weinhold’s approach.

Ruppeiner [125] included the theory of fluctuations in the axioms of thermodynamics

and showed that this leads to a Riemannian metric on a manifold of equilibrium states.

Elements of this metric were represented by the second moments of fluctuations of some

parameters. He also proposed to connect the Riemann curvature of the thermodynamic

manifold with interparticle effective strength of interaction in the system. However, it

turned out that the two metrics introduced by Weinhold and Ruppeiner are conformally

equivalent [97,127].

These two approaches have been the subject of analysis since the 1970s. The multiple

applications of Ruppeiner’s metric have been reviewed in [72,73,132]. Weinhold [141] and

Ruppeiner [126] argued that the thermodynamic curvature of metrics (1.67) and (1.69)

can be used as a measure of thermodynamic interaction. This argument was supported

by the result that the thermodynamic curvature is zero for an ideal gas and nonvanishing

for a van der Waals gas with singularities at those points where phase transitions occur.

However, the correctness of these results was the subject of many discussions because they
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depend on the thermodynamic potential. Similar problems were found in the case of black

hole thermodynamics where, for instance, the thermodynamic curvature of the RN black

hole is zero in the entropy representation and nonzero in the energy representation. This

unpleasant property means that a given thermodynamic system has different properties,

when different thermodynamic potentials are used.

Recently, the formalism of GTD was proposed as an approach which allows us to

handle thermodynamic systems in terms of geometric structures which are invariant with

respect to LT, i.e., independent of the thermodynamic potential [112]. It explains why

Weinhold’s and Ruppeiner’s metrics are not suitable to describe thermodynamics in an

independent manner [115]. The formalism of GTD can be used to derive Legendre in-

variant metrics which, in particular, describe black hole thermodynamics in a unified and

consistent manner [2, 116,119,135].

In this thesis, the thermodynamics of black holes is reformulated within the context of

the formalism of GTD. Using this formalism, different thermodynamic metrics are derived

for the space of equilibrium states of black holes which reproduces the thermodynamic

behavior of black holes in standard (chapter 2) and non-standard (chapters 3-5) theories

of gravity. The results shows that the curvature of derived thermodynamic metric can be

used as a measure of thermodynamic interaction for black holes.

In Einstein-Maxwell theory, the space of equilibrium states,equipped with thermody-

namic metric (2.12) derived in the context of GTD, becomes singular at those points

where phase transitions occur and it is flat in the limit of extreme black holes that is

when the two horizons coincide. This indicates that the derived thermodynamic metric is

well-defined in the region M4−M2Q2−J2, except at the phase transition points where it

becomes singular. Outside this region, the thermodynamic metric is not well-defined when

the fundamental equation becomes complex and cannot be used to generate the geometric

Riemannian structure of the space of equilibrium states. This is an indication that the

thermodynamic description of black holes cannot be extended into the region of naked

singularities. This is also an indication that classical thermodynamics cannot be used for

black holes of the size of the Planck length, which is the extremal limit of applicability

one would expect for classical thermodynamics.

In this thesis, I assumed Davies [44–46] formulation of phase transitions for black holes.

However, the interpretation of divergences in specific heats as phase transitions is not defi-

nitely settled and is still a subject of debate [43,74,75,106]. In fact, what is really needed is

a microscopic description which would couple to the macroscopic thermodynamics of black

holes. However, such a microscopic description must be related to a theory of quantum

gravity which is still far from being formulated in a consistent and unified manner. In the

meantime, one can only use the intuitive interpretation of phase transitions as it is known

in classical thermodynamics. The thermodynamic metrics proposed in this thesis are in-
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tuitively simple and satisfy the mathematical compatibility conditions of GTD. It would

be interesting to investigate the stability of the metrics derived in this thesis, especially in

the different scenarios available in black hole thermodynamics. Legendre invariance is an

important element of GTD. It limits the number of metrics that can be used to describe

classical thermodynamics in terms of geometric concepts. It is also essential in order to

obtain results that are independent of the choice of extensive variables and thermody-

namic potential. A different point of view, in which for a given thermodynamic system

there exists a preferred thermodynamic potential [115], is necessary in order to explain

the vanishing of Ruppeiner’s thermodynamic curvature in cases where thermodynamic in-

teraction is present. The classical thermodynamics, which is Legendre invariant, must not

be changed when one tries to represent it in terms of geometric structures.

It is also hoped that GTD can be used further to investigate the black holes. In

particular, it is now possible to ask the question about the statistical model which in the

corresponding limit leads to the black hole thermodynamics we are now correctly handling

in GTD. In fact, it is known that from a given partition function of a statistical system it

is possible to construct a thermodynamic metric (the Fisher-Rao metric) which, however,

is not Legendre invariant. It seems reasonable to ask the question whether it is possible to

derive the partition function from a given invariant thermodynamic metric. Preliminary

results indicate that the answer to this question is affirmative. In this way, starting

from the invariant metric which describes black holes thermodynamics, one would obtain

a partition function that corresponds to a specific statistical model of black holes. This

would represent an alternative way of exploring the “interior” of black holes without using

any of the known approaches to quantum gravity. Another possible application of GTD

is in the context of non-equilibrium thermodynamics. This formalism allows us to handle

correctly, from the mathematical point of view, the dependence of the thermodynamic

variables in terms of spacetime coordinates. In fact, there are several possibilities to

introduce such a dependence. The question is whether these mathematical models could

be used to propose a consistent model for non-equilibrium thermodynamics.

It is important to note that the GTD analysis may be used to find classical statistical

models for black holes also in the higher dimensional theories, to analyze their physical and

geometric properties, to explore the possibility of generalizing them to include quantum

statistical models, using the standard approach of quantum statistical physics, and to

investigate possible quantum effects.

The formalism of GTD may be used to find the statistical ensembles of black holes in

higher dimensional theories, for instance EGB theory, by using, for instance, the Euclidean

action method [32], and to analyze the physical differences between the canonical, grand-

canonical and micro-canonical ensembles. It would be interesting to find a generalization

of the Fisher-Rao statistical metric which coincides in the “thermodynamic limit” with
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the invariant thermodynamic metrics obtained in [135], to investigate the geodesics and

the curvature of this generalized metric, considering its statistical origin and the different

ensembles. In this context, it will be necessary to define the thermodynamic limit in

accordance to GTD.

Furthermore, using the resulting statistical ensembles of black holes and the standard

method explained in [67], one can propose statistical quantum ensembles for black holes

in higher dimensional gravity theories. Using the formalism of GTD and the definition of

“thermodynamic limit”, one could derive the statistical quantum metrics for black holes.

Finally, one can compare the different versions of thermodynamic, statistical and quantum

statistical metrics in order to find possible “quantum effects” at the level of the geodesics

and curvature of the equilibrium space.
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[7] JE Åman and N Pidokrajt, Phys. Rev. D 73 (2006) 024017.
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[66] P Hořava, Phys. Rev. D 79 (2009) 084008.

[67] K Huang, Statistical Mechanics, (John Wiley & Sons, Inc., New York, 1987).

[68] SW Hawking, Nature 248 (1974) 30.

[69] SW Hawking, Commun. Math. Phys. 43 (1975) 199.

[70] SW Hawking, Phys. Rev. Lett. 26 (1971) 1344.

[71] W Israel, Phys. Rev. Lett. 57 (1986) 397.

[72] W Janke, DA Johnston and R Kenna, Physica A 336 (2004) 181.

[73] DA Johnston, W Janke and R Kenna, Acta Phys. Polon. B 34 (2003) 4923.

[74] J Katz, I Okamoto and O Kaburaki, Class. Quant. Grav. (1993) 10 1323.

[75] O Kaburaki, I Okamoto and J Katz, Phys. Rev. (1993) D 47 2234.

[76] T Kaluza, Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.), (1921) 966.

[77] RP Kerr, Phys. Rev. Lett. 11 (1963) 237.

[78] J Kestin, A Course in Thermodynamics Vol. 1, (Taylor and Francis 1979).

[79] A Kheyfets, LK Norris and A Qadir, Nouvo Cimento A101 (1989) 3367.

[80] O Klein, Z. Phys. 37 (1926) 895.
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[100] H Nastase, “On IR solutions in Hořava gravity theories”, arXiv:0904.3604[hep–th].

[101] ET Newman, R Couch, K Chinnapared, A Exton, A Prakash and R Torrence, J.

Math. Phys. 6 (1965) 918.

[102] D Orlando and S Reffert, Class. Quant. Grav. 26 (2009) 155021.

[103] JR Oppenheimer and H Snyder: Phys. Rev. 56 (1939) 455.

[104] JM Overduin and PS Wesson, Phys. Rept. 283 (1997) 303.

[105] MI Park, J. High Energy Phys. 0909 (2009) 123.

[106] D Pavón, Phys. Rev. (1991) D 43 2495.

[107] P Pierre, A to Z of Thermodynamics, (Oxford University Press 1998).



114

[108] R Penrose, Rev. Nuovo Cim. 1 (1969) 252.

[109] R Penrose, Proc. R. Soc. London A 284, (1965) 159.

[110] R Penrose and R. Floyd, Nature. Phy. Sci. 229 (1971) 177.

[111] A Pervez and A Qadir, App. Math. and Mech. 8 (1987) 825.

[112] H Quevedo, J. Math. Phys. 48 (2007) 013506.

[113] H Quevedo and A Sánchez, Phys. Rev. D 79 (2009) 024012.

[114] H Quevedo and A Sánchez, J. High Energy Phys. 09 (2008) 034.

[115] H Quevedo, Gen. Rel. Grav. 40 (2008) 971.

[116] H Quevedo and A Vázquez, AIP Conf. Proc. 977 (2008) 165.

[117] H Quevedo, A Sánchez, S Taj and A Vázquez, Gen. Rel. Grav. 43 (2011) 1153.

[118] H Quevedo, A Sánchez, S Taj and A Vázquez, J. Korean Phys. Soc. 57 (2010) 646.

[119] H Quevedo, A Sánchez, S Taj and A Vázquez, “Geometrothermodynamics in Hor̃ava-

Lifshitz gravity”, arXiv:1101.4494[hep–th].

[120] H Quevedo and A Sánchez, Phys. Rev. D 79 (2009) 087504.

[121] H Quevedo, A Sánchez and A Vázquez, “Invariant geometry of the ideal gas”,

arXiv:0811.0222[hep–th].

[122] CR Rao, Bull. Calcutta Math. Soc. 37 (1945) 81.

[123] H Reissner, Ann. Phys. 50 (1916) 106; G. Nordström, Proc. Kon. Ned. Akad. Wet.

20 (1918) 1238.

[124] C Rovelli, “Notes for a brief history of quantum gravity”, arXiv:0006061[gr–qc].

[125] G Ruppeiner, Phys. Rev. A 20 (1979) 1608.

[126] G Ruppeiner, Rev. Mod. Phys. 67 (1995) 605; 68 (1996) 313.

[127] P Salamon, JD Nulton and E Ihrig, J. Chem. Phys. 80 (1984) 436.

[128] P Salamon, E Ihrig and RS Berry, J. Math. Phys. 24 (1983) 2515.

[129] M Sami and N Dadhich, TSPU Vestnik 44N7 25 (2004).

[130] T Sarkar, G Sengupta and BN Tiwari, J. High Energy Phys. 0611 (2006) 015.

[131] K Schwarzschild, Sitzber. Deut. Akad. Wiss. Berlin (1916) 189.



115

[132] J Shen, RG Cai, B Wang and RK Su, Int. J. Mod. Phys. A 22 (2007) 11.

[133] SI Sandler and LV Woodcock, J. Chem. Eng. Data 55 (2010) 4485.

[134] J Samuel, Class. Quantum Grav. 28 (2011) 150301.

[135] S Taj and H Quevedo, “Geometrothermodynamics of higher dimensional black holes

in Einstein-Gauss-Bonnet theory”, arXiv:1104.3195[hep–th].

[136] GF Torres del Castillo and M Montesinos-Velasquez, Rev. Mex. F́ıs. 39 (1993) 194.

[137] KS Thorne, in J. Klauder (ed.), Magic without Magic: John Archibald Wheeler,

(WH. Freeman, San Francisco, 1972.)

[138] H Urakawa, Calculus of Variations and Harmonic Maps, Translations of Mathemat-

ical Monographs, vol. 132. American Mathematical Society, Providence, RI (1993).

[139] A Vázquez, H Quevedo and A Sánchez, J. Geom. Phys. 60, 1942 (2010).

[140] A Vazquez, H Quevedo and A Sanchez, “Thermodynamic systems as bosonic

strings”, arXiv:0805.4819[hep–th].

[141] F Weinhold, J. Chem. Phys. 63 (1975) 2479, 2484, 2488, 2496; 65 (1976) 558.

[142] E Witten, Adv. Theor. Math. Phys. 2 (1998) 505.

[143] DL Wiltshire, Phys. Lett. B 169 (1986) 36; Phys. Rev. D 38 (1988) 2445.

[144] JA Wheeler, Am. Sci. 59 (1968) 1.

[145] CN Yang and RL Mills, Phys. Rev. 96 (1954) 191.

[146] B Zwiebach, Phys. Lett. B 156 (1985) 315.

[147] B Zumino, Phys. Rep. 137 (1985) 109.


