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Abstract

Topological indices, sometimes also recognized as a graph-theoretic invariant, maintain

the symmetry of the molecular structures and assign a mathematical language to predict

features such as the radius of gyrations, viscosity, boiling points, etc. The topological

invariant can be considered as a numeric amount which interconnected with a graph which

captures the graph topology and is unchanged under graph automorphism. Nowadays,

topological indices have been developing attention due to their significance in the domain

of computational chemistry. There are certain crucial categories of topological indices with

respect to their specific topological features, like degrees of vertices, distances between

vertices, eccentricities of vertices, connectivity, matching number, etc.

The main focus of this dissertation is to derive extremal graphs with respect to some

eccentricity based indices. We determine the extremal conjugated trees with respect to

eccentric connectivity index and also eccentric adjacency index among all n-vertex con-

jugated trees. We focus on the unicyclic graphs with the largest unicyclic graph with

respect to eccentric adjacency index with fixed order and girth. We determine the tree

with the largest eccentric adjacency index among all the trees with a fixed diameter. Next

we derive the extremal trees with the eccentric connectivity and the eccentric adjacency

indices among the trees with a given bipartition size, fixed matching number, fixed in-

dependence number and fixed domination number. We obtain the graphs with fixed cut

edges which have the largest eccentric adjacency index and characterized the extremal

graphs. We determine the trees with the smallest and the largest total eccentricity index

among the class of trees with p pendent vertices. Furthermore, we define a class of trees

with a fixed diameter and investigate the trees with the smallest and the largest total

eccentricity index in this class.
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Chapter 1

An introduction to graph theory

In the first section of the chapter, we will come to know about a concise history and certain

applications of graph theory in different dimensions. Section 1.2 contains some vital

terminologies, notions and definitions of modern graph theory and these will be beneficial

throughout this dissertation. Some widely known parameters of a graph like matching,

domination number, independence number and vertex cover are discussed in Section 1.3.

Section 1.4 incorporates a bit of discussions about trees and its related structures. In the

last section of this chapter, we will give a short introduction and certain familiar outcomes

of extremal graphs with respect to parameters. For other explanations of these concepts

which are not explicitly given in this chapter, the reader is referred to [9, 14, 49,64].

1.1 Historical background

In 1736, the city of Prussia named Königsberg was situated along the river which is

familiar as Kaliningrad, Russia, in modern time. The river Pregel flowed through the city

and partitioned it into four regions. These regions were joined by seven bridges. A well

liked exercise among the residents of Königsberg was finding if it was possible to walk

from island to island by crossing seven bridges exactly once and arrive back to the initial

point. This challenge is labeled by the Königsberg bridge problem. The mayor of Prussia
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“Carl Gottlieb Ehler” was concerned to this problem, and he wants to obtain the solution

of it.

Figure 1.1: Königsberg bridge problem and Euler’s sketches.

Therefore, he discussed it with a Swiss mathematician Leonhard Euler in 1735. At

that time, Euler concluded that the solution of Königsberg bridge problem was impossible.

Also he wrote a research paper on it and presented it in front of his teammates at the

Academy of Sciences at St. Petersburg. Moreover, Euler gave justification on it in his

research paper in 1736, see [33]. In coming to this consequence, Euler figure out the

problem in the form of graph theory, but he does not design any graph model of it; he

only sketches it. Later in 1789, Higgins [52] designed the first graph, when he presented

a chemical structure in the form of vertices and edges.

a

b

c

d

Figure 1.2: Graphical form of Königsberg bridge problem.

For further study on the historical aspects and the solution of Königsberg bridge prob-

lem, see [7, 41, 53]. The first concise book related to graph theory was composed in 1936
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by Könic [63]. Since then the Euler’s explanation of Königsberg bridge problem and the

first book on graph theory, the area of graph theory developed. Afterwards, it became

the renowned and one of the most significant branch of applied mathematics. Usually

known that graph theory has implementations in combinatorics, but it has also beneficial

applications in chemistry, optimization theory, biology, applied mathematics, electrical

engineering, computer science, bioinformatics, network analysis, sociology, business ad-

ministration, economics and other scientific and not-so-scientific areas.

1.2 Basic notations and some well known families of

graphs

A graph H consists of a non-empty set of vertices VH and a set of edges EH, and it

is represented by H = (VH, EH). The vertices in H are specified by points, and they

may represent some objects, for example, cities, people, atoms, etc. The edges in H are

indicated by lines or curves connecting the vertices of H. The order nH and the size eH of

H are the cardinalities of VH and EH, respectively, and H is known as a (nH, eH)-graph. A

graph with a finite set of vertices and edges is characterized as a finite graph, on the other

hand, it is recognized as an infinite graph. Two or more edges that join the same pair of

vertices are described as multiple edges, and a loop is an edge that joins a vertex with

itself. A graph H is recognized as a simple graph if it has no multiple edges and loops.

Throughout this dissertation, every examined graph is undirected, simple and finite.

If hl, hm ∈ VH, then hlhm is an edge among hl and hm, and these are said to be end

vertices of hlhm. So the vertices hl and hm are linked or neighbors to each other and hlhm

is incident on both vertices hl and hm. The set of neighbors of hl ∈ VH is recognized as

neighborhood of hl and is written by ΓH(hl). For a given vertex hl ∈ VH, the degree of hl,

represented by degH(hl), is the number of its linked edges in H. The degree of a given

vertex having loop is two. A vertex with degree “0” is recognized as an isolated vertex
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and a degree “1” vertex is specified as a pendent vertex. The set of pendent vertices of H

is represented by PH and the set of pendent vertices linked to a specific vertex hl ∈ VH is

written by PH(hl). The sum of the degrees of linked vertices of hl ∈ VH is described as

SH(hl) =
∑

hm∈ΓH(hl)

degH(hm).

The smallest (respectively, largest) degree of H is the smallest (respectively, largest)

degree among all vertices of H and is represented as δH (4H). For a vertex hl ∈ VH, we

have

0 ≤ δH ≤ degH(hl) ≤ 4H ≤ nH − 1.

If the degree of every vertex in H is same, then H is a regular graph. The complement

of H, written by H, is a graph having VH = VH and hlhm ∈ EH if and only if hlhm /∈ EH.

Therefore, the order and size of H are nH and
(
nH
2

)
− eH, respectively. For a vertex

hl ∈ VH, we have degH(hl) = nH − 1− degH(hl).

A path Pn on n vertices h1, h2, . . . , hn is written as h1h2 . . . hn and is represented by

h1, hn-path. The vertices h1 and hn are the end vertices and h2, . . . , hn−1 are the internal

vertices of the path Pn = h1h2 . . . hn. Two paths P and P ′ with no common internal ver-

tices are called internally disjoint paths. If paths P and P ′ share no common edge, then

they are called an edge-disjoint paths. An n-vertex cycle with vertices h1, . . . , hn is repre-

sented by Cn = h1h2 . . . hnh1 and is named as a cycle of length n. In a connected simple

graph H, a cycle containing s vertices is called an s-cycle in H. The shortest (respectively,

largest) length of a cycle in H is described as the girth (respectively, circumference) of H.

A simple graph is a complete graph, written as Kn, if each pair of vertices is linked.

The graph K1 is represented as a trivial graph. Since every pair of vertices is linked in

Kn, therefore, it has the largest possible size as compared to any other simple n-vertex

graph. A clique of H is a complete graph contained in H, and the largest clique of H is a

clique with largest size among all cliques contained in H. The cardinality of largest clique

of H is known as the clique number of H and is written as ωH.

A graph H is known as a bipartite graph if VH can be converted into two independent

sets Vl and Vm of vertices such that no single edge has two end points in a similar Vp,
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p = l or m. A bipartite graph is known as a complete bipartite graph if every pair of

vertices in Vl and Vm are linked and is represented by Kl,m. If the two disjoint sets have

cardinality l and m, respectively, then (l,m) is a bipartition size of H, where l+m = nH.

A graph H is known as a j-partite graph if there exists a decomposition V1,V2, . . . ,Vj

of VH such that every Vl is an independent set, l = 1, 2, . . . , j. Moreover, H is a complete

j-partite graph such that h1h2 ∈ EH if and only if h1 ∈ Vr and h2 ∈ Vs, where r 6= s, and

is written by Kn1,n2,...,nj
, where |Vl| = nl for l = 1, 2, . . . , j.

Let H1 and H2 be graphs with disjoint-vertex sets. The union of H1 and H2, signified

byH1∪H2, is a graph whose vertex set VH1∪H2 = VH1∪VH2 and edge set EH∪H2 = EH1∪EH2 .

The order and size of H1 ∪ H2 are nH1 + nH2 and eH1 + eH2 , respectively. Similarly, the

intersection of H1 and H2, represented by H1 ∩H2, is a graph with VH1 ∩ VH2 vertex set

and EH1 ∩EH2 edge set. If H is a graph and h1, h2 ∈ VH are non-linked vertices of H, then

the graph constructed by joining h1 and h2 is written by H ∪ {h1h2}. The subdivision

graph, represented by S(H), is the graph constructed from a graph H by replacing each

of edge h1h2 ∈ EH by a length two h1uh2 path, where u /∈ VH.

1.2.1 Subgraphs and isomorphic graphs

A graph H2 = (VH2 , EH2) is a subgraph of a H1 = (VH1 , EH1) graph if VH2 ⊆ VH1 and

EH2 ⊆ EH1 , and is represented by H2 ⊆ H1. A subgraph H2 is an induced subgraph of

H1 if edge set of H2 is {h1h2 | h1, h2 ∈ VH2 and h1h2 ∈ EH1}. If VH2 = VH1 , then H2 is

known as a spanning subgraph of H1.

Since a graph can be constructed in miscellaneous ways in which the shape of edges are

not significant. All such drawings of a graph refer to the same graph and are described

as isomorphic graphs. Therefore, if there exists a bijection mapping π among vertex

sets of two simple graphs H1 and H2, with the condition that for h1, h2 ∈ VH1 , h1h2 ∈

EH1 ⇔ π(h1)π(h2) ∈ EH2 , then H1 and H2 are said to be isomorphic graphs [9] and is

written as H1
∼= H2. In isomorphism, both graphs must have the same properties, for

example, order, size, vertex degree sequence, girth, same number of equal length cycle,
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same complements, etc. However, these conditions are not adequate to justify that two

graphs are isomorphic to each other for a large n.

1.2.2 Connectivity and distances

Any two vertices h1, h2 ∈ VH are connected in H if h1 and h2 are joined by a path. A

graph H is recognized as a connected graph, if any two vertices are connected by a path

in H. A maximal connected subgraph of H is known to be a component of H. A graph H

is called a 2-connected (respectively, 2-edge-connected), if H− h (respectively, H− h1h2)

is connected, for every h ∈ VH (respectively, h1h2 ∈ EH).

A vertex set U ⊂ VH is a vertex-cut, if deletion of vertices of U increases the components

of H. A cut-vertex is a vertex whose deletion from H form more components than the

original graph. The cardinality of smallest vertex-cut is named as connectivity number of

H and is written by κH. A maximal connected graph is recognized as a block if it does

not have any cut-vertex. An edge set E1 ⊂ EH is an edge-cut of H, if deletion of edges of

E1 increases the components of H. If |E1| = 1 then E1 is known as a bridge or cut-edge,

and it does not lie on a cycle [10]. A cut-edge is recognized as an internal cut edge if it is

not a pendent edge. The cardinality of a smallest edge-cut is said to be edge-connectivity

number of H and is represented as λH.

For h1, h2 ∈ VH, the distance between h1 and h2, represented by dH(h1, h2), is described

as the path of smallest length between h1 and h2 in H. The eccentricity, ecH(h), of a

vertex h ∈ VH is described as ecH(h) = max{dH(h, h1) | h1 ∈ VH}. The diameter and the

radius of H, represented by dH and rH, respectively, are described as:

dH = max
h∈VH

ecH(h), rH = min
h∈VH

ecH(h). (1.1)

A diametrical path in H is a path of length equal to dH. A vertex h ∈ VH is known as

a peripheral vertex if ecH(h) = dH. The induced subgraph of H constructed from the

peripheral vertices is represented by Per(H). If ecH(h) = rH, then h is called a central

vertex in H. The center of H is induced subgraph of H created by the central vertices
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of H and is written by C(H). A graph is recognized as a self-centered graph if its radius

and diameter are equal. For X ⊂ VH, the graph H−X is constructed from H by deleting

all vertices and edges linked on the vertices of X . For E1 ⊂ EH, the graph H − E1 is

constructed from H by removing all edges of E1 from H.

Example 1.1. Let H be a graph with VH = {h1, . . . , h9} and its center as shown in

Figure 1.3. Then the central vertices are h4, h5 and the peripheral vertices are h1, h7, h9

of H. The radius and diameter of H are 3 and 5, respectively.

h1 h4
h5h6

h7

h9

h3

h8

h2

h4

h5

h1

h7

h9

Figure 1.3: From left to right, a graph H, C(H) and Per(H).

1.3 Matching, domination number, independence num-

ber and vertex cover

A matching M in H is a subset of EH such that any two elements of M do not incident

to each other. A matching M in H is a largest matching if |M | ≥ |M ′| for any other

matching M ′ in H. The cardinality of a largest matching in H is known as the matching

number of H and is written by mH. A vertex h ∈ VH is represented as an M -saturated if

it is an end-vertex of an edge in M . A matching M is a perfect matching in H if every

vertex ofH is M -saturated or mH =
nH
2

. A graph having a perfect matching is recognized

as a conjugated graph.

A subset A ⊂ VH is known as a dominating set of H if for every vertex h1 ∈ VH \ A,

there is a vertex h2 ∈ A such that h1h2 ∈ EH. For a dominating set A of H with

h1, h2 ∈ VH, if h1h2 ∈ EH then h2 is dominated by h1, where h1 ∈ A and h2 /∈ A. The
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domination number is the smallest cardinality between all the dominating sets of H and

is represented by γH.

A subset I ⊂ VH is recognized as independent set of H if the elements in I are

pairwise not linked in H. The independence number of H is the largest cardinality among

all independent sets of H and is represented by αH.

A subset C ⊂ VH is a vertex cover of H if and only if every edge h1h2 ∈ EH, either

h1 ∈ C or h2 ∈ C (or both). Clearly, VH is a vertex cover of H. A vertex cover C of H is

represented as a smallest vertex cover if |C| ≤ |C1| for any other vertex cover C1 of H and

C is a minimal vertex cover of H if there is no vertex cover C1, which is the proper subset

of C. The vertex covering number, cH, is the cardinality of a smallest vertex cover of H.

A subset F ⊂ EH is an edge cover of H if and only if every vertex in H is linked with

an edge in F . Clearly, EH is an edge cover of H when δH > 0. An edge cover F of H

is called a smallest edge cover if |F| ≤ |F1| for any other edge cover F1 of H and F is

a minimal edge cover of H if there is no edge cover F1, which is the proper subset of F .

The edge covering number, c′H, is the cardinality of a smallest edge cover of H.

Example 1.2. Let H be a graph with VH = {h1, h2, . . . , h9, h10}, shown in Figure 1.4.

The minimum vertex cover and largest independent sets of H are {h2, h3, h5, h7} and

{h1, h4, h6, h8}, respectively. Therefore, the independence number and vertex covering

number of H are αH = 4 and cH = 4, respectively. Also the matching number of H is

mH = 4.

h1

h6

h7

h3

h5

h4

h2

h8

h1

h6

h7

h3

h5

h4

h2

h8

h1

h6

h7

h3

h5

h4

h2

h8

h1

h6

h7

h3

h5

h4

h2

h8

 (a) (b) (c) (d)

Figure 1.4: (a) A graph H. (b) Circled vertices form a vertex cover. (c) Circled vertices

form an independent set. (d) Bold edges form a maximum matching.
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1.4 Trees and their related structures

In 1857, Sir Arthur Cayley [13] discussed the structure of trees, and he used the term

“kenograms” for trees. Trees have many significant applications in various fields; par-

ticularly in road networks, data structure, the enumeration of saturated hydrocarbons,

hierarchical data and communication networks. Furthermore, trees have a great utility

in computer science, such as R-tree for spatial access methods, or in biology, such as

evolutionary trees or cladograms. The spanning trees are used to look for minimum cost

and in a road network problem to detect the shortest roots among the cities.

A connected graphH is known to be a tree if and only if it does not possess a cycle, and

is expressed by T . In a tree T , a non-pendent vertex is said to be an internal vertex and

each pair of distinct vertices of T are linked by a single path. The graph H is recognized

as a forest if all connected components of it are trees.

A star Sn is an n-vertex tree that has a central vertex of n − 1 degree and exactly

n−1 pendent vertices. A tree is said to be a double star if it has exactly two non-pendent

vertices. A tree T with n ≥ 3 is known as caterpillar if extraction of pendent vertices of

T constructs a path. A sub-tree T1 of a connected graph H is known as a spanning tree

of H if VT1 = VH. If a vertex h ∈ VT is labeled as the root of T , then T is represented as

a rooted tree.

In the upcoming theorem, Gross and Yellen [40] manifested that every edge of a tree

is a bridge. It signifies that by eliminating any edge from T transformed the tree into two

components, each of which is a sub-tree of T .

Theorem 1.3 (Gross and Yellen [40]). A graph T is a tree if and only if T is a connected

graph, and every edge in it is a bridge.

There are certain families of graphs, which are known as tree-like structures because

they become a tree after deletion of a few edges. For example, n-vertex unicyclic and

bicyclic graphs are connected graphs which contain n and n + 1 edges, respectively. A

connected graph H is said to be a cactus if its each block is either a cycle or an edge.
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1.5 Extremal graph theory

Extremal graph theory is a significant field of graph theory, and it performs an essential

role within the area of graph theory. In this theory, researchers analyze the influence of

global properties (order, size, matching, independence number, etc.) of a graph on its

local substructures.

In 1907, Mantel [70] gave the answer of an extremal problem “what is the largest size

of a triangle-free graph H” and he concluded the following outcome:

Theorem 1.4 (Mantel [70]). Let H be a triangle-free graph. Then H contains at most
n2
H
4

edges, equality if and only if H ∼= KbnH/2c,dnH/2e.

In 1941, Turán [90] started work on the advancement of extremal graph theory when

he determined the generalization of Mantel’s theorem.

Theorem 1.5 (Turán [90]). Let H be a Kt-free graph with size eH, where 3 ≤ t ≤ nH.

Then we have eH ≤
n2
H((t−2)/(t−1))

2
.

Erdős and Stone [30] generalized the Turán’s theorem in 1946 and named it as fun-

damental theorem of extremal graph theory. They also extended the Turán’s theorem for

the graphs that do not contain the complete multi-partite graph as follows:

Theorem 1.6 (Erdős and Stone [30]). For a given real number a > 0 and natural

numbers r, s, ∃ an integer b0(r, s, a) such that if a graph H with nH > b0(r, s, a) and

eH ≥
(r−1/r+a)n2

H
2

, then H contains a complete r + 1-partite graph.

In 1959, Erdős and Gallai [31] gave the answer of two problems proposed by Turán,

that are, where the graph H attained the smallest size without containing a path and

where it gained the largest size without containing a cycle of largest length.

Theorem 1.7 (Erdős and Gallai [31]). Let H be a Ps-free, (s ≥ 2), graph with size eH.

Then we have eH ≤
(s− 2)nH

2
. Furthermore, equality holds if and only if nH is divisible

by s− 1 and all connected components of H are Ks−1.

10



Theorem 1.8 (Erdős and Gallai [31]). Let H be a graph with eH >
1

2
(s − 1)(nH − 1)

edges, where s ≥ 3. Then H have a cycle of length at least s. This bound is tight if s− 2

is divided by nH − 1.

Up to now, identifying the extremal (smallest or largest) graphs in a given class of

graphs with reference to topological invariants has turned out to be a significant direction

in extremal graph theory. Along these lines, a number of excellent results have been

obtained. We observe that the extremal graphs are the same for certain given classes of

graphs. For further study on extremal graph theory, we refer [4, 5, 32,35,48,51].
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Chapter 2

Chemical graph theory and

topological invariants

From the past two centuries, a lot of research work has been done in the implementations

of Chemistry and graph theory in different fields by investigators. In later 18th century,

chemical graphs were first used as the fundamental study of particles and matters. Cayley

[12] used alkane trees to examine different categories of isomers. Sylvester [85] designed

the structural formula for chemical graphs and then examined the similarity among them.

William Cullen [88], who first termed them as affinity diagrams to symbolize the forces

among pairs of molecules in chemical reactions. Chemical graph theory is the field of

mathematical chemistry, which investigates the implementation of graph theory to figure

out the molecular problems, and this theory performs a crucial part in the field of chemical

science. A molecular graph H is a depiction of structural formula of chemical compound

in the form of graph theory, and H is also generally known as a chemical graph, where

edges and vertices of H correlate to chemical bonds and atoms, respectively.

In this dissertation, we will only concern with the topological properties or topologi-

cal invariants of molecular graphs. The idea of topological invariants is implemented in

molecular similarity analysis. Kopp [65] combined atoms of certain types in molecules to

investigate volumes and densities of molecules. Topological indices are described as quan-

12



titative parameter of molecular graphs, and they perform a crucial part in the detection

of the physical-chemical characterizations of molecules. For applications of topological

indices, we refer the readers [50, 62].

This chapter is ordered as: In Section 2.1, we furnish a formal definition of a topolog-

ical index with their implementations, and also we give details on some of most known

topological indices. In Section 2.2, we present some known results related to topological

descriptor.

2.1 Topological invariants

A topological invariant is figure out as the conversion of a molecular graph into a quantity

which describes the graph-topology, and we also call it “graph invariant”. A topologi-

cal invariant of a graph H1, represented by Top(H1), is equal to the topological index

Top(H2) of a graph H2 if H1 and H2 are isomorphic. A topological invariant is a mathe-

matical quantity which brings together with the chemical structures of any finite simple

graph. Topological indices generally reflect both the molecular shape and size of a molec-

ular graph. A topological index of a molecular graph has numerous applications that

are interconnection with its molecular properties [6]. These are also found effective for

comparison and links between the biological and/or physico-chemical characterizations

of molecules in non-empirical quantitative structure-property and quantitative structure-

activity relationships [89]. These are also worthwhile in chemical documentation, isomer

discrimination and pharmaceutical drug design [78,79,81].

Recently, topological invariants have earned a vital interest due to their significance in

the field of computational chemistry. There are various varieties of topological invariants

with respect to their specific topological features, including degrees of vertices, distances

between vertices, eccentricities of vertices, connectivity, matching number, etc. Among

these topological invariants, the degree based invariants are of extensive significant. Some

degree and distance based topological invariants can also be computed by using matrices.

13



For a detailed study on this topic, we refer the reader [44,77].

2.1.1 Some known topological invariants

Let H be a simple connected graph with VH vertex set and EH edge set. The first and the

most noteworthy index, the Wiener index, was represented in 1947 by Harold Wiener [92].

At the beginning, this index was named as path invariant but after some time, it was

retitled as Wiener index. In 1971, the notion of Wiener index was described by Hosoya [54]

as:

W(H) =
∑

{h1,h2}⊆VH

dH(h1, h2).

The mathematical and chemical implementations of W(H) have been extensively inves-

tigated in [21]. Harold Wiener [92] also brought in another beneficial distance based

topological invariant, known as Wiener polarity index. It can be described as cardinal-

ity of unordered pairs of {h1, h2} vertices of H with dH(h1, h2) = 3 and mathematically

defined as follows:

Wp(H) = |{{h1, h2} | dH(h1, h2) = 3, for h1, h2 ∈ VH}|.

Later on, the chemical and mathematical implementations of Wiener polarity index

Wp(H) have been discussed by Lukovits and Linert, and Hosoya in [55,69].

The hyper Wiener index of H is also an old index and is the extension of W(H). The

hyper Wiener index WW(H) of H, interpreted by Randić [76], is given by:

WW(H) =
1

2

∑
h1∈VH

∑
h2∈VH

(dH(h1, h2) + dH(h1, h2)2).

Historically, the first degree based invariants that were described by Gutman and

Trinajstić [45], and are named as Zagreb group indices. Now a days, these invariants are

titled with the Zagreb indices and are specified as follows:

M1(H) =
∑
h1∈VH

(degH(h1))2 =
∑

h1h2∈EH

(degH(h1) + degH(h2)),
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M2(H) =
∑

h1h2∈EH

degH(h1) degH(h2).

These indices are approximate formulae of the structure-dependency of total π-electron

energy and are also recommended to measure molecular complexity.

In 1975, Randić [75] investigated a novel topological invariant to judge the boundaries

of branching of the carbon-atom skeleton of saturated hydrocarbons. He named it the

branching invariant, but after some time it was retitled as connectivity index. Now a

days, it is titled as Randić index and it is the most applied and known invariant among

all invariants. It is the most-beneficial invariant in the study of structure property and

activity relationships and is described as follows:

R(H) =
∑

h1h2∈EH

(degH(h1) degH(h2))−1/2.

Later, in 1998, Bollobás and Erdös [8] presented generalization of Randić invariant

and called it general Randić invariant. It was specified as follows:

Rβ(H) =
∑

h1h2∈EH

(degH(h1) degH(h2))β,

where β is a real number. Therefore Randić invariant of H is R−1/2.

The general sum-connectivity invariant is a recent topological descriptor that was

designed by Zhou and Trinajstić [100]. They replaced the product term degH(h1) degH(h2)

by degH(h1) + degH(h2) in the general Randić invariant and written as follows:

χβ(H) =
∑

h1h2∈EH

(degH(h1) + degH(h2))β,

where β is a real number. Therefore χ−1/2(H) is a classical sum-connectivity invariant,

which was investigated by Zhou and Trinajstić [99]. For additional details on these degree

based topological invariants, readers are referred to [6, 46, 62,67,68].

2.1.2 Some degree-distance based topological invariants

Recently, many eccentricity based invariants and their implementations in mathematics

and chemistry have been introduced. Now we incorporated some distance-degree based
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topological invariants. The notion of the average eccentricity index was brought by Sko-

robogatov and Dobryninin [83] in 1988 and is interpreted as follows:

ε(H) =
1

n

∑
h∈VH

ecH(h).

For more results on the average eccentricity index, we suggest the readers to [11,23,86].

One of the degree eccentricity invariant is eccentric connectivity invariant investigated

by Sharma et al. [81] and is illustrated as:

ξc(H) =
∑
h∈VH

ecH(h) degH(h).

In recent times, researchers have been attracted in analyzing the chemical and mathe-

matical characteristics of ξc(H). The eccentric connectivity invariant has been proved

to provide extreme level of anticipatebility of pharmaceutical characteristics and allow

directions for the advancement of beneficial and protected anti-HIV compounds [22].

Gupta et al. [44] examined the connection between the Wiener and the eccentric con-

nectivity indices. It has been also applied in structure activity and structure property

correspondences studies [66,78], and its mathematical characteristics have been explored

in [60,79,101].

The connective eccentricity index of H is the continuation of eccentric connectivity ξc

index that was interpreted by Gupta et al. [42] and is defined as follows:

ξce(H) =
∑
h∈VH

degH(h)

ecH(h)
.

Furthermore, the eccentric adjacency index (also renowned as Ediz eccentric connec-

tivity invariant [27]) is the variation of the eccentric connectivity and the connective

eccentricity invariants. Gupta et al. [43] suggested the eccentric adjacency index as fol-

lows:

ξad(H) =
∑
h∈VH

SH(h)

ecH(h)
.

Additionally, they inquired the connection of anti-HIV activity of HEPT derivatives with

the first-order molecular connectivity invariant and eccentric adjacency invariant. More-
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over, the high discriminating power of ξad extends a massive capability for structure-

activity and structure-property studies.

Another topological index derived from the eccentric connectivity invariant, is the

total eccentricity invariant and is given as:

τ(H) =
∑
h∈VH

ecH(h).

Vukičević and Graovac [91] defined the first and second Zagreb eccentricity invariants

as follows:

E1(H) =
∑
h∈VH

(ecH(h))2, E2(H) =
∑

h1h2∈EH

ecH(h1)ecH(h2).

Some computational and mathematical characteristics of the Zagreb eccentricity indices

have been investigated in [16,24,39,94].

2.2 Some known results of extremal graphs w.r.t.

topological indices

In this section, we talk about some valuable results related to extremal graphs, with

given parameters such as largest degree, matching number, diameter, etc., with respect to

certain topological invariants. First we give some elementary results about Wiener index.

Theorem 2.1 (Entringer et al. [29], Gutman [47]). Let T be a tree. Then W(SnT
) ≤

W(T ) ≤ W(PnT
), where first and second equalities satisfy if and only if T ∼= SnT

and

T ∼= PnT
, respectively.

In the upcoming result, Entringer et al. [29] investigated the maximal graph with

respect to Wiener index among all connected graphs.

Corollary 2.2 (Entringer et al. [29]). For a connected graph H, we have W(H) ≤

W(PnH
), where equality if and only if H ∼= PnH

.
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A tree T consisting of a path PnT−4T−1 and a star S4T +1 whose one pendent vertex is

attached with a pendent vertex of PnT−4T−1, is known as broom and is written by BnT ,4T
.

The following theorem yields the maximal graph with respect to Wiener index between

all connected graphs with a largest degree.

Theorem 2.3 (Stevanović [84]). For any connected graph H with a largest degree 4H,

we have W(H) ≤ W(BnH,4H), equality if and only if H ∼= BnH,4H.

Let Sn,m be a tree constructed from the star Sn−m+1 by connecting a pendent edge

to each m− 1 pendent vertices in Sn−m+1. It is proved in [25] that among all trees with

matching number m, Sn,m has smallest Wiener index.

Theorem 2.4 (Du and Zhou [25]). For any tree T with matching number mT , where

2 ≤ mT ≤
⌊nT

2

⌋
, we have W(T ) ≥ n2

T + (mT − 3)nT − 3mT + 4, equality if and only if

T ∼= SnT ,mT
.

By Ln,g, we represent the unicyclic graph which is constructed from a cycle Cg and a

path Pn−g+1 by identifying a vertex of Cg with a pendent vertex of Pn−g+1. Let U(n, g;n−

g) be a unicyclic graph constructed from Cg by connecting n − g pendent vertices to a

vertex of Cg. The upcoming theorem gives the bounds on Wiener index of unicyclic graphs

with a given girth.

Theorem 2.5 (Yu and Feng [96]). Let U be a unicyclic graph with a given girth g. Then

W(U) ≥


g3

8
+ (nU − g)

(
g2

4
+ nU − 1

)
if g is even,

g3 − g
8

+ (nU − g)

(
g2 − 1

4
+ nU − 1

)
if g is odd,

equality if and only if U ∼= U(nU , g;nU − g). Moreover

W(U) ≤


g3

8
+ (nU − g)

(
n2
U + nUg + 3g − 1

6
− g2

12

)
if g is even,

g3 − g
8

+ (nU − g)

(
n2
U + nUg + 3g − 1

6
− g2

12
− 1

4

)
if g is odd,

equality if and only if U ∼= LnU ,g.
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Corollary 2.6 (Yu and Feng [96]). For a unicyclic graph U with nU ≥ 4, we have

nU(nU − 1) ≤ W(U) ≤ n3
U − 7nU + 12

6
, with left inequality is equality if and only if

U ∼= U(nU , 3;nU − 3) and right inequality is equality if and only if U ∼= LnU ,3.

Now we provide some known results related to eccentricity based topological indices

and their analogous extremal graphs. In the upcoming theorem, Zhou and Du [101] gives

the lower and upper bounds on ξc of a graph.

Theorem 2.7 (Zhou and Du [101]). Let H be a connected graph with size eH. Then

2eH · rH ≤ ξc(H) ≤ 2eH · dH,

where both equalities hold if and only if H is a self-centered graph.

The next theorem shows that star Sn is the smallest graph with reference to eccentric

connectivity index among all graphs.

Theorem 2.8 (Zhou and Du [101] and Morgan et al. [71]). For a connected graph H, we

have ξc(H) ≥ 3(nH − 1), where nH ≥ 4 and equality if and only if H ∼= SnH.

Zhou and Du [101] give the smallest unicyclic graph with reference to the eccentric

connectivity index in next result.

Theorem 2.9 (Zhou and Du [101]). For a unicyclic graph U with nU ≥ 4, we have

ξc(U) ≥ 3nU + 1, with equality holds if and only if U ∼= U(nU , 3;nU − 3).

Let B be the bicyclic graph which is obtained from unicyclic graph U(n, 3;n− 3) by

joining two pendent vertices with an edge of U(n, 3;n− 3).

Theorem 2.10 (Zhou and Du [101]). For a bicyclic graph H, where nH ≥ 5, we have

ξc(H) ≥ 3nH + 5, equality holds if and only if H ∼= B.

Hua and Das [58] discussed the connection among the Zagreb and the eccentric con-

nectivity indices.
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Theorem 2.11 (Hua and Das [58]). For a connected graph H with nH ≥ 7 and δH ≥
nH
2
− 1, we have ξc(H) ≤Mi(H), for i = 1, 2.

Theorem 2.12 (Hua and Das [58]). Let H be a connected graph, where nH ≥ 6, with the

connected complement. Then

• M1(H) +M1(H) ≥ ξc(H) + ξc(H).

• M2(H) +M2(H) ≥ ξc(H) + ξc(H).

Later on, Dankelmann et al. [15] determined the relation among the eccentric connec-

tivity and the Wiener indices.

Theorem 2.13 (Dankelmann et al. [15]). For a tree T , we haveW(T ) ≤ nT
3
ξc(T )−nT+1,

equality holds if and only if T ∼= SnT
, where nT ≥ 3.

Corollary 2.14 (Dankelmann et al. [15]). Let H be a graph with nH ≥ 3. Then W(H) ≤
2nH

3
ξc(H)− nH + 1.

Ilić and Gutman [60] derived the eccentric connectivity index of trees with a fixed

largest vertex degree, fixed diameter, fixed radius, perfect matching, fixed number of

pendent vertices and found their corresponding extremal graphs. Zhang et al. [102] gave

lower bounds on the ξc in the form of size of graphs with a given diameter. Later on

Zahng et al. [103] determined the largest eccentric connectivity invariant of connected n-

vertex graphs with e edges (n ≤ e ≤ n+4), and gave a conjecture on the largest eccentric

connectivity index of connected graphs for e ≥ n+ 5. For further details on the eccentric

connectivity index, see [72,73,93].

The relationship among the connective eccentricity and other topological indices is

studied in the following result.

Theorem 2.15 (Yu and Feng [97]). For a connected graph H, we have

• ξce(H) ≤ 2eH = nH(nH − 1), equality if and only if H ∼= KnH.
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• ξce(H) ≤ ξc(H), equality if and only if H ∼= KnH.

• ξce(H) ≥ 4e2
H

ξc(H)
, equality if and only if ecH(h) is a constant for all h.

• ξce(H) ≥ M1(H)

τ(H)
.

Yu and Feng [97] present bounds for ξce of graphs in the form of graph invariants such

as the independence number, vertex connectivity, smallest degree and largest degree.

Let Ks
n be the n-vertex graph constructed from a complete graph Kn−s by atthaching s

pendent edges to a vertex of Kn−s.

Theorem 2.16 (Yu and Feng [97]). Let H be a connected graph with s ≥ 1 cut edges.

Then ξce(H) ≤ 1

2
(n2
H − 2nHs+ s2 + 3s− 1), equality if and only if H ∼= Ks

nH
.

Let Cs
n be a cactus obtained by adding s independent edges among the pendent vertices

of Sn.

Theorem 2.17 (Yu and Feng [97]). Let H be a cactus with s cycles, where nH ≥ 5. Then

ξce(H) ≤ 3

2
nH + s− 3

2
, with equality holding if and only if H ∼= Cs

nH
.

Theorem 2.18 (Yu and Feng [97]). For a given tree T , we have ξce(T ) ≤ 3(nT − 1)

2
,

equality if and only if T = C0
nT

= SnT
.

Theorem 2.19 (Yu and Feng [97]). For a given unicyclic graph U , we have ξce(U) ≤
3nU − 1

2
, equality if and only if T = C1

nU
= U(nU , 3, nU − 3).

De [17] derived some new bounds for ξce in the form of some other graph parameters

such as the largest degree (4), smallest degree (δ), radius (r), diameter (d) and first

Zagreb (M1) index. De et al. [18] presented ξce index of certain graph operations. The

following results give the smallest graphs with respect to the connective eccentricity index

with the help of fixed matching number and a fixed order.

Theorem 2.20 (Xu et al. [95]). For a given tree T with a fixed matching number mT ,

where nT ≥ 2mT . Then ξce(T ) ≤ 5

6
nT −

1

4
mT −

7

12
, equality if and only if T ∼= SnT ,mT

.
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m+1n-2

m-2

Figure 2.1: The graph UnU ,mU
.

Theorem 2.21 (Xu et al. [95]). Let U be a unicyclic graph with a fixed matching number

mU , where nU ≥ 2mU . Then ξce(U) ≤ 5

6
nU−

1

4
mU+

1

3
, equality if and only if U ∼= UnU ,mU

,

where UnU ,mU
is given in Figure 2.1.

Xu et al. [95] also discussed some relations between ξce and ξc of graphs. For further

details on the connective eccentricity index, see [87, 98]. Ediz [26] investigated some

characteristics of the eccentric adjacency index of graphs. Furthermore, he determined

some bounds on the eccentric adjacency invariant of graphs with parameters minimum

degree and diameter, and radius and diameter in same paper.

Theorem 2.22 (Ediz [26]). For a given connected graph H, we have ξad(H) ≤ nH(nH −

1)2, with equality if and only if H ∼= KnH
.

Theorem 2.23 (Ediz [26]). For a given tree T , we have ξad(T ) ≥ ξc(PnT
) and ξad(T ) ≤

ξc(SnT
), where nT ≥ 2.

Theorem 2.24 (Ediz [26]). For a given connected graph H, we have ξad(H) >
nHδH

dH
.

Theorem 2.25 (Ediz [26]). Let H be an s-regular graph with radius rH and diameter dH.

Then
nHs

2

dH
≤ ξad(H) ≤ nHs

2

rH
with equality from the both sides if and only if H ∼= KnH.

Sharafdini and Safazadeh [80] calculated the eccentric adjacency index of several infi-

nite classes of fullerene. For further details on the eccentric adjacency index, see [28,34].

In following result, it is proved that the star SnT
minimizes τ(T ) among trees with a

given order nT .
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Proposition 2.26 (Smith et al. [82]). For any tree T with nT ≥ 3, we have τ(T ) ≥ 2nT−1

with equality if and only if T ∼= SnT
.

Smith et al. [82] also studied the extremal trees with the smallest and the largest total

eccentricity invariant among trees with a given degree sequence. Farooq et al. [36, 37]

found the extremal trees, unicyclic, bicyclic, conjugated unicyclic, and conjugated bicyclic

graphs with reference to the total eccentricity invariant.

Theorem 2.27 (Farooq et al. [36]). For a given tree T , we have τ(T ) ≤ τ(PnT
) =

3

4
n2
T −

1

2
nT .

Theorem 2.28 (Farooq et al. [36]). For a given unicyclic graph U with nU ≥ 4, we have

τ(U) ≥ 2nU − 1, equality satisfies if and only if U ∼= UnU ,3.

Theorem 2.29 (Farooq et al. [36]). For a given bicyclic graph B with nB ≥ 4, we have

τ(B) ≥ 2nB − 1, equality satisfies if and only if B ∼= B.

Fathalikhani [38] and De et al. [19] determined the total eccentricity index of crucial

graph operations. De et al. [20] find the total eccentricity index of subdivision graphs,

double graph, extended double cover graph and certain generalized thorn graphs.
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Chapter 3

Eccentric connectivity index and

eccentric adjacency index of

conjugated trees

One of the noteworthy problem in the chemical graph theory is to characterize the ex-

tremal graphs in a given family of graphs with reference to certain topological indices.

Morgan et al. [71] computed sharp bounds of eccentric connectivity invariant of graphs

in the form of order and also bounds for trees. Zhang et al. [102] gave lower bounds of

eccentric connectivity invariant in the form of size of graphs with given diameter. Zhou

et al. [101] found the bounds of eccentric connectivity invariant in the form of different

graph invariants together with the order, size, degree distance and the first Zagreb index.

Connection of eccentric adjacency and eccentric connectivity indices has been concluded

by Gupta et al. [43].

Let T (2m,m), m ≥ 2, be a class of conjugated trees of order 2m, where m is a

fixed matching number. In this chapter, we drive the conjugated trees with the extremal

eccentric connectivity and eccentric adjacency indices among all n-vertex conjugated trees.

This chapter is ordered as: Section 3.1, we derive trees in T (2m,m) with the smallest

and the largest eccentric connectivity index. In Section 3.2, we find trees in T (2m,m)
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with the largest and the smallest eccentric adjacency index.

3.1 Smallest and largest eccentric connectivity index

of conjugated trees

In this section, we determine the smallest and the largest eccentric connectivity index

of trees in T (2m,m). Let S∗ ∈ T (2m,m) be a tree obtained from Sm+1 by subdividing

m − 1 edges of Sm+1. The tree S∗ is depicted in Figure 3.1. We notice that all trees in

T (2m,m) with radius 2 are isomorphic to S∗. If m = 2, then S∗ ∼= P4 and ξc(S∗) = 14.

m-1

Figure 3.1: The tree S∗

Let T � S∗ be a conjugated tree in T (2m,m) with a perfect matching M , c ∈ VC(T )

and rT ≥ 3. Define

Br(T ) = {uv ∈ ET | dT (c, u) = dT (c, v)− 1 = rT − 2 and degT (v) = 2}. (3.1)

Observe that if uvw is a path in T with dT (c, w) = rT then w is a pendent vertex in T .

Since T is a conjugated tree, we have degT (v) = 2 and vw ∈M .

In next lemma, we construct a new tree in T (2m,m) from a given tree in T (2m,m)

with smaller eccentric connectivity index.

Lemma 3.1. Let T � S∗ be a conjugated tree in T (2m,m) with m ≥ 3 and c ∈ VC(T ).

Let w be a peripheral vertex of T and uvw be a path of length 2. Construct a new tree

T1 = (T − {uv}) ∪ {cv}. Then T1 ∈ T (2m,m) and ξc(T ) > ξc(T1).
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Proof. Let M be a perfect matching in T . Take a diametrical w,w1-path in T and

uv, vw ∈ ET such that dT (c, w) = rT . Since T is a conjugated tree, we have degT (v) = 2

and vw ∈ M . By the construction of T1, it is obvious that M is also a perfect matching

in T1, that is, T1 ∈ T (2m,m) and also

degT1(x) = degT (x), ∀ x ∈ VT \ {c, u}. (3.2)

Also, the degrees of vertices c and u in T1 are given by

degT1(c) = degT (c) + 1, degT1(u) = degT (u)− 1. (3.3)

Let A = {y ∈ VT | ecT (y) = dT (y, w)} and x ∈ VT \ ({v, w} ∪ A). Then

ecT1(x) = dT1(x,w1) = dT (x,w1) = ecT (x). (3.4)

For each y ∈ A\{c}, either ecT1(y) = dT1(y, u) or ecT1(y) = dT1(y, w) or ecT1(y) = dT1(y, z)

for some peripheral vertex z ∈ VT1 \ {u,w}. If ecT1(y) = dT1(y, z), then it is evident that

dT1(y, z) = dT (y, z). Therefore

ecT1(y) = dT1(y, z) = dT (y, z) ≤ ecT (y). (3.5)

If ecT1(y) = dT1(y, u), then

ecT1(y) = dT1(y, u) = dT (y, u) < ecT (y). (3.6)

If ecT1(y) = dT1(y, w) then it is obvious that ecT (y) = dT (y, w) = dT (y, c) + dT (c, u) + 2.

Therefore

ecT1(y) = dT1(y, w) = dT1(y, c) + dT1(c, w)

= dT (y, c) + 2 < ecT (y).
(3.7)

If w is the unique eccentric vertex of c in T then ecT1(c) = dT1(c, w1) = rT−1 < ecT (c).

Also dT (v, c) ≥ 2 and dT (w, c) ≥ 3. It is evident that ecT1(v) = ecT1(c) + 1. Therefore

ecT1(v) = ecT1(c) + 1 < ecT (c) + 1 < ecT (c) + dT (c, v) = ecT (v). (3.8)
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Note that vw ∈ ET ∩ ET1 . Therefore by using (3.8), we obtain

ecT1(w) = ecT1(v) + 1 < ecT (v) + 1 = ecT (w). (3.9)

If w is not a unique eccentric vertex of c in T then by the construction of T1, we have

ecT1(c) = ecT (c). This gives

ecT1(v) = ecT1(c) + 1 = ecT (c) + 1 < ecT (c) + dT (c, v) = ecT (v). (3.10)

Using (3.10), we obtain

ecT1(w) = ecT1(v) + 1 < ecT (v) + 1 = ecT (w). (3.11)

Thus, from (3.2)−(3.11), we obtain

ξc(T )− ξc(T1) = ecT (c) degT (c)− ecT1(c) degT1(c) + ecT (u) degT (u)− ecT1(u) degT1(u)

+ ecT (v) degT (v)− ecT1(v) degT1(v) + ecT (w) degT (w)− ecT1(w) degT1(w)

ξc(T )− ξc(T1) > ecT (c) degT (c)− ecT (c)(degT (c) + 1) + ecT (u) degT (u)

− ecT (u)(degT (u)− 1) + 2ecT (v)− 2ecT (v) + ecT (w)− ecT (w)

= ecT (u)− ecT (c) ≥ 0.

This completes the proof.

Next, we give an algorithm proposed by Farooq et al. [36] which reduces a given tree

T in T (2m,m) into S∗.

Algorithm 1

Step 0: Take a conjugated tree T ∈ T (2m,m) and find rT

by (1.1), c ∈ VC(T ) and define Br(T ) by (3.1).

Step 1: If rT = 2 then stop.

Step 2: For an edge uv ∈ Br(T ), define T := {T − {uv}} ∪ {cv}

and Br(T ) := Br(T ) \ {uv}.

Step 3: If Br(T ) 6= ∅ then go to Step 2; else find rT by (1.1),

c ∈ VC(T ) and Br(T ) by (3.1); go to Step 1.
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For termination and correctness of the Algorithm 1, we refer [36] to the reader.

In Theorem 3.2, we find the conjugated tree with the smallest eccentric connectivity

index among all conjugated tress in T (2m,m) by using Lemma 3.1 and Algorithm 1.

Theorem 3.2. Among all conjugated trees in T (2m,m), m ≥ 3, the tree S∗ shown in

Figure 3.1 has the smallest eccentric connectivity index. Thus for any tree T ∈ T (2m,m),

we have ξc(T ) ≥ ξc(S∗).

Proof. Let T � S∗ be a conjugated tree in T (2m,m). By Lemma 3.1, the eccentric

connectivity index of the modified tree decreases strictly at Step 2 in each iteration of the

Algorithm 1. The Algorithm 1 terminates when rT = 2. Note that all n-vertex conjugated

trees in T (2m,m) with radius 2 are isomorphic to S∗. This shows that S∗ has the smallest

eccentric connectivity index among trees in T (2m,m).

Corollary 3.3. If T ∈ T (2m,m), m ≥ 3, then ξc(T ) ≥ ξc(S∗) = 12m− 7.

Proof. Theorem 3.2 implies that ξc(T ) ≥ ξc(S∗) for each T ∈ T (2m,m). The tree S∗ (see

Figure 3.1) has one vertex of eccentricity 2 and degree m, m− 1 vertices of eccentricity 3

and degree 2, one vertex of eccentricity 3 and degree 1, and m− 1 vertices of eccentricity

4 and degree 1. Therefore

ξc(S∗) = (1)(2)(m) + (m− 1)(3)(2) + (1)(3)(1) + (m− 1)(4)(1) = 12m− 7.

This completes the proof.

Example 3.4. Consider a tree T ∈ T (16, 8) depicted in Figure 3.2. By using Algorithm

1 we obtain a sequence of trees T, T1, T2, T3, T4, T5, T6, where T6
∼= S∗, satisfying the

following:

ξc(T ) > ξc(T1) > ξc(T2) > ξc(T3) > ξc(T4) > ξc(T5) > ξc(T6).

Note that the modification of trees at Step 2 in Algorithm 1 depends upon the choice of

vertex u of T . Therefore this sequence of trees is not unique.
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T
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w1
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T2

u cvw w1

T3

uc v ww1

T4

c

w

w1

T6

u cvw w1

T5

Figure 3.2: A sequence of trees generated by Algorithm 1.

Morgan et al. [71] showed that the path maximizes eccentric connectivity index among

trees of fixed order n.

Theorem 3.5 (Morgan et al. [71]). If T is an n-vertex tree, then

ξc(T ) ≤ ξc(Pn) =

 1
2
(3n2 − 6n+ 4), for n even,

3
2
(n− 1)2, for n odd.

(3.12)

Now we discuss the largest eccentric connectivity index of conjugated tree in T (2m,m).

Theorem 3.6. If T ∈ T (2m,m), m ≥ 2, then

ξc(T ) ≤ ξc(P2m) = 6m2 − 6m+ 2.

Proof. Theorem 3.5 implies that ξc(T ) ≤ ξc(P2m). We notice that the order of a conju-

gated graph is even. Using n = 2m in equation (3.12), we get the required result, that

is,

ξc(P2m) = 6m2 − 6m+ 2.

This completes the proof.
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3.2 Smallest and largest eccentric adjacency index of

conjugated trees

In this section, we determine the smallest and the largest eccentric adjacency index of

trees in T (2m,m). Note that all trees in T (2m,m) with radius 2 are isomorphic to S∗.

If m = 2 then S∗ ∼= P4 and ξad(P4) =
13

3
.

In next lemma, we construct a new tree in T (2m,m) from a given tree in T (2m,m)

with larger eccentric adjacency index.

Lemma 3.7. Let T be a conjugated tree in T (2m,m) with rT ≥ 3 and c ∈ VC(T ). Take

a vertex u ∈ VT satisfying dT (c, u) = rT − 2. Let v1, v2, . . . , vk be those neighbors of u

which satisfy degT (vi) = 2 and dT (c, vi) = rT − 1, for each i = 1, 2, . . . , k. Construct a

new tree T1 = (T − {uv1, uv2, . . . , uvk}) ∪ {cv1, cv2, . . . , cvk}. Then T1 ∈ T (2m,m) and

ξad(T ) < ξad(T1).

Proof. Let M be a perfect matching in T . Since T is a conjugated tree, there exists a

unique pendent neighbor wi of uvi, i = 1, 2, . . . , k. Note that dT (u,w1) = dT (u,w2) =

· · · = dT (u,wk) = 2. Let w ∈ {w1, w2, . . . , wk} and take a diametrical w,w′-path in

T . Since T is a conjugated tree, we have degT (vi) = 2 for each i = 1, 2, . . . , k and

v1w1, v2w2, . . . , vkwk ∈ M . By the construction of T1, it is obvious to see that M is also

a perfect matching in T1, that is, T1 ∈ T (2m,m).

Define A1 = {y ∈ VT | ecT (y) = dT (y, w)}. For each y ∈ A1, either ecT1(y) =

dT1(y, u) or ecT1(y) = dT1(y, w) or ecT1(y) = dT1(y, z) for some peripheral vertex z ∈

VT1 \{u,w1, w2, . . . , wk}. If ecT1(y) = dT1(y, z) then it is obvious that dT1(y, z) = dT (y, z).

Therefore

ecT1(y) = dT1(y, z) = dT (y, z) ≤ ecT (y). (3.13)

If ecT1(y) = dT1(y, u) then

ecT1(y) = dT1(y, u) = dT (y, u) < ecT (y). (3.14)
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Let ecT1(y) = dT1(y, w). It is evident that ecT (y) = dT (y, w) = dT (y, c) + dT (c, u) + 2.

Therefore

ecT1(y) = dT1(y, w) = dT1(y, c) + dT1(c, w)

= dT (y, c) + 2 < ecT (y).
(3.15)

Now let x ∈ VT \ ({v1, v2, . . . , vk, w1, w2, . . . , wk} ∪ A1). Then we have

ecT1(x) = dT1(x,w
′) = dT (x,w′) = ecT (x). (3.16)

If c has no eccentric vertex other than w1, w2, . . . , wk in T then ecT1(c) = dT1(c, w
′) =

rT − 1 < ecT (c). Also dT (vi, c) ≥ 2 and dT (wi, c) ≥ 3, for i = 1, 2, . . . , k. Moreover,

ecT1(vi) = ecT1(c) + 1 for each i = 1, 2, . . . , k. Therefore

ecT1(vi) = ecT1(c) + 1 < ecT (c) + 1 < ecT (c) + dT (c, vi) = ecT (vi), (3.17)

for each i = 1, 2, . . . , k. Note that viwi ∈ ET ∩ ET1 , for i = 1, 2, . . . , k. Using (3.17), we

obtain

ecT1(wi) = ecT1(vi) + 1 < ecT (vi) + 1 = ecT (wi), (3.18)

for each i = 1, 2, . . . , k.

If c has an eccentric vertex other than w1, w2, . . . , wk in T then by the construction of

T1, we have ecT1(c) = ecT (c). Thus

ecT1(vi) = ecT1(c) + 1 = ecT (c) + 1 < ecT (c) + dT (c, vi) = ecT (vi), (3.19)

for each i = 1, 2, . . . , k. By using (3.19), we have

ecT1(wi) = ecT1(vi) + 1 < ecT (vi) + 1 = ecT (wi), (3.20)

for each i = 1, 2, . . . , k. We note that ST1(x) = ST (x) for all x ∈ VT \ (ΓT (c) ∪ ΓT (u) ∪

{c, u}). Since T is a conjugated tree, it holds that k + 1 ≤ degT (u) ≤ k + 2. That is,

ST (vi) = degT (u) + 1 ≤ k + 3, for each i = 1, 2, . . . , k. Thus

ST1(vi) = (degT (c) + k) + 1 ≥ (2 + k) + 1 ≥ ST (vi), (3.21)
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for each i = 1, 2, . . . , k. Furthermore, either u ∈ ΓT (c) or u /∈ ΓT (c). If u ∈ ΓT (c) then

ΓT (c) ∩ ΓT (u) = ∅. Thus

ST1(u) = (ST (u)− 2k) + k = ST (u)− k,

ST1(c) = (ST (c) + 2k)− k = ST (c) + k.
(3.22)

Let V1 = ΓT (u) \ {c, v1, v2, . . . , vk}. Then

ST1(x) = ST (x)− k, ∀ x ∈ V1,

ST1(y) = ST (y) + k, ∀ y ∈ ΓT (c) \ {u}.
(3.23)

Therefore, from (3.13)−(3.23), we obtain

ξad(T1)− ξad(T ) =
ST1(c)

ecT1(c)
− ST (c)

ecT (c)
+
ST1(u)

ecT1(u)
− ST (u)

ecT (u)
+

k∑
i=1

(
ST1(vi)

ecT1(vi)
− ST (vi)

ecT (vi)

)

+
k∑
i=1

(
ST1(wi)

ecT1(wi)
− ST (wi)

ecT (wi)

)
+
∑
x∈V1

(
ST1(x)

ecT1(x)
− ST (x)

ecT (x)

)
+

∑
y∈ΓT (c)\{u}

(
ST1(y)

ecT1(y)
− ST (y)

ecT (y)

)

>
ST (c) + k

ecT (c)
− ST (c)

ecT (c)
+
ST (u)− k
ecT (u)

− ST (u)

ecT (u)
+

k∑
i=1

(
ST (vi)

ecT (vi)
− ST (vi)

ecT (vi)

)

+
k∑
i=1

(
ST (wi)

ecT (wi)
− ST (wi)

ecT (wi)

)
+
∑
x∈V1

(
ST (x)− k
ecT (x)

− ST (x)

ecT (x)

)
+

∑
y∈ΓT (c)\{u}

(
ST (y) + k

ecT (y)
− ST (y)

ecT (y)

)
=

k

ecT (c)
− k

ecT (u)
−
∑
x∈V1

k

ecT (x)
+

∑
y∈ΓT (c)\{u}

k

ecT (y)
.

Observe that ecT (u) ≥ rT = ecT (c), equality if and only if u ∈ VC(T )\{c} and w1, w2, . . . , wk

are the peripheral vertices in T . Therefore |ΓT (u) \ ({c, v1, v2 . . . , vk})| ≤ 1. Note that c

is a central vertex in T and u ∈ ΓT (c). Thus |ΓT (c) \ {u}| ≥ 1, ecT (y) ≤ ecT (x), for each

y ∈ ΓT (c) \ {u} and x ∈ V1. Therefore ξad(T1) > ξad(T ).

Now, if u /∈ ΓT (c) then |ΓT (u) ∩ ΓT (c)| ≤ 1 and

ST1(c) = ST (c) + 2k, ST1(u) = ST (u)− 2k. (3.24)
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Let V2 = ΓT (u) \ ({v1, v2 . . . , vk} ∪ (ΓT (c) ∩ ΓT (u))) and V3 = ΓT (c) \ (ΓT (c) ∩ ΓT (u)).

Then

ST1(x) = ST (x)− k, ∀ x ∈ V2,

ST1(y) = ST (y) + k, ∀ y ∈ V3,

ST1(z) = (ST (z)− k) + k = ST (z), ∀ z ∈ (ΓT (c) ∩ ΓT (u)).

(3.25)

Thus, from (3.13)−(3.21) and (3.24)−(3.25), we get

ξad(T1)− ξad(T ) =
ST1(c)

ecT1(c)
− ST (c)

ecT (c)
+
ST1(u)

ecT1(u)
− ST (u)

ecT (u)
+

k∑
i=1

(
ST1(vi)

ecT1(vi)
− ST (vi)

ecT (vi)

)

+
k∑
i=1

(
ST1(wi)

ecT1(wi)
− ST (wi)

ecT (wi)

)
+
∑
y∈V3

(
ST1(y)

ecT1(y)
− ST (y)

ecT (y)

)
+
∑
x∈V2

(
ST1(x)

ecT1(x)
− ST (x)

ecT (x)

)
+

∑
z∈(ΓT (c)∩ΓT (u))

(
ST1(z)

ecT1(z)
− ST (z)

ecT (z)

)
>
ST (c) + 2k

ecT (c)
− ST (c)

ecT (c)
+
ST (u)− 2k

ecT (u)
− ST (u)

ecT (u)

+
k∑
i=1

(
ST (vi)

ecT (vi)
− ST (vi)

ecT (vi)

)
+

k∑
i=1

(
ST (wi)

ecT (wi)
− ST (wi)

ecT (wi)

)
+
∑
y∈V3

(
ST (y) + k

ecT (y)
− ST (y)

ecT (y)

)
+
∑
x∈V2

(
ST (x)− k
ecT (x)

− ST (x)

ecT (x)

)
+

∑
z∈(ΓT (c)∩ΓT (u))

(
ST (z)

ecT (z)
− ST (z)

ecT (z)

)
=

2k

eT (c)
− 2k

ecT (u)
+
∑
y∈V3

k

ecT (y)
−
∑
x∈V2

k

ecT (x)
.

We know that if u /∈ ΓT (c) then ecT (u) > ecT (c). Also as c is a central vertex in T , it holds

that |V3| ≥ |V2| and ecT (y) ≤ ecT (x), for each x ∈ V2 and y ∈ V3. Thus ξad(T1) > ξad(T ).

This completes the proof.

Next, we give a modified version of Algorithm 3 [36] which reduces a given tree T ∈

T (2m,m) into S∗.
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Algorithm 2

Step 0: Take a conjugated tree T ∈ T (2m,m) and find rT by

(1.1), c ∈ VC(T ) and define Br(T ) by (3.1).

Step 1: If rT = 2 then stop.

Step 2: Take a vertex u ∈ VT satisfying dT (c, u) = rT − 2

and let v1, v2, . . . , vk be those neighbors of u for which

uvi ∈ Br(T ), for each i = 1, 2, . . . , k. Define

T := {T − {uv1, uv2, . . . , uvk}} ∪ {cv1, cv2, . . . , cvk} and

Br(T ) := Br(T ) \ {uv1, uv2, . . . , uvk}.

Step 3: If Br(T ) 6= ∅ then go to Step 2; else find rT by (1.1),

c ∈ VC(T ) and Br(T ) by (3.1); go to Step 1.

For termination and correctness of the Algorithm 2, see [36].

Next, by using Lemma 3.7 and Algorithm 2, we find the conjugated tree with the

largest eccentric adjacency index among all conjugated tress in T (2m,m).

Theorem 3.8. Among all conjugated trees in T (2m,m), m ≥ 3, the tree S∗ shown in

Figure 3.1 has the largest eccentric adjacency index. Thus for any tree T ∈ T (2m,m), we

have ξad(T ) ≤ ξad(S∗).

Proof. Let T � S∗ be a conjugated tree. By Lemma 3.7, the eccentric adjacency index

of the modified tree increases strictly at Step 2 in each iteration of the Algorithm 2. The

Algorithm 2 terminates when rT = 2 and note that all n-vertex conjugated trees with

radius 2 are isomorphic to S∗. This shows that ξad(S∗) ≥ ξad(T ).

Corollary 3.9. If T ∈ T (2m,m), m ≥ 3, then ξad(T ) ≤ ξad(S∗) =
1

6
(2m2 + 11m− 8).

Proof. Let S∗ ∈ T (2m,m) and c ∈ VC(S∗). The eccentricity of c in S∗ is 2, degS∗(c) = m

and SS∗(c) = 2(m− 1) + 1 = 2m− 1. If u is any neighbor of c in S∗ then ecS∗(u) = 3 and∑
u∈ΓS∗ (c)

SS∗(u)

ecS∗(u)
=

(m− 1)(m+ 1)

3
+
m

3
=
m2 +m− 1

3
.
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Since there are m− 1 peripheral vertices in S∗ with eccentricity 4 and sum of degrees of

neighbors of a peripheral vertex v is 2. Therefore

ξad(S∗) =
∑

v∈VS∗\({c}∪ΓS∗ (c))

SS∗(v)

ecS∗(v)
+

∑
u∈ΓS∗ (c)

SS∗(u)

ecS∗(u)
+
SS∗(c)

ecS∗(c)

=
2(m− 1)

4
+
m2 +m− 1

3
+

2m− 1

2

=
2m2 + 11m− 8

6
.

The result ξad(T ) ≤ ξad(S∗) follows from Theorem 3.8 for each T ∈ T (2m,m).

Example 3.10. Consider a tree T ∈ T (20, 10) with c ∈ VC(T )) shown in Figure 3.3.

By the use of Algorithm 2, we obtain a sequence of trees T, T1, T2, T3, T4, T5, where

T5
∼= S∗. This sequence of trees is not unique because it depends upon the choice of

vertex u. The relation of eccentric adjacency index of T, T1, T2, T3, T4, T5 is as follows:

ξad(T ) < ξad(T1) < ξad(T2) < ξad(T3) < ξad(T4) < ξad(T5).

u

c

T

v1

w1

w'

w2

v2

uc

T

v1

w1

w'

w2v2

1

v3
w3

uc

T

v1 w1
w'

2

u c

T

v1w1 w'

3

u c

T

v1w1
w'

4

u c

T5

v2

w2

Figure 3.3: A sequence of trees generated by Algorithm 2
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Ediz [26] proved that the path has the smallest eccentric adjacency index among trees

of fixed order n.

Theorem 3.11 (Ediz [26]). If T is an n-vertex tree, then

ξad(T ) ≥ ξad(Pn) =

 2
(

2
n−1

+ 3
n−2

+ 4
n−3

+ 4
n−4

+ · · ·+ 4
bn/2c+1

)
+ 4
bn/2c if n is odd,

2
(

2
n−1

+ 3
n−2

+ 4
n−3

+ 4
n−4

+ · · ·+ 4
n/2

)
if n is even.

(3.26)

Now we find the smallest eccentric connectivity index of conjugated tree in T (2m,m).

Theorem 3.12. If T ∈ T (2m,m), m ≥ 2, then

ξad(T ) ≥ ξad(P2m) = 2

(
2

2m− 1
+

3

2m− 2
+

4

2m− 3
+

4

2m− 4
+ · · ·+ 4

m

)
.

Proof. By Theorem 3.11, we have ξad(T ) ≥ ξad(P2m) for each T ∈ T (2m,m). We notice

that the order of a conjugated graph is even. Therefore by using n = 2m in equation

(3.26), we get

ξad(P2m) = 2

(
2

2m− 1
+

3

2m− 2
+

4

2m− 3
+

4

2m− 4
+ · · ·+ 4

2m/2

)
= 2

(
2

2m− 1
+

3

2m− 2
+

4

2m− 3
+

4

2m− 4
+ · · ·+ 4

m

)
.

This completes the proof.

3.3 Conclusion

In this chapter, we drive the conjugated trees with the smallest and the largest eccentric

connectivity index among all conjugated trees. We also discuss the extremal conjugated

trees with reference to eccentric adjacency index. It will be challenging to derive the ex-

tremal conjugated graphs with reference to eccentric connectivity invariant and eccentric

adjacency index among all n-vertex conjugated graphs.

36



Chapter 4

Eccentric adjacency index of

unicyclic graphs and trees

A lot of results have been obtained in the area of extremal graphs with reference to dis-

tance based topological invariants. Ediz [26,28] investigated certain properties of eccentric

adjacency index and also calculated the eccentric adjacency index of one pentagonal car-

bon nanocones. Many research papers that study the extremal problems of topological

indices focus on trees, unicyclic, bicyclic and sometimes to tricyclic graphs. In this re-

gard, we find the results of extremal unicyclic graphs and trees with reference to eccentric

adjacency index.

This chapter is ordered as: In Section 4.1, we find the graph with the largest eccentric

adjacency index among all n-vertex unicyclic graphs with a fixed order and girth. Also,

we find the graph with largest eccentric adjacency index among all n-vertex unicyclic

graphs of fixed order in this section. In Section 4.2, we discuss the extremal n-vertex

trees with the largest eccentric adjacency index in the family of all n-vertex trees with a

given diameter and order.
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4.1 The eccentric adjacency index of unicyclic graphs

Let U(n) be the family of all unicyclic graphs and U(n, g) be the family of all unicyclic

graphs with girth g, where n ≥ 3 and 3 ≤ g ≤ n. Let Ũ(n, g) ⊂ U(n, g) be the family

of all n-vertex unicyclic graphs that are obtained from the cycle Cg by connecting n− g

pendent vertices to the vertices of Cg. Also let U(n, g;n−g) be a unicyclic graph obtained

from the cycle Cg by connecting n− g pendent vertices with a unique vertex of Cg.

In this section, we find the extremal unicyclic graph in U(n, g) with respect to eccentric

adjacency index. First, we prove some lemmas which will be used to prove our main

results.

u v

w1

w2

wt

u

v

w1

w2

wt

G G1

Figure 4.1: The graphs G and G1 in Lemma 4.1.

Lemma 4.1. Let G be an n-vertex simple and connected graph with nG ≥ 4. Assume

there is an edge uv ∈ EG with degG(u) ≥ 2 and ΓG(v) = {u,w1, w2, . . . , wt}, where

w1, w2, . . . , wt ∈ PG(v). Construct a new graph G1 from G as G1 = (G−{vw1, . . . , vwt})∪

{uw1, . . . , uwt} (see Figure 4.1). Then we have ξad(G1) > ξad(G).

Proof. Take w ∈ PG(v) and define A = {y ∈ VG | ecG(y) = dG(y, w)}. Let y ∈ A and

z ∈ VG such that dG1(y, z) = ecG1(y). There are two possibilities: either z ∈ PG(v) or

z /∈ PG(v). If z ∈ PG(v) then we have

ecG1(y) = dG1(y, z) = dG1(y, u) + dG1(u, z) = dG(y, u) + 1 < ecG(y). (4.1)

If z /∈ PG(v) then we obtain

ecG1(y) = dG1(y, z) = dG(y, z) ≤ ecG(y). (4.2)
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Let a ∈ VG with ecG(w) = dG(w, a). Then ecG(w) = dG(u, a)+2 and dG1(u, a) = dG(u, a).

Therefore we have

ecG1(w) = dG1(w, a) = dG1(w, u) + dG1(u, a) = 1 + dG(u, a) < ecG(w).

Note that ecG1(x) = ecG(x) for any x ∈ VG \ (A ∪ PG(v)). By the construction of G1,

it is obvious that SG1(x) = SG(x), for all x ∈ VG \ (ΓG(u) ∪ ΓG(v)). We know that

degG(v) = t+ 1. Therefore

SG1(u) =
∑

x∈ΓG(u)\{v}

degG(x) +
∑

x∈ΓG(v)\{u}

degG(x) + 1

=
∑

x∈ΓG(u)\{v}

degG(x) + degG(v) = SG(u).
(4.3)

Note that SG(v) = degG(u) + t and SG(w) = degG(v) = t+ 1. Therefore

SG1(v) = degG1
(u) = degG(u) + t = SG(v),

SG1(w) = degG1
(u) = degG(u) + t ≥ 2 + t = SG(w) + 1.

(4.4)

If x ∈ ΓG(u) \ {v} then |ΓG(u) \ {v}| ≥ 1. Thus

SG1(x) =
∑

y∈ΓG(x)\{u}

degG1
(y) + degG1

(u)

=
∑

y∈ΓG(x)\{u}

degG(y) + degG(u) + t

= SG(x) + t.

(4.5)

From (4.1)-(4.5), we obtain

ξad(G1) =
SG1(u)

ecG1(u)
+
SG1(v)

ecG1(v)
+

∑
w∈PG(v)

SG1(w)

ecG1(w)
+

∑
x∈ΓG(u)\{v}

SG1(x)

ecG1(x)

+
∑

z∈VG\(ΓG(u)∪ΓG(v))

SG1(z)

ecG1(z)

>
SG(u)

ecG(u)
+
SG(v)

ecG(v)
+

∑
w∈PG(v)

SG(w) + 1

ecG(w)
+

∑
x∈ΓG(u)\{v}

SG(x) + t

ecG(x)

+
∑

z∈VG\(ΓG(u)∪ΓG(v))

SG(z)

ecG(z)

= ξad(G) +
∑

w∈PG(v)

1

ecG(w)
+

∑
x∈ΓG(u)\{v}

t

ecG(x)
.
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Thus ξad(G1) > ξad(G).

vk
1

vk2

w1

w2

wnk1
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w'2

w'n
k2

G G1

w1 w2

wnk1

w'1

w'2

w'n
k2

vk
1

vk2

Figure 4.2: The graphs G and G1 in Lemma 4.2.

In the following lemma, we construct a unicyclic graph in Ũ(n, g) from a given unicyclic

graph in Ũ(n, g) such that the new unicyclic graph has larger eccentric adjacency index.

Lemma 4.2. Let G ∈ Ũ(n, g) be an n-vertex unicyclic graph with nG ≥ 4. Assume there

are two vertices vk1 , vk2 ∈ VCg , where 1 ≤ k1, k2 ≤ g and k1 6= k2, with ecG(vk1) ≤

ecG(vk2). Let PG(vk1) = {w1, w2, . . . , wnk1
} and PG(vk2) = {w′1, w′2, . . . , w′nk2

}, where

nk1 , nk2 ≥ 1. Construct a new graph G1 from G as G1 = (G − {vk2w′1, . . . , vk2w′nk2
}) ∪

{vk1w′1, . . . , vk1w′nk2
} (see Figure 4.2). Then we have ξad(G1) > ξad(G).

Proof. Take w′ ∈ PG(vk2) and define B = {x ∈ VG | ecG(x) = dG(x,w′)}. Let x ∈ B and

z ∈ VG such that dG1(x, z) = ecG1(x). Then either z = vk2 or z ∈ VG \ {vk2} in G1. If

z = vk2 then we have

ecG1(x) = dG1(x, vk2) = dG(x, vk2) < dG(x,w′) = ecG(x). (4.6)

Now if z ∈ VG \ {vk2} then we have

ecG1(x) = dG1(x, z) = dG(x, z) ≤ dG(x,w′) = ecG(x). (4.7)

Note that ecG(vk1) ≤ ecG(vk2). Then

ecG1(w
′) = ecG1(vk1) + 1 = ecG(vk1) + 1 ≤ ecG(vk2) + 1 = ecG(w′). (4.8)
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It is easily seen that ecG1(y) = ecG(y) for all y ∈ VG \ (B ∪PG(vk2)). By the construction

of G1, we have SG1(x) = SG(x), for all x ∈ VG \ (ΓG(vk1)∪ ΓG(vk2)∪ {vk1 , vk2}). For each

x ∈ ΓG(vk1) ∩ ΓG(vk2), we have

SG1(x) = SG(x). (4.9)

Let H1 = ΓG(vk1) \ ({vk2} ∪ (ΓG(vk1) ∩ ΓG(vk2))) and for each x ∈ H1 we have

SG1(x) =
∑

y∈ΓG(x)\{vk1}

degG1
(y) + degG1

(vk1)

=
∑

y∈ΓG(x)\{vk1}

degG(y) + degG(vk1) + nk2

= SG(x) + nk2 .

(4.10)

Also, let H2 = ΓG(vk2) \ (PG(vk2) ∪ {vk1} ∪ (ΓG(vk1) ∩ ΓG(vk2))) and for each x ∈ H2 we

have

SG1(x) =
∑

y∈ΓG(x)\{vk2}

degG1
(y) + degG1

(vk2)

=
∑

y∈ΓG(x)\{vk1}

degG(y) + degG(vk2)− nk2

= SG(x)− nk2 .

(4.11)

If w′ ∈ PG(vk2) then we obtain

SG1(w
′) = degG1

(vk1) = degG(vk1) + nk2

= nk1 + 2 + nk2

= nk1 + degG(vk2) = SG(w′) + nk1 .

(4.12)

Case I: If vk1vk2 ∈ EG, then we have

SG1(vk1) =
∑

x∈ΓG(vk1 )\{vk2}

degG1
(x) + degG1

(vk2)

=
∑

x∈ΓG(vk1 )\{vk2}

degG(x) + nk2 + (degG(vk2)− nk2)

= SG(vk1).

(4.13)
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SG1(vk2) =
∑

x∈ΓG(vk2 )\{vk1}

degG1
(x) + degG1

(vk1)

=
∑

x∈ΓG(vk2 )\{vk1}

degG(x)− nk2 + (degG(vk1) + nk2)

= (SG(vk2)− nk2) + nk2 = SG(vk2).

(4.14)

By the definition of eccentric adjacency index and (4.6)−(4.14), it follows that

ξad(G1) =
SG1(vk1)

ecG1(vk1)
+
SG1(vk2)

ecG1(vk2)
+
∑
x∈H1

SG1(x)

ecG1(x)
+

∑
w′∈PG(vk2 )

SG1(w
′)

ecG1(w
′)

+
∑
x∈H2

SG1(x)

ecG1(x)
+

∑
x∈ΓG(vk1 )∩ΓG(vk2 )

SG1(x)

ecG1(x)
+

∑
x∈VG\(ΓG(vk1 )∪ΓG(vk2 )∪{vk1 ,vk2})

SG1(x)

ecG1(x)

>
SG(vk1)

ecG(vk1)
+
SG(vk2)

ecG(vk2)
+
∑
x∈H1

SG(x) + nk2
ecG(x)

+
∑

w′∈PG(vk2 )

SG(w′) + nk1
ecG(w′)

+
∑
x∈H2

SG(x)− nk2
ecG(x)

+
∑

x∈ΓG(vk1 )∩ΓG(vk2 )

SG(x)

ecG(x)
+

∑
x∈VG\(ΓG(vk1 )∪ΓG(vk2 )∪{vk1 ,vk2})

SG(x)

ecG(x)

= ξad(G) +
∑

w′∈PG(vk2 )

nk1
ecG(w′)

+
∑
x∈H1

nk2
ecG(x)

−
∑
x∈H2

nk2
ecG(x)

= ξad(G) +
∑

w′∈PG(vk2 )

nk1
ecG(w′)

+
∑

w∈PG(vk1 )

nk2
ecG(w)

+
∑

x∈H1\PG(vk1 )

nk2
ecG(x)

−
∑
x∈H2

nk2
ecG(x)

≥ ξad(G) +
∑

w′∈PG(vk2 )

nk1
dG

+
∑

w∈PG(vk1 )

nk2
dG

+
∑

x∈H1\PG(vk1 )

nk2
ecG(x)

−
∑
x∈H2

nk2
ecG(x)

.

Note that bg
2
c ≤ ecG(vi) ≤ bg2c+ 1 for each vertex vi ∈ VCg , 1 ≤ i ≤ g. Therefore

ξad(G1) ≥ ξad(G) +
nk1nk2

dG
+
nk2nk1

dG
+

∑
x∈H1\PG(vk1 )

nk2
bg

2
c+ 1

−
∑
x∈H2

nk2
bg

2
c

= ξad(G) +
2nk1nk2

dG
+
nk2 |H1 \ PG(vk1)|

bg
2
c+ 1

− nk2|H2|
bg

2
c

.

Now we have following three cases:

(1). If vk1vk2 ∈ ECg then |H1 \ PG(vk1)| = 1 and |H2| = 1. Therefore

ξad(G1) ≥ ξad(G) +
2nk1nk2

dG
− nk2
bg

2
c(bg

2
c+ 1)

.
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(2). If vk1vk2 /∈ ECg and ΓG(vk1) ∩ ΓG(vk2) = ∅ then |H1 \ PG(vk1)| = 2 and |H2| = 2.

Therefore

ξad(G1) ≥ ξad(G) +
2nk1nk2

dG
− 2nk2
bg

2
c(bg

2
c+ 1)

.

(3). If vk1vk2 /∈ ECg and ΓG(vk1) ∩ ΓG(vk2) 6= ∅ then |H1 \ PG(vk1)| = 1 and |H2| = 1.

Therefore

ξad(G1) ≥ ξad(G) +
∑

x∈ΓG(vk1 )∩ΓG(Vk2 )

SG(x)

ecG(x)
+

2nk1nk2
dG

− nk2
bg

2
c(bg

2
c+ 1)

.

Since bg
2
c(bg

2
c+ 1) > dG, it holds that ξad(G1) > ξad(G) in either case.

Case II: If vk1vk2 /∈ EG, then we have

SG1(vk1) =
∑

x∈ΓG(vk1 )}

degG(x) + nk2 = SG(vk1) + nk2 .

SG1(vk2) =
∑

x∈ΓG(vk2 )}

degG(x)− nk2 + (degG(vk1) + nk2) = SG(vk2)− nk2 .
(4.15)

By the definition of eccentric adjacency index, (4.6)−(4.12) and (4.15), it follows that

ξad(G1) =
SG1(vk1)

ecG1(vk1)
+
SG1(vk2)

ecG1(vk2)
+
∑
x∈H1

SG1(x)

ecG1(x)
+

∑
w′∈PG(vk2 )

SG1(w
′)

ecG1(w
′)

+
∑
x∈H2

SG1(x)

ecG1(x)
+

∑
x∈ΓG(vk1 )∩ΓG(vk2 )

SG1(x)

ecG1(x)
+

∑
x∈VG\(ΓG(vk1 )∪ΓG(vk2 )∪{vk1 ,vk2})

SG1(x)

ecG1(x)

>
SG(vk1) + nk2
ecG(vk1)

+
SG(vk2)− nk2
ecG(vk2)

+
∑
x∈H1

SG(x) + nk2
ecG(x)

+
∑

w′∈PG(vk2 )

SG(w′) + nk1
ecG(w′)

+
∑
x∈H2

SG(x)− nk2
ecG(x)

+
∑

x∈ΓG(vk1 )∩ΓG(vk2 )

SG(x)

ecG(x)
+

∑
x∈VG\(ΓG(vk1 )∪ΓG(vk2 )∪{vk1 ,vk2})

SG(x)

ecG(x)

Given that ecG(vk1) ≤ ecG(vk2), therefore we get

ξad(G1) ≥ ξad(G) +
∑

w′∈PG(vk2 )

nk1
ecG(w′)

+
∑

x∈H1∪{vk1}

nk2
ecG(x)

−
∑

x∈H2∪{vk2}

nk2
ecG(x)

.

Thus by similar arguments as given in Case I, we obtain ξad(G1) > ξad(G). This completes

the proof.
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Example 4.3. Consider a unicyclic graph U ∈ U(17, 6) given in Figure 4.3. From Lemma

4.1, we construct a sequence of unicyclic graphs U,U1, U2, U3, U4, where U4 ∈ Ũ(17, 6),

satisfying ξad(U) < ξad(U1) < ξad(U2) < ξad(U3) < ξad(U4). This sequence of unicyclic

graphs is not unique because it depends upon the choice of edge uv.
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Figure 4.3: A sequence of unicyclic graphs obtained after applying Lemma 4.1.

Now we apply the Lemma 4.2 on the unicyclic graph U4 to get U(17, 6; 11). We

generate a sequence of unicyclic graphs U4, U5, U6, where U6
∼= U(17, 6; 11) satisfying

ξad(U4) < ξad(U5) < ξad(U6). The sequence of trees is shown in Figure 4.4. This sequence

of unicyclic graphs is not unique because it depends upon the choice of vertices vk1 and

vk2 .
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Figure 4.4: A sequence of unicyclic graphs obtained after applying Lemma 4.2.
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In upcoming theorem, we derive the unicyclic graph in U(n, g) with the largest eccen-

tric adjacency index, by using Lemmas 4.1 and 4.2.

Theorem 4.4. Let U ∈ U(n, g) be an n-vertex unicyclic graph, where 3 ≤ g ≤ n and

n ≥ 4. Then ξad(U) ≤ ξad(U(n, g;n− g)) with equality if and only if U ∼= U(n, g;n− g).

Proof. Let U ∈ U(n, g) and Cg be its unique cycle of length g. If U /∈ Ũ(n, g) then

there is an edge uv ∈ EU \ ECg with degU(u) ≥ 2 and ΓU(v) = {u,w1, . . . , wt}, where

wi ∈ PU(v), i = 1, 2, . . . , t. By applying Lemma 4.1, we get a unicyclic graph U1 =

(U −{vw1, . . . , vwt})∪{uw1, . . . , uwt} such that ξad(U) < ξad(U1). Again, if U1 /∈ Ũ(n, g)

then there is an edge u1v1 ∈ EU1 \ ECg with degU1
(u1) ≥ 2 and ΓU1(v1) = {u1, w

′
1, . . . , w

′
t}

where w′i ∈ PU1(v1), i = 1, 2, . . . , t. By applying Lemma 4.1, we get a unicyclic graph

U2 = (U1−{v1w
′
1, . . . , v1w

′
t})∪{u1w

′
1, . . . , u1w

′
t} such that ξad(U1) < ξad(U2). Repeatedly

applying Lemma 4.1, we get a sequence of unicyclic graphs U,U1, U2, . . . , Ul satisfying

ξad(U) < ξad(U1) < ξad(U2) < · · · < ξad(Ul) such that Ul ∈ Ũ(n, g).

Now if Ul � U(n, g;n−g) then there are two vertices vr, vs ∈ VCg , r, s = 1, 2, . . . , g and

r 6= s, with ecUl
(vr) ≤ ecUl

(vs). Assume that PUl
(vr) = {x1, x2, . . . , xnr} and PUl

(vs) =

{y1, y2, . . . , yns}, where nr ≥ 1, ns ≥ 1. By applying Lemma 4.2, we obtain a unicyclic

graph Ul1 = (Ul − {vsy1, . . . , vsyns}) ∪ {vry1, . . . , vryns} that satisfies ξad(Ul) < ξad(Ul1).

Again, if Ul1 � U(n, g, n− g) then there are two vertices vr′ , vs′ ∈ VCg , r′, s′ = 1, 2, . . . , g

and r′ 6= s′, with ecUl1
(vr′) ≤ ecUl1

(vs′). Assume that PUl1
(vk′1) = {x′1, x′2, . . . , x′nk′1

}

and PUl1
(vk′2) = {y′1, y′2, . . . , y′nk′2

}, where nr′ , ns′ ≥ 1. By applying Lemma 4.2, we ob-

tain a unicyclic graph Ul2 = (Ul1 − {vs′y′1, . . . , vs′y′ns′
}) ∪ {vr′y′1, . . . , vr′y′ns′

} such that

ξad(Ul1) < ξad(Ul2). Applying repeatedly Lemma 4.2, we obtain a sequence of unicyclic

graphs Ul, Ul1 , Ul2 , . . . , Ulm satisfying ξad(Ul) < ξad(Ul1) < ξad(Ul2) < · · · < ξad(Ulm) such

that Ulm
∼= U(n, g;n− g). This completes the proof.

By Theorem 4.4 and simple calculations we have the next result.
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Corollary 4.5. Let U ∈ U(n, g) be an n-vertex unicyclic graph where n ≥ 4. Then

ξad(U) ≤



n2+7
2

if g = 3,

2(3n+g−8)
g−1

+ 2(n2+g2−2ng+2n−2g+8)
g+1

if 3 < g < n and g is odd,

2(3n+g−4)
g

+ 2(n2+g2−2ng+2n−2g+4)
g+2

if 3 < g < n and g is even,

4n
bn
2
c if g = n,

(4.16)

equality if and only if U ∼= U(n, g;n− g).

In the upcoming theorem, we find the unicyclic graph in U(n) with the largest eccentric

adjacency index, by using Theorem 4.4 and Corollary 4.5.

Theorem 4.6. Let U ∈ U(n) be an n-vertex unicyclic graph with n ≥ 4. Then

ξad(U) ≤ n2 + 7

2
,

with equality if and only if U ∼= U(n, 3;n− 3).

Proof. Let U ∈ U(n, g) be an n-vertex unicyclic graph. Then (4.16) holds true. We prove

that ξad(U(n, g;n− g)) ≤ ξad(U(n, 3;n− 3)). Let

h(g) =



n2+7
2

if g = 3,

2(3n+g−8)
g−1

+ 2(n2+g2−2ng+2n−2g+8)
g+1

if 3 < g < n and g is odd,

2(3n+g−4)
g

+ 2(n2+g2−2ng+2n−2g+4)
g+2

if 3 < g < n and g is even,

4n
bn
2
c if g = n.

Let g be odd, 3 < g < n. Then we have

h(g) =
2(3n+ g − 8)

g − 1
+

2(n2 + g2 − 2ng + 2n− 2g + 8)

g + 1
.

This gives

h′(g) =
−2(3n− 7)

(g − 1)2
− 2(n2 − g2 + 4n− 2g + 10)

(g + 1)2
.

Note that n2 − g2 + 4n − 2g + 10 > 0 for n > g > 3. This implies that h′(g) < 0. Thus

h(g) is a decreasing function for 3 < g < n and g is odd. Also

h(5) =
2n2 − 7n+ 37

6
. (4.17)
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Now let g be even, 3 < g < n. Then we have

h(g) =
2(3n+ g − 4)

g
+

2(n2 + g2 − 2ng + 2n− 2g + 4)

g + 2
.

This gives

h′(g) =
−2(3n− 4)

g2
− 2(n2 − g2 + 6n− 4g + 8)

(g + 2)2
.

Note that n2 − g2 + 6n − 4g + 8 > 0 for n > g > 3. This implies that h′(g) < 0. Thus

h(g) is a decreasing function for 3 < g < n and g is even. Also

h(4) =
2n2 − 3n+ 24

6
. (4.18)

From (4.17) and (4.18), we have

h(5)− h(4) =
−(4n− 13)

6
< 0.

Also

h(4)− h(3) =
−n2 − 3n+ 3

6
< 0.

Finally, it is easily seen that h(3) = n2+7
2

> 4n
bn
2
c = h(n), where n ≥ 4. Thus ξad(U) ≤ n2+7

2
,

with equality if and only if U ∼= U(n, 3;n− 3). This completes the proof.

4.2 The eccentric adjacency index of trees with fixed

diameter

Let T (n, d) be the family of all trees of order n ≥ 2 with a fixed diameter d, where

2 ≤ d ≤ n − 1. Let T̃ (n, d) be the family of caterpillars with diameter d that are

obtained from a diametrical path Pd+1 = v0v1 . . . vd such that n− d− 1 pendent vertices

and attached to the vertices v1, v2, . . . , vd−1. Also T (n, d;n− d− 1) denotes a caterpillar

obtained by connecting n− d− 1 pendent vertices to a central vertex vbd/2c of path Pd+1.

In the following theorem, we find the tree in T ∈ T (n, d) with the largest eccentric

adjacency index, by using Lemma 4.1.
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Theorem 4.7. Let T ∈ T (n, d) be an n-vertex tree, where n ≥ 2. Then ξad(T ) ≤

ξad(T (n, d;n− d− 1)) with equality if and only if T ∼= T (n, d;n− d− 1).

Proof. Let T ∈ T (n, d) and Pd+1 = v0v1 . . . vd be its diametrical path. If T /∈ T̃ (n, d)

then there is an edge uv ∈ ET \ EPd+1
with degT (u) ≥ 2 and ΓT (v) = {u,w1, . . . , wt}

where wi ∈ PT (v), i = 1, 2, . . . , t. By applying Lemma 4.1, we get a tree T1 = (T −

{vw1, . . . , vwt})∪{uw1, . . . , uwt} such that ξad(T ) < ξad(T1). Again, if T1 /∈ T̃ (n, d) then

there is an edge u′v′ ∈ ET1 \ EPd+1
with degT1(u

′) ≥ 2 and ΓT1(v
′) = {u1, w1, . . . , wt}

where wi ∈ PT1(v
′), i = 1, 2, . . . , t. By applying Lemma 4.1, we get a new tree T2 =

(T1−{v′w1, . . . , v
′wt})∪{u′w1, . . . , u

′wt} such that ξad(T1) < ξad(T2). Thus by repeatedly

applying Lemma 4.1, we generate a sequence of tress T, T1, T2, . . . , Tl such that ξad(T ) <

ξad(T1) < ξad(T2) < · · · < ξad(Tl), where Tl ∈ T̃ (n, d).

Now if Tl ∈ T̃ (n, d) then there exists some vertices vk of Pd+1 with k 6= bd
2
c and

degTl(vk) ≥ 3. Without loss of generality, suppose that bd
2
c < k ≤ d − 1, that is,

ecTl(vk) = k. Let w1, . . . , wt be the pendent vertices adjacent at vk, where 1 ≤ k ≤ d− 1.

Construct a new tree Tl1 from Tl as Tl1 = (Tl − {vkw1, . . . , vkwt}) ∪ {vbd
2
cw1, . . . , vbd

2
cwt}

and Tl1 ∈ T̃ (n, d). Note that ecTl1 (v) ≤ ecTl(v) for any v ∈ VTl . Take w ∈ PTl(vk) and we

know that STl(w) = degTl(vk) = t+ 2. Therefore

STl1 (w) = degTl1
(vbd

2
c) + t ≥ 2 + t = STl(w). (4.19)

There are two cases, either vkvbd
2
c ∈ EPd+1

or vkvbd
2
c /∈ EPd+1

.

Case I: If vkvbd
2
c /∈ EPd+1

then by the construction of Tl1 , we have

STl1 (vbd
2
c) = STl(vbd

2
c) + t, STl1 (vk) = STl(vk)− t. (4.20)

Let B1 = ΓTl(vbd
2
c)\(ΓTl(vbd

2
c)∩ΓTl(vk)) and B2 = ΓTl(vk)\(PTl(vk)∪(ΓTl(vbd

2
c)∩ΓTl(vk))).

Then

STl1 (x) = STl(x), ∀ x ∈ ΓTl(vbd
2
c) ∩ ΓTl(vk),

STl1 (x) = STl(x) + t, ∀ x ∈ B1,

STl1 (x) = STl(x)− t, ∀ x ∈ B2.

(4.21)
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By the construction of Tl1 , we have

STl1 (z) = STl(z), ∀ z ∈ VTl \ ({vbd
2
c, vk} ∪ ΓTl(vbd

2
c) ∪ ΓTl(vk)). (4.22)

From the definition of eccentric adjacency index and (4.19)−(4.22), we obtain

ξad(Tl1) =
STl1 (vbd

2
c)

ecTl1 (vbd
2
c)

+
STl1 (vk)

ecTl1 (vk)
+

∑
w∈PTl

(vk)

STl1 (w)

ecTl1 (w)
+
∑
z∈B1

STl1 (z)

ecTl1 (z)
+
∑
x∈B2

STl1 (x)

ecTl1 (x)

+
∑

x∈ΓTl
(vbd2 c

)∩ΓTl
(vk)

STl1 (x)

ecTl1 (x)
+

∑
z∈VTl\({vbd2 c

,vk}∪ΓTl
(vbd2 c

)∪ΓTl
(vk))

STl1 (z)

ecTl1 (z)

>
STl(vbd

2
c) + t

ecTl(vbd
2
c)

+
STl(vk)− t
ecTl(vk)

+
∑

w∈PTl
(vk)

STl(w)

ecTl(w)
+
∑
z∈B1

STl(z) + t

ecTl(z)

+
∑
x∈B2

STl(x)− t
ecTl(x)

+
∑

x∈ΓTl
(vb d2 c

)∩ΓTl
(vk)

STl(x)

ecTl(x)
+

∑
z∈VTl\({vbd2 c

,vk}∪ΓTl
(vbd2 c

)∪ΓTl
(vk))

STl(z)

ecTl(z)

= ξad(Tl) +
t

ecTl(vbd
2
c)
− t

ecTl(vk)
+
∑
z∈B1

t

ecTl(z)
−
∑
x∈B2

t

ecTl(x)

= ξad(Tl) +
t

dd
2
e
− t

k
+
∑
z∈B1

t

ecTl(z)
−
∑
x∈B2

t

ecTl(x)
.

Given that dd
2
e < k and for each x ∈ B1, we have ecTl(x) = dd

2
e+ 1. Note that if x ∈ B2

then we have dd
2
e+ 1 < ecTl(x) < d. Therefore

ξad(Tl1) > ξad(Tl) +
∑
z∈B1

t

dd
2
e+ 1

−
∑
x∈B2

t

dd
2
e+ 1

.

Now we have two subcases; either ΓTl(vbd
2
c) ∩ ΓTl(vk) = ∅ or ΓTl(vbd

2
c) ∩ ΓTl(vk) 6= ∅.

(1). If ΓTl(vbd
2
c) ∩ ΓTl(vk) = ∅ then we have |B1| = 2 and |B2| = 2.

(2). If ΓTl(vbd
2
c) ∩ ΓTl(vk) 6= ∅ then we have |B1| ≥ 1 and |B2| = 1.

Thus from above two subcases, it holds that ξad(Tll) > ξad(Tl).

Case II: If vkvbd
2
c ∈ EPd+1

then by the construction of Tl1 , we get

STl1 (vbd
2
c) = STl(vbd

2
c), STl1 (vk) = STl(vk),

STl1 (x) = STl(x) + t, ∀ x ∈ ΓTl(vbd
2
c) \ {vk},

STl1 (x) = STl(x)− t, ∀ x ∈ ΓTl(vk) \ (PTl(vk) ∪ {vbd
2
c}),

STl1 (z) = STl(z), ∀ z ∈ VTl \ (ΓTl(vbd
2
c) ∪ ΓTl(vk)).

(4.23)
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Therefore from the definition of eccentric adjacency index, (4.19) and (4.23), we obtain

ξad(Tl1) =
STl1 (vbd

2
c)

ecTl1 (vbd
2
c)

+
STl1 (vk)

ecTl1 (vk)
+

∑
w∈PTl

(vk)

STl1 (w)

ecTl1 (w)
+

∑
z∈ΓTl

(vbd2 c
)\{vk}

STl1 (z)

ecTl1 (z)

+
∑

z∈ΓTl
(vk)\(PTl

(vk)∪{vbd2 c
})

STl1 (z)

ecTl1 (z)
+

∑
z∈VTl\(ΓTl

(vbd2 c
)∪ΓTl

(vk))

STl1 (z)

ecTl1 (z)

>
STl(vbd

2
c)

ecTl(vbd
2
c)

+
STl(vk)

ecTl(vk)
+

∑
w∈PTl

(vk)

STl(w)

ecTl(w)
+

∑
z∈ΓTl

(vbd2 c
)\{vk}

STl(z) + t

ecTl(z)

+
∑

z∈ΓTl
(vk)\(PTl

(vk)∪{vbd2 c
})

STl(z)− t
ecTl(z)

+
∑

z∈VTl\(ΓTl
(vbd2 c

)∪ΓTl
(vk))

STl(z)

ecTl(z)

= ξad(Tl) +
∑

z∈ΓTl
(vbd2 c

)\{vk}

t

ecTl(z)
−

∑
z∈ΓTl

(vk)\(PTl
(vk)∪{vbd2 c

})

t

ecTl(z)
.

Since vk has a unique neighbor in VPd+1
other than vbd

2
c, such that ecTl(x) = k+ 1, where

x ∈ ΓTl(vk)\(PTl(vk)∪{vbd
2
c}). Also for each x ∈ ΓTl(vbd

2
c)\{vk}, we have ecTl(x) = dd

2
e+1.

Therefore

ξad(Tl1) > ξad(Tl) +
∑

z∈ΓTl
(vbd2 c

)\{vk}

t

dd
2
e+ 1

−
∑

z∈ΓTl
(vk)\(PTl

(vk)∪{vbd2 c
})

t

k + 1
.

As we know that bd
2
c < k ≤ d− 1. Thus ξad(Tl1) > ξad(Tl).

Again, if Tl1 /∈ T̃ (n, d) then there exists some vertices vk ∈ VPd+1
with k 6= bd

2
c and

degTl1
(vk) ≥ 3. Without loss of generality, suppose that bd

2
c < k ≤ d − 1, that is,

ecTl1 (vk) = k. Let w1, . . . , wt be the pendent vertices adjacent at vk, where 1 ≤ k ≤ d−1.

Construct a new tree Tl2 from Tl1 as Tl2 = (Tl1 −{vkw1, . . . , vkwt})∪{vbd
2
cw1, . . . , vbd

2
cwt}

and Tl2 ∈ T̃ (n, d). We can apply repeatedly above transformation on Tl and construct

a sequence of trees Tl, Tl1 , . . . , Tlm such that ξad(Tl) < ξad(Tl1) < · · · < ξad(Tlm), where

Tlm
∼= T (n, d;n− d− 1). Therefore ξad(T ) ≤ ξad(T (n, d;n− d− 1)) with equality if and

only if T ∼= T (n, d;n− d− 1). This completes the proof.

By simple calculations and using Theorem 4.7, we have following result.
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Corollary 4.8. Let T ∈ T (n, d) be an n-vertex tree with n ≥ 3. Then

ξad(T ) ≤



n2−1
2

if d = 2,

2n2−9n−17
6

if d = 4,

2
(

2
d

+ 3
d−1

+ 4
d−2

+ 4
d−3

+ · · ·+ 4
d/2+2

)
+2(n2+d2−2nd+2n−2d+5)

d+2
+ 2(n−d+3)

d
if d ≥ 6 and is even,

2
(

2
n−1

+ 3
n−2

+ 4
n−3

+ 4
n−4

+ · · ·+ 4
n/2

)
if d ≥ 3 and is odd,

with equality if and only if T ∼= T (n, d;n− d− 1).

4.3 Conclusion

The center of interest of this chapter is to study the unicyclic graphs with the largest

eccentric adjacency index between all n-vertex unicyclic graphs with a given girth. Also

we find the largest unicyclic graph with respect to eccentric adjacency index. Further-

more, we determined the tree with the largest eccentric adjacency index among all the

n-vertex trees with a fixed diameter. It is interesting to investigate eccentric adjacency

index for unicyclic graphs and trees with fixed parameters like maximum vertex degree, in-

dependence number, degree sequence, domination number, bipartition and fixed pendent

vertices.
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Chapter 5

Two degree distance based

topological indices of chemical trees

The present-day trend is to study the extremal determinations in graph theory with some

graph parameters, for example, vertex degree, bipartition, matching number, indepen-

dence number, vertex cover, etc., and it has established its significance quite successful.

In [1], the authors found the extremal conjugated trees with respect to eccentric con-

nectivity and eccentric adjacency indices. Hua et al. [59] determined the graphs having

smallest eccentric distance sum within all n-vertex graphs with k cut edges. Qi et al. [74]

gave the trees with extremal Zagreb eccentricity invariants among the trees with fixed

domination number, largest degree and bipartition.

Motivated by the above statements, it is quite natural for us to carry on the investi-

gation on the eccentric connectivity and the eccentric adjacency indices with some given

parameters. The rest of the chapter is structured as follows. In Section 5.1, we deter-

mine trees with the smallest eccentric connectivity and largest eccentric adjacency indices

among the n-vertex trees with a given bipartition. Section 5.2 contains results of trees

with the smallest eccentric connectivity and the largest eccentric adjacency indices in the

class of trees with fixed matching number and independence number. Section 5.3 incorpo-

rated a bit discussion about eccentric connectivity index of the smallest trees with fixed
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domination number.

5.1 Eccentric connectivity index and the eccentric

adjacency index of trees with a (r, s)-bipartition

Let T (n; r, s) be the family of n-vertex trees, every one of which has a (r, s)-bipartition,

where r ≤ s and r + s = n. Note that T (n; 1, n − 1) = {Sn}. Let T (n, r, s) be the

n-vertex tree acquired by connecting r− 1 and s− 1 pendent vertices to the two vertices

of P2, respectively, where 2 ≤ r ≤ s and r + s = n. The graph T (n, r, s) is depicted in

Figure 5.1. In this section, we find the tree with smallest eccentric connectivity index in

T (n; r, s) and also determine the tree with largest eccentric adjacency index in T (n; r, s).

r-1 s-1

Figure 5.1: The graph T (n, r, s).

In Lemma 5.1, we establish a new tree in T (n; r, s) from a given tree in T (n; r, s)

such that the new tree has smaller eccentric connectivity index and has larger eccentric

adjacency index.

Lemma 5.1. Let T ∈ T (n; r, s) with uv, vw ∈ ET , degT (u) ≥ 2 and ΓT (w) = {v, w1, w2,

. . . , wt}, where w1, w2, . . . , wt ∈ PT (w), t ≥ 1 and also w1, w2, . . . , wt be the end vertices of

a diametrical path in T . Construct a new tree T1 from T as T1 = (T −{ww1, . . . , wwt})∪

{uw1, . . . , uwt}. Then ξc(T1) ≤ ξc(T ) and ξad(T1) ≥ ξad(T ).

Proof. By the construction of T1, it is obvious that T1 ∈ T (n; r, s). Let Tv be the

component of T − {u,w} which includes the vertex v and take x ∈ PT (w), define
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A = {y ∈ VT | dT (x, y) = ecT (y)}. It is natural to see that for any x1 ∈ VT \ (A∪PT (w)),

we have

ecT1(x1) = ecT (x1). (5.1)

• If ecTv(v) = 2 then for any y ∈ A, we have ecT1(y) = ecT (y).

• If ecTv(v) ∈ {0, 1} then there are some vertex z ∈ VT such that dT1(y, z) = ecT1(y),

for any y ∈ A. There are two possibilities: either z = w or z ∈ VT \ {w}. If z = w

then we have

ecT1(y) = dT1(y, w) = dT (y, w) = ecT (y)− 1. (5.2)

Now if z ∈ VT \ {w} then we have

ecT1(y) = dT1(y, z) = dT (y, z) ≤ ecT (y). (5.3)

Note that ecT (x) = ecT (w) + 1 for any x ∈ PT (w). Therefore from (5.1)-(5.3), we get

ecT1(x) = ecT1(u) + 1 ≤ ecT (u) + 1. (5.4)

Case I: By the construction of T1, it is easily seen that

degT1(y) = degT (y), ∀ y ∈ VT \ {u,w}. (5.5)

Also, the degrees of vertices u and w are given by

degT1(w) = degT (w)− t = 1, degT1(u) = degT (u) + t. (5.6)
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Thus from (5.1)-(5.6), we obtain

ξc(T1)− ξc(T ) = ecT1(u) degT1(u)− ecT (u) degT (u) + ecT1(w) degT1(w)− ecT (w) degT (w)

+
∑

x∈PT (w)

ecT1(x) degT1(x)−
∑

x∈PT (w)

ecT (x) degT (x)

≤ ecT (u)(degT (u) + t)− ecT (u) degT (u) + ecT (w)(degT (w)− t)

− ecT (w) degT (w) +
∑

x∈PT (w)

(ecT (u) + 1) degT (x)

−
∑

x∈PT (w)

(ecT (w) + 1) degT (x)

= t ecT (u)− t ecT (w) + t ecT (u)− t ecT (w)

= 2t(ecT (u)− ecT (w)).

Note that ecT (u) ≤ ecT (w), equality holds if dT = 4. Therefore ξc(T1) ≤ ξc(T ).

Case II: By the construction of T1, we have

ST1(y) = ST (y), ∀ y ∈ VT \ (ΓT (v) ∪ ΓT (w) ∪ {u,w}). (5.7)

Also, the sum of the degrees of neighbor vertices of v in T1 is given by

ST1(v) =
∑

x∈ΓT (v)\{u,w}

degT1(x) + degT1(w) + degT1(u)

=
∑

x∈ΓT (v)\{u,w}

degT (x) + (degT (w)− t) + (degT (u) + t)

= ST (v).

(5.8)

Also

ST1(u) = ST (u) + t, ST1(w) = ST (w)− t

ST1(x) = ST (x) + t, ∀ x ∈ ΓT (u) \ {v}.
(5.9)

Note that ST (x) = degT (w) = t + 1 and given that degT (u) ≥ 2, for any x ∈ PT (w).

Therefore we have

ST1(x) = degT1(u) = degT (u) + t ≥ 2 + t > degT (w) = ST (x). (5.10)
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Thus from (5.1)-(5.4) and (5.7)-(5.10), we obtain

ξad(T1)− ξad(T ) =
ST1(v)

ecT1(v)
− ST (v)

ecT (v)
+
ST1(w)

ecT1(w)
− ST (w)

ecT (w)
+
ST1(u)

ecT1(u)
− ST (u)

ecT (u)

+
∑

x∈PT (w)

ST1(x)

ecT1(x)
−

∑
x∈PT (w)

ST (x)

ecT (x)
+

∑
x∈ΓT (u)\{v}

ST1(x)

ecT1(x)

−
∑

x∈ΓT (u)\{v}

ST (x)

ecT (x)

≥ ST (v)

ecT (v)
− ST (v)

ecT (v)
+
ST (w)− t
ecT (w)

− ST (w)

ecT (w)
+
ST (u) + t

ecT (u)
− ST (u)

ecT (u)

+
∑

x∈PT (w)

ST (x)

ecT (x)
−

∑
x∈PT (w)

ST (x)

ecT (x)
+

∑
x∈ΓT (u)\{v}

ST (x) + t

ecT (x)

−
∑

x∈ΓT (u)\{v}

ST (x)

ecT (x)

=
t

ecT (u)
− t

ecT (w)
+

∑
x∈ΓT (u)\{v}

t

ecT (x)
.

Note that ecT (u) ≤ ecT (w), equality holds if dT = 4. Therefore ξad(T1) ≥ ξad(T ).

Applying Lemma 5.1 repeatedly yields the next theorem.

Theorem 5.2. The tree T (n, r, s) is the unique tree in T (n; r, s) which has the smallest

eccentric connectivity index among trees in T (n; r, s), where n ≥ 3 and 2 ≤ r ≤ s.

Proof. Let T ∈ T (n; r, s) be an n-vertex tree. If T � T (n, r, s) then there is a path uvw

in T with degT (u) ≥ 2 and ΓT (w) = {v, w1, w2, . . . , wt}, where w1, w2, . . . , wt ∈ PT (w),

t ≥ 1 and also w1, w2, . . . , wt be the end vertices of a diametrical path in T . By using

Lemma 5.1, we construct a tree from T as T1 = (T − {ww1, . . . , wwt}) ∪ {uw1, . . . , uwt}

that satisfies ξc(T1) ≤ ξc(T ). Now if T1 � T (n, r, s) then there is a path u′v′w′ in T1

with degT1(u
′) ≥ 2 and ΓT1(w

′) = {v′, w′1, w′2, . . . , w′t}, where w′1, w
′
2, . . . , w

′
t ∈ PT1(w

′),

t ≥ 1 and also w′1, w
′
2, . . . , w

′
t be the end vertices of a diametrical path in T1. By applying

Lemma 5.1, we construct a tree from T1 as T2 = (T1−{w′w′1, . . . , w′w′t})∪{u′w′1, . . . , u′w′t}

that satisfies ξc(T2) ≤ ξc(T1). Therefore by using repeatedly Lemma 5.1 on diametrical

paths of T we acquire a sequence of trees in T (n, r, s) with smaller eccentric connectivity
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index such that ξc(T ) ≥ ξc(T1) ≥ · · · ≥ ξc(Tk), where Tk ∼= T (n, r, s). This shows that

T (n, r, s) has the smallest eccentric connectivity index among trees in T (n, r, s).

By simple determining and using Theorem 5.2, we acquire following result.

Corollary 5.3. Let T ∈ T (n; r, s) with 2 ≤ r ≤ s and r + s = n. Then ξc(T ) ≤ 5n − 6

with equality if and only if T ∼= T (n, r, s).

By the definition of eccentric adjacency index and a similar interpretation given in

Theorem 5.2, we can find the extremal tree with largest eccentric adjacency index in

T (n; r, s) in the next theorem.

Theorem 5.4. The tree T (n, r, s) is the unique tree in T (n; r, s) that has the largest

eccentric adjacency index among trees in T (n; r, s), where n ≥ 3 and 2 ≤ r ≤ s.

By simple assessment and using Theorem 5.4, we acquire next result.

Corollary 5.5. Let T ∈ T (n; r, s) be an n-vertex tree with 2 ≤ r ≤ s and r + s = n.

Then ξad(T ) ≤ 1
3
((r + 1)2 + (s+ 1)2 − 5) with equality if and only if T ∼= T (n, r, s).

5.2 Eccentric connectivity index and eccentric adja-

cency index of trees with fixed matching number

and independence number

Let T (n,m) be the family of all n-vertex trees with a fixed matching number m and

T (n, α) be the set of all n-vertex trees with independence number α. If m = 1, then T is

a star Sn with ξc(Sn) = 3(n − 1) and ξad(Sn) = n2−1
2

for n ≥ 3. Let Sn,m ∈ T (n,m) be

a tree acquired from star Sn−m+1 by connecting a pendent edge to each m − 1 pendent

vertices in Sn−m+1. The graph Sn,m is shown in Figure 5.2.

In this section, we derive the smallest eccentric connectivity index of trees in T (n,m)

and T (n, α). Also we find the largest eccentric adjacency index of trees in T (n,m) and

T (n, α).
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m-1n-2m+1

Figure 5.2: The graph Sn,m.

The following lemmas present the classic properties of a tree with maximum matching

m and these lemmas are beneficial in the proofs of main results.

Lemma 5.6 (Hou and Li [56]). Let T ∈ T (2m,m) be a tree with m ≥ 3. Then T contains

at least two pendent vertices such that they are linked to the degree 2 vertices, respectively.

Lemma 5.7 (Hou and Li [56]). Let T ∈ T (n,m) be a tree with m ≥ 3 and n = 2m + 1.

Then T contains a pendent vertex linked to a degree 2 vertex.

Lemma 5.8 (Hou and Li [56]). Let T ∈ T (n,m) be a tree with n > 2m and m ≥ 3. Then

there exists an m-matching M and u ∈ PT such that u does not M-saturated.

Theorem 5.9 (Xu et al. [95]). Let T ∈ T (n,m) be a tree with n ≥ 2m and m ≥ 3. Then

we have ξc(T ) ≥ 5n+ 2m− 7 with equality if and only if T ∼= Sn,m.

For an n-vertex tree, it is widely known that α + m = n. By Theorem 5.9, it results

that

Theorem 5.10. Let T ∈ T (n, α) be an n-vertex tree with α ≤ n − 3. Then we have

ξc(T ) ≥ 7n− 2α− 7 with equality if and only if T ∼= Sn,n−α.

Theorem 5.11 (Akhter and Farooq [1]). Let T ∈ T (2m,m) be an n-vertex tree with

m ≥ 3. Then ξad(T ) ≤ 1

6
(2m2 + 11m− 8), with equality if and only if T ∼= S2m,m.

Theorem 5.12. Let T ∈ T (n,m) be an n-vertex tree with n ≥ 6 and m ≥ 3. Then we

have ξad(T ) ≤ 1
6
(2n2 + 2m2 − 4nm+ 3n+ 5m− 8) with equality if and only if T ∼= Sn,m.
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Proof. We establish the result using induction on n. If n = 2m, then the required result

holds from Theorem 5.11. Assume that n > 2m and the outcome satisfies for trees in

T ∈ T (n − 1,m). Let T ∈ T (n,m) and M be a largest matching of T . By Lemma 5.8,

there is a pendent vertex w in T such that w is not M -saturated. Let v be the unique

neighbor of w in T and T1 = T − {w}. Then T1 ∈ T (n − 1,m). Since M is a largest

matching therefore M contains one edge linked with v. There are n − 1 −m edges of T

outside M , therefore degT (v) ≤ n−m. If ecT (w) = 2, then T ∼= Sn with w as a pendent

vertex in Sn. Therefore we take ecT (w) ≥ 3 and ecT (v) ≥ 2.

Now take x ∈ PT (v), define A = {y ∈ VT | dT (x, y) = ecT (y)}. It is casual to see that

for any x1 ∈ VT \ (A ∪ PT (v)), we have

ecT1(x1) = ecT (x1).

There are some vertex z ∈ VT such that dT1(y, z) = ecT1(y), for any y ∈ A. There are two

possibilities: either z = v or z ∈ VT \ {v, w}. If z = v then we have

ecT1(y) = dT1(y, v) < dT (y, x) = ecT (y).

Now if z ∈ VT \ {v, w} then we have

ecT1(y) = dT1(y, z) = dT (y, z) ≤ ecT (y).

By the construction of T1, we acquire

ST1(v) = ST (v)− 1.

Also, for x1 ∈ ΓT (v) \ {w}, we have

ST1(x1) =
∑

y∈ΓT (x1)\{v}

degT1(y) + degT1(v)

=
∑

y∈ΓT (x1)\{v}

degT (y) + (degT (v)− 1)

= ST (x1)− 1.
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Therefore from the induction hypothesis, we obtain

ξad(T ) =
∑

z∈VT \({v}∪ΓT (v))

ST (z)

ecT (z)
+
ST (v)

ecT (v)
+

∑
x1∈ΓT (v)\{w}

ST (x1)

ecT (x1)
+
ST (w)

ecT (w)

≤
∑

z∈VT \({v}∪ΓT (v))

ST1(z)

ecT1(z)
+
ST1(v) + 1

ecT1(v)
+

∑
x1∈ΓT (v)\{w}

ST1(x1) + 1

ecT1(x1)
+

degT1(v)

ecT1(w)

= ξad(T1) +
1

ecT1(v)
+

∑
x1∈ΓT (v)\{w}

1

ecT1(x1)
+

degT1(v)

ecT1(w)

≤ 2(n− 1)2 + 2m2 − 4(n− 1)m+ 3(n− 1) + 5m− 8)

6
+

1

2

+
∑

x∈ΓT (v)\{w}

1

3
+
n−m

3

=
2n2 + 2m2 − 4nm+ 3n+ 5m− 8)

6
+

(−4n+ 4m− 1)

6
+

1

2

+
n−m− 1

3
+
n−m

3

=
2n2 + 2m2 − 4nm+ 3n+ 5m− 8)

6
.

The first equality holds if and only if ecT1(z) = ecT (z), for all z ∈ VT and second equality

proved if and only if degT (v) = n − 2m, |ΓT (v) \ {w}| = n − m − 1, ecT (v) = 2 and

ecT (x) = 3 for all x ∈ ΓT (v) \ {w}, that is, T ∼= Sn,m. Therefore, all the equalities proved

if and only if T ∼= Sn,m. This completes the proof.

By using α +m = n in Theorem 5.12, we acquire the next result.

Theorem 5.13. Let T ∈ T (n, α) with α ≤ n− 3. Then we have ξad(T ) ≤ 1
6
(8n+ 2α2 −

5α− 8) with equality if and only if T ∼= Sn,n−α.

5.3 Eccentric connectivity index of trees with domi-

nation number

Let T (n, γ) be the family of all the n-vertex trees with domination number γ. If γ = 1,

then T is a star Sn with ξc(Sn) = 3(n − 1). Let Sn,γ ∈ T (n, γ) be a tree acquired from

star K1,n by connecting a pendent edge to each n− γ − 1 pendent vertices.
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In this section, we find the smallest eccentric connectivity index of trees in T (n, γ).

Lemma 5.14. Let T be a tree with n ≥ 4 and u1u2 ∈ ET such that u1, u2 /∈ PT . Let

T ′ be the new tree acquired from T by deleting u1u2 and identifying u1 and u2, denoted

by u′1 and introducing a pendent edge u′1u
′
2, where u′2 be a pendent vertex. Then we have

ξc(T ′) < ξc(T ).

Proof. Let T1 and T2 be two components of T − {u1u2} such that u1 ∈ VT1 and u2 ∈ VT2 .

For each vertex w ∈ VT1 \ {u1}, we have

ecT (w) = max{ecT1(w), dT1(w, u1) + 1 + ecT2(u2)},

ecT ′(w) = max{ecT1(w), dT1(w, u1) + ecT2(u2), dT1(w, u1) + 1}.
(5.11)

For each vertex w ∈ VT2 \ {u2}, we have

ecT (w) = max{ecT2(w), dT2(w, u2) + 1 + ecT1(u1)},

ecT ′(w) = max{ecT2(w), dT2(w, u2) + ecT1(u1), dT2(w, u1) + 1}.
(5.12)

Now, it is simply seen that the eccentricities of u′1 and u′2 in T ′ are as follows:

ecT ′(u
′
1) = max{ecT1(u1), ecT2(u2)},

ecT ′(u
′
2) = max{ecT1(u1) + 1, ecT2(u2) + 1}.

(5.13)

By the construction of T ′, we have

degT ′(w) = degT (w), ∀ w ∈ VT \ {u1, u2}. (5.14)

Also, the degrees of vertices u′1 and u′2 in T ′ are given by

degT ′(u
′
1) = degT (u1) + degT (u2)− 1, degT ′(u

′
2) = 1. (5.15)

Note that from (5.11) and (5.12), we get ecT ′(w) ≤ ecT (w) for all w ∈ (VT1 \{u1})∪ (VT2 \
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{u2}). Thus from (5.11)-(5.15), we obtain

ξc(T )− ξc(T ′) =
∑

w∈VT1\{u1}

(degT (w)ecT (w)− degT ′(w)ecT ′(w))

+
∑

w∈VT2\{u2}

(degT (w)ecT (w)− degT ′(w)ecT ′(w)) + degT (u1)ecT (u1)

+ degT (u2)ecT (u2)− degT ′(u
′
1)ecT ′(u

′
1)− degT ′(u

′
2)ecT2(u

′
2)

≥
∑

w∈VT1\{u1}

(degT (w)ecT (w)− degT (w)ecT (w))

+
∑

w∈VT2\{u2}

(degT (w)ecT (w)− degT (w)ecT (w))

+ max{ecT1(u1), ecT2(u2) + 1} degT (u1)

+ max{ecT1(u1) + 1, ecT2(u2)} degT (u2)−max{ecT1(u1), ecT2(u2)}

(degT (u1) + degT (u2)− 1)−max{ecT1(u1) + 1, ecT2(u2) + 1}(1)

= max{ecT1(u1), ecT2(u2) + 1} degT (u1) + max{ecT1(u1) + 1, ecT2(u2)}

degT (u2)−max{ecT1(u1), ecT2(u2)}(degT (u1) + degT (u2)− 1)

−max{ecT1(u1) + 1, ecT2(u2) + 1}

(5.16)

Case I: If ecT1(u1) ≥ ecT2(u2) + 1, then

ξc(T )− ξc(T ′) ≥ ecT1(u1) degT (u1) + (ecT1(u1) + 1) degT (u2)

− ecT1(u1)(degT (u1) + degT (u2)− 1)− (ecT1(u1) + 1)

= degT (u2)− 1 > 0.

(5.17)

Case II: If ecT2(u2) ≥ ecT1(u1) + 1, then

ξc(T )− ξc(T ′) ≥ (ecT2(u2) + 1) degT (u1) + ecT2(u2) degT (u2)

− ecT2(u2)(degT (u1) + degT (u2)− 1)− (ecT2(u2) + 1)

= degT (u1)− 1 > 0.

(5.18)
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Case III: If ecT1(u1) = ecT2(u2), then

ξc(T )− ξc(T ′) ≥ (ecT2(u2) + 1) degT (u1) + (ecT2(u2) + 1) degT (u2)

− ecT2(u2)(degT (u1) + degT (u2)− 1)− (ecT2(u2) + 1)

= degT (u1) + degT (u2)− 1 > 0.

(5.19)

The proof is complete.

Xu et al. [95] determined that any graph G without isolated vertices has a subset A

of VG of cardinality γG such that for each u ∈ A, there is a vertex in VG \ A that is only

linked to u. Therefore we acquire the following lemma.

Lemma 5.15 (Xu et al. [95]). For any graph G, we have γG ≤ mG.

Lemma 5.16. If T1 ∈ T (n, γ) has the smallest eccentric connectivity index, then γT1 =

mT1 = γ.

Proof. By Lemma 5.15, we have γ = γT1 ≤ mT1 . Now it suffices to prove that γT1 ≥ mT1 .

Let A = {u1, u2, . . . , uγ} be a dominating set of T1 with cardinality γ. Then there exists

γ edges u1u
′
1, u2u

′
2, . . . , uγu

′
γ ∈ ET1 , where u′1, u

′
2, . . . , u

′
γ ∈ VT1 \A. Note that if γ = γT1 <

mT1 , there exists another edge x1x
′
1, that is independent of each edge u1u

′
1, u2u

′
2, . . . , uγu

′
γ.

If ui ∈ A dominate both the vertices x1 and x2, then a triangle x1x2ui occurs, where

i = 1, 2, . . . , γ. But we know that T1 is a tree therefore it is impossible. Thus x1 and

x2 are dominated by two quit different vertices of A. Without loss of generality we

suppose that xi is dominated by ui, for i = 1, 2, with degT1(x1), degT1(x2) ≥ 2 and

degT1(u1), degT1(u2) ≥ 2. Now we can construct a new tree T ′1 ∈ T (n, γ) from T1 by

applying transformation described in Lemma 5.14 on the edge x1u1 or x2u2 and we get

ξc(T1) > ξc(T ′1). This is the contradiction of our assumption. Therefore γT1 ≥ mT1 .

By using Lemma 5.16, Theorem 5.9 and a simple calculation, we acquire next result.

Theorem 5.17. Let T ∈ T (n, γ) with 2 ≤ γ ≤ bn
2
c. Then we have ξc(T ) ≥ 5n+ 2γ − 7

with equality if and only if T ∼= Sn,γ.
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5.4 Conclusion

In this chapter, we focuss on determining the trees with the smallest eccentric connectivity

and the largest eccentric adjacency indices among the trees with a given bipartition size.

Also we discuss the smallest eccentric adjacency index and the largest eccentric adjacency

index of trees among trees with fixed matching number and independence number. In the

end, we discuss the smallest trees among all trees with domination number with respect

to eccentric connectivity index. Finding extremal graphs with different parameters in

general classes of graphs with respect to distance based indices will be an challenging

problem.

64



Chapter 6

Eccentric adjacency index of graphs

with a given number of cut edges

In recent years, finding the extremal bounds for certain topological invariants in the form

of graph structure parameters has turned out to be a worthwhile direction in extremal

graph theory and many results are obtained. In [2], the authors determined the largest

unicyclic graphs with fixed girth and the largest tree along a fixed diameter with re-

spect to eccentric adjacency index. Akhter [3] derived the extremal trees for eccentric

connectivity and eccentric adjacency indices in form of other graph invariants together

with matching number, bipartition size, independence number and domination number.

Hua [57] determined the smallest value of Wiener index among connected graphs with

fixed cut edges. Motivated by the work referred above, we carry on the research on the

eccentric adjacency index of graphs with some given graph invariants. In this chapter, we

find the graphs with the largest eccentric adjacency index among the graphs with fixed

number of cut edges and characterize the extremal graphs.

The cyclomatic number of an nG-vertex connected graph G is c(G) = eG − nG + 1,

where eG is the size of G. In particular, if c(G) = 0 then G is a tree. If c(G) = 1 then G

is a unicyclic graph and if c(G) = 2 then G is a bicyclic graph. If an n-vertex connected

graph has the cyclomatic number at least one, then the number of its cut edges is at most
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n − 3. Thus, it is obvious from above statement that for any n-vertex connected graph

with k cut edges, we always have 0 ≤ k ≤ n− 1 and k 6= n− 2.

6.1 The connected graphs with a given number of cut

edges

Let G(n, k) be the set of n-vertex connected graphs with k cut edges, where 0 ≤ k ≤ n−1

(k 6= n− 2). Denote by Kk
n−k the graph acquired by connecting k pendent vertices with

a unique vertex of a complete graph Kn−k. In this section, we find an n-vertex connected

graph in G(n, k) with largest eccentric adjacency index. First we prove some lemmas

which will be crucial to the proof of our main result.

Lemma 6.1. Let H1 and H2 be two vertex-disjoint connected graphs each of order at least

2 with u ∈ VH1 and v ∈ VH2. Let G1 be the graph acquired by connecting u and v by an

edge uv and G2 be the graph acquired by identifying u with v and introducing a pendent

edge uw with pendent vertex w, respectively. Then ξad(G1) < ξad(G2).

u v

w

u

H1

G1
G2

H2 H2
H1

Figure 6.1: The graphs G1 and G2 in Lemma 6.1.

Proof. For each vertex x ∈ VG1 , we have

ecG1(x) = max{ecH1(x), dH1(x, u) + 1 + ecH2(v)}, if x ∈ VH1 ,

ecG1(x) = max{ecH2(x), dH2(x, v) + 1 + ecH1(u)}, if x ∈ VH2 .
(6.1)

66



For each vertex x ∈ VG2 \ {u,w}, we have

ecG2(x) = max{ecH1(x), dH1(x, u) + ecH2(v), dH1(x, u) + 1}, if x ∈ VH1 ,

ecG2(x) = max{ecH2(x), dH2(x, v) + ecH1(u), dH2(x, u) + 1}, if x ∈ VH2 .
(6.2)

Now, it is easily seen that the eccentricities of u and w in G2 are as follows:

ecG2(u) = max{ecH1(u), ecH2(v)},

ecG2(w) = max{ecH2(u) + 1, ecH2(v) + 1}.
(6.3)

Note that from (6.1) and (6.2), we get ecG1(x) ≥ ecG2(x) for each x ∈ VG1 \ {u, v}. By

the construction of G1 and G2, for each x ∈ VG1 \ ({u, v, w} ∪ ΓH1(u) ∪ ΓH2(v)), we have

SG2(x) = SG1(x). For each x ∈ ΓH1(u), we have

SG1(x) =
∑

y∈ΓH1
(x)\{u}

degH1
(y) + degH1

(u) + 1,

SG2(x) =
∑

y∈ΓH1
(x)\{u}

degH1
(y) + degH1

(u) + degH2
(v) + 1.

(6.4)

For each x ∈ ΓH2(v), we have

SG1(x) =
∑

y∈ΓH2
(x)\{v}

degH2
(y) + degH2

(v) + 1,

SG2(x) =
∑

y∈ΓH2
(x)\{v}

degH2
(y) + degH1

(u) + degH2
(v) + 1.

(6.5)

Furthermore, the sum of degrees of neighbors of the vertices u, v and w in G1 and G2 are

given by

SG1(u) =
∑

y∈ΓH1
(u)

degH1
(y) + degH2

(v) + 1,

SG1(v) =
∑

y∈ΓH2
(v)

degH2
(y) + degH1

(u) + 1,

SG2(u) =
∑

y∈ΓH1
(u)

degH1
(y) +

∑
y∈ΓH2

(v)

degH2
(y) + 1,

SG2(w) = degH1
(u) + degH2

(v) + 1.

(6.6)
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Therefore, from (6.1)-(6.6), we obtain

ξc(G1)− ξc(G2) ≤
∑

x∈ΓH1
(u)


∑

y∈ΓH1
(x)\{u}

degH1
(y) + degH1

(u) + 1

ecG2(x)


−

∑
x∈ΓH1

(u)


∑

y∈ΓH1
(x)\{u}

degH1
(y) + degH1

(u) + degH2
(v) + 1

ecG2(x)


+

∑
x∈ΓH2

(v)


∑

y∈ΓH2
(x)\{v}

degH2
(y) + degH2

(v) + 1

ecG2(x)


−

∑
x∈ΓH2

(v)


∑

y∈ΓH2
(x)\{v}

degH2
(y) + degH1

(u) + degH2
(v) + 1

ecG2(x)


+

∑
y∈ΓH1

(u)

degH1
(y) + degH2

(v) + 1

max{ecH1(u), ecH2(v) + 1}

−

∑
y∈ΓH1

(u)

degH1
(y) +

∑
y∈ΓH2

(v)

degH2
(y) + 1

max{ecH1(u), ecH2(v)}

+

∑
y∈ΓH2

(v)

degH2
(y) + degH1

(u) + 1

max{ecH2(v), ecH1(u) + 1}
−

degH1
(u) + degH2

(v) + 1

max{ecH1(u) + 1, ecH2(v) + 1}

= −

 ∑
x∈ΓH1

(u)

degH2
(v)

ecG2(x)
+

∑
x∈ΓH2

(v)

degH2
(u)

ecG2(x)


+

∑
y∈ΓH1

(u)

degH1
(y) + degH2

(v) + 1

max{ecH1(u), ecH2(v) + 1}

−

∑
y∈ΓH1

(u)

degH1
(y) +

∑
y∈ΓH2

(v)

degH2
(y) + 1

max{ecH1(u), ecH2(v)}

+

∑
y∈ΓH2

(v)

degH2
(y) + degH1

(u) + 1

max{ecH2(v), ecH1(u) + 1}
−

degH1
(u) + degH2

(v) + 1

max{ecH1(u) + 1, ecH2(v) + 1}

Case I: If ecH1(u) ≥ ecH2(v) + 1, then

ξc(G1)− ξc(G2) ≤ −

 ∑
x∈ΓH1

(u)

degH2
(v)

ecG2(x)
+

∑
x∈ΓH2

(v)

degH2
(u)

ecG2(x)
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+

∑
y∈ΓH1

(u)

degH1
(y) + degH2

(v) + 1

ecH1(u)

−

∑
y∈ΓH1

(u)

degH1
(y) +

∑
y∈ΓH2

(v)

degH2
(y) + 1

ecH1(u)

+

∑
y∈ΓH2

(v)

degH2
(y) + degH1

(u) + 1

ecH1(u) + 1
−

degH1
(u) + degH2

(v) + 1

ecH1(u) + 1

ξc(G1)− ξc(G2) = −

 ∑
x∈ΓH1

(u)

degH2
(v)

ecG2(x)
+

∑
x∈ΓH2

(v)

degH2
(u)

ecG2(x)


+

∑
y∈ΓH2

(v)

degH2
(y)− degH2

(v)

ecH1(u) + 1
−

∑
y∈ΓH2

(v)

degH2
(y)− degH2

(v)

ecH1(u)
< 0.

Case II: If ecH2(v) ≥ ecH1(u) + 1, then

ξc(G1)− ξc(G2) ≤ −

 ∑
x∈ΓH1

(u)

degH2
(v)

ecG2(x)
+

∑
x∈ΓH2

(v)

degH2
(u)

ecG2(x)


+

∑
y∈ΓH1

(u)

degH1
(y) + degH2

(v) + 1

ecH2(v) + 1

−

∑
y∈ΓH1

(u)

degH1
(y) +

∑
y∈ΓH2

(v)

degH2
(y) + 1

ecH2(v)

+

∑
y∈ΓH2

(v)

degH2
(y) + degH1

(u) + 1

ecH2(v)
−

degH1
(u) + degH2

(v) + 1

ecH2(v) + 1

= −

 ∑
x∈ΓH1

(u)

degH2
(v)

ecG2(x)
+

∑
x∈ΓH2

(v)

degH2
(u)

ecG2(x)


+

∑
y∈ΓH1

(u)

degH1
(y)− degH1

(u)

ecH2(v) + 1
−

∑
y∈ΓH1

(u)

degH1
(y)− degH1

(u)

ecH2(v)
< 0.

Case III: If ecH1(u) = ecH2(v), then

ξc(G1)− ξc(G2) ≤ −

 ∑
x∈ΓH1

(u)

degH2
(v)

ecG2(x)
+

∑
x∈ΓH2

(v)

degH2
(u)

ecG2(x)


+

∑
y∈ΓH1

(u)

degH1
(y) + degH2

(v) + 1

ecH2(v) + 1

69



−

∑
y∈ΓH1

(u)

degH1
(y) +

∑
y∈ΓH2

(v)

degH2
(y) + 1

ecH2(v)

+

∑
y∈ΓH2

(v)

degH2
(y) + degH1

(u) + 1

ecH2(v) + 1
−

degH1
(u) + degH2

(v) + 1

ecH2(v) + 1

ξc(G1)− ξc(G2) = −

 ∑
x∈ΓH1

(u)

degH2
(v)

ecG2(x)
+

∑
x∈ΓH2

(v)

degH2
(u)

ecG2(x)


+

∑
y∈ΓH1

(u)

degH1
(y) +

∑
y∈ΓH2

(v)

degH2
(y) + 1

ecH2(v) + 1

−

∑
y∈ΓH1

(u)

degH1
(y) +

∑
y∈ΓH2

(v)

degH2
(y) + 1

ecH2(v)
< 0.

This completes the proof.

In the following lemma, we prove an elementary result.

Lemma 6.2. Let G � Kn be an n-vertex connected graph and u, v ∈ VG be non-adjacent

vertices of G. Then ξad(G) < ξad(G+ uv).

Proof. Observe that dG(u, v) ≥ 2 and dG+uv(u, v) = 1. Let x ∈ VG and A be the set

of eccentric vertices of x in G, such that ecG(x) = dG(x, u) + dG(u, v) + dG(v, y), for all

y ∈ A. Then

ecG+uv(x) = dG+uv(x, u) + dG+uv(u, v) + dG+uv(v, y)

< dG(x, u) + dG(u, v) + dG(v, y) = ecG(x).
(6.7)

The eccentricities of other vertices of G are same in G and G + uv. The sum of degrees

of neighbors of the vertices u and v in G+ uv are given by

SG+uv(u) = SG(u) + degG(v) + 1,

SG+uv(v) = SG(v) + degG(u) + 1.
(6.8)

For each x ∈ ΓG(u) and y ∈ ΓG(v), we have

SG+uv(x) = SG(x) + 1, SG+uv(y) = SG(y) + 1. (6.9)
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Therefore, from (6.7)-(6.9), we obtain

ξad(G)− ξad(G+ uv) ≤ SG(u)

ecG+uv(u)
− SG(u) + degG(v) + 1

ecG+uv(u)
+

SG(v)

ecG+uv(v)

− SG(v) + degG(u) + 1

ecG+uv(v)
+

∑
x∈ΓG(u)

(
SG(x)

ecG+uv(x)
− SG(x) + 1

ecG+uv(x)

)

+
∑

y∈ΓG(v)

(
SG(y)

ecG+uv(y)
− SG(y) + 1

ecG+uv(y)

)
= −degG(v) + 1

ecG+uv(u)
− degG(u) + 1

ecG+uv(v)
−

∑
x∈ΓG(u)

1

ecG+uv(x)

−
∑

y∈ΓG(v)

1

ecG+uv(y)

< 0.

This completes the proof.

Lemma 6.3. Let H be a complete graph of order n ≥ 2 and v1, . . . , vt ∈ VH be some dis-

tinct vertices of H, where 2 ≤ t ≤ n. Let H1, H2, . . . , Ht be the nontrivial connected graphs

corresponding to a vertex v1, v2, . . . , vt, respectively and u1 ∈ VH1 , u2 ∈ VH2 , . . . , ut ∈ VHt.

Let G3 be the graph acquired from H by identifying a vertex uj ∈ VHj
to a vertex vj ∈ VH

for j = 1, . . . , t, respectively. Let G4 be the graph acquired from H by identifying the

vertices u1, u2, . . . , ut to a vertex, say v1 ∈ VH , of v′js. Then ξad(G3) < ξad(G4).

Proof. The order of both G3 and G4 is defined as n =
t∑

j=1

|Hj| − t+ |H|. For each vertex

u ∈ VHj
, we have

ecG3(u) = max{ecHj
(u), dHj

(u, uj) + 1 + ecHl
(ul), l 6= j},

ecG4(u) = max{ecHj
(u), dHj

(u, uj) + ecHl
(ul), l 6= j}.

(6.10)

For each w ∈ VH \ {v1, v2, . . . , vt}

ecG3(w) = ecG4(w) = max{1 + ecHj
(vj), j = 1, 2, . . . , t}. (6.11)

From (6.10) and (6.11), it is obvious that ecG3(u) ≥ ecG4(u) for each u ∈ VHj
. Let

A = VHj
\ ((VH ∩ VHj

) ∪ ΓHj
(uj)). Note that SG3(x) = SG4(x) for each x ∈ A, where
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j = 1, 2, . . . , t. For each v1, v2, . . . , vt ∈ VH ∩ VHj
, j = 1, . . . , t,

SG3(vl) = SH(vl) +
t∑

j=1,
j 6=l

degHj
(uj) + SHl

(ul), for l = 1, 2, . . . , t. (6.12)

Also

SG3(x) = SG4(x) = SH(x) +
t∑

j=1

degHj
(uj), ∀ x ∈ VH \ {v1, v2, . . . , vt},

SG3(x) = SHj
(x) + degH(vj), ∀ x ∈ ΓHj

(uj), where j = 1, 2, . . . , t.

(6.13)

From (6.12) and (6.13), we obtain

ξad(G3) =
t∑
l=1

1

ecG3(vl)

SH(vl) +
t∑

j=1
j 6=l

degHj
(uj) + SHl

(ul)


+

∑
x∈VH\{v1,v2,...,vt}

1

ecG3(x)

(
SH(x) +

t∑
j=1

degHj
(uj)

)

+
t∑
l=1

∑
x∈ΓHj

(uj)

1

ecG3(x)
(SHj

(x) + degH(vj)) +
t∑

j=1

∑
x∈A

SHj
(x)

ecG3(x)

=
∑
x∈VH

SH(x)

ecG3(x)
+

t∑
l=1

t∑
j=1
j 6=l

degHj
(uj)

ecG3(vl)
+

t∑
l=1

SHl
(ul)

ecG3(vl)

+
t∑

j=1

∑
x∈VH\{v1,v2,...,vt}

degHj
(uj)

ecG3(x)
+

t∑
j=1

∑
x∈ΓHj

(uj)

SHj
(x)

ecG3(x)

+
t∑

j=1

∑
x∈ΓHj

(uj)

degH(vj)

ecG3(x)
+

t∑
j=1

∑
x∈A

SHj
(x)

ecG3(x)
.

(6.14)

Furthermore, the sum of the degrees of neighbors of v1 in G4 is as follows:

SG4(v1) = SH(v1) +
t∑

j=1

SHj
(uj). (6.15)

Also

SG4(x) = SH(x) +
t∑

j=1

degHj
(uj), ∀ x ∈ ΓH(v1),

SG4(x) = SHl
(x) + degH(vl) +

t∑
j=1
j 6=l

degHj
(uj), ∀ x ∈ ΓHl

(ul), where l = 1, 2, . . . , t.
(6.16)
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From (6.15) and (6.16), we obtain

ξad(G4) =
∑

x∈VH\{v1}

SH(x)

ecG4(x)
+

1

ecG4(v1)

(
SH(v1) +

t∑
j=1

SHj
(uj)

)

+
∑

x∈ΓH(v1)

1

ecG4(x)

(
SH(x) +

t∑
j=1

degHj
(uj)

)
+

t∑
l=1

∑
x∈ΓHl

(ul)

1

ecG4(x)

(
SHl

(x)

+ degH(v1) +
t∑

j=1
j 6=l

degHj
(uj)

)
+

t∑
j=1

∑
x∈A

SHj
(x)

ecG4(x)

=
∑
x∈VH

SH(x)

ecG4(x)
+

t∑
j=1

SHj
(uj)

ecG4(v1)
+

t∑
j=1

∑
x∈ΓH(v1)

degHj
(uj)

ecG4(x)
+

t∑
l=1

∑
x∈ΓHl

(ul)

SHl
(x)

ecG4(x)

+
t∑
l=1

∑
x∈ΓHl

(ul)

degH(v1)

ecG4(x)
+

t∑
l=1

t∑
j=1
j 6=l

∑
x∈ΓHl

(ul)

degHj
(uj)

ecG4(x)
+

t∑
j=1

∑
x∈A

SHj
(x)

ecG4(x)
.

Since H is a complete graph therefore ΓH(v1) = VH \ {v1} and the degree of every vertex

is same.

ξad(G4) =
∑
x∈VH

SH(x)

ecG4(x)
+

t∑
j=1

SHj
(uj)

ecG4(v1)
+

t∑
j=1

∑
x∈VH\{v1}

degHj
(uj)

ecG4(x)
+

t∑
l=1

∑
x∈ΓHl

(ul)

SHl
(x)

ecG4(x)

+
t∑
l=1

∑
x∈ΓHl

(ul)

degH(v1)

ecG4(x)
+

t∑
l=1

t∑
j=1
j 6=l

∑
x∈ΓHl

(ul)

degHj
(uj)

ecG4(x)
+

t∑
j=1

∑
x∈A

SHj
(x)

ecG4(x)

=
∑
x∈VH

SH(x)

ecG4(x)
+

t∑
j=1

SHj
(uj)

ecG4(v1)
+

t∑
l=1

∑
x∈ΓHl

(ul)

SHl
(x)

ecG4(x)

+
t∑
l=1

∑
x∈ΓHl

(ul)

degH(v1)

ecG4(x)
+

t∑
j=1

 ∑
x∈VH\{v1,v2,...,vt}

degHj
(uj)

ecG4(x)
+

∑
x∈{v2,...,vt}

degHj
(uj)

ecG4(x)


+

t∑
l=1

t∑
j=1
j 6=l

∑
x∈ΓHl

(ul)

degHj
(uj)

ecG4(x)
+

t∑
j=1

∑
x∈A

SHj
(x)

ecG4(x)
.

(6.17)

Thus from (6.14) and (6.17), we obtain

ξad(G3)− ξad(G4) ≤
t∑

j=2

(
SHj

(uj)

ecG4(vj)
−
SHj

(uj)

ecG4(v1)

)
+

t∑
j=2

∑
x∈ΓHj

(uj)

(
degH(vj)

ecG4(x)
− degH(v1)

ecG4(x)

)
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+
t∑

j=2

(
degHj

(uj)

ecG4(v1)
−

degHj
(uj)

ecG4(vj)

)
−

t∑
l=1

t∑
j=1
j 6=l

∑
x∈ΓHl

(ul)

degHj
(uj)

ecG4(x)

< 0.

This completes the proof.

By elementary calculations, one can easily derive the following lemma.

Lemma 6.4. Let Kk
n−k be an n-vertex connected graph as described above, where 0 ≤ k ≤

n− 1 (k 6= n− 2). Then

ξad(Kk
n−k) =

 n(n− 1)2 for k = 0,
1

2
((n− k − 1)2(n− k) + (n− 1)2 + 2k) for k ≥ 1.

Proof. If k = 0 then Kk
n−k
∼= Kn and ξad(Kk

n−k) = n(n − 1)2. Since there are n − k − 1

vertices of eccentricity 2 and the sum of degrees of its neighbors ((n− k− 2)(n− k− 1) +

(n−1)), one vertex of eccentricity 1 and the sum of degrees of its neighbors (n−k−1)2+k,

and k pendent vertices of eccentricity 2 and the sum of degrees of its neighbor n − 1 in

Kk
n−k, k ≥ 1. Therefore we obtain the following:

ξad(Kk
n−k) =

(n− k − 1)[(n− k − 2)(n− k − 1) + (n− 1)]

2

+
(n− k − 1)2 + k

1
+
k(n− 1)

2

=
1

2
(n− k − 1)2(n− k − 2 + 2) +

1

2
(n− 1)(n− k − 1 + k) + k

=
1

2
((n− k − 1)2(n− k) + (n− 1)2 + 2k).

This completes the proof.

The following theorem gives the n-vertex connected graph with larger eccentric adja-

cency index among all the graphs in G(n, k), where 0 ≤ k ≤ n− 1 (k 6= n− 2).

Theorem 6.5. Let G ∈ G(n, k) be an n-vertex connected graph with k cut edges. Then

ξad(G) ≤

 n(n− 1)2 for k = 0,
1

2
((n− k − 1)2(n− k) + (n− 1)2 + 2k) for k ≥ 1,

quality hold if and only if G ∼= Kk
n−k.
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Proof. Let Gmax ∈ G(n, k) be a graph with the largest eccentric adjacency index among

all n-vertex connected graphs with k cut edges. Let E ′ = {e1, e2, . . . , ek} ⊆ EGmax be the

set of all cut edges of Gmax. Then all edges in E ′ must be pendent edges and incident at a

common vertex of Gmax, say w. For k = 0, the graph Gmax has no cut edges and its each

component is a clique or a single vertex. If Gmax is not the graph as described above, then

we can add an edge e between two non-adjacent vertices of Gmax and obtain a new graph

Gmax + uv having no cut edges. But by Lemma 6.2, we get ξc(Gmax) < ξc(Gmax + uv)

and it contradict our assumption.

Therefore now we have 1 ≤ k ≤ n − 1 and k 6= n − 2. If Gmax has an internal cut

edge uv, then we can construct a new graph by identifying u with v and introducing a

pendent edge uw with pendent vertex w and denote it by G2. It is obvious that G2 has

k cut edges. Thus by Lemma 6.3, we obtain ξc(Gmax) < ξc(G2), which is a contradiction.

When k = n− 1 we have Gmax is a tree, and thus we have Gmax
∼= Sn = Kn−1

1 .

Next we suppose that 1 ≤ k ≤ n− 3. Now let 2-edge-connected graph G3 with order

n − k and k pendent edges is an induced subgraph of Gmax. If G3 � Kn−k then we can

add edges into G3. Similar to above argument, we can deduce a new graph with a larger

eccentric adjacency index than Gmax; therefore G3
∼= Kn−k in Gmax. Moreover, we can

conform that all k pendent edges in Gmax must be attached at the same vertex of Kn−k.

Let G4 � Gmax be a graph with k pendent edges and these vertices attached at vi vertices

of G4. Then we can transform the k pendent edges to exactly one vertex of clique Kn−k of

G4. Therefore by Lemma 6.1, we construct a new graph with a larger eccentric adjacency

index than that of Gmax, which is a contradiction.

Therefore from all above discussion, we must have Gmax
∼= Kk

n−k. By Lemma 6.4, we

have ξad(Kk
n−k) = n(n−1)2 for k = 0, and ξad(Kk

n−k) =
1

2
((n−k−1)2(n−k)+(n−1)2+2k)

for k ≥ 1 and this completes the proof.

Following result is the consequence of Theorem 6.5 for k = n− 1.

Theorem 6.6. Let G be an n-vertex connected graph, n ≥ 2. Then ξad(G) ≤ n2 − 1

2
with
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equality if and only if G ∼= Sn.

6.2 Conclusion

This chapter center on a family G(n, k) of those n-vertex graphs which contain k cut edges.

We acquired the graphs in G(n, k) which have the largest eccentric adjacency index and

characterized the extremal graphs. It will be worthwhile to consider other distance and

eccentricity based topological indices for the class G(n, k) of graphs and compute their

respective extremal graphs.
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Chapter 7

Total eccentricity index of trees with

fixed pendent vertices and trees with

fixed diameter

The importance of trees is evident from their implementations in various diverse fields,

for example, computer science, the computation of saturated hydrocarbons, the electrical

circuits, etc [49]. Samith et al. [82] determined the trees that minimizes and maximizes

total eccentricity index among all trees along a given degree sequence.

Let T (n, p), 2 ≤ p ≤ n− 1, be the family of n-vertex trees with p pendent vertices. In

this chapter, we find trees in T (n, p) with the smallest and the largest total eccentricity

index. We propose three algorithms to transform given trees into trees with smaller or

larger total eccentricity indices. We also define a class T (n, d) of n-vertex trees with a

fixed diameter d and determine trees in this class with the smallest and the largest total

eccentricity index.
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7.1 Smallest total eccentricity index of trees with

fixed pendent vertices

A tree T ∈ T (n, p) is called a starlike tree if there exists a vertex v ∈ VT with degT (v) =

4T = p. Let S(n, p) ⊂ T (n, p) be the family of all n-vertex starlike trees with p pendent

vertices. Thus, if T is a tree in S(n, p) with a vertex v satisfying degT (v) = p, then

corresponding to each edge xv incident on v, there is exactly one pendent vertex reachable

from v by a path containing the edge xv. A starlike tree T ∈ S(n, p) is called balanced

if |dT (v, x) − dT (v, y)| ≤ 1 for all x, y ∈ PT , where degT (v) = 4T = p. The family of all

balanced starlike trees is presented by S̃(n, p).

In this section, we find the trees with smallest total eccentricity index among trees

in T (n, p). We propose two Algorithms; namely Algorithm A and Algorithm B. In

Algorithm A, we transform a given tree in T (n, p) into a tree in S(n, p). In Algorithm B,

we construct a tree in S̃(n, p) from a given tree in S(n, p).

Let T ∈ T (n, p) \ S(n, p) and take a diametrical path in T with end vertices xd and

yd. Let c ∈ VC(T ) and uv ∈ ET satisfying:

(c1) degT (u) ≥ 3.

(c2) u 6= c.

(c3) u lies on c, v-path.

(c4) v does not lie on xd, yd-path.

Our purpose is to construct a new tree T ′ ∈ T (n, p) from any given tree T ∈ T (n, p)

by removing an edge uv ∈ ET and attaching v to a central vertex c of T . The condition

(c1) ensures that new tree T ′ has p pendent vertices. The condition (c2) guarantees that

degree of c increases in T ′. The condition (c3) ensures that T ′ remains a tree and condition

(c4) ensures that xd, yd-path is also diametrical in T ′.

We notice that if T ∈ S(n, p) with a diametrical xd, yd-path then there is no uv ∈ ET

satisfying (c1)− (c4). The following result will be useful in the sequel.

Lemma 7.1. [36] Let T be an n-vertex tree and take a diametrical u, v-path in T . Then
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for any x ∈ VT , either ecT (x) = dT (x, u) or ecT (x) = dT (x, v).

In next lemma, we construct a tree in T (n, p) from any given tree in T (n, p) such that

the new tree has equal or smaller total eccentricity index.

Lemma 7.2. Let T ∈ T (n, p) and c ∈ VC(T ). Take a diametrical xd, yd-path and uv ∈ ET

satisfying (c1)− (c4). Construct a new tree T ′ = {T − {uv}} ∪ {cv}. Then T ′ ∈ T (n, p)

and τ(T ′) ≤ τ(T ).

Proof. Let P be the diametrical xd, yd-path in T . By (c1) and (c3), we see that

dT (c, v) = dT (c, u) + dT (u, v).

Note that dT (u, v) = 1 and by (c2), we have dT (c, u) ≥ 1. Thus

dT (c, v) ≥ 2. (7.1)

Let H be the component of T − u containing the vertex v and y ∈ VH . Then

dT (c, y) = dT (c, v) + dT (v, y).

This along with (7.1) gives

dT (c, y) ≥ 2 + dT (v, y). (7.2)

Also

dT ′(c, y) = dT ′(c, v) + dT ′(v, y).

By construction of T ′, we have dT ′(c, v) = 1 and dT ′(v, y) = dT (v, y). Thus by (7.2), we

obtain

dT ′(c, y) < dT (c, y). (7.3)

By (c4), the vertex v does not lie on P , so P is also contained in T ′. Moreover, by the

construction of T ′, dT ′(c, x) = dT (c, x) for all x ∈ VT \ VH . This along with (7.3) implies

that P is a diametrical path in T ′. Thus for each x ∈ VT \ VH , we have

ecT (x) = ecT ′(x). (7.4)
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As y ∈ VH and P is a diametrical path in T ′, either ecT ′(y) = dT ′(y, xd) or ecT ′(y) =

dT ′(y, yd) by Lemma 7.1. Without loss of generality, suppose that ecT ′(y) = dT ′(y, xd).

But dT ′(y, xd) = dT ′(y, c) + dT ′(c, xd). This gives

ecT ′(c) = dT ′(c, xd) ≤ dT ′(c, yd) + 1.

But dT ′(c, xd) = dT (c, xd) and dT ′(c, yd) = dT (c, yd). Then the above inequality can be

written as

ecT ′(c) = dT (c, xd) ≤ dT (c, yd) + 1. (7.5)

Thus by (7.3), we obtain

ecT ′(y) = dT ′(y, c) + dT ′(c, xd)

< dT (y, c) + dT (c, xd).
(7.6)

By Lemma 7.1, either ecT (y) = dT (y, xd) or ecT (y) = dT (y, yd). Let ecT (y) = dT (y, xd).

But dT (y, xd) = dT (y, c) + dT (c, xd). Then (7.6) implies that

ecT ′(y) < ecT (y). (7.7)

If ecT (y) = dT (y, yd), then (7.5) and (7.6) give

ecT ′(y) < dT (y, c) + dT (c, xd)

≤ dT (y, c) + dT (c, yd) + 1

= ecT (y) + 1.

That is

ecT ′(y) ≤ ecT (y). (7.8)

By (7.4), (7.7) and (7.8), we obtain

τ(T ) =
∑

z∈VT \VH

ecT (z) +
∑
z∈VH

ecT (z)

>
∑

z∈VT \VH

ecT ′(z) +
∑
z∈VH

ecT ′(z)

=
∑
z∈VT ′

ecT ′(z)

= τ(T ′).
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As given that degT (u) ≥ 3, we have degT ′(u) ≥ 2. Also degT ′(c) = degT (c) + 1 and

degT ′(x) = degT (x) for all x ∈ VT \ {u, c}. Therefore, T ′ is also a tree with p number of

pendent vertices. The proof is complete.

Now we device an algorithm to convert any given tree in T (n, p) into a starlike tree

in S(n, p).

Algorithm A

Step 0: Take a tree T ∈ T (n, p) \ S(n, p), find a diametrical xd, yd-path in T ,

c ∈ VC(T ) and uv ∈ ET satisfying (c1)− (c4).

Step 1: If degT (c) = p then stop.

Step 2: Set T := {T − {uv}} ∪ {cv}. Find uv ∈ ET satisfying (c1)− (c4); go to Step 1.

In next theorem, we discuss the termination and correctness of Algorithm A.

Theorem 7.3. (Termination and Correctness) The Algorithm A terminates after a finite

number of iterations and outputs a tree in S(n, p).

Proof. In each iteration of the Algorithm A, the degree of the vertex c increases strictly

at Step 2. The Algorithm A stops at Step 1 when degT (c) = p. Since p is finite, the

Algorithm A terminates after a finite number of iterations.

By Lemma 7.2, we see that before and after modification of T at Step 2 of Algorithm

A, the number of pendent vertices of the tree T remain the same. Also, corresponding to

each edge cx incident on c, there is at least one pendent vertex reachable from c by a path

containing the edge cx. When Algorithm A stops at Step 1, we have degT (c) = p. This

implies that corresponding to each edge cx incident on c, there is exactly one pendent

vertex reachable from c by a path containing the edge cx, that is, T ∈ S(n, p).

Theorem 7.4. Corresponding to a tree T in T (n, p) \ S(n, p), there exists a tree T1 in

S(n, p) with τ(T ) > τ(T1).

Proof. Let T ∈ T (n, p)\S(n, p). By Theorem 7.3, we see that Algorithm A outputs a tree

T1 ∈ S(n, p) corresponding to the tree T . Lemma 7.2 guaranties that τ(T ) > τ(T1).
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In next lemma, we construct a tree in S̃(n, p) from a given tree in S(n, p) such that

the new tree has smaller total eccentricity index.

Lemma 7.5. Let T ∈ S(n, p), xd, v ∈ PT and c ∈ VT satisfying:

degT (c) = p, (7.9)

dT (xd, c) = max{dT (x, c) | x ∈ PT}, (7.10)

dT (v, c) = min{dT (x, c) | x ∈ PT}, (7.11)

dT (xd, c)− dT (v, c) ≥ 2. (7.12)

Take xd−1xd ∈ ET and construct a new tree T ′ obtained from T as T ′ = {T −{xd−1xd}}∪

{vxd}. Then T ′ ∈ S̃(n, p) and τ(T ) > τ(T ′).

Proof. Let Q be the xd, v-path in T . By construction, we note that T ′ ∈ S(n, p) and

VT = VT ′ . Consider the next two cases:

Case 1. If dT (xd, v) = dT then xd−1, xd-path is diametrical in T ′ and

∑
x∈VQ

ecT (x) =
∑
x∈VQ

ecT ′(x). (7.13)

Let x ∈ VT \ VQ. Then ecT (x) = dT (x, xd). By Lemma 7.1, either ecT ′(x) = dT ′(x, xd−1)

or ecT ′(x) = dT ′(x, xd). Also, by (7.12), we obtain dT (xd, c)− 1 ≥ dT (v, c) + 1. Thus, by

the construction of T ′, we obtain

dT ′(x, xd) = dT ′(x, c) + dT ′(c, xd)

= dT ′(x, c) + dT ′(c, v) + 1

= dT ′(x, c) + dT (c, v) + 1

≤ dT ′(x, c) + dT (xd, c)− 1

= dT ′(x, c) + dT (c, xd−1)

= dT ′(x, c) + dT ′(c, xd−1)

= dT ′(x, xd−1).
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This shows that ecT ′(x) = dT ′(x, xd−1). Therefore

ecT (x) = dT (x, xd)

= dT ′(x, xd−1) + 1

= ecT ′(x) + 1.

(7.14)

Thus from (7.13) and (7.14), we obtain

τ(T ) =
∑
z∈VQ

ecT (z) +
∑

z∈VT \VQ

ecT (z)

=
∑
z∈VQ

ecT ′(z) +
∑

z∈VT \VQ

(ecT ′(z) + 1)

>
∑
z∈VQ

ecT ′(z) +
∑

z∈VT \VQ

ecT ′(z)

= τ(T ′).

Case 2. When dT (xd, v) < dT . Let yd ∈ PT such that xd, yd-path is diametrical in T .

Then by Lemma 7.1, either ecT (x) = dT (x, xd) or ecT (x) = dT (x, yd) for each x ∈ VT .

Define

Ṽ = {x ∈ VT | ecT (x) = dT (x, y) for some y ∈ PT \ {xd}}.

Let z ∈ Ṽ \ {xd}. Then there exists y′ ∈ PT \ {xd} such that

ecT (z) = dT (z, y′) ≥ dT (z, y) (7.15)

for all y ∈ PT . Given that dT > dT (xd, v). This along with Lemma 7.1 implies that v is

not an eccentric vertex of any vertex of T . Thus

ecT (z) = dT (z, y′) > dT (z, v). (7.16)

By the construction of T ′, we have dT ′(z, y
′) = dT (z, y′), dT ′(z, xd) = dT (z, v) + 1 and

dT ′(z, xd−1) = dT (z, xd−1). From (7.16), we obtain

dT ′(z, y
′) = dT (z, y′) ≥ dT (z, v) + 1

≥ dT ′(z, xd).
(7.17)
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From (7.15), it is obvious to see that

dT ′(z, y
′) = dT (z, y′) ≥ dT (z, xd)

> dT (z, xd−1) = dT ′(z, xd−1).
(7.18)

From (7.15), (7.17) and (7.18), we get dT ′(z, y
′) ≥ dT ′(z, y) for all y ∈ PT ′ . Thus

ecT ′(z) = dT ′(z, y
′) = dT (z, y′) = ecT (z). (7.19)

Now let z ∈ VT \ Ṽ . Since dT > dT (xd, v), it holds that dT (c, yd) ≥ dT (c, v) + 1. Also by

definition of Ṽ , we obtain dT (z, xd) > dT (z, yd). Now if z lies on c, xd-path in T then

dT (z, xd−1) + 1 = dT (z, xd)

> dT (z, yd)

= dT (z, c) + dT (c, yd)

≥ dT (z, c) + dT (c, v) + 1

= dT (z, v) + 1.

That is,

dT (z, xd−1) ≥ dT (z, v) + 1. (7.20)

If z does not lie on c, xd-path in T then dT (z, c) + dT (c, v) ≥ dT (z, v). Also (7.12) gives

dT (c, xd) ≥ dT (c, v) + 2. Therefore

dT (z, xd−1) + 1 = dT (z, xd)

= dT (z, c) + dT (c, xd)

≥ dT (z, c) + dT (c, v) + 2

≥ dT (z, v) + 2.

That is,

dT (z, xd−1) ≥ dT (z, v) + 1. (7.21)

But by the construction of T ′, we have dT ′(z, xd−1) = dT (z, xd−1) and dT ′(z, xd) =

dT (z, v) + 1. Thus from (7.20) and (7.21), we have

dT ′(z, xd−1) ≥ dT ′(z, xd). (7.22)
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Also as z ∈ VT \ Ṽ , we have dT (z, xd) > dT (z, y) for all y ∈ PT \ {xd}. Thus

dT (z, xd−1) = dT (z, xd)− 1 ≥ dT (z, y)

for all y ∈ PT \ {xd}. But dT ′(z, xd−1) = dT (z, xd−1) and dT (z, y) = dT ′(z, y) for all

y ∈ PT \ {xd}. Therefore

dT ′(z, xd−1) ≥ dT ′(z, y) (7.23)

for all y ∈ PT \ {xd}. From (7.22) and (7.23), we obtain dT ′(z, xd−1) ≥ dT ′(z, y) for all

y ∈ PT ′ . Thus

ecT ′(z) = dT ′(z, xd−1)

< dT ′(z, xd−1) + 1

= dT (z, xd) = ecT (z).

(7.24)

Now if v ∈ Ṽ then (7.19) gives ecT ′(v) = ecT (v). Also, by (7.12), we get

ecT (v) = dT (v, yd) = dT (v, c) + dT (c, yd)

≤ dT (xd, c) + dT (c, yd)− 2

= dT (xd, yd)− 2

= ecT (xd)− 2,

(7.25)

By construction of T ′, we have ecT ′(xd) = ecT ′(v) + 1. This together (7.25) implies

ecT ′(xd) = ecT (v) + 1 ≤ ecT (xd)− 1 < ecT (xd). (7.26)

Now let v ∈ VT \ Ṽ . Then obviously v does not lie on c, xd-path. Thus by (7.23), we

have dT ′(v, xd−1) ≥ dT ′(v, y) for all y ∈ PT ′ . Also, since dT (xd, v) < dT , it holds that

ecT (v) < ecT (xd). (7.27)

Thus ecT ′(v) = dT ′(v, xd−1). By construction of T ′, we have ecT ′(xd) = ecT ′(v) + 1 and

dT ′(v, xd−1) = dT (v, xd−1), that is, ecT ′(xd) = dT (v, xd−1) + 1. Therefore using (7.27) we

get

ecT ′(xd) = dT (v, xd−1) + 1 = dT (v, xd)

= ecT (v) < ecT (xd).
(7.28)
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From (7.19), (7.25), (7.26) and (7.28), we obtain

τ(T ) =
∑

z∈Ṽ \{xd}

ecT (z) +
∑

z∈VT \Ṽ

ecT (z) + ecT (xd)

>
∑

z∈Ṽ \{xd}

ecT ′(z) +
∑

z∈VT \Ṽ

ecT ′(z) + ecT ′(xd)

=
∑
z∈VT ′

ecT ′(z)

= τ(T ′).

The proof is complete.

We device an algorithm to construct a tree in S̃(n, p) from a given tree in S(n, p).

Algorithm B

Step 0: Take a tree T ∈ S(n, p) \ S̃(n, p), find set of pendent vertices PT and fix a

vertex c ∈ VT with degT (c) = 4T . Find xd, v ∈ PT satisfying (7.10)

and (7.11).

Step 1: If |dT (c, xd)− dT (c, v)| ≤ 1 then stop.

Step 2: Take xd−1xd ∈ ET and set T := {T − {xd−1xd}} ∪ {vxd}. Find the set of

pendent vertices PT and xd, v ∈ PT satisfying (7.10) and (7.11)

for the modified T . Go to Step 1.

Next, we discuss the termination and correctness of Algorithm B.

Theorem 7.6. (Termination and Correctness) The Algorithm B terminates after a finite

number of iterations and outputs a tree in S̃(n, p).

Proof. Let T be a tree in S(n, p), xd, v ∈ PT , c ∈ VT satisfying (7.10) and (7.11), and

xd−1 ∈ ΓT (xd) before the execution of Step 2 and T ′ be the modified tree at Step 2 in any

iteration of the Algorithm B. Then xd−1, xd ∈ PT ′ and

dT ′(c, xd−1)− dT ′(c, xd) = dT (c, xd)− 1− (dT (c, v) + 1)

= dT (c, xd)− dT (c, v)− 2.
(7.29)
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This shows that the difference between distances of two pendent vertices of T ′ from the

vertex c strictly decreases. Also, as dT (c, xd)− dT (c, v) ≥ 2, we have

dT ′(c, xd−1) = dT (c, xd)− 1

≥ dT (c, v) + 1

= dT ′(c, xd).

This shows that xd satisfies (7.10) for T ′ if and only if dT ′(c, xd−1) = dT ′(c, xd). But if

dT ′(c, xd−1) = dT ′(c, xd) then the Algorithm B will stop at Step 1 in the next iteration.

This shows that the newly added edge vxd will not be removed in the subsequent itera-

tions. Thus once an edge is added at Step 2, it will not be removed in the subsequent

iterations. This along with (7.29) ensures that the Algorithm B stops after a finite number

of iterations.

By Lemma 7.5, it is evident that the modified tree T at Step 2 belongs to S(n, p)

in each iteration of the Algorithm B. When the Algorithm B terminates, T satisfies

|dT (c, xd)− dT (c, v)| ≤ 1 and thus belongs to S̃(n, p).

Theorem 7.7. Corresponding to a tree T in S(n, p) \ S̃(n, p), there exists a tree S in

S̃(n, p) with τ(T ) > τ(S).

Proof. Let T ∈ S(n, p) \ S̃(n, p). By Theorem 7.6, the Algorithm B outputs a tree

S ∈ S̃(n, p). Lemma 7.5 implies that τ(T ) > τ(S).

Remark 7.8. Let S1, S2 ∈ S̃(n, p). Then from the structure of S1 and S2, one can easily

see that τ(S1) = τ(S2).

We finally state our main result of this section. We compute the tree with smallest

total eccentricity indices among the trees in T (n, p) by using Theorems 7.4 and 7.7.

Theorem 7.9. Any tree in S̃(n, p) has smallest total eccentricity index among the trees

in T (n, p). That is, for any S ∈ S̃(n, p), we have τ(S) ≤ τ(T ) for all T ∈ T (n, p).
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Proof. Let T ∈ T (n, p) \ S(n, p). Then by Theorem 7.4, there is a tree T ′ ∈ S(n, p) with

τ(T ) > τ(T ′). Now if T ′ /∈ S̃(n, p) then by Theorem 7.7, there exists a tree S in S̃(n, p)

such that τ(T ′) > τ(S). If T ′ ∈ S̃(n, p) then by Remark 7.8, τ(T ′) = τ(S). Therefore

τ(T ) ≥ τ(S).

By Lemma 7.2, we note that when Step 2 to Step 1 is executed in Algorithm A,

the total eccentricity index of the modified tree strictly decreases. Thus for a given tree

T ∈ T (n, p) \S(n, p), if Algorithm A terminates after l iterations, it generates a sequence

of trees T, T1, T2, . . . , Tl satisfying τ(T ) > τ(T1) > τ(T2) > · · · > τ(Tl), where Tl ∈ S(n, p).

By Lemma 7.5, we see that when Algorithm B goes from Step 2 to Step 1, the

total eccentricity index of the modified tree strictly decreases. Thus the Algorithm B

generates a sequence of trees Tl, Tl+1, . . . , Tk satisfying τ(Tl) > τ(Tl+1) > · · · > τ(Tk),

where Tk ∈ S̃(n, p).

Example 7.10. Consider a tree T ∈ T (14, 6) shown in Figure 7.1. The Algorithm A will

generate a sequence of trees T, T1, T2, T3, T4, where T4 ∈ S(14, 6) satisfying the following:

τ(T ) > τ(T1) > τ(T2) > τ(T3) > τ(T4).

This sequence of trees is shown in Figure 7.1. We observe that the sequence of trees is

not unique because the modification of any tree at Step 2 in Algorithm A depends upon

the choice of edge uv.

Now we apply Algorithm B on T4 to get a tree in S̃(14, 6). By the use of Algorithm

B we get a sequence of trees T4, T5, T6, T7, where T7 ∈ S̃(14, 6). This sequence of trees is

shown in Figure 7.2. We remark that this sequence of trees is not unique. The sequence

of modified trees at Step 2 in Algorithm B depends upon the choice of edge xd−1xd and

vertex v. The relation among the total eccentricity indices of T4, T5, T6, T7 is as follows:

τ(T4) > τ(T5) > τ(T6) > τ(T7).
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Figure 7.1: A sequence of trees generated by Algorithm A in each iteration.
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Figure 7.2: A sequence of trees generated by Algorithm B in each iteration.

7.2 Largest total eccentricity index of trees with fixed

pendent vertices

Take a tree T ∈ T (n, p) with a diametrical xd, yd-path and let xd−1 and yd−1 be neighbors

of xd and yd, respectively, in T . Assume that T satisfies the following:

(m1) dT = n− p+ 1.

(m2) degT (yd−1) + degT (xd−1) = p+ 2.

A tree T ∈ T (14, 6) satisfying (m1) and (m2) is shown in Figure 7.3. Denote by
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T̃ (n, p), the family of those trees in T (n, p) that satisfy (m1) and (m2).

Remark 7.11. Let T1, T2 ∈ T̃ (n, p). Then from the structure of T1 and T2, one can easily

see that τ(T1) = τ(T2).

In this section, we find those trees in T (n, p) which have larger total eccentricity index.

We will prove that if T is a tree in T (n, p) \ T̃ (n, p) and T̃ ∈ T̃ (n, p) then τ(T ) < τ(T̃ ).

Let T ∈ T (n, p) \ T̃ (n, p) and take a diametrical path in T with end vertices xd and

yd. Let xd−1 ∈ ΓT (xd), yd−1 ∈ ΓT (yd) and uv ∈ ET satisfying:

(d1) degT (u) ≥ 3.

(d2) u lies on xd, yd-path.

(d3) v does not lie on xd, yd-path.

(d4) u 6= xd−1 and u 6= yd−1.

Observe that if T ∈ T̃ (n, p) with a diametrical xd, yd-path then there is no uv ∈ ET

satisfying (d1)− (d4). In next result, we construct a new tree in T (n, p) from a given tree

in T (n, p) with larger total eccentricity index.

Lemma 7.12. Let T ∈ T (n, p) \ T̃ (n, p). Take a diametrical xd, yd-path and uv ∈ ET

satisfying (d1)−(d4). Construct a new tree T ′ = {T−{uv}}∪{yd−1v}. Then T ′ ∈ T (n, p)

and τ(T ′) > τ(T ).

Proof. Let Q be the diametrical xd, yd-path in T . By (d1) and (d3), we have

dT (v, xd) = dT (v, u) + dT (u, xd),

dT (v, yd) = dT (v, u) + dT (u, yd).

Note that dT (u, v) = 1 and by (d2) and (d4), we see that

dT (u, xd) ≥ 2, dT (u, yd) ≥ 2. (7.30)

By (d4), it holds that dT (yd−1, u) ≥ 1 and dT ′(yd−1, u) = dT (yd−1, u) by the construction
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of T ′. Thus

dT ′(v, u) = dT ′(v, yd−1) + dT ′(yd−1, u)

= 1 + dT (yd−1, u)

≥ 2.

(7.31)

Let H be the component of T − u containing the vertex v. Define R = {z ∈ VT |

ecT (z) = dT (z, yd)} and take w ∈ VH with ecH(v) = dH(v, w). By the choice of w, we

have dT ′ = dT ′(xd, w) and thus

dT ′ = dT ′(xd, yd−1) + dT ′(yd−1, v) + dT ′(v, w)

= dT (xd, yd−1) + 1 + dT (v, w)

≥ dT (xd, yd) = dT .

Let x ∈ VT \ (VH ∪ R). Then ecT (x) = dT (x, xd). By Lemma 7.1, either ecT ′(x) =

dT ′(x, xd) or ecT ′(x) = dT ′(x,w). If ecT ′(x) = dT ′(x, xd) then

ecT ′(x) = dT ′(x, xd) = dT (x, xd) = ecT (x). (7.32)

Now if ecT ′(x) = dT ′(x,w) then obviously dT ′(x,w) ≥ dT ′(x, xd). Thus

ecT ′(x) ≥ dT ′(x, xd)

= dT (x, xd)

= ecT (x).

(7.33)

From (7.32) and (7.33), we have

ecT ′(x) ≥ ecT (x). (7.34)

Now let x ∈ R \ VH . Then ecT (x) = dT (x, yd−1) + 1 and ecT ′(x) = dT ′(x,w) by the

construction of T ′. Thus

ecT ′(x) = dT ′(x,w) = dT ′(x, yd−1) + dT ′(yd−1, v) + dT ′(v, w)

= dT (x, yd−1) + 1 + dT (v, w)

= ecT (x) + dT (v, w)

≥ ecT (x).

(7.35)

91



Finally, let x ∈ VH . It is evident that ecT (x) = dT (x, u) + ecT (u) and from (7.31) we

have dT ′(v, u) ≥ 2. If x ∈ VH \R then ecT (u) = dT (u, xd). Also

ecT ′(x) = dT ′(x, xd)

= dT ′(x, v) + dT ′(v, u) + dT ′(u, xd)

= dT (x, v) + dT ′(v, u) + dT (u, xd)

≥ dT (x, v) + 2 + ecT (u)

= ecT (x) + 1.

(7.36)

Now if x ∈ VH ∩ R then ecT (u) = dT (u, yd) = dT (u, yd−1) + 1. From (7.30), it holds that

dT (u, xd) ≥ 2. Thus

ecT ′(x) = dT ′(x, xd)

= dT ′(x, v) + dT ′(v, yd−1) + dT ′(yd−1, u) + dT ′(u, xd)

= dT (x, v) + 1 + dT (yd−1, u) + dT (u, xd)

≥ dT (x, v) + ecT (u) + 2

= ecT (x) + 1.

(7.37)

From (7.36) and (7.37), we obtain

ecT ′(x) ≥ ecT (x) + 1. (7.38)

Thus from (7.34), (7.35) and (7.38), we obtain

τ(T ) =
∑

z∈VT \(VH∪R)

ecT (z) +
∑

z∈R\VH

ecT (z) +
∑
z∈VH

ecT (z)

≤
∑

z∈VT \(VH∪R)

ecT ′(z) +
∑

z∈R\VH

ecT ′(z) +
∑
z∈VH

(ecT ′(z)− 1)

<
∑

z∈VT \(VH∪R)

ecT ′(z) +
∑

z∈R\VH

ecT ′(z) +
∑
z∈VH

ecT ′(z)

= τ(T ′).

The proof is complete.
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Algorithm C

Step 0: Take a tree T ∈ T (n, p) \ T̃ (n, p), find a diametrical xd, yd-path in T and

uv ∈ ET satisfying (d1)− (d4). Let {xd−1} = ΓT (xd) and {yd−1} = ΓT (yd).

Step 1: If degT (yd−1) = p+ 2− degT (xd−1) then stop.

Step 2: Take the component H of T − u containing the vertex v and let w ∈ VH with

ecH(v) = dH(v, w). Modify T by T := {T − {uv}} ∪ {yd−1v}.

Step 3: Set {yd−1} := ΓT (w) and yd := w. Find an edge u′v′ ∈ ET satisfying (d1)− (d4)

and set u := u′, v := v′; go to Step 1.

We device an algorithm to transform a given tree in T (n, p) into a tree in T̃ (n, p).

The termination and correctness of Algorithm C is discussed below.

Theorem 7.13. (Termination and Correctness) The Algorithm C terminates after a finite

number of iterations and outputs a tree T̃ ∈ T̃ (n, p).

Proof. Let T be a tree before modification at Step 2 and T ′ be the tree after modification

at Step 2 in any iteration of the Algorithm C. There are two possible cases at Step 2.

Case 1. When VH = {v}. In this case, v = w and hence ecH(v) = 0 at Step 2. Therefore

dT = dT ′ and degT ′(yd−1) = degT (yd−1) + 1 at Step 2. Moreover, yd−1 will remain same

after modifications at Step 3.

Case 2. When VH 6= {v}. In this case, ecH(v) > 0 and dT ′ = dT + ecH(v) at Step 2, that

is, diameter of the modified tree strictly increases.

From Case 1 and Case 2, we observe that dT increases or remains the same in any

iteration of the Algorithm C. If Case 2 occurs in any iteration of the Algorithm C

then diameter of the modified tree strictly increases. Since dT ≤ n − 1, the Case 2 will

occur finite number of times. If Case 1 occurs then dT remains the same but degT (yd−1)

increases. Since degT (yd−1) can be increased in at most n − 3 consecutive iterations of

the Algorithm C, it follows that Case 1 will successively occur at most n− 3 times.

From the above, we conclude that Algorithm C will stop after a finite number of

iterations.
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Theorem 7.14. (Correctness) If Algorithm C terminates then its outputs a tree T̃ ∈

T̃ (n, p).

Proof. By Lemma 7.12, we note that before and after the modification at Step 2 in each

iteration of Algorithm C, the tree T belongs to T (n, p) and diameter increases or remains

same. When Algorithm C stops at Step 1, T satisfies degT (yd−1) = p + 2 − degT (xd−1).

Also T has no edge uv satisfying (d1)− (d4), that is, all pendent vertices are incident with

xd−1 or yd−1. This shows that T ∈ T̃ (n, p).

Theorem 7.15. Corresponding to a tree T in T (n, p) \ T̃ (n, p), there exists a tree T̃ in

T̃ (n, p) with τ(T ) < τ(T̃ ).

Proof. Let T ∈ T (n, p) \ T̃ (n, p). By Theorem 7.14, the Algorithm C outputs a tree

T̃ ∈ T̃ (n, p). Thus by Lemma 7.12, we obtain τ(T ) < τ(T̃ ).

In next theorem, we find the trees with largest total eccentricity index among the trees

in T (n, p).

Theorem 7.16. Any tree in T̃ (n, p) has largest total eccentricity index among all the

trees in T (n, p). That is, for any T̃ ∈ T̃ (n, p), we have τ(T̃ ) ≥ τ(T ) for all T ∈ T (n, p).

Proof. Let T ∈ T (n, p) and T̃ ∈ T̃ (n, p). If T ∈ T̃ (n, p) then by Remark 7.11, τ(T ) =

τ(T̃ ). If T ∈ T (n, p)\ T̃ (n, p) then by Theorem 7.15, there exists a tree T̃ in T̃ (n, p) such

that τ(T ) < τ(T̃ ). Therefore τ(T ) ≤ τ(T̃ ).

Corollary 7.17. For any tree T ∈ T (n, p), we have

τ(T ) ≤


3
4
n2 −

(
p−1

2

)
n−

⌊
(p−1)2

4

⌋
if n is even,

3
4
n2 −

(
p−1

2

)
n− (p−1)2−1

4
if n is odd and p is even,

3
4
n2 −

(
p−1

2

)
n− (p−1)2

4
if n and p are odd,

equality holds when T ∈ T̃ (n, p).
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Proof. Let T̃ ∈ T̃ (n, p). After simple computation, we obtain

τ(T̃ ) =


3
4
n2 −

(
p−1

2

)
n−

⌊
(p−1)2

4

⌋
if n is even,

3
4
n2 −

(
p−1

2

)
n− (p−1)2−1

4
if n is odd and p is even,

3
4
n2 −

(
p−1

2

)
n− (p−1)2

4
if n and p are odd,

Now by Theorem 7.16, we have τ(T ) ≤ τ(T̃ ) for all T ∈ T (n, p).

By Lemma 7.12, we note that when Step 3 to Step 1 is executed in Algorithm C,

the total eccentricity index of the modified tree strictly increases. Thus for a given tree

T ∈ T (n, p), if the Algorithm C terminates after k iterations, it generates a sequence

of trees T1, T2, . . . , Tk in T (n, p) satisfying τ(T ) < τ(T1) < τ(T2) < · · · < τ(Tk), where

Tk ∈ T̃ (n, p).

Example 7.18. Consider a tree T ∈ T (14, 6) shown in Figure 7.3. The Algorithm C will

generate a sequence of trees T, T1, T2, T3, T4 such that

τ(T ) < τ(T1) < τ(T2) < τ(T3) < τ(T4).

This sequence of trees is shown in Figure 7.3. Then note that T4 ∈ T̃ (n, p). The modifi-

cation of tree at Step 2 in Algorithm C depends upon the choice of uv edge. We remark

that this sequence of trees is not unique.

yd

ydyd

yd

yd

yd-1

yd-1
yd-1

yd-1
yd-1

xd xd

xd

xd

xdu

u

u

u
v

v

v

v

w

T1T

T4T3

T2

Figure 7.3: A sequence of trees generated by Algorithm C in each iteration.
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7.3 Smallest and largest total eccentricity index of

trees with fixed diameter

Let T (n, d) be the family of n-vertex trees with a fixed diameter d. Then we have the

following result.

Theorem 7.19. [61] If T ∈ T (n, d), then

C(T ) =

 K1 if d = 2rT ,

K2 if d = 2rT − 1.

Let T1(n, d) be the subfamily of T (n, d) consisting of those trees obtained from a path

of length d by connecting n− d− 1 pendent vertices to the central vertices of the path.

cxd
yd

Figure 7.4: The tree T ′ ∈ T1(n, d).

Remark 7.20. From the structure of trees in T1(n, d), it is obvious to see that all trees

in T1(n, d) have equal total eccentricity index.

In this section, we will prove that the trees in T1(n, d) have the smallest total eccentric-

ity index among the trees in T (n, d). To show this, we will use mathematical technique

used in Section 7.1.

Let T ∈ T (n, d) \ T1(n, d) and take a diametrical xd, yd-path in T . Let c ∈ VC(T ) and

uv ∈ ET satisfying:

(f1) u 6= c.

(f2) v ∈ PT \ {xd, yd}.

Condition (c1) is not required to construct a tree in T1(n, d) and condition (c2) and

(f1) are the same. Condition (f2) implies conditions (c3) and (c4). We notice that if
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T ∈ T1(n, d) with a diametrical xd, yd-path then there is no uv ∈ ET satisfying (f1) and

(f2).

The proof of the following lemma follows from the proof of Lemma 7.2 with minor

modifications.

Lemma 7.21. Let T ∈ T (n, d) \ T1(n, d) and c ∈ VC(T ). Take a diametrical xd, yd-path

in T and uv ∈ ET satisfying (f1) and (f2). Construct a new tree T ′ = {T −{uv}}∪ {cv}.

Then T ∈ T (n, d) and τ(T ′) < τ(T ).

Let T ∈ T1(n, d). Then by Theorem 7.19, C(T ) = K1 or C(T ) = K2. If C(T ) = K1

then one can easily compute that the sum of degrees of the vertices in C(T ) is n− d + 1.

Similarly, if C(T ) = K2 then the sum of degrees of vertices in C(T ) is n−d+3. However,

maximum degree of any central vertex of T is n − d + 1. In next algorithm, we convert

a given tree in T (n, d) \ T1(n, d) into a starlike tree in T1(n, d). This algorithm is an

analogue of Algorithm A.

Algorithm AA

Step 0: Take a tree T ∈ T (n, d) \ T1(n, d), find a diametrical xd, yd-path in T ,

c ∈ VC(T ) and uv ∈ ET satisfying (f1) and (f2).

Step 1: If degT (c) = n+ 1− d, then stop.

Step 2: Set T := {T − {uv}} ∪ {cv}. Find uv ∈ ET satisfying (f1) and (f2);

go to Step 1.

The proof of the following theorem follows from the proof of Theorem 7.3.

Theorem 7.22. (Termination and Correctness) The Algorithm AA terminates after a

finite number of iterations and outputs a tree T in T1(n, d).

Using Remark 7.20, Lemma 7.21 and Theorem 7.22, we have the following result.

Theorem 7.23. Any tree in T1(n, d) has the smallest total eccentricity index among the

trees in T (n, d).
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Following corollary gives lower bound of total eccentricity index of trees in T (n, d).

Corollary 7.24. For any tree T ∈ T (n, d), we have

τ(T ) ≥


(

d+2
2

)
n+ d2−2d−4

4
if d is even,(

d+3
2

)
n+ d2−4d−5

4
if d is odd,

with equality if and only if T ∈ T1(n, d).

Proof. Let T ′ ∈ T1(n, d). If d is even then C(T ′) = K1 and let c be the central vertex of

T ′. Then ecT ′(c) = d
2
. Thus the sum of eccentricities of vertices on the diametrical path

is given by

d

2
+ 2

[(
d

2
+ 1

)
+

(
d

2
+ 2

)
+ · · ·+

(
d

2
+

d

2

)]
=

3d2 + 4d

4
.

Also, if u is any pendent vertex attached with c then ecT ′(u) = d
2

+ 1. Since there are

n− (d + 1) pendent vertices attached with c, the sum of eccentricities of these vertices is

given by (n− (d + 1))(d
2

+ 1). Therefore

τ(T ′) =

(
d

2
+ 1

)
(n− (d + 1)) +

3d2 + 4d

4

=

(
d + 2

2

)
n+

d2 − 2d− 4

4
.

If d is odd then C(T ′) = K2 and let c1 and c2 be the central vertices of T ′. Then

ecT ′(c1) = ecT ′(c2) = d+1
2

. Thus the sum of eccentricities of vertices on the diametrical

path is given by

2× d + 1

2
+ 2

[(
d + 1

2
+ 1

)
+

(
d + 1

2
+ 2

)
+ · · ·+

(
d + 1

2
+

d− 1

2

)]
=

3d2 + 4d + 1

4
.

Also, if u is any pendent vertex attached with c1 or c2 then ecT ′(u) = d+1
2

+ 1. Since

there are n − (d + 1) pendent vertices attached with central vertices, the sum of the

eccentricities of these vertices is given by (n− (d + 1))(d+1
2

+ 1). Therefore
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τ(T ′) =

(
d + 3

2

)
(n− d− 1) +

3d2 + 4d + 1

4

=

(
d + 3

2

)
n+

d2 − 4d− 5

4
.

By Theorem 7.23, we have τ(T ) ≥ τ(T ′) for each T ∈ T (n, d). This gives the required

inequalities.

Now we find the trees in T (n, d) that have the largest total eccentricity index by

employing the mathematical technique used in Section 7.2. Let T2(n, d) be the subfamily

of those n-vertex trees which are obtained from two stars by attaching the centers of stars

by a path of length d − 2. Then obviously T2(n, d) ⊆ T (n, d). A tree T ∈ T2(n, d) is

shown in Figure 7.5. Also, we note that degT (yd−1) + degT (xd−1) = n− d + 3.

xd

yd

xd-1
yd-1

Figure 7.5: The tree T ∈ T2(n, d).

Let T ∈ T (n, d) \ T2(n, d) and take a diametrical path in T with end vertices xd and

yd. Let xd−1 ∈ ΓT (xd), yd−1 ∈ ΓT (yd) and uv ∈ ET satisfying:

(g1) v ∈ PT .

(g2) u 6= xd−1 and u 6= yd−1.

We notice that if T ∈ T2(n, d) then there is no uv ∈ ET with v ∈ PT and u 6= xd−1,

u 6= yd−1.

Next lemma follows from Lemma 7.12.

Lemma 7.25. Let T ∈ T (n, d) \ T2(n, d) with a diametrical xd, yd-path in T . Take

xd−1 ∈ ΓT (xd), yd−1 ∈ ΓT (yd) and uv ∈ ET satisfying (g1) and (g2). Construct a new tree

T ′ = {T − {uv}} ∪ {yd−1v}. Then T ′ ∈ T2(n, d) and τ(T ) < τ(T ′).
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Now we device an algorithm to transform a given tree in T (n, p) into a tree in T2(n, d).

This algorithm is analogue of Algorithm C.

Algorithm CC

Step 0: Take a tree T ∈ T (n, d) \ T2(n, d), find a diametrical xd, yd-path

in T . Let {xd−1} = ΓT (xd), {yd−1} = ΓT (yd) and uv ∈ ET

satisfying (g1) and (g2).

Step 1: If degT (yd−1) = n− d + 3− degT (xd−1) then stop.

Step 2: Set T := {T − {uv}} ∪ {yd−1v}.

Step 3: Find an edge uv ∈ ET satisfying (g1) and (g2); go to Step 1.

The proof of next theorem follows from the proof of Theorem 7.14.

Theorem 7.26. (Termination and Correctness) The Algorithm CC terminates after a

finite number of iterations and outputs a tree in T2(n, d).

Remark 7.27. From the structure of trees in T2(n, d), it is obvious to observe that all

trees in T2(n, d) have equal total eccentricity index.

Using Lemma 7.25, Theorem 7.26 and Remark 7.27, we can prove the following theo-

rem.

Theorem 7.28. Any tree in T2(n, d) has largest total eccentricity index among trees in

T (n, d).

Next corollary gives upper bounds on total eccentricity index of trees in T (n, d)

Corollary 7.29. For any tree T ∈ T (n, d) we have

τ(T ) ≤

 dn− d2

4
if d is even,

dn− d2−1
4

if d is odd,

with equality if and only if T ∈ T2(n, d).

100



Proof. Let T ′ ∈ T2(n, d) and take a diametrical xd, yd-path in T ′. Let xd−1 ∈ ΓT ′(xd) and

yd−1 ∈ ΓT ′(yd). Then ecT ′(xd−1) = ecT ′(yd−1) = d − 1. Also, if u is any pendent vertex

attached with xd−1 or yd−1 then ecT ′(u) = d. Since there are n− (d− 1) pendent vertices

attached with xd−1 and yd−1, the sum of the eccentricities of these vertices is given by

(n− (d− 1))d.

If d is even then C(T ′) = K1 and the sum of eccentricities of vertices on diametrical

xd, yd-path other then xd and yd is given by

d

2
+ 2

[(
d

2
+ 1

)
+

(
d

2
+ 2

)
+ · · ·+

(
d

2
+

d− 2

2

)]
=

3d2 − 4d

4
.

Therefore

τ(T ′) = d(n− d + 1) +
3d2 − 4d

4

= dn− d2

4
.

If d is odd then C(T ′) = K2 and the sum of the eccentricities of vertices on diametrical

xd, yd-path other then xd and yd is given by

2× d + 1

2
+ 2

[(
d + 1

2
+ 1

)
+

(
d + 1

2
+ 2

)
+ · · ·+

(
d + 1

2
+

d− 3

2

)]
=

3d2 − 4d + 1

4
.

Therefore

τ(T ′) = d(n− d + 1) +
3d2 − 4d + 1

4

= dn− d2 − 1

4
.

By Theorem 7.23, we have τ(T ) ≤ τ(T ′) for each T ∈ T (n, d).

7.4 Conclusion

In this chapter, we determine the trees with smallest and largest total eccentricity index

among the class of trees with given pendent vertices. We propose three algorithms to

transform given trees into trees with smaller or larger total eccentricity indices. Also we
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define a family of trees with a fixed diameter and investigate the trees with the smallest

and the largest total eccentricity index in this class. Further work in this course is to find

the extremal graphs with different parameters for examples bipartition size, independence

number, domination number, fixed blocks, etc, in general classes of graphs with reference

to total eccentricity index.
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[45] I. Gutman, N. Trinajstić, Graph theory and molecular orbitals, Total π-electron en-

ergy of alternant hydrocarbons, Chem. Phys. Lett., 17 (1972), 535–538.

[46] I. Gutman, Degree-based topological indices, Croat. Chem. Acta, 86 (2013), 351-361.

[47] I. Gutman, A property of the Wiener number and its modifications, Indian J. Chem.,

36A (1997), 128–132.

[48] F. Harary, A Seminar on Graph Theory, Chapter 8: Extremal problems in graph
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