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Abstract

Within this thesis, a comprehensive study is conducted on the behavior of kink-solitons,

lumps, and their interaction solutions when subjected to periodic and kink waves of some

nonlinear evolution equations. Among these NLEEs, new extended (3+1)-dimensional

B-type Kadomtsev-Petviashvili equation and generalized (2+1)-dimensional Soliton equa-

tion are given. Through the utilization of the simplified Hirota’s bilinear method, kink-

soliton solutions specially one-kink, two-kink and three-kink solutions are obtained. By

the aid of direct method based on Hirota’s bilinear form lump and lump interaction so-

lutions are obtained which includes lump interaction with stripe solutions, lump-periodic

solution, breathers solutions and solitary wave solutions. Extreme value points of lump

solutions are obtained to describe maximum and minimum points that give insights about

the motion, amplitudes and velocities of these solutions. Physical attributes of obtained

results are demonstrated by 3D plots, contour maps, density graphs, and 2D plots. It

is also studied that physical dynamics changed by changing the values of parameters

involved in test functions.
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Chapter 1

Introduction

Mathematical equations play a vital part in the characterization and understanding of

physical phenomena. They provide a framework for quantitatively describing the nature,

properties, and relationships of natural phenomena. Mathematical representation of these

phenomena allows scientists to quantify and analyze diversity. By formulating these phys-

ical phenomena into mathematical equations, scientists and researchers can analyze and

model the behavior of complex systems, and unravel the underlying principles and laws

that govern them.

Differential equations are significant in comprehending and modeling various phenomena

in the field of natural sciences. These equations are important to explain how quantities

change and interact with each other over time, making them valuable in domains such

as biology, engineering, physics and economics. Among differential equations, there are

two frequently employed categories known as ordinary differential equations (ODEs) and

partial differential equations (PDEs). These equations provide a mathematical framework

to capture the dynamics and behaviors of natural systems.

Nonlinear evolution equations (NLEEs) are PDEs which outline the temporal progression

of a physical system based on provided initial information. Evolution equations are de-

rived from a variety of fields in applied and engineering sciences. For example, nonlinear

Schrödinger equations [1] from quantum mechanics, Navier-Stokes equations [2, 3] from

fluid mechanics, nonlinear reaction-diffusion equations [4, 5] from heat transfers and bi-

ological sciences, and Korteweg–de Vries equation [6] from water-waves theory, to name

just a few, serving as notable illustrations within this mathematical field. Unlike lin-
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ear equations, the solution of NLEEs is not always straightforward and often requires

advanced mathematical techniques. These equations arise in numerous fields and are es-

sential for studying phenomena with nonlinear characteristics. NLEEs capture intricate

relationships and nonlinear interactions among variables, enabling a deeper understand-

ing of the underlying dynamics.

Exact solutions of NLEEs hold significant relevance within the domain of nonlinear

sciences. They serve multiple purposes, such as validating numerical results obtained

through computational simulations and shedding light on the fundamental laws govern-

ing the system. Finding the exact solutions of NLEEs is a challenging task, and their

discovery often requires significant mathematical sophistication and sophisticated compu-

tational techniques. It is worth noting that exact solutions have the potential to act as a

prototypical model for testing the validity and precision of various numerical and analytic

approaches, even if they lack a clear physical description. Within the field of nonlinear

sciences, the ability to formulate precise solutions for nonlinear PDEs is a fundamental

component, and this discipline has advanced significantly in recent decades because of

advances in computer technology.

NLEEs are classified into two broad categories, integrable and non-integrable equations.

Integrable equations possess special solutions known as solitons. Solitons are distinctive

wave-like structures that maintain their shape and propagate without dispersion. These

solitons often have fascinating forms, such as the bell-shaped sech (hyperbolic secant)

solution or the kink-shaped tanh (hyperbolic tangent) solution. Solitons find applications

in various fields, including optics, fluid dynamics, and nonlinear wave phenomena.

The advancement of computer technology and the availability of symbolic computation

softwares have greatly contributed to the exploration and discovery of exact solutions to

nonlinear PDEs. With these tools, researchers can explore very complex areas of math-

ematics and discover novel solutions that were previously inaccessible. The combination

of mathematical insight and mathematical ability has led to rapid progress in the under-

standing of nonlinear phenomena and their mathematical representation.
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1.1 Preliminaries

A travelling wave is one where the medium moves in the wave’s propagation direction. A

travelling wave is also related with maintaining a consistent velocity during its propaga-

tion. Such waves have been recorded in a variety of fields, including combustion, which

can come from a chemical process. Mathematical biology illustrates the transmission of

impulses in nerve fibers through the depiction of traveling waves. Also, conservation laws

are related to fluid dynamics difficulties. Traveling waves are also used to describe shock

characteristics. However, before moving forward, some key terms must be understood.

1.1.1 Travelling Wave Solutions

A permanent form solution travelling at a constant speed is known as a travelling wave

solution. Typically, in order to obtain traveling wave solutions, the nonlinear evolution

equations are transformed into corresponding ordinary differential equations. Travelling

waves arise in the study of NLEEs where waves are represented by the form

ϕ(x, t) = f(x− ct), (1.1)

where ϕ(x, t) represents a disturbance moving in the negative or positive x direction if

c < 0 or c > 0 respectively. Here x and t are spatial and temporal variables.

(a) (b)

Figure 1.1: Travelling waves in water
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1.1.2 Solitary Waves

Solitary waves are traveling waves [8] that exhibit a confined nature, characterized by

unvarying speeds and shapes, ultimately tending towards zero as they propagate over

infinite distances. As the solitary wave propagates from Θ = −∞ to Θ = ∞, its transition

between the two asymptotic states is confined within a localized region along the Θ

variable, where Θ = x− wt, and w is wave speed.

1.1.3 Periodic Solutions

Periodic solutions, such as cos(x − wt), are periodic travelling wave solutions. Periodic

solutions can be found using the conventional wave equation ϕtt = ϕxx.

(a)

Figure 1.2: Graphical representation of a periodic solution ϕ(x, t) = cos(x − wt),−2π ≤
x, t ≤ 2π.

1.1.4 Kink Waves

Kink waves undergo a transition from one asymptotic state to the next, exhibiting either

an upward or downward motion. The value of the kink solution becomes constant at

infinity. The dissipative Burger equation ϕt + ϕxx = vϕxx give the kink wave solutions,

where v is the viscosity coefficient.

4



(a)

Figure 1.3: Visualization of a kink solution ϕ(x, t) = 1− tanh(x− wt),−20 ⩽ x, t ≤ 20.

1.2 Solitons

A Soliton is travelling wave solution [9] of NLEEs having following properties:

• A wave of permanent form should be visible in the solution.

• The soliton retains its distinctiveness as it interacts with other solitons.

• The solution exhibits localization, indicating that it either decays exponentially

towards zero, as observed in the solitons of the KdV equation, or convergence to a

constant value at infinity, as seen in the solitons of the Sine-Gordon equation.

(a)

Figure 1.4: Graphical representation of a soliton solution ϕ(x, t) = sech2(x − t),−2 ⩽
x, t ≤ 2.
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1.2.1 Discovery of Solitons

The initial sighting of solitary waves took place in Edinburgh in 1834 by John Scott

Russell, a renowned Scottish engineer. He noticed a massive swelling wave of water moving

through the canal with a consistent shape. Quoting Russell directly, “I was observing the

motion of a boat which was rapidly drawn along a narrow channel by a pair of horses,

when the boat suddenly stopped not so the mass of water in the channel which it had

put in motion; it accumulated round the prow of the vessel in a state of violent agitation,

then suddenly leaving it behind, rolled forward with great velocity, assuming the form

of a large solitary elevation, a rounded, smooth and well-defined heap of water, which

continued its course along the channel apparently without change of form or diminution

of speed. I followed it on horseback, and overtook it still rolling on at a rate of some eight

or nine miles an hour, preserving its original figure some thirty feet long and a foot to a

foot and a half in height. Its height gradually diminished, and after a chase of one or two

miles I lost it in the windings of the channel. Such in the month of August 1834, was my

first chance interview with that singular and beautiful phenomenon which I have called

wave of translation” [11]. Scott Rusell’s findings contradicted Daniel Bernoulli’s and

Isaac Newton’s hydrodynamic theories. George Gabriel Stokes and George Biddell Airy

declined to acknowledge Scott Russell’s experimental findings due to discrepancies with

existing water wave theories. It was not until the 1870s that Lord Rayleigh and Joseph

Boussinesq disclosed the solutions to their discrepancies. However, in 1895, Diederik

Korteweg and Gustav de Vries published the Korteweg-de Vries equation, which not only

addressed those discrepancies but also provided solutions for solitary waves [12]. Using a

finite difference approach, Norman Zabusky of Bell Labs and Martin Kruskal of Princeton

University identified soliton in the Kortewegde Vries equation (KdV equation) in 1965.

1.3 Application of Solitons

Solitons are used in many fields of pure and applied mathematics, including differential

equations, Lie groups, Lie algebras, differential and algebraic geometry, and so on.
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1.3.1 In Plasma Physics

In plasma physics, solitons are of great significance when it comes to elucidating wave

characteristics. Solitons, which are essential for describing wave behavior in plasmas,

become particularly relevant in the context of nonlinear plasma waves, including ion-

acoustic waves [13].

1.3.2 In Water waves

Solitons have a vital part to play in the examination of tsunami waves, particularly in

regions characterized by inhomogeneities. Tsunamis are long-period waves generated by

large-scale disturbances, such as earthquakes or underwater landslides. As these waves

propagate over varying bathymetry, they can undergo transformations and exhibit soli-

tonic characteristics [14].

1.3.3 In Fiber Optics

In fibre optics applications, solitons have been extensively tested. Solitons have been used

successfully in the transmission of digital signals over large distances [15].

1.3.4 In Biology

The utilization of soliton theory has been employed to elucidate the phenomenon of low

frequency collective motion observed in proteins and DNA, as well as signal and energy

propagation in biomembranes, the nervous system, and these phenomena [16–18].

1.3.5 In Nuclear Physics

Under certain temperature and energy conditions, the soliton structure is predicted to

encompass the entirety of the nuclear wave function. The presence of these conditions is

believed to be present within the innermost regions of certain stars, when nuclei show no

reactivity and simply move past each other unchanged, keeping their soliton waves as a

result of the collision [19].
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1.4 Dispersion and Dissipation

The correlation between a wave’s frequency and its phase velocity in optics is known as

dispersion. The phase velocities of waves of different frequency will differ. Wave dispersion

refers to the change in phase velocity of water waves as the wave number undergoes

variation. Dispersive medium are those that have these characteristics. The phenomenon

of dispersion can be exemplified by a rainbow, where light is dispersed and separated into

various wavelengths, giving rise to different colors. A dissipative wave refers to a wave

that experiences a gradual reduction in its amplitude as a result of energy dissipation. The

solution of dissipative equation shows that wave propagate with unity speed. In dispersive

media, velocity varies with wave number and in dissipative media wave propagate at a

unity speed. Some 2D graphs are shown to see dynamic behaviour of dissipation term in

PDEs.

(a) t = 0 (b) t = 0.5

(c) t = 0.7 (d) t = 1.5

Figure 1.5: 2D Graphs of solution of dissipative equation
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1.5 Literature Review

The study of partial differential equations, particularly nonlinear evolution equations, has

proven invaluable for scientists and researchers in understanding various natural phenom-

ena. By analyzing and solving NLEEs, researchers have been able to uncover intricate

patterns, uncover hidden relationships, and predict the behavior of physical systems un-

der different conditions. One crucial aspect of studying these equations is the discovery

and analysis of exact solutions. Exact solutions provide explicit mathematical expressions

that describe the precise evolution of the system being studied. These solutions serve as

essential tools for validating numerical methods, testing theoretical conjectures, and gain-

ing insights into the underlying dynamics.

Over the years, numerous methods and a range of strategies have been introduced and re-

fined for the purpose of identifying exact solutions to nonlinear evolution equations. These

equations often involve intricate nonlinearities that make their solutions challenging to

obtain analytically. However, the quest for exact solutions has motivated researchers to

devise innovative approaches, paving the way for significant advancements in the field.

The revelation of solitary waves served as a catalyst for scientists to engage in a significant

amount of research in order to investigate this phenomenon. Korteweg and deVries, in

1895, formulated a nonlinear PDE, famously referred to as the KdV equation, for de-

scribing the elevation of a shallow water surface with solitary waves [20]. In the realm

of studying plasma waves, the KdV equation proved useful in analyzing their behavior

within dispersive mediums. A study conducted by Zabusky and Kruskal in 1965 [21]

focused on investigating the interaction between solitary waves and the recurrence of ini-

tial states. B.B. Kadomtsev and V.I. Petviashvili studied stability of solitary waves in

weakly dispersive media in 1970 [22]. In 1971, R. Hirota examined the multiple colli-

sions of soliton solutions of KdV equation [23]. In 1973, R. Hirota achieved a significant

breakthrough by obtaining exact N -soliton solutions for a nonlinear wave equation [24].

In 1976, dynamics of KdV equation investigated by Caudrey, Dodd, and Gibbon [25].

M. Ito achieved a breakthrough in 1980 by expanding the scope of research on nonlinear

evolution equations. This progress specifically focused on extending the KdV (mKdV)

type equations to higher orders [26]. In 1987 J. Hietarinta Investigated KdV-type Bilinear
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equations satisfying Hirota’s three-soliton condition I [27] and also mKdV-type bilinear

equations satisfying Hirota’s three-soliton condition II [28]. Solitons in NLEEs and inverse

scattering were proven by Ablowitz and Clarkson [29] in 1991. Also in 1991 Hereman,

W. and W. Zhuang given a MACSYMA Program for the Hirota Method [30]. In 1993,

P. Rosenau and J.M. Hyman studied Compactons: Solitons with finite wavelengths [31].

In 1994, Hereman, W. and W. Zhuang provided a symbolic computation of solitons via

Hirota’s Bilinear Method [32]. In 1994, G. Adomian using Decomposition method solved

Frontier problems of Physics [33]. In 1996, Wang and Q. Zhou utilized the homogeneous

balancing approach to successfully solve precise nonlinear equations in the field of math-

ematical physics [34]. W. Hereman and A. Nuseir simplified the Hirota’s bilinear method

by Symbolic methods to construct exact solutions of nonlinear PDEs in 1997 [35]. In

1999, W. Hong and Y. D. Jung made significant progress by discovering analytic solu-

tions and utilizing auto-Backlund transformation for the variable-coefficient Korteweg-de

Vries (KdV) problem [36]. In 2000, E. Fan introduced the extended tanh-function ap-

proach [37] and explored its applications to various nonlinear equations. Furthermore, in

2002, Z. Feng employed the first integral approach [38] to investigate the Burgers-KdV

problem.

The Hirota’s bilinear method and its simplified version considered as the most appropriate

methods for finding the N -soliton solutions of NLEEs. Based on this method researchers

explored and obtained soliton solutions of a large number of NLEEs. Grammaticos B.,

Ramani A. and Hietarinta J. in 1994 [54] introduced multilinear operators, which gen-

eralize Hirota’s bilinear D operator, based on the principle of gauge invariance of the τ

functions. In 1996 Johnson, R. S. obtained soliton solution of two dimensional Boussi-

nesq equation for water waves using this method [55]. Hu X.-B. and Tam H.-W. applied

bilinear method to integrable differential equations [56] in 2001.

In last two decades, Hirota’s bilinear method applied by many researcher for obtaining the

soliton solutions of NLEEs and systems which advanced the soliton theory. Wazwaz, A.M.,

Tian, B., Zhang, S., Liu, W.J., Gao, Y.T., Seadawy, A.R., Zhang, H.Q., Zayed, E.M.E.,

Lou, S.Y. and Masood, W. played a vital role for the advancement of theory of solitons

through Hirota’s blinear method. Wazwaz’s noteable work include Multiple-soliton so-

lutions for the KP equation [57], Multiple-front solutions for the Burgers equation and
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the coupled Burgers equations [58], multiple-soliton solutions of the Sawada-Kotera-Ito

seventh-order equation [59], multiple soliton solutions and multiple singular soliton solu-

tions of (3+1)-dimensional evolution equation [60], Multiple-soliton solutions of the per-

turbed KdV equation [61], Multiple soliton solutions for the Whitham-Broer-Kaup model

[62], Multiple soliton solutions of generalized Kaup-Boussinesq equation [63], The colli-

sion dynamics between double-hump solitons in two mode optical fibers [64] and Lump,

periodic and travelling wave solutions to the (2+1)-dimensional pKP-BKP model [65].

In recent years, the investigation of lump solutions has gained significant interest in the

field of solving Nonlinear Evolution Equations (NLEE). Lump solutions, which take the

form of rational functions, exhibit polynomial decay in all spatial directions. A lump

solution for the Kadomtsev-Petviashvili I (KPI) equation was initially described math-

ematically in 1977 [39]. Ablowitz and Satsuma introduced the long wave limit method,

based on exponential functions, in 1978 [40, 41]. Imai devised the Grammian determinant

technique by employing binary Darboux transformations [42]. Ma presented an alterna-

tive approach known as the direct method, which utilizes a specific class of quadratic

polynomial functions [43, 44]. Dai et al., on the other hand, introduced the hetero-

clinic breather limit method, employing trigonometric functions as key elements [45, 46],

alongside various other contributions. A method that has been gaining attention is the

long wave limit approach, mainly because of its practicality in addressing lump solutions

and N -solitons [47–49]. Recently, the study of solitons related to lump solutions, such

as lump-type solutions and rogue waves, especially their interactions with solitons, has

gained considerable prominence within the domain of nonlinear natural science [50–53].
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Chapter 2

Methodologies

2.1 The Hirota’s Bilinear Method

In 1971, Hirota published a paper introducing the Hirota direct method. This novel ap-

proach revolutionized the process of finding N -soliton solutions for nonlinear evolutionary

equations by providing a direct method. Hirota’s approach stands as a highly effective

direct methodology in the realm of mathematical physics and soliton theory, renowned

for its ability to generate exact solutions across a broad spectrum of nonlinear partial

differential equations. Any equation that can be formulated in bilinear form can be effec-

tively addressed using this technique, once the bilinear form is acquired, the methodology

transforms into an algorithmic process, relying solely on calculus and algebra. However,

the computations grow significantly longer and more complex, especially when dealing

with high-order partial differential equations or those containing highly nonlinear terms.

Furthermore, the intricacy of the computations significantly escalates depending on the

desired type of soliton solution. While single soliton solutions can be easily calculated,

even manually, two- and three-soliton solutions require considerable effort. Four-soliton

solutions push the limits of what can be achieved with symbolic programming. Never-

theless, once the structure of the two- and three-soliton solutions is discerned, it provides

insights into the form of higher-order soliton solutions.

Essentially, Hirota’s method necessitates three fundamental steps:

(i) The implementation of a clever transformation of the dependent variable. (ii) The

introduction of a novel differential operator. (iii) Employing a perturbation expansion

approach for the effective resolution of the resultant bilinear equation.
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2.1.1 The Auxiliary Function

Inspired by the N -soliton solution of the Korteweg-de Vries (KdV) equation, which was

established through methods like the Inverse Scattering Transform, as well as the transfor-

mation of the Burgers’ equation known as the Cole-Hopf transformation which transforms

it into the linear heat equation, Hirota introduced a novel function called the auxiliary

function in 1971. This introduction was driven by the intention to uncover a similar form

of solution and enhance the understanding of nonlinear equations. The function f is of-

ten denoted as the ”tau function” in many books. This name is attributed to its dual

significance within Hirota’s method. On one hand, the tau function is instrumental in the

construction of soliton solutions. But also, Hirota’s method relies heavily on its crucial

contribution within the theoretical framework.

2.1.2 The Hirota’s Derivative Operator

Hirota introduced the D-operator as a binary form that takes a pair of functions as input

and produces a new function as output. This operator possesses several advantageous

properties that facilitate the analysis of differential equations. Notably, it enables the

discovery of analytic soliton solutions for these equations. Over time, the D-operator

has garnered significant attention and has been subject to further extensive research. In

the following section, we will outline and elaborate upon its definition and important

properties.

Definition

Hirota introduced the differential operator, that operates on a pair of functions (τ, ξ) of

a real variable x, by

Dx(τ · ξ) =
(

∂

∂x
− ∂

∂x′

)
τ(x)ξ(x′)

∣∣∣∣
x′=x

. (2.1)

To enable multiple iterations of the operator and while employing it to different variables

(such as x and t in this definition, but it can be extended to any number of real variables),

Hirota defined

Dm
x D

n
t (τ · ξ) =

(
∂

∂x
− ∂

∂x′

)m(
∂

∂t
− ∂

∂t′

)n

τ(x, t)ξ(x′, t′)

∣∣∣∣
x′=x,t′=t

. (2.2)
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To provide a better grasp of the D-operator and develop some intuitive insights, let’s

consider a few quick results.

Dx(τ · ξ) = τxξ − τξx ,

D3
x(τ · ξ) = τxxxξ − 3τxxξx + 3τxξxx − τξxxx ,

DxDt(τ · ξ) = τxtξ − τxξt − τtξx + τξxt .

In fact, we can observe the formula given below for expanding the nth power of the oper-

ator, formed by expanding powers of Eq. (2.1) through binomial expansion.

Dn
x(τ · ξ) =

n∑
k=0

(−1)k
(
n

k

)
∂n−k
x ∂k

x′τ(x)ξ(x′). (2.3)

A notable comparison can be made with the conventional product rule for differentiation,

the primary factor that sets them apart is the alternating sign, denoted by (−1)k, which

precedes every term that is generated.

The final defining property of the D-operator, as implied by its name, is its bilinearity.

This implies that it exhibits linearity independently for each argument within the input

tuple. For instance, considering functions m,n, p, q, and scalar δ, we have the following

relationship:

Dx(m+ δn) · (p+ δq) = Dx(m · p+m · δq + δn · p+ δn · δq)

= Dx(m · p) + δDx(m · q + n · p) + δ2Dx(n · q).

Properties

Now, let’s explore some notable properties of the operator that we can utilize when solving

bilinear equations.

Consider a general polynomial P in D = (Dt, Dx, Dy, . . .). Additionally, we introduce the

notation ∂ = (∂t, ∂x, ∂y, . . .). In this context, we introduce a variety of valuable properties:

P (D)τ · 1 = P (∂)τ, (2.4)

P (D)1 · τ = P (−∂)τ, (2.5)

Dn
x((τ · ξ) = (−1)nDn

x(ξ · τ), (2.6)

D2n+1
x (τ · τ) = 0, n ∈ N. (2.7)
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The Eqs. (2.4)-(2.6) can be derived directly from the definition when applied to the

specified tuples of functions and constants. Additionally, Eq. (2.7) is obtained by directly

applying Eq. (2.6) to the tuple (τ · τ). If we now introduce the exponential function given

by eΘi , with Θi = wit + pi + qiy + ... + Θ0
i and where Θ0

i is constant, we can present an

other result

P (D) exp(Θ1) · exp(Θ2) = P (w1 − w2, p1 − p2, q1 − q2, . . .) exp(Θ1 +Θ2). (2.8)

In fact, this particular property could potentially serve as the fundamental reason behind

the existence of soliton solutions in these types of equations.

2.1.3 Finding soliton solutions for bilinear equation

Now our approach involves utilizing the operator in solving some differential equation

written in bilinear form. Assuming that the bilinear equation can be represented as

follows

P (D)τ · τ = 0, (2.9)

where P and D defined as in section 2.1.2 and with the additional restriction that

P (0) = 0. (2.10)

The aforementioned restriction is essential for discovering soliton solutions [4], and its

significance becomes evident through the following reasoning.

Next, we will make use of the standard perturbation method. This involves representing

the function τ as a formal power series in a small parameter. This expansion yields the

following expression

τ = 1 + ϵτ1 + ϵ2τ2 + ϵ3τ3 + . . . (2.11)

By substituting this expansion into Eq. (2.9) and employing the bilinearity of the D-

operator, we obtain

P (D)(1 · 1 + 1 · ϵτ1 + ϵτ1 · 1 + ϵτ1 · ϵτ1 + 1 · ϵ2τ1 + ϵ2τ1 · 1 + . . .) = 0, (2.12)
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A set of equations obtained by collecting the terms that correspond to every exponent of

the expansion parameter, given as

ϵ0 : P (D)(1 · 1) = 0, (2.13)

ϵ1 : P (D)(1 · τ1 + τ1 · 1) = 0, (2.14)

ϵ2 : P (D)(1 · τ2 + τ1 · τ1 + τ2 · 1) = 0, (2.15)

ϵ3 : P (D)(1 · τ3 + τ1 · τ2 + τ2 · τ1 + τ3 · 1) = 0. (2.16)

Initially, let us observe that Eq. (2.13) is inherently valid due to Eq. (2.10), as ∂
∂x
(1) = 0

irrespective of the specific variable we differentiate with respect to. Subsequently, we

simplify Eq. (2.14)

P (D)(1 · τ1 + τ1 · 1) = 2P (D)(τ1 · 1) = 2P (∂)τ1 = 0 ⇐⇒ P (∂)τ1 = 0. (2.17)

The first step involves utilizing Eqs. (2.6) and (2.7), while the subsequent stage involves

applying Eq. (2.4). It becomes evident that every term containing an odd number of

D-operators gets eliminated, while each term with an even number is multiplied by two

through the application of identities (2.6) and (2.7). Consequently, Eq. (2.17) retains

a linear PDE with unchanging coefficients, which, as customary, is solved using an ex-

ponential expression. Now let us proceed by assuming the solution τ1 = exp(Θ) with

Θi = wit+ pi + qiy + ...+Θ0
i and where Θ0

i is constant. Subsequently, we obtain

P (w, p, q, . . .) exp(Θ) = 0 ⇐⇒ P (w, p, q, . . .) = 0. (2.18)

Therefore, when the coefficients of the variables in the exponent, represented by Θ, fulfill

the polynomial equation, the presumed solution will align with a valid solution. The

equation P (w, p, q, . . .) = 0 represents the dispersion relation of this solution.

It should be emphasized that our main emphasis is on solutions that decay exponentially,

as they have a fundamental significance in the emergence of solitons. This is in contrast

to plane wave solutions, which are typically examined in classical wave equations such as

the one mentioned earlier. For further insights on this matter, additional details can be

located in Hirota’s work [23].

Next, we examine Eq. (2.15) and apply bilinearity, followed by the identical procedure
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used in Eq. (2.17) for the ”mirrored” terms involving τ2. This allows us to derive the

resulting expression

2P (∂)τ2 = −P (D)(τ1 · τ1). (2.19)

Observing the situation, it becomes apparent that our proposed approach for τ1, combined

with Eqs. (2.7) and (2.9), effectively nullifies the right-hand side. Consequently, what

remains is

P (∂)τ2 = 0. (2.20)

It is apparent that we can make the choice of setting τ2 = 0 and still achieve a valid

solution.

For Eq. (2.16) this allows us to swiftly reduce the expression into

P (∂)τ3 = 0. (2.21)

Choosing τ3 = 0 remains a valid option once more.

Subsequently, the identical process is replicated for every subsequent exponent of ϵ, leading

us to the conclusion that the perturbation series terminates when τn = 0 for all n > 1.

Consequently, a solution is obtained

τ = 1 + ϵτ1 = 1 + exp(Θ). (2.22)

The perturbation coefficient has been incorporated into the constant Θ0 in the exponent

during the final step. As a result, we have obtained the one-soliton solution.

To acquire the solution for two solitons, as well as the more general solution for N solitons,

we exploit the property that by virtue of being a linear differential equation, Eq. (2.17)

abides by the superposition principle. To attain the two-soliton solution, we employ the

following ansatz

τ1 = exp(Θ1) + exp(Θ2) (2.23)

Both Θ1 and Θ2 individually fulfill the dispersion relation (2.18). Now, let’s examine the

impact of this assumption on (2.14). Similarly to before, we obtain the expression (2.17).

However, unlike the previous case of the one-soliton, the right-hand side of Eq. (2.19)
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doesn’t equate to zero. Instead, a different outcome arises

P (D)(τ1 · τ1)

= P (D)(exp(Θ1) + exp(Θ2)) · (exp(Θ1) + exp(Θ2))

= (exp(Θ1) · exp(Θ1) + exp(Θ1) · exp(Θ2) + exp(Θ2) · exp(Θ1) + exp(Θ2) · exp(Θ2))

= 2P (D)(exp(Θ1) · exp(Θ2)).

The presence of the second equals sign is solely due to the bilinearity, while the third equals

sign arises from the subtraction of equation (2.6) from equation (2.8). This subtraction

results in the cancellation or doubling of terms based on whether the derivative is of even

or odd order, leading to a coefficient of 2. Additionally, equation (2.8) eliminates pairs of

identical exponents in the form of exp(Θ1) · exp(Θ2). We then proceed to employ (2.8)

once more, yielding the subsequent outcome.

2P (D) exp(Θ1) · exp(Θ2) = 2P (w1 − w2, p1 − p2, q1 − q2, . . .) exp(Θ1 +Θ2). (2.24)

Therefore, we are directed to select the solution

τ2 = a12 exp(Θ1 +Θ2), (2.25)

where the value of a12 is determined by

a12 = −P (w1 − w2, p1 − p2, q1 − q2, . . .)

P (w1 + w2, p1 + p2, q1 + q2, . . .)
. (2.26)

Upon examining Eq. (2.19), it becomes clear that the numerator of a12 cancels out the

coefficient in (2.24), while the denominator cancels out the outcome of the dispersion

relation of the solution τ2 on the left-hand side, resembling the process by which we

obtained (2.18).

Moving forward, we continue with Eq. (2.16), employing a similar approach to how we

handled (2.15) by dividing it into two separate expressions. This leads us to acquire

P (D)(1 · τ1 + τ1 · 1) = P (D)(τ1 · τ2 + τ2 · τ1). (2.27)

After applying the same reduction method used to obtain Eq. (2.17), the left side is

diminished. Now, let’s examine the right side of the equation. We substitute our ini-

tial assumption for τ1 and substitute the obtained value for τ2, yielding the following
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expression

P (D)([exp(Θ2) + exp(Θ2)] · a12 exp(Θ1 +Θ2) + a12 exp(Θ1 +Θ2) · [exp(Θ2) + exp(Θ2)])

= 2a12P (D)([exp(Θ1) + exp(Θ2)] · exp(Θ1 +Θ2)

= 2a12(P (D) exp(Θ1) · exp(Θ1 +Θ2) + P (D) exp(Θ2) · exp(Θ1 +Θ2)).

We finally use the rule (2.7) to get

2P (w1, p1, q1, . . .) exp(2Θ1 +Θ2) + 2P (w2, p2, q2, . . .) exp(Θ1 + 2Θ2). (2.28)

Drawing from our prior experiences, our intention is for the entire expression to amount

to zero. As a result, we can set τ3 to 0 and disregard the expansion of the sum. As

a matter of fact, it is already 0. We selected the function τ1 in such a way that each

individual term adheres to the polynomial P, allowing for the superposition of valid solu-

tions of (2.17). Given that any valid solution of (2.17) also meets the requirements of the

dispersion relation (2.18), we can infer that the right side of (2.27) yields a value of zero.

Consequently, we find ourselves in the same situation as before and require τ3 to fulfill

P (∂)τ3 = 0, (2.29)

Consequently, we can easily select τ3 = 0, leading to a clear choice. Utilizing analogous

reasoning as mentioned earlier, we have effectively truncated the series and obtained a

solution

τ = 1 + exp(Θ1) + exp(Θ2) + a12 exp(Θ1 +Θ2). (2.30)

The constants of the exponents have assimilated the expansion coefficients, as mentioned

previously. Consequently, the outcome is the two-soliton solution.

The argument mentioned earlier can be reiterated, and by making use of the D-operator’s

properties at specific instances, the overall solution consisting of N -soliton can be derived.

The crucial step involves the selection of a specific number of terms in τ1, which deter-

mines the value of N in the solution. This numerical representation corresponds to the

quantity of individual solitons that will diminish gradually as time passes. Hirota offers

a concise representation for the solution of N solitons, which is restated below for refer-

ence. However, due to its intricate nature, the expression holds limited computational
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significance.

τ =
∑
ν=0,1

exp(

(N)∑
i<j

νiνjAij +
N∑
i=1

νiΘi), (2.31)

where first
∑

implies that combinations of νi = 0, 1 for all 1 ≤ i ≤ N and
∑N

i<j represents

a summation for all possible pairs (i, j) such that 1 ≤ i, j ≤ N and i < j. For example if

we set N = 3, the resulting solution is the 3-soliton solution, which takes the form of

τ = 1 + exp(Θ1) + exp(Θ2) + exp(Θ3)

+ exp(A12 + exp(Θ1) + exp(Θ2)) + exp(A13 + exp(Θ1) + exp(Θ3))

+ exp(A23 + exp(Θ2) + exp(Θ3)) + exp(A12 + A13 + A23 +Θ1 +Θ2 +Θ3).

Also note that the relationship between the coefficients can be described as aij = exp(Aij).

We have demonstrated that, regardless of the equation’s structure, characterized by

P (D)τ · τ = 0 and subject to the vacuum restriction mentioned earlier, it will possess N -

soliton solutions precisely as described earlier. The discrepancies among these solutions,

governed by the foundational equation P , the given result will depend on the coefficients

and the dispersion relations they fulfill. You might be questioning the significance of this

if you haven’t encountered an equation in the aforementioned form before. Thus, the

question arises: What methods can be employed to reveal or find this elusive bilinear

form?

2.1.4 How to find Bilinear form

Mathematicians in various fields frequently encounter differential equations that are rarely

provided in the required format for discovering N -soliton solutions. Determining which

equations can be transformed into this form often requires a certain level of artistry

rather than a straightforward approach. Nonetheless, this section provides insights into

identifying certain characteristics. The objective is to rephrase an equation using D-

operators. The initial step involves a change of variables.

Dependent variable transformations

In the following discussion, we will address two commonly used variable transformations

employed to find bilinear forms. It is important to note that there are various variations
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of these transformations, and it is necessary to exercise some caution in selecting the

appropriate one. In order to ascertain the validity of these transformations, we will

require certain results

exp(δ∂x)p(x) = p(x+ δ), (2.32)

exp(δDx)p(x) · q(x) = p(x+ δ)q(x− δx), (2.33)

2 cosh(δ∂x)p(x) = p(x+ δ) + p(x− δ), (2.34)

cosh(δDx)p(x) · p(x) = p(x+ δ)p(x− δ). (2.35)

All of these are driven by examining the Taylor series expansion centered at the given

point x of p(x+ δ) given by

p(x+ δ) =
∞∑
n=0

(∂n
x )(x)

n!
((x+ δ)− x)n =

∞∑
n=0

(∂x)
n

n!
p(x).

The Eq. (2.32) follows directly from the observation that changing the sign of each term

with an odd number of derivatives in a Taylor expansion is reversed when the exponent

changes sign. Similarly, the second function in the input of the D-operator also exhibits

the same pattern, resulting in a translation in the opposite (negative) direction, as shown

for q in Eq. (2.33). From these observations, the remaining results can be derived straight-

forwardly. Now, let’s examine the two transformations.

(i) The rational transform

Starting with a given solution u of a nonlinear partial equation, we can perform a rational

transformation to convert it into a corresponding rational function

ϕ =
p

q
, (2.36)

where u, p, and q be functions of the same real variables. In the case where the nonlinear

terms in the equation can be formulated as a polynomial function involving u and its

derivatives, the transformation of variables will yield a homogeneous expression in terms

of p and q. This homogeneous expression can be further separated into a set of quadratic

forms. The motivation behind this transformation is supported by the following identity.

exp(δ∂x)
p

q
=

exp(δDx)p · q
cosh(δDx)q · q

, (2.37)
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The proof can be obtained by directly applying the results stated in Eqs. (2.32), (2.33),

and (2.35). By expanding both sides of equation (2.37) with respect to the parameter

δ and organizing the terms based on each order of δn, this might require engaging in

algebraic manipulations to manipulate the expansions, we can derive the desired outcome

∂

∂x

p

q
=

Dxp · q
q2

, (2.38)

∂2

∂x2

p

q
=

D2
xp · q
q2

− p

q

D2
xq · q
q2

, (2.39)

∂3

∂x3

p

q
=

Dxp · q
q3

− 3
Dxp · q

q2
D2

xq · q
q2

. (2.40)

and so on. After applying these relations to any equation, it is common for the equation

to be decoupled, resulting in the introduction of an arbitrary decoupling function λ into

a system of bilinear equations [4, 3]. Let’s proceed to the next transformation.

(ii) The logarithmic transformation

The logarithmic transformation, which is even more prevalent than the previous transfor-

mation, is expressed as follows

ϕ = 2α(log τ)xx, (2.41)

given that ϕ and f are functions of real variables, and α is a free parameter, there exists

another motivating identity for this transformation as

2α cosh

(
δ
∂

∂x

)
log τ(x) = α log[cosh(δDx)τ(x) · τ(x)]. (2.42)

Proved by using (2.34) and (2.34), as well as standard results about the logarithm as

follows

LHS = log τ(x+ δ) + log τ(x− δ)

= log[τ(x+ δ)τ(z − δ)] = RHS.
(2.43)
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Expanding both sides with respect to δ and organizing the terms according to their powers

of δ yields the following relationships.

2α
∂2

∂x2
log τ = α

D2
xτ · τ
τ 2

, (2.44)

2α
∂2

∂x∂t
log τ = α

DxDtτ · τ
τ 2

, (2.45)

2α
∂4

∂x4
log τ =

[
D2

xτ · τ
τ 2

− 3

(
D2

xτ · τ
τ 2

)2
]
. (2.46)

and so on.

2.1.5 Description of Simplified Hirota Method

In their work, Hereman et al. presented a simplified variation of Hirota’s method, which

allows for the direct derivation of exact solitons without the utilization of bilinear forms.

This method involves solving a perturbation scheme utilizing symbolic manipulation soft-

ware. The subsequent discussion provides a summary of the primary steps involved in

this simplified version of Hirota’s method.

To provide an example of the methodology, we take the commonly observed KdV equation

ϕt + 6ϕϕx + ϕxxx = 0, (2.47)

where ϕ = ϕ(x, t) and subscripts denote derivatives.

Step 1: A change of dependent variable

ϕ(x, t) =
2∂2τ(x, t)

∂x2
= 2

(ττxx − τ 2x)

τ 2
, (2.48)

enables us to express (2.47) as a quadratic equation in terms of τ and its derivatives

τ [τxt + τ3x]− τxτt − 4τxτ3x + 3τ 22x = 0. (2.49)

To adapt Hirota’s technique to equations where the bilinear form is not readily available,

we intentionally leave out Hirota’s bilinear operators [9] and instead represent Eq. (2.49)

in the following manner

τL(τ) +N(τ, τ) = 0, (2.50)
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where L denote the linear differential operator

L(τ) =
∂2τ

∂x∂t
+

∂4τ

∂x4
, (2.51)

and the nonlinear differential operator N is defined as

N(τ, ξ) = −τxξt − 4τxξ3x + 3τ2xξ2x. (2.52)

Step 2: We seek solution of type

τ(x, t) = 1 +
∞∑
n=1

ϵnτn(x, t), (2.53)

within this framework, ϵ plays the role of a parameter employed for maintaining records.

Progressing as outlined in Hirota’s methodology, we substitute (2.53) into (2.50), and

equate to zero the different powers of ϵ:

ϵ1 : Lτ1 = 0, (2.54)

ϵ2 : Lτ2 = −N(τ1, τ1) = 0, (2.55)

ϵ3 : Lτ3 = −τ1Lτ2 −N(τ1, τ2)−N(τ2, τ1) = 0, (2.56)
...

ϵn : Lτn = −
n−1∑
j=1

[τjLτn−j +N(τj, τn−j)] = 0. (2.57)

Step 3: The N -soliton solution is obtained from

τ1 =
N∑
i=1

exp(Θi), (2.58)

where

Θi = kix− cit, (2.59)

is called phase shift and ci, ki are called the wave speed and wave number respectively.

Substituting

ϕ(x, t) = exp(kix− cit), (2.60)

into the linear terms of the KdV Eq. (2.47) gives the dispersion relation

ci = k3
i . (2.61)
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We therefore find

Θi = kix− k3
i t. (2.62)

By using N = 1 in Eq. (2.58) we obtained

τ1 = exp(Θ1) = exp(k1x− k3
1t). (2.63)

One-soliton solution

For finding one-soliton solution, we set n = 1 in Eq. (2.53)

τ = 1 + τ1 = 1 + exp(k1x− k3
1t), (2.64)

where we used ϵ = 1 and now substituting above equation into (2.48) gives one-soliton

solution for KdV equation

ϕ(x, t) =
2k2

1 exp(k1(x− k2
1t))

1 + exp(k1(x− k2
1t))

2
. (2.65)

Two-soliton solution

In order to find the two-soliton solutions, we begin by substituting N = 2 into Eq. (2.58).

This gives the following result

τ1 = exp(Θ1) + exp(Θ1), (2.66)

In order to obtain τ2, the right-hand side of (2.55) has to be calculated

−N(τ1, τ1) = −2(k1 − k2)
2(m2k

2
1 + 2k1m1k2 + 2k1m2k2 +m1k

2
2) exp(Θ1 +Θ2). (2.67)

Obviously, τ2 must be of the form

τ2 = a12 exp(Θ1 +Θ2), (2.68)

where a12 is a constant to be determined. Computation of the left-hand side of Eq. (2.55)

yields

Lτ2 = −2a12(k1 + k2)
2(m2k

2
1 + 2k1m1k2 + 2k1m2k2 +m1k

2
2) exp(Θ1 +Θ2). (2.69)

Equating Eq. (2.67) and Eq. (2.69) gives

a12 =
(k1 − k2)

2

(k1 + k2)2
. (2.70)
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Therefore Eq. (2.68) becomes

τ2 =
(k1 − k2)

2

(k1 + k2)2
exp(Θ1 +Θ2), (2.71)

Now for finding two-soliton solution we set n = 2 in Eq. (2.53) gives

τ(x, t) = 1 + ϵτ1 + ϵ2τ2 = 1 + exp(Θ1) + exp(Θ1) +
(k1 − k2)

2

(k1 + k2)2
exp(Θ1 +Θ2), (2.72)

for simplicity we choose ϵ = 1 which is arbitrary constant. Now by using Eq. (2.72) into

Eq. (2.48) we get two-soliton solution for KdV equation.

Three-soliton solution

We further go on to search for three-soliton solution. To this end, substituting N = 3 in

Eq. (2.58) yields

τ1 = exp(Θ1) + exp(Θ2) + exp(Θ3), (2.73)

where Θi = kix − k3
i t for i = 1, 2, 3. Inserting (2.73) into Eq. (2.55), calculating and

equating left and right sides we get

τ2 = a12 exp(Θ1 +Θ2) + a13 exp(Θ1 +Θ3) + a23 exp(Θ2 +Θ3), (2.74)

with

a12 =
(k1 − k2)

2

(k1 + k2)2
, a13 =

(k1 − k3)
2

(k1 + k3)2
, a23 =

(k2 − k3)
2

(k2 + k3)2
. (2.75)

Proceeding in a similar way with (2.56) we get

τ3 = b123 exp(Θ1 +Θ2 +Θ3), (2.76)

with

b123 = a12a13a23. (2.77)

Thus for finding three-soliton solution we set N = 3 in Eq. (2.53) gives

τ(x, t) = 1 + ϵτ1 + ϵ2τ2 + ϵ3τ3. (2.78)

Substituting Eq. (2.78) along with Eqs. (2.73), (2.74) and (2.76) into Eq. (2.48) gives

three-soliton solution for KdV equation.
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2.2 Description of Direct Method using Hirota Bilin-

ear form for Lump and its Interaction Solutions

In order to demonstrate the essential stages of a direct approach for acquiring lump

solitons, we examine a generic formulation of a nonlinear evolution equation in higher

dimensions as

F (ϕ, ϕt, ϕx, ϕy, ϕz, ϕxx, ϕyy, ϕzz, . . .) = 0, (2.79)

where ϕ = ϕ(x, y, z, t), F is a polynomial about u and its derivatives.

The fundamental concept of the direct method can be articulated as follows (its applica-

tion demonstrated on certain equations [43, 44]).

Step 1: We undergo a transformation, considering it as

ϕ = T (τ), (2.80)

where τ is a new unknown (auxiliary) function. Then, the equation adopts the subsequent

Hirota bilinear formulation

G(Dt, Dx, Dy, Dz, . . .)(τ, τ) = 0, (2.81)

where the D-operators are Hirota’s bilinear operators [24].

Step 2: To find the lump solution of Eq. (2.79), we make the assumption that the

equation possesses a lump solution expressed in the following form

τ = g2 + h2 +m, (2.82)

g = a1x+ a2y + a3z + a4t+ . . .+ an, h = b1x+ b2y + b3z + b4t+ . . .+ bn,

where ai, bi(1 ≤ i ≤ n) and m represent real parameters to be found at a later stage. By

putting Eq. (2.82) into Eq. (2.81) and equating the coefficients of all variables for each

polynomial term, then equating these coefficients to zero. This process yields a system of

algebraic equations involving parameters.

Step 3: By utilizing symbolic computation [43], we can solve the system of algebraic

equations presented in step 2 and determine the values of ai, bi(1 ≤ i ≤ n) and m. By

substituting these identified values of parameters into Eq. (2.82) and then into Eq. (2.80),

we can acquire numerous precise lump solutions for Eq. (2.79).
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2.2.1 Test Functions for Lump Interaction Solutions

Let n ∈ N , and we introduce n wave variables as

g = a1x+ a2y + a3z + a4t+ . . .+ an,

h = b1x+ b2y + b3z + b4t+ . . .+ bn,

l = c1x+ c2y + c3z + c4t+ . . .+ cn,

(2.83)

where ai, bi, ci(1 ≤ i ≤ n) and m are constant parameters.

Lump Interaction with Multi-stripe Solutions

To examine lump interaction with mulit-stripe solutions we employ the combination of

two quadratic functions and N exponential function as

τ = g2 + h2 +m+
N∑
i=1

eli , (2.84)

Lump Interaction with Periodic Waves

The test function for examining the interaction phenomenon among lump and periodic

waves is given as

τ = g2 + h2 +m+ cos(l), (2.85)

Breathers wave solution

To obtain breathers waves solution we consider the test function of the following form

τ = e−k1l + c1e
k1l + c2 cos(k2g), (2.86)

Solitary wave solution

To obtain breathers waves solution we consider the test function of the following form

τ = q1e
l + q2 tan(g) + q3 tanh(h), (2.87)

where k1, k2, q1, q2 and q3 are also constant parameters.
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Chapter 3

Lump and Soliton solutions of an
Extended (3+1)-dimensional B-type
Kadomtsev-Petviashvili equation

In 1970, kadomstsev-petviashivili (KP) equation [22] was proposed as a two dimensional

extension of Kortweg-de Vries equation. As like other NLEEs, KP equation also possesses

soliton solutions which have great importance in many domains of nonlinear phenomenon

such as optics, plasma physics and water waves. For instance, KP equation is used to

study ion acoustic waves in magnetized dusty plasma and in the study of water waves, at

the bottom of ocean, tsunami waves travelling in the in-homogeneous zone are described

by KP equation. In the last couple of decades, KP equation caught eyes of many re-

searchers which resulted into many extensions of KP equation.

In this chapter, by using Hirota’s Bilinear method, multi-soliton, lump and lump interac-

tion solutions with soliton and periodic waves for an extended (3+1)-dimensional B-type

Kadomtsev-Petviashvili (eBKP) equation are obtained which is one of the extension of

KP equation. The (3+1)-dimensional eBKP is given as follows

ϕtz + ϕty − ϕxxxy − 3(ϕxϕy)x + 3ϕxz = 0, (3.1)

where ϕ = ϕ(x, y, t, z).

This chapter is designed as: In Sect. 3.1, we obtain bilinear form of Eq. (3.1). Sect. 3.2

contains 1, 2 and 3-soliton solutions of Eq. (3.1) while in Sect. 3.3, lump solutions are

presented. In Section 3.4, lump interaction solutions with periodic and soliton waves are

presented.
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3.1 Bilinear Form of eBKP

By dependent variable transformation

ϕ = 2(ln τ)x, (3.2)

where ϕ and τ are functions of x, y, z, and t. By Eq. (3.2), Eq. (3.1) transforms into

Hirota Bilinear form [23] as follows:

(3DxDz +DyDt +DzDt −D3
xDy)(τ · τ) = 0, (3.3)

where Dz, Dt, Dx and Dy are derivative operators given as follows:

Dp
xD

q
t (τ · ξ) = (∂x − ∂x′ )p(∂t − ∂t′ )

qτ(x, t)ξ(x
′
, t

′
)|x′=x,t′=t, (3.4)

where p, q ≥ 0 and p+ q ≥ 1. So,

D3
xDy = −2(τxxxyτ + τxxxτy + 3τxxyτx − 3τxxτxy)(τ · τ) = 0, (3.5)

DxDz = 2(τxzτ − τxτz), (3.6)

DyDt = 2(τytτ − τyτt), (3.7)

DzDt = 2(τztτ − τzτt). (3.8)

By using Eqs. (3.5),(3.6),(3.7) and (3.8), Eq.(3.3) can be written as

3τxzτ − 3τxτz + τytτ − τyτt + τztτ − τzτt − τxxxyτ − τxxxτy − 3τxxyτx + 3τxxτxy = 0. (3.9)

The above equation will be used for finding Lump solutions later.

3.2 Kink-Solitons Solutions

3.2.1 1-kink soliton Solution

To find the dispersion relation, substitute

ϕ = eΘi = ekix+riy+siz−cit, (3.10)
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into the linear part of Eq. (3.1), which gives

ci = −ki(k
2
i ri − 3si)

ri + si
. (3.11)

Hence, the dispersion variable takes the form

Θi = kix+ riy + siz +
ki(k

2
i ri − 3si)

ri + si
t. (3.12)

For 1-kink soliton solution

τ1 = eΘ1 , (3.13)

where Θ1 = k1x + r1y + s1z +
k1(k21r1−3s1)

r1+s1
t, therefore auxiliary function τ takes the form

as follows:

τ = 1 + eΘ1 = 1 + e
k1x+r1y+s1z+

k1(k
2
1r1−3s1)

r1+s1
t
. (3.14)

Hence, using ϕ = 2(ln τ)x, 1-kink soliton is given as

ϕ(x, y, z, t) =
2k1e

k1x+r1y+s1z+
k1(k

2
1r1−3s1)

r1+s1
t

1 + e
k1x+r1y+s1z+

k1(k
2
1r1−3s1)

r1+s1
t

. (3.15)

(a) (b) (c)

Figure 3.1: (a) 1-kink soliton solution at y = 0, z = 0 with k1 = −0.3, r1 = 0.5 and
s1 = 0.5 (b) contour plot (c) 2D representation.
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3.2.2 2-kink soliton Solution

For 2-kink soliton, let

τ = 1 + τ1 + τ2, (3.16)

where τ1 = eΘ1 + eΘ2 and τ2 = d12e
Θ1+Θ2 also Θ1 = k1x + r1y + s1z +

k1(k21r1−3s1)

r1+s1
t and

Θ2 = k2x + r2y + s2z +
k2(k22r2−3s2)

r2+s2
t, here d12 is called phase shift. So, Eq. (3.16) takes

the form

τ = 1 + eΘ1 + eΘ2 + d12e
Θ1+Θ2 , (3.17)

Phase shift d12 can be calculated by substituting directly Eq. (3.17) under dependent

variable transformation ϕ = 2(ln τ)x into Eq. (3.1) which gives d12 for general case

dij =
L

M
, 1 ≤ i ≤ j ≤ N, (3.18)

where

L = k3
i rirjsj + k3

i ris
2
j − k3

i r
2
jsi − k3

i rjsisj − 3k2
i kjr

2
i rj − 3k2

i kjr
2
i sj + 3k2

i kjrir
2
j

− 3k2
i kjrirjsi + 3k2

i kjrirjsj − 3k2
i kjrisisj + 3k2

i kjr
2
jsi + 3k2

i kjrjsisj + 3kik
2
j r

2
i rj

+ 3kik
2
j r

2
i sj − 3kik

2
j rir

2
j + 3kik

2
j rirjsi − 3kik

2
j rirjsj + 3kik

2
j risisj − 3kik

2
j r

2
jsi

− 3kik
2
j rjsisj − k3

j r
2
i sj + k3

j rirjsi − k3
j risisj + k3

j rjs
2
i + 3kirirjsj + 3kiris

2
j

− 3k1r
2
jsi − 3kirjsisj − 3kjr

2
i sj + 3kjrirjsi − 3kjrisisj + 3kjrjs

2
i ,

(3.19)

and

M = k3
i rirjsj + k3

i ris
2
j − k3

i r
2
jsi − k3

i rjsisj − 3k2
i kjr

2
i rj − 3k2

i kjr
2
i sj − 3k2

i kjrir
2
j

− 3k2
i kjrirjsi − 3k2

i kjrirjsj − 3k2
i kjrisisj − 3k2

i kjr
2
jsi − 3k2

i kjrjsisj − 3kik
2
j r

2
i rj

− 3kik
2
j r

2
i sj − 3kik

2
j rir

2
j − 3kik

2
j rirjsi − 3kik

2
j rirjsj − 3kik

2
j risisj − 3kik

2
j r

2
jsi

− 3kik
2
j rjsisj − k3

j r
2
i sj + k3

j rirjsi − k3
j risisj + k3

j rjs
2
i + 3kirirjsj + 3kiris

2
j

− 3kir
2
jsi − 3kirjsisj − 3kjr

2
i sj + 3kjrirjsi − 3kjrisisj + 3kjrjs

2
i ,

(3.20)

Hence 2-kink soliton solution can be determined by using Eq. (3.17) with dependent

variable transformation ϕ = 2(ln τ)x.

32



(a) (b) (c)

Figure 3.2: (a) 2-kink soliton solution at y = 5, z = 1 with k1 = −0.4, r1 = s2 = 0.7,
s1 = k2 = 0.5 and r2 = 0.5 (b) contour plot (c) 2D representation.

3.2.3 3-kink soliton Solution

To retrieve 3-kink soliton, let

τ = 1 + τ1 + τ2 + τ3, (3.21)

where τ1 = eΘ1+eΘ2+eΘ3 , τ2 = d12e
Θ1+Θ2+d13e

Θ1+Θ3+d23e
Θ2+Θ3 and τ3 = b123e

Θ1+Θ2+Θ3

. With dispersion variables Θ1 = k1x + r1y + s1z +
k1(k21r1−3s1)

r1+s1
t, Θ2 = k2x + r2y + s2z +

k2(k22r2−3s2)

r2+s2
t and Θ3 = k3x+ r3y + s3z +

k3(k23r3−3s3)

r3+s3
t ,

where b123 in τ3 is given as

b123 = d12 · d13 · d23. (3.22)

Therefore Eq. (3.21) takes the form

τ = 1 + eΘ1 + eΘ2 + eΘ3 + d12e
Θ1+Θ2 + d13e

Θ1+Θ3

+ d23e
Θ2+Θ3 + b123e

Θ1+Θ2+Θ3 .
(3.23)

To find 3-kink soliton solution, substitute Eq. (3.23) into the formula ϕ = 2(ln τ)x. In

the same manners, we can find kink-soliton solutions for N ≥ 4.
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(a) (b) (c)

Figure 3.3: (a) 3-kink soliton solution at y = 3, z = 41 with k1 = −0.2, k2 = 0.1, r1 =
s3 = 0.5, s1 = r2 = r3 = 0.5 and s2 = k3 = 0.5 (b) contour plot (c) 2D representation.

3.3 Lump Solutions

3.3.1 Lump solution consisting of two quadratic functions

Suppose τ to be a positive quadratic function of the subsequent form [44]

τ = τ 21 + τ 22 +m11, (3.24)

with

τ1 = m1x+m2y +m3z +m4t+m5, τ2 = m6x+m7y +m8z +m9t+m10, (3.25)

where mi, 1 ≤ i ≤ 11 are constants which are to be found.

By the aid of computing mathematical tool Maple we will obtain the values of constants

mi using (3.24) in bilinear equation (3.9), which are as follows

m2 = − 1

m2
4 +m2

9

(3m1m3m4+3m1m8m9+m3m
2
4+3m3m6m9+m3m

2
9−3m4m6m8), (3.26)

m7 =
1

m2
4 +m2

9

(3m1m3m9−3m1m4m8−3m3m4m6−m2
4m8−3m6m8m9−m8m

2
9), (3.27)

m11 =− 1

(m3m9 −m4m8)(m1m9 −m4m6)
(3m4

1m3m4 + 3m4
1m8m9 +m3

1m3m
2
4 +m3

1m3m
2
9

+ 6m2
1m3m4m

2
6 +m2

1m
2
4m6m8 + 6m2

1m
2
6m8m9 +m2

1m6m8m
2
9 +m1m3m

2
4m

2
6 +m1m3m

2
6m

2
9

+ 3m3m4m
4
6 +m2

4m
3
6m8 + 3m4

6m8m9 +m3
6m8m

2
9),

(3.28)
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The other constants are all free parameters satisfying the conditions, m3m9 −m4m8 ̸= 0,

m1m9 −m4m6 ̸= 0 and m2
4 +m2

9 ̸= 0, m2
3 +m2

8 ̸= 0, and m2
1 +m2

6 ̸= 0.

By substituting constants mi’s into (3.24), we get the required solution τ to the bilinear

equation (3.9). Using ϕ = 2(ln τ)x, the lump solution for Eq. (3.1) is given as follows:

ϕ =
4m1τ1 + 2m6τ2

τ
, (3.29)

where τ = τ 21 + τ 22 +m11,

τ1 = m1x−
3m1m3m4 + 3m1m8m9 +m3m

2
4 + 3m3m6m9 +m3m

2
9 − 3m4m6m8

m2
4 +m2

9

y+m3z+m4t+m5,

(3.30)

τ2 = m6x+
3m1m3m9 − 3m1m4m8 − 3m3m4m6 −m2

4m8 − 3m6m8m9 −m8m
2
9

m2
4 +m2

9

y+m8z+m9t+m10 .

(3.31)

(a) (b) (c)

Figure 3.4: 3D graphs of Lump solutions Eq. (3.29) with z = 1 and m1 = 0.5,m3 = m8 =
1.5,m4 = −1.5,m5 = m6 = m9 = m10 = 1 (a) t = −10 (b) t = 0 (c) t = 10.
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(a) (b) (c)

Figure 3.5: Contour graphs of Lump solutions Eq. (3.29) with z = 1 and m1 = 0.5,m3 =
m8 = 1.5,
m4 = −1.5,m5 = m6 = m9 = m10 = 1 (a) t = −10 (b) t = 0 (c) t = 10.

(a) (b) (c)

Figure 3.6: 2D graphs of Lump solutions Eq. (3.29) with z = 1, y = 0, m1 = 0.5,m3 =
m8 = 1.5,m4 = −1.5,m5 = m6 = m9 = m10 = 1 (a) t = −10 (b) t = 0 (c) t = 10.
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Figure 3.7: Combined 2D representation of lump solutions at t = −10, t = 0 and t = −10.

With arbitrary selection of parameters lump solution (3.29) is shown in figure 3.4. Ap-

plying multi-variable calculus, minimum point (extreme value point) of lump is obtained

at
(
−82

11
,−169

44

)
with the amplitude − 1

93750000
. It travels along the y = −169

44
line with a

velocity of −82
11
. In simpler terms, this type of motion is referred to as uniform linear

motion in the field of physics.

3.3.2 Lump solution consisting of three quadratic functions

To find lump solution consisting of three quadratic functions we suppose τ of the following

form [68]

τ = τ 21 + τ 22 + τ 23 +m16, (3.32)

with

τ1 = m1x+m2y +m3z +m4t+m5,

τ2 = m6x+m7y +m8z +m9t+m10,

τ3 = m11x+m12y +m13z +m14t+m15.

(3.33)
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where mj, 1 ≤ j ≤ 16 are constants which are to be found.

By substituting Eq. (3.32) into the Eq. (3.9) and collecting coefficients of the all powers

of variables to 0, we get system of equations and solving it with the help of computing

tool Maple we obtained following relations of constants mj’s as

m2 =
m8(3m

2
6 +m9m6 + 3m2

11)

m9m6

,

m3 = −m8(3m
2
1 + 3m2

6 +m9m6 + 3m2
11)

m9m6

,

m4 = −3m2
1 + 3m2

6 +m9m6 + 3m2
11

m1

,

m7 = −m8(m9 + 3m6)

m9

,

m12 = −3m8m11

m9

,

m13 = m14 = 0.

(3.34)

where m1,m5,m6,m8,m9,m10,m11,m15 and m16 are all free parameters. The auxiliary

function τ is analytical provided that m9m6 ̸= 0,m9 ̸= 0, m1 ̸= 0 and m16 > 0.

By substituting Eq. (3.32) along with Eq. (3.33) and Eq. (3.34) into the Eq. (3.2)

we will get lump solution consisting of three quadratic functions to Eq. (3.1) as follows

ϕ(x, y, z, t) =
4(m1τ1 +m6τ2 +m11τ3)

τ 21 + τ 22 + τ 23 +m16

, (3.35)

with

τ1 = m1x+
m8(3m

2
6 +m9m6 + 3m2

11)

m9m6

y − m8(3m
2
1 + 3m2

6 +m9m6 + 3m2
11)

m9m6

z

− 3m2
1 + 3m2

6 +m9m6 + 3m2
11

m1

t+m5,

τ2 = m6x− m8(m9 + 3m6)

m9

y +m8z +m9t+m10,

τ3 = m11x− 3m8m11

m9

y +m15.

(3.36)
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(a) (b) (c)

Figure 3.8: 3D graphs of Lump solutions Eq. (3.35) with z = 1 and m1 = 1.5,m5 =
−4,m6 = 0.5,m9 = −0.5,m8 = 0.1,m10 = 2,m11 = −0.8,m13 = m14 = 0,m15 = m16 = 1
(a) t = −10 (b) t = 0 (c) t = 10.

(a) (b) (c)

Figure 3.9: Contour graphs of Lump solutions Eq. (3.35) with z = 1 and m1 = 1.5,m5 =
−4,m6 = 0.5,m9 = −0.5,m8 = 0.1,m10 = 2,m11 = −0.8,m13 = m14 = 0,m15 = m16 = 1
(a) t = −10 (b) t = 0 (c) t = 10.
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(a) (b) (c)

Figure 3.10: 2D graphs of Lump solutions Eq. (3.35) with z = 1, y = 1 andm1 = 1.5,m5 =
−4,m6 = 0.5,m9 = −0.5,m8 = 0.1,m10 = 2,m11 = −0.8,m13 = m14 = 0,m15 = m16 = 1
(a) t = −10 (b) t = 0 (c) t = 10.

Figure 3.11: Combined 2D representation of lump solutions at t = −10, t = 0 and t = −10.

In figure 3.8, lump solution (3.35) is shown with the arbitrary selection of parameters.

Using multi-variable calculus, minimum point (extreme value point) of lump is obtained

at
(
−317123

10461
,−302734

5687

)
with the amplitude − 8543

132843
. It travels along the y =−302734

5687
line with

a velocity of −317123
10461

. In simpler terms, this type of motion is referred to as uniform linear

motion in the field of physics.
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As compared to the lump obtained in previous section 5.1, this lump solution also has

uniform linear motion, so both lump solutions have similar motion but extreme points

and amplitudes are different in both cases.

3.4 Lump interaction solutions with Periodic and kink

waves

3.4.1 Lump interaction with periodic waves

To examine interaction among a lump and periodic waves we consider auxiliary function

τ of the following form

τ = τ 21 + τ 22 + cos(l) +m16, (3.37)

with

τ1 = m1x+m2y +m3z +m4t+m5,

τ2 = m6x+m7y +m8z +m9t+m10,

l = m11x+m12y +m13z +m14t+m15.

(3.38)

where mj, 1 ≤ j ≤ 16 are constants which are to be found.

By putting Eq. (3.37) into Eq. (3.9) and equating coefficients of the all powers of

variables to 0, we get system of equation which is solved with help of Maple and obtained

following relations of constants as

m2 =
m9m8(m4 + 3m1)

m2
4

,

m3 = −m9m8

m4

,

m6 =
m9m1

m4

,

m7 = −m8(m4 + 3m1)

m4

,

m12 = −m13(m4 + 3m1)

m4

,

m11 = m14 = 0.

(3.39)

where m1,m4,m5,m8,m9,m10,m13,m15 and m16 are all free parameters. The auxiliary

function τ is analytical provided that m4 ̸= 0 and m16 > 0.
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By substituting Eq. (3.37) along with Eq. (3.38) and Eq. (3.38) into the Eq. (3.2)

we will get interaction solution between a lump and periodic waves to Eq. (3.1) as follows

ϕ(x, y, z, t) =
4m1(m4τ1 +m9τ2)

m4(τ 21 + τ 22 + cos(l) +m16)
. (3.40)

where

τ1 = m1x+
m9m8(m4 + 3m1)

m2
4

y − m9m8

m4

z +m4t+m5,

τ2 =
m9m1

m4

x− m8(m4 + 3m1)

m4

+m8z +m9t+m10,

l = −m13(m4 + 3m1)

m4

y +m13z +m15.

(3.41)

In Figure 3.12, profile of interaction between a lump and periodic waves presented with

z = 0.5, t = 10 and m1 = 1.5,m4 = m5 = −4,m6 = 0.5,m8 = 0.1,m9 = −0.5,m13 =

−1,m11 = m14 = 0,m10 = m15 = m16 = 1.

42



(a) (b)

(c) (d)

Figure 3.12: Visuals of Interaction among a lump and periodic waves in Eq. (47) with
z = 0.5, t = 10 (a) Three-dimensional representation (b) contour plot (c) density plot,
and (d) 2D profile with y = 1.

3.4.2 Lump interaction with kink waves

To find interaction solution between a lump and kink waves we suppose auxiliary function

τ of the following form

τ = τ 21 + τ 22 +m15e
l +m16, (3.42)
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with

τ1 = m1x+m2y +m3z +m4t+m5,

τ2 = m6x+m7y +m8z +m9t+m10,

l = m11x+m12y +m13z +m14t.

(3.43)

where mj, 1 ≤ j ≤ 16 are constants which are to be found.

By substituting Eq. (3.42) into the Eq. (3.9) and collecting coefficients of the all powers

of variables to 0, we get system of equations and solving it with the help of computing

tool Maple we obtained following relations of constants mj’s as

m2 =
m1m8m6

m2
1 +m2

6

,

m7 = − m8m
2
1

m2
1 +m2

6

,

m9 = −3(m2
1 +m2

6)

m6

,

m13 =
m8m11(m

2
11 + 3)m6

3(m2
1 +m2

6)
,

m14 = −3m11,

m3 = m4 = m12 = 0.

(3.44)

where m1,m5,m6,m8,m10,m11,m15 and m16 are free parameters. The auxiliary function

τ is analytical provided that m1 ̸= 0,m6 ̸= 0 and m16 > 0.

By substituting Eq. (3.42) along with Eq. (3.43) and Eq. (3.44) into Eq. (3.2) we get

lump interaction solution with kink waves for Eq. (3.1) as follows

ϕ(x, y, z, t) =
2(2m1τ1 + 2m6τ2 +m11m15e

l)

τ 21 + τ 22 +m15el + 1
. (3.45)

where

τ1 = m1x+
m1m8m6

m2
1 +m2

6

y +m5,

τ2 = m6x− m8m
2
1

m2
1 +m2

6

y +m8z −
3(m2

1 +m2
6)

m6

t+m10,

l = (x− 3t)m11 +
m8m11(m

2
11 + 3)m6

3(m2
1 +m2

6)
z.

(3.46)
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In Figure 3.13, profile of interaction between a lump and kink waves presented with

z = 1, t = 0 and m1 = 0.5,m3 = m4 = m12 = 0,m5 = m6 = 1,m8 = −0.5,m10 = 5,m14 =

−3m11,m11 = m15 = m16 = 1.

(a) (b)

(c) (d)

Figure 3.13: Visuals of Interaction between a lump and kink waves in Eq. (52) with
z = 1, t = 0 (a) Three-dimensional representation (b) contour plot (c) density plot, and
(d) 2D profile with y = 1.
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Chapter 4

Breathers wave, Solitary wave,
Lump and lump Interaction
solutions for generalized
(2+1)-dimensional Soliton equation

In this chapter we will focus on generalized (2+1)-dimensional soliton equation [66, 67]

which is given as

ϕt + α(ϕxxx + 6ϕϕx) + β∂−1
x ϕyy + γ(ϕxxy + 3ϕϕy + 3ϕx∂

−1
x ϕy) = 0, (4.1)

where ϕ = ϕ(x, y, t) and ∂−1
x is the anti-derivative with respect to x. In [66, 67] C. Li et al.

investigated the integrability of Eq. (4.1) and Wang D. et al. by using Bell polynomials

obtained Hirota Bilinear form of Eq. (4.1) and explored soliton solutions. Under the

dependent variable transformation

ϕ = 2(ln τ)xx, (4.2)

where ϕ = ϕ(x, y, t), the Hirota’s bilinear form of Eq. (4.1) [67] is given as follows(
DtDx + αD4

x + βD2
y + γD3

xDy

)
τ · τ = 0. (4.3)

where τ = τ(x, y, t) and Dx, Dy and Dt are Hirota bilinear operators, and the Hirota

bilinear operator is defined as

Dn1
w1

· · ·Dnl
wl
(τ ·ξ) =

(
∂w1 − ∂w′

1

)n1 · · ·
(
∂wl

− ∂w′
l

)nlτ (w1, · · · , wl) ξ (w
′
1, · · · , w′

l)
∣∣
w′

1=w1,··· ,w′
l=wl

,

(4.4)
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in which n1 + n2 + ...+ nl ≥ 0. By using Eq. (4.4), Eq. (4.3) can be written as

ττxt−τxτt+α(ττxxxx−4τxxxτx+3τ 2xx)+β(ττyy−τ 2y )+γ(ττxxxy−τxxxτy−3τxxyτx+3τxxτxy) = 0.

(4.5)

We will utilize Eq. (4.5) to find lump and its interaction solutions also breathers and

solitary waves solutions.

4.1 Lump Solution to the generalized (2+1)-dimensional

Soliton Equation

To search for lump solution we take τ as of the following form with two quadratic functions

τ = d21 + d22 + q9,

d1 = q1x+ q2y + q3t+ q4,

d2 = q5x+ q6y + q7t+ q8, ,

(4.6)

where qj(1 ≤ j ≤ 9) are all constant parameters yet to be known.

By inserting Eq. (4.6) into Eq. (4.5) and equating the coefficients of each power of

variables to zero, a system of equations is attained and with the help of computing math-

ematical tool Maple we derived following relations of parameters :

Case 1

q3 = −β(q1q
2
2 − q1q

2
6 + 2q2q5q6)

q21 + q25
, q7 = −β(2q1q2q6 − q22q5 + q5q

2
6)

q21 + q25
,

q9 = −3 (αq61 + 3αq41q
2
5 + 3αq21q

4
5 + αq65 + γq51q2 + γq41q5q6 + 2γq31q2q

2
5 + 2γq21q

3
5q6 + γq1q2q

4
5 + γq55q6)

β(q1q6 − q2q5)2
,

(4.7)

where q1, q2, q4, q5, q6 and q8 are free parameters with β ̸= 0, q21+q25 ̸= 0, and q1q6−q2q5 ̸= 0.

On substituting Eq. (4.7) into Eq. (4.6) and then into Eq. (4.2), we will get lump solution

to Eq. (4.1) as

ϕ =
2 (2q21 + 2q25)

τ
− 2 (2q1d1 + 2q5d2)

2

τ 2
, (4.8)
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where

τ = d21 + d22 + q9,

d1 = q1x+ q2y −
q1q

2
2 − q1q

2
6 + 2q2q5q6

q21 + q25
βt+ q4,

d2 = q5x+ q6y −
2q1q2q6 − q22q5 + q5q

2
6

q21 + q25
βt+ q8.

Lump solution in Eq. (4.8) is shown in Fig. 1 with suitable choice of parameters.

It is apparent from the Fig. 4.1, the solution comprising the lump exhibits a promi-

nent peak and two minor depressions that gradually fade away in all spatial dimensions.

To analyze the properties of Eq. (4.8), one can set t = 0 and treat ϕ as a function of x

and y, let
∂ϕ(x, y)

∂x
= 0,

∂ϕ(x, y)

∂y
= 0, (4.9)

we can obtain three extreme points to ϕ as

(x1, y1) =

(
− βtq1q

2
2q6 + βtq1q

3
6 − βtq32q5 − βtq2q5q

2
6 − q21q2q8 + q21q4q6 − q2q

2
5q8 + q4q

2
5q6

(q21 + q25)(q1q6 − q2q5)
,

2βtq21q2q6 − 2βtq1q
2
2q5 + 2βtq1q5q

2
6 − 2βtq2q

2
5q6 − q31q8 + q21q4q5 − q1q

2
5q8 + q4q

3
5

q31q6 − q21q2q5 + q1q25q6 − q2q35

)
,

(x2, y2) =

(
−p

β(q1q6 − q2q5)(q21 + q25)
,

2βtq21q2q6 − 2βtq1q
2
2q5 + 2βtq1q5q

2
6 − 2βtq2q

2
5q6 − q31q8 + q21q4q5 − q1q

2
5q8 + q4q

3
5

q31q6 − q21q2q5 + q1q25q6 − q2q35

)
,

(x3, y3) =

(
q

β(q1q6 − q2q5)(q21 + q25)
,

2βtq21q2q6 − 2βtq1q
2
2q5 + 2βtq1q5q

2
6 − 2βtq2q

2
5q6 − q31q8 + q21q4q5 − q1q

2
5q8 + q4q

3
5

q31q6 − q21q2q5 + q1q25q6 − q2q35

)
.

(4.10)
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where

p =
(
β2tq1q

2
2q6 + β2tq1q

3
6 − β2tq32q5 − β2tq2q5q

2
6 − βq21q2q8 + βq21q4q6 − βq2q

2
5q8 + βq4q

2
5q6
)

+ 3
(
− αβq81 − 4αβq61q

2
5 − 6αβq41q

4
5 − 4αβq21q

6
5 − αβq85 − βγq71q2 − βγq61q5q6 − 3βγq51q2q

2
5

− 3βγq41q
3
5q6 − 3βγq31q2q

4
5 − 3βγq21q

5
5q6 − βγq1q2q

6
5 − βγq75q6

) 1
2
,

q =
(
−β2tq1q

2
2q6 − β2tq1q

3
6 + β2tq32q5 + β2tq2q5q

2
6 + βq21q2q8 − βq21q4q6 + βq2q

2
5q8 − βq4q

2
5q6
)

+ 3
(
− αβq81 − 4αβq61q

2
5 − 6αβq41q

4
5 − 4αβq21q

6
5 − αβq85 − βγq71q2 − βγq61q5q6 − 3βγq51q2q

2
5

− 3βγq41q
3
5q6 − 3βγq31q2q

4
5 − 3βγq21q

5
5q6 − βγq1q2q

6
5 − βγq75q6

) 1
2
.

Our next step involves determining the Hessian matrix and calculating the value of ϕxx

at the extreme point (x1, y1).

∆ =

∣∣∣∣∣∂
2ϕ(x,y)
∂x2

∂2ϕ(x,y)
∂x∂y

∂2ϕ(x,y)
∂x∂y

∂2ϕ(x,y)
∂y2

∣∣∣∣∣
(x1,y1)

=
64β4(q1q6 − q2q5)

8(3q21q
2
2 + q21q

2
6 + 4q1q2q5q6 + q22q

2
5 + 3q25q

2
6)(q

2
1 − q1q2 + q25 − q5q6)

27(q21 + q25)
7(αq21 + αq25 + γq1q2 + γq5q6)4

=
22346

49537
> 0,

ϕxx(x1, y1) = − 8β2(q1q6 − q2q5)
4

3(q21 + q25)
2(αq21 + αq25 + γq1q2 + γq5q6)2

= −17764

62979
< 0,

(4.11)

also the Hessian matrix and ϕxx at (x2, y2), (x3, y3) is

∆ =

∣∣∣∣∣∂
2ϕ(x,y)
∂x2

∂2ϕ(x,y)
∂x∂y

∂2ϕ(x,y)
∂x∂y

∂2ϕ(x,y)
∂y2

∣∣∣∣∣
(xr,yr)

=
(q21 − q1q2 + q25 − q5q6)(3q

2
1q

2
2 + 4q21q

2
6 − 2q1q2q5q6 + 4q22q

2
5 + 3q25q

2
6)(q1q6 − q2q5)

8β4

432(q21 + q25)
7(αq21 + αq25 + γq1q2 + γq5q6)4

=
538

516241
> 0,

ϕxx(xr, yr) =
(q1q6 − q2q5)

4β2

12(q21 + q25)
2(γq1q2 + γq5q6 + αq21 + αq25)

2
=

3228

366217
> 0, r = 2, 3.

(4.12)

Therefore, at the extreme point (x1, y1), the maximum value of the lump solution is
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achieved. This means that the peak height is

H = ϕmax = ϕ

(
10

19
,
−9

10

)
=

13732

31667
.

Furthermore, at the coordinates (x2, y2) and (x3, y3), the lump solution exhibits its mini-

mum value which is basically is the depth of troughs given as respectively

D = ϕmin = ϕ

(
80306

16963
,
−9

10

)
= − 3610

77179
,

D = ϕmin = ϕ

(
158825

27446
,
−9

10

)
= − 4318

79661
.

From Fig. 4.1, it can be observed that the lump solution exhibits a prominent maximum

along with two points of lowest magnitude. This observation provides valuable insights

into the role of wave phenomena exhibiting nonlinearity in various domains, including

physics and oceanography.

Case 2

q3 = −βq1α
2

γ2
, q1 = q1, q2 = −q1α

γ
, q4 = q4,

q7 =
q6αβ

γ
, q5 = −γq6

α
, q6 = q6, q8 = q8, q9 = q9,

(4.13)

where q1, q4, q6, q8 and q9 are free parameters and γ ̸= 0, α ̸= 0. On substituting Eq. (4.13)

into (4.6) and then into Eq. (4.2), we will get lump solution to Eq. (4.1) as

ϕ =
2
(
2q21 +

2γ2q26
α2

)
τ

−
2
(
2d1q1 − 2d2

γq6
α

)2
τ 2

,
(4.14)

where

τ = d21 + d22 + q9,

d1 = −βq1α
2

γ2
t+ q1x− q1

α

γ
y + q4,

d2 =
q6αβ

γ
t− γq6

α
x+ q6y + q8.

Lump solution in Eq. (4.14) is shown in Fig. 4.2 with suitable choice of parameters.

In that case we can also obtain three extreme points, one represent a tall peak and two

represent shallow troughs.
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(a) (b)

(c) (d)

Figure 4.1: Visuals of lump solution Eq. (4.14) at q1 = −0.1, q2 = 2, q4 = 1, q5 = −1, q6 =
1, q8 = 1, q9 = 1, α = 0.1, β = 0.1, γ = 1 and t = 0 (a) three-dimensional view (b) contour
map (c) 2D profile at y = −5, y = 0, y = 5, and (d) 2D profile at x = −5, x = 0, x = 5.
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(a) (b) (c)

Figure 4.2: Graphical representation of lump solution Eq. (4.14) at q1 = 0.6, q4 = 0, q6 =
0.1, q8 = 0, q9 = 1, α = 1.5, β = 1, γ = 0.02, and t = 0. (a) Three-dimensional graph
(b) contour map, and (c) 2D profile with y = 0.

4.2 Interaction between lump and stripe solutions

4.2.1 Lump and 1-stripe

To find interaction solution among a lump and 1-stripe we consider a function τ with the

following form

τ = d21 + d22 + el + q9,

d1 = q1x+ q2y + q3t+ q4,

d2 = q5x+ q6y + q7t+ q8,

l = b1x+ b2y + b3t+ b4,

(4.15)

where qj(1 ≤ j ≤ 9) and bk(1 ≤ k ≤ 4) are all constant parameters yet to be known.

By putting Eq. (4.15) into Eq. (4.5) and equating the coefficients of all powers of variables

to zero, a set of equations is attained and solving this system we obtain following relations
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of parameters :

q1 = q1, q2 = −αq1
γ

, q3 = −q1α
2β

γ2
, q4 = q4, q5 = q5, q6 = −αq5

γ
,

q7 = −βq5α
2

γ2
, q8 = q8, q9 = q9, b1 = b1, b2 = −b1α

γ
, b3 = −βb1α

2

γ2
, b4 = b4,

(4.16)

where q1, q4, q5, q8, q9, b1 and b4 are all free parameters and γ ̸= 0. By inserting Eq. (4.16)

into Eq. (4.15) and then into Eq. (4.2) we get lump interaction solution with 1-stripe

solution to the Eq. (4.1) as

ϕ =
2
(
2q21 + 2q25 + b21e

l
)

τ
−

2
(
2d1q1 + 2d2q5 + b1e

l
)2

τ 2
, (4.17)

where

d1 = q1x− αq1
γ

y − q1α
2β

γ2
t+ q4,

d2 = q5x− αq5
γ

y − βq5α
2

γ2
t+ q8,

l = b1x− αb1
γ

y − βb1α
2

γ2
t+ b4.

By choosing the values of parameters and substituting all these values in Eq. (4.17) we

get lump interaction solution with 1-stripe shown in Fig. 4.3.

4.2.2 Lump and 2-stripe

For finding lump interaction with 2-stripe we consider function τ of the following structure

τ = d21 + d22 + el + ek + q9, (4.18)

with

d1 = q1x+ q2y + q3t+ q4,

d2 = q5x+ q6y + q7t+ q8,

l = b1x+ b2y + b3t+ b4,

k = b5x+ b6y + b7t+ b8,

where qj(1 ≤ j ≤ 9) and bk(1 ≤ k ≤ 8) are all constant parameters yet to be known.
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(a) (b) (c)

Figure 4.3: Graphical representation of lump interaction solution with 1-stripe Eq. (4.17)
at q1 = 0.01, q9 = 1, q5 = 1, q8 = 1, q4 = 1, b1 = 1, b4 = 1, α = 0.1, β = 1, γ = 0.01 and
t = 0. (a) Three-dimensional representation (b) contour map, and (c) 2D profile with
y = 0.

By inserting Eq. (4.18) into Eq. (4.5) and comparing the coefficients of the variables

raised to different powers, a set of equations is obtained. Through the solving of this set

of equations, we are able to deduce the following parameter relationships

q3 = −q1α
2β

γ2
, q2 = −αq1

γ
, q7 = −βq5α

2

γ2
, q6 = −αq5

γ
,

b2 = −αb1
γ

, b3 = −βα2b1
γ2

, b6 = −αb5
γ

, b7 = −βα2b5
γ2

.

(4.19)

where q1, q4, q5, q8, q9, b1 and b3 are all free parameters and γ ̸= 0. By putting Eq. (4.19)

into Eq. (4.18) and then into Eq. (4.2) we get lump and interaction wih 2-stripe solution

to the Eq. (4.1) as

ϕ =
2(2q21 + 2q25 + b21e

l + b25e
k)

τ
− 2(2d1q1 + 2d2q5 + b1e

l + b5e
k)2

τ 2
, (4.20)
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where

d1 = q1x− αq1
γ

y − q1α
2β

γ2
t+ q4,

d1 = q5x− αq5
γ

y − βq5α
2

γ2
t+ q8,

l = b1x− αb1
γ

y − βb1α
2

γ2
t+ b4,

k = b5x− αb5
γ

y − βb5α
2

γ2
t+ b8.

By choosing the values of parameters involved in Eq. (4.20) we get lump interaction with

2-stripe solution which is shown in Fig. 4.4.

(a) (b) (c)

Figure 4.4: Graphical representation of lump interaction solution with 2-stripe Eq. (4.20)
at q1 = 0.05, q4 = 1, q5 = 0.1, q8 = 1, q9 = 1, b1 = 0.01, b4 = 1, b5 = 0.08, b8 = 0, α = 1, β =
1, γ = 0.5 and t = 0. (a) Three-dimensional graph (b) contour map, and (c) 2D profile
with y = 0.
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4.3 Interaction between lump and Periodic waves

4.3.1 Lump interaction with Periodic waves

The test function for examining the interaction phenomenon among lump and periodic

waves is given as

τ = d21 + d22 + cos l + q9, (4.21)

where

d1 = q1x+ q2y + q3t+ q4,

d2 = q5x+ q6y + q7t+ q8,

l = b1x+ b2y + b3t+ b4,

where qj(1 ≤ j ≤ 9) and bk(1 ≤ k ≤ 4) are all constant parameters yet to be known.

By inserting Eq. (4.21) into Eq. (4.5) and comparing the coefficients of the variables

raised to different powers, a system of equations is obtained. On solving, we are able to

deduce the following parameter relationships

q1 = q1, q2 = −αq1
γ

, q3 = −q1α
2β

γ2
, q4 = q4, q5 = q5, q6 = −αq5

γ
,

q7 = −βq5α
2

γ2
, q8 = q8, q9 = q9, b1 = b1, b2 = −b1α

γ
, b3 = −βb1α

2

γ2
, b4 = b4,

(4.22)

where q1, q4, q5, q8, q9, b1 and b4 are all free parameters and γ ̸= 0. By inserting Eq. (4.22)

into Eq. (4.21) and then into Eq. (4.2) we get lump interaction solution with periodic

waves to the Eq. (4.1) as

ϕ =
2 (2q21 + 2q25 − b21 cos(l))

τ
− 2 (2d1q1 + 2d2q5 + b1 sin(l))

2

τ 2
, (4.23)

where

d1 = q1x− αq1
γ

y − q1α
2β

γ2
t+ q4,

d1 = q5x− αq5
γ

y − βq5α
2

γ2
t+ q8,

l = b1x− αb1
γ

y − βb1α
2

γ2
t+ b4.

By selecting the values of parameters and substituting in Eq. (4.23) we get lump inter-

action solution with periodic waves shown in Fig. 4.5.
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(a) (b) (c)

Figure 4.5: Graphical visualization of lump interaction solution with periodic wave Eq.
(4.23) at q1 = 0.01, q4 = 1, q5 = 1, q8 = 1, q9 = 1, b1 = 1, b4 = 1, α = 0.1, β = 1, γ = 0.01
and t = 0. (a) Three-dimensional view (b) contour map, and (c) 2D profile with y = 0.

4.3.2 Interaction between a lump, periodic wave and 1-stripe

To investigate the interaction phenomenon between a lump, periodic waves and 1-stripe

we take test function of the following form

τ = d21 + d22 + cos l + ek + q9, (4.24)

with

d1 = q1x+ q2y + q3t+ q4,

d2 = q5x+ q6y + q7t+ q8,

l = b1x+ b2y + b3t+ b4,

k = b5x+ b6y + b7t+ b8,

where qj(1 ≤ j ≤ 9) and bk(1 ≤ k ≤ 8) are all constant parameters yet to be known.

By inserting Eq. (4.24) into Eq. (4.5) and comparing the coefficients of the variables

raised to different powers, a system of equations is obtained. On solving, we are able to
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deduce the following parameter relationships

q3 = −q1α
2β

γ2
, q2 = −αq1

γ
, q7 = −βq5α

2

γ2
, q6 = −αq5

γ
,

b2 = −αb1
γ

, b3 = −βα2b1
γ2

, b6 = −αb5
γ

, b7 = −βα2b5
γ2

.

(4.25)

where q1, q4, q5, q8, q9, b1 and b3 are all free parameters and γ ̸= 0. By inserting Eq. (4.25)

into Eq. (4.24) and then into Eq. (4.2) we get lump and interaction wih 2-stripe solution

to the Eq. (4.1) as

ϕ =
2
(
2q21 + 2q25 − b21 cos(l) + b25e

k
)

τ
−

2
(
2d1q1 + 2d2q5 + b1 sin(l) + b5e

k
)2

τ 2
, (4.26)

where

d1 = q1x− αq1
γ

y − q1α
2β

γ2
t+ q4,

d1 = q5x− αq5
γ

y − βq5α
2

γ2
t+ q8,

l = b1x− αb1
γ

y − βb1α
2

γ2
t+ b4,

k = b5x− αb5
γ

y − βb5α
2

γ2
t+ b8.

By choosing the values of parameters we obtain the interaction phenomenon between

lump, periodic waves and 1-stripe solution which is shown in Fig. 4.6.

4.4 Breather wave solution

Within this part, we examine breather solution to Eq. (4.1) by considering auxiliary

function to Eq. (4.5) of the following form

τ = e−k1l + c1e
k1l + c2 cos(k2m), (4.27)

with

l = q1x+ q2y + q3t+ q4,

m = b1x+ b2y + b3t+ b4,

where c1, c2, k1, k2 and qi, bi(1 ≤ i ≤ 4) are constant parameters which are to be deter-

mined.
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(a) (b) (c)

Figure 4.6: Visuals of lump interaction solution with stripe and periodic wave Eq. (4.26)
at q1 = 0.01, q4 = 1, q5 = 0.1, q8 = 1, q9 = 1, b1 = 0.01, b4 = 1, b5 = 0.05, b8 = 1, α =
1, β = 1, γ = 0.1 and t = 0. (a) Three-dimensional view (b) contour map, and (c) 2D
profile at y = 0.

By putting Eq. (4.27) into Eq. (4.5) and equating the coefficients of all powers of the

variables by setting equal to zero, an algebraic system of equations is obtained and then

by solving the system following relationships of parameters are derived

q3 = −βb2k2α

k1γ
, q1 =

γb2k2
αk1

, q2 = −b2k2
k1

, q4 = q4, b1 = −γb2
α

, b4 = b4,

b2 = b2, b3 =
βb2α

γ
, b5 = b5, c1 = c1, c2 = c2, k1 = k1, k2 = k2,

(4.28)

where q4, b4, b2, b5, c1, c2, k1 and k2 are all free parameters with k1 ̸= 0, α ̸= 0, γ ̸= 0. By

inserting Eq. (4.28) into Eq. (4.27) and then into Eq. (4.2) we get breather wave solution

to the Eq. (4.1) of the followig form

ϕ =
2(γ2b22k

2
2e

−k1l + c1γ
2b22k

2
2e

k1l − c2γ
2b22k

2
2 cos(k2m))

α2τ

−2(−γb2k2e−k1l + c1γb2k2ek1l + c2γb2k2 sin(k2m))2

α2τ 2
,

(4.29)
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where

l =
γb2k2
αk1

x− b2k2
k1

y − b2k2αβ

k1γ
t+ q4,

m = −γb2
α

x+ b2y +
b2αβ

γ
t+ b4,

By choosing the values of parameters and substituting into Eq. (4.29) we obtain breather

waves solution which is can be seen in Fig. 4.7.

(a) (b) (c)

Figure 4.7: Graphical representation of breather wave solution Eq. (4.29) at k1 = 1, b2 =
0.5, c1 = 1, c2 = 1, k2 = 1, q4 = 0, b4 = 1, α = 0.1, β = 1, γ = 0.5 and t = 0. (a)
three-dimensional view (b) contour map, and (c) 2D profile with y = −5, y = 0, y = 5.

4.5 Solitary wave solution

For finding solitary wave solution we take test function as

τ = q4e
l + q8 tan(m) + q12 tanh(n), (4.30)

where

l = q1x+ q2y + q3t,

m = q5x+ q6y + q7t,

n = q9x+ q10y + q11t,
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where qi(1 ≤ i ≤ 12) are constant parameters which are to be determined.

By putting Eq. (4.30) into Eq. (4.5) and collecting the coefficients of all powers of

the variables by setting equal to zero, an algebraic system of equations is obtained and

then by solving the system following relations of parameters are derived

q3 = −q1α
2β

γ2
, q1 = q1, q2 = −αq1

γ
, q4 = q4, q7 = −βα2q5

γ2
, q5 = q5,

q6 = −αq5
γ

, q8 = q8, q9 = q9, q11 = −βα2q9
γ2

, q10 = −αq9
γ

, q12 = q12,

(4.31)

where q1, q4, q5, q8, q9 and k12 are all free parameters with γ ̸= 0. By inserting Eq. (4.31)

into Eq. (4.30) and then into Eq. (4.2) we get solitary wave solution to the Eq. (4.1) of

the followig form

ϕ =

2

(
q4q

2
1e

l + 2q8q
2
5 tan(m)(1− tan(m)2)− 2q12q

2
9 tanh(n)(1 + tanh(n)2)

)
τ

−
2

(
q4q1e

l + q8q5(1− tan(m)2) + q12q9(1 + tanh(n)2)

)2

τ 2
,

(4.32)

where

l = q1x− αq1
γ

y − q1α
2β

γ2
t,

m = q5x− αq5
γ

y − q5α
2β

γ2
t,

n = q9x− αq9
γ

y − q9α
2β

γ2
t.

By letting the values of parameters and substituting in Eq. (4.32) we get solitary waves

solution shown in Fig. 4.8.
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(a) (b) (c)

Figure 4.8: Graphical representation of solitary wave solution Eq. (4.32) at q1 =
0.05, q4 = 1, q5 = 0.1, q8 = 1, q9 = 1, b1 = 0.01, b4 = 1, b5 = 0.08, b8 = 0, q12 =
1, α = 1, β = 1, γ = 0.4 t = 0. (a) three-dimensional view (b) contour map, and (c) 2D
profile with y = −5, y = 0, y = 5.
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Chapter 5

Summary and Conclusion

In this thesis, we used Hirota’s Bilinear method more precisely its simplified version

and direct approach based on Hirota bilinear form for finding soliton solution for two

NLLEs. The brief description of Hirota method is given in Chapter 2. In Chapter 3,

we first obtained Hirota bilinear form using dependent variable transformation. By using

this bilinear form we obtained kink solution such as 1-kink, 2-kink and 3-kink soliton

solution. Later on, a lump solution containing two quadratic functions and three quadratic

functions is obtained. To examine their motion, the extreme value points are found using

multivariable calculus, and their amplitude and velocity are observed, which demonstrate

uniform motion for both solutions differing in amplitude and minimum points. At the

end of chapter 3, we obtained lump interaction solutions with periodic and kink waves.

The obtained results are presented in 3D, 2D, and contour plots. In Chapter 4, firstly

we obtained lump solution which shows uniform motion under the random selection of

parameters then we obtained extreme value points which has given one maximum point(
10
19
, −9
10

)
shows peak height of lump which has value 13732

31667
. We also obtained two minimum

points
(
80306
16963

, −9
10

)
and

(
158825
27446

, −9
19

)
which shows trough values of lump having depth values

− 3610
77179

and − 4318
79661

respectively. Secondly, we obtianed lump interaction solutions with

1-stripe and 2-stripe. Finally, breathers waves and solitary waves solutions obtained. It

is seen obtained results depends on the parameters involved in finding solutions. 3D, 2D

and contour plots visualizes the motions of all obtained results.
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