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Abstract

The thesis mainly discusses the behavior of Carreau nanofluid flow under MHD in a

permeable medium and chemical reaction in the context of a stretching cylinder. More-

over, we discuss the influence of chemical reactions and variable thermal conductivity

on EMHD Carreau nanofluid slip flow over an inclined cylinder in a porous medium.

The problem is governed by a set of partial differential equations (PDEs). Similarity

variables are used to convert the PDEs into a system of ordinary differential equations

(ODEs). The ODEs are then solved using the bvp4c solver in MATLAB. The effects

of several factors, including the magnetic parameter (M), Biot number (Bi) and other

parameters that affect temperature, velocity, concentration, motile microorganism pro-

files, heat transfer coefficients (local Nusselt number and skin friction coefficient), local

Sherwood number and local density of motile microorganisms are investigated. Nu-

merical results are obtained in tabular form, which are later compared with existing

research in the literature. Graphical illustrations are provided to visualize the varying

effects of relevant parameters in the presence of non-Newtonian effects.
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Chapter 1

Introduction

This chapter includes some fundamental definitions and preliminaries. Boundary layer

flow and some associated dimensionless numbers used in this thesis are explained. The

mathematical formulation for steady flow caused by axial stretching of a cylinder is

discussed. The numerical procedure adopted in the problems is also explained.

1.1 Fluid

Solid, liquid and gas are three fundamental states in which a substance can exist.

Anything in liquid or gas state is fluid. The distinction between the fluid and solid lies

in the reaction to applied shear stress. A solid can resist the applied shear stress by

static deformation whereas the fluid will result in motion regardless of how small the

shear stress is. Fluid flow problems comes in a wide and different range. To make it

easier fluid flow problems are categorized based on common characteristics.

1.2 Newtonian Fluid

Regardless of the shear forces applied to the fluid layers, the viscosity of these fluids

remains constant. At constant temperature, the viscosity does not change. Examples
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are water, milk and so on. Newton’s law is represented by the equation:

τ = µ
du

dy
. (1.1)

1.3 Non-Newtonian Fluid

Non-Newtonian fluids are characterized as fluids in which the relationship between

shear stress and shear rate is not linear. For such reason, the viscosity of non-Newtonian

fluids changes with the deformation rate. The relation between shear stress and shear

rate in non-Newtonian fluids can be well-explained by the power law model:

τ = λ

(
du

dy

)n

, (1.2)

where, flow behavior index is denoted by n and λ designates consistency index. Broad

existence of non-Newtonian behavior in various industrial applications is obvious. Ex-

amples of non-Newtonian fluids are custard, toothpaste, honey, blood and paint etc.

Fluids that are shear-thinning or pseudoplastic have a decreasing apparent viscosity

with increasing shear rate. These fluids include blood, certain paints, polymer so-

lutions, and others. Shear thickening fluids or dilatants are those whose apparent

viscosity rises with shear rate. Mixture of water and cornstarch is an example of

shear-thickening fluid.

1.4 Compressible Flow

Fluid flow which exhibit density variations with respect to space variables or time are

treated as compressible. Flow of gases is generally regarded as compressible. Mathe-

matically it represents as:

Dρ

Dt
̸= 0. (1.3)
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1.5 Incompressible Flow

Incompressible flows are those flows where the fluid density remains consistent through-

out the flow field. Most liquids are treated as incompressible fluids. Mathematically it

represents as:

Dρ

Dt
= 0. (1.4)

1.6 Steady Flow

In steady flows, all the physical quantities (such as density, velocity, acceleration etc.)

do not vary with time. Mathematically, for any quantity ω, one has:

∂ω

∂t
= 0, (1.5)

for any physical quantity ω.

1.7 Unsteady Flow

In unsteady flow, at least any one of the fluid properties is time dependent.

∂ω

∂t
̸= 0, (1.6)

for any physical quantity ω.

1.8 One-Dimensional Flow

If the flow parameter such as velocity is a function of one space coordinate only then

the flow is called one-dimensional flow. Mathematically it is written as:

u = u(x), v = 0, w = 0. (1.7)

3



1.9 Two-Dimensional Flow

In two-dimensional flow, the velocity field is a function of two space coordinates. Math-

ematically it is written as:

u = u(x, y), v = (x, y), w = 0. (1.8)

1.10 Three-Dimensional Flow

A flow is said to be three-dimensional when the velocity is a function of three space

coordinates. Mathematically it is written as:

u = u(x, y), v = (x, y), w = (x, y). (1.9)

1.11 MHD Flow

Electric fields are induced in a conducting fluid when it moves in a magnetic field,

and electric currents flow. These currents are subjected to magnetic field forces, which

can significantly modify the flow. In turn, the magnetic field is modified by these

currents. We interact with the magnetic and fluid-dynamic phenomena in a complex

way, and flow should be examined by comparing field and fluid dynamic equations.

And a wide range of physical objects, from fluid metals to cosmic plasmas, cover

magnetohydrodynamic applications [25].

Combining Maxwell’s equation and motion equations yields a set of equations that

defines MHD flow.

ρ
DV⃗

Dt
= ∇⃗.τ +

(
J⃗ × B⃗

)
, (1.10)

where V⃗ is the velocity vector, magnetic field is expressed as B⃗ , and J⃗ is representing

current density.

4



Total magnetic field is

B = B +Bi , (1.11)

where Bi represents induced magnetic field.

From Ohm’s Law

J⃗ = σ
(
E⃗ + V⃗ × B⃗

)
, (1.12)

where E is electrical field and σ is electrical conductivity. Lorentz force is given by

V⃗ × B⃗ = B2
∗uî, (1.13)

J⃗ × B⃗ = −σB2
∗uî. (1.14)

Putting (1.14) into (1.10)

ρ
DV⃗

Dt
= ∇⃗.τ − σB2

∗uî. (1.15)

1.12 Carreau Fluid Model

In 1972, P. J. Carreau [1] suggested the Carreau fluid model. The Carreau fluid model

is an extension of the power-law fluid model, which assumes a power-law relationship

between shear stress and shear rate. The Carreau model introduces a more refined

formulation that considers the exponential decay of viscosity with increasing shear

rate, allowing it to better fit experimental data for various non-Newtonian fluids. This

model relates apparent viscosity with shear rate as defined below:

η = η∞ + (η0 − η∞)
[
1 + (λγ̇)2

]n−1
2 . (1.16)
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The Carreau fundamental model is a rheological approach that characterizes the vis-

cosity of many fluid flows, including polymer solutions, in a significant range of the

magnitude of deformation rate Bird et al. [2]. A study on the heat and flow behavior

of Carreau fluid in the annular space between two concentric cylinders was conducted

in Khellaf and Lauriat [4]. The Carreau fluid model is often employed in industries and

applications where non-Newtonian fluids are encountered, such as: polymer processing,

food, beverage industry, oil, gas, pharmaceuticals, cosmetics.

1.13 Boundary Layer

In 1904, Prandtl showed that it is possible to study viscous flows by dividing them into

two regions: a region that has a thin layer of flow nearby a solid wall, which is called

a boundary layer that does not neglect viscous forces and an outer region that can

ignore friction [26]. There are few assumptions considered for boundary layer. They

are explained for continuity equation and momentum equation for two dimensional

steady and incompressible flow. The velocity vector is defined as:

v⃗ = u(x, y)̂i+ v(x, y)ĵ . (1.17)

The continuity and momentum equations are:

ux + vy = 0, (1.18)

x− direction ρ (uux + vuy) = −Px + µ (uxx + uyy) , (1.19)

y − direction ρ (uvx + vvy) = −Py + µ (vxx + vyy) , (1.20)

the assumptions are:

u >> v
∂

∂y
>>

∂

∂x
, (1.21)
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the resulting equations are:

ρ (uux + vuy) = −Px + µ uyy ,

− Py = 0. (1.22)

1.13.1 Momentum Boundary Layer

To comply with the no slip condition, the fluid particles at the solid surface exhibit the

zero velocity. Subsequently, they effect the velocity of fluid particles of adjacent layer

and as result they further effect the velocity of adjacent fluid particles and so on. This

process of slowing of velocity takes place at a certain distance from a flat surface. Fluid

velocity in the boundary layer varies from 0 to 0.99U∞, where free stream velocity is

exhibited by U∞.

1.13.2 Thermal Boundary Layer

Consider the fluid flow over a heated surface that has higher temperature than the

fluid. Consequently, the region of the fluid being heated by the surface is restricted to

a thin layer near the surface and this region where the temperature field exists is called

thermal boundary layer. Subsequently, when we move away from the heated surface,

the temperature of the fluid drops until it becomes equal to that of free stream.

1.13.3 Concentration Boundary layer

The boundary area when the concentration of nanofluid becomes closer to 99% of con-

centration of free stream.

The pictorial representation is given below and it is sourced from internet.
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Figure 1.1: Boundary layer flow

1.14 Conservation Laws

1.14.1 Mass Conservation Law

The law states that mass can neither be created nor destroyed. The differential form

for mass conservation is given by:

∂ρ

∂t
+ ∇⃗.

(
ρV⃗
)
= 0 , (1.23)

known as continuity equation. The equation of continuity is reduced to following

equation if flow is incompressible [27].

∇⃗.V⃗ = 0 , (1.24)

1.14.2 Momentum Conservation Law

Newton’s second law
∑

F⃗ = ma⃗, is the basis upon which the law of conservation of

momentum is based upon. The rate of change in momentum of a body is equal to the
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force applied to it, according to the rule, and it happens in the same direction as the

force. The conservation states that the momentum of system remains constant if no

external force is applied.

ρ
dV⃗

dt
= −∇⃗p+ ∇⃗.τ + ρg⃗ , (1.25)

where τ denotes the stress tensor and d
dt

represents the material time derivative.

1.14.3 Energy Conservation Law

Energy of the system remains constant although the form of the energy within a system

is changed as it cannot be created or destroyed.

ρCp
dT

dt
= ∇⃗.

(
κ ∇⃗ T

)
+ ϕ , (1.26)

where κ is the thermal conductivity, T is temperature, ϕ is the viscous dissipation

function.

1.15 Fourier’s law of heat conduction

It states that the heat flux (q) through a solid material is directly proportional to the

negative gradient of temperature (∇⃗T ) and the material’s thermal conductivity (κ):

q⃗ = −κ(∇⃗T ). (1.27)

q⃗ is the heat flux vector (the amount of heat energy transferred per unit area per

unit time), κ is the thermal conductivity of the material, and ∇⃗T is the temperature

gradient vector (the rate of change of temperature with respect to distance in a specific

direction).
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1.16 Fick’s laws

Fick’s laws are a set of fundamental equations in fluid mechanics that describe the

diffusion of substances, such as particles, atoms, or molecules, in a medium. They

were formulated by Adolf Fick, a German physiologist, in the mid-19th century. Fick’s

laws are essential in understanding mass transport processes in various scientific and

engineering disciplines.

1.16.1 Fick’s First Law:

This law describes the steady-state diffusion of a substance through a homogeneous

medium. It states that the rate of diffusion (J) of a substance is proportional to the

negative gradient of its concentration (C) with respect to distance (x). Mathematically,

Fick’s first law can be expressed as:

J = −D
∂C

∂x
, (1.28)

where J is the diffusive flux (the amount of substance diffusing per unit area per unit

time), D is the diffusion coefficient (also known as the diffusivity) of the substance in

the medium and ∂C
∂x

is the concentration gradient (the rate of change of concentration

with respect to distance).

Fick’s first law is applicable when the concentration gradient is constant over time and

there is no net accumulation or depletion of the diffusing substance in the medium.

1.16.2 Fick’s Second Law

This law describes the time-dependent diffusion of a substance in a medium. It con-

siders changes in concentration with respect to both time and distance. Fick’s second

law is a partial differential equation and is expressed as:

∂C

∂T
= D

∂2C

∂x2
. (1.29)

10



1.17 Dimensionless Parameters

1.17.1 Magnetic Parameter (M)

The ratio of Lorentz force to inertial force is the magnetic interaction parameter.

M =
σB2

∗
ρa

, (1.30)

where B∗ is the magnetic field strength, σ is the electrical conductivity, ρ is the density

and a is the positive constant.

1.17.2 Weissenberg Number

The Weissenberg number indicates the ratio of the time scale of elastic effects to the

time scale of viscous effects in the fluid.

We =
tr
tf

, (1.31)

where tf is time-scale of a flow and tr represent relaxation time. it is a measure of

the fluid’s ability to resist deformation and return to its original shape after being

deformed. A high Weissenberg number indicates a strong elastic response and the

potential for complex behavior such as shear-thickening or shear-thinning, depending

on the specific properties of the fluid.

1.17.3 Prandtl Number (Pr)

Prandtl number is expressed as the ratio between momentum diffusivity to thermal

diffusivity.

Pr =
ν

α
=

cpµ

κ
, (1.32)

where κ and cp are the thermal conductivity and the specific heat respectively.
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1.17.4 Peclet Number (Pe)

The Peclet number represents the ratio between rate of convection to the diffusion rate

in the convection and diffusion transport system.

Pe =
Convective transport rate
Diffusive transport rate

=
Ul

D
. (1.33)

U the characteristic flow velocity, l is the characteristic length scale of the system, and

D is the diffusion coefficient.

1.17.5 Biot Number (Bi)

It represents the ratio between the resistance offered to heat transfer by the inside of

the body to the external resistance.

Bi =
Internal conductive resistance

External convective resistance
=

hl

κeff

. (1.34)

h is the convective heat transfer coefficient at the surface of the solid, l is the charac-

teristic length (usually the thickness) of the solid material, κeff is the effective thermal

conductivity

1.17.6 Lewis Number (Le)

The ratio between the thermal diffusion to the mass diffusion is represented by the

Schmidt number . It characterizes the fluid flows where the simultaneous occurrence

of heat and mass transfer happens. Thus, it explains the relative thickness of thermal

and concentration boundary layers.

Le =
Thermal diffusivity

Mass diffusivity
=

α

D
, (1.35)

where α is given thermal diffusivity and D is mass diffusivity.
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1.17.7 Reynolds Number (Re)

The Reynolds number refer to the ratio between inertial and viscous forces.

Re =
ρuL

µ
, (1.36)

where L shows characteristic length, u denotes the velocity of flow. Reynolds number

is used to classify laminar and turbulent flow situations of fluid. Viscous forces are

dominant at low Reynolds numbers (Re > 2000), this causes laminar flow. Inertial

force becomes relatively dominant at a high Reynolds number (Re > 4000) creating

turbulence in the fluid flow.

1.18 Heat Transfer

Heat transfer takes places between physical systems as a result of temperature gradient.

Flow of heat occurs from a region of higher temperature to a region lower temperature.

The three modes of heat transfer are conduction, convection and radiation.

1.18.1 Conduction

Conduction is a process of heat transfer which occurs due to the collision of molecules in

a medium. As a result of Molecules with higher kinetic energy colliding with molecules

having lower kinetic energy, lower kinetic energy molecules obtain energy. Hence,

energy transfer in conduction is due to interaction of molecules in a medium. This

conduction is also known as heat conduction. Heat conduction, electrical conduction,

and sound conduction are all terms that are frequently used to describe three different

types of activity. Heat conduction rely on the temperature gradient, cross section area

of material and physical properties. The rate of conduction is calculated as follows:

Q =
k A(Thot − Tcold)

d
(1.37)
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in which k represents thermal conductivity, A is the area, d denotes thickness of body,

Thot and Tcold are temperatures of hot region and cold regions respectively.

1.18.2 Convection

Convection is defined as the flow of fluid molecules from higher to lower thermal energy

regions. Heat convection takes place due the density difference of fluid molecules in the

region. As the temperature increases volume of fluid molecules also increases, hence the

density of molecules decreases. This causes displacement of molecules. The three types

of convection are Natural (free) convection, Forced convection and mixed convection.

Newton’s law of cooling has given Heat Transfer Mechanism as below:

Q = h A(Tw − Tf ), (1.38)

Where h denotes heat transfer coefficient. Tw is the wall temperature and Tf is sur-

rounding temperature.

1.18.3 Radiation

In the infrared and visible regions of the electromagnetic spectrum, radiation is the

transmission of thermal energy carried by photons of light. Radiation is a mechanism

by which all bodies constantly emit thermal energy. It can be sent without the use of

any medium.

1.19 Numerical Method

1.19.1 bvp4c

The bvp4c solver in MATLAB is an effective tool to solve fairly complex problems.

For solving nonlinear systems of equations, the algorithm uses an iteration structure.

It is based on collocation method. The residual of the continuous solution is used for
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mesh selection and error control. As bvp4c is an iterative method, the algorithm’s

effectiveness will ultimately be determined by the ability to make an initial guess for

the solution. The MATLAB commands used are:

soll = bvp4c ((odefun, bcfun, solinit) , (1.39)

where odefun is the function of system of first order differential equations, bcfun

indicates the boundary conditions under consideration and solinit forms the initial

guess for the boundary value problem.

1.20 Literature Review

The relationship between shear stress and shear rate is non-linear in non-Newtonian

fluids. These fluids are of significant importance in various industrial and manufactur-

ing techniques, such as insulating materials, extrusion, hot rolling, glass-fiber manu-

facture, metal spinning and metal extrusion. To interpret non-Newtonian dynamics,

different fluid models such as the Casson, Williamson, viscoelastic, and tangent hyper-

bolic models are used. The Carreau model is a fundamental modeling technique that

demonstrates power-law behavior. It was proposed by Carreau [1] in 1972 as a four-

parameter approach that represents generalized Newtonian fluid models. The Carreau

fluid is a distinct model that characterizes power-law fluids and retrieves Newtonian

fluid as a limiting case [2, 3]. The viscosity of a generalized Newtonian fluid is permit-

ted to change in proportion to the amount of the deformation rate. They rotated the

inner cylinder while keeping the outer cylinder stationary and found that the friction

coefficient of the rotating cylinder decreased due to the influence of shear thinning.

Akber et al. [5] proposed a hypothesis on the boundary layer stagnation point flow

of Carreau fluid approaching a porous medium and stretching surface. They noticed

that as the elastic parameter increased, the skin friction coefficient slightly increased.
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In reference [6, 7, 8] different researchers employed various techniques to study fluids

using different media.

Nanofluids are a type of fluid that contains small particles or fibers called nanoparticles

or nanofibers, respectively, suspended in a base fluid, such as glycol, oil, and water.

These particles are typically between 1 to 100 nanometers in size and can modify the

mechanical and thermal properties of the fluid. One of the key benefits of nanofluids

is their increased thermal conductivity, which can improve heat transfer in various ap-

plications, such as nuclear reactors, heat exchangers, and electronics cooling.

The field of nanotechnology has attracted significant interest from researchers due

to the potential benefits offered by nanomaterials, including increased thermal con-

ductivity. Nanotechnology has uses in diverse fields, such as industrial, bio-medical

and engineering, including power generation, transportation, air conditioning, and nu-

clear system cooling. Nanofluids have gained attention due to their suitable viscosity,

enhanced stability, and better wetting properties. Research centers have been estab-

lished worldwide to facilitate the development of nanofluids. Previously, it was believed

that achieving higher thermal conductivity in fluids would require substantial pump-

ing power, making it impractical for various applications. However, Choi and Eastman

[9] proposed a theory that nanoparticles could develop efficient thermal conductivity

instead of relying on high pumping power to improve heat transfer.

Buongiorno [10] has discovered that both thermophoresis and Brownian motion are

essential mechanisms for increasing the thermal conductivity of nanofluids, which has

significant implications in various scientific fields, such as power generation, cooling

systems in vehicles, coolant processing, and biomedical applications such as cancer
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diagnosis. The thermal conductivity of these fluids is crucial in determining the coef-

ficient of heat transfer between the heat source and sheet.

This approach was employed by Khan and Pop [11] in examining the boundary layer

flow over a stretched sheet. According to their findings, the Nusselt number decreases

as values of thermophoresis, Prandtl number, and Brownian motion increase, while

the opposite is true for the Sherwood number. In a related study, Noghrehabadi et al.

[12] provided a succinct summary of slip boundary conditions and nanofluids, revealing

that an increase in the slip parameter results in a reduction of the momentum bound-

ary layer and an increase in the thermal boundary layer. Rohni et al. [13] employed

the Buongiorno model to examine the unsteady flow of nanofluid over a shrinking

sheet with convective heat transfer. Their study revealed the presence of non-unique

solutions for specific parameters. Malvandi et al. [14] a researchers investigated the

behavior of a nanofluid over a stretching sheet using convective boundary conditions.

Khan et al. [15] conducted research on the melting phenomenon of Carreau nanofluid

in the existence of heat occupation in an unsteady wedge flow. Their findings showed

that an increase in melting parameters resulted in a decrease in nanoparticle temper-

ature distribution and concentration. K. L. Hsiao [16] utilized the Carreau nanofluid

and a parameter control technique to enhance the activation energy system.

Magnetohydrodynamics (MHD) has gained significant interest due to its broad range

of applications in fields such as petroleum, environmental technology, and chemical

engineering. MHD involves the application of a magnetic field perpendicular to the

direction of the flow of liquid, creating a drag force called Lorentz force that opposes

the direction of fluid motion. The study of the behavior of electrically conductive flu-

ids, such as plasma and liquid metals, in the presence of magnetic fields, is referred to
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as MHD. Industrial applications of MHD include liquid metal blankets for fusion re-

actors, crystal growth, and metal casting, among others. Vajravelu and Hadjinicolaou

[17] examined heat transfer resulting from convection over a stretching surface in the

presence of an applied magnetic field, while Nazar et al. [18] investigated heat transfer

and flow of hydromagnetic fluid over a vertically stretched sheet. In both studies, it

was observed that the local heat flux at the wall and skin friction decreased as the

magnetic parameter increased. In their research, Ganesh et al. [19] investigated the

axisymmetric slip flow of an MHD Newtonian fluid on a vertically stretching cylinder.

They found that while skin friction coefficient increased with slip and surface convec-

tion parameters, it decreased with magnetic parameter.
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Chapter 2

Investigation of the behavior of
Carreau nanofluid flow under MHD in
a permeable medium and chemical
reaction in the context of a stretching
cylinder

In this chapter, we discuss the extension work that is motivated by Song et al. [20]

that explores the implications of convection, with an emphasis on thermal radiation

and chemical reaction for a flow of a Carreau nanofluid over a stretching cylinder

considering a permeable medium.

2.1 Mathematical Modelling

Take into account a two-dimensional, steady and incompressible Carreau nanofluid

within a porous medium along a horizontally stretching cylinder. The magnetic field

effect B∗ is perpendicular to the direction of fluid flow. The cylindrical axis is measured

along the x-axis and the r-axis is measured radially as shown in Fig.2.1. The Cauchy

stress tensor for a Carreau fluid is calculated using [21]:
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Figure 2.1: Problem Geometry

τ̈ = ´̂µ
´̂
A, (2.1)

and
´̂µ− ´̂µ∞
´̂µ0 − ´̂µ∞

=
[
1 + (Γγ̆)2

]n−1
2 , (2.2)

where ´̂µ0 is zero shear-rate viscosity, ´̂µ∞ is the infinite shear-rate viscosity, ´̂µ is shear-

rate viscosity, ´̂
A is the first kind Rivlin-Erickson tensor, Γ is a constant named material

time.

´̂
A = ▽V + (▽V )T , (2.3)

γ̆ =

√
1

2

∑
i

∑
j

γ̆ij γ̆ij =

√
1

2

∏
=

√
1

2
tr(

´̂
A2), (2.4)

Here,
∏

represents the second invariant of the strain tensor. The study considers

˘̂η∞ = 0 and Γγ̆ < 1 as assumptions. By utilizing binomial expansion, equation (2.2)

can be characterized as follows:

´̂µ = ´̂µ◦

[
1 +

n− 1

2
(Γγ̆)2

]
. (2.5)
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The equation (2.1) can be redefined as:

τ̈ = ´̂µ◦

[
1 +

n− 1

2
(Γγ̆)2

]
´̂
A. (2.6)

The boundary layer approximation of the momentum equation, continuity equation,

energy equation, concentration equation and motile microorganisms equation is written

as [21, 22]:
∂(ru)

∂x
+

∂(rv)

∂r
= 0, (2.7)

u
∂u

∂x
+v

∂u

∂r
= ν

(
∂2u

∂r2
+

1

r

∂u

∂r
+

3Γ2(n− 1)

2

(
∂u

∂r

)2
∂2u

∂r2
+

Γ2(n− 1)

2r

(
∂u

∂r

)3
)
−σB̂2

ρ
u− ν

κ1

u,

(2.8)

u
∂T

∂x
+v

∂T

∂r
= α

∂2T

∂r2
+
α

r

∂T

∂r
+

(ρC)p
(ρCp)f

(
DB

∂C

∂r

∂T

∂r
+

DT

T∞

(
∂T

∂r

)2
)
− 1

(ρCp)f

∂

∂r
(rqr)+

Q∗(T − T∞)

ρCp

,

(2.9)

u
∂C

∂x
+v

∂C

∂r
= DB

∂2C

∂r2
+
DB

r

∂C

∂r
+

DT

T∞r

∂T

∂r
+
DT

T∞

∂2T

∂r2
−κ∗

r (C − C∞)

(
T

T∞

)m

exp
(
−Ea

κbT∞

)
,

(2.10)

u
∂N

∂x
+v

∂N

∂r
+

bWC

(Cw − C∞)

[
∂

∂r

(
N
∂C

∂r

)]
=

Dm

r

∂

∂r

(
r
∂N

∂r

)
.

(2.11)

The system under consideration involves the following variables: velocity components

(u and v), kinematic viscosity (ν), power law index (n), porosity (κ1), electrical con-

ductivity (σ), fluid density (ρ), ambient temperature (T∞), temperature (T ), thermal

conductivity (α), specific heat (Cp), thermal radiation (qr), heat source (Q∗), concen-

tration (C), the concentration at the wall (Cw), ambient concentration (C∞), concen-

tration of microorganisms (N), the concentration of microorganisms at the wall (Nw),

ambient concentration of microorganisms (N∞), chemical reaction rate (κ∗
r), fitted rate

constant (m), Brownian diffusion (DB), thermophoretic diffusion DT , microorganism

diffusivity (Dm), swimming speed of maximum cell (WC) and chemotaxis constant (b).

The thermal radiation is approximated by the Rosseland model as:

qr = −−16σ∗T 3
∞

3κ∗
∂T

∂r
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here σ∗ is Stefan-Boltzmann constant and κ∗ is the mean absorption coefficient.

The boundary conditions under consideration are expressed as follows:

u = uw =
ax

L
, −k

∂T

∂r
+ qr = hf (Tf − T ), v = 0, DB

∂C

∂r
+

DT

T∞

∂T

∂r
= 0,

N = Nw at r = R,
(2.12)

u → 0, T → T∞, C → C∞, N → N∞, as r → ∞.

(2.13)

The similarity variable and similarity transformations are given below:

β =

√
a

lν

(
r2 −R2

2R

)
, Ψ(β) =

√
νa

l
xRf (β) , u =

1

r

∂Ψ

∂r
, v = −1

r

∂Ψ

∂x
,

(2.14)

θ(β) =
T − T∞

Tf − T∞
, χ(β) =

N −N∞

Nw −N∞
, ϕ(β) =

C − C∞

Cw − C∞
.

(2.15)

(1 + 2α∗β) f
′′′
+ 2α∗f

′′
+

3 (n− 1)

2
We2 (1 + 2α∗β) (f

′′
)2
(
(1 + 2α∗β) f

′′′
(β) + α∗f

′′
(β)
)
+

(n− 1)

2
We2 (1 + 2α∗β)α∗(f

′′
(β))3 − (f

′
(β))2 + f (β) f

′′
(β)−M2f

′
(β)−Kpf

′
(β) = 0,

(2.16)

(1 + 2α∗β) θ
′′
+ 2α∗θ

′
+

4

3
Rd
(
(1 + 2α∗β)θ

′′
+ 2α∗θ

′
)
+ (1 + 2α∗β)

Pr
(
Nt(θ

′
)2 +Nbθ

′
ϕ

′
)
+
(
fθ

′
+Qθ

)
Pr = 0,

(2.17)

(1 + 2α∗β)ϕ
′′
+ 2α∗ϕ

′
+ Scfϕ

′
+

Nt

Nb

(
2α∗θ

′
+ (1 + 2α∗β)θ

′′
)
− Scγr

(1 + δθ)m ϕexp
(

−E

(1 + δθ)

)
= 0,

(2.18)

(1 + 2α∗β)χ
′′
+ 2α∗χ

′
+ Sbfχ

′ − Pe
(
(1 + 2α∗β)(ϕ

′
χ

′
+ (χ+ δ1)ϕ

′′
) + (χ+ δ1)α

∗ϕ
′
)
= 0,

(2.19)
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with boundary conditions:

f(0) = 0, f
′
(0) = 1, f

′
(∞) = 0,

θ
′
(0) = −Bi(1− θ(0))

1 + 4
3
Rd

, θ(∞) = 0,

Nbϕ
′
(0) +Ntθ

′
(0) = 0, ϕ(∞) = 0,

χ(0) = 1, χ(∞) = 0, (2.20)

α∗ = 1
R

√
νl
a

is curvature parameter, M2 = σB̂2l
ρa

is magnetic parameter, Nb =

τDB(Cw−C∞)
νC∞

is Brownian parameter, Q = lQ∗

ρaCp
is heat generation parameter, Kp =

νl
κ1a

is porosity parameter, We2 = Γ2x2a3

νl3
is Weissenberg number, Nt =

τDT (Tf−T∞)

νT∞
is ther-

mophoresis constant, γr = κ∗
r l
a

denotes chemical reaction parameter, Pr = ν
α

denotes

Prandtl number, Sc = ν
DB

is the Schmidt number, Sb = ν
Dm

is the bioconvection

Schmidt number, E = −Ea

κbT∞
is activation energy, Rd = 4σ∗T 3

∞
κ∗κ

denotes the radiation pa-

rameter, Pe = bWc

Dm
denotes the Peclet number, Bi =

hf

k

√
νl
a

denotes the Biot number,

δ =
Tf−T∞

T∞
denotes temperature difference, δ1 = Nw

Nw−N∞
denotes the microorganism

difference parameter.

2.2 Measurable Properties

2.2.1 Skin Friction Coefficient

The Cf is a dimensionless factor that defines frictional drag on a surface. It is charac-

terized as follows:

Cf =
τ̈w

1
2
ρu2

w

. (2.21)

The shear stress at the wall is denoted as:

τ̈w = ´̂µ

(
∂u

∂r
+

Γ2(n− 1)

2
(
∂u

∂r
)3
)

r=R

. (2.22)
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After applying equation (2.22) in equation (2.21), we obtain:

CfRe
− 1

2
x

2
= f

′′
(0) +

(n− 1)

2
We2

(
f

′′
(0)
)3

. (2.23)

Here, the local Reynolds number is defined as: Rex = uwx
ν

.

2.2.2 Local Nusselt Number

We evaluate local Nusselt number (Nux) at surface to analyse heat transfer rate at

surface.

Nux = − xq̀w
κ(Tf − T∞)

. (2.24)

Fourier’s law at the wall is determined as:

q̀w = κ(
∂T

∂r
)r=R + qr. (2.25)

Using equation (2.25) in equation(2.24) we get:

NuxRe
− 1

2
x = −(1 +

4

3
Rd)θ

′
. (2.26)

2.2.3 Local Sherwood Number

The local Sherwood number (Shx) is s calculated as follows:

Shx =
xj∗w

DB(CW − C∞)
. (2.27)

By applying Fick’s law, we can represent mass transfer as:

j∗w = −DB(
∂C

∂r
)r=R. (2.28)

Using equation (2.28) in equation (2.27) we get:

ShxRe
− 1

2
x = −ϕ

′
(0). (2.29)

.
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2.2.4 Local Density of Motile Microorganisms

The local density of moving microorganisms is determined by:

Nnx =
xi∗w

Dm(NW −N∞)
. (2.30)

The flux of motile surface microorganisms is expressed as follows:

i∗w = −Dm(
∂N

∂r
)r=R. (2.31)

Using equation(2.31) in equation (2.30) we get:

NnxRe
− 1

2
x = −χ

′
(0). (2.32)

2.3 Numerical Approach

Differential equations of a more complex nature and higher order are frequently used

to simulate various engineering and scientific situations. In the contemporary litera-

ture, numerous mathematical approaches are available to be implemented in comput-

ing simulations. With regard to its precision and efficiency, dimensionless observations

(2.16)–(2.19) and boundary conditions (2.20) are arithmetically addressed by utilising

MATLAB computational curriculum’s bvp4c solver. Initially, coupled nonlinear ODEs

are modified into first order representations to use the given equation:

f = Ω1, f ′ = Ω′
1 = Ω2, f ′′ = Ω′

2 = Ω3,

θ = Ω4, θ′ = Ω′
4 = Ω5,

ϕ = Ω6, ϕ′ = Ω7,

χ = Ω8, χ′ = Ω′
8 = Ω9, (2.33)
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Ω′
3 = (

1

(1 + 2α∗β) + 3(n−1)
2

(1 + 2α∗β)2We2(Ω3)2
)(−2α∗Ω3 −

(n− 1)

2
We2α∗(1 + 2α∗β)(Ω3)

3

− 3(n− 1)

2
We2α∗(1 + 2α∗β)(Ω3)

3 +M2Ω2 +KpΩ2 + (Ω2)
2 − Ω1Ω3), (2.34)

Ω′
5 = (

1

(1 + 2α∗β) + 4
3
(1 + 2α∗β)Rd

)(−2α∗Ω5 − Pr(1 + 2α∗β)
(
Nt(Ω5)

2 +NbΩ5Ω7

)
−

Pr(QΩ4 + Ω1Ω5)−
4

3
2α∗RdΩ5), (2.35)

Ω′
7 = (

1

(1 + 2α∗β)
)(−2α∗Ω7 − 2α∗Nt

Nb
Ω5 − (1 + 2α∗β)

Nt

Nb
Ω′

5 − ScΩ1Ω7+

γrSc(1 + δΩ4)
mΩ6exp

−E
(1+δΩ4) ), (2.36)

Ω′
9 =

1

(1 + 2α∗β)
)(Pe((1 + 2α∗β)(Ω7Ω9 + (δ1 + Ω8)Ω

′
7) + (δ1 + Ω8)α

∗Ω7)

− 2α∗Ω9 − SbΩ1Ω9), (2.37)

Ω1(0) = 0, Ω2(0) = 1, Ω2(∞) = 0, (2.38)

Ω5(0) = −Bi(1− Ω4(0)), Ω4(∞) = 0, (2.39)

NbΩ7(0) +NtΩ5(0) = 0, Ω6(∞) = 0, (2.40)

Ω8(∞) = 0, Ω8(0) = 1. (2.41)
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M Malik et al.
[23]

Bilal et al.
[24]

Current Re-
sult

0.0 1.0000 1.0000 1.0000

0.5 -1.11802 -1.11800 -1.11803

1.0 -1.41419 -1.41420 -1.41421

Table 2.1: Examining the comparison of CfRe
− 1

2
x

2
under different values of M while

considering the values We = G = Kp = h1 = 0, n = 1.

2.4 Analysis of Results and Discussion

We examine the numerical outcomes of Cf (Re)−
1
2

2
for varying values of M in Table 2.1 and

compare them with the published results. Table 2.2 demonstrates the effect of various

factors on Cf . α∗, M and Kp illustrate the curvature, magnetic and permeability

parameters respectively. The value of Cf has shown an upward trend as the values

of α∗, M , and Kp have increased. However, it has a negligible effect on Cf when

n is increased. While Cf is diminishing when the value of We increases. Table 2.3

emphasizes that the value of Nux has shown an upward trend as the values of α∗, Pr,

Bi, and Nt have increased. Conversely, Nux diminishes when the values of Rd and Q

increase. It has a negligible effect on Nux when Nb is increased. Table 2.4 demonstrates

that the Shx has shown an upward trend as Nt increased while diminishing with the

rise of α∗, Nb and having a negligible effect on Shx when γr, Sc, m, E and δ are

increased. Table 2.5 demonstrates that the increments in the value of Nnx as the α∗

and Sb increases and then diminish as the Pe and γ1 increases.

Thermophoresis refers to the phenomenon where the transportation of particles or
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α∗ We M Kp n −CfRe
− 1

2
x

2

0.2 0.1 0.1 0.1 0.5 1.13009
0.4 - - - - 1.20647

0.6 - - - - 1.28161
0.2 0.3 - - - 1.11969
- 0.5 - - - 1.09691
- 0.7 - - - 1.05397

- 0.1 0.3 - - 1.16878
- - 0.5 - - 1.24205

- - 0.7 - - 1.3435
- - 0.1 0.3 - 1.2242

- - - 0.5 - 1.31067
- - - 0.7 - 1.3911
- - - 0.1 0.3 1.12959

- - - - 0.6 1.13035
- - - - 0.9 1.1311

Table 2.2: Considering the consequences of numerous factors regarding the coefficient
of skin friction when Nt = 0.5, Q = 0.2, Rd = 0.8, Sc = E = 0.2, δ = 0.5, γr =
0.8, m = 1.3, Nb = 0.4, Sb = Pe = δ1 = 0.2, Bi = 2, P r = 7.

molecules is induced by a temperature gradient. The enhancement of thermophoresis

is attributed to the temperature difference between the ambient temperature and the

temperature at the surface, resulting that increasing both the fluid’s temperature and

concentration. The thermophoretic force acting on small particles is increased as it is

influenced by the presence of a temperature gradient, which in turn leads to an en-

hancement of the thermophoresis parameter (Nt), shown in Fig.2.2, and Fig.2.3.

Fig.2.4 illustrates that α∗ affects the velocity profile. The radius has an inverse re-

lationship with the curvature parameter. By increasing the α∗ the cylinder radius

declines, thus resulting in fluid receiving less resistance which shows an upward trend

in velocity distribution. Fig.2.5 elucidates how α∗ affects on temperature distribution.
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α∗ Nb Pr Q Nt Rd Bi −θ
′
(0)

0.2 0.4 7 0.2 0.2 0.1 0.3 1.30638

0.4 - - - - - - 1.31283

0.6 - - - - - - 1.31862

0.2 0.4 - - - - - 1.30638

- 0.6 - - - - - 1.30638

- 0.8 - - - - - 1.30638

- 0.4 5 - - - - 1.25185

- - 6 - - - - 1.28287

- - 7 - - - - 1.30638

- - 7 0.1 - - - 1.33750

- - - 0.2 - - - 1.30638

- - - 0.3 - - - 1.25830

- - - 0.2 0.2 - - 1.30638

- - - - 0.4 - - 1.29996

- - - - 0.6 - - 1.29257

- - - - 0.2 0.1 - 1.30638

- - - - - 0.3 - 1.79597

- - - - - 0.5 - 2.34274

- - - - - 0.1 0.3 1.30638

- - - - - - 0.5 1.33546

- - - - - - 0.7 1.35887

Table 2.3: Evaluating the consequences of numerous factors affecting the local Nusselt
index when We = M = Kp = 0.1, n = 0.5, E = Sc = 0.2, δ = 0.5, γr = 0.8, Sb =
δ1 = Pe = 0.2, m = 1.3.
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α∗ Nt Nb γr m E δ Sc −ϕ′(0)

0.2 0.5 0.4 0.8 1.3 0.2 0.5 0.2 1.42989

0.4 - - - - - - - 1.43719

0.6 - - - - - - - 1.44378

0.2 0.5 - - - - - - 1.42989

- 0.7 - - - - - - 1.98955

- 0.9 - - - - - - 2.53914

- 0.5 0.4 - - - - - 1.42989

- - 0.6 - - - - - 0.953259

- - 0.8 - - - - 0.714944

- - 0.4 0.8 - - - - 1.42989

- - - 1.2 - - - - 1.42391

- - - 1.4 - - - - 1.42085

- - - 0.8 1.3 - - - 1.42989

- - - - 1.5 - - - 1.42924

- - - - 1.7 - - - 1.42856

- - - - 1.3 0.2 - - 1.42989

- - - - - 0.4 - 1.43157

- - - - - 0.6 - - 1.43301

- - - - - 0.2 0.5 - 1.42989

- - - - - - 0.7 - 1.42830

- - - - - - 0.9 - 1.42667

- - - - - - 0.5 0.2 1.42989

- - - - - - - 0.5 1.40298

- - - - - - - 0.7 1.38169

Table 2.4: Evaluating the consequences of numerous factors affecting the local Sher-
wood index when n = 0.5, We = M = Kp = 0.1, Bi = 0.3, P r = 7, Q = Sb = δ1 =
Pe = 0.2, Rd = 0.1.
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α∗ Sb Pe δ1 −χ′(0)
0.2 1.3 0.3 0.7 0.208953
0.3 - - - 0.217799
0.4 - - - 0.229419
0.2 1.3 - - 0.208953
- 1.5 - - 0.288028
- 1.7 - - 0.361661
- 1.3 0.1 - 0.560086
- - 0.3 - 0.208953
- - 0.5 - 0.135229
- - 0.3 0.7 0.208953
- - - 0.8 0.148008
- - - 1.2 0.056590

Table 2.5: Impact of various factors on the motile microorganisms by taking into
consideration when n = Nt = δ = 0.5, M = Kp = We = 0.1, Nb = 0.4, Sc = E =
Q = m = 0.2, Bi = Rd = 0, P r = 7, γr = 0.4.

Surging the α∗ results in an upward trend in temperature distribution. Increments in

the velocity distribution boosted the motion of fluid particles which means the heat

transfer rate is also boosted. Fig.2.6 elucidates that the concentration distribution

dwindles when the α∗ is boosted. The reason is that velocity and temperature show

an upward trend, which results in changes in the fluid’s viscosity, when the viscosity of

fluid decreases, movement of the nanoparticles is boosted which in turn gives a decline

in the concentration. Fig.2.7 portrays that the profile of the motile microorganisms

is boosted when surging α∗. Because the concentration of particles is decreased, the

movement of nanoparticles is boosted that is the cells move faster and they interact

with each other, resulting in an upward trend in the density of motile microorganisms.

Fig.2.8 illustrates how the permeability (Kp) parameter influences the velocity pro-

file. When increment in Kp, the resistance to the fluid’s nanoparticles is boosted and

velocity distribution decreases. The M affects the profile of velocity, as demonstrated in
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Fig.2.9. As the magnetic field strengthens, the corresponding increment in the Lorentz

force hinders the motion of fluid, leading to a decrease in velocity. Fig.2.10 depicts

how the profile of temperature is affected by Bi. As increment in Bi number which

turn in an upward trend in temperature distribution. Fig.2.11 depicts how the profile

of temperature is affected by Pr. Increasing in Pr causes a reduction in temperature

distribution. Fig.2.12 illustrates the rate of heat transmission rises with a boost in

Rd. The particles within the system absorb the radiation, resulting in a temperature

gradient between the surface and the top layers. Because of this, heat is transported

more rapidly. Fig.2.13 depicts the influence of γr on the concentration distribution.

Concentration distribution decreased as the increment in γr.

Fig.2.14 depicts how the concentration distribution is affected by Sc. Profile of con-

centration decreased as the increment in Sc. As the Schmidt number increases, the rate

of mass transfer also increases, leading to a decrease in concentration profiles. Nb rep-

resents the relationship between the concentration gradient and momentum diffusivity.

Before the intersection of the three curves, the concentration at the wall exceeds the

ambient concentration. As a result, the concentration near the boundary experiences

an upward surge. The motion of nanoparticles is enhanced when the temperature is

increased and there is a change in kinetic energy, this causes the concentration distribu-

tion to be reduced depicted in Fig.2.15. Fig.2.16 illustrates that the presence of motile

microorganisms decreases with an increase in Sb. This increase in Sb corresponds to

a dwindle in the diffusivity of microorganisms, leading to a decline in their movement.

Fig.2.17 illustrates the impact of the Pe on motile microorganisms distribution. When

we increase Pe, results in raised in the motile microorganisms distribution.
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Figure 2.2: The temperature dependence on Nt.

0 2 4 6 8 10 12 14
-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

 * = 0.3, We=M=Kp=0.1, m=Bi=0.2

Q=0.2, Sc=0.4, E=0.8, Pr=7, Nb=0.4
Sb=0.7, Pe=

1
=0.2, =n=0.5, 

r
=0.2, Rd=0.2

Nt= 0.2

Nt = 0.4

Nt = 0.8

Figure 2.3: The concentration dependence on Nt.

33



0 2 4 6 8 10 12 14 16 18
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 We=M=Kp=0.1, m=Bi=0.2

Q=0.2, Sc=0.4, E=0.8, Pr=7, Nt=0.5, Nb=0.4

Sb=0.7, Pe=
1
=0.2, =n=0.5, 

r
=0.2, Rd=0.2

* = 0.2

*=  0.4

* = 0.6

Figure 2.4: The velocity dependence on α∗.
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Figure 2.5: The temperature dependence on α∗
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Figure 2.7: The motile microorganisms dependence on α∗.
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Figure 2.8: The velocity dependence on Kp.
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Figure 2.9: The velocity dependence on M .

36



0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.05

0.1

0.15

0.2

0.25

0.3

 * = 0.3, We=M=Kp=0.1, m=0.2

Q=0.2, Sc=0.4, E=0.8, Pr=7, Nt=0.5, Nb=0.4

Sb=0.7, Pe=
1
=0.2, =n=0.5, 

r
=0.2, Rd=0.2

Bi=  0.2

Bi = 0.4

Bi = 0.6

Figure 2.10: The temperature dependence on Bi.
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Figure 2.11: The temperature dependence on Pr.
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Figure 2.12: The temperature dependence on Rd.
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Figure 2.13: The concentration dependence on γr.
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Figure 2.15: The concentration dependence on Nb.
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0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

1.2

  *= 0.3, We=M=Kp=0.1, m=Bi=0.2

Q=0.2, Sc=0.4, E=0.8, Pr=7, Nt=0.5, Nb=0.4

Sb=0.7, 
1
=0.2, =n=0.5, 

r
=0.2, Rd=0.2

Pe = 0.8

Pe = 1.2

Pe = 1.8

Figure 2.17: The motile microorganisms dependence on Pe.
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Chapter 3

Analysis of EMHD Carreau Nanofluid
slip flow over an inclined cylinder with
chemical reaction, variable thermal
conductivity

In this chapter, we discuss the extension work that is motivated by Waqas et al. [30]

that analysis of variable EMHD Carreau Nanofluid slip flow over an inclined cylinder

with chemical reaction and variable thermal conductivity.

3.1 Mathematical Formulation

We conducted a study on the two-dimensional EMHD flow of a steady laminar flow

of Carreau bio-nanofluid through an inclined cylinder. The analysis considered the

effects of variable thermal conductivity, slip boundary conditions and Arrhenius acti-

vation energy. At r = 0, the surface has been located. Both the variable magnetic field

B(x) = B̂x
l

and the variable electric field E(x) = Êx
l

have been applied orthogonal to

the direction of fluid flow. Due to its low value, the magnetic Reynolds number does

not produce a magnetic field. As seen in Fig.3.1, the cylindrical axis follows the x-axis

whereas the radial direction follows the r-axis.
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Figure 3.1: Problem Geometry

The equations for continuity, momentum, energy, continuity, concentration and

motile microorganisms under the boundary layer approximation can be expressed as

follows:
∂(ru)

∂x
+

∂(rv)

∂r
= 0, (3.1)

u
∂u

∂x
+ v

∂u

∂r
= ν

(
∂2u

∂r2
+

1

r

∂u

∂r
+

3Γ2(n− 1)

2

(
∂u

∂r

)2
∂2u

∂r2
+

Γ2(n− 1)

2r

(
∂u

∂r

)3
)
−

− g ((T − T∞)ωt − ωc(C − C∞)) cos(γ)− σ

ρf

(
B̂2(x)u− Ê(x)B̂(x)

)
− ν

κ1

u,

(3.2)

u
∂T

∂x
+ v

∂T

∂r
=

1

ρCp

1

r

(
∂

∂r

(
κ(T )r

∂T

∂r

))
+

(ρC)p
(ρCp)f

(
DB

∂C

∂r

∂T

∂r
+

DT

T∞

(
∂T

∂r

)2
)
−

1

ρCp

1

r

∂(rq)

∂r
+

Q∗(T − T∞)

ρCp

,

(3.3)

u
∂C

∂x
+ v

∂C

∂r
= DB

∂2C

∂r2
+

DB

r

∂C

∂r
+

DT

T∞r

∂T

∂r
+

DT

T∞

∂2T

∂r2
− κ2

r (C − C∞)

(
T

T∞

)m

exp

(
−Ea

κbT

)
, ‘

(3.4)
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u
∂N

∂x
+v

∂N

∂r
+

bWC

(Cw − C∞)

[
∂

∂r

(
N
∂C

∂r

)]
=

Dm

r

∂

∂r

(
r
∂N

∂r

)
.

(3.5)

The system under consideration involves the following variables: velocity components

(u and v), kinematic viscosity (ν), power law index (n), gravitational acceleration (g) ,

porosity (κ)1, electrical conductivity (σ), fluid density (ρ), ambient temperature (T∞),

temperature (T ), thermal conductivity (α), specific heat (Cp), thermal radiation (qr),

heat source (Q∗), concentration (C), thermophoretic diffusion (DT ), a concentration at

the wall (Cw), ambient concentration (C∞), concentration of microorganisms (N), the

concentration of microorganisms at the wall (Nw), ambient concentration of microor-

ganisms (N∞), chemical reaction rate (κ∗
r), fitted rate constant (m), Brownian diffusion

(DB), microorganism diffusivity (Dm), swimming speed of maximum cell (WC) and

chemotaxis constant (b). For a Carreau nanofluid, the variable thermal conductivity

can be described as:

κ(T ) = κ∞(1 + ϵθ), (3.6)

The specified conditions at the boundary are as follows:

u = uw + uslip =
ax

l
+ h

∂u

∂r

(
1 +

n− 1

2
Γ2

(
∂u

∂r

)2
)
, −k

∂T

∂y
+ qr = hf (Tf − T ), v = 0,

DB
∂C

∂r
+

DT

T∞

∂T

∂r
= 0, N = Nw at r = R,

(3.7)

u → 0, T → T∞, C → C∞, N → N∞, as r → ∞.

(3.8)

The similarity variable and similarity transformations are given below:

ω =

√
a

lν

(
r2 −R2

2R

)
, Ψ(ω) =

√
νa

l
xRf (ω) , u =

1

r

∂Ψ

∂r
, v = −1

r

∂Ψ

∂x
,

(3.9)

θ(ω) =
T − T∞

Tf − T∞
, χ(ω) =

N −N∞

Nw −N∞
, ϕ(ω) =

C − C∞

Cw − C∞
.

(3.10)
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(1 + 2ξω) f
′′′
+ 2ξf

′′
+

3 (n− 1)

2
We2 (1 + 2ξω) (f

′′
)2
(
(1 + 2ξω) f

′′′
(ω) + ξf

′′
(ω)
)
+

(n− 1)

2
We2 (1 + 2ξω) ξ(f

′′
(ω))3 − (f

′
(ω))2 + f (ω) f

′′
(ω)−M2

(
f

′
(ω)−G

)
−Kpf

′
(ω) + (Tt + Tc) cos(γ) = 0, (3.11)

(1 + 2ξω)
(
(1 + εθ) θ′′ + εθ′2

)
+ (1 + εθ) 2ξθ

′
+ (1 + 2ξω)Pr

(
Nt(θ

′
)2 +Nbθ

′
ϕ

′
)
+

Pr
(
fθ

′
+Qθ

)
+

4

3
Rd
(
1 + 2ξω)θ

′′
+ ξθ

′
)
= 0,

(3.12)

(1 + 2ξω)ϕ
′′
+ 2ξϕ

′
+ Scfϕ

′
+

Nt

Nb

(
2ξθ

′
+ (1 + 2ξω)θ

′′
)

− Scγr (1 + δθ)m ϕexp

(
−E

(1 + δθ)

)
= 0,

(3.13)

(1 + 2ξω)χ
′′
+ 2ξχ

′
+ Sbfχ

′ − Pe
(
(1 + 2ξω)(ϕ

′
χ

′
+ (χ+ δ1)ϕ

′′
) + (χ+ δ1)ξϕ

′
)
= 0,

(3.14)

with boundary conditions:

f(0) = 0, f
′
(0) = 1 + h1f

′′
(0)

(
1 +

n− 1

2
We2

(
f

′′
(0)
)2)

, f ′(∞) = 0,

θ
′
(0) = − Bi(1− θ(0))

(1 + εθ(0) + 4
3
Rd)

, θ(∞) = 0,

Nbϕ
′
(0) +Ntθ

′
(0) = 0, ϕ(∞) = 0,

χ(0) = 1, χ(∞) = 0. (3.15)

ξ = 1
R

√
νl
a

is curvature parameter, M2 = σB̂2x2

ρfal
is magnetic parameter, G = Ê

B̂u2
w

is the electric parameter, Q = lQ∗

ρaCp
is heat generation parameter, Kp = νl

κ1a
is poros-

ity parameter, We2 = Γ2x2a3

νl3
is Weissenberg number, Rd = 4σ∗T 3

∞
κ∗κ

is radiation pa-

rameter, Nb = τDB(Cw−C∞)
C∞ν

illustrates Brownian parameter, Nt =
τDT (Tf−T∞)

νT∞
illus-

trates thermophoresis constant, E = −Ea

κbT∞
is Arhinous activation energy, γr = lκ∗

r

a
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is chemical reaction parameter, Pr = ν
α

is Prandtl number, Sc = ν
DB

denotes the

Schmidt number, Sb = ν
Dm

illustrates the bioconvection Schmidt number, Pe = bWc

Dm

depicts the Peclet number, Bi =
hf

k

√
νl
a

is Biot number, h1 = h
√

a
lν

is slip param-

eter, δ =
Tf−T∞

T∞
is temperature difference, δ1 = Nw

Nw−N∞
is microorganism difference

parameter, Tt =
gωt(Tf−T∞)l2

xu2
1

is temperature buoyancy parameter, Tc =
gωc(Cw−C∞)l2

xu2
1

is

concentration buoyancy parameter.

3.2 Physical Properties

3.2.1 Skin Friction Coefficient

Cf is a dimensionless parameter that quantifies the frictional drag experienced by a

surface. It is defined as follows:

Cf =
τ̈w

1
2
ρu2

w

. (3.16)

Defined the shear stress at the wall as follows:

τ̈w = ´̂µ

(
∂u

∂r
+

Γ2(n− 1)

2
(
∂u

∂r
)3
)

r=R

. (3.17)

Using equation (3.17) in equation (3.16) we get:

CfRe
− 1

2
x

2
= f

′′
(0) +

(n− 1)

2
We2

(
f

′′
(0)
)3

. (3.18)

Here, the local Reynolds number is given as: Rex = uwx
ν

.

3.2.2 Local Nusselt Number

To analyze the heat transfer rate at the wall, we illustrate the value of Nux at the

surface.

Nux =
x `̂qw

κ(Tf − T∞)
. (3.19)
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where heat flux is defined as:

qw = −κ(
∂T

∂r
)r=R + qr. (3.20)

Using equation (3.20) in equation (3.19) we get:

NuxRe
− 1

2
x = −

(
1 +

4Rd

3(1 + ϵθ(0))

)
θ
′
(0). (3.21)

3.2.3 Local Sherwood Number

The Shx is defined as:

Shx =
xj∗w

DB(CW − C∞)
. (3.22)

Fick’s law can be used to express the mass transfer as:

j∗w = −DB(
∂C

∂r
)r=R. (3.23)

Using equation (3.23) in equation (3.22) we get:

ShxRe
− 1

2
x = −ϕ

′
(0). (3.24)

3.2.4 Local Density Of Motile Microorganisms

The Nnx is determined by:

Nnx =
xi∗w

Dm(NW −N∞)
. (3.25)

Where:

i∗w = −Dm(
∂N

∂r
)r=R. (3.26)

Using equation (3.26) in equation (3.24) we get:

NnxRe
− 1

2
x = −χ

′
(0). (3.27)
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3.3 Numerical Approach

In order to solve the group of differential equations (3.11)–(3.14) and their correspond-

ing boundary conditions (3.15), we employed a numerical method called bvp4c. We

solved the first-order differential equations and established an initial value problem.

To facilitate this, we introduced converted variables, which allowed us to create the

necessary set of first-order differential equations. With the aid of these transformed

variables, we successfully solved the first-order differential equations.

f = Υ1, f ′ = Υ′
1 = Υ2, f ′′ = Υ′

2 = Υ3,

θ = Υ4, θ′ = Υ′
4 = Υ5,

ϕ = Υ6, ϕ′ = Υ7,

χ = Υ8, χ′ = Υ′
8 = Υ9, (3.28)

Υ′
3 = (

1

(1 + 2ξω) + 3(n−1)
2

(1 + 2ξω)2We2(Υ3)2
)(−2ξΥ3 −

(n− 1)

2
We2ξ(1 + 2ξω)(Υ3)

3

− 3(n− 1)

2
We2ξ(1 + 2ξω)(Υ3)

3 +M2 (Υ2 −G) +KpΥ2

+ (Υ2)
2 − (Tt + Tc)cos(γ)−Υ1Υ3), (3.29)

Υ′
5 = (

1

(1 + 2ξω) (1 + εΥ4) +
4
3
(1 + 2ξω)Rd

)(−2ξ (1 + εΥ4)Υ5 − (1 + 2ξω)ε(Υ5)
2−

Pr(1 + 2ξω)
(
Nt(Υ5)

2 +NbΥ5Υ7

)
− Pr(QΥ4 +Υ1Υ5)−

4

3
2ξRdΥ5), (3.30)

Υ′
7 = (

1

(1 + 2ξω)
)(−2ξΥ7 − 2ξ

Nt

Nb
Υ5 − (1 + 2ξω)

Nt

Nb
Υ′

5 − ScΥ1Υ7+

γrSc(1 + δΥ4)
mΥ6exp

−E
(1+δΥ4) ), (3.31)

Υ′
9 = (

1

(1 + 2ξω)
)(−2ξΥ9 − SbΥ1Υ9 + Pe((1 + 2ξω)(Υ7Υ9 + (δ1 +Υ8)Υ

′
7) + (δ1 +Υ8)ξΥ7)),

(3.32)
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Υ1(0) = 0, Υ2(0) = 1 + h1Υ3(0)

(
1 +

n− 1

2
We2 (Υ3(0))

2

)
, Υ2(∞) = 0, (3.33)

Υ5(0) = − Bi(1−Υ4(0))

1 + εΥ4(0) +
4
3
Rd

, Υ4(∞) = 0, (3.34)

NbΥ7(0) +NtΥ5(0) = 0, Υ6(∞) = 0, (3.35)

Υ8(0) = 1, Υ8(∞) = 0. (3.36)

3.4 Result and Discussion

3.4.1 Discussion of Tables

The current numerical findings of Cf (Re)−
1
2

2
for various values of ξ are compared to

the corresponding published results in Table 3.1. Based on the statistics, the current

numerical findings demonstrate a high level of accuracy in comparison to the published

data. Table 3.2 represents the dynamic of numerous variables on Cf . Increment in the

values of ξ, M and Kp parameters the Cf increases, and negligible effect on Cf when

we increment in the values n, G, Ti, Tc and γ. It dwindles when we increase the value

of We and h1. Table 3.3 represents the dynamic of numerous variables on Nux. When

Pr, and Bi are increased, Nux also increases. There is no effect on Nnx when we

increase the values of the ξ, Nt, ε, and Nb. However, it dwindles when boosted the

values of Q, and Rd. Table 3.4 represents the dynamic of numerous parameters on

Shx. When increased the values of Nt parameters the Shx increases. It is no effect

on Nnx when we increased the values ξ, E, m, γr, Sc, and δ and it dwindles when we

increased the values of Nb. Table 3.5 represents the dynamic of numerous parameters

on Nnx. As we increased the values of ξ, and Sb the Nnx also increases. It dwindles

when we increased the values of Pe, and δ1.
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Figure 3.2: The velocity dependence on ξ.
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Figure 3.4: The concentration dependence on ξ.
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Figure 3.5: The motile microorganisms dependence on ξ.
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ξ Rangi and Ahmad [28] Hashim et al. [29] Current result
0 -1.0000 -1.0000 -1.0000

0.25 -1.094378 -1.094373 -1.090626
0.5 -1.188715 -1.188727 -1.178434
0.75 -1.281833 -1.281819 -1.263496

Table 3.1: During the examination of how Cf (Rex)
− 1

2

2
changes with different values of

ξ, we take into account the following parameter values: We = G = M = Kp = h1 =
Tt = TC = 0 and n = 1.

3.4.2 Discussion of Graphs

Fig.3.2 represents the effect of ξ on velocity rate. The correlation between ξ and ra-

dius is inverse. The cylinder radius dwindles when ξ increases, thereby reducing the

resistance of the fluid that increased the velocity profile. Fig.3.3 demonstrates that the

temperature profile is boosted when ξ increases because the velocity rate is enhanced,

which increases the mobility of fluid particles, which, in turn, leads to an increased

trend in temperature distribution. Fig.3.4 represents decreasing trend in concentration

rate when increments in the ξ. The reason behind this phenomenon is the observed

velocity and temperature distribution increasing, leading to variations in the fluid’s

viscosity. As the fluid’s viscosity decreases, it enhances the motion of nanoparticles,

ultimately causing a decrease in concentration. Fig.3.5 represents an increasing trend

in microorganisms profile when increment in xi. The reason behind this phenomenon is

the motion of nanoparticles increased that increasing speed of cells and getting interact

with each other.

Fig.3.6 demonstrates that as we increase the Nt, the temperature profile also in-

creases. Near the boundary line, the concentration distribution dwindles because,

near the boundary line, the temperature difference is greater, which causes the trans-

portation of nanoparticles to be higher. As we move away from the boundary line, the
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ξ We M Kp h1 Tt Tc n G −Cf (Re)−
1
2

2

0.3 0.1 0.1 0.2 0.1 0.1 0.1 0.5 0 1.04347
0.5 - - - - - - - - 1.10082
0.5 - - - - - - - - 1.15564
0.3 0.1 - - - - - - - 1.04347
- 0.3 - - - - - - - 1.03766
- 0.5 - - - - - - - 1.02491
- 0.1 0.1 - - - - - - 1.04347
- - 0.5 - - - - - - 1.13116
- - 0.7 - - - - - - 1.20907
- - 0.1 0.2 - - - - - 1.04347
- - - 0.4 - - - - - 1.11731
- - - 0.6 - - - - - 1.18401
- - - 0.2 0.1 - - - - 1.04347
- - - - 0.3 - - - - 0.823973
- - - - 0.5 - - - - 0.685804
- - - - 0.1 0.1 - - - 1.04347
- - - - - 0.5 - - - 1.02929
- - - - - 0.7 - - - 1.02229
- - - - - 0.1 0.1 - - 1.04347
- - - - - - 0.5 - - 1.04763

- - - - - 0.7 - - 1.04972
- - - - - 0.1 0.4 - 1.04333
- - - - - - 0.6 - 1.04361
- - - - - - 0.8 - 1.04389
- - - - - - 0.5 0 1.04347
- - - - - - - 0.1 1.04194
- - - - - - - 0.3 1.03890

Table 3.2: Considering the consequences of numerous factors regarding the coefficient
of skin friction ε = 0.1, Nt = 0.1, Q = 0.1, Rd = 0.8, Sc = E = 0.2, δ = 0.2, γr =
0.8, γ = π/4, m = 1.3, Nb = 0.1, Sb = 0.5, P e = δ1 = 0.2, Bi = 0.3, P r = 7.

transportation of nanoparticles decreases, which causes the concentration distribution

to increase, as demonstrated by the impact of Nt in Fig.3.7. Fig.3.8 represents that

surging the value of Kp results in declines in velocity rate this is due to the fact that

higher permeability implies a greater hindrance to the fluid’s movement, leading to
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ξ Nt ε Pr Nb Rd Bi Q −θ
′
(0)

0.2 0.2 0.3 7 0.4 0.3 0.5 0.1 0.357299
0.5 - - - - - - - 0.361166
0.7 - - - - - - - 0.363476
0.2 0.2 - - - - - - 0.357299
- 0.5 - - - - - - 0.356974
- 0.7 - - - - - - 0.356754
- 0.2 0.3 - - - - - 0.357299
- - 0.5 - - - - - 0.334754
- - 0.7 - - - - - 0.314067
- - 0.3 5.1 - - - - 0.341082
- - - 6 - - - - 0.349699
- - - 7 - - - - 0.357299
- - - 7 0.4 - - - 0.357299
- - - - 0.7 - - - 0.357298
- - - - 0.9 - - - 0.357299
- - - - 0.4 0.3 - - 0.357299
- - - - - 0.5 - - 0.371649
- - - - - 0.7 - - 0.381959
- - - - - 0.3 0.5 - 0.357299
- - - - - - 0.7 - 0.448751
- - - - - - 0.9 - 0.523051
- - - - - - 0.5 0.1 0.357299
- - - - - - - 0.3 0.318111
- - - - - - - 0.7 0.337158

Table 3.3: Evaluating the consequences of numerous factors affecting the Nusselt index
We = M0.2, Kp = 0.1, n = 0.5, G = 0.1, h1 = 0.1, Tt = Tc = 0.1, γ = π/3, E =
0.2, Sc = 0.1, δ = γr = 0.8, Sb = δ1 = Pe = 0.2, m = 1.3.

a reduction in its speed. Therefore, when the permeability parameter is raised, the

velocity of the fluid decreases. When the magnetic field strength is heightened, the

velocity profile experiences a decline as a result of the creation of a Lorentz force. This

force acts in a way that hinders the fluid’s mobility, resulting in declines in velocity

rate. Consequently, by increasing the M , the velocity is effectively reduced which rep-

resents Fig.3.9. Fig.3.10 represents the dynamics of Tt on the velocity rate. As we

increased the value of Tt, the velocity rate increased due to an increment in Ti, which
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ξ E Nt m Nb γr Sc δ −ϕ′(0)
0.2 1.1 0.2 1.3 0.4 0.8 0.1 0.2 0.135505
0.6 - - - - - - - 0.137542
0.9 - - - - - - - 0.138873
0.2 1.1 - - - - - 0.135505
- 1.3 - - - - - - 0.135508
- 1.5 - - - - - - 0.135511
- 1.1 0.2 - - - - - 0.135505
- - 0.4 - - - - - 0.270902
- - 0.9 - - - - 0.608914
- - 0.2 1.3 - - - - 0.135505
- - - 1.5 - - - - 0.135505
- - - 1.7 - - - - 0.135505
- - - 1.3 0.4 - - 0.135505
- - - - 0.6 - - - 0.090337
- - - - 0.8 - - - 0.067753
- - - - 0.4 0.8 - - 0.135505
- - - - - 1.2 - - 0.135495
- - - - - 1.7 - - 0.135483
- - - - 0.8 0.1 - 0.135505
- - - - - - 0.3 - 0.135421
- - - - - - 0.5 - 0.135348
- - - - - - 0.1 0.2 0.135505
- - - - - - - 0.5 0.135503
- - - - - - - 0.8 0.135501

Table 3.4: Evaluating the consequences of numerous factors affecting the Sherwood
index We = M = 0.2, Kp = 0.1, n = 0.5, G = 0, h1 = 0.1, Tt = Tc = 0.1, γ = π

3
, ε =

0.3, Bi = 0.5, P r = 7, Q = 0.1, δ1 = 0.8, Sb = Pe = 0.2, Rd = 0.3.

led to an increase in buoyancy forces that caused the fluid to become lighter. Fig.3.11

represents the dynamics of Tc on the velocity distribution. As we increased the value

of Tc, the velocity rate decreased due to fluids having high movement of nanoparticles,

which resulted in a decrease in the movement of fluid.

Fig.12 represents the dynamics of Bi on the transfer rate of heat. An enhancement in

Bi indicates a more efficient advection at the solid-liquid interface, resulting in a rapid
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Sb ξ Pe δ1 −χ′(0)
0.9 0.2 0.3 0.3 0.525645
1.3 - - - 0.671561
1.6 - - - 0.768024
0.9 0.2 - - 0.525645
- 0.4 - - 0.574553
- 0.6 - - 0.630781
- 0.2 0.3 - 0.525645
- - 0.5 - 0.501422
- - 0.7 - 0.480562
- - 0.3 0.3 0.525645
- - - 0.7 0.512810
- - - 1.2 0.500947

Table 3.5: Impact of various factors on the motile microorganisms by taking into
consideration We = Kp = We = 0.1, n = 0.5, G = 0, h1 = 0.1, Ti = Wr = Sb =
0.1, J = π/3, ε = 0.3, Nt = 0.2, Q = 0.1, Rd = 0.3, Sc = 0.1, E = 0.2, δ = 0.2, γr =
0.8, m = 1.3, Nb = 0.4, Bi = 0.3, P r = 7.

exchange of thermal energy between the solid and fluid. Consequently, the temperature

distribution increases. Fig.3.13 represents the influence of Rd on temperature profile.

When increased the radiation of the system, the fluid particles absorb more heat, lead-

ing to an increasing trend in the temperature profile. The heat transfer rate has an

inverse relationship with Pr because an increment in Pr caused an increase in the heat

conduction of the system, resulting in a decline in the convective heat transfer rate.

This decline caused a temperature distribution decrease, as demonstrated in Fig.3.14.

Fig.3.15 represents the influence of γr on the slope of concentration. An increment in

the γr reduces the motion of fluid concentration, resulting in less chemical diffusion.

Fig.3.16 represents the influence of Sc on the slope of concentration. Increments in

Sc causes the concentration rate to decrease. An increment in the value of Nb caused

a reduction in concentration rate as represented in Fig.3.17. Fig.3.18 represents the

influence of the effect of Sb. An increment in Sb causes a reduction in the diffusion of

microorganisms, leading to a decline in the density of microorganisms and the thick-
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ness of the boundary layer. In Fig.3.19, Fig.3.20 and Fig.3.21, the slope of the curves

decreases as we increment the values of We, h1, and Tt, respectively, and plot them

against M . Similarly, in Fig.3.22 the slope of the curves decreases as we increment in

the values of Bi that plot against ε. In Fig.3.23 the Cf is increased when increment in

the values of Pr.
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Figure 3.8: The velocity dependence on Kp.
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Figure 3.9: The velocity dependence on M .
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Figure 3.10: The velocity dependence on Tt.
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Figure 3.11: The velocity dependence on Tc.
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Figure 3.12: The temperature dependence on Bi.
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Figure 3.13: The temperature dependence on Rd.
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Figure 3.14: The temperature dependence on Pr.
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Figure 3.15: The concentration dependence on γr.
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Figure 3.16: The concentration dependence on Sc.
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Figure 3.17: The concentration dependence on Nb.
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Figure 3.18: The motile microorganism dependence on Sb.
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Figure 3.21: Effect of Ti on skin friction coefficient.
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Chapter 4

Conclusion

The thesis is primarily divided in three chapters. In the first chapter, a brief note

is given along with basic definitions of fluid and its classes like Newtonian and non-

Newtonian fluids. The various properties of fluid flow like compressible, incompress-

ible, steady, unsteady, and MHD flow is also explained. The conservation laws of mass,

momentum, and energy are also described. Dimensionless parameters like Reynolds

number, Prandtl number, and Biot number are briefly mentioned. Lastly, the numeri-

cal methods are discussed.

In chapter two, we explored the extended problem of the impact of implications of

convection, with an emphasis on thermal radiation and chemical reaction for a flow of

a Carreau nanofluid over a stretching cylinder considering a permeable medium. The

governing equations were transformed into ODEs using similarity variables. Following

the transformation the bvp4c was applied using MATLAB. The results attained for

the influence of various parameters on the dimensionless parameters like density of

motile microorganisms etc. are tabulated. Graphical representation is also provided

for impact of parameters on velocity, temperature, solute distribution, and motile mi-

croorganisms. A few of the notable findings are:

• Velocity profile decreases as the Kp, and M values increases and increases as the
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α∗ value increases.

• The temperature profile boosted as the α∗, Bi, and Rd value increases and dwin-

dles as the Pr, and Nb values raised.

• The concentration profile decreases as the α∗, γr, Sc, and Nb value increases, and

increases as the Nt, E parameters values increase.

• The motile microorganisms profile increases as α∗, and the Nt value increases,

and decreases as the Sb parameter values increase.

• Boosting the values of α∗, M , and Kp simultaneously enhances Cf .

• The α∗, Bi, and Pr simultaneously enhance the Nux. When the values of Rd

and Q are increased, the value of the Nux decreases.

• An increment in Nb, and α∗ values, the local Sherwood number falls, but it

increases when the Nt value rises.

• As Sb, and α∗ increase, the concentration of motile microorganisms shows an

upward trend, but when the Pe value rises, it falls.

In chapter three, we explored the extended problem of the impact of variable EMHD

Carreau Nanofluid slip flow over an inclined cylinder with chemical reaction and vari-

able thermal conductivity in the presence of a porous medium. PDEs are transformed

into a set of coupled ODEs when non-similarity variables are introduced. An ex-

tensively employed collocation-based MATLAB tool called bvp4c is implemented to

compute the results. Graphs represent the dynamics of numerous parameters on the

concentration, temperature, velocity, and microorganism profiles. Tables represent the

impact of numerous parameters on the physical properties of local Nusselt number, skin

67



friction coefficient, rate of transfer of microorganisms at cylinder, and local Sherwood

number. A few of the notable findings are:

• Velocity profile diminishes when boosted the Kp and M values, whereas it in-

creased with rise in the ξ values.

• Temperature distribution surged when raised in the ξ, and Rd values and declines

as the values of Pr surged.

• As the ξ, γr, and Nb values surged, the concentration distribution declined and

incremented as do the Nt parameter values.

• As the Kp, M , and ξ values surged caused increments in Cf .

• An increase in the values of Pr, and Bi caused increments in Nux.

• Higher values of Nb lead to a declines in the value of Shx. Boosted the values of

Sb, and ξ caused increments in Nnx.
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